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Preface

This book contains one hundred and two highly selected problems
used in the training and testing of the USA International Math-
ematical Olympiad (IMO) team. Tt is not a collection of very
difficult, impenetrable questions. Instead, the book gradually builds
students’ combinatorial skills and techniques. This work aims to
broaden students’ view of mathematics and better prepare them
for possible participation in various mathematical competitions. It
provides in-depth enrichment in important areas of combinatorics
by reorganizing and enhancing students’ problem-solving tactics and
strategies. The book further stimulates students’ interest for future
study of mathematics.







Introduction

In the United States of America, the selection process leading
to participation in the International Mathematical Olympiad (IMO)
consists of a series of national contests called the American Math-
ematics Contest 10 (AMC 10), the American Mathematics Contest
12 (AMC 12), the American Invitational Mathematics Examination
(AIME), and the United States of America Mathematical Olympiad
(USAMO). Participation in the AIME and the USAMO is by in-
vitation only, based on performance in the preceding exams of the
sequence. The Mathematical Olympiad Summer Program (MOSP)
is a four-week intensive training program for around one hundred
very promising students who have risen to the top in the American
Mathematics Competitions. The six students representing the United
States of America in the IMO are selected on the basis of their
USAMO scores and further testing that takes place during MOSP.
Throughout MOSP, full days of classes and extensive problem sets
give students thorough preparation in several important areas of
mathematics. These topics include combinatorial arguments and
identities, generating functions, graph theory, recursive relations,
sums and products, probability, number theory, polynomials, theory
of equations, complex numbers in geometry, algorithmic proofs; com-
binatorial and advanced geometry, functional equations, and classical
inequalities.

Olympiad-style exams consist of several challenging essay problems.
Correct solutions often require deep analysis and careful argument.
Olympiad questions can seem impenetrable to the novice, yet most
can be solved with elementary high school mathematics techniques,
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cleverly applied.

Here is some advice for students who attempt the problems that
follow.
e Take your time! Very few contestants can solve all the given
problems.

e Try to make connections between problems. An important theme
of this work is: all important techniques and ideas featured in the
book appear more than once!

e Olympiad problems don’t “crack” immediately. Be patient. Try
different approaches. Experiment with simple cases. In some
cases, working backward from the desired result is helpful.

e Even if you can solve a problem, do read the solutions. They
may contain some ideas that did not occur in your solutions,
and they may discuss strategic and tactical approaches that can
be used elsewhere. The solutions are also models of elegant
presentation that you should emulate, but they often obscure
the torturous process of investigation, false starts, inspiration,
and attention to detail that led to them. When you read the
solutions, try to reconstruct the thinking that went into them.
Ask yourself, “What were the key ideas?” “How can I apply these
ideas further?”

e Go back to the original problem later, and see if you can solve it
in a different way. Many of the problems have multiple solutions,
but not all are outlined here.

e Meaningful problem solving takes practice. Don’t get discouraged
if you have trouble at first. For additional practice, use the books
on the reading list.
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Abbreviations and Notations

Abbreviations

AHSME American High School Mathematics Examination

AIME American Invitational Mathematics Examination

AMCI10 American Mathematics Contest 10

AMCI12 American Mathematics Contest 12, which replaces AHSME
ARML American Regional Mathematics League

IMO International Mathematical Olympiad

USAMO United States of America Mathematical Olympiad

MOSP Mathematical Olympiad Summer Program

Putnam The William Lowell Putnam Mathematical Competition

St. Petersburg St. Petersburg (Leningrad) Mathematical Olympiad

Notations for Numerical Sets and Fields

Z
Zn
N
Ny
Q
Q+
QO
Qn
R
Bt
]RO

the set of integers

the set of integers modulo n

the set of positive integers

the set of nonnegative integers

the set of rational numbers

the set of positive rational numbers

the set of nonnegative rational numbers
the set of n-tuples of rational numbers
the set of real numbers

the set of positive real numbers

the set of nonnegative real numbers

the set of n-tuples of real numbers

the set of complex numbers

the coefficient of the term 2™ in the polynomial p(x)
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Notations for Sets, Logic, and Geometry

4]
ACB
ACB
A\ B
ANB
AUB
ac A

the number of elements in set A
A is a proper subset of B

A is a subset of B

A without B

the intersection of sets A and B
the union of sets A and B

the element a belongs to the set A
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Introductory Problems

. Mr. and Mrs. Zeta want to name their baby Zeta so that its
monogram (first, middle, and last initials) will be in alphabetical
order with no letters repeated. How many such monograms are
possible?

. The student lockers at Olympic High are numbered consecutively
beginning with locker number 1. The plastic digits used to
number the lockers cost two cents apiece. Thus, it costs two cents
to label locker number 9 and four cents to label locker number
10. If it costs $137.94 to label all the lockers, how many lockers
are there at the school?

. Let n be an odd integer greater than 1. Prove that the sequence

(1)) ()

contains an odd number of odd numbers.

. How many positive integers not exceeding 2001 are multiples of
3 or 4 but not 57

. Let
x = .123456789101112...998999,

where the digits are obtained by writing the integers 1 through
999 in order. Find the 19837 digit to the right of the decimal
point.

. Twenty five boys and twenty five girls sit around a table. Prove
that it is always possible to find a person both of whose neighbors
are girls.

. At the end of a professional bowling tournament, the top 5
bowlers have a play-off. First #£5 bowls #4. The loser receives
5th prize and the winner bowls #3 in another game. The loser
of this game receives receives 4'* prize and the winner bowls #2.
The loser of this game receives 3"¢ prize and the winner bowls
#1. The winner of this game gets 1°¢ prize and the loser gets 27¢
prize. In how many orders can bowlers #1 through #b5 receive
the prizes?

. A spider has one sock and one shoe for each of its eight legs.
In how many different orders can the spider put on its socks and

shoes, assuming that, on each leg, the sock must be put on before
the shoe?
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10.

11.

12.

13.

14.

15.

16.

A drawer in a darkened room contains 100 red socks, 80 green
socks, 60 blue socks and 40 black socks. A youngster selects
socks one at a time from the drawer but is unable to see the color
of the socks drawn. What is the smallest number of socks that
must be selected to guarantee that the selection contains at least
10 pairs? (A pair of socks is two socks of the same color. No sock
may be counted in more than one pair.)

Given a rational number, write it as a fraction in lowest terms
and calculate the product of the resulting numerator and denom-
inator. For how many rational numbers between 0 and 1 will 20!
be the resulting product?

Determine the number of ways to choose five numbers from the
first eighteen positive integers such that any two chosen numbers
differ by at least 2.

In a room containing N people, N > 3, at least one person has
not shaken hands with everyone else in the room. What is the
maximum number of people in the room that could have shaken
hands with everyone else?

Find the number of ordered quadruples (x1, 22, x5, 24) of positive
odd integers that satisfy z1 + x5 + 23 + 24 = 98.

Finitely many cards are placed in two stacks, with more cards in
the left stack than the right. Each card has one or more distinct
names written on it, although different cards may share some
names. For each name, we define a shuffle by moving every card
that has that name written on it to the opposite stack. Prove
that it is always possible to end up with more cards in the right
stack by picking several distinct names, and doing in turn the
shuffle corresponding to each name.

For how many pairs of consecutive integers in the set
{1000, 1001, 1002, ..., 2000}

is no carrying required when the two integers are added?

Nine chairs in a row are to be occupied by six students and
Professors Alpha, Beta, and Gamma. These three professors
arrive before the six students and decide to choose their chairs
so that each professor will be between two students. In how
many ways can Professors Alpha, Beta, and Gamma choose their
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chairs?

Prove that among any 16 distinct positive integers not exceeding
100 there are four different ones, a, b, ¢, d, such that a4+ b = ¢+ d.

A child has a set of 96 distinct blocks. Each block 1s of one
of 2 materials (plastic, wood), 3 sizes (small, medium, large), 4
colors (blue, green, red, yellow), and 4 shapes (circle, hexagon,
square, triangle). How many blocks in the set are different from
the “plastic medium red circle” in exactly two ways? (The “wood
medium red square” is such a block.)

Call a 7-digit telephone number d;dsds — dadsdgd; memorable if
the prefix sequence djdsds is exactly the same as either of the
sequences dqdsdg or dsdgdy (possibly both). Assuming that each
d; can be any of the ten decimal digits 0,1,2,... 9, find the
number of different memorable telephone numbers.

Two of the squares of a 7 x 7 checkerboard are painted yellow,
and the rest are painted green. Two color schemes are equivalent
if one can be obtained from the other by applying a rotation in
the plane of the board. How many inequivalent color schemes are
possible?

In how many ways can one arrange the numbers 21, 31, 41, 51, 61,
71, and 81 such that the sum of every four consecutive numbers
is divisible by 37

Let S be a set with six elements. In how many different ways can
one select two not necessarily distinct subsets of S so that the
union of the two subsets is S7 The order of the selection does
not matter; for example the pair of subsets {a,c}, {b,c,d e, f}
represents the same selection as the pair {b,¢,d, e, f},{a,c}.

A set of positive numbers has the triangle property if it has
three distinct elements that are the lengths of the sides of a
triangle whose area is positive. Consider sets {4,5,6,...,n} of
consecutive positive integers, all of whose ten-element subsets
have the triangle property. What 1s the largest possible value
of n?

Let A and B be disjoint sets whose union is the set of natural
numbers. Show that for every natural number n there exist
distinct a,b > n such that

{a,b,a+b} C A or {a,b,a+ b} C B.
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25.

26.

27.

28.

29.

The increasing sequence 1,3,4,9,10,12,13,... consists of all
those positive integers which are powers of 3 or sums of distinct
powers of 3. Find the 100*® term of this sequence (where 1 is the
15% term, 3 is the 2°¢ term, and so on).

Every card in a deck has a picture of one shape — circle, square,
or triangle, which is painted in one of three colors — red, blue,
or green. Furthermore, each color is applied in one of three
shades — light, medium, or dark. The deck has 27 cards, with
every shape-color-shade combination represented. A set of three
cards from the deck is called complementary if all of the following
statements are true:

(a) Either each of the three cards has a different shape or all
three of the cards have the same shape.

(b) Either each of the three cards has a different color or all three
of the cards have the same color.

(c) Either each of the three cards has a different shade or all
three of the cards have the same shade.

How many different complementary three-card sets are there?

At a math camp, every m students share exactly one common
friend, m > 3. (If A is a friend of B, then B is a friend of A.
Also, A is not his own friend.) Suppose person P has the largest
number of friends. Determine what that number is.

Suppose that 7 boys and 13 girls line up in a row. Let §
be the number of places in the row where a boy and a girl
are standing next to each other. For example, for the row
GBBGGGBGBGGGBGBGEGEBGGE we have S = 12, Find the
average value of S (if all possible orders of these 20 people are
considered).

A bored student walks down a hall that contains a row of closed
lockers, numbered 1 to 1024. He opens the locker numbered 1, and
then alternates between skipping and opening each closed locker
thereafter. When he reaches the end of the hall, the student
turns around and starts back. He opens the first closed locker
he encounters, and then alternates between skipping and opening
each closed locker thereafter. The student continues wandering
back and forth in this manner until every locker is open. What
is the number of the last locker he opens?
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Let n = 231319, How many positive integer divisors of n? are less
than n but do not divide n?

In an arena, each row has 199 seats. One day, 1990 students are
coming to attend a soccer match. It is only known that at most
39 students are from the same school. If students from the same
school must sit in the same row, determine the minimum number
of rows that must be reserved for these students.

Let T = {9% | k is an integer, 0 < k < 4000}. Given that 94000
has 3817 digits and that its first (leftmost) digit is 9, how many
elements of T have 9 as their leftmost digit?

For what values of n > 1 do there exist a number m that
can be written in the form ay + -+ + an (with a1 € {1}, a2 €
{1,2},...,ap € {1,...,n}) in (n — 1)! or more ways?

Let the sum of a set of numbers be the sum of its elements. Let
S be a set of positive integers, none greater than 15. Suppose no
two disjoint subsets of S have the same sum. What is the largest
sum a set S with these properties can have?

There are at least four candy bars in n (n > 4) boxes. Each time,
Mr. Fat is allowed to pick two boxes, take one candy bar from
each of the two boxes, and put those candy bars into a third box.
Determine if it 1s always possible to put all the candy bars into
one box.

Determine, with proof, if it 1s possible to arrange 1,2,...,1000
in a row such that the average of any pair of distinct numbers is
not located in between the two numbers.

Let AjAs...A12 be a regular dodecagon with O as its center.
Triangular regions OA;A;11, 1 <@ < 12 (and A3 = A;) are to
be colored red, blue, green, or yellow such that adjacent regions
are colored in different colors. In how many ways can this be
done?

There are 2n people at a party. Each person has an even number
of friends at the party. (Here friendship is a mutual relationship.)
Prove that there are two people who have an even number of
common friends at the party.

How many different 4 x 4 arrays whose entries are all 1’s and
—1's have the property that the sum of the entries in each row is
0 and the sum of the entries in each column is 07




Introductory Problems 7

40.

41.

42.

43.

44.

45.

A square of dimensions (n — 1) x (n — 1) is divided into (n — 1)?
unit squares in the usual manner. Each of the n? vertices of these
squares 1s to be colored red or blue. Find the number of different
colorings such that each unit square has exactly two red vertices.
(Two coloring schemes are regarded as different if at least one
vertex is colored differently in the two schemes.)

Sixty-four balls are separated into several piles. At each step we
are allowed to apply the following operation. Pick two piles, say
pile A with p balls and pile B with ¢ balls and p > ¢, and then
remove ¢ balls from pile A and put them in pile B. Prove that it
1s possible to put all the balls into one pile.

A game of solitaire is played with a finite number of nonnegative
integers. On the first move the player designates one integer as
large, and replaces another integer by any nonnegative integer
strictly smaller than the designated large integer. On subsequent
steps play is similar, except that integer replaced must be the
one designated as large on the previous play. Prove that in some
finite number of steps play must end.

Given S C {1,2, ... n}, we are allowed to modify it in any one

of the following ways:

(a) if 1 € S, add the element 1;

(b) if n € S, delete the element n;

(c) for 1<r<n—1,ifr€Sand r+ 1¢S5, delete the element
r and add the element r + 1.

Suppose that it is possible by such modifications to obtain a
sequence

0 — {1} = {2} = - = {n},

starting with # and ending with {n}, in which each of the 2"
subsets of {1,2,...,n} appears exactly once. Prove that n =
2™ — 1 for some m.

There are 2001 coins on a table. For ¢ = 1,2,...,2001 in
succession, one must turn over exactly ¢ coins. Prove that it
i1s always possible either to make all of the coins face up or to
make all of the coins face down, but not both.

For {1,2,...,n} and each of its nonempty subsets a unique
alternating sum 1s defined as follows: Arrange the numbers in the
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subset in decreasing order and then, beginning with the largest,
alternately add and subtract successive numbers. (For example,
the alternating sum for {1,2,4,6,9}is 9—6+4—2+4+ 1 =106 and
for {5} it is simply 5.) Find the sum of all such alternating sums
forn=1717.

In a game of Chomp, two players alternately take “bites” from
a b-by-7 grid of unit squares. To take a bite, the player chooses
one of the remaining squares, then removes (“eats”) all squares
found in the quadrant defined by the left edge (extended upward)
and the lower edge (extended rightward) of the chosen square.
For example, the bite determined by the shaded square in the
diagram would remove the shaded square and the four squares
marked by x.

(The squares with two or more dotted edges have been removed
from the original board in previous moves.) The object of the
game is to make one’s opponent take the last bite. The diagram
shows one of the many subsets of the set of 35 unit squares that
can occur during the game of Chomp. How many different subsets
are there in all? Include the full board and the empty board in
your count.

Each square of a 1998 x 2002 chess board contains either 0 or
1 such that the total number of squares containing 1 1s odd in
each row and each column. Prove that the number of white unit
squares containing 1 is even.

Let S be a subset of {1,2,3,...,1989} such that no two members
of S differ by 4 or 7. What is the largest number of elements S
can have?

A class of fifteen boys and fifteen girls is seated around a round
table. Their teacher wishes to pair up the students and hand out
fifteen tests—one test to each pair.
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50.
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As the teacher is preparing to select the pairs and hand out the
tests, he wonders to himself, “How many seating arrangements
would allow me to match up boy/girl pairs sitting next to each
other without having to ask any student to change his or her
seat?” Answer the teacher’s question. (Two seating arrangements
are regarded as being the same if one can be obtained from the
other by a rotation.)

Two squares on an 8 x 8 chessboard are called touching if they
have at least one common vertex. Determine if it is possible for
a king to begin in some square and visit all the squares exactly
once in such a way that all moves except the first are made into
squares touching an even number of squares already visited.

A total of 119 residents live in a building with 120 apartments.
We call an apartment overpopulated if there are at least 15 people
living there. Every day the inhabitants of an overpopulated
apartment have a quarrel and each goes off to a different apart-
ment in the building (so they can avoid each otherZ). Is it true
that this process will necessarily be completed someday?
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In a tournament each player played exactly one game against
each of the other players. In each game the winner was awarded
1 point, the loser got 0 points, and each of the two players earned
1/2 point if the game was a tie. After the completion of the
tournament, it was found that exactly half of the points earned
by each player were earned in games against the ten players with
the least number of points. (In particular, each of the ten lowest
scoring players earned half of her/his points against the other
nine of the ten). What was the total number of players in the
tournament?

. Let n be an odd integer greater than 1. Find the number of

permutations p of the set {1,2 ... n} for which

n?—1
2

lp(1) = 1+ |p(2) = 2[4 -+ Ip(n) — n| =

. In a sequence of coin tosses one can keep a record of the

number of instances when a tail is immediately followed by
a head, a head i1s immediately followed by a head, etc. We
denote these by TH, HH, etc. For example, in the sequence
HHTTHHHHTHHTTTT of 15 coin tosses we observe that
there are five HH, three HT, two T'H , and four T subse-
quences. How many different sequences of 15 coin tosses will
contain exactly two HH, three HT, four TH and five TT
subsequences?

Let A = (a1,a2,...,a2001) be a sequence of positive integers.
Let m be the number of 3-element subsequences (a;, a;, ax) with
1 << j< k<2001, such that a; = a; +1 and ap = a; + 1.
Considering all such sequences A, find the greatest value of m.

. Twenty-three people of positive integral weights decide to play

football. They select one person as referee and then split up into
two 11-person teams of equal total weights. It turns out that no
matter who is referee this can always be done. Prove that all 23
people have equal weights.

. Determine the smallest integer n, n > 4, for which one can choose

four different numbers a, b, ¢, d from any n distinct integers such

that @ + b — ¢ — d 1s divisible by 20.

A mail carrier delivers mail to the nineteen houses on the east
side of Elm Street. The carrier notes that no two adjacent houses
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10.

11.

12.

13.

ever get mail on the same day, but that there are never more than
two houses in a row that get no mail on the same day. How many
different patterns of mail delivery are possible?

. For¢=1,2,...,11, let M; be a set of five elements, and assume

that for every 1 <i < j <11, M;NM; # 0. Let m be the largest

number for which there exist M; ., M;_~ among the chosen

1)
sets with N, M;, # 0. Find the minimum value of m over all

possible initial choices of M;.

. Define a domino to be an ordered pair of distinet positive integers.

A proper sequence of dominos is a list of distinct dominos in which
the first coordinate of each pair after the first equals the second
coordinate of the immediately preceding pair, and in which (4, j)
and (j,7) do not both appear for any ¢ and j. Let Dyo be the
set of all dominos whose coordinates are no larger than 40. Find
the length of the longest proper sequence of dominos that can be
formed using the dominos of Dag.

Find the number of subsets of {1,...,2000 }, the sum of whose
elements is divisible by 5.

Let X be a finite set of positive integers and A a subset of X.
Prove that there exists a subset B of X such that A equals the
set of elements of X which divide an odd number of elements of

B.

A stack of 2000 cards is labeled with the integers from 1 to 2000,
with different integers on different cards. The cards in the stack
are not in numerical order. The top card is removed from the
stack and placed on the table, and the next card in the stack 1is
moved to the bottom of the stack. The new top card i1s removed
from the stack and placed on the table, to the right of the card
already there, and the next card in the stack is moved to the
bottom of the stack. This process—placing the top card to the
right of the cards already on the table and moving the next card
in the stack to the bottom of the stack—is repeated until all cards
are on the table. It is found that, reading left to right, the labels
on the cards are now in ascending order: 1,2,3,...,1999,2000.
In the original stack of cards, how many cards were above the

card labeled 19997

Form a 2000 x 2002 screen with unit screens. Initially, there are
more than 1999 x 2001 unit screens which are on. In any 2 x 2
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screen, as soon as there are 3 unit screens which are off, the 4P
screen turns off automatically. Prove that the whole screen can
never be totally off.

In an office, at various times during the day, the boss gives the
secretary a letter to type, each time putting the letter on top
of the pile in the secretary’s in-box. When there is time, the
secretary takes the top letter off the pile and types it. There
are nine letters to be typed during the day, and the boss delivers
them in the order 1,2,3,4,5,6,7,8,9. While leaving for lunch,
the secretary tells a colleague that letter 8 has already been
typed, but says nothing else about the morning’s typing. The
colleague wonders which of the nine letters remain to be typed
after lunch and in what order they will be typed. Based upon the
above information, how many such after-lunch typing orders are
possible? (That there are no letters left to be typed is one of the
possibilities.)

Let n be a positive integer. Prove that

22 (W) () = 00

Let m and n be positive integers. Suppose that a given rectangle
can be tiled by a combination of horizontal 1 x m strips and
vertical n x 1 strips. Prove that it can be tiled using only one of
the two types.

Given an initial sequence aj, a2, ..., a, of real numbers, we

perform a series of steps. At each step, we replace the current

sequence &1,Ts,...,¢, with |21 —a|, e —al, ..., |2, — a| for

some a. For each step, the value of a can be different.

(a) Prove that it is always possible to obtain the null sequence
consisting of all 0’s.

(b) Determine with proof the minimum number of steps required,
regardless of initial sequence, to obtain the null sequence.

The sequence {a, }n>1 satisfies the conditions a; = 0,as =1,

1 1
n = 5Nn-1 + §n(n —Dap—2+ (-1)" (1 — g) ,
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20.

21.

22.

23.

24.

n > 3. Determine the explicit form of

n n
fn = Qn +2<1)an—1+3<2)an—2
n n
—|—~~~—|—(n—1)<n_2)a2—|—n<n_1)a1.

For a set A, let |A| and s(A) denote the number of the elements
in A and the sum of elements in A, respectively. (If A =@, then
|A] = s(A) = 0.) Let S be a set of positive integers such that

(a) there are two numbers z,y € S with ged(z,y) = 1;
(b) for any two numbers z,y € S, x +y € S.

Let T be the set of all positive integers not in S. Prove that
s(T) < |T|* < 0.

In a forest each of 9 animals lives in its own cave, and there
1s exactly one separate path between any two of these caves.
Before the election for Forest Gump, King of the Forest, some of
the animals make an election campaign. Each campaign-making
animal—FGC (Forest Gump candidate)—visits each of the other
caves exactly once, uses only the paths for moving from cave to
cave, never turns from one path to another between the caves,
and returns to its own cave at the end of the campaign. It 1s also
known that no path between two caves is used by more than one
FGC. Find the maximum possible number of FGC’s.

For a sequence Ap,..., A, of subsets of {1,...,n} and a permu-
tation w of S ={1,...,n}, we define the diagonal set

Dﬂ-(Al,Az,...,An) = {l es | i QAW(Z)}

What is the maximum possible number of distinct sets which can
occur as diagonal sets for a single choice of Ay,...  A,7

A subset M of {1,2,3,...,15} does not contain three elements
whose product is a perfect square. Determine the maximum
number of elements in M.

Find all finite sequences (zg,%1,...,2,) such that for every j,
0 < j < n,  equals the number of times j appears in the
sequence.

Determine if it is possible to partition the set of positive integers
into sets A and B such that .4 does not contain any 3-element




16

25.

26.

27.

28.

29.

30.

31.

32.

Advanced Problems

arithmetic sequence and 5 does not contain any infinite arith-
metic sequence.

Consider the set T5 of 5-digit positive integers whose decimal
representations are permutations of the digits 1, 2, 3, 4, b.
Determine if it 1s possible to partition 75 into sets A and B such
that the sum of the squares of the elements in A is equal to the
corresponding sum for B.

Let n be a positive integer. Find the number of polynomials P(x)
with coefficients in {0, 1,2,3 } such that P(2) = n.

Let n and k be positive integers such that %n < k< %n Find
the least number m for which it is possible to place each of m
pawns on a square of an n x n chessboard so that no column or
row contains a block of & adjacent unoccupied squares.

In a soccer tournament, each team plays each other team exactly
once and receives 3 points for a win, 1 point for a draw, and
0 points for a loss. After the tournament, it is observed that
there is a team which has both earned the most total points and
won the fewest games. Find the smallest number of teams in the
tournament for which this is possible.

Let ay,...,a, be the first row of a triangular array with a; €
{0, 1}. Fill in the second row by, ... ,b,_1 according to the rule
b, = 1 if ap # ag41, by = 0 if ap = ag41. Fill in the remaining
rows similarly. Determine with proof the maximum possible
number of 1’s in the resulting array.

There are 10 cities in the Fatland. Two airlines control all of
the flights between the cities. Each pair of cities 1s connected by
exactly one flight (in both directions). Prove that one airline can
provide two traveling cycles with each cycle passing through an
odd number of cities and with no common cities shared by the
two cycles.

Suppose that each positive integer not greater than n(n? — 2n +
3)/2, n > 2, is colored one of two colors (red or blue). Show that
there must be a monochromatic n-term sequence a; < as < -+ - <
a, satisfying

ar—a; <az—as < - < ap — Ap_1.

The set {1,2,...,3n} is partitioned into three sets A, B, and C
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with each set containing n numbers. Determine with proof if it
1s always possible to choose one number out of each set so that
one of these numbers is the sum of the other two.

Assume that each of the 30 MOPpers has exactly one favorite
chess variant and exactly one favorite classical inequality. Each
MOPper lists this information on a survey. Among the survey
responses, there are exactly 20 different favorite chess variants
and exactly 10 different favorite inequalities. Let n be the number
of MOPpers M such that the number of MOPpers who listed M’s
favorite inequality is greater than the number of MOPpers who
listed M’s favorite chess variant. Prove that n > 11.

Starting from a triple (a,b,¢) of nonnegative integers, a move
consists of choosing two of them, say «# and y, and replacing one
of them by either « 4+ y or |# — y|. For example, one can go from
(3,5,7) to (3,5,4) in one move. Prove that there exists a constant
r > 0 such that whenever a,b,¢,n are positive integers with
a,b,c < 2", there is a sequence of at most rn moves transforming
(a,b,¢) into (a’, b, ¢’) with a’b’'¢’ = 0.

A rectangular array of numbers is given. In each row and each
column, the sum of all the numbers is an integer. Prove that each
nonintegral number = in the array can be changed into either
[#] or |z] so that the row-sums and the column-sums remain
unchanged. (Note that [#] is the least integer greater than or
equal to z, while |z is the greatest integer less than or equal to
A finite set of (distinct) positive integers is called a DS-set if each
of the integers divides the sum of them all. Prove that every finite
set of positive integers is a subset of some DS-set.

Twelve musicians My, My, - - -, M1» gather at a week-long cham-
ber music festival. Each day, there is one scheduled concert and
some of the musicians play while the others listen as members
of the audience. For ¢ = 1,2,...,12, let ¢; be the number of
concerts in which musician M; plays, and let t =t +fo+- - -+%15.
Determine the minimum value of ¢ such that it is possible for each
musician to listen, as a member of the audience, to all the other
musicians.

An m x n array is filled with the numbers {1,2,...n}, each used
exactly m times. Show that one can always permute the numbers




18

39.

40.

41.

42.

43.

Advanced Problems

within columns to arrange that each row contains every number
{1,2,...,n} exactly once.

Let set U = {1,2,...,n}, where n > 3. A subset S of U is said to
be split by an arrangement of the elements of U if an element not
in S occurs in the arrangement somewhere between two elements
of S. For example, 13542 splits {1,2,3 } but not {3,4,5 }. Prove
that for any n — 2 subsets of U, each containing at least 2 and at
most n — 1 elements, there is an arrangement of the the elements
of U which splits all of them.

A pile of n pebbles is placed in a vertical column. This config-
uration is modified according to the following rules. A pebble
can be moved if it is at the top of a column which contains at
least two more pebbles than the column immediately to its right.
(If there are no pebbles to the right, think of this as a column
with 0 pebbles.) At each stage, choose a pebble from among
those that can be moved (if there are any) and place it at the
top of the column to its right. If no pebbles can be moved, the
configuration is called a final configuration. For each n, show
that, no matter what choices are made at each stage, the final
configuration obtained is unique. Describe that configuration in
terms of n.

Let B, be the set of all binary strings of length n. Given two
strings (a;)7—; and (b;)7_;, define the distance between the strings
as

d((a), (b)) = > la; — bil.

Let C, be a subset of B,. The set () is called a perfect
error correcting code (PECC) of length n and tolerance m if for
each string (b;) in B, there is a unique string (¢;) in C,, with
d((b), (¢;)) < m. Prove that there is no PECC of length 90 and

tolerance 2.

Determine if 1t is possible to arrange the numbers 1,1,2,2,...,n,
n such that there are j numbers between two j’s, 1 < j < n, when
n = 2000, n = 2001, and n = 2002. (For example, for n = 4,
41312432 is such an arrangement.)

Let &k, m, n be integers such that 1 < n <m —1 < k. Determine
the maximum size of a subset S of the set {1,2,... &k} such that
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no n distinct elements of S add up to m.

A nondecreasing sequence sg, S1,... of nonnegative integers is
said to be superadditive if s;1; > s; + s; for all nonnegative
integers i,j. Suppose {s,} and {{,} are two superadditive
sequences, and let {u,} be the nondecreasing sequence with the
property that each integer appears in {u,} as many times as in
{sn} and {t,} combined. Show that {u,} is also superadditive.

The numbers from 1 to n?, n > 2, are randomly arranged in the
cells of an n X n unit square grid. For any pair of numbers situated
on the same row or on the same column, the ratio of the greater
number to the smaller one is calculated. The characteristic of
the arrangement is the smallest of these n*(n — 1) fractions.
Determine the largest possible value of the characteristic.

For a set S, let |\S| denote the number of elements in S. Let A be
a set with |A| = n, and let Ay, Ay, ... A, be subsets of A with
|Ai] > 2,1 < i< n. Suppose that for each 2-element subset A’ of
A, there is a unique ¢ such that A’ C A;. Prove that A;NA; # 0
forall 1 <i<j<n.

Suppose that r1, ..., r, are real numbers. Prove that there exists
aset S C{1,2,...,n} such that

1< [SN{si+ 1,042} <2,
for1 <i¢<n-—2,and

>

1€S

>3 Il
i=1

Let n, k, m be positive integers with n > 2k. Let S be a nonempty
set of k-element subsets of {1,...,n} with the property that
every (k + 1)-element subset of {1,...,n} contains exactly m
elements of S. Prove that S must contain every k-element subset
of {1,...,n}.

A set T 1s called even if it has an even number of elements. Let n
be a positive even integer, and let S7,.55,...,5, be even subsets
of the set S = {1,2,...,n}. Prove that there exist i and j,
1 << j < n,such that S; N.S; is even.

Let Ay, As,..., By, Ba,... be sets such that Ay =, By = {0},

An+1:{l‘—|—1|l‘EBn}, Bn+1:AnUBn—AnﬂBn,
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for all positive integers n. Determine all the positive integers n

such that B, = {0}.

[fran 1999] Suppose that S = {1,2,...,n} and that Ay, Ao, ..
Ayj, are subsets of S such that for every 1 < ¢q,42,13,14 < k, we

have
|AZ'1 UAZ'2 UAZ':,’ UAZ'4| <n-—2.
Prove that k < 272,
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1. [AHSME 1989] Mr. and Mrs. Zeta want to name their baby Zeta
so that its monogram (first, middle, and last initials) will be
in alphabetical order with no letters repeated. How many such
monograms are possible?

First Solution: The possible monograms are
ABZ ACZ, ... WXZ WY Z XY Z.

Any two-element subset of the first 25 letters of the alphabet,
when used in alphabetical order, will produce a suitable mono-
gram when combined with Z. For example {L,J} = {J, L} will
produce JLZ. Furthermore, to every suitable monogram there
corresponds exactly one two-element subset of {A, B,C,... Y}
Thus, the answer is the number of two-element subsets that can
be formed from a set of 25 letters, and there are (225) = 300 such
subsets.

Second Solution: The last initial is fixed at Z. If the first
initial 18 A, the second initial must be one of B,C', D, ... Y so
there are 24 choices for the second. If the first initial is B, there
are 23 choices for the second initial: C, D, E, ... Y. Continuing
in this way we see that the number of monograms is

24423+ ... +24+1.

Use the formula

1
1+2+...+n:%

to obtain the answer Zzlzi = 300.

2. [AHSME 1999] The student lockers at Olympic High are num-
bered consecutively beginning with locker number 1. The plastic
digits used to number the lockers cost two cents apiece. Thus, it
costs two cents to label locker number 9 and four cents to label
locker number 10. If it costs $137.94 to label all the lockers, how
many lockers are there at the school?

Solution:  The locker labeling requires 137.94/0.02 = 6897
digits. Lockers 1 through 9 require 9 digits, lockers 10 through
99 require 2-90 = 180 digits, and lockers 100 through 999 require
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3-900 = 2700 digits. Hence the remaining lockers require 6897 —
2700—180—9 = 4008 digits, so there must be 4008/4 = 1002 more
lockers, each using four digits. In all, there are 1002+ 999 = 2001
student lockers.

[Revista Matematicd Timigoara] Let n be an odd integer greater
than 1. Prove that the sequence

() (o)
1 ) 2 ) ) 77,2;1
contains an odd number of odd numbers.

Solution: The sum of the numbers in the given sequence equals

%[(T)Jr(g)JrJr(nil)] :%(271_2):2”—1_1,

which 1s an odd number and the conclusion follows.

. [AMC12 2001] How many positive integers not exceeding 2001

are multiples of 3 or 4 but not 57

Solution: For integers not exceeding 2001, there are |2001/3] =
667 multiples of 3 and [2001/4] = 500 multiples of 4. The total,
1167, counts the [2001/12] = 166 multiples of 12 twice, so there
are 1167 — 166 = 1001 multiples of 3 or 4. From these we exclude
the [2001/15] = 133 multiples of 15 and the [2001/20] = 100
multiples of 20, since these are multiples of 5. However, this
excludes the [2001/60] = 33 multiples of 60 twice, so we must
re-include these. The number of integers satisfying the conditions

1s 1001 — 133 — 100 + 33 = 801.

. [AHSME 1983] Let

z = .123456789101112...998999,

where the digits are obtained by writing the integers 1 through
999 in order. Find the 19837 digit to the right of the decimal
point.

Solution: Look at the first 1983 digits, and let z denote
the 1983"¢ digit. We may break this string of digits into three
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segments:
123456789 1011...9899 100101...z.
A B C
There are 9 digitsin A, 2-90 = 180 in B, hence 1983 —189 = 1794
in C'. Dividing 1794 by 3 we get 598 with remainder 0. Thus
C' consists of the first 598 3-digit integers. Since the first 3-

digit integer is 100 (not 101 or 001), the 598" 3-digit integer is
598 + 99 = 697. Thus z = 7.

6. Twenty five boys and twenty five girls sit around a table. Prove

that it 1s always possible to find a person both of whose neighbors
are girls.

First Solution: For the sake of contradiction we assume that
there is a seating arrangement such that there is no one sitting in
between two girls. We call a block any group of girls(boys) sitting
next to each other and sandwiched by boys(girls) from both sides.
By our assumption, each girl block has at most 2 girls and there
are at least 2 boys in the gap between two consecutive girl blocks.
Hence there are at least [25/2] = 13 girl blocks and at least 2x 13
boys sitting in between the 13 gaps between girls blocks. But we
only have 25 boys, a contradiction. Therefore our assumption was
wrong and it is always possible to find someone sitting between
two girls.

Second Solution: We again approach indirectly by assuming
that there is a seating arrangement such that no one is sitting
in between two girls. We further assume that they are sitting
is positions aj, asg,...,asp in a counterclockwise order (so asg is
next to a;). Now we split them into two tables with seating
orders (a1, as, as, ..., aq9) and (as, a4, as, ..., asg), each in coun-
terclockwise order. Then by our assumption, no girls are next to
each other in the resulting two seating arrangements. Then there
are at most 12 girls sitting around each new table for a total of
at most 24 girls, a contradiction. Therefore our assumption was
wrong and it is always possible to find someone sitting in between
two girls.

7. [AHSME 1988] At the end of a professional bowling tournament,
the top 5 bowlers have a play-off. First #5 bowls #4. The loser
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receives 5" prize and the winner bowls #3 in another game. The
loser of this game receives receives 4'* prize and the winner bowls
#2. The loser of this game receives 3"¢ prize and the winner bowls
#1. The winner of this game gets 1°¢ prize and the loser gets 27¢
prize. In how many orders can bowlers #1 through #b5 receive

the prizes?

Solution: There are 4 games in every play-off, and each game
has 2 possible outcomes. For each sequence of 4 outcomes, the
prizes are awarded in a different way. Thus there are 2* = 16
possible orders.

. [AMC12 2001] A spider has one sock and one shoe for each of its

eight legs. In how many different orders can the spider put on
its socks and shoes, assuming that, on each leg, the sock must be
put on before the shoe?

Solution: Number the spider’s legs from 1 through 8, and let
ap and by denote the sock and shoe that will go on leg k. A
possible arrangement of the socks and shoes is a permutation
of the sixteen symbols ai,bq,...,as,bg, in which a; precedes
by for 1 < k < 8. There are 16! permutations of the sixteen
symbols, and a; precedes by in exactly half of these, or 16!/2
permutations. Similarly, as precedes by in exactly half of those,
or 16!/2? permutations. Continuing, we can conclude that ay
precedes by for 1 < k < 8 in exactly 16!/2% permutations.

. [AHSME 1986] A drawer in a darkened room contains 100 red

socks, 80 green socks, 60 blue socks and 40 black socks. A
youngster selects socks one at a time from the drawer but is
unable to see the color of the socks drawn. What is the smallest
number of socks that must be selected to guarantee that the
selection contains at least 10 pairs? (A pair of socks is two socks
of the same color. No sock may be counted in more than one

pair.)

First Solution: For any selection, at most one sock of each
color will be left unpaired, and this happens if and only if an odd
number of socks of that color is selected. Thus 24 socks suffice:
at most 4 will be unpaired, leaving at least 20 in pairs. However,
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23 will do! Since 23 is not the sum of four odd numbers, at most
3 socks out of 23 will be unpaired. On the other hand, 22 will
not do: if the numbers of red, green, blue, and black socks are
5,5,5,7, then four are unpaired, leaving 9 pairs. Thus 23 is the

minimum.

Second Solution: Proceed inductively. If we require only one
pair, then it suffices to select 5 socks. Moreover, selecting 4 socks
doesn’t guarantee a pair since we might select one sock of each
color.

If we require two pairs, then 1t suffices to select 7 socks: any
set of 7 socks must contain a pair; if we remove this pair, then
the remaining 5 socks will contain a second pair as shown above.
On the other hand, 6 socks might contain 3 greens, 1 black, 1 red
and 1 blue — hence only one pair. Thus 7 socks is the smallest
number to guarantee two pairs.

Similar reasoning shows that we must draw 9 socks to guarantee
3 pairs, and in general, 2p + 3 socks to guarantee p pairs. This
formula is easily proved by mathematical induction. Thus 23
socks are needed to guarantee 10 pairs.

[AIME 1991] Given a rational number, write it as a fraction in
lowest terms and calculate the product of the resulting numerator
and denominator. For how many rational numbers between 0 and
1 will 20! be the resulting product?

Solution: For a fraction to be in lowest terms, its numerator
and denominator must be relatively prime. Thus any prime factor
that occurs in the numerator cannot occur in the denominator,
and vice-versa. There are eight prime factors of 20!, namely
2,3,5,7,11,13,17, and 19. For each of these prime factors, one
must decide only whether it occurs in the numerator or in the
denominator. These eight decisions can be made in a total of
28 = 256 ways. However, not all of the 256 resulting fractions
will be less than 1. Indeed, they can be grouped into 128 pairs
of reciprocals, each containing exactly one fraction less than 1.
Thus the number of rational numbers with the desired property

1s 128.

Determine the number of ways to choose five numbers from the
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first eighteen positive integers such that any two chosen numbers
differ by at least 2.

Solution: Let a; < a3 < a3 < ag < as be the five chosen
numbers. Consider the numbers (b1, b2, b3,b4,b5) = (a1,a2 —
1,a3 — 2,a4 — 3,a5 — 4). Then by, by, bs, by, bs are five distinct
numbers from the first fourteen positive integers. Conversely,
from any five distinct numbers b, < by < b3 < by < bs we can
reconstruct (ay, as, as, aq,a5) = (b1, b2+ 1,65+ 2,04+ 3,05 + 4)
to obtain five numbers satisfying the conditions of the problem.
Thus we found a one-to-one mapping between the set of five
numbers satisfying the given conditions and the set of five distinct
numbers from the first fourteen positive integers. Therefore the
answer is (154) = 2002.

[AHSME 1978] In a room containing N people, N > 3, at least
one person has not shaken hands with everyone else in the room.
What is the maximum number of people in the room that could
have shaken hands with everyone else?

Solution: Label the people A1, As,..., Ay in such a way that
A1 and As are a pair that did not shake hands with each other.
Possibly every other pair of people shook hands, so that only A;
and As did not shake with everyone else. Therefore, at most
N — 2 people shook hands with everyone else.

[AIME 1998] Find the number of ordered quadruples (z1, 2, 23,
z4) of positive odd integers that satisfy 1 + zo + 25 + 4 = 98.

Solution: Each z; can be replaced by 2y; — 1, where y; is a
positive integer. Because

98224:(2%—1):2 (iyz) -4

i=1

it follows that 51 = 2?21 y;. Each such quadruple (y1, y2, ys, ya)
corresponds in a one-to-one fashion to a row of 51 ones that has
been separated into four groups by the insertion of three zeros.
For example, (17,5, 11, 18) corresponds to

111111111111111110111110111111111110111111111111111111.
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There are (530) = 19600 ways to insert three zeros into the fifty
spaces between adjacent ones.

[USSR 1968] Finitely many cards are placed in two stacks, with
more cards in the left stack than the right. FEach card has one or
more distinct names written on it, although different cards may
share some names. For each name, we define a shuffle by moving
every card that has that name written on it to the opposite stack.
Prove that it is always possible to end up with more cards in the
right stack by picking several distinct names, and doing in turn
the shuffle corresponding to each name.

Solution: (By Oaz Nir) We will prove the statement by
induction on n, the number of distinct names present. Call the
left stack L and the right stack R. For case n = 1, one shuffle
will do the job.

We now assume that we have proven the statement for n names
(for some positive integer n), and consider the case with n + 1
names. Call the first n names a1, as, ..., a,, and let the new name
be a. There are two cases.

e (Case 1: The number of L cards containing only the name a
is less than or equal to the number of R cards containing only
the name a. We can ignore the name a and use the induction
hypothesis to perform required shuffles using some subsets
of the n names ay,as,...,a, and we will be done: there are
now more of these remaining cards in stack R than in stack
L, and since there were at least as many “only a” cards in R
than in L, the final configuration has more cards in E than
in L.

e Case 2: The number of L cards containing only the name
a is greater than the number of R cards containing only the
name a. Then we perform one shuffle with the name a, we
end up at the beginning of Case 1 and we are done.

In either case, we can finish our inductive step and our proof is
complete.

[AIME 1992] For how many pairs of consecutive integers in the
set

{1000, 1001, 1002, . . ., 2000}
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is no carrying required when the two integers are added?

Solution: Let n have a decimal representation labe. If one of
a,b, or ¢ 1s 5,67, or 8 then there will be carrying when n and
n+ 1 are added. If 6 =9 and ¢ # 9, or if @ = 9 and either b # 9
or ¢ # 9, there will also be carrying when n and n+ 1 are added.

If n is not one of the integers described above, then n has one
of the forms

labe lab9 1a99 1999,

where a,b,c € {0,1,2,3,4}. For such n, no carrying will be
needed when n and n+1 are added. There are 534+52+5+1 = 156
such values of n.

[AHSME 1994] Nine chairs in a row are to be occupied by six
students and Professors Alpha, Beta, and Gamma. These three
professors arrive before the six students and decide to choose their
chairs so that each professor will be between two students. In how
many ways can Professors Alpha, Beta, and Gamma choose their
chairs?

First Solution: The two end chairs must be occupied by
students, so the professors have seven middle chairs from which
to choose, with no two adjacent. If these chairs are numbered
from 2 to 8, the three chairs can be:

Within each triple, the professors can arrange themselves in 3!
ways, so the total number 1s 10 x 6 = 60.

Second Solution: Imagine the six students standing in a row
before they are seated. There are b spaces between them, each
of which may be occupied by at most one of the 3 professors.
Therefore, there are P(5,3) =5 x 4 x 3 = 60 ways the professors
can select their places.

Prove that among any 16 distinct positive integers not exceeding
100 there are four different ones, a, b, ¢, d, such that a4+ b = ¢+ d.
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Solution: Let a; < as < --- < aig denote the 16 numbers.
Consider the difference of each pair of those integers. There are
(126) = 120 such pairs.

Let (as,a;) denote a pair of numbers with a; > a;. If we
have two distinct pairs of numbers (a;,,a;,) and (a;,,a;,) such
that a;, — a5, = a;, — a;,, then we get the desired quadruple
(a,b,e,d) = (as,,a;,,ai,,a;,) unless a;, = a;,. We say a is bad
for the pair of pairs (a;,,a) and (a,a;,) if a;;, —a = a — a;, (or
2a = aj, + a;,). Note that we are done if a number a is bad
for two pairs of pairs of numbers. Indeed, if @ is bad for (a;,, a),
(a,a;,) and (a;,, a), (a,a;,), then a;, + a;, = 2a = a;, + a;,.

Finally, we assume that each a; is bad for at most one pair of
pairs of numbers. For each such pair of pairs of numbers, we take
one pair of numbers out of consideration. Hence there are no bad
numbers anymore. Then we still have at least 120 — 16 = 104
pairs of numbers left. The difference of the numbers in each
remaining pair ranges from 1 to 99. By the Pigeonhole Principle,
some of these differences have the same value. Assume that
i, — Qg

, = i, —ag,, then (a;,, a;,, a;,, a;,) satisfies the conditions

of the problem.
[AHSME 1989] A child has a set of 96 distinct blocks. FEach

block is of one of 2 materials (plastic, wood), 3 sizes (small,
medium, large), 4 colors (blue, green, red, yellow), and 4 shapes
(circle, hexagon, square, triangle). How many blocks in the set
are different from the “plastic medium red circle” in exactly two
ways? (The “wood medium red square” is such a block.)

Solution: For a block to differ from the given block, there is
only 1 choice for a different material, 2 choices for a different
size, 3 choices for a different color; and 3 choices for a different
shape. There are (;1) = 6 ways a block can differ from the block
in exactly two ways:

(1) Material and size: 1 -2 = 2 differing blocks.
(2) Material and color: 1-3 = 3 differing blocks.
(3) Material and shape: 1-3 = 3 differing blocks.
(4) Size and color: 2 -3 = 6 differing blocks.

(5) Size and shape: 2 -3 = 6 differing blocks.
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(6) Color and shape: 3 -3 = 9 differing blocks.
Thus, 24+34+346+649 = 29 blocks differ from the given block

in exactly two ways.

[AHSME 1998] Call a 7-digit telephone number d;dsds—dadsdgdz
memorable 1f the prefix sequence didsds is exactly the same
as either of the sequences dsdsds or dsdeds (possibly both).
Assuming that each d; can be any of the ten decimal digits
0,1,2,...,9, find the number of different memorable telephone
numbers.

First Solution: There are 10,000 ways to write the last four
digits dadsdgdy, and among these there are 10000 — 10 = 9990
for which not all the digits are the same. For each of these, there
are exactly two ways to adjoin the three digits d;dsds to obtain a
memorable number. There are ten memorable numbers for which
the last four digits are the same, for a total of 2-9990410 = 19990.

Second Solution: Let A denote the set of telephone numbers
for which d;dsds is the same as dydsdg and let B be the set
of telephone numbers for which d;d,ds coincides with dsdgd7. A
telephone number d;dsds —dadsded7 belongs to AN B if and only
ifdy =d4 = ds = d2 = dg¢ = d3 = d7. Hence, n(A N B) = 10.

Thus, by the Inclusion-Exclusion Principle,

n(AU B) =n(A) +n(B) —n(AN B)
=103-1-104+10%-10-1— 10 = 19990.

[AIME 1996] Two of the squares of a 7 x 7 checkerboard are
painted yellow, and the rest are painted green. Two color schemes
are equivalent if one can be obtained from the other by applying a
rotation in the plane of the board. How many inequivalent color
schemes are possible?

49
2

of the yellow squares. Because quarter-turns can be applied

Solution: There are ( ) = 1176 ways to select the positions
to the board, however, there are fewer than 1176 inequivalent
color schemes. Color schemes in which the two yellow squares
are not diametrically opposed appear in four equivalent forms.
Color schemes in which the two yellow squares are diametrically
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opposed appear in two equivalent forms, and there are 492_1 =24
such pairs of yellow squares. Thus the number of inequivalent

color schemes is
1176 —24 24
1 3
[ARML 1999] In how many ways can one arrange the numbers

21, 31, 41, 51, 61, 71, and 81 such that the sum of every four
consecutive numbers is divisible by 37

= 300.

Solution: Since we only need to consider the problem modulo
3, we rewrite the numbers 21, 31, 41, 51, 61, 71, 81 as 0, 1, 2,
0, 1, 2, 0. Suppose that a1, as,...,a71s a required arrangement.
We observe that 0 = (a; + a2 + as + a4) + (aq + a5 + as + a7) =
(ar+az+--+ar) +aa=04+1+2+04+14+2+0)+as = ay
(mod 3). Thus aj,as,az must be an arrangement of 0,1,2 as
artas+as = a;+aztaz+aqg =0 (mod 3). Since a1 +as+az+ag =
as+asz+as+as =0 (mod 3), we have a; = a5 (mod 3). Similarly,
we can prove that the order of as, as, a7 is uniquely determined
by a1, as, as. Thus we have 3 x 23 x 3! = 144 arrangements.

[AIME 1993] Let S be a set with six elements. In how many
different ways can one select two not necessarily distinct subsets
of S so that the union of the two subsets is S? The order
of the selection does not matter; for example the pair of sub-
sets {a,c},{b,c,d, e, f} represents the same selection as the pair

{b’ C’ d’ e’ f}’ {a’c}'

Solution: In order that AU B = S, for each element s of §
exactly one of the following three statements is true:

seAands¢ B s¢AandseB sc Aandse B.

Hence if S has n elements, there are 3" ways to choose the sets A
and B. Except for pairs with A = B, this total counts each pair
of sets twice. Since AU B = S with A = B occurs if and only if
A = B =5, the number of pairs of subsets of S whose union is
S is
-1
2

+1,

which 1s 365 when n = 6.
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[AIME 2001] A set of positive numbers has the triangle property
if it has three distinct elements that are the lengths of the sides
of a triangle whose area is positive. Consider sets {4,5,6,...,n}
of consecutive positive integers, all of whose ten-element subsets
have the triangle property. What is the largest possible value of
n?

Solution: The set {4,5,9,14,23,37,60,97,157,254} is a ten-
element subset of {4,5,6, .. .,254} that does not have the triangle
property. Let N be the smallest integer for which {4,5,6,..., N}
has a ten-element subset that lacks the triangle property. Let
{ay, as,as, ... ajg} be such a subset, with a1 < as <az < --- <
a1p. Because none of its three-element subsets define triangles,
the following must be true:

N > a0 > as +as > (as +ar) + as
= 2ag + a7 > 2(a7 + as) + a7 = 3ar + 2as
> 3(as + as) + 2as = bae + 3as > 8as + bay
> 13a4 4 8as > 21as + 13as > 34as + 21ay
>34.5+21 4=254

Thus the largest possible value of nis N — 1 = 253. This is yet
another application of the Fibonacci sequence.

[MOSP 1997] Let A and B be disjoint sets whose union is the set
of natural numbers. Show that for every natural number n there
exist distinct a,b > n such that

{a,b,a+b} C A or {a,b,a+ b} C B.

Solution: We shall construct numbers a,b > n such that
a + b is in the same set as a and b. First assume that |A] is
finite and that m 1s its largest element. Then n + 1,7 + 2, and
2n+3 = (n+1)+(n+2) are all in B for all n > m. Consequently,
we assume that both A and B are infinite sets.

We approach indirectly. Assume that there is a positive integer
n such that for any a,b > n, {a,b,a+b} ¢ Aand {a,b,a+b} ¢ B.
We now choose z,y, and z in A such that x > y > z > n and
y—z > n. Thisis possible since A is infinite and thus unbounded.
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Then {z + y,y + z,2 + «} C B. But then y — z has no place to
go. Hence our assumption was wrong and we are done.

[AIME 1986] The increasing sequence 1,3,4,9,10,12,13,... con-
sists of all those positive integers which are powers of 3 or sums of
distinct powers of 3. Find the 100™ term of this sequence (where
1 is the 15 term, 3 is the 2°¢ term, and so on).

First Solution: If we use only the first six non-negative integral
powers of 3, namely 1,3,9,27, 81 and 243, then we can form only
63 terms, since

() C) e () =220

Consequently, the next highest power of 3, namely 729, is also
needed.

After the first 63 terms of the sequence the next largest ones
will have 729 but not 243 as a summand. There are 32 of these,
since (g) + (‘;’) + -+ (g) = 32, bringing the total number of
terms to 95. Since we need the 100*" term, we must next include
243 and omit 81. Doing so, we find that the 96", 97¢h . 100"
terms are: 7294243, 729+243+1, 729424343, 729+2434+3+1,
and 729 + 243 + 9 = 981.

Second Solution: Note that a positive integer is a term of this
sequence if and only if its base 3 representation consists only of
0’s and 1’s. Therefore, we can set up a one-to-one correspondence
between the positive integers and the terms of this sequence by
representing both with binary digits (0’s and 1’s), first in base 2
and then in base 3:

1=l <=1 =1
2= 100 <= 10 = 3
3=11p) <= 11 =4
4= 10002 <= 1003y =9
5= 101(2) <= 101(3, = 10
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This is a correspondence between the two sequences in the order
given, that is, the k*® positive integer is made to correspond to
the £*® sum (in increasing order) of distinct powers of 3. This
is because, when the binary numbers are written in increasing
order, they are still in increasing order when interpreted in any
other base. (If you can explain why this is true when interpreted
in base 10, you should be able to explain it in base 3 as well.)

Therefore, to find the 100" term of the sequence, we need only
look at the 100*® line of the above correspondence:

100 = 11001005y <= 11001003, = 981.

[AIME 1997] Every card in a deck has a picture of one shape —
circle, square, or triangle, which is painted in one of three colors
— red, blue, or green. Furthermore, each color is applied in one
of three shades — light, medium, or dark. The deck has 27 cards,
with every shape-color-shade combination represented. A set of
three cards from the deck is called complementary if all of the
following statements are true:

(a) Either each of the three cards has a different shape or all
three of the cards have the same shape.

(b) Either each of the three cards has a different color or all three
of the cards have the same color.

(c) Either each of the three cards has a different shade or all
three of the cards have the same shade.

How many different complementary three-card sets are there?

Solution: Consider any pair of cards from the deck. We show
that there is exactly one card that can be added to this pair to
make a complementary set. If the cards in the pair have the same
shape, then the third card must also have this shape, while if the
cards have different shapes, then the third card must have the
one shape that differs from them. In either case, the shape on
the third card is uniquely determined. Similar reasoning shows
that the color and the shade on the third card are also uniquely
determined. The third card, determined by the first two, is never
one of the first two cards. Thus we can count the number of
complementary sets by counting the number of pairs of cards and
then dividing by 3, because each complementary set is counted
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three times by this procedure. The number of complementary
sets 1s

ey,
3\ 2 3 2

[China 1990] At a math camp, every m students share exactly
one common friend, m > 3. (If A is a friend of B, then B is a
friend of A. Also, A is not his own friend.) Suppose person P
has the largest number of friends. Determine what that number
is.

First Solution: First note that every student has a friend.
Assume that students Ay, Ao, ..., Ay are friends of each other,
where k 1s a positive integer, 2 < k < m. Then there is a
student A1 who is a common friend to all of the students A;,
1 < ¢ < k. Thus, we can start with a pair of students A;, A
who are friends, and keep adding a student until we obtain m 41
students Ay, As, ..., Amy1 who are friends of each other.

We claim that there are no students other than Ay, A, ...,
Amy1 1n the camp. For the sake of contradiction, assume there
is another student B in the camp. Then B must have a friend.
We consider the following situations.

e Case 1: If B has at least two friends among the stu-

dents Ay, As, ..., Apmy1, we assume without loss of generality
that A; and A, are friends of B. Then the m students
B, As, A4, ..., A1 have two common friends 4; and As,

which contradicts the conditions of the problem.

e Cuase 2: If B has no more than one friend among the
students Ay, As, ..., Amn41 in the camp, we assume without
loss of generality that As, As,..., Apny1 are not friends of
B. Then the m students B, Ay, As, ..., A, have a common
friend C, C' # A; for 1 <i < m+1. But since m > 3, student
C has at least 2 friends among the students Ay, A2, ... Apy1.
But this impossible by our argument in Case 1.

Overall, we showed that this camp only has the m + 1 students
A1, Aa, ..., Amga and they are all friends of each other. Hence
the desired number is m.
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Second Solution: First we observe that P must have at least
m friends, since for any set of m students, their common friend
has at least m friends (namely, those m students). Now we prove
that P cannot have more than m friends. Assume the contrary.
Let S be the set of P’s friends, and let n = |S|. We have by
assumption n > m + 1. We claim that for each (m — 1)-element
subset S’ of S, there exists a unique person Qg € S who is a
common friend of all the people in 5”.

Consider any such subset S’. Adding P to this set gives a set of
size m, and thus by the given there exists a unique person ¢ who
is a friend of P and all of the members of S’. We claim that this
@ 1s the g/ that we want. Indeed, () € S since by definition, S
is the set of all friends of P.

Now we claim that for any two distinct (m— 1)-element subsets
S1 and S3 of S, Qs, # @s,. Assume for a contradiction that this
is not the case, that is, there exist 51,52 C S with Qs, = Qs,.
Take any m-element subset of S; U S2. Then the people in this
set have two mutual friends, @Qg, and P, contradicting the given.

It follows that each (m — 1)-element subset S corresponds to a
different person (Qg:. Now, the number of m — 1-element subsets

of Sis
m—1)=\2) "™

since n > m+1 and m > 3. But n = |S|, so two of the @’s must
be the same, a contradiction.

[AHSME 1989] Suppose that 7 boys and 13 girls line up in a row.
Let S be the number of places in the row where a boy and a
girl are standing next to each other. For example, for the row
GBBGGGBGBGGGBGBGEGEBGGE we have S = 12, Find the
average value of S (if all possible orders of these 20 people are
considered).

First Solution: Suppose that John and Carol are two of the
people. For ¢ = 1,2,...,19, let J; and C; be the numbers of
orderings (out of all 20!) in which the i®® and (i + 1)** persons
are John and Carol, or Carol and John, respectively. Then
Ji = C; = 18!is the number of orderings of the remaining persons.

For e =1,2,...,19, let N; be the number of times a boy-girl
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or girl-boy pair occupies positions ¢ and ¢ + 1. Since there are 7
boys and 13 girls, N; =713 (J; + C;). Thus the average value
of S is

Ni+No+ Nz+...+ N 19[7-13- (18! +181)] 91

20! 20! T

Second Solution: In general, suppose there are k boys and
n—kgrls. Fort=1,2,... n—1let A; be the probability that
there is a boy-girl pair in positions (4,44 1) in the line. Since there
is either 0 or 1 pair in (i,i+ 1), A; is also the expected number
of pairs in these positions. By symmetry, all A;’s are the same
(or note that the argument below is independent of ). Thus, the
answer is (n — 1)A4;.

We may consider the boys indistinguishable and likewise the
girls. (Why?) Then an order is just a sequence of k Bs and n—k
Gs. To have a pair at (¢,i+ 1) we must have BG or GB in those
positions, and the remaining n — 2 positions must have &k — 1 boys
and n — k — 1 girls. Thus there are 2(2:%) sequences with a pair
at (4,44 1). Since there are (Z) sequences, the answer is

(n— 1 = P26 2kin—k)
() n
Thus, when n = 20 and k = 7, the answer is (2-7-13)/20 = 91/10.
[AIME 1996] A bored student walks down a hall that contains a
row of closed lockers, numbered 1 to 1024. He opens the locker

numbered 1, and then alternates between skipping and opening
each closed locker thereafter. When he reaches the end of the
hall, the student turns around and starts back. He opens the
first closed locker he encounters, and then alternates between
skipping and opening each closed locker thereafter. The student
continues wandering back and forth in this manner until every
locker is open. What is the number of the last locker he opens?

First Solution: Suppose that there are 2% lockers in the row,
and let Li be the number of the last locker opened. After the

2k=1 closed

student makes his first pass along the row, there are
lockers left. These closed lockers all have even numbers and are
in descending order from where the student is standing. Now,

renumber the closed lockers from 1 to 28~! starting from the end
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where the student is standing. Notice that the locker originally

numbered n (where n is even) is now numbered k-1 41— %

Thus, because Ly _1 is the number of the last locker opened with
this new numbering, we have

L =28"14+1-— %

Solving for Lj we find
Ly =2F+2-2L;_4.
Iterate this recursion once to obtain
Lp=2"42-202142-20, s)=4Lr_o—2. (1)

When there are 1024 = 2'0 lockers to start with, the last locker
to be opened is numbered Lig. Apply (1) repeatedly to Ly =1
to find that Lo = 4Ly —2 =2, Lys =6, Lg = 22, Lg = 86, and
Lyg = 342.

Second Solution: Follow the given solution to the recursion
(1), which can be written in the form

2 2
Ly——-=4Ly_a— <.
()

Because Ly = 1 and Ly = 2, it follows that

9 (1 — %) 45 if k 1s even,
Ly—-=
3 AT
(2—5)42 if k18 odd
These formulas may be combined to yield
1 1
L =5 (4alF] 4 2)

for all nonnegative k. In particular, L1y = 342.

Note: How would the solution change if there were 1000 lockers
in the hall?

[AIME 1995] Let n = 2313°. How many positive integer divisors
of n? are less than n but do not divide n?

First Solution: Let n = p"¢°, where p and ¢ are distinct
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primes. Then n? = p*¢?*, so n? has

(2r +1)(25 + 1)

factors. For each factor less than n, there 1s a corresponding
factor greater than n. By excluding the factor n, we see that
there must be
2r+1)2s+1)—1
2
factors of n? that are less than n. Because n has (r + 1)(s + 1)
factors (including n itself), and because every factor of n is also

=2rs+r+s

a factor of n?, there are
rs+r+s—[(r+1)(s+1)—1]=rs

factors of n? that are less than n but not factors of n. When
r = 31 and s = 19, there are rs = 589 such factors.

Second Solution: (By Chengde Feng) A positive integer
divisor d of n? is less than n but does not divide n if and only if
231+a319—b if 2¢ < 36’
d= { 231—a3l9+b if 2¢ > 36’
where a and b are integers such that 1 < a <31 and 1 <5 < 19.

Since 2% # 3% for positive integers a and b, there are 19 x 31 = 589
such divisors.

[China 1990] In an arena, each row has 199 seats. One day,
1990 students are coming to attend a soccer match. It is only
known that at most 39 students are from the same school. If
students from the same school must sit in the same row, determine
the minimum number of rows that must be reserved for these
students.

Solution: Since 199 is a prime, we consider 200. Its largest
divisor not exceeding 39 is 25. Note that 1990 = 79x25+15. If 79
schools send 25 students each and one school sends 15 students, it
will take at least [79/[199/25]] = 12 rows to seat all the students.

We now prove that 12 rows are enough. Start seating the
students school by school and row by row, filling all the seats
of the first 10 rows, even if students from some schools are split
between two rows. This can happen to at most 9 schools. Remove
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the students from those schools and pack them into two rows.
This is possible since each row can hold students from at least 5

schools as 5 x 39 = 195 < 199.

Note: Interested readers might want to solve this dual version:

In an arena, there are 11 rows of seats and each row has 199
seats. Omne day, n students are coming to attend a basketball
match. It is only known that at most 39 students are from the
same school. If students from the same school must sit in the
same row, determine the maximum number of students such that
all the students will be seated.

[AIME 1990] Let T'= {9% | k is an integer, 0 < k < 4000}. Given
that 9%°°° has 3817 digits and that its first (leftmost) digit is 9,
how many elements of 7" have 9 as their leftmost digit?

9%=1 except in

Solution: Note that 9% has one more digit than
the case when 9% starts with a 9. In the latter case, long division
shows that 9*~! starts with a 1 and has the same number of
digits as 9. Therefore, when the powers of 9 from 99 to 94990 are
computed there are 3816 increases in the number of digits. Thus
there must be 4000 — 3816 = 184 instances when computing 9*
from 9571 (1 < k < 4000) does not increase the number of digits.
Since 9° = 1 does not have leading digit 9 we can conclude that
9% (1 < k < 4000) has a leading digit of 9 exactly when there is
no increase in the number of digits in computing 9% from 9%~1.
It follows that 184 of the numbers must start with the digit 9.

Note: We did not need to know that the leading digit of 94°°°
is 9, but it was important to note that the leading digit of 9° is
not 9.

[USAMO 1999 submission, Jim Propp] For what values of n > 1
do there exist a number m that can be written in the form
ai; + -+ ap (with aq € {1},a2 € {1,2},...,a, € {1,...,n})
in (n — 1)! or more ways?

First Solution: Note that for n = 1,2,3,4, we may choose
m =1,3,5,7, respectively.
Note that each of the ways to write the number m in the form
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a4+ -+ ap (with a3 € {1},a2 € {1,2},...,a, € {1,...,n})
requires a different ordered (n — 1)-tuple (a1, as, ..., an_1). Fur-
thermore, there are only (n — 1)! such (n — 1)-tuples, so each of
those must work for m; i.e., we must have

n—1=14+1+---4+14n>m
—_———— -

n—1 1’s

or else there would be no valid expression for m with ay = a5 =
---=1, and also

-1
m21+2+~~~+(n—1)+1:%+1,
or else there would be no valid expression for m with a; = 1, a9 =
2,...,an—1 = n — 1. Combining the two inequalities above, we
have
-1
2n —1) > n(n—1)

2 bl

or n < 4.
Hence n = 1,2, 3,4 are the only n satisfying the conditions of
the problem.

Second Solution: (David Vincent) For each n, define the
polynomial

fan(@)=2(@+2”) (w42 + 4 2").

Tt is clear that f,(z)isa 142+ 4n = @ degree polynomial.
We can write

n(nt1)
fn(x):fn,ll‘+fn,2$2+"'+fnyﬂn2_ﬂlx 2.

Then the coefficient of the term ™ in f, (z), [2™](fa(2)) = fom,
1s equal to the number of ways that m can be written in the form
ay + -+ a, with ay € {1},as € {1,2},...,a, € {1,...,n}. For
convenience, we may extend this definition to the other powers
of z by letting f, m» = 0 for all m not yet mentioned.
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We have
hilz) =«
fz(x):x + 23,
fa(x) = &% + 22* + 22° 4 2°,
(a:)_x +32° + 525 4+ 627 + 52% + 32° + 21°

It follows that forn =1,2,3,4, m=1;m=2o0orm=3;, m=4
or m = bH; m =7, work, respectively.

It is not difficult to see that there are (1+2---+n)—n+1=
@ +1 terms in f,,(#). For n > 5, it is also not difficult to see
that f,_1(z) has

(n—1)(n—2)
2

terms. Since fn(2) = fu_1(2)(z+2”+---2"), for positive integers
m

+1>n

bl

[ ](fn(x))

= fn—l,m—l + fn—l,m—z +--+ fn—l,m—n
n(n—1
2

< 3 famri=faa ()= (= 1)L
i=1

[AIME 1986] Let the sum of a set of numbers be the sum of its
elements. Let S be a set of positive integers, none greater than
15. Suppose no two disjoint subsets of S have the same sum.
What is the largest sum a set S with these properties can have?

Solution: First we show that S contains at most 5 elements.
Suppose otherwise. Then S has at least (?) + (g) + (g) + (2)
or 56 subsets of 4 or fewer members. The sum of each of these
subsets is at most 54 (since 15+ 14 4+ 13 + 12 = 54); hence, by
the Pigeonhole Principle, at least two of these sums are equal. If
the subsets are disjoint, we are done; if not, then the removal of
the common element(s) yields the desired contradiction.

On the other hand, it is not difficult to show that the set

" = {15,14,13,11,8 } satisfies the conditions of the problem.
The sum of S’ is 61. Hence the set S we seek is a 5-element set
with a sum of at least 61. Let S = {a,b,c,d,e} with a < b <
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¢ < d < e, and let s denote the sum of S. Then it is clear that
d+e <29 and ¢ < 13. Since there are (g) 2-element subsets of
S,a+b<d+e—10+1<20. Hence s <204+ 13 4+ 29 =62. If
¢ < 12, then S < 61; if ¢ = 13, then d = 14 and e = 15. Then
s <a-+0b+4+42. Since 12+ 15 =13+ 14, b < 11. If b < 10, then
a+b<19and s <61;if 6 =11, then a <8 as 10+ 15 =114 14
and 94 15 =11 4 13, implying that s <8 4+ 11 +42 = 61. In all
cases, s < 61. It follows that the maximum we seek is 61.

[China 1994, Zonghu Qiu] There are at least four candy bars in n
(n > 4) boxes. Each time, Mr. Fat is allowed to pick two boxes,
take one candy bar from each of the two boxes, and put those
candy bars into a third box. Determine if it is always possible to
put all the candy bars into one box.

Solution: It is always possible to put all the candy bars into
one box. We will prove our statement by induction on m, the
number of candy bars.

For the base case m = 4, there are at most 4 nonempty boxes.
We disregard all the other empty boxes and consider all the
possible 1nitial distributions:

() (1, 1,1,1) (2) (1,2,1,0) (3) (2,2,0,0) (4) (1,3,0,0).

For distribution (1), we proceed as follows:
(1,1,1,1) = (3,1,0,0) — (2,0,2,0) = (1,0,1,2) — (0,0,0,4).

It is easy to see that all the other initial distributions are covered
in the above sequence of operations. Thus the base case is proved.

Now we assume that the statement i1s true for some positive
integer m > 4. If we are given m + 1 candy bars, we mark one
of them and called it special. We first ignore the special candy
bar and consider only the other m candy bars. By the induction
hypothesis, we can put all m candy bars into one box. If this box
also contains the special piece, we are done. If not, we pick two
empty boxes and proceed as follows:

(1,m,0,0) = (0,m—1,2,0) = (0,m —2,1,2)
—(2,m—13,0,2) = (1,m—1,0,1) = (0,m+1,0,0).

Now all the candy bars are in one box and our induction is
complete.
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Determine, with proof, if it 1s possible to arrange 1,2,...,1000
in a row such that the average of any pair of distinct numbers is
not located in between the two numbers.

Solution: We claim that that it is possible to arrange 1,2,...,n
in a row such that the average of any pair of distinct numbers is
not located in between the two numbers.

We first prove that this is true for n = 2™ for all positive
integers m. We induct on m. The base m =1 is trivial.

Now we assume that we can arrange 1,2,...,2™, for some
positive integer m, in arow (a1, az, . . ., azm ) such that the average
of any pair of distinct numbers 1s not located in between the two
numbers. It is not difficult to see that

(b1, bo, ... bom+r)
= (2&1 — 1,2&2 — 1, .. .,2a2m — 1,2&1,2&2, .. .,2a2m)

is an arrangement of the numbers 1,2,...,2™+! satisfying the
conditions of the problem. Indeed, the average of a pair of
numbers b; and b; with either 1 < ¢ < j < 27 or 27 41 <
i < j < 2™ s not located between the two numbers by the
induction hypothesis, and the average of a pair of numbers b;
and b; with 1 < ¢ < 2™ < j < 2™%! is not an integer. Our
induction is thus complete.

For a positive integer n that is not a power of 2, we can always
find a positive integer m such that n < 2™. We first arrange the
numbers 1,2, ..., 2" in the desired fashion and then delete all the
numbers that are larger than n to obtain an arrangement of the
numbers 1,2, ... n satisfying the conditions of the problem.

Let AjAs...A12 be a regular dodecagon with O as its center.
Triangular regions OA;A;11, 1 <@ < 12 (and A3 = A;) are to
be colored red, blue, green, or yellow such that adjacent regions
are colored in different colors. In how many ways can this be
done?

Solution: We will find a general formula. Let AjA,...A,
(n > 3) be a regular n-sided polygon with O as its center.
Triangular regions OA; 4,41, 1 < ¢ < n (and Apy; = Ap) are
to be colored in one of the & (k > 3) colors such that adjacent
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regions are colored in different colors. Let p,,  denote the number
of such colorings. We want to find pi2 4.

There are k ways to color the region OA; As, and then k& — 1
ways to color regions O Ay A3, OAszAs and so on. We have to be
careful about the coloring of the region OA,A;. It is possible
that it has the same color as that of region OA; As. But then, we
simply end up with a legal coloring for n — 1 regions by viewing
region OA,As as one region. This is a clear bijection between
this special kind of illegal colorings of n regions to legal colorings
of n — 1 regions. Hence p,, ; = k(k —1)"~! — p,_1 . Note that
pax = k(k—1)(k —2). It follows that

Pk =k(k=1)"" —k(k=1)""2 4 k(k—1)""3 =

+ (=D k(k = 1)+ (1) (k= 1)k~ 2)

(k=1 (1
1+ (k=1

+ (=1 (k = 1%+ (=1)" " k(k — 1)(k — 2)

= (k—1)" + (=1)"(k — D)[(k — 1) — k(k — 2)]

+( (k

+ (=D 2k (k- 1)(k - 2)

Hence p124 = 3'% + 3 = 531,444 legal ways to color this regular
dodecagon.

There are 2n people at a party. Each person has an even number
of friends at the party. (Here friendship is a mutual relationship.)
Prove that there are two people who have an even number of
common friends at the party.

Solution: Assume for a contradiction that every two of the
people at the party share an odd number of friends. Consider
any person P. Let A be the set of P’s friends, and let B be the
set containing everyone else. Observe that since |A| is even and
the total number of people at the party is 2n, | B| is odd. Consider
any person () in B. By definition of B, () is not a friend of P. By
assumption, @) shares an odd number of friends with P, so () has
an odd number of friends in A. Since the total number of friends
of () is even, () must also have an odd number of friends in B.
Now, summing the number of friends in B over all the @)’s in B,
we should obtain twice the number of friendships among people
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in B. But the sum is odd, since as noted previously, |B| is odd.
This is a contradiction, and hence two of the people at the party
must share an even number of common friends.

Note: One can show that for every person P at the party there
exists a person ) who has an even number of common friends
with P at the party. Indeed, let sets A and B be as in the
solution. The set B is non-empty, since |B| is odd. There must
be a person () who has an even number of friends in B. Then @)
must also have an even number of friends in A. In order to justify
this stronger statement we did not use a proof by contradiction.

[AIME 1997] How many different 4 x 4 arrays whose entries are
all 1’s and —1’s have the property that the sum of the entries in
each row is 0 and the sum of the entries in each column is 07

Solution: Each row and each column must contain two 1’s and
two —1’s, so there are (;) = 6 ways to fill the first row. There are
also six ways to fill the second row. Of these, one way has four
matches with the first row, four ways have two matches with the
first row, and one way has no matches with the first row. The
first case allows one way to fill the third row, the second case
allows two ways to fill the third row, and the third case allows
six ways to fill the third row. Once the first three rows are filled,
the fourth row can be filled in only one way. Thus there are
6(1-1+4-241-6) = 90 ways to fill the array to satisfy the
conditions.

[IMO Shortlist 1996] A square of dimensions (n — 1) x (n — 1)
is divided into (n — 1)? unit squares in the usual manner. Each
of the n? vertices of these squares is to be colored red or blue.
Find the number of different colorings such that each unit square
has exactly two red vertices. (Two coloring schemes are regarded
as different if at least one vertex is colored differently in the two
schemes.)

Solution: Let the vertices in the bottom row be assigned an
arbitrary coloring, and suppose that some two adjacent vertices
have the same color. Then it is not difficult to see that the
coloring of the remaining vertices are fixed. There are 2”7 — 2
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colorings of the bottom row with the property that some two
adjacent vertices have the same color (as there are a total of 2"
colorings and 2 ways alternates the coloring of adjacent vertices.

If the vertices of the bottom row are colored alternately, this
property must be true for each of the other rows, as well. Hence
each row can be colored in 2 ways for a total of 2" ways.

Therefore the answer is 27 — 2 4 27 = 27+! _ 2 ways satisfying
the conditions of the problem.

Sixty-four balls are separated into several piles. At each step we
are allowed to apply the following operation. Pick two piles, say
pile A with p balls and pile B with ¢ balls and p > ¢, and then
remove ¢ balls from pile A and put them in pile B. Prove that it
1s possible to put all the balls into one pile.

Solution: We use induction to prove that it is possible to put
all the n balls into one pile if n = 2™ for some nonnegative integer
m. The base cases m = 0 and m = 1 are trivial.

Now we assume that it is possible to put all the 2™ balls into
one pile for some positive positive integer m. We will show that it
is possible to put 27*! balls into one pile. We first note that there
are an even number of piles each containing an odd number of
balls. We match those piles and apply the operation to each pair.
Hence after finitely many operations, each of the piles contains
an even number of balls. We then bind each pair of balls in each
pile to form a super ball. Hence we obtain a certain number of
piles of 2™ super balls. By our induction hypothesis, we can put
these super balls into one pile. Hence all the 2! balls are now
in one pile and our induction i1s complete.

[USAMO 1999 submission, Richard Stong] A game of solitaire
is played with a finite number of nonnegative integers. On the
first move the player designates one integer as large, and replaces
another integer by any nonnegative integer strictly smaller than
the designated large integer. On subsequent steps play is similar,
except that integer replaced must be the one designated as large
on the previous play. Prove that in some finite number of steps
play must end.
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Solution: Let the integers at any time be a1, as, ..., a,, and let
£ be the index of the integer chosen as large in the previous step.
Define the score of the position to be S = Zi# a;. At any step
we will choose a new large integer ap (which currently contributes
to S but will not after the move), and we will replace a; (which
currently does not contribute to S) with something smaller than
ag (which will contribute to the new S). Thus S is decreased by
at least 1 on every move. Since S starts with a finite value and
S > 0, play must stop in a finite number of moves.

[USAMO 2000 submission, Cecil Rousseau] Given S C {l,2,
...,n}, we are allowed to modify it in any one of the following
ways:

(a) if 1 ¢ S, add the element 1;

(b) if n € S, delete the element n;

(c) for 1<r<n—1,ifreSand r+ 1¢S5, delete the element
7 and add the element r + 1.

Suppose that it is possible by such modifications to obtain a
sequence

0 — {1} = {2} = - = {n},

starting with § and ending with {n}, in which each of the 2"
subsets of {1,2,...,n} appears exactly once. Prove that n =
2™ — 1 for some m.

Solution: Let m be the sum of the set elements. Whenever
operation (a) or (c) is performed, m increases by 1, and whenever
(b) is performed, m decreases by n. If (b) is performed d times
in a sequence of k set modifications that starts and ends with the
same set S, then (k — d) — dn = 0, that is, k = d(n 4+ 1). Since
adding {n} — @ to the presumed sequence gives

D—{1} = {2} = - = {n} =0,

a cycle of length k& = 27 we have (n 4 1) | 2”. Thus n must be
of the form 2™ — 1 for some m < n.

[China 1989, Pingshen Tao] There are 2001 coins on a table. For
t=1,2,...,2001 in succession, one must turn over exactly ¢ coins.
Prove that 1t is always possible either to make all of the coins face
up or to make all of the coins face down, but not both.
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Solution: The statement works for any odd number of coins.
We prove our statement by induction on n (n odd) the number
of coins. The base case n = 1 is trivial.

Suppose the statement is true for n = 2k — 1, for some positive
integer k. If we are given n = 2k + 1 coins, we consider the
following cases.

e (Case 1: There is a coin (1 facing up and another coin C5
facing down. We consider the other 2k — 1 coins first. By
our induction, we can turn the coins 1,2,...,2k — 1 times in
succession so all the 2k —1 coins are in one direction. Without
loss of generality, we assume that all the 2k —1 coins are facing
up. Then we turn all these coins together with € and then
turn all the 2k 4+ 1 coins so they will be all facing up.

o Case 2: All the coins are in the same direction. We arrange
the coins around a circle and number them 1,2,...,2k+ 1 in
clockwise order. We first turn coin 1, then coins 2 and 3, and
then 4, 5, and 6, and so on along the circle. Then we make
atotal of 1+24 -+ (2k+1) = (k+ 1)(2k + 1) turnings
and each coin has been turned & + 1 times. Since they start
in the same direction, they end in the same direction.

From the above argument, we can find a way to make all of
the 2k 4+ 1 coins facing in one direction after 2k + 1 operations
regardless of the initial configuration. Hence our induction is
complete.

Now we prove that 1t is impossible to achieve both final config-
urations, with all of the coins facing up or all of the coins facing
down. We approach indirectly by assuming there is a initial
configuration A such that there are procedures 77 and 75 that
can make all coins all face up and face down, respectively. Then
we can start with all coins facing down, reverse all the steps in
T5 to obtain configuration A, and then we proceed with all the
steps in 77 and end up with all coins facing up. Each coin has
been turned an odd number of times. Since there are 2001 coins,
the total number of turnings is odd. On the other hand, we made

2% (1424 ---+2001) = 2001 x 2002,

an even number of turnings. We reach a contradiction. Hence
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our assumption was wrong and one can only obtain exactly one
of the two final configurations.

[AIME 1983] For {1,2,...,n} and each of its nonempty subsets a
unique alternating sum is defined as follows: Arrange the numbers
in the subset in decreasing order and then, beginning with the
largest, alternately add and subtract successive numbers. (For
example, the alternating sum for {1,2,4,6,9}is 9—6+4—2+1=106
and for {5} it is simply 5.) Find the sum of all such alternating
sums for n = 7.

Solution: Tt is easier, perhaps, to generalize the problem (ever
so slightly) by considering the alternating sums for all subsets
of {1,2,...,n}, that is, including the empty set. To include the
empty set without affecting the answer we have only to declare
that its alternating sum be 0. The subsets of {1,2,...,n} may
be divided into two kinds: those that do not contain n and those
that do. Moreover, each subset of the first kind may be paired,
in a one-to-one correspondence, with a subset of the second kind
as follows:

{ay,as,...,a;} «— {n,ai,as,...,a;}.

(For the empty set we have the correspondence §§ +— {n}.)
Then, assuming n > a3 > as > --- > a;, the sum of the
alternating sums for each such pair of subsets is given by

(a1 —az+--fa)+(n—ar+az—--Fa;)=n.

And since there are 2" subsets of {1,2,... n} and, consequently,
27~1 such pairs of subsets, the required sum is n2”~1. Finally,
taking n = 7, we obtain 448.

[AIME 1992] In a game of Chomp, two players alternately take
“bites” from a b-by-7 grid of unit squares. To take a bite,
the player chooses one of the remaining squares, then removes
(“eats”) all squares found in the quadrant defined by the left
edge (extended upward) and the lower edge (extended rightward)
of the chosen square. For example, the bite determined by the
shaded square in the diagram would remove the shaded square
and the four squares marked by x.




Solutions to Introductory Problems 53

(The squares with two or more dotted edges have been removed
from the original board in previous moves.) The object of the
game is to make one’s opponent take the last bite. The diagram
shows one of the many subsets of the set of 35 unit squares that
can occur during the game of Chomp. How many different subsets
are there in all? Include the full board and the empty board in
your count.

Solution: At any stage of the game, the uneaten squares will
form columns of non-increasing heights as we read from left to
right.

It is not hard to show that this condition is not only necessary,
but 1s also sufficient for a given configuration of squares to occur
in a game. (The reader should prove this fact.) Moreover, any
such configuration can be completely described by the twelve-
step polygonal path that runs from the upper left to the lower
right of the original board, forming the boundary between the
eaten and uneaten squares. This polygonal boundary can be
described by a twelve-letter sequence of V’'s and H’s. Such
a sequence contains seven H’s, where each H represents the
top of an uneaten column (or bottom of a completely eaten
one) and five V's, where each V represents a one-unit drop
in vertical height in moving from the top of an uneaten col-
umn to the top of an adjacent, but shorter column. For ex-
ample, the state that appears in the diagram accompanying
the problem is described by HHHVHVV HHHVV, while the
sequences HHHHHHHVVVVV and VVVVVHHHHHHH
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describe the full board and the empty board, respectively. Thus
the number of possible subsets is (172) =T792.

Note: The game of Chomp is due to David Gale, and was
introduced (and named) by Martin Gardner in his Seientific
American column “Mathematical Games”. The column reap-
peared in Gardner’s collection Knotted Doughnuts.

Each square of a 1998 x 2002 chess board contains either 0 or
1 such that the total number of squares containing 1 1s odd in
each row and each column. Prove that the number of white unit
squares containing 1 is even.

Solution: Let (4,7), 1 < ¢ < 1998 and 1 < j < 2002 denote
the unit square in the i*" row and j** column, and let a; ; denote
the number in (4, 7). A square (7, j) is white if and only if ¢ and
j have the same parity. By the given conditions, the sum

999 2002

Roddzg g @215

i=1 j=1

is the sum of all the numbers in the 999 odd rows, 1.e., Roqq 18
odd as it is the sum of 999 odd numbers. Likewise, sum of all the
numbers in even columns

10011998

Ceven = g g a2j 4

j=1 i=1

is also odd as it is the sum of 1001 odd numbers. Let B denote
the set of all the black squares in the even columns, and let S(B)
denote the sum of the numbers in the squares in set B. Note that
the numbers in each of the squares in B appears exactly once in
the sum Roqq. Note also that the numbers in each of the squares
in B appear exactly once in the sum Cgyen. Finally, note that
each of the numbers in the white square appears exactly once in
combined sum Roqq + Ceven. Thus the total of the numbers of
the white unit squares is Roqd + Ceven — 25(B), which is even.
Therefore the number of white unit squares containing 1 is even.

[ATME 1989] Let S be a subset of {1,2,3,...,1989} such that no
two members of S differ by 4 or 7. What is the largest number
of elements S can have?
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Solution: We first show that, given any set of 11 consecutive
integers from {1,2,3,...,1989}, at most five of these 11 can be
elements of S. We prove this fact for theset T'= {1,2,3,... 11},
but the same proof works for any set of 11 consecutive integers.
Consider the following partition of 7', where each subset was
formed so that it can contribute at most one element to S

{1,5} {2,9} {3,7}y {4,11} {6,10} {8}. (1)

If it were possible to have 6 elements of 7" in 5, then each of the
sets in (1) would have to contribute exactly one element. That
this 1s impossible is shown by the following chain of implications:

8eES=1¢5=25€5=9¢S5=>2cS5=26¢5=>10e5=
3¢S=>7€eS=>11¢5=>4€S5=>8¢5.

With the aid of (1), or otherwise, it is easy to find a 5-element
subset of 7' that satisfies the key property of S (i.e., no two
numbers differ by 4 or 7). One such set is

T ={1,3,4,6,9}.

We also find (perhaps to our surprise) that 7" has the remarkable
property of allowing for a periodic continuation. That is, if 7
denotes the set of integers, then

S"'={k+1ln|k e T and n € I}

also has the property that no two elements in the set differ by
4 or 7. Moreover, since 1989 = 180 - 11 4+ 9, it is clear that
S cannot have more than 181 - 5 = 905 elements. Because the
largest element in 7" is 9, it follows that the set

S=8n{1,2,3,...,1989}

has 905 elements and hence shows that the upper bound of 905
on the size of the desired set can be attained. This completes the
argument.

Note: The reader may wish to find other 5-element subsets
of {1,2,3,...,11} that exhibit the key property of S. Which of

these subsets can be used, as above, to generate a maximal S7
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The reader is also encouraged to explore similar problems with
other pairs (triples, etc.) of integers in place of 4 and 7, and to
find the appropriate motivations for the choice of 11 as the size
of the blocks of integers considered in the above solution.

[USAMO 2002 submission, Zuming Feng] A class of fifteen boys
and fifteen girls is seated around a round table. Their teacher
wishes to pair up the students and hand out fifteen tests—one
test to each pair.

As the teacher is preparing to select the pairs and hand out the
tests, he wonders to himself, “How many seating arrangements
would allow me to match up boy/girl pairs sitting next to each
other without having to ask any student to change his or her
seat?” Answer the teacher’s question. (Two seating arrangements
are regarded as being the same if one can be obtained from the
other by a rotation.)

Solution: We call a pairing good if each contains a boy and a
girl. It is clear that there are 15! good pairings. For each good
pairing, there are 14! x 2' ways to arrange the students around
the table. Such a seating arrangement is called a good working
relation. Hence there are a total of 14! x 15! x 2% good working
relations.

We call a seating arrangement good if it allows the teacher to
match up boy/girl pairs sitting next to each other without having
to ask any student to change his or her seat. We want to evaluate
z, the number of good arrangements. There are two types of good
seating arrangements:

(a) A good arrangement that generates exactly one good working
relation. This means that there are at least two boys sitting
next to each other in the arrangement. These arrangements
are called good arrangements of the first type. Let z; denote
the total number of good arrangements of the first type.

(b) A good arrangement that generates exactly two good working
relations. This means that boys and girls are sitting alter-
nately. These arrangements are called good arrangements of
the second type. Let zo denote the total number of good
arrangements of the second type. Then zs; = 14! x 15! as
there are 14! ways to arrange all the boys around the desk
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and there are 15! ways to arrange all the girls each in a gap
between two neighboring boys.

We have ¥ = x1 + x5, where x5 = 14! x 15! and
x1 + 2w9 = 141 x 15! x 215,

Therefore = 14! - 15!(21% — 1).

[Baltic Way 1999] Two squares on an 8 x 8 chessboard are called
touching if they have at least one common vertex. Determine
if 1t is possible for a king to begin in some square and visit all
the squares exactly once in such a way that all moves except the
first are made into squares touching an even number of squares
already visited.

Solution: It is not possible for the king to visit all the squares.
Assume for a contradiction that there exists a path such that
all moves except the first are made into squares touching an even
number of squares already visited. Clearly, the first move is made
into a square touching exactly one square already visited, namely
the starting square. Summing the number of touching squares
previously visited over all the moves, we therefore obtain an odd
number. On the other hand, every pair of touching squares is
counted exactly once in this sum, by the member of the pair that
was visited second. Thus, the sum is equal to the total number
of touching pairs. But this number is even, since the numbers of
touching pairs oriented north-south and east-west are equal, as
are the numbers of touching pairs oriented northeast-southwest
and northwest-southeast. Thus we have a contradiction, and no
path exists.

[St. Petersburg 1988] A total of 119 residents live in a building
with 120 apartments. We call an apartment overpopulated if there
are at least 15 people living there. Every day the inhabitants of
an overpopulated apartment have a quarrel and each goes off
to a different apartment in the building (so they can avoid each
otherZ). Is it true that this process will necessarily be completed
someday?

Solution: Let py,ps, ..., p120 denote the 120 apartments, and
let a; denote the number of residents in apartment p;. We




58

Solutions to Introductory Problems

consider the quantity

aj(a; — 1)  az(az —1) arz0(ar20 — 1)
Gttt 5 :

(Assume that all the residents in an apartment shake hand with

S =

each other at the beginning of the day, then quantity S denotes
the number of the handshakes in that day.) If all ¢; < 15, then
the process 1s completed and we are done. If not, without loss of
generality, we assume that a; > 15 and that the inhabitants in pq
go off to different apartments in the building. Assume that they
go to apartments p;,, pi,, .. ., pi,, - On the next day, the quantity
is changed by an amount of
@iy + iy + - ag,, —w,
which is positive as

aiy +aj, + -+ a;,, <119 —a3 <119 —15=104

and
al(al — 1) > 15 x 14
2 - 2

Hence the quantity is decreasing during this process. On the other

= 105.

hand, S starts as a certain finite number and S is nonnegative.
Therefore this process has to be completed someday.
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1. [AIME 1985] In a tournament each player played exactly one
game against each of the other players. In each game the winner
was awarded 1 point, the loser got 0 points, and each of the
two players earned 1/2 point if the game was a tie. After the
completion of the tournament, it was found that exactly half of
the points earned by each player were earned in games against
the ten players with the least number of points. (In particular,
each of the ten lowest scoring players earned half of her/his points
against the other nine of the ten). What was the total number of
players in the tournament?

Solution: Assume that a total of n players participated in
the tournament. We will obtain two expressions in n: one by
considering the total number of points gathered by all of the
players, and one by considering the number of points gathered
by the losers (10 lowest scoring contestants) and those gathered
by the winners (other n — 10 contestants) separately. To obtain
the desired expressions, we will use that fact that if k& players
played against one another, then they played a total of k(k—1)/2
games, resulting in a total of k(k—1)/2 points to be shared among
them. In view of the last observation, the n players gathered a
total of n(n—1)/2 points in the tournament. Similarly, the losers
had 10-9/2 or 45 points in games among themselves; since this
accounts for half of their points, they must have had a total of 90
points. In games among themselves the n — 10 winners similarly
gathered (n — 10)(n — 11)/2 points; this also accounts for only
half of their total number of points (the other half coming from
games against the losers), so their total was (n — 10)(n — 11)
points. Thus we have the equation

n(n—1)/2=904+ (n — 10)(n — 11),
which is equivalent to
n? — 41n + 400 = 0.

Since the left member of this equation may be factored as (n —
16)(n — 25), it follows that n = 16 or 25. We discard the first
of these in view of the following observation: if there were only
16 players in the tournament, then there would have been only 6
winners, and the total of their points would have been 30 points,
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resulting in an average of 5 points for each of them. This is less
than the 90/10 or 9 points gathered, on the average, by each of
the losers! Therefore, n = 25; i.e., there were 25 players in the
tournament.

Finally we show that such a tournament exists. Since n =
25, we have 15 winners and 10 losers. Every game that the
winners play among themselves results in a tie, giving each winner
(15— 1)/2 = 7 points from games played with other winners.
Likewise, all the games played among the losers result in ties,
giving each of the 10 losers 4.5 points. For the ten games played
by each winner against the losers, six are wins, two are losses,
and two are ties, giving the winners another 7 points from games
played with losers. This gives each loser three wins, nine losses,
and three ties in games against winners, adding up to 4.5 more
points. Thus each of the 25 players receives exactly half of his/her
points in games against the losers, which is what we want.

. [USAMO 1999 submission, Titu Andreescu] Let n be an odd

integer greater than 1. Find the number of permutations p of
the set {1,2,...,n} for which
n?—1

2

lp(1) = 1+ |p(2) = 2[4 -+ Ip(n) — n| =

Solution: We have

Ip(1) = 1|+ |p(2) = 2| + -+ |p(n) — n|
=4+1+14+2+24+---£ntn.

The maximum of |p(1)—=1]| + |p(2)=2|+ - - - + |p(n)—n]| is

-1 1 1
9(-1-2-... 1" _nklynt
2 2 2
+3
+2<n——|—~~~—|—n)
2
n—l n—1+ n—|—3+ n—1 n?-1
n = .
2 2 2 2
Let p( ) = k. We must have

{p(l),p@),...,p(”;l)}:{”;3,”;5,...,71}
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£ (1) = {251

n
L There are

nrl

()] e =[]

such permutations.

and
o
if k> ‘2"

3. [AIME 1986] In a sequence of coin tosses one can keep a record
of the number of instances when a tail is immediately followed
by a head, a head 1s immediately followed by a head, etc. We
denote these by TH, HH, etc. For example, in the sequence
HHTTHHHHTHHTTTT of 15 coin tosses we observe that
there are five HH, three HT, two T'H , and four 77 subse-
quences. How many different sequences of 15 coin tosses will
contain exactly two HH, three HT, four TH and five TT
subsequences?

Solution: Think of such sequences of coin tosses as progressions
of blocks of T’s and H’s, to be denoted by {T} and {H }, respec-
tively. Next note that each HT and T'H subsequence signifies a
transition from {H } to {T} and from {T'} to {H}, respectively.
Since there should be three of the first kind and four of the second
kind in each of the sequences of 15 coin tosses, one may conclude
that each such sequence is of the form

{THHHTHHAHTHAHTHHY. (1)

Our next concern is the placement of T's and H'’s in their
respective blocks, so as to assure that each sequence will have
two H H and five TT subsequences. To this end, we will assume
that each block in (1) initially contains only one member. Then,
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to satisfy the conditions of the problem, it will suffice to place 2
more H’s into the {H }’s and 5 more T’s into the {T'}’s. Thus, to
solve the problem, we must count the number of ways this can
be accomplished.

Recall that the number of ways to put p indistinguishable
balls (the extra H’s and T’s in our case) into ¢ distinguishable
boxes (the {H}’s and {T'}’s, distinguished by their order in the
sequence) is given by the formula (p+g_1). (Students who are not
familiar with this fact should verify it.) In our case, it implies
that the 2 H’s can be placed in the 4 {H }’s in (2+§_1) or 10 ways,
and the 5 T’s can be placed in the 4 {T}’s in (5+§_1) or 56 ways.

The desired answer is the product, 560, of these numbers.

[IMO Shortlist 2001] Let A = (a1, as, ..., ap01) be a sequence of
positive integers. Let m be the number of 3-element subsequences
(a;,a;,a,) with 1 < i< j <k <2001, such that a¢; = a; + 1 and
ar = a; + 1. Considering all such sequences A, find the greatest
value of m.

Solution:  Consider the following two operations on the se-
quence A:

(1) If a; > a;41, transpose these terms to obtain the new
sequence
(al, A,y Qi41, gy . ,02001»
(2) I a;41 = a; + 1 +d, where d > 0, increase aj,...,a; by d to
obtain the new sequence
(Cll—|—d, az—i—d, N ,ai—l—d, Ai41,y .- ,02001).
It is clear that performing operation (1) cannot reduce m. By
applying (1) repeatedly, the sequence can be rearranged to be
nondecreasing. Thus we may assume that our sequence for
which m is maximal is nondecreasing. Next, note that if A is
nondecreasing, then performing operation (2) cannot reduce the
value of m. It follows that any A with maximum m is of the form

(a,...,a, a+1,... ;a+1,... jat+s—1,... ,at+s—1)
——— N———

ty t2 ts

where t1,...,t; are the number of terms in each subsequence,
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and s > 3. For such a sequence A,
m = {1tats + tolgly + - - -+ 15 _ats_11s. (%)

It remains to find the best choice of s and the best partition of
2001 into positive integers ¢1, ... ,%5.

The maximum value of m occurs when s =3 ors=4. If s > 4
then we may increase the value given by (%) by using a partition
of 2001 into s — 1 parts, namely

tZat3a (tl +t4)a s ats~

Note that when s = 4 this modification does not change the value
given by (#). Hence the maximum value m can be obtained with
s = 3. In this case, m = t1fot3 is largest when &1 = t5 = {3 =
2001/3 = 667. Thus the maximum value of m is 6673, This
maximum value is attained when s = 4 as well, in this case for
sequences with ¢t; = a,t{s = t3 = 667, and t4 = 667 — a, where
1 <a<666.

5. [USAMO 1989 submission, Paul Zeitz] Twenty-three people of
positive integral weights decide to play football. They select one
person as referee and then split up into two 11-person teams of
equal total weights. It turns out that no matter who is referee
this can always be done. Prove that all 23 people have equal
weights.

Solution: Assume on the contrary that there is a set of 23 not
all equal integer weights satisfying the conditions of the problem.
Then among such sets there is a set A = (a1, aa,...,as3) with
the smallest total weight w = a1 4+ as 4+ - 4+ as3. If a; is the
referee; then w — a; = 2s;, where s; is the total weight of each
team. Hence a; = w (mod 2), that is, a;’s have the same parity.

If the a;’s are all even, we can replace A by

/ ay az @23
r=(33%)

a set of less total weight that satisfies the conditions of the
problem. And since the a;’s are not all equal, the a;/2’s are
not all equal. This contradicts the fact that A is such a set with
minimum total weight.

If the a;’s are all odd, we can use A" = ((a; + 1)/2, (a2 +
1)/2,...,(a2s + 1)/2) to lead to a similar contradiction.
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Hence our assumption was wrong and all 23 people must have
equal weights.

. [IMO Shortlist 1998] Determine the smallest integer n, n > 4, for

which one can choose four different numbers a, b, ¢, d from any n
distinct integers such that a + b — ¢ — d is divisible by 20.

Solution: We first consider only sets of integers with distinct
residues modulo 20. For such a set of k elements, there are a total
of k(k — 1)/2 pairs. Therefore, if k(k —1)/2 > 20 (i.e., k > T),
then there exist two pairs of numbers (a,b) and (¢, d) such that
a+b=c+d (mod 20) and a, b, ¢, d are all distinct.

In general, let us consider a set of 9 distinct integers. If there
are seven of them that have distinct residues modulo 20, we are
done by the above argument. Suppose that there are at most 6
distinct residues modulo 20 in this set, i.e., at least 3 residues have
to be repeated. Then either there are 4 numbers (a, b, ¢, d)with
a =b=c¢=d (mod 20) or there are 2 pairs of numbers (a,¢)
and (b, d) with a = ¢ and b = d (mod 20). In either case, we can
find a desired quadruple (a,b, ¢, d).

It 1s not difficult to find a set of 8 numbers which does not have
the property we want:

{0,20,40,1,2,4,7,12 }.

Residues of these numbers modulo 20 are 0, 0, 0, 1, 2, 4, 7,
12, respectively. These residues have the property that each
nonzero residue is greater than the sum of any two smaller ones,
and the sum of any two is less than 20. Let a,b,¢,d be the
respective residues of 4 distinct numbers of this set. Without
loss of generality, we may assume that a is the largest (as a is
interchangeable with b and can interchange with either ¢ or d by
multiplication by —1, which does not effect its divisibility by 20).
Thus @ is a nonzero residue and

O<a—c—d<a+b—c—d<a-+b<20.

Hence a + b — ¢ — d is not divisible by 20.
Therefore the desired minimum value of n 1s 9.

[AIME 2001] A mail carrier delivers mail to the nineteen houses
on the east side of Elm Street. The carrier notes that no two
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adjacent houses ever get mail on the same day, but that there are
never more than two houses in a row that get no mail on the same
day. How many different patterns of mail delivery are possible?

First Solution: The first condition implies that at most ten
houses get mail in one day, while the second condition implies that
at least six houses get mail. If six houses get mail, they must be
separated from each other by a total of at least five houses that
do not get mail. The other eight houses that do not get mail
must be distributed in the seven spaces on the sides of the six
houses that do get mail. This can be done in 7 ways: put two
at each end of the street and distribute the other four in (Z) =5
ways, or put one in each of the seven spaces and an extra one at
one end of the street or the other. If seven houses get mail, they
create eight spaces, six of which must contain at least one house
that does not get mail. The remaining six houses that do not get
mail can be distributed among these eight spaces in 113 ways:
six of the eight spaces can be selected to receive a single house in
(2) = 28 ways; two houses can be placed at each end of the street
and two intermediate spaces be selected in (g) = 15 ways; and
two houses can be placed at one end of the street and four spaces
selected for a single house in Q(Z) = 70 ways. Similar reasoning
shows that there are (Z) + 14+ 2(2) = 183 patterns when eight
houses get mail, and 2+ (120) = 47 patterns when nine houses get
mail. When ten houses get mail, there is only one pattern, and
thus the total number of patterns is 74+ 113+ 1834+47+ 1 = 351.

Second Solution: Consider n-digit strings of zeros and ones,
which represent no mail and mail, respectively. Such a sequence is
called acceptable if it contains no occurrences of 11 or 000. Let f,
be the number of acceptable n-digit strings, let @, be the number
of acceptable n-digit strings in which 00 follows the leftmost 1,
and let b, be the number of acceptable n-digit strings in which
01 follows the leftmost 1. Notice that f, = a, + b, for n > 5.
Deleting the leftmost occurrence of 100 shows that a, = fn—_3,
and deleting 10 from the leftmost occurrence of 101 shows that
by, = fn—2. It follows that f, = fo_2 4+ fo_s forn > 5. It is
straightforward to verify the values f1 = 2, fo = 3, f3 = 4, and
fa = 7. Then the recursion can be used to find that f1o = 351.
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[China 1996] For i = 1,2,...,11, let M; be a set of five elements,
and assume that for every 1 <7< j <11, M;NM; # 0. Let m
be the largest number for which there exist M, ..., M; among
the chosen sets with N}, M;, # . Find the minimum value of

m over all possible initial choices of M;.

Solution: The minimum value of m is 4.

We first show that m > 4. Let X = UL, M;, and for each
z € X, let n(x) denote the number of #’s such that z € M;,
1 <i<11. Then m = max{n(z),x € X }. Note that

Z n(x) = b5.

rzeX

Since M; N M; # 0, there are (121) = Hb nonempty intersections.

On the other hand, each element x appears in (" (;)) intersections.

Therefore,
n(x) 1y
CROR
rzeX

It follows that

implying that

m—1

—5 n(x) > bb.
zeX

Hence mT_l > 1,orm > 3. If m = 3, then all equalities hold; more
precisely, n(z) = m = 3 for all . But since )y n(z) = 55 and
55 is not divisible by 3, n(z) cannot always equal 3. Therefore
m > 4.

Now we prove that m = 4 can be obtained. We consider the
following 4 x 4 array:

a b ¢ d
e f g h
1 2 3 4
5 6 7 8

It is not difficult to see that the sets My = {a,b,e,d, H},
M2 = {eafagahaH}a M3 == {1a2a3a4aH}a M4 — {5,6,7,8,H}
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(we call them horizontal sets); Ms = {a,e,1,5,V}, Mg =
16, £,2,6,V}, M7 = {c,9,3,7,V}, Mg = {d, h,4,8,V} (we call
them wvertical sets); My = {a,f,3,8,D}, Mg = {b,9,4,5,D},
My, = {e,h,1,6,D} (we call them diagonal sets); satisfy the
conditions of the problem with m = 4.

9. [AIME 1998] Define a domino to be an ordered pair of distinct
positive integers. A proper sequence of dominos is a list of distinct
dominos in which the first coordinate of each pair after the first
equals the second coordinate of the immediately preceding pair,
and in which (¢,7) and (j,¢) do not both appear for any ¢ and
j. Let Dyg be the set of all dominos whose coordinates are no
larger than 40. Find the length of the longest proper sequence of
dominos that can be formed using the dominos of Dyg.

First Solution: Let A, = {1,2,3,...,n} and D, be the set
of dominos that can be formed using integers in A, . Each & in
Ap, appears in 2(n — 1) dominos in D,,; hence it appears at most
n — 1 times in a proper sequence from D,,. Except possibly for
the integers ¢ and j that begin and end a proper sequence, every
integer appears an even number of times in the sequence. Thus,
if n is even, every integer other than ¢ and j appears in at most
n — 2 dominos. This gives an upper bound of

1 9 _n2—2n—|—2
Sl =2+ 2(n - 1)) = 02

dominos in the longest proper sequence in D,. This bound is in
fact attained for every even n. It is easy to verify this for n = 2, so
assume inductively that a sequence of this length has been found
for a particular value of n. Without loss of generality, assume
t=1and j = 2, and let , X, 1> denote a four-domino sequence
of the form (p,n+ D)(n+L,p+ 1)(p+1,n+2)(n+2,p+2). By
appending

2X4, 4X6, ey n—ZXna (n,n—l— 1)(n—l— 1,1)(1,n+2)(n+2,2)

to the given proper sequence, a proper sequence of length

n?—2n+2 n—2 n?4+2n+2
4. 4 =
2 + 2 + 2
(n+2)2—2(n+2)+2
2
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is obtained that starts at ¢ = 1 and ends at j = 2. This completes
the inductive proof. In particular, the longest proper sequence
when n =40 1s 761.

Second Solution: A proper sequence can be represented by
writing the common coordinates of adjacent ordered pairs once.
For example, represent (4,7),(7,3),(3,5) as 4,7,3,5. Label the
vertices of a regular n-gon 1,2, 3,... ,n. Each domino is thereby
represented by a directed segment from one vertex of the n-gon
to another, and a proper sequence is represented as a path that
retraces no segment. Each time such a path reaches a non-
terminal vertex, it must leave it. Thus, when n is even, it is
not possible for such a path to trace every segment, for an odd
number of segments emanate from each vertex. By removing
%(n — 2) suitable segments, however, it can be arranged that
n — 2 segments will emanate from n — 2 of the vertices, and that
an odd number of segments will emanate from exactly two of
the vertices. In this situation, a path can be found that traces
every remaining segment exactly once, starting at one of the two
exceptional vertices and finishing at the other. This path will
have length (5) — 1(n — 2), which is 761 when n = 40.

Note: When n is odd, a proper sequence of length (g) can
be found using the dominos of D,. In this case, the second
coordinate of the final domino equals the first coordinate of the
first domino. In the language of graph theory, this is an example
of an Eulerian circuit.

[High-School Mathematics, 1994/1, Qihong Xie] Find the number
of subsets of {1,...,2000 }, the sum of whose elements is divisible

by 5.

Solution: The answer is %(22000 + 2192),

Consider the polynomial
fl@)= (L4 z)(L+22) (14 22).

Then there is a bijection between each subset {ai,as,...,am }
of {1,2,...,2000} and the term %2 ---2%". Hence we are
looking for the sum of coefficients of terms 2°* in f(x), k apositive
integer. Let S denote that sum.
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Let ¢ = €2™/5 be a 5" root of unity. Then ¢° = 1 and
14+ 642 4+¢3+6*=0. Hence
L,
S= 5 Z f(&).
j=1
Note that &, ¢2,€3, ¢4, €5 = 1 are the roots of g(x) = #° — 1, that
is

ge) =2° =1 = (2 =€) (z — ) (z — ) (& — ) (2 - ).
It follows that

g(=1) ==2= (=1 (-1 =) (-1 =) (-1 =&Y (-1 -¢&%).
Therefore
I+HA+E)+EHA+EH (1 +€7) =2

and f(¢) = 2%09. Likewise, f(¢7) = 2%90 for j = 2,3 4. Finally,
we calculate f(€%) = f(1) = 2299, We obtain

S = % (4 . 2400 4 22000) — % (2402 4 22000) )

[MOSP 1999] Let X be a finite set of positive integers and A a
subset of X. Prove that there exists a subset B of X such that
A equals the set of elements of X which divide an odd number of
elements of B.

Solution: We construct B in stages. Set B = § and consider
every number in X, starting with the largest and going down.
For each element # € X, see whether it divides the correct parity
of elements in B. (That is, if € A, # divides an odd number of
elementsin B; if x € X — A, x divides an even number of elements
in B.) If it does not, add it to B. Thus the first element added
to B is the largest element of A. Now, this procedure will not
change the divisibility condition for any element greater than =z,
and will fulfill the condition for . Thus when all elements of X
have been examined, the divisibility conditions will be satisfied
by all elements of X, and B will be as desired.

[AIME 2000] A stack of 2000 cards is labeled with the integers
from 1 to 2000, with different integers on different cards. The
cards in the stack are not in numerical order. The top card is
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removed from the stack and placed on the table, and the next
card in the stack is moved to the bottom of the stack. The new
top card is removed from the stack and placed on the table, to
the right of the card already there, and the next card in the
stack 1s moved to the bottom of the stack. This process—placing
the top card to the right of the cards already on the table and
moving the next card in the stack to the bottom of the stack—is
repeated until all cards are on the table. It is found that, reading
left to right, the labels on the cards are now in ascending order:
1,2,3,...,1999,2000. In the original stack of cards, how many
cards were above the card labeled 19997

First Solution: Run the process backwards. Start by picking
up the card labeled 2000. Next, pick up the card labeled 1999,
place it on top of the stack, and bring the bottom card to the top
of the stack. Next pick up the card labeled 1998, place it on top
of the stack, and bring the bottom card to the top of the stack.
The card labeled 1999 is now at the top of a three-card stack.
Note that the top card of an m-card stack will become the top
card of a 2m-card stack after m more cards have been picked up
(and m cards have been moved from the bottom of the stack to
the top). Tt follows by induction that the card labeled 1999 is the
top card when the number of cards in the stack is 3 - 2¥ for any
nonnegative integer k that satisfies 3 - 28 < 2000. In particular,
the last time that this happens is just after 3-2° = 1536 cards have
been picked up. The cards remaining on the table are labeled 1
through 464. After each of the cards labeled 464,463,...,2 is
picked up and placed on top of the stack, another card is brought
from the bottom of the stack to the top. Finally, the card labeled
1 1s placed on top of the stack and the stack is in its original state.

This puts 2-463 4+ 1 = 927 cards on top of the card labeled 1999.

Second Solution: Because the process causes the cards on
the table to appear in ascending order, the card labeled 1999 is
next-to-last placed on the table. To keep track of that card, first
notice that, when a stack of 2 cards is dealt in this way, the
next-to-last card placed on the table begins at position 2™~ ! in
the stack; then apply the process to a stack of 2!! = 2048 cards.

After 48 of the cards have been placed on the table and 48 more
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cards have been moved from the top of the stack to the bottom, a
2000-card stack remains. Remove the cards that are on the table.
The next-to-last card that will be placed on the table from the
2000-card stack is the card that began at position 1024 in the
2048-card stack. The position of that card in the 2000-card stack
is 1024 — (48 4+ 48) = 928, so the number of cards above it is 927.

Form a 2000 x 2002 screen with unit screens. Initially, there are
more than 1999 x 2001 unit screens which are on. In any 2 x 2
screen, as soon as there are 3 unit screens which are off, the 4P
screen turns off automatically. Prove that the whole screen can
never be totally off.

Solution: For a screen to turn off, it has to be the 4*® screen of
a 2 x 2 screen with the other 3 screens off. Conversely, each 2 x 2
subscreen can be used only once to turn off a screen. Since there
are 1999 x 2001 2 x 2 subscreens, at most 1999 x 2001 screens can
be turned off. Hence the whole screen can never be totally off.

[AIME 1988] In an office, at various times during the day, the
boss gives the secretary a letter to type, each time putting the
letter on top of the pile in the secretary’s in-box. When there is
time, the secretary takes the top letter off the pile and types it.
There are nine letters to be typed during the day, and the boss
delivers them in the order 1,2,3,4,5,6,7,8,9. While leaving for
lunch, the secretary tells a colleague that letter 8 has already
been typed, but says nothing else about the morning’s typing.
The colleague wonders which of the nine letters remain to be
typed after lunch and in what order they will be typed. Based
upon the above information, how many such after-lunch typing
orders are possible? (That there are no letters left to be typed is
one of the possibilities.)

Solution: At any given time, the letters in the box are in
decreasing order from top to bottom. Thus the sequence of letters
in the box is uniquely determined by the set of letters in the box.
We have two cases: letter 9 arrived before lunch or it did not.

e (Case 1: Since letter 9 arrived before lunch, no further letters
will arrive, and the number of possible orders is simply the
number of subsets of 7' = 1,2,...,6,7,9 which might still




74

15.

Solutions to Advanced Problems

be in the box. In fact, each subset of 7' is possible, because
the secretary might have typed letters not in the subset as
soon as they arrived and not typed any others. Since 7" has 8
elements, it has 28 = 256 subsets (including the empty set).

e (Case 2: Since letter 9 didn’t arrive before lunch, the ques-
tion is: where can it be inserted in the typing order? Any
position is possible for each subset of U = {1,2,...,6,7}
which might have been left in the box during lunch (in
descending order). For instance, if the letters in the box
during lunch are 6, 3,2 then the typing order 6,3,9,2 would
occur if the boss would deliver letter 9 just after letter 3 was
typed. There would seem to be k 4+ 1 places at which letter
9 could be inserted into a sequence of k letters. However, if
letter 9 is inserted at the beginning of the sequence (i.e. at
the top of the pile, so it arrives before any after-lunch typing
is done), then we are duplicating an ordering from Case 1.
Thus, if k letters are in the basket after returning from lunch,
there are k places to insert letter 9 (without duplicating Case
1 orderings). Thus we obtain

Zi: k (Z) =7(277Y) = 448

new orderings in Case 2.

Combining these cases gives 256 + 448 = 704 possible typing
orders.

[China 1994, Wushang Shu] Let n be a positive integer. Prove

that
22 (W) () = 00

First Solution: (By Chenchang Zhu) For a polynomial p(z),
let [2™](p(x)) be the coefficient of the term z" in p(x). Consider
the polynomial p(z) = (z + 1)?". It is easy to see that

2" (p(2)) + [2")(p(2)) = (an 1) " (2: ) - (%: 1)'
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Hence it suffices to show that

) + [N (e) = 22 () ()

Note that

ple)=(@+1)" =" +20+1)"= >
i+j+k=n

|
_ 2i+
= 2’ il—zu» 7,

Y
o<iti<n Jin—i—j

n!

. AT i
@) ey

where ¢, j, k are nonnegative integers. Hence
[2" ") (p(2)) + [")(p(2))
= I ¥ -~ .93
2wy Yt X w

it(n—¢—j)!
0<i4j<n J 0<i4j<n J ( j)
Zi+j=n 2i+j=n—1

= Z nil .2n—2i
i(n — 20)1i!

0<i4+(n—21)<n
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as desired.

Second Solution: (By Jian Gu) We consider a combinatorial
model. There are 2n students, n boys and n girls, in a class with
their teacher 7. Let ¢1,92,...,9, denote all the girls, and let
b1,ba,..., by denote all the boys. For 1 < ¢ < n, students (g;, b;)
are paired. The class has n tickets to an exciting soccer game.

We consider the number of ways to find n people to go to the
game. The obvious answer is

2n+1
)
On the other hand, we also can calculate this number in the
following way. For any fixed integer &k, 1 < k < n, we find k pairs
from the n pairs of students and give each pair 1 ticket. There
are (2)2’“ ways to find k pairs and pick one student from each

pair to go the game. We have n — k tickets left and n — k pairs
of student left. We pick L%J pairs and give each of those pairs

2 liCkelS. TheI’e are
LHZkJ

ways to do so. Now we have already assigned S = k + 2 L%J
tickets. If n — k is odd, S = n — 1 and we assign the last ticket
to the teacher T'; if n — k is even, S = n and we have assigned all
the tickets already. It is not difficult to see that as k takes all the
values from 1 to n, we obtain all possible ways of assigning the n
tickets. Therefore, there are

Z (1) (i y21)

ways to find n people to go the game. Hence
2 (1) () = ()
Pt k) \|(n—k)/2] n ’
as desired.

[Bay Area Math Circle 1999] Let m and n be positive integers.
Suppose that a given rectangle can be tiled by a combination of
horizontal 1 x m strips and vertical n x 1 strips. Prove that it
can be tiled using only one of the two types.
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Solution:  Assume that the dimensions of the rectangle are
a x b. It is clear that both a and b are positive integers. We want
to show that either a is divisible by m or b is divisible by n. Let
¢ = cis2m/m and £ = cis 27/n be the m*™™ and n'" roots of unity,
respectively. Divide the rectangle into ab unit squares, and write
the number ¢°¢Y in the square in the z* column and y'* row.
For each vertical strip, the sum of the numbers written in it is

-1
E—1

Likewise the sum of the numbers in any horizontal strip i1s also

CEUHEFE+ -+ =7 =0,

0. Since the rectangle is tiled by these strips, the sum of all the
numbers in the rectangle is 0. But this sum is equal to

2 a 2 b ¢r—1 & -1
T+ +E+E+-+ ) =(CE : :
(=1 ¢-1
Therefore we must have (¢ = 1 or £ = 1, implying m | a or n | b,
respectively.
Given an initial sequence ai, as, ..., a, of real numbers, we

perform a series of steps. At each step, we replace the current

sequence &1, &sa,...,&, with |21 —al|, |ea —a|, ..., |2, — a] for

some a. For each step, the value of a can be different.

(a) Prove that it is always possible to obtain the null sequence
consisting of all 0’s.

(b) Determine with proof the minimum number of steps required,
regardless of initial sequence, to obtain the null sequence.

Solution: First we show that n steps are enough to obtain the
null sequence. Let (a(lk), a(zk), ce aﬁf)) denote the sequence after
the &' step, and let a®) be the value of the number a chosen to
be subtracted in the k'™ step. We set a(l) = ‘“"’TM Hence

W _ L

aj :a(z1 = —|a1 — as|.
2

(1), @)
We then take a(2) = % to obtaln
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(k=1), (k=1
and so on. At the k™ step, we take a(F) = (114-;%‘“—) to obtain

(k=1) _ (k=)

k k k |ay —Ap 4
a(l):a(z):...:aé_glz—Q
In this way, we obtain a sequence a(ln_l), a(zn_l), ce aﬁl”‘l) with
a(ln_l) = a(zn_l) =...= aﬁl”‘l) after n — 1 steps. At the n'! step

we take a(™) = a(ln_l)

to obtain the null sequence.

Now we prove that n steps are necessary for the initial sequence
1,21 3! ..., n! by induction on n. The base case n = 1 is trivial.

Assume that our statement is true for some positive inte-
ger k, that is, we need at least k steps to turn the sequence
1,21 31 ... k! into the null sequence. We show that we need at
least k + 1 steps to turn the sequence 1,21, ... (k4 1)! into the
null sequence.

The key observation is that if m i1s the minimum number of
steps required to turn the sequence ay,as,...,a, into the null
sequence, then

mE-D « (F) <« g1

for 1 <k <m, where

mE= = min{a(lk_l), a(zk_l), Cakmty
and
ME=1) = max{a(lk_l), a(zk_l), Calkmoy

Indeed, if a®*) < m*=1) then for all 7,

o+

af* = a1

= [laf" ™" = a®)] — a0

= |a§k_1) —ah) — g+

_ |al(k—1) _ (a(k) + a(k+1))|.
We can set the value of @ at the k™" step to a*) +a* Y to save a

step, which contradicts the fact that m is the minimum number
of steps needed. On the other hand, if a(®) > M®*=1 then for
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all 4,

We can set the value of a at the k™ step to al®) —a*+1) to save a
step, which contradicts the fact that m is the minimum number
of steps needed.

It follows from the above argument that M) > A1) > ... >
M) and hence a'®) < M) for all k. Note also that since m(*)
is always nonnegative, a(*) > 0 for all k.

We are now ready to prove our inductive step. We approach
indirectly by assuming that it is possible to turn the sequence
1,24 ..., (k4 1)! into the null sequence in k steps. Then the sub-
sequence 1,2!, ... k! has also been turned into the null sequence.
By the induction hypothesis, k is the minimum number of steps
needed to turn the sequence 1,2!, ... k! into the null sequence.
By our observation above, we conclude that 0 < () < k! for
1 < ¢ <k. But then

az(f+)1 =k + D= aM]—a®@| ... = a®)]
=(k+1)!— (a(l) +a® _|_..._|_a(k))

> (k+ 1)1 — k- k>0,

which contradicts the fact that a!*), = 0 as it is part of the null

E4+1 =
sequence. Therefore our assumption was wrong and we need at
least k + 1 steps to turn the sequence 1,2!,... (k4 1)! into the

null sequence. Our induction is thus complete.

[China 2000, Yuming Huang] The sequence {a, },>1 satisfies the
conditions a; = 0,as = 1,

1 1
n = 5Nan-1 + §n(n — Dap—2+ (-1)" (1 — E) ,
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n > 3. Determine the explicit form of

n n
fn = an+2<1)an—1+3<2)an—2
n n
—|—~~~—|—(n—1)<n_2)a2—|—n<n_1)a1.

First Solution: It is straightforward to show by induction that
an = nanp_1 + (=1)",

which implies that

| n!  n!  nl o !
=gty EU
or
1 11 L1

Therefore, by Bernoulli-Euler’s famous formula of misaddressed
letters, ap is the number of derangements of (1,2,...,n), i.e., the
number of permutations of this n-tuple with no fixed points.

Then f, can be interpreted as follows: For each non-identity
permutation of (1,2,...,n), gain one mark; then gain one mark
for each fixed point of the permutation. Then f, 1s the total mark
scored by all the non-identity permutations.

On the other hand, the total mark can also be calculated as a
sum of the marks of each element gained in all the nonOidentity
permutations. There are n! — 1 non-identity permutations and
each number is fixed in (n — 1)! — 1 non-identity permutations for
a total of

fa=nl—Tl4+n((n—1)=-1)=2-nl=n-1
marks.
Second Solution: We present another method proving that
ay is the number of derangements of (1,2,...,n). We have
tn = ntp_1+ (—1)" = ap_1+ (n — Da,—1 + (=1)"
= (1= Dan-s + (=) 4 (0 — Danos + (—1)"
=(n—1)(an—1+ an—2).
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Now let b, be the number of derangements of (1,2,...,n). In a
derangement, either

(a) 1 maps to k and k maps to 1 for some k # 1. Then there are
(n — 1) possible values for & and for each k there are b,_»
derangements of the other n — 2 elements. Hence there are
(n — 1)bp_2 such derangements.

(b) 1 maps to k and k maps to m for some k, m # 1. Note that
k # m. Then this is simply a derangement of (2,... k —
1,1, k+1,...n) with 1 mapping to m. Again there are n — 1
possible values for & and for each k there are b,_; derange-
ments. Hence there are (n — 1)b,,_1 such derangements.

Therefore b, = (n — 1)(bp—1 + bp—2). Since a3 = by = 0 and

as = by =1, a, = by, as claimed.

[USAMO 2000 submission, Richard Stong] For a set A, let |A]

and s(A) denote the number of the elements in A and the sum of

elements in A, respectively. (If A =, then |A] = s(A) = 0.) Let

S be a set of positive integers such that

(a) there are two numbers z,y € S with ged(z,y) = 1;

(b) for any two numbers z,y € S, x +y € S.

Let T be the set of all positive integers not in S. Prove that
s(T') < |T]? < oo

Solution:  First we show that for all n > zy, n € 5. It
suffices to show that there exist nonnegative integers a,b such
that az + by = n. Since z and y are relatively prime, there
exists b, 0 < b < =, satisfying by = n (mod z). Now we can take

a = "=% which is positive by the assumption n > xy. Thus,
T < oo.
Sort the elements of 7' in increasing order so & < ts < -+ <

). Since t; ¢ S, at least one of m and ¢; — m is not in S for
each 1 <m < [¢;/2]. Since there are only ¢ — 1 positive integers
less than ¢; and not in S, we have

t; )
{—J <i1—1,
5=

or t; < 2¢ — 1. Summing over #’s gives

ti+ta+ -+t < TP,
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as desired.

In a forest each of 9 animals lives in its own cave, and there
1s exactly one separate path between any two of these caves.
Before the election for Forest Gump, King of the Forest, some of
the animals make an election campaign. Fach campaign-making
animal—ZFGC (Forest Gump candidate)—visits each of the other
caves exactly once, uses only the paths for moving from cave to
cave, never turns from one path to another between the caves,
and returns to its own cave at the end of the campaign. It is also
known that no path between two caves is used by more than one
FGC. Find the maximum possible number of FGC’s.

Solution: We translate this problem into the language of graph
theory. Let each cave represent a vertex, and each path between
a pair of caves represent the edge connecting the two vertices. We
obtain a complete graph Kg. We are looking for the maximum
number of Hamiltonian cycles without common edges in this
complete graph Kg. (It is not hard to see that the number of
Hamiltonian cycles is less than the number of vertices. Hence we
can always pick a distinct FGC for each Hamiltonian cycle.)

The general result is that there are |(n — 1)/2] disjoint Hamil-

tonian cycles in a complete graph K,,. Since there are n(n—1)/2
edges in K, and each Hamiltonian cycle has n edges, there are
at most |(n — 1)/2] Hamiltonian cycles in K,,. We consider the
following cases.

e Case 1: n is odd. We assume that n = 2k + 1 for some
positive integer k£ (as n = 1 is meaningless). We evenly
arrange vertices Pp, Ps, ..., Po, around a circle in clockwise
order and place vertex Py at the center of the circle. The first
Hamiltonian cycle is

(Po, P1, Py, Poj, P3, Pog_1, Pa, Pog_9, Ps, . ..,
Pr—1, Pey3, P, Pego, Peg1, Po).

We can then rotate this cycle clockwise by angles of #/k,
2r/k, ..., (k—1)7/k to obtain k — 1 more cycles for a total
of k = [(n—1)/2] cycles.

e Case 2: n is even. We assume that n = 2k 4 2 for some
positive integer k. We evenly arrange vertices Py, P, ... Pog
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around a circle in clockwise order and place vertex P, at the
center of the circle. We then place vertex Pog4q somewhere
inside the circle. For each Hamiltonian cycle in case 1, we
put Poryq1 right in the middle of that path to obtain the
k= |(n—1)/2] cycles.
For our problem, n = 9. Hence there are [(n—1)/2] = 4
Hamiltonian cycles and thus a maximum of 4 FG(C’s.

[USA 1998, Franz Rothe] For a sequence Ay, ..., A, of subsets of

{1,...,n} and a permutation = of S = {1,...,n}, we define the
diagonal set

Dﬂ-(Al,Az,...,An) = {l es | i QAW(Z)}

What is the maximum possible number of distinct sets which can
occur as diagonal sets for a single choice of Ay,...  A,7

Solution: The answer 1s 2" — n.
We claim that Dy (A1, As, ..., Ap) # A; for all i. Tt is clear
that Dy, (A1, A2, ..., An) # Ai, where mg(¢) = i. Hence

Dr(A1, Agy ooy An) = D (Ar(1), An(2)s - - 5 An(n)) # An(iy-

But {Aﬂ(l),Aﬂ(z), cey Aﬂ(n)} = {A, A5, ..., Ay}, from which
our claim follows.

There are 2" different subsets. Excluding the n original sets
leaves at most 2" — n possible sets as diagonal sets. Indeed, this
number is obtainable. Let A; = {i} for 1 < i < n. Then

Dry (A1, Aoy AL) =0
and
Dr(A1, Asg, .. AR ={i €S |d QAW(Z')} ={ieS|i#n(i)}

By appropriate choice of the permutation 7, each subset of .S with
at least two elements can be created as a D,. Hence the empty
set and all subsets of S with at least two elements are exactly the
possible diagonal sets, for a total of 27 — n possibilities.

[IMO Shortlist 1994] A subset M of {1,2,3,...,15 } does not con-
tain three elements whose product is a perfect square. Determine
the maximum number of elements in M.
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Solution: For a set M, let |M| denote the number of elements
in M. We say set M is good if it is a subset of S = {1,2,3,...,15}
and it does not contain three elements whose product is a perfect
square. We want to find the maximum value of |M|, where M is
good. Let m denote this maximum. We call a triple of numbers
{i,7,k}, 1 <i<j< k<15 badif ijk is a perfect square.

First we show that m < 11. Since there are disjoint bad triples
By ={1,4,9}, By ={2,6,12}, Bs = {3,5,15}, B4 = {7,8,14 },
if |M| =12, all three numbers in at least one of these triples are
in M. Hence M is not good if |M| > 12 and we conclude that
m < 11.

If m = 11, then let M be a good set with |M| = 11. Then
M =5 —{ai,as,as,a4 }, where a; € B; for i = 1,2,3,4. Hence
10 € M. Since 10 € M and By = {1,4,9}, B4 = {7,8,14},
Bs = {2,5,10}, Bs = {6,15,10 } are bad triples with 10 as the
only repeated element, M = S — {by,ba, b5, bs }, where by € By,
by € By, bs € {2,5}, and bg € {6,15 }. Therefore {3,12} C M.
Then 1,4,9 are not in M. Since there are still two disjoint bad
triples {2,3,6 } and {7,8, 14 }, we need to delete at least two more
numbers to make M good. Hence |M| < 10, which contradicts
the assumption that |M| = 11. Hence our assumption was wrong
and m < 10.

It is not difficult to check that the set {1,4,5,6,7,10,11,12,13,
14} satisfies the conditions of the problem. Hence 10 is the
maximum number of elements in M.

[IMO Shortlist 2001] Find all finite sequences (zg, #1, . .., &,) such
that for every j, 0 < j < n, z; equals the number of times j
appears in the sequence.

Solution: Let (zg,21,...,%y,) be any such sequence. Since each
x; is the number of times j appears, the terms of the sequence
are nonnegative integers. Note that zg > 0 since zp = 0 i1s a
contradiction. Let m denote the number of positive terms among
T1,%2,...,Ly. Since g = p > 1 implies z, > 1, we see that
m > 1. Observe that ) ; , #; = m + 1 since the sum on the left
counts the total number of positive terms of the sequence, and
zg > 0. (Note: For every j > 0 that appears as some #;, the
sequence is long enough to include a term z; to count it, because
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the sequence contains j values of ¢ and at least one other value,
the value j itself if ¢ # j and the value 0 if ¢ = j.) Since the
sum has exactly m positive terms, m — 1 of its terms equal 1, one
term equals 2, and the remainder are 0. Therefore only zy can
exceed 2, so for j > 2 the possibility that z; > 0 arises only in
case j = xg. In particular, m < 3. Hence there are three cases
to consider. In each case, bear in mind that m — 1 of the terms

x1,%a2,...,Ts equal 1, one term equals 2, and the the others are
0.
(i) m=1. We have 3 = 2 since 1 = 2 is impossible. Thus

2o = 2 and the final sequence is (2,0, 2, 0).

(ii) m = 2.  Either 1 = 2 or 23 = 2. The first possibility leads
to (1,2,1,0) and the second one gives (2,1,2,0,0).

(iii) m = 3. In this case, #, > 0 for some p > 3. Thus
zg = p and z, = 1. Then z; = 1 is contradictory, so
¥y = 2, x5 = 1, and we have accounted for all of the
positive terms of the sequence. The resulting sequence is
(p,2,1,0,...,0,1,0,0,0).

N——’
p—3
In summary, there are three special solutions and one infinite
family:

2,0,2,0), (1,2,1,0), (2,1,2,0,0), (p,2,1,0,...,0,1,0,0,0),
( ), ( ), ( ), (p )

p—3
for p > 3.

Note: If one considers the null set to be a sequence, then it too
is a solution.

An expanded version of the problem allows for infinite se-
quences, and such solutions exist. One simple construction starts
with a finite solution (zg,21,...,%y,), sets zpy1 = n + 1 and
continues as shown:

(o, 21, ... xp,n+1n+1,... n+1,
Tpy1=n-+1 terms
n+2n+2...,n+2,...).

T p42 terms




86

24.

25.

Solutions to Advanced Problems

For example,
(1,2,1,0,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,...).

Determine if it is possible to partition the set of positive integers
into sets A and B such that A does not contain any 3-element
arithmetic sequence and 5 does not contain any infinite arith-
metic sequence.

Solution: Each infinite arithmetic sequence is determined by its
first term and i1ts common difference, i.e., we can write an infinite
arithmetic sequence a,a+d, a+2d, ... as (a,d). Therefore we can
define a bijection between the set of positive infinite arithmetic
sequences and S, the set of all the lattice points in the first
quadrant (not including the axes) of the coordinate plane. Note
that the set S is countable as it can be counted by the sum of its
coordinates:

{(1’ 1); (1a2)’ (2’ 1);(1a3)’ (2’2)’ (3a1);~~~}'

We build set A inductively. At step 1, we put a; = 1 in set A
(this breaks the infinite arithmetic sequence (1,1)); at step 2, we
pick a number ay larger than 2a; = 2 from the sequence (1,2)
and put it in A (this breaks the sequence (1,2)); at step 3, we
pick a number ag that is larger than 2a, from the sequence (2, 1)
and put it in A; ... ; at the i*P step, i > 3, we pick a number that
is larger than 2a;_; from the it sequence from S (note that S is
countable so such an ordering exists) and put it in .4, and so on.
All the numbers that are not in A form set B.

By this construction, it is clear that every infinite sequence has
been broken, so set 5 contains no infinite arithmetic sequence.
On the other hand, the elements in A can arranged in increasing
order aj,as,as,... with a;41 > 2a;. It follows that any three
terms a; < a; < ap cannot form an arithmetic sequence as
2a5 < ajp1 < ap < a + a;.

Therefore it is possible to partition the set of positive integers
into sets A and B such that A does not contain any 3-element
arithmetic sequence and 5 does not contain any infinite arith-
metic sequence.

[USSR 1989] Consider the set Ty of 5-digit positive integers whose
decimal representations are permutations of the digits 1, 2, 3, 4,
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5. Determine if it is possible to partition 75 into sets A and B
such that the sum of the squares of the elements in A is equal to
the corresponding sum for B.

Solution: We begin by making the following key observation.

Lemma. Suppose ai,as,...,as is a permutation of the
digits 1, 2, 3, 4, 5. Then the sum of the squares of the 5-digit
number (ajazazasas) and its four cyclic permutations is equal to
the sum of the squares of the reverse number (asasazazai) and
its four cyclic permutations. That s, we have

5 5

2 2
> (aiais1ais2aiy30i1a)” = > (dipadipsaiyaaiyiar)’,
i=1 i=1

where a;45 = a;.

Proof: We convert each decimal representation (dydadsdads)
to > 107 d; and expand the squares. The expansion creates square
terms of the form 1027 d? and cross terms of the form 2- 10j+kdj dg.
Now we consider the square terms and cross terms that occur on
each side of the equality we want to prove. It is easy to see that
the same square terms occur on both sides, since each digit occurs
exactly once in each of the ones, tens, hundreds, thousands, and
ten-thousands places. We claim that the two sides have identical
cross terms, too. Indeed, each cross term 2 - 10j+kajak that arises
from 107 a; and 10%a; on the left side also arises from 10kaj
and 107a; on the right, because the right side contains all of
the reversed numbers. ]

We now divide the 120 numbers in 75 into 24 groups that each
contain b numbers that are cyclic permutations of each other. We
put all permutations in which the numbers 1,2, 3 occur cyclically
in that order in A, and the rest (in which the order is 1,3,2) in
B. Now each group of 5 numbers in A has a corresponding group
in B that we can apply the lemma to, and this shows that A and
B have equal sums of squares.

[China 1996] Let n be a positive integer. Find the number

of polynomials P(xz) with coefficients in {0,1,2,3} such that
P(2) =n.
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First Solution: Let S ={0,1,2,3}, and let
P(z) = ama™ + Um_12™ "+ 4 a1z + ag,

where a; € S. Then P(2) = 2™ay,, + 2" Yam_1 + -+ 2a; + ao.
We are trying to find the number of sequences (ag, a1,...) with
each a; € S such that

a0—|—2a1—|—4a2—|—~~~222iai:n.
i=0

We consider the generating function

fl@)= (1424 2+ 2°)(1 + 27 + 2* + 2°)

I+t +a2%+ )

where 1+ 2 + 22 + 23 represents the different choices for ag, 1 +
2+ x4+ 25 represents the different choices for ay, 1+ 2423+ 212
represents the different choices for as, and so on. It suffices to
find the coefficient of term 2" in f(z). Note that
et —1 28-1 21 251
r—1 22-1 =2*-—1 28-1
B 1
oz =122 -1)’

as each term in the numerator occurs in the denominator of the

fle) =

fraction two terms away. By partial fractions, we obtain

1 1 1

IO =5 " 1w T2 oy

—9 1 1 S, 1
:4(1‘2—1)+2(1‘—1)2:§<($_1) +1—x2)'

Expanding the two functions in the last equation, we find that

i =5[(0-(P)e+ (3)-)

+(1—|—x2—|—x4—|—~~~)].
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we obtaln

f(x)

1
5[(14—2954-39524-~~)4—(14-9524-ae44-~~)]

—l4+o+222+222+ 324 + 325+ -
= ([5]+1)e
m=0

Thus, the coefficient of 2™ is |[n/2]|+1, that is, there are [n/2|+1
polynomials satisfying the conditions of the problem.

Second Solution: We will solve a more general problem: Let
m and n be positive integers with m > 2. Find the number of
polynomials P(z) with coefficients in {0,1,2,...,m? — 1} such
that P(m) = n. We call such polynomials good.

Let P(z) = > _i—, axx®, where ax € {0,1,2,...,m? — 1} for
k = 0,1,2,.... Then each ag can be written in the form of
bgm + ¢, where by, cp €{0,1,2,...,m —1}. Hence

(o) (o) (o)
n=P(m) = Zbkmk'l'l + chmk =mt+ chmk,
k=0 k=0 k=0

where ¢t = Y77 bym”. For each t, 0 < t < [n/m], there is a
unique way to write t = > ;7 bym® with by € {0,1,2,...,m—1}
(that is, express ¢ in base m) and there is a unique way to write n—
mt =y, cpm® with e € {0,1,2,...,m — 1} (that is, express
n — mt in base m). Hence we have a a bijection between the
set {0,1,...,|n/m] } and the set of good polynomials. Therefore
there are [n/m] + 1 good polynomials.

For our problem, we have m = 2 and thus there are |n/2| + 1
polynomials satisfying the conditions of the problem.

[IMO Shortlist 2000] Let n and k be positive integers such that
%n <k< %n Find the least number m for which it is possible
to place each of m pawns on a square of an n x n chessboard so
that no column or row contains a block of k adjacent unoccupied
squares.

Solution: Call a placement of pawns on the board good if there
isno k x 1 (or 1 x k) block of unoccupied squares. Label the rows
and the columns 0 through n — 1.
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A standard good placement is obtained by putting pawns on
squares (4,7) (i*" row and j™ column) such that i + j + 1 is
divisible by k. Since n < 2k, the sum ¢ + j has to be equal to
k—1,2k—1, or 3k — 1, so the pattern is composed of at most
three oblique lines. Since 3k < 2n, these three lines consist of k
squares, 2n — 2k squares, and 2n — 3k squares, respectively. This
gives a total of 4(n — k) occupied squares.

We now show that this is actually the least possible number
of pawns in a good placement. Suppose that we have a good
placement of m pawns. Partition the board into nine rectangular
regions

QU
oW
~ T Q

so that the corner regions A, C, G, I are (n — k) x (n— k) squares,
each of regions B and H has n — k rows and 2k — n columns,
and each of regions D and F has 2k — n rows and n — k columns.
(This is possible since 2k —n > 0.)

Observe that we can cut the region AU B into (n — k) 1 x k
rectangular strips. Similarly, we can obtain n— & horizontal strips
from BUC, GUH, and H UI. We can likewise obtain 4(n — k)
vertical strips, for a total of 8(n — k) strips. By the conditions of
the problem, each strip must contain at least one pawn. On the
other hand, each pawn belongs to no more than two of the strips
in our construction. Hence there are at least 4(n — k) pawns.

[China 1996] In a soccer tournament, each team plays each other
team exactly once and receives 3 points for a win, 1 point for a
draw, and 0 points for a loss. After the tournament, it is observed
that there is a team which has both earned the most total points
and won the fewest games. Find the smallest number of teams
in the tournament for which this is possible.

Solution: We call this special team W. Suppose that there are
n teams in the tournament. There are (5) = n(n — 1)/2 games
played for a total of at least n(n — 1) points. Thus the average
points earned per team is at least n — 1. Since W played n — 1
games and its score must be higher than the average, W won
at least 1 game. Each of the other teams has to win at least 2
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games for a total of at least 6 points; hence W has to tie at least
4 games (for a total of at least 7 points). But if team A tied its
game against team W, team A has 7 points. Hence team W has
to tie at least 5 games. Therefore, n > 7.

If n =7, then team W won 1 game and tied 5 games for a total
of 8 points. So each other team won exactly 2 games and tied at
most 1 game. Hence each other team must lose at least 3 games.
Then there are at least 6 x 3 = 18 losses but only 1 4+6 x 2 =13
wins, which is impossible. Hence n > 8.

We now give an example that shows that it is possible to
have an 8-team tournament that satisfies the conditions of the
problem. Let W, A;, As,..., A7 be the 8 teams. Team W
won games against A; and As, and tied the other games for
a total of 11 points. For 1 < 7 < 7, team A; won its games
against teams A; 41, A;jy2, Aips and lost its games against teams
Aiva, Aivs, Aigs, where A;47 = A;. Thus teams A; and A,
each have 3 wins and 4 losses for a total of 9 points, and teams
As, A4, ... A7 each have 3 wins, 3 losses, and 1 tie for a total of

10 points.

Thus the desired minimum is 8.
Let ay,...,a, be the first row of a triangular array with a; €
{0, 1}. Fill in the second row by,... b,_1 according to the rule

b, = 1if ap # agy1, by = 0 if a, = ag41. Fill in the remaining
rows similarly. Determine with proof the maximum possible
number of 1’s in the resulting array.

Solution: Let z, denote the desired maximum number for an
array with n rows. One can check that @1 = 1,2, = 2,23 = 4.

Now we shall relate #,, 43 to ,,. Consider the top three rows of
an (n + 3)-row triangle: ay, ... an43; b1, ..., bpga; €1, ..., oyl
Get your pebbles ready.

If at least one of ag, by, cx 18 0, then place a pebble over column
k corresponding to that 0. If agbrcy = 1, then agy1 = bpy1 = 0;
place a pebble over column k corresponding to ai41 and another
over column k + 1 corresponding to biy1. Starting with & = 1,
run the above process repeatedly, each time letting & jump to the
next pebbleless column. By the end, columns 1 through n+1 will
all have pebbles over them. If column n + 2 does not yet have
a pebble over it, then none of the pebbles that have been placed
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corresponds to agya, biya, or ar4s, but since there must be at
least one 0 among those three numbers, we may place another
pebble corresponding to it.

Since each of our n 4+ 2 pebbles corresponds to a 0, there
are at least (n 4+ 2) 0’s in the top three rows of our triangle.
Consequently, there can be at most (2n+4) 1’s there, so 2,43 <
z, + 2n + 4. One can show by induction that

2
< {LWJ ,

3

Furthermore, this bound is attainable, as is demonstrated by the
following pattern:

110110110
01101101
1011011
110110
01101
1011

Each row’s numbers repeat in blocks of three. From the bottom
row up, the numbers of 1’s in each row are 1, 1, 2, 3, 3, 4, 5, b,

6, ....

There are 10 cities in the Fatland. Two airlines control all of
the flights between the cities. Each pair of cities 1s connected by
exactly one flight (in both directions). Prove that one airline can
provide two traveling cycles with each cycle passing through an
odd number of cities and with no common cities shared by the
two cycles.

Solution: Let each city be a vertex, and each flight between
each pair of cities be an edge between the corresponding vertices.
We color an edge blue if it is from one airline and red otherwise.
This gives us a 2-colored complete graph K1g. In the language of
graph theory, we must show that in a 2-colored complete graph
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Kjp there are two monochromatic non-intersecting odd cycles.
We start with a well known result in graph theory.

Lemma 1. If the edges of a complete graph Kg are colored
2 colors, the graph contains a monochromatic triangle.

Proof: There is a proof using simple arguments involving the
Pigeonhole Principle. But we present a cool proof. We show that
indeed there are two monochromatic triangles. Let vy, va, ..., vs
be the vertices of K. If a pair of edges v;v; and v;v are of the
same color, then we call angle v;v;vy monochromatic. Let r; and
b; be the respective numbers of red and blue edges emanating
from v;. Then r; + b; = 5 for all ¢ and there are

£ ()0 5 () () -

monochromatic angles. On the other hand, in each monochro-
matic triangle, there are three monochromatic angles, while in
each other triangle, there is one monochromatic angle. Let m
be the number of monochromatic triangles. Since there are a
total of (g) = 20 triangles, there are 3m + (20 — m) = 20 4 2m
monochromatic angles. Therefore, 20 + 2m > 24 or m > 2, as
desired. ]

Lemma 2.  If the edges of a complete graph Ky are colored in
2 colors and the graph does not contain a monochromatic triangle,
then it consists of two length-5 monochromatic cycles.

Proof: Let wvi,vq,...,v5 be the vertices of K5. If three
of the edges vivs,vivs,...,viv5 are the same color, then we
have a monochromatic triangle. Indeed, we may assume that
v1Us, V13, v1v4 are red; then if any of vous, vavy, vavs are red,
we are done. Otherwise, vovzvs i1s a blue triangle, and we are
also done. (This argument can be easily extended to prove the
existence of a monochromatic triangle in a 2-colored Kg.) Since
there are no monochromatic triangles in our K, there are two
red edges and two blue edges from each vertex. If we only look at
the red edges, we have a subgraph of 5 vertices with each vertex
having degree 2. Hence this subgraph is either a cycle or can be
decomposed into a few non-intersecting cycles. But since there
are only b vertices, it cannot have two cycles. Hence we must
have a red cycle of length 5. In exactly the same way, we can
prove that we must have a blue cycle of length 5. ]
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Now we are ready to prove our main result. Let vy, vs, ..., v1g
be the vertices of our 2-colored (red and blue) complete graph
Kip. By Lemma 1, there is a monochromatic triangle in
Kip. Without loss of generality, say it is vyvyvz. By Lemma
1 again, there is a monochromatic triangle in the subgraph
Ki0—{v1,va,v3 }. Without loss of generality, assume it is vav5vs.
If vyvsvs and vavsvg are of the same color, we are done. If not,
assume that vyvovs is blue and vavsve is red. Consider the edges
viv;, 1 <1< 3 and 4 < j < 6. By the Pigeonhole Principle, five
of them are of the same color; without loss of generality, assume
they are blue. Hence there is some jgo, 4 < jo < 6, such that two
of the edges v;,v1,vj,v2,v;,v3 are blue. Therefore we have one
blue triangle and a red triangle with exactly one common vertex
Vjg-
For simplicity, we relabel the points so that vivovs is blue and
vavavs is red. Consider the subgraph Kig — {v1,vs,... 05 }. If
it has a monochromatic triangle, we are done as we can pick one
of the triangles vy vyv3 and vsvavs to match the color of this new
triangle. Therefore one airline can provide two traveling cycles of
three cities with no cities in common. If not, by Lemma 2, we have
a red length-5 cycle and a blue length-5 cycle. Therefore each
airline can provide a traveling cycle of three cities and traveling
cycle of five cities with no common cities.

[MOSP 1997] Suppose that each positive integer not greater than
n(n? — 2n + 3)/2, n > 2, is colored one of two colors (red

or blue). Show that there must be a monochromatic n-term

sequence a1 < as < - -+ < a, satisfying
ar—a; <az—as < - < ap — Ap_1.
Solution: Call a sequence ay, as, ..., a, such that
ar—a; <az—azs<---<ap—ap_1 <M

an n-term m-sequence. Note that

L) (04 )

We shall prove that if the integers are colored red and blue, the
first s, integers contain a monochromatic n-term 3(2)—sequence.
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We induct on n. The base case n = 2 is trivial.
Assume without loss of generality that there is a red n-term
3(2)—sequence ai,as,. .., a, with a, <s,. Note that

Sn4+1 — Sn

B3 () (TR E) ()
=)+ ()

Consider the list of n + 1 numbers

an—|—3<g),an—|—3<g)—|—1,...,an—|—3<g) +n
n n
<5n+3<2) + (1) +1:8n+1.

If all of them are blue, then we have a blue (n+1)-term 1-sequence
and we are done. Otherwise, one of them, say (a + 3(2) + k),
0<k<n, isred. Let any1 = a+ 3(}) + k. Then

n n+1 n n+1
an+1—an_3<2)—|—k—3< 9 )—3(1)+k§3< 5 ),

and again we have a n+ 1-term 3("‘;1) sequence. This completes

the induction and our proof.

[C. J. Smyth] The set {1,2,...,3n} is partitioned into three sets
A, B, and C with each set containing n numbers. Determine with
proof if it 1s always possible to choose one number out of each set
so that one of these numbers is the sum of the other two.

Solution: (V. Alexeev) Suppose that {1,2,...,3n} is parti-
tioned into three sets A, B, and C, each set containing n numbers.
For brevity, we shall call a triple (a,b,¢) goodif a € Ajb € B,c €
C' and one of the numbers a, b, ¢ is the sum of the remaining two.

Without loss of generality, we may assume that 1 € A and, if
k i1s the smallest number not in A, that & € B. Assuming that
there are no good triples, we claim

If z € C,then z — 1 € A. (1)

Then a contradiction will follow immediately from (1). Indeed,
if C'={ey,c9,...,¢n}, then A contains the numbers ¢; — 1, ¢ —
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1,...,en — 1, all of which are greater than 1 because 2 & C'. But
1 € A, so A would have at least n + 1 elements.

Now we prove our claim. Assume it is not true. Then there
is a number x € C such that t — 1 ¢ A. Clearly t — 1 ¢ B
since otherwise (1,2 — 1,) is good. Now, based on the fact
that « € C and z — 1 € C, we will prove that z — k£ € C' and
z—k—1¢€C. (Recall that k is the smallest element not in A.)
Indeed, if # — k € A, then (z — k, k, x) is good; if # — k € B, then
(k—1,2—k,z—1) is good. Similarly, the relations z —k—1 € A
and ¥ — k — 1 € B yield the good triples (x —k—1,k, 2 —1) and
(L, —k — 1,2 — k), respectively. We can repeat this argument,
concluding that all numbers  — ¢k and # — ¢k — 1 are in C| for
t=0,1,2,..., provided that they are positive. But  — ¢k must
be one of the numbers 1,2, ...,k for some 7. Hence it will be an
element of either A or B, a contradiction. Therefore # — 1 € A,
proving (1), and we are done.

[MOSP 2002] Assume that each of the 30 MOPpers has exactly
one favorite chess variant and exactly one favorite classical in-
equality. Each MOPper lists this information on a survey. Among
the survey responses, there are exactly 20 different favorite chess
variants and exactly 10 different favorite inequalities. Let n be
the number of MOPpers M such that the number of MOPpers
who listed M’s favorite inequality 1s greater than the number
of MOPpers who listed M’s favorite chess variant. Prove that
n > 11.

Solution: Let ¢1,c¢o,...,c90 denote the 20 different favorite
chess variants, and let ej es,...,e1g denote the 10 different
favorite inequalities. Let set S;; 1 < ¢ < 20, denote the set of
all MOPpers who chose ¢; as their favorite chess variant, and let
set T, 1 < j < 10, denote the set of all MOPpers who chose ¢;
as their favorite inequality.

For a set X, let | X| denote the number of elements in X. Each
MOPper M is assigned a pair of values (237, yar) as follows: if
M € S;, then zyr = 1/|S;|, and it M € T, then yar = 1/|T;|. We
call this pair of values the coordinates of M. We are looking for
all the MOPpers M such that zy > ypr.

Summing up all the z-coordinates over all MOPpers yields 20,
and summing up all the y-coordinates over all MOPpers yields
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10. Hence

Z(l‘M - yM) = 10.

M
Note that for each M, 23 — ym < zpr < 1. Therefore there are
at least 11 terms in the above summation that are positive, 1.e.,
there are at least 11 MOPpers M with xy; > yar, which is what
we wanted to prove.

[USAMO 1999 submission, Bjorn Poonen] Starting from a triple
(a, b, ¢) of nonnegative integers, a move consists of choosing two
of them, say = and y, and replacing one of them by either z + y
or |¢ — y|. For example, one can go from (3,5,7) to (3,5,4)
in one move. Prove that there exists a constant » > 0 such that
whenever a, b, ¢, n are positive integers with a,b, ¢ < 27, there is a
sequence of at most rn moves transforming (a, b, ¢) into (a’, ¥, ¢')
with a’b'c’ = 0.

Solution:  We will use strong induction on n to show that
r = 12 works. The base case is trivial, as is the case abe = 0.
For the induction step, we assume without loss of generality that
a < b < c. Using two moves if necessary to replace a by ¢ —a and
b by ¢—b, we may instead assume that 1 < a < b < ¢/2. Let m be
the integer such that 2m=1 <b < 2™, Since 1 < b < ¢/2 < 271,
we have 1 < m < n — 1. Define a sequence z¢g = a,21 = b, and
Zp = Tp_1+ Tp—o for k> 2.
Lemma. FEvery integer y > b can be expressed in the form

€+ i, + -+ wg,

where 0 < e < b, 19 <ia < <y, and x;, <y < Zi41.

Proof: Since z; are increasing, there is a unique ¢z > 1 for
which #; <y < ;1. We use strong induction on z. If y —z; < b,
we let € = y — x; and we are done. Otherwise 1 = b<y—x; <
Zit1 — &; = x;—1. Thus there is a unique j > 1 such that
z; <y—x < xjp1, and § < ¢, so we finish by applying the
inductive hypothesis to y — z;. [

Write ¢ = e+ 2, + -+ x;,, where 0 < e < band 0 < 41 <
<o < dp. Since Zpyo = Tp41 + Tp = 2205 + Tp—1 > 22y for k> 1,
we have

Ton—omas > 277 gy > oyl = 9n s o)
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501 <ip < - <1 <2n—2m+ 3.

Using 2n — 2m + 1 addition moves we can change (a,b,¢) =
(zg, 21, ¢) into (wa,x1,c¢), then into (x2,zs,¢), and so on, until
we reach the triple (#2p—2m42, Tan—2m41,¢). Along the way,
we Intersperse at most 2n — 2m + 2 moves between these, to
subtract from c¢ the z;, in the representation of ¢ as they are
produced in the first two coordinates. Thus we will eventually
reduce ¢ to ¢. Now we can perform 2n — 2m 4+ 1 subtraction
moves to change the triple (z2n_2m+2, Tan—2am+1, €) back to the
triple (Z2n—2m, Tan—am+1,€), and so on, undoing the previous
operations on the first two coordinates, until we end up with
the triple (a,b,¢€).

Reaching (a, b, €) required at most

24 (2n—2m+1) 4+ (2n—2m+2) + (2n—2m+1) = 6n —6m +6

moves. Afterward, since a,b,¢ < 2™, we can transform (a,b,¢)
into a triple with a zero in at most 12m more moves, by the
inductive hypothesis. Thus we have a total of at most (6n —
6m +6) + 12m = 6n+ 6m + 6 < 12n moves, since m < n — 1.

[IMO Shortlist 1998] A rectangular array of numbers is given.
In each row and each column, the sum of all the numbers is
an integer. Prove that each nonintegral number z in the array
can be changed into either [#] or [#] so that the row-sums and
the column-sums remain unchanged. (Note that [#] is the least
integer greater than or equal to x, while [z ] is the greatest integer
less than or equal to z.)

Solution: First, we replace all entries by |#], and mark each
change with a — sign (so if # is an integer, there is no mark). Then
we restore the column-sums by changing, column by column, the
roundings of certain numbers, chosen arbitrarily, and changing
their markings to +’s.

We then restore the row-sums without disturbing the column-
sums. Denote by s the sum of the absolute values of the changes
in the row-sums. It is necessarily an even integer (as the sum of
all the numbers is preserved), and we want it to be 0. If s > 0,
we will decrease it by 2 at a time.

We say row S is accessible from row R if there exists a column
C such that RN C is marked with a + and S N C' is marked with
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a —. We may assume that the first row-sum is too high. Then
it contains a +. Since column-sums are restored, there is a —
in the same column as the + (otherwise all of the marks in the
column would be +’s, and the column-sum would be too high).
We may assume that the second row is accessible from the first
row. If its row-sum is too low, we interchange the + and the —
on the access-column along with the roundings which define the
markings. This will decrease s by 2. If the second-row sum is
not too low, then 1t must contain a +, and some row is accessible
from it. If we eventually reach a row whose sum is too low, a
chain of interchanges along the access-columns will decrease s by
2. We claim this happens.

Denote by A the union of all rows accessible from the first row,

directly or indirectly, and including itself. Denote by B the union
of all other rows. Let C' be any column. If AN C contains no
+’s, then the sum of its entries has not increased from its original
value. If A N C contains at least one 4+, then B N C' contains no
—’s, as otherwise some rows in B would have been accessible and
should belong to A. Hence the sum of the entries of B N C has
not decreased, so that the sum of the entries of A N C has not
increased in this case, as well. Since (' 1s arbitrary, we conclude
that the sum of the entries of A has not increased. Since the
first row-sum is too high, some row sum in A must be too low,
justifying the claim.
[USAMO 1997 submission] A finite set of (distinct) positive
integers is called a DS-set if each of the integers divides the sum
of them all. Prove that every finite set of positive integers is a
subset of some DS-set.

First Solution: We induct on the number of terms in our set
that do not divide the sum of the elements of the set. For 0 terms,
it is obvious that we have a DS-set.
Let X be the sum of the elements of set S and let s € S be
such that s | ¥5. Suppose that s = 2¥m, where 2 f m.
(i) Step 1: Add the following elements to S: Xg, 2Xg, 43,
..., 2124 The new set T has sum Y7 = 2*Xs. Hence all

of the new elements divide X7, as do all of the old elements
that divided Xs5. Note also that the elements of T" are still




100

Solutions to Advanced Problems

distinct.

(ii) Step 2: If m = 1 we may skip this step. Otherwise,
recall that by Euler’s extension of Fermat’s Little Theorem,
290m) =1 (mod m). Let # = ¢(m). Now we add to T the
elements 2X7, 4%, ..., 27718 as well as (27 —1)Xp, 2(27 —
Y7, 4(2" = 1)Xp, ..., 277327 — 1)X7. The new set U thus
formed has sum Yy = 2771(2" — 1)X7. Thus all of the
elements we added divide Xg, as do all of the elements of
T that divided Xp. Furthermore, m | Xy .

After performing these two steps, we have s | 7. Furthermore,
all of the elements that originally divided X ¢ still divide X¢r, and
all of the elements that we added also divide ¥i. Hence if we
had n elements of S which did not divide Xg, we now have at
most n — 1 elements of 7" which do not divide 7.

Thus, if we can construct a DS-set containing any subset with
n elements not dividing the sum, then we can construct a DS-set
containing as a subset any set with n + 1 elements not dividing
the sum. By induction, we are done.

Second Solution: (By Po-Ru Loh) For any n > 2, we exhibit a
DS-set that contains the numbers 1,2, ..., n. Since for any finite
set S of positive integers we can choose n large enough that S C
{1,2,...,n}, this will suffice. First we put in our set the numbers
1,2,...,nand n(n+1)/2. This will bring the sum up to n(n+1).
Now we add the numbers (n—j)(n—j+2)(n—7+3) - (n)(n+1)

for j =2,3,...,n— 1. Thus the overall sum is
n—1
n(n+ 1)+ (n=j)n—j+2)-(n+1)
j=2
n—1
=n(n+1)+> [(n—j+1)n—j+2)--(n+1)-
j=2

(n—j+2)n—74+3)---(n+1)]
=nn+ 1)+ n+1)—nn+1)
:(n-l—l)!,

since the sum telescopes. It is clear that the elements of our set
are distinct and divide (n + 1)1, so the proof is complete.
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37. [China 1994, Chengzhang Li] Twelve musicians My, My, - -+, My
gather at a week-long chamber music festival. Each day, there is
one scheduled concert and some of the musicians play while the
others listen as members of the audience. Fori =1,2,...,12, let
t; be the number of concerts in which musician M; plays, and let
t =1t +1to+ -+ t15. Determine the minimum value of ¢ such
that it is possible for each musician to listen, as a member of the
audience, to all the other musicians.

Solution: The condition of the problem is the following:

If a musician is not performing on a given day, he observes the
concert as a member of the audience. If a musician is performing
on a given day, he cannot observe other musicians’ performances
on that day. Each musician is required to observe at least one of
each of the other musicians’ performances. (%)

o Observation 1. To achieve (x), any three musicians must
perform in at least 3 concerts. Indeed, if they only perform in 2
concerts, by the Pigeonhole Principle, two of them perform in 1
concert. So they can not observe each other on that day. This
means they have to observe each other in the other concert,
which is impossible.

e Observation 2. To achieve (*), any 7 or more musicians must
perform in at least 4 concerts. Indeed, if they only perform
in 3 concerts, by the Pigeonhole Principle, there are at least 3
musicians performing in 1 concert, so they cannot observe each
other in that concert. Then they have to observe each other in
the other 2 concerts, which is impossible by observation 1.

e Observation 3. To achieve (%), any 9 musicians must perform
in at least 5 concerts. Indeed, if they only perform in 4
concerts, then each of them can perform in at most 3 concerts,
as otherwise he cannot listen to the other 8 musicians. Note
that if one of them only performs in 1 concert, then all 8 other
musicians must observe that concert. Then these 8 musicians
only have 3 concerts to observe each other, which is impossible
by observation 2. Also note that if one of them performs in 3
concerts, then he can only listen in the fourth concert; hence
all the other 8 musicians must perform in that concert. This
again leads to the situation that the other 8 musicians have
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to observe each other in 3 concerts, which is impossible by
observation 2. Therefore each of the 9 musicians performs in
2 concerts. There are (;1) = 6 ways to choose 2 concerts to
perform. By the Pigeonhole Principle, there are two musicians
who have the same performing dates so they cannot observe
each other, which violates (x).

We assume that there are k musicians who each perform in only
1 concert. These k musicians must perform in different concerts as
otherwise they cannot observe each other. Hence 0 < k& < 7. Note
that all of these & concerts must be solo concerts. The remaining
12—k musicians each perform in at least 2 concerts, and they must
observe each other in the 7 — k concerts left. It is easy to see that
it is impossible for k = 7 or 6. If & = 5, 7 musicians must observe
each other in 2 concerts, which is impossible by observation 2;
if & = 4, 8 musicians must observe each other in 3 concerts,
which 1s impossible by observation 2; and if & = 3, 9 musicians
must observe each other in 4 concerts, which 1s impossible by
observation 3. Hence k <2,s0¢ > k+2(12— k) > 22.

Finally we give an example that shows that ¢ = 22 is indeed
achievable. Let musicians M7 and Ms give solo performances on
days 1 and 2. Each of the other 10 musicians will perform twice.
There are 5 remaining days and hence (g) = 10 ways to select two
days on which to perform. Thus letting each musician perform
on a different pair of days completes the example.

[USAMO 1999 submission, Richard Stong] An m x n array is
filled with the numbers {1,2,...n}, each used exactly m times.
Show that one can always permute the numbers within columns to
arrange that each row contains every number {1,2,... n} exactly
once.

Solution: It suffices to show that we can permute the numbers
within columns to arrange that the top row contains every number
1,2,...,n exactly once; the result then follows by induction on
the number of rows. For this we apply the Marriage Lemma. For
the boys take the columns, and for the girls take the numbers
{1,2,...,n}. Say a boy (column) likes a girl (number) if that
number occurs in the column. For each set of k columns, there
are a total of km numbers in those columns. Therefore there
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must be at least &k different numbers among them. Thus there
is a marriage of the columns and the numbers they contain.
Permuting these numbers to the tops of their respective columns
malkes the first row have all n numbers.

[IMO Shortlist 1998] Let set U = {1,2,...,n}, where n > 3.
A subset S of U is said to be split by an arrangement of the
elements of U if an element not in S occurs in the arrangement
somewhere between two elements of .S. For example, 13542 splits
{1,2,3} but not {3,4,5 }. Prove that for any n — 2 subsets of U,
each containing at least 2 and at most n — 1 elements, there is an
arrangement of the the elements of U which splits all of them.

Solution: We induct on n. For n = 3, the family consists of a
single 2-element subset {7, j}, which is split by the permutation
(i,k,7), where k is the third element of U.

We now assume that the result holds for some positive integer
n>3 and let U ={1,2,...,n+ 1}. We are given a family F of
n — 1 subsets, each containing at least 2 and at most n elements.
We have the following key observation.

Lemma. There is an element of U which s contained in
all n-element subsets of F, but in at most one of its 2-element
subsets.

Proof: Suppose that F contains k 2-element subsets and /
n-element subsets. Then k& + ¢ < n — 1. At most k elements of
U can appear two or more times in the 2-element subsets. Hence
the number of elements which appear at most once among them
isat least (n+1)—k > (n+1)—(n—1—1¥) = £+ 2. Since
there are only £ elements which are not contained in some of the
£ n-element subsets, one of these £ + 2 elements will satisfy the
desired conditions. ]

Now we prove our main result. Without loss of generality, we
may assume the number n + 1 is an element of U satisfying the
property of the lemma. When it is removed, all n-element subsets
in F become (n — 1)-element subsets of {1,2,...,n}, while at
most one of the 2-element subsets of F becomes a singleton.

If we have such a subset {i}, then the induction hypothesis
guarantees the existence of a permutation = of {1,2,...n} that
splits all the other n—2 subsets (with n+1 taken out). By adding
n+ 1 to m anywhere away from ¢, we have a permutation which
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splits all n — 1 subsets in F. (Note that all of the other subsets
that contain n + 1 which were already split before adding n + 1
remain split.)

If we do not have such a singleton subset, choose any subset S
among the n — 1 subsets. By the induction hypothesis, we have a
permutation 7 of {1,2,...,n } which splits all of the other n — 2
subsets. If n4+1 ¢ S, by adding n+ 1 to m between two elements
of S, we have a permutation which splits all n — 1 subsets in F.
Otherwise, if n + 1 € S, if © does not already split S, we may
add n + 1 on either the left or right end of 7 to split S. This
completes our induction.

Note: If F contains n — 2 subsets each of which contains at
least 3 and at most n — 2 elements, we have a much simpler
approach. For any k-element subset S of U, there are kl(n—k+1)!
permutations of U which do not split S; there are k! ways to
permute the elements of S and there are (n — k + 1)! ways to
permute the n — k elements not in S and one big block of all the
elements in S. The maximum value of k!(n—k+1),3 < k <n-2,
is 31(n — 2)!. So the total number of permutations which do not
split some of the subsets in F is at most (n — 2)3!(n — 2)!, which
is less than n!, the total number of all permutations. Hence there
is a permutation that splits all subsets in F.

[New York State Math League 2001/IMO Shortlist 2001] A pile
of n pebbles is placed in a vertical column. This configuration is
modified according to the following rules. A pebble can be moved
if 1t is at the top of a column which contains at least two more
pebbles than the column immediately to its right. (If there are no
pebbles to the right, think of this as a column with 0 pebbles.)
At each stage, choose a pebble from among those that can be
moved (if there are any) and place it at the top of the column to
its right. If no pebbles can be moved, the configuration is called
a final configuration. For each n, show that, no matter what
choices are made at each stage, the final configuration obtained
is unique. Describe that configuration in terms of n.

First Solution: At any stage, let p; be the number of pebbles
in column ¢ for i = 1,2, ..., where column 1 denotes the leftmost
column. We will show that in the final configuration, for all ¢ for
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which p; > 0 we have p; = p;41 + 1, except that for at most one
t*, pi» = pi»4+1. Therefore, the configuration looks like the figure
shown below, where there are ¢ nonempty columns and there are
from 1 to ¢ pebbles in the last diagonal row of the triangular
configuration. In particular, let ¢y = 14+2+4+ -+ k = k(k+1)/2
be the kth triangular number. Then ¢ is the unique integer for
which t._1 < n <{.. Let s =n —1{._1. Then there are s pebbles
in the rightmost diagonal, and so the two columns with the same
height are columns ¢ — s and ¢—s+1 (except if s = ¢, in which
case no nonempty columns have equal height).

Final Configuration for n = 12

Another way to say this is

o foe—i if e <ec—s, (1)
pi = c—i+1 ifi>c—s.

To prove this claim, we show that

(a) At any stage of the process, py > pa2 > ---.

(b) At any stage, it is not possible for there to be ¢ < j for which
pi = pit1, pj = pj+1 > 0, and pip1 —p; < j—i— 1 (that is,
the average decrease per column from column ¢ + 1 to column
Jis 1 or less).

(c) At any final configuration, p; —p;4+1 = 0 or 1, with at most one
¢ for which p; > 0 and p; — piy1 = 0.
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In the proofs of (a)-(c), we use the following terminology. Let a
k-switch be the movement of one pebble from column % to column
k + 1, and for any column ¢ let a drop be the quantity p; — piy1.

To prove (a), suppose a sequence of valid moves resulted in
pi < pig1 for the first time at some stage j. Then the move
leading to this stage must have been an z-switch, but this would
contradict the condition that column ¢ have at least 2 more
pebbles than column i+1 to allow switches.

To prove (b), if such a configuration were obtainable, there
would be a minimum value of j — ¢ over all such obtainable
configurations, and we now show that there is no minimum.
Suppose p1,p2,... was such a minimal configuration. It cannot
be that j = ¢ 4+ 1, for what would columns 7, i+1, i4+2 look like
just before the move that made the heights equal? The move
must have been a k-switch for ¢ — 1 < k < ¢4 2, but if so the
configuration before the switch was impossible (not decreasing).

Now suppose j > i+1. Consider the first configuration C'in the
sequence for which columns ¢, i41, j, j+1 are at their final heights.
Note that from p;11 to p; the columns decrease by exactly one
each time in ', because if there was a drop of 2 or more at some
point, there would have to be another drop of 0 in this interval
to obtain an average of 1 or less, and thus j — ¢ is not minimal.
The move leading to C' was either an i-switch or a j-switch. If
it was the former, at the previous stage columns i + 1 and ¢ + 2
had the same height, violating the minimality of 7 —¢. A similar
contradiction arises if the move was a j-switch.

Finally, to prove (c), if any drop is 2 or more, the configuration
is not final. However, if all drops are 0 or 1, and there were
two drops of 0 between nonempty columns (say between ¢ and
i+1 and between j and j+1), then (b) would be violated. Thus
a final configuration that satisfies (b) also satisfies (c). Tt now
follows easily that the only possible final configuration is the one
described earlier.

Second Solution: At each stage, let ¢ be the rightmost
nonempty column. In conditions (a)-(c) in the previous solution,

replace (b) by (b’), where

(b") All configurations obtainable from the initial configuration
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satisfy
pi—pj>j—i—1 foralli<j<ec+1. (2)

(The restriction to j < ¢+ 1, which causes certain complications,
is necessary for (2) to be true.) Fact (c), and thus the answer,
follows as easily from (b’) as from (b). We prove (b’) by induction
as follows.

Condition (2) is immediate for the initial configuration: Since
¢ = 1, the only case is p; —ps = n > 2—1—1. Now suppose some
configuration py,p2, ... with final nonempty column c, satisfies
(2), and a new configuration ¢1,¢s, ... is obtained from it by a
k-switch. Thus ¢z = pr — 1, ¢k+1 = pr4+1 + 1, and ¢; = p; for all
other 7. Let the new configuration have ¢, nonempty columns.
Note that ¢, = ¢, unless k = ¢,.

For any ¢ < j < ¢q + 1 we now show that ¢ —¢; > j —¢— 1.
The only cases to consider are those where ¢; — ¢; < p; — p;, that
is, those where ¢ = k or j = k 4 1; and those where p; — p; was
not restricted, because j was greater than ¢, + 1 (case 4 below).
There are four such cases.

Case 1. If (i,7) = (k,k+1), then ¢ —¢; > 0=j—i— 1.

Case 2. If i =k and j > k + 1, apply (2) to (i+1, j) to obtain

Gi—q; > qit1— ¢ =pig1—pj+1>j—(+)—1+1=j—i—1
Case 3. If j = k+ 1 and ¢ < k, then applying (2) to (¢,j—1),
Gi—q; > qi—¢-1=pi—pj-1+1>(-1)—i-1+1=j—i-1
Case 4. Wehave j =c, +2=k+ 2, ppp1 =0and pp > 2. If
t=kork+l,then ¢ —q;=¢; > 1> j—1—1. If ¢ <k, then
gi—q=pi—0>pi—pe+2>(i—k-1)+2=i—-j—1
This concludes the inductive step and (b’) is proved.

Let B, be the set of all binary strings of length n. Given two
strings (a;)7_, and (b;)?_,, define the distance between the strings
as

d((a), (b)) = > la; — bil.

Let C), be a subset of B,. The set C), is called a perfect
error correcting code (PECC) of length n and tolerance m if for
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each string (b;) in B, there is a unique string (¢;) in C,, with
d((b), (¢;)) < m. Prove that there is no PECC of length 90 and

tolerance 2.

Solution: Suppose C is a PECC of length 90 and tolerance 2.
Without loss of generality, assume (0,0,...,0) € C. Define the
weight of a string (a;) as > a;. There is no string (¢;) of weight
1, 2,3, or 41in C, or else there would exist some string (b;) within
2 of both (0,...,0) and (¢;). Let ng be the number of strings of
weight & in C'.

There are (930) strings of weight 3, and each must be within
distance 2 of exactly one string in C' of weight 5. Each string of

weight 5 is within 2 of (g) strings of weight 3. Therefore,

90 5
(3) = (3) ns, 50 ng = 11748.

There are (940) strings of weight 4, and each must be within
distance 2 of exactly one string in C' of weight 5 or 6. Each string
of weight 5 i1s 1 away from exactly (Z) strings of weight 4 and 2
away from no strings of weight 4. Each string of weight 6 is 2

away from exactly (2) strings of weight 4. Hence,

90 5 6
(4) = (4)715 + (4)716, so ng = 116430.

Each of the (950) strings of weight 5 is within 2 of exactly one
string in C' of weight 5, 6, or 7. A string in C' of weight 5 is within
2 of itself and 85(2) other strings of weight 5. A string of weight
6 is 1 away from exactly (g) strings of weight 5 and 2 away from
no strings of weight 5. A string of weight 7 is within 2 of (g)
strings of weight 5. Thus,

(950) = (1 + 85(2)) ns + (g)n6 + (g)n7, SO ny = 1806954%,

which is impossible. Therefore, there is no PECC of length 90
and tolerance 2.

Determine if 1t is possible to arrange the numbers 1,1,2,2,...,n,
n such that there are j numbers between two j’s, 1 < j < n, when
n = 2000, n = 2001, and n = 2002. (For example, for n = 4,
41312432 is such an arrangement.)
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Solution: We say a permutation i1s good if it satisfies the
above conditions. In general, there is a good permutation of the
numbers 1,1,2,2,...,n,n if and only if n = 4k or 4k — 1 for some
positive integer k.

First we show that there is no good permutation of the numbers
1,1,2,2,...,;n,nif n = 1 or 2 modulo 4. We approach indirectly
by assuming that a good permutation ay, as, ..., asz, exists. For
each number k, let (igx, jk), @x < ji, denote the positions of the
two occurrences of k. Then

n

STk 4+ gk=142+4 42 =n2n+1)= 5,
k=1 k=1

which is odd if n = 1 (mod 4) and even if n = 2 (mod 4). On the
other hand, jx —ix = k+ 1, so

n ) n ) +3
ng—sz:2+3+m+(n+1):%:SQ,

k=1 k=1

which is even if n = 1(mod 4) and odd if n = 2(mod 4). We
obtain 23 7 _, jx = S1 + S», an even number equal to an odd
number, which is impossible.

(We can also use the following approach: Each pair of even
numbers 2k and 2k (2 < 2k < n) takes one odd position and one
even position, and each pair of odd numbers 2k — 1 and 2k — 1
(1 < 2k —1 < n) takes either two odd positions or two even
positions. The odd numbers will therefore take an even number
of even positions. Say that number is 2m. Since there are |n/2]
pairs of even numbers 2k and 2k, even numbers will take |n/2]
even positions. Hence [n/2] 4+ 2m = n, implying that [n/2]| =n
(mod 2), which is not true for n = 1 or 2 modulo 4.)

Now we show that there are good permutations for n = 0 or
3 modulo 4. If n = 3, we have (2,3,1,2,1,3); if n = 4, we have
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(2,3,4,2,1,3,1,4);if n = 4m — 1 with m > 2, we have

[(Am —4,4m —6,...,2m);4m — 2;(2m —3,2m —5,...,1);
am—1;(1,3,...,2m — 3); (2m, 2m + 2, ..., 4m — 4);
2m—1;(4m—3,4m—5,...,2m+ 1);4m — 2;
(2m—22m—4,...,2);2m— 1;4m — 1;
(2,4,...,2m=2); 2m+1,2m+3,...,4m = 3)];

if n = 4m with m > 2, we have

[(Am —2,4m —4, ... 2m);4m —1;(2m —3,2m —5,...,1);
am; (1,3, ...,2m — 3); (2m, 2m+ 2, ..., 4m — 2);
2m—1;(4m—3,4m—5,...,2m+ 1);4m — 1;
(2m—22m—4,...,2);2m— 1;4m;

(2,4,...,2m—=2); 2m+1,2m+3,...,4m — 3)].

Note: This problem is called the Langford problem. It is closely
related to the following problems:

e Langford Determine if it is possible to partition the set
{1,2,...,2k}

into k pairs of numbers (a1, b1), (a2,b2), ..., (ax, bg) such that
bi—a; =1+ 1for 1 <7<k

e Skolem Determine if it is possible to partition the set

{1,2,...,2k}

into k pairs of numbers (a1, b1), (a2,b2), ..., (ax, bg) such that
bi—a; =ifor 1 <:<k.

e Skolem Determine if it is possible to partition the set
{2,3,...,2k}

into a singleton and k& — 1 pairs of numbers (a1, b1), (a2, b2),
.+, (ag, by) such that b; —a; =i for 1 <i<k.
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43. [IMO Shortlist 1996] Let k,m,n be integers such that 1 < n <
m — 1 < k. Determine the maximum size of a subset S of the set
{1,2,...,k} such that no n distinct elements of S add up to m.

Solution: If m < n(n + 1)/2, then the problem is trivial: the
set {1,2, ..., k} itself satisfies the stated property, so the required
maximum cardinality is k. In the analysis conducted below, we
assume that m > n(n + 1)/2.

It 1s not difficult to find a lower bound on the required maxi-
mum. Let r be the largest integer such that

r+(r+ 1)+ +(r+n-1) <m,

or nr +n(n —1)/2 < m. Tt is clear that no n elements from
{r+1,r4+2,...,k} can add up to m. Solving the inequality
yields

implying that a lower bound for the required maximum is the
quantity

We now show that this lower bound is in fact the answer we need.
To do this, it suffices to show that if S is a subset of {1,2,... k}
and no n elements of S add up to m, then

m n-—1
s |21,

()

We induct on n. Note that 2 < n < m — 1. For the base case
n = 2, no two elements of S can add up to m, so for each ¢ with
1 < 2i < m—1, at most one out of the pair of numbers (i, m — i)
can be in S. It follows that

m—1
<k—-|——
ER S

in agreement with (x).

Let n > 2. We assume the result for n — 1 and prove it for n.
Let S be a subset of {1,2, ..., k} having the stated property, and
let # be the least element of S. If we have nz +n(n —1)/2 > m,
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44.

then
SC{r+1,r+2,...,k},

with r defined as above, and there is nothing to prove. We may
therefore assume that nz +n(n —1)/2 < m.

The desired property implies that S; = 5 — {« } is a subset of
{e+ 1,2+ 2,...,k} such that no n — 1 elements of S; add up
tom—x. Let So = {s—« |2 € S1}. Then S; is a subset of
{1,2,...,k — « } such that no n — 1 distinct elements of Sy add
up to m — nzx. To invoke the induction hypothesis, we need to
show that

n—1<m-nxr—1<k—=z

The first inequality is equivalent to m —nz > n, and this holds as
we have already assumed that m — nz > n(n—1)/2. The second
inequality is trivial as m — 1 < k. By the induction hypothesis,
we obtain

n—1 2

m—z n
— k- _Z
{n—l QJ

mn—nx 1 n-1
—k— - .
{n(n—l) 2 2 J

_ _9
|S|§1—|—k—x—{m nr n J

The inequality nz + n(n — 1)/2 < m implies that mn — nax >
(n—1)m+n(n—1)/2. Tt follows that

(n—1)m 1 1 n-1
e e R R A

_ m n-—1
a n 2 ’

which is (). This completes the induction.

[USAMO 1998 submission, Kiran Kedlaya] A nondecreasing se-
quence sg, s1, ... of nonnegative integers is said to be superaddi-

twe if s;4; > s; + s; for all nonnegative integers ¢, j. Suppose
{sn} and {{,,} are two superadditive sequences, and let {u,} be
the nondecreasing sequence with the property that each integer
appears in {u,} as many times as in {s,} and {{,,} combined.
Show that {u,} is also superadditive.




Solutions to Advanced Problems 113

45.

Solution:  Given a sequence {a,}, define the dual sequence
{Sn} so that S, equals the smallest integer k such that s; > n.
The key observation is that {s,} is superadditive if and only if
{Sn} is subadditive, that is, S;1; < S; + 5;. Indeed, assume that
{5} is superadditive. Then

55,45; > 85, + 85, > i+ ],

and so by the definition of S, S;4; < S; 4+ S;j; the reverse
implication 1s proved similarly.

Now simply note that if {S,} and {7,,} are dual sequences
of {s,} and {t,}, respectively, then the dual sequence of {u,} is
{Sn+T,}. Since {S,} and {7}, } are subadditive, clearly {S,+T,, }

is as well, and so {u,} is superadditive, as desired.

[IMO Shortlist 1999] The numbers from 1 to n? n > 2, are
randomly arranged in the cells of an n x n unit square grid. For
any pair of numbers situated on the same row or on the same
column, the ratio of the greater number to the smaller one is
calculated. The characteristic of the arrangement is the smallest
of these n?(n — 1) fractions. Determine the largest possible value
of the characteristic.

Solution: We first show that for any arrangement A its
characteristic C(A) is less than or equal to (n + 1)/n. If two
numbers in the set G = {n? —n+ 1,02 —n+2,...,n?} lie on

the same row or column, then

2
o) < " ntl

—nZ-n+1 n

If the numbers in G are in different rows and columns, then two

of them are on the same row or column as the number n? — n, so

we have
21 1
o< t_nrtl

n?—n n

Now we show that the arrangement

i+n(j—1-1) if i < j,
a;; = . . . oo .
J i+nn—i+j—1) ifi>j,
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that is,
1+ (n—1)n 1 1+ (n—2)n
24 (n=2)n |24 (n—1)n 24 (n—3)n
34 (n—=3)n |3+ (n n 34+ (n—4)n
(n=2)4+2n|(n—2)+3n (n—2)+n
(n—=1)4+n | (n—1)+2n n—1
n n+n n+(n—1n

has characteristic (n 4+ 1)/n. Indeed,

e The difference between any two numbers lying on the same row
1s a multiple of n; therefore,

@ik

(€293

ik S n? n+1
aik—hn -

>
2_n n

a5 Qi —nN — n

e On the first column we have the arithmetic progression
n<(n—14+n<(n—-2)+2n<
<24 (n=2)n <14 (n—1)n,
implying
ai1

1—|—(n—1)n_n2—n—|—1 n+1

a1 ~ 2+ (n—=2)n n2-2n+4+2- n ’

with equality if n = 2;
e The j* column, 2 < j < n, contains the two arithmetic
progressions:
J—L{=-2)+n(G=-3)+2n,..., 1+ —2)n;
n+(G—1Un,n—=1)~+jn,....54 (n—1)n,
implying
J+n—=1)n n+1
a; — G+ +(n=2)n = n '

aij

with equality for j = n — 1.
46. [China 1999, Hongbin Yu] For a set S, let |.S| denote the number of

elements in S. Let A be aset with |A| = n, and let Ay, A, ..., A,
be subsets of A with |4;] > 2, 1 < i < n. Suppose that for each
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2-element subset A’ of A, there is a unique i such that A’ C A;.
Prove that 4; N A; #0 forall 1 <i<j<n.

Solution: By the given conditions, we have

2 (1)-6) 2

Let A= {a1,22,...,2,}, and let d; denote the number of subsets
Aj, 1 <j <n,such that z; € A;. Hence

Zdi:Zm”. (2)

On the other hand,
Z(Q): Z |AZQAJ|
i=1 1<i<j<n

By the conditions of the problem, |4; N A;] < 1. It suffices to
prove that |4; N A;| =1, or

- dz o n

; 2/ \2)°

i=1
y (1 ) and (2) and by the definition of the binomial coefficient
= , 1t suffices to prove

(

n

Zd?:Z|Ai|2~ (3)

i=1

For each x;, we consider the sets A; such that z; &€ A;. Let
A; ={y1,¥2,...,¥s} be one such set. Since each of the 2-element
sets {ai, 1}, {2, y2}, -, {@i, ys } 1s a subset of a distinct set Ay
(as y; and y; cannot both be in another set again), d; > |A;]. It
follows that

d; | 451
n—di - n—|Aj|'
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Summing up all the above inequalities yields

Yasy ¥ oteey ¥ Al

i=1j|z;gA; =1 j|z;¢A;

_Z Z n|_A|l1|

J=1li|zgA;
n
=145l
j=1

y (2), all the equalities hold in the above inequalities. Hence

d; = |A;]. Tt follows that

n

Yln—dydi=d Y di=)y Y
i=1 =1 j|z;¢A; =1 j|z;¢A;
=2 2

J=li|z.gA;

= Z(n — A 1A;]

implying (3), as desired.

47. [Iran 1999] Suppose that 71, ... 7, are real numbers. Prove that
there exists a set S C {1,2,...,n} such that

1< |Sn{si+1,i4+2} <2,
for 1 <i<n-—2,and

>

1€S

1 n
5 Z |7l
i=1
Solution: Let s =5 " |r;| and for i = 0, 1,2, define

o E r; and t; = E ;.
r;>0,j=i(mod 3) r;<0,j=¢(mod 3)
Then we have s = sy 4+ s9 + s3 —t; —t3 — t3, or

25 = (51 4 s2) + (s2 + s3) + (53 + 51)
—(t1 +12) = (t2 +13) — (t3 +11).
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Therefore there are i3 # iz such that either s;, +s;, > £ or

3
i, +1;, < —35 or both. Without loss of generality, we assume that
S5, 55, > % and |5i1+5i2| > |ti1—|—ti2 | Thus S5, 85, i, > 0.

We have
(siy + sip +1i,) + (50, + 50, +1iy) > 50y, + 50, > g

Therefore at least one of s;, +s;, +1;, and s;, +s;, +1;, is greater
than or equal to § and we are done.
Note: Bysettingry =rps=rs=1and ra =75 =r¢ = —1, 1t is
easy to prove that % is the best value for the bound.

[USAMO 1999 submission, Kiran Kedlaya] Let n, k, m be positive
integers with n > 2k. Let S be a nonempty set of k-element
subsets of {1,...,n} with the property that every (k+ 1)-element
subset of {1,...,n} contains exactly m elements of S. Prove that

S must contain every k-element subset of {1,...,n}.

Solution: We first count pairs of (U, V), where U € S and V
is a (k + 1)-element subset of {1,2,...,n} containing U, in two
different ways. By assumption, if we sort the pairs by V', we find
there are m(kﬁ_l) of them. On the other hand, if we sort by U,
we find there are (n — k)|S]| pairs. We conclude

Tn—k\k+1)  k+1\k/)

We next count triples (U, V, W), where U is a (k + 1)-element
subset of {1,2,...,n} and V and W are distinct elements of
S contained in U. If we sort the triples by U, we see that by
assumption the number of triples is

m(m_1)<k—n+1) :m(m_l)gf?/;f)l()n_kﬂ) (kil)

On the other hand, we can also sort the triples by VW, which is
always a set of k — 1 elements. For each (k — 1)-element subset J

of {1,2,...,n}, let s; be the number of elements of S containing
it. Each J is VNW for exactly sj(sy—1) triples, so we conclude

m(m—1)(n—k)(n—k+1) n B
k(k+1) (k—l) _ZJ:S"(SJ_U'
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The function f(z) = z? is convex, and

mk [n m(n—k+1) n
D 51 = kS| k+1<k> k1 (k—l)

J

Hence

m(m —1)(n — k)( —k—I—l)( n )
Kk 1) k-1
() ston )

(m—1)(n—k)
k

or
m(n—k+1)

> -1
- E+1

Hence
m(n —2k) > (k+1)(n — 2k).

Since we assume that n > 2k, we conclude that m > k 4+ 1,
which implies that S must contain every k-element subset of

{1,2,...,n}.

Note: The result is a special case of a theorem of Liningston
and Kantor, but with a different proof. The condition n >
2k 1s definitely necessary, or else balanced block designs would
not exist. Complementing the sets of such a design gives a
counterexample.

49. [China 1999, Zhenhua Qu] A set T is called even if it has an even
number of elements. Let n be a positive even integer, and let
Sy, 89, ...,5, be even subsets of the set S ={1,2,...,n}. Prove
that there exist ¢ and j, 1 <@ < j < n, such that 5; N.S; is even.

First Solution: For a pair of sets A and B, we introduce their
symmetric difference

AAB = (A— B)U (B — A),

that is, AAB = (AU B) — (AN B). For each subset A C T, we
define its index function 4 : T — {0,1} as

1 ifecA
wM@Z{O if e A
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We have the following properties of the symmetric difference
operation:

(a) AAA =0 and AAD = A;

(b) AAB = BAA;

() (AAB)AC = AA(BACY;

(d) if both A and B are even sets, AAB is also even;

(€) a € AJAAA---AA, (r a positive integer) if and only if »
belongs to an odd number of sets A1, Ao, ..., A,.

The proofs of properties (a), (b), (c), (d) are rather straightfor-

ward. We prove property (e) by induction on r. The base cases

r = 1 and r = 2 are trivial. Assume the property is true for r,
7 > 2, for the subsets Ay, As, ..., A.. We consider

X = A AAsA A AAy = X AA, L,

where X7 = A1AAA---A.. Then # € X if and only if x
belongs to either X1 — A,yq or A4 — X. If 2 € Xy — Ay,
z ¢ Arp1 and & € X; that is, x belongs to an odd number of
sets Ay, As, ..., Ay, Ary1 by the induction hypothesis. If = €
Ary1 — X, then # € A,41 and z belongs to an even number
of sets Ay, As, ..., A, so z belongs to an odd number of sets
A1, A, o  Ar, Arpa. Our induction is complete.

Now we are ready to prove our main result. Let n = 2m, and
let

S=1{51,5,...,5m}.

We have the following lemma.

Lemma. There exist an even number of sets S; with thewr
symmetric difference equal to either ) or S.

Proof: We consider all possible symmetric differences

Si ASiLA - AS;

27

where j > 1. If some of these difference are equal to either (i
or S, we are done; if not, note that there are 2?™~! — 1 such
differences and each of these is an even subset of S (by property
(d)). Also note that there are 2?™~! — 2 distinct even subset
of S not including ## and S. By the Pigeonhole Principle, two
of these differences are the same. Without loss of generality (by
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properties (b) and (c)), we may assume
T = S1ASSA - - ASEASK 1A - - ASy;
= Sp1 A ASyAS 1 ASy g =T
By properties (a) and (b), we obtain
=T AT,
= S1ASHA - ASEASy 1A ASy .

Hence § is the symmetric difference of k+ (25 — k — 2i) = 2(j — i)
sets. [ |

By the lemma, we may assume that there is an even number
2¢ such that

SlASQ"'ASQiZQ or S

We consider these two cases separately.

o (Case 1. We assume that
S1ASy - ASy; = 0.

By property (e), each element s of S belongs to an even number
of sets 51,5, ...,59;. We calculate

1 :Z|51 ﬁSk|:Z ( Z 1/)Sk(51)) ~

k=2 \s1€5;

For s; € S1, s1 belongs to an odd number of sets S5, ..., 59,

le.,

> s (s1) =1 (mod 2).

Therefore,

= Z ( Z 1/)Sk(51)) = Z ( 1/)Sk(51)) .

k=2 \s1€5; $1E€S51

Since S7 is an even set, 71 1s even. Therefore, at least one of
the 2¢ — 1 numbers [S; N Sk|, 2 < k < 2¢, must be even, as
desired.

o (Case 2. We assume that

S1ASy - ASy = S.
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By property (e), each element s of S belongs to an odd number
of sets 51,5, ...,59;. We calculate

1 :Z|5105k|22 ( Z 1/)Sk(51)) ~

k=2 k=2 $1€51

For s; € S1, s1 belongs to an odd number of sets Sy, ..., S,

le.,

Zl/)sk(sl) =0 (mod 2).

Therefore,

r :fj ( > wsk(m)) = (iwskw).

k=2 \s1€5; $1€51 =

Since 71 is the sum of even numbers, 7 is even. Therefore, at
least one of the 2¢ — 1 numbers |51 N S|, 2 < k < 24, must be
even, as desired.

Second Solution: (By Tiankai Liu) Assign to each S; an
n-dimensional vector a;, where the j** coordinate of a; is 1 if S;
contains j and 0 if not. Then the fact that S; is even translates
into a; - a; = 0 (mod 2).

For the sake of contradiction, assume @; - a; = 1(mod 2) for
all ¢ # j, that is, S; and S; have odd intersection for all ¢ # j.
Suppose there exists a nonempty subset X of {1,2,/3,... n} for
which

> a,=(0,0,0,...,0) (mod 2).
rzeX

Then, for any i € X, a; - ), x @z = 0(mod 2). On the other
hand,

az"E e = Q5 - Q5 + @ - g g

zeX T€(X—1)
= a; * Z
T€(X—1)
[X]—1 (mod 2).
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It follows that that |X| is odd. So X is a proper subset of
{1,2,... ,n}, since n is even. But then, for any j € X, a; -
> wex @ = 0(mod 2) implies that |X| is even, a contradiction.
Thus X does not exist.

Thus, for each of the 2" subsets Y of {1,2,3,... ,n}, Zer ay
is different modulo 2. On the other hand, for each such sum, the
sum of all the coordinates of the vector must be even, as it was
formed by summing vectors corresponding to even sets. Hence the
first n — 1 coordinates of the vector determine the parity of the
last coordinate. It follows that there are only 27~1 possibilities,
modulo 2, for Zer ay, a contradiction.

Thus, there exist ¢ and j such that @; - a; is even, and corre-
spondingly the intersection of S; and S; is even.

50. Let Ay, As,..., By, Ba,... be sets such that 41 = @, B; = {0},
An+1:{l‘—|—1|l‘EBn}, Bny1 = A U B, — Ay N By,

for all positive integers n. Determine all the positive integers n

such that B, = {0}.

First Solution: We show that B, = 0 if and only if n is a
power of 2.

First we introduce some notation. For a set S of integers, let
2S5 denote the set {2z | # € S}, and let S + k denote the set
{x + k| x € S} for any integer k.

We now observe that 0 ¢ A, for all n > 1. This is true for A4,
by definition, and for the rest because A, is formed by adding
1 to the elements of B,,, all of which are nonnegative. It follows
by an easy induction that 0 € B,, for all n > 1.

Next we prove by induction that the following four statements
are true for all n > 2:

(a) Aap—1 =24, —1;

(b) Bap—1 = Aapn—1 U Bap;
(€) Ban = 2By;

(d) 1€ Bap_1.

The base case can be verified by computing A, = {1}, By =
{0}, A3 = {1}, Bg = {0,1}, A4 = {1,2}, and B4 = {0}
For the induction step, assume that the statement holds for
n — 1; that 1s, assume that As,_3 = 24,1 — 1, Ba,_3 =
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Asp_3UBoy_9, Bay_2 = 2B,_1, and 1 € Bs,,_3. Then statement
(a) immediately follows because

A1 =Boap_2+1=2B,_1+1
=2(A,— 1)+ 1 =24, -1,

where we used the definition in steps 1 and 3 and the induction
hypothesis in step 2.

Moving on to (b) and (c), we first need to obtain some infor-
mation about As,_s:

Asp_2 = Bap_s+1=(A2p_3U Bap_2)+ 1
= (24p_1 — 1) U2Bp_1) + 1 = 24,1 U (2Bn_y + 1).

Using this, we can compute By,_1. We know by assumption
that Ba,_2 = 2B,_1, and we have by definition that Bs,_1 =
Asp_9UBgp_9s—Asp_9oNDBay_sand B, = A,_1UB,_1—A,_1N
By _1. Therefore,

Bop_1=2A,1U(2B,_1 +1)U2B,_;
— (24,1 U(2Br_1 + 1)) N 2B,
= (2Bn_1+1) U245 1 U2By_1 — 24,1 N 2By_,
= (2Bn_1+1) U (245_1 U2Bp_1 — 2A0_1 (1 2B,_1)
= (2B,_1 + 1) U2B,,

where we could remove the set 2B,_1 + 1 in the second step
because it contains only odd elements, while 2B, _; contains only
even elements. We saw above that As,_1 = 2B,_1 + 1, so we
have BZn—l = AZn—l U QBn

Now we are finally ready to prove (c), and from there (b). We
know by definition that Bs, consists of the numbers that are
either in As,_1 or Bs,_1 but not both. We just proved that
Boyn_1 = Asp_1 U2B,, so Bs, cannot contain any elements in
Asp_1. On the other hand, we also showed that Ao,y = 24, —1,
so all the elements of As,,_1 are odd and they cannot coincide with
the elements of 2B,,. Therefore, Ba, is exactly 2B, proving (c).
Statement (b) now follows immediately, simply by plugging in
Bs, = 2B, in the relation By, _1 = As,_1 U2B8,.
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We can now prove (d) by looking back at the aftermath. We
showed above that Bsp,_; = (2B,-1 + 1) U2B,,. At the very
beginning we observed that 0 is an element of each of the B’s. It
follows that 1 is an element of 2B,_1 + 1, and hence of Ba,_1.
This proves (d).

At this point it is easy to conclude that the integers n such
that B, = {0} are exactly the powers of 2. To show that the
powers of 2 have this property, only a trivial induction using the
relation Bs, = 2B, is required. To show that no other numbers
do, observe that all B’s with odd indices contain 1 by (d), and
another trivial induction using the same relation suffices.

Second Solution: Let g, be generating functions defined by
g1(z) = g2(x) = 1, and gn41(2) = gn(z) + 2gn-1(x). We claim
that for each ¢, ¢ € B, if and only if the coefficient of #' in g, (%)
is odd. To prove this, first define a corresponding sequence of
generating functions f, for A, by fi(z) =0, foy1(z) = zgn(z).
We will show also that the f’s represent the A’s by the same
scheme. We do so by induction. Clearly, the representations
are correct for n = 1. Now we assume that they are correct for
some n > 1, and prove that they work for n 4+ 1. The definition
fat1(x) = 2gn () is exactly the translation of the given definition
Apy1 ={o+ 1|2 € B,}. As for B,y1, to keep with the given
Bni1 = ApUBp—A,NBy,, we can choose gn11(2) = gn(2)+fn(2).
For n > 2, we may then plug in f,(z) = #gn_1(z) to obtain
Int1(2) = gn(2) + 2gn_1(x), as wanted.

We claim that g,(z) = > ., ("_;_k)xk satisfies the above
recursion. Indeed, by this definition,

gn (%) + Tgn_1(x) :i (n_;_k)x’“+x§: (n_z_k)x’“

k=0 k=0
_Oo n—1—Fk\ , “ fn—-1—k &
_Z< i )x —|—Z< k1 )x
k=0 k=1

= /n—k
:Z( . )x = gnt1(z)

k=0

It remains to show that all but the constant coefficient of ¢, (%)
are even if and only if n is a power of 2. First we prove the “if”
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51.

portion. Let n = 2™. We must show that for all 0 < k < 2771,

21—k (27— 1— k)2 —2— k) (27 — 2k)
( k ) ko (k—1)---1

is even. Both the numerator and the denominator contain a
product of k consecutive integers. Observe that since the product
in the denominator starts at 1, for any integer a, the numerator
contains at least as many multiples of a¢ as the denominator.
In particular, this holds for powers of 2. In fact, we can even
show a bit more: if 2/ is the highest power of 2 dividing k,
then the numerator contains strictly more multiples of 2!** than
the denominator. The denominator clearly contains LzlkTJ such
multiples. The numerator, however, contains [%] multiples,
27 — 2k being the smallest of them. Since 2+ does not divide
k by assumption, the numerator contains one more multiple of
2'+1 than the denominator. Now, recall that the highest power
of 2 that divides a product is equal to the sum over the number
of multiples of 27 in the product, j = 1,2,.... Hence it follows
from the above discussion that the required binomial coefficient
is indeed even.

Now we prove the other direction: if n is not a power of 2,
then at least one of the binomial coefficients other than the first
isodd. Let n = 2™p, where p > 1 1s odd. Then consider the term

n—1-2"\  (n—1-2")(n—2—2")..(n—2mt1)
( om )_ 1-2...2m '

Since 2™ | n,
n—i—2"=—i (mod?2™)

for all ¢. Thus, for all ¢ < 27, the factor n — ¢ — 2™ in the
numerator has exactly the same number of factors of 2 as the
factor ¢ in the denominator. The same is true for the last pair
of factors, n — 27*! and 2™. Neither is divisible by 2% while
both are divisible by 2™, so the binomial coefficient (”_1_2m) 18

2m
indeed odd.

[fran 1999] Suppose that S = {1,2,...,n} and that Ay, As, ...,
Aj; are subsets of S such that for every 1 < 41,142,3,14 < k, we
have

|AZ'1 UAZ'2 UAZ':,’ UAZ'4| <n-—2.
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Prove that k < 272,

Solution: For a set T, let |T| denote the numbers of elements
in T. We say aset T'C S is 2-coverable if A C A; U A; for some
i and j (not necessarily distinct). Let A C S be a set such that
A is not 2-coverable and |A]| is minimal.

Consider the family of sets 51 = {ANA;, ANAs, ..., AN A}
Since A is not 2-coverable, if X € 57, then A — X &€ S;. Thus
51| < 214171,

On the other hand, let B = S — A and consider the family
of sets S = {BNA;, BN As,..., BN Ar}. We claim that if
X € 55, then B — X ¢ S3. Suppose on the contrary that both
X, B—X €5, forsome X = BNA; and B—X = BN A,. By the
definition of A there are A4; and A; such that A;UA; = A—{m}

for some i, j, and m. Then

|AzUAz/ UAZ'UA]'| =n-—1,
a contradiction. Thus our assumption is false and |Sy| < 21511 =
2n—|A|—1.
Since every set A; is uniquely determined by its intersection
with sets A and B = S — A, it follows that k < |S;]-|Ss] < 27~2.
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Binomial Coefficient

(1) =
( )

the coefficient of z* in the expansion of (z + 1)™.

Complete Graph Given a set V' of vertices, the graph formed by
joining each pair of vertices in V 1s the called the complete graph on
V' and denoted by Ky . For positive integer n, K, denote a complete
graph of n vertices.

Dirichlet’s Theorem A set S of primes is said to have Dirichlet
density if

ZpES p_s

s—1 IH(S — 1)_1

exists. If the limit exists we set it equal to d(S) and call d(S) the
Dirichlet density of S.

There are infinitely many primes in any arithmetic sequence of
integers for which the common difference is relatively prime to the
terms. In other words, let a and m be relatively prime positive
integers, then there are infinitely many primes p such that p = «a
(mod m). More precisely, let S(a; m) denote the set of all such primes,
we have d(S(a;m)) = 1/¢(m), where ¢ is Euler’s function.

Euler Function Let n be a positive integer. The Euler function
@(n) is defined to be the number of integers between 1 and n that are
relatively prime to n. The following are three fundamental properties
of this function:

129
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o ¢(nm) = ¢(n)¢(m) for positive integers m and n;
o if n = p{'p5?---p* is a prime factorization of n (with distinct
primes p;), then

¢(n):n<1—pi1) (1_])%)...0_1%);

o Zq/)(d) =n.

d||n

Fermat’s Little Theorem If p is prime, then a? = a (mod p) for
all integers a.

Fibonacci Numbers Sequence defined recursively by
F=F=1 Fuau=Fh+F.

for all n > 2. More explicitly,
(1+¢5)" (1-%)"]
2 2

Hamiltonain Cycles A walk in a graph G is a finite sequence of

1
F, =—
NG

for all n > 1.

vertics wvg, vy, ..., v, with edges vovy,vive, ..., vp_1v,. Vertices vy
and v, are the end points of the walk. A simple walk is a walk in
which no edges is repeated. A walk is closed if the end points of
the walk are the same. A closed simple work is a cycle if n > 3
and vg, vs,...,v,_1 are all different. Here n is called the length of
the cycle. A cycle that passes through every vertex in a graph is a
Hamilton cycle.

Lucas Numbers Sequence defined recursively by
Ll = 1a L2:3a Ln-l—l :Ln+Ln—1

for all n > 2. More explicitly,
115\ 1=V
2 + 2

Monochromatic Suppose the edges of a graph G are colored in k

L, =

for all n > 1.

colors. We say a subgraph H of a graph G is monochromatic if all its
edges are colored the same color.
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Permutation Let S be a set. A permutation of S is a one-to-one
function 7 : S — S that maps S onto S. If S = {a1,xs,..., ¢, } isafi-
nite set, then we may denote a permutation w of S by {y1,¥2,...,Un},
where y, = m(2g).

Pigeonhole Principle If n objects are distributed among k < n
boxes, some box contains at least two objects.
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