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FOREWORD

It has been a real pleasure for the Australian Mathematics Trust to
be associated with the publication of this second book on the national
Chinese Olympiads, adding further to the amount of problems material
available through our enrichment series.

It is the policy of the Trust, through this series, to publish high quality
problems from national and international competitions, and clearly this
material from China, one of the consistently strong countries through
its few years in the International Mathematical Olympiad, will add a
richness to the English speaking literature which did not previously exist.

The book was made particularly possible after an agreement between the
Chiu Chang Publishers and us, which will also give Chiu Chang the right
to publish our International Mathematics Tournament of Towns books
in Chinese. This book is based on the personal translations from Chinese
by Andy Liu.

It has also been a particular pleasure for me to work again with Andy
Liu. On a personal basis, he had collaborated with me closely in the
publication of our Tournament of Towns books and continues to do so
with my colleague Andrei Storozhev.

In conclusion, publication of this second book has been a very happy
experience.

Peter Taylor
Canberra
12 May 2004



PREFACE

This is a continuation of the earlier volume titled Chinese Mathematics
Competitions and Olympiads 1981 -- 1993. The source material comes
from the Journal of High School Mathematics, published by the Tianjin
Normal University.

As in the earlier volume, I wish to acknowledge the direct and indirect
contributions from CHEUNG Pak-Hong, SUN Wen-Hsien, QIU Zong-
Hu, Peter TAYLOR and Murray KLAMKIN.

Andy Liu
Edmonton
2004

Notes to the Reader

All problems in Papers II and the Olympiad Papers require full solutions.
From 1994/95 to 1996/97, Paper I did not have Section 3 (Questions
requiring Full Solutions).

Here are a few notations and terminology that may be somewhat unfamil-
iar. The traditional greatest integer function [z], denoting the greatest
integer less than or equal to the real number z, is modernized into the
floor function |z| which has the same meaning. We use the notation
[P] to denote the area of a polygon P. The symbols Z, R and C denote
respectively the sets of integers, real numbers and complex numbers. By
a lattice point is meant a point all coordinates of which are integers.






THE PROBLEMS

1993/94
Paper 1.

Section 1. Questions with Multiple Choices.
1. What is the number of pairs (z,y) of real numbers satisfying

|tanmy| +sin7z =0 and 224 4% <27

(a) 4 (b) 5 (c) 8 d)9
2. Let a and b be real numbers and let
f(z) =asinz + bz + 4.

If
F(loglogy 10) = 5,
what is the value of f(loglog3)?
(a) -5 (b) =3 (c) 3 (d) dependent on a and b

3. If A # B, then (A,B) # (B,A). What is the number of pairs
(A, B) of sets such that

AUB ={a1,az,a3}?

(a) 8 (b) 9 (c) 26 (d) 27
4. Let a be a variable parameter. What is the minimum length of the
chord of the curve

(x — arcsina)(zx — arccosa) + (y — arcsina)(y + arccosa) = 0

along the line z = 77

(a) % (OR OF (d) @
5. The length of the altitude on the side AC of triangle ABC is equal

to AB — BC. What is the value of

C—-A C+A

sin + cos ——— ?

(a)1 (b) 3 (© 3 (d) -1



THE PROBLEMS

6. Let m and n be non-zero real numbers and z be a complex variable.
Which of the following diagrams can represent the graphs of |z +
ni| + |z —mi| = n and |z +ni| — |z — mi| = —m drawn on the same
complex plane?

Ol

Section 2. Questions requiring Answers Only.

1. If
1=z + A +d)z+ (1+iA)=0

has two imaginary roots, what is the range of the real number A?

2. Let z and y be real numbers such that 422 — 5zy + 4y? = 5. What
is the sum of the reciprocals of the maximum and the minimum
values of % + y2?

3. For which complex number z do we have arg(z? — 4) = 5 and

arg(z? +4) = 27
4. What are the last two digits of the greatest integer less than
1093
1051 +3°
5. Let g > z1 > x2 > z3 be any positive real numbers. What is the

largest value of the real number k such that

logzo 1993 + logz1 1993 + log=z 1993 > klog=o 19937
=1 =2 =3 =3

6. The three-digit numbers from 100 to 999 are printed on 900 cards,
each on a different card. When inverted, the digits 0, 1 and 8
remain unchanged, the digits 6 and 9 turn into each other, while
the remaining digits are unintelligible. How many pairs of cards
are identical up to inversion?

Section 3. Questions requiring Full Solutions.

1. In the tetrahedron SABC, SA, SB and SC are perpendicular to
one another. M is the centroid of triangle ABC and D is the
midpoint of AB. Let DD’ be a line parallel to SC.

1993/94 5

(a) Prove that DD’ intersects SM at some point O.
(b) Prove that O is the circumcentre of SABC.

. Let a and b be real numbers such that 0 < a < b. A variable line

£ passes through the fixed point (a,0) and a variable line m passes
through the fixed point (b, 0), such that they intersect the parabela
y? = z again at four distinct concyclic points. Determine the locus
of the point of intersection of £ and m.

. The sequence {ay} of real numbers is defined by ag = a; = 1 and

forn > 2,
VanGn—2 — \/Cn—10n_2 = 20y, 1.
Find a formula for a,, independent of ag, a1, ..., Gp_1.

Paper I1

. Only one interior angle of the convex quadrilateral ABCD is ob-

tuse. ABCD is to be partitioned into n obtuse triangles whose
vertices other than A, B, C and D are inside ABCD. Prove that
this is possible if and only if n > 4.

- None of the subsets Ay, As, ..., A, of an n-element set contains

another. Prove that

m

(a)Zﬁsn

|44

®) Z (1) 2™

. A line m passes through the centre of a circle. A4, B and C are

three points outside the circle. They lie on a line £ perpendicular
to m, on the same side of m with A farthest from m and C nearest
to it. AP, BQ and CR are tangents to the circle.

(a) Prove that AB-CR+ BC - AP = CA - BQ if £ is tangent to
the circle.

(b) Prove that AB-CR+ BC - AP < CA- BQ if £ intersects the
circle in two points.

(c) Prove that AB-CR+ BC- AP > CA- BQ if £ is disjoint from
the circle.



THE PROBLEMS

Olympiad Paper 1

. Let ABCD be a quadrilateral with AB parallel to DC. Let E be
a point on AB and F a point on CD. The segments AF and DE
intersect at G, while the segments BF and C'E intersect at H.

(a) Prove that the area of EGFH is at most one-quarter that of
ABCD.

(b) Is this conclusion still valid if ABCD is an arbitrary convex
quadrilateral?

. There are at least 4 smarties randomly distributed among at least
4 boxes. In each move, remove 1 smarty from each of 2 boxes and
put both of them into a third box. Is it always possible to have all
the smarties in 1 box?

. Determine all functions f : [1,00) — [1, 00) such that for all z > 1,
fz) <2(z+1)

and

fe+ 1) = (@) - D).
Olympiad Paper II
. The coefficients of the n-th degree polynomial
f(2)=co® +az" ez P4t en 1zt e

are complex numbers. Prove that there exists a complex number
2o such that |zp| < 1 while |f(z0)| > |co| + lcnl-

2 () () - ()

for any positive integer 7.

. Prove that

. Let p be a prime. Determine the number of right triangles such that
the incentre is (0,0), the vertex of the right angle is (1994p, 7-1994p),
and the other two vertices have integer coordinates.

199495 7

1994/95
Paper 1.

Section 1. Questions with Multiple Choices.

1. Let a, b and c be real numbers. What is a necessary and sufficient

condition for asinz + bcosz + ¢ > 0 where z is any real number?
(8)a=b=0,c>0 (b) Va2 +b? =¢ () Va2 +b2<ec
(d) Va2 +v2>0

. Let a, b and ¢ be complex numbers. Consider the following two

statements.

(P) If a® + b > ¢2, then a® + b? — % > 0.

(Q) If a® + b2 — ¢ > 0, then a? + b2 > ¢2.

‘Which of them is or are correct?

(a) Both are correct. (b) Only P is correct. (c) Neither is correct.
(d) Only Q is correct.

. The sequence {an} is defined by a1 = 9 and 3an,1 + a, = 4 for

n > 1. Let S,, denote the sum of the first n terms. What is the
smallest positive integer n such that

1
Spn—n—-6l<— 7
180 —n =6l < 135
(a) 5 (b) 6 (7 (d) 8
. Let
r = (sin a)logb sin
y = (COS Ol) log cosa
and z = (sinq)8 s

where 0 < b < land 0 < a < %- What are the relative sizes of
z, y and 27

(@r<z<y My<z<z (z<z<y Daz<y<z

. What is the range of the dihedral angle between adjacent lateral

faces of a right pyramid whose base is a regular n-gon?

O(B) (e a6

@ (52, ety

n n



THE PROBLEMS

6. Let a and b be distinct positive numbers. What is the graph of

letyl o=yl _ 5
2a 2b

(a) triangle (b) square (c) non-square rectangle

(d) non-square rhombus

Section 2. Questions requiring Answers Only.

1. Let P be the point (—1,1) and Q be the point (2,2). What is the
range of m if the line z + my + m = 0 intersects the extension of
PQ?

2. Let 7% <z< Tand -7 <y< 2. Letabea real number such
that
2% +sinz —2a =0
and

49 +siny cosy +a =0.
What is the value of cos(z + 2y) in terms of a?

3. Let A be the set
(@ )lle— 3 + (y= 47 < (g)}

and B be the set
-t w57 > (3))

How many lattice points does A N B contain?
4. Let 0 < 0 < w. What is the maximum value of sin (1 + cos)?

5. The angle between a plane and each of the 12 edges of a cube is o
What is the value of sina?

6. Each of the numbers a1, as,.-.,ags is =1. What is the smallest
positive value of the sum of a;a;, 1 <1< j < 957

1994/95 9

Paper II
1. Let z; and 22 be complex numbers such that
22 — 4z, = 16 + 20i.
Suppose the roots « and 3 of
.7:2+z1:1:+22+m=0
for some complex number m satisfy
la — B8] = 2v7.
(a) Determine the maximum value of |m)|.
(b) Determine the minimum value of |m).

2. If all positive integers relatively prime to 105 are arranged in as-
cending order, determine the 1000-th term.

3. Let O and I be the circumcentre and the incentre of triangle ABC
respectively. If /B = 60°, /A < /C and the exterior bisector of
£A meets the circumcircle again at E, prove that

(a) IO = AE;

(b) 2R < IO+TA+IC < (1++/3)R, where R is the circumradius
of ABC.

4. On the plane are 1994 points, no three collinear. They are to be
partitioned into 83 sets, each with at least three points. Three
points in the same set form a triangle.

(a) What is the maximum number of triangles?

(b) In a partition which yields the maximum number of triangles,
prove that each segment joining two points in the same set
can be painted in one of four colours such that no triangles
have three sides with the same colour.
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Olympiad Paper I

. Let n > 3 be an integer and let a1, a2, ...,an, b1,bs, ..., by, be real

numbers such that
» a1 taz+--+an=0b+ba+--+by,
0<a;=az,0<b <bgandfor1 <i<n-—2,
A + Gip1 = Qit2

and
b; +biy1 < biga.

Prove that
an—1+an < bn—l + bn-

. Let f be a function from the set of positive integers to itself such

that f(1) = 1 and, for each positive integer n, f(2n) < 6f(n) and
3f(n)f(2n+1) = f2n)(1+ 3f(n)).
Determine all pairs (k, £) such that
J(k)+ £(€) =293

and k < £.

. Determine the minimum value of

10 10 10
SN " Jk(m + y — 100)(3z — 6y — 365)(19z + 95y — 95k)|
i=1 j=1 k=1

where z and y range over all real numbers.

Olympiad Paper II

. The radii of four spheres are 2, 2, 3 and 3 rcspectively}. Each

is externally tangent to the three others. If a smaller sphere is
tangent to each of these 4 spheres, determine the radius of the
smaller sphere.

. Let a1, as, --., a1 be ten distinct positive integers whose sum is

1995. Determine the minimum value of

a10z2 + az2a3 + - - - + agaig + aoai.

1994/95 11

3. Let n > 1 be an odd integer. Suppose
Xo = (x§0)71g0)7- .. aa:SLO)) = (170107 s 7071)'

For 1 < k <m, let

2®

i

A

; i+l
1 el 2t

{ 0 2l =k Y,

We take ms:ll) = wgkil). Let

X = (@, a®)

n

If the positive integer m satisfies X,,, = Xp, prove that m is a
multiple of n.
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THE PROBLEMS

1995 /96
Paper 1.

Section 1. Questions with Multiple Choices.

1.

In the arithmetic progression {a,}, a1 > 0 and 3as = 5a13. Let
S, be the sum of the first n terms. For which value of n is S,
maximum?

(a) 10 (b) 11 () 20 (d) 21

. The complex numbers 21, 22, . . . , 220 represent the vertices of a reg-

ular 20-gon inscribed in the unit circle of the complex plane. What

is the number of distinct points represented by the complex num-

bers 21995 21995 . 238957

(a) 4 (b) 5 (c) 10 () 20

. A is said to be no weaker than B if A is either taller or heavier

than B. Among 100 people, if someone is no weaker than any of
the others, then this person is said to be strong. Of the 100 people,
at most how many can be strong?

(a) 1 (b) 2 (c) 50 (d) 100

. Let n be a positive integer. If |z — 2n| = k+v/z has two unequal real

roots in the interval (2n — 1,2n + 1], what is the range of k7

1 < 1

CIf

1
k>0 b) 0 <k < —— c <k<
@k>0 B 0<k<mms 5o <Fs g
(d) none of these
w = logg,cosl,
z = logg,,tanl,
Yy = IOg(:nslSinl
and 2z = log.,tanl,

what are the relative sizes of w, z, y and 2?7

(aAlw<y<z<z by<z<w<z z<z<y<w

dz<z<w<y

1995/96 13

6. Let ABC be an equilateral triangle with centre O. P is a point

such that OP is perpendicular to the plane ABC. A variable plane
through O intersects the rays PA, PB and PC at @, R and S
respectively. What can be said about

1 i 1 n 1 N

PQ PR PSS
(a) It has a maximum but no minimum.
(b) It has a minimum but no maximum.

(¢) It has both maximum and minimum which are distinct.

(d) It is constant.

Section 2. Questions requiring Answers Only.

1.

Let o and 8 be conjugate complex numbers such that 5= Is a real
number and |a — 3] = 2+/3. What is the value of |a|?

. What is the ratio of the volume of a sphere to the maximum volume

of a cone inscribed in the sphere?

. What is the number of real roots of

(log2)? — |logz| — 2 =07

. How many lattice points are inside the region which is defined by

y <3z, y>%and z+y <1007
3

. In how many ways can the vertices of a square pyramid be painted

in 5 colours if adjacent vertices must have different colours?

. Ais asubset of {1,2,...,1995} such that whenever z is in A, then

15z is not. What is the maximum number of elements in A?

Paper 11

. The equation

2(2sinf — cos§ + 3)z® — (8sinh +cosfd + 1)y =0

represents a family of parabolas with parameter 8. Determine the
maximum length of the chord along the line y = 2z of a parabola
in the family.
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. Determine all real numbers p such that the three roots of

52% —5(p+ 1)a® + (7Tlp— D)z — (66p— 1) = 0

are positive integers.

. A circle is tangent to the sides AB, BC, CD and DA of a rhombus

ABCD at E, F, G and H respectively. M, N, P and @ are points
on AB, BC, CD and DA respectively such that M N is tangent
to the arc EF and PQ is tangent to the arc GH. Prove that MQ
is parallel to NP.

. Each point of the plane is painted in one of two colours. Prove that

there exist two similar triangles such that the lengths of the sides
of one are 1995 times the lengths of the corresponding sides of the
other, and all three vertices of each triangle have the same colour.

Olympiad Paper I

. Let H be the orthocentre of an acute triangle ABC. From A draw

two tangent lines AP and AQ to the circle whose diameter is BC,
the points of tangency being P and @ respectively. Prove that
P, H and Q are collinear.

. Let § = {1,2,...,50}. Determine the smallest positive integer k

such that for any k-element subset of S, there are two different
elements a and b for which a + b divides ab.

. A function f from the set of real numbers to itself satisfies

F@® +9%) = (@ +9)((f(@)" = F@) () + (FW)?),

where z and y are arbitrary real numbers. Prove that for any real
number x,
£(19962) = 1996 f ().

Olympiad Paper I1

. Eight singers take part in a festival. The organizer wants to plan

a number of concerts with four singers performing in each. The
number of concerts in which a pair of singers performs together
is the same for every pair. Determine the minimum number of
concerts.

. Let n be a positive integer. For 1 < 4 < n, let x; be a positive real

number, where 21 + 2 + - - - + 2, = 1. Take o = 0. Prove that

T Vitzo+zi -y o+ T

<

NIE]

1995/96 15

3. In triangle ABC, /C =90°, LA = 30° and BC = 1. Determine
the minimum length of the longest sides of all triangles whose ver-
tices lie respectively on the three sides of triangle ABC.
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1996/97
Paper 1.

Section 1. Questions with Multiple Choices.
1. What is the convex hull of the points of intersection of the circle
2+ (y-1)%=1
and the ellipse
922 + (y+ 1) =97
(a) segment (b) non-equilateral triangle (c) equilateral triangle
(d) quadrilateral

2. The geometric progression {a,} has first term a; = 1536 and com-
mon ratio —%‘ ‘What is the value of n for which the product of the
first » terms is maximum?

(a) 9 (b) 11 () 12 () 13

3. For how many prime numbers p does there exist a positive integer
n such that /p +n+ /7 is an integer?

(a)0 (b) 1 (¢) infinite (d) greater than 1 but finite

4. Let
ap = cos(sinwz),
az = sin(cosmz),
az = cos(m(z+ 1)),

where f% < z < 0. What are the relative sizes of a1, az and az?
(a) a3 < az < a1 (b) a1 < a3 < a2 (¢) ag < a1 < as
(d) az < az < a

5. On the interval [1,2], the functions f(z) = 22 + pz +q and g(z) =

z+ I% take the same minimum value at the same point. What is

the maximum value of f(z) on this interval?
(a)4+192+¥4 (b)4-3V3+V4  (91-4v2+ V4

(d) none of these

1996,/97 17

6. A hollow inverted right circular cone has height 6 4-2v/2. A sphere

of radius 2 is resting at the bottom inside the cone. A sphere of
radius 3 is tangent to the first sphere, and to the lateral and top
faces of the cone. How many more spheres of radius 3 can fit inside
the cone?

(a)1 (b) 2 ()3 (d) 4

Section 2. Questions requiring Answers Only.

1. What is the number of non-empty subsets of

1
{zl -1 <log1 10 < 5 integer}?

2. The points represented by the complex numbers z; and zs lie on a

circle in the complex plane, with centre represented by ¢ and radius
1. The real part of Z72; is 0 and argz = %. What is the value of
297

3. The polar curve r = 1+ cos 8 is rotated once around the point with

polar coordinates [2,0]. What is the area of the region it sweeps
over?

4. A pyramid has an equilateral triangle as base and three lateral

edges of equal length. Two congruent copies are glued together
along their common base to produce a hexahedron in which every
dihedral angle between two adjacent faces is the same. If the short-
est edge of the hexahedron is 2, what is the greatest distance be-
tween two of its vertices?

5. Each face of a cube is to be painted with one of 6 colours such that

every two adjacent faces have different colours. In how many ways
can these faces be painted?

6. How many lattice points lie on the circle with centre (199,0) and

radius 1997

Paper I1

1. The sum of the first n terms of the sequence {ax} is 2a, — 1 for

all n > 1. The sequence {b} is defined by by = 3 and for k > 1,
bi+1 = a + bi. Determine the sum of the first n terms of {b,}.

2. Determine the range of values of the real number a such that

1
(z 4+ 3+ 2sinfcosd)? + (z + asind + acosb)? > 3

for any real numbers x and § where 0 < 0 < 3.
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. The excircle of triangle ABC opposite C is tangent to the line BC

at F and the line CA at G. The excircle of ABC opposite B is
tangent to the line BC at F' and the line AB at H. If the lines EG
and FH intersect at P, prove that AP is perpendicular to BC.

. There are n > 6 people at a party. Each is a mutual acquaintance

of at least | Z| others. Among any | %] of them, either two of them
are mutual acquaintances, or two of the remaining n — |§] are
mutual acquaintances. Prove that there are three people at the
party such that each pair among them are mutual acquaintances.

Olympiad Paper 1

. Let 1,2, . .., T1997 be real numbers such that —% < z; < /3 for

1 <4 <1997 and
Ty +To 4+ Tio97 = *318\/?_)
Determine the maximum value of

12, 12 12
1"+ @+ Ziggr

. A1B1C,D; is any convex quadrilateral. P is a point inside such

that any line joining P to a vertex forms an acute angle with each of
the two sides meeting at that vertex. Suppose Ax—1, Br—1, Cr—1
and Dj_; have been defined. Let Ay, B, Cr and Dy be the
respective reflections of P across Ax—1Bk—1, Br—1Cr—1, Ch—1Dr—1
and Dk_lAkfl.

(a) Which of 4;B;CsD;, 1 < i < 12, is necessarily similar to
A1997B1997C1097 D19977

(b) Which of 4;B;C;D;, 1 < i < 12, is necessarily cyclic if
A1997 B1o97C1097 D1997 187

. Prove that there exist infintely many positive integers n for which

the integers 1,2,...,3n can be arranged in a 3 x n array such that
all rows have the same sum, all columns have the same sum, and
both sums are divisible by 6. ¢
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Olympiad Paper IT

1. ABCD is a quadrilateral inscribed in a circle. The extensions of

AB and DC meet at P, and the extensions of AD and BC meet at
Q. The tangents from @Q to the circle touch it at E and F. Prove
that P, E and F are collinear.

. Let A={0,1,...,16}. For any mapping f: A — A, define

@) = f(z)
and for any n > 1,
F0 (@) = F(F) (@)

Interpret f(™(17) as f(™(0). Suppose that for a bijection f : A —
A, there exists a positive integer M such that

MG +1) - fME@) =41 (mod 17)
for 0 <4 < 16 and for m < M, we have
FGE+1) — f(G) £ +1 (mod 17)

for 0 < ¢ < 16. Determine the maximum value of M taken over all
bijections f : A — A with the above properties.

. Let {a1, a2, ...} be a sequence of non-negative numbers such that

Untm < G + G, for all n and m.

Prove that for all n > m,

n
an <ma + (E 71) [



THE PROBLEMS

1997/98

Paper 1.

Section 1. Questions with Multiple Choices.

1. The sequence {z,} is such that z1 = a, 2 =b and for n > 2,

In+1 = Tpn — Tn—1-

Let S1gp denote the sum of the first 100 terms. Which of the
following statements is correct?

(a) 2100 = —a and S100 =2b—a
(b) z100 = —b and Sy =2b—a
(c) z100 = —band Sigo=b—a
(d) z100 = —a and S1po =b—a

. Let X be a positive number. FE is a point on the side AB, and F' is
a point on the side CD, of a regular tetrahedron ABCD such that

AE _CF _
EB  FD
Let f(A) denote the sum of the non-obtuse angle beween EF' and

AC and the angle between EF and BD. How does f()) behave
on (0,00)?

(a) increasing (b) decreasing (¢) constant
(d) increasing on (0,1) and decreasing on (1,00)

. How many finite arithmetic progressions of length at least 3 are
there, with the first term and the common difference being positive
integers, such that the sum of all the terms is 97%?

(a) 2 (b)3 (c) 4 (d) 5
. What is the range of m if

m(z? + % + 2y +1) = (z — 2y + 3)?
is an ellipse?

(a) (0,1) (b) (1,00) (©) (0:5) (d) (5,00)
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5. Let
f@) = 2 —ma,
a arcs'nl
= in =
3
5
= arctan —
Ié) e an4,

= arcco _L
Y = S 3
5
and ¢ arccot (71>

What are the relative sizes of f(c), f(8), f(v) and f(6)?
(@) fle) > f(B) > FO) > f(v)  (b) fla) > f(6) > f(B) > f(v)
(c) FO0) > fle) > f(B) > f(v)  (d) F(8) > fla) > f(v) > f(B)

6. Three mutually skew lines are given in space. How many lines can
intersect all of them?

(a) 0 (b) 1 (c) infinite (d) greater than 1 but finite
Section 2. Questions requiring Answers Only.
1. Let # and y be real numbers such that
(x—1)%+1997(z — 1) = ~1
and
(y—1)*+1997(y — 1) = 1.
What is the value of z + y?

2. A line through the right focus of the hyperbola

2
2_ Y
2 9
T
intersects the hyperbola at A and B. If the number of such lines

for which AB = A is exactly 3, what is the value of A?
3. Let z be a complex number such that

1
22+—‘:1.
z

What is the range of arg 2?7
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4. ABC is a right isosceles triangle with hypotenuse AB = 2. SABC
is a tetrahedron with circumcentre O. What is the distance from
O to the plane ABC if SA=SB =5C=2?

5. A frog starts at vertex A of a regular hexagon ABCDEF' and hops
from vertex to adjacent vertex. It stops either when it reaches
vertex D or when it has made five hops, whichever is sooner. What
is the number of different sequences of hops?

6. Let z, y and 2 be positive numbers. Let M be the largest of
log z + log (i + 1) s
yz
1
log o + log(zyz + 1)
1
and logy + log (— + 1) .
TyYz
What is the minimum value of M?
Section 3. Questions requiring Full Solutions.

1. Let z, y and z be real numbers such that z > y > z > {5 and
ty+z=o
z Zz=—.
Y 2

(a) Determine the maximum value of cosz siny cosz.

(b) Determine the minimum value of cosz sin y cos z.

2. (a) Prove that not all of the vertices of an equilateral triangle can
lie on the same branch of the hyperbola zy = 1.

(b) If one vertex of an equilateral triangle is at (—1,—1) and the
other two lie on the branch of zy = 1 for which z > 0, deter-
mine the coordinates of the other two vertices.

3. Let ay, a2, as, a4 and as be non-zero complex numbers such that
Gz a3 G4 _ G5
a1 a2 a3 a4
and

1 1 1 1 1 )
at+aztaztastas=4—+—+—+—+—]=5,
aj az as a4 as

where S is a real number such that |S| < 2.

Prove that the points on the complex plane representing a1, a2, as,
a4 and a5 are concyclic.
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Paper II

1. Two circles with unequal radii intersect at M and N. They are
inside a circle with centre O and tangent to it at S and 7. Prove
that OM is perpendicular to M N if and only if S, N and T are

collinear.
2. What conditions must the real numbers xg,21,...,z, satisfy to
guarantee the existence of real numbers yo,¥1, .. .,Yn such that

n
(@0 +iy0)® = > (wx +iyk)’?
k=1

3. Each entry of a 100 x 25 array is a non-negative real number such
that the sum of the 25 numbers in each row is at most 1. The
100 numbers in each column are rearranged from top to bottom in
descending order. Determine the smallest value of k such that the
sum of the 25 numbers in each row from the k-th row on down will
always be at most 1.

Olympiad Paper I

1. Let ABC be a non-obtuse triangle with circumcentre O and incen-
tre I. If AB > AC, /B = 45° and

V201 = AB — AC,
determine sin A.

2. Let n be an integer greater than 1. Do there always exist 2n distinct
positive integers ay,aq,...,an, b1,bs,. .., b, such that

Gtagttan=brtbt- 40,

and

n
ai—b,- 1

e !

n >i:1ai+bi>n 1998

3. Let S = {1,2,...,98}. Determine the smallest positive integer n
for which any subset of S of size n contains 10 elements such that no
matter how they are divided into two subsets of size 5, one subset
contains an element relatively prime to each of the other four, while
the other subset contains an element not relatively prime to any of
the other four.
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Olympiad Paper IT
1. Determine all integers n > 3 such that

(6)+()+()+C)

divides 22000,

2. Let D be a point inside an acute triangle ABC. Characterize geo-

metrically the set of possible locations of the point D if it satisfies

DA-DB-AB+DB-DC-BC+DC-DA-CA=AB-BC-CA.

3. Let n > 2 be an integer. Let z1, z2, ..., Z, be real numbers such

that
n n—1 ~
wa + inlﬂiﬂ =1
i=1 i1

For any fixed k, 1 < k < n, determine the maximum value of |zg].

e
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1998,/99
Paper 1.

Section 1. Questions with Multiple Choices.
1. Let ¢ > 1 and b > 1 be such that
log(a + b) = loga + logb.
What can be said about the value of

log(a — 1) + log(b —1)?

(a) equal to log2 (b) equal to 1 (c) equal to 0
(d) dependent on a and b

2. Let A= {z]2a+ 1 <z < 3a—5} and B = {z(3 < z < 22}. What
is the set of values of a for which A # ) and A C AN B?
(@) {al<a<9} () {al6<a<9} (o) {ea<9} ()0

3. Let S, be the sum of the first n terms of a geometric progression.
If S10 = 10 and S3o = 70, what is the set of values of Sy0?

(a) {400, —50} (b) {150, —200} (c) {—200} (d) {150}
4. Consider the following two statements.

(P) The inequality
a1$2 +biz+c >0

has the same solution as the inequality
a2x2 + box + o > 0.

@ 2=p-2

az by e
What is the relationship between P and Q7
(a) Q is a necessary and sufficient condition for P.
(b) Q is a sufficient condition for P, but not necessary.
(c) Q is a necessary condition for P, but not sufficient.

(d) Q is neither necessary nor sufficient for P.
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5. Let I, F' and G be the midpoints of the sides AB, BC and CD,

respectively, of a regular tetrahedron ABC'D. What is the dihedral
angle between the planes FFG and CFG?

(a) arcsin ?6 (b) T 1 arccos —\/E

2 3
V2

d) 7w — ve
(d) m — arccot 5

(c) g — arctan /2

. The 8 vertices, the midpoints of the 12 edges, the centres of the

6 faces plus the centre of the cube form a set of 27 points. How
many subsets consist of 3 collinear points?

(a) 57 (b) 49 (c) 43 (d) 37

Section 2. Questions requiring Answers Only.

1.

Let f(x) be an even periodic function with period 2. On the interval
[0,1], f(2) = &™%. What are the relative sizes of f(2), f(12)
and f(1%)?

. The points P,  and R are represented by the complex numbers

z, (14 1)z and 2%, where z = cosf + isinf with 0 < § < 7.
When they are not collinear, let S be the fourth vertex of the
parallelogram PQSR. What is the maximum distance between S
and the origin of the complex plane?

. How many subsets of size 3 of {0,1,2,3,4,5,6,7,8,9} have even

sums which are at least 10?7

. What is the maximum number of terms in an arithmetic progres-

sion with common difference 4 such that the square of the first term
plus the sum of all the other terms is at most 1007

. What is the range of a if the ellipse 22 + 4(y — a)? = 4 intersects

the parabola 22 = 2y?

. In triangle ABC, /C = 90°, /B = 30° and AC = 2. M is the

midpoint of AB. The triangle is folded along C M until the distance
between A and B is 2¢/2. What is the volume of the tetrahedron
ABCM?

Section 3. Questions requiring Full Solutions.

1.

Let 6 be a real number such that £ < 6 < . If
1—sinf —icosf = r(cos ¢ + ising)

for real numbers r and ¢ such that 0 < ¢ < 27, determine ¢.
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2. For any real number a < 0, there exists a largest positive real

number £(a) such that |az? + 8z + 3| < 5 for all real numbers »
satisfying 0 < z < £(a).

(a) Determine the maximum value of £(a).
(b) Determine a for which £(a) is maximum.

. Let p be a positive number. Let a and b be real numbers such

that ab # 0 and b% # 2pa. M is a variable point on the parabola
y? = 2pz. The lines joining M to A(a,b) and B(—a,0) intersect
the parabola again at M7 and Mj respectively.
(a) Prove that as long as M1 and M, exist and do not coincide,
then the line M7 My passes through a fixed point.
(b) Determine the coordinates of this point.

Paper I1

. The circumcentre and incentre of triangle ABC are O and I respec-

tively. The line OI cuts the side BC at D, and AD is perpendicular
to BC. Prove that the circumradius of ABC' is equal to the radius
of the excircle of ABC opposite A.

. Let a1, az, ..., an, b1, b2, ..., by be real numbers in [1,2] such
n

that zn:af = be
i=1 i=1

n 3 n
a; 2
(a) Prove that Zl o < 0 Z a;.

i=1
(b) Determine a necessary and sufficient condition for equality to
hold.

. For positive integers a and n, let @ = gn+r where ¢ and r are non-

negative integers with 7 <n. Define F,(a) = g + r. Determine the
largest positive integer A such that for all positive integers a < 4,
Frog (Frg (Fry (Frg (Fry (Fry (a)))))) = 1 for some positive integers
ni, N2, N3, N4, Ns and ng.

Olympiad Paper I

. In an acute triangle ABC, /C > /B. D is a point on BC such

that ZADB is obtuse. H is the orthocentre of triangle BAD. F'
is a point inside triangle ABC and on the circumcircle of triangle
BAD. Prove that F is the orthocentre of triangle ABC if and only
if CF is parallel to HD and H is on the circumcircle of triangle
ABC.
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- Let a be a fixed real number. A sequence of polynomials {f,(x)}

is defined by fo(z) =1 and forn=0,1,2,...,
for1(z) =z fn(z) + fn(az).

(a) Prove that fn(z) = 2™ fo(L) for n=10,1,2,....
(b) Find an explicit expression for f,(z).

. A space city consists of 99 space stations. Every two stations are

connected by a space highway. All highways are one-way except for
99 which are two-way. A group is defined as a set of four stations
such that we can travel from any one to any other of the four along
the highways. Determine the maximum number of groups in a
space city.

Olympiad Paper II

- For any integer m, prove that 2m can be expressed in the form

a'® + 5% 4 k- 2199 where a and b are odd integers and k is a
non-negative integer.

- Let f(z) = 2 4 aa? + bz + ¢ be any cubic polynomial.

(a) Determine the maximum value of \ if f(z) > Mz —a)? for all
z > 0 whenever f(z) has three non-negative roots.

(b) Determine all  for which f(z) = A(z — a)® for the maximum
value of A.

- Determine the number of ways of constructing a 4 x 4 x 4 block from

64 unit cubes, exactly 16 of which are red, so that there is exactly
one red cube within each 1 x 1 x 4 subblock in any orientation.
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1999/00
Paper I.

Section 1. Questions with Multiple Choices.

1. Let {a,} be a geometric progression with common ratio ¢ # 1, and

let
bp = a3n—2 + @31 + a3n

for n > 1. What kind of sequence is {b,}?

(a) arithmetic progression

(b) geometric progression with common ratio ¢
(¢) geometric progression with common ratio ¢

(d) neither arithemtic nor geometric progression

. How many lattice points are contained in the region defined by

(Il =1 + Iyl = 1)* < 2?

(2) 16 (b) 17 (c) 18 (d) 25

LI

(log; 3)” — (logs 3)° > (logy 3)™¥ — (logs 3)™,
what can be said about x and y?

(@) z+y=0 b)z+y<0 (z<y (dy<z

. Consider the following two statements.

(P) The planes « and 3 intersect along the line c¢. The lines a on
« and b on [ are skew lines. Then c can intersect at most one
of a and b.

(Q) There do not exist infintely many lines which are pairwise
skew.

‘Which of them is or are true?

(a) only P (b) only Q (c) both (d) neither

. In a table-tennis round-robin tournament, three participants with-

drew after having played 2 games each. If 50 games in all were
played, how many games were played among these three partici-
pants before their withdrawal?

(a)0 (b) 1 (c) 2 (d)3
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6. Let A be the point (1,2). Let B and C be the points of intersection

of the parabola y? = 4z with a variable line through the point
(5,—2). What kind of triangle is ABC?

(a) acute  (b) obtuse (c) right (d) not uniquely determined

Section 2. Questions requiring Answers Only.

1. How many positive integers not exceeding 2000 are the sums of at

least 60 consecutive positive integers?

2. If § = arctan %, what is the value of

127

c0s260 + isin 26

?
23941

3. In triangle ABC, if

9BC? + 9CA? — 19AB? =0,
what is the value of

cot C
cot A+ cot B

4. P is a point on the hyperbola

2 2
x
Al
16 9
such that its distance to the right directrix is the average of its
distances to the two foci. What is the z-coordinate of P?

5. How many subsets {a,b, ¢} of {—3,—2,-1,0,1,2,3} are there such

that the line az +by+ ¢ = 0 makes an acute angle with the positive
z-axis?

6. ABC is an equilateral triangle. In the tetrahedron SABC with

SA = 2+/3, the projection H of A onto the plane SBC is the
orthocentre of triangle SBC. If the dihedral angle between the
planes HAB and ABC is 30°, what is the volume of SABC?

Section 3. Questions requiring Full Solutions.

1. Determine the range of the real number 6 such that for 0<z <1,

#?cosf — z(1 — z) + (1 — z)?sind > 0.
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2. B is a variable point on the ellipse
2 2
:l}_ + y_ =1
16 25
A is the point (—2,2) and F is the focus of the ellipse whose z-
coordinate is negative. Determine the coordinates of B if AB +
%BF is minimum.
3. Let n be a positive integer and M be a positive real number. Among
all arithmetic progressions {a;} satisfying

2, 2
ajta, 1 <M,
determine the maximum value of
Ant1 + Apya+ o+ Qong1-

Paper 11

1. The diagonal AC of the quadrilateral ABCD bisects ZBAD. E is
a point on the side CD. BE cuts AC at F, and the line DF' cuts
BC at G. Prove that ZCAE = LCAG.

2. Let a, b and ¢ be real numbers. Let 21, 22 and z3 be complex
numbers such that [21| = |z2| = |23 = 1 and
a2, 5
z z3 Z1
Determine all possible values of |az1 + bzz + czsl.

3. Let n be a positive integer. We wish to construct a set of tokens,
the weight of each being an integral number of grams, such that
any object whose weight is an integral number of grams up to n
can be balanced by a subset of the tokens. Some of the tokens may
be placed in the same pan as the object.

(a) Determine in terms of n the minimum value of the number of
tokens.
(b) For what values of n is the minimal set of tokens unique?

Olympiad Paper I

1. In triangle ABC, a < b < ¢ where a = BC, b= CA and c = AB.
The circumradius is R and the inradius is 7. What can be said
about /Cifa+b—2R—2ris

(a) positive;
(b) zero;
(c) negative?
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. The sequence {a,} is defined by a1 =0, az =1 and for n > 3,

n(n—1) n n
—g—an-z+ 1™ - 5).

n n
an +2(1)an_1 +3<2>anf2
n n
+<--+(n*1)<n_2)a2 +n(n_1)a1.

n
an = §an—1 +

Simplify

. In a table-tennis tournament, all games are between pairs of par-

ticipants. Each participant is a member of at most two pairs. No
participant ever plays against another if the two form a pair. Two
pairs play exactly once against each other as long as the preceding
rule is not violated. A set {ai,as,...,ar} is given, where k is a
positive integer and 0 < a1 < as < --- < aj are multiples of 6.

What is the minimum number of participants so that at the end of
the tournament, the number of games played by each participant
is a; for some 4, and for each 4, at least one participant has played
exactly a; games?

Olympiad Paper II

. Let (a1, az,...,a,) be any permutation of 1,2, ..., n. Fork = 1,2,

...,n, define by = max{a; : 1 < i < k}. Determine the average
value of the first term a; of all permutations for which the sequence
{b1,ba,...,bn} takes on exactly two distinct values.

. Find all positive integers n for which there exist k integers n1, ng,

ng, each greater than 3, such that

n=nang-ng = V2D D)

cay

. A multiple-chpice examination has 5 questions, each with 4 choices.

Each of 2000 students picks exactly 1 choice for each question.
Among any n students for some positive integer 7, there exist 4 such
that any 2 of them give the same answers to at most 3 questions.
Determine the minimum value of n.
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2000/01
Paper I.

Section 1. Questions with Multiple Choices.
1. Let A = {z|yz—2 < 0} and B = {z[10°"~2 = 10°}. What is

ANB?

(a) {2} (b) {-1} (¢) {zle < 2} (d)

. Let sina > 0, cosa < 0 and sin § > cos §. What is the range of

g7

(a) @km+ 5, 2kn + 5),k€Z

) B+ 5B +5) kel

(c) (2km + 32, 2k7 + ),k € Z

(d) (2km + %, 2km + 5) U (2kn + 5, 2kr + ), k € Z

. A is the left focus of the hyperbola z?> — y? = 1. B and C are

points on the right branch of the hyperbola such that ABC is an
equilateral triangle. What is the area of ABC?

(a) 5 (b) 22 (c) 3v3 (d) 6v/3

. Let p, q, a, b and ¢ be positive numbers with p # ¢ such that

p, a and g form a geometric progression while p, b, ¢ and ¢ form
an arithmetic progression. What can be said about the roots of
bz? — 2ax + ¢ = 0?

(a) two complex roots
(b) repeated real root
(c) distinct real roots of the same sign

(d) real roots of opposite signs

. What is the minimum distance from any lattice point to the line

y=§x+%7

() L1 vy Y2 © 5 @ =

3,7

. Let w = cos T +isin §. Which quartic polynomial has w, w®,w

and w® as its roots?
(@t +a¥+a?+z+1 (b)at—a®+2% —z+1

(c)a*—a—a?+a+1 (dzt+a®+a?—z—1
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Section 2. Questions requiring Answers Only.

1.
2.

What is the value of arcsin(sin 2000°)?

For n > 2, let a, be the coefficient of the linear term z in the
expansion of (3 — 1/z)™. What is the limiting value of

32 33 3n

as as Qp,

as n tends to infinity?

. Let a be any real number. If a +log, 3, a + log, 3 and a + logg 3

form a geometric progression, what is its common ratio?

. Let a > b be positive numbers. The eccentricity of the ellipse

IL‘Z y2

R
is @;_1 Let F' be the left focus, A be the point (a,0) and B be
the point (0,). What is the measure of ZABF?

. What is the volume of a sphere which is tangent to all six sides of

a regular tetrahedron of side-length a?

. Each digit of a four-digit number is one of 1, 2, 3 and 4. Every

two adjacent digits are different. The first and the last digits are
also different. Moreover, the first digit is no greater than any other
digit. How many such four-digit numbers are there?

Section 3. Questions requiring Full Solutions.

1.

For any positive integer n, let S, =142+ - -+ n. Determine the
maximum value of
S’n

(n+32)8n41

. Determine the real numbers a < b such that for a < x < b, the

minimum value of (13 — z%) is 2a and the maximum value is 2b.

. What conditions must the real numbers a > b > 0 satisfy such that

for any point P on the ellipse
P

@ TE Tt

)

there exists a parallelogram having P as a vertex, which is inscribed
in the ellipse and circumscribed about the unit circle?
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Paper I1

. E and F are points on the side BC of an acute triangle ABC, with

B closer to E than to F', such that /ZBAE = /CAF. Perpendic-
ulars FM and FN are dropped from F onto the sides AB and
AC, respectively. The line AF intersects the circumcircle of ABC
again at D. Prove that the area of ABC' is equal to the area of the
quadrilateral AMDN.

. The sequences {a,} and {b,} are defined by ag =1, by =0,

g1 = Tan + 6by, — 3

and
anrl = San + 7bn —4

for n > 0. Prove that a,, is the square of an integer for all n > 0.

. Any two of n friends have a phone conversation at most once.

Among any n — 2 of them, the total number of phone conversa-
tions is a positive constant power of 3. Determine all values of n
for which this is possible.

Olympiad Paper I

. The quadrilateral ABCD is inscribed in the unit circle such that it

contains the centre of the circle and the length of its shortest side
is v4 — a2 and that of its longest side is a, where 2 < a < 2. Let
A’'B'C'D’ be the quadrilateral determined by the tangents to the
circle at A, B, C' and D.

(a) Determine the minimum value of the ratio of the area of
A'B'C'D’ to that of ABCD.

(b) Determine the maximum value of the ratio of the area of
A'B'C'D’ to that of ABCD.

. Determine the smallest positive integer m such that every subset

of {1,2,...,2001} of size m contains two elements, not necessarily
distinct, such that their sum is a power of 2.

2 On each vertex of a regular n-gon is a blue jay. They fly away and

then return, again one blue jay on each vertex, but not necessarily
to their original positions. Prove that there exist three blue jays
such that the triangle determined by their earlier positions and the
triangle determined by their later positions are of the same type,
that is, both acute, both right or both obtuse..
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Olympiad Paper I

1. Leta, b, ¢, b+c—a, c+a—b, a+b—c and a+b+c be seven distinct
prime numbers such that a + b = 800. Determine the maximum
value of the difference between the largest and the smallest of these
seven numbers.

2. On the circumference of a circle are 24 points which divide it into
24 arcs of length 1. In how many ways can we choosc 8 of these
points such that neither arc determined by any two chosen points
has length 3 or 87

3. Let m and n be positive integers such that 4002m — m? — n? is
divisible by 2n, m < 4002 and

—m? + 2mn < 4002(n — m).

4002m — m? —
(a) Determine the minimum value of AT
n

4002m — m? — mn

(b) Determine the maximum value of
n




THE ANSWERS

Section 1. Questions with Multiple Choices.

Question 1.
1993/94 (d)
1997/98 (a)

Question 2.
1993/94 (c)
1997/98 (¢)

Question 3.
1993/94 (d)
1997/98 (c)

Question 4.
1993/94 (c)
1997/98 (d)

Question 5.
1993/94 (a)
1997/98 (b)

Question 6.
1993,/94 (b)
1997/98 (c)

Paper I.

1994/95 (c)
1998/99 (c)

1994/95 (b)
1998,/99 (b)

1994/95 (c)
1998/99 (d)

1994/95 (a)
1998/99 (d)

1994/95 (a)
1998/99 (d)

1994/95 (d)
1998/99 (b)

1995,/96 (c)
1999,00 (c)

1995/96 (a)
1999/00 (a)

1995,/96 (d)
1999/00 (a)

1995/96 (b)
1999/00 (d)

1995/96 (c)
1999/00 (b)

1995,/96 (d)
1999/00 (c)

1996/97 (c)
2000/01 (d)

1996/97 (c)
2000/01 (d)

1996/97 (c)
2000/01 (c)

1996/97 (a)
2000/01 (a)

1996/97 (b)
2000,/01 (b)

1996,/97 (b)
2000,/01 (b)

Section 2. Questions requiring Answers Only.

Question 1.

1993/94 ) # 2. 1994/95 —3 <m < —2. 1995/96 2.
1996/97 2°° — 1. 1997/98 2.

1998/99 f(12) < f(%) < F(1%).

1999/00 6. 2000/01 —T.

Question 2.

1993/94 £. 1994/95 1. 1995/96 8:27. 1996/97 1(—/3 + 3i).

1997/98 4. 1998/99 3. 1999/00 §. 2000/01 18.
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Question 3. Paper I1

1993/94 +(1 + /3i). 1994/95 7. 1995/96 3. 1996,/97 107,
3 3w

T 1083 ol arceos 31UMEE_1 3 1 3
1997/98 [§—5 arccos 3, 5+ arccos $]U[2L — 5 arccos 5, 2T+ 5 arccos 5.

1998/99 51. 1999/00 5. 2000/01 1.
Question 4.
1993/94 08. 1994/95 23, 1995 /96 2551. 1996/97 3.

1997/98 ‘/T?’ 1998/99 8. 1999/00 —%. 2000/01 90°.

Problem 1.
1994/95 (a) 74 v/41; (b) 7 — V/41. 1995/96 8/5.
1996/97 2" — 1+ 2n.
Problem 2.
1994/95 2186. 1995/96 76.
1996/97 a > I or a < /6.
Question 5. n
1993/94 9. 1994/95 2. 1995/96 420.
1996/97 230. 1997/98 26. 1998/99 —1 < a < 1T,

V2
1999/00 43. 2000/01 ¥2%a3.

1997/98 23 < Y 7.

i=1
1998/99 For any 1, either a; =1 and b; =2 or a; =2 and b; = 1.
Moreover, n is even and a; = 1 half of the time.

1999/00 /(b+c)2 + a2, /(c+a)2+ b2, /(a+b)%+c2
Problem 3.

1997/98 97. 1998/99 53590.

1999/00 (a) m where % <n< 371771; (b) ?’MT’l
2000/01 5.

Problem 4.

1994/95 (2) 168544,

Question 6.
1993/94 34. 1994/95 13. 1995/96 1879. 1996 /97 4.

1997/98 log2. 1998/99 2/2. 1999/00 2/3. 2000/01 28.

Section 3. Questions requiring Full Solutions.

Question 1.
1997/98 (a) 2£/3; (b) 1. 1998/99 3x — ¢,

L Sm i
1999/00 2km + % < 6 < 2km 4 55 for each integer k. Olympiad Paper I
2000/01 &.

Problem 1.

1993/94 (b) no. 1996/97 189548. 1997/98 1/v/2 — L.
1999/00 (a) acute; (b) right; (c) obtuse.
2000/01 (2)
Problem 2.
1993/94 yes. 1994/95 (5,47), (7,45), (13,39), (15,37).
1995,/96 39. 1996/97 (a) 1, 5, 9. (b) 1,3, 5,7, 9, 11. 1997/98 yes.
" (@ — 1) (et —1)-- (@ — 1
1998/99 (b) fn(z) :Z( @ &)(aH _)1),(..(a_1) )
=0
1999/00 2n! — 1 — n. 2000/01 999.
Problem 3.
1993/84 f(z) =z + 1. 1994/95 2394000000. 1997 /98 50.
1998/99 2052072. 1999/00 % +3.

Question 2.

1993/94 The line z = 2f2.

1997/98 (b) (2 — 3,2+ V3), (2 + 3,2 - V3).

1998/99 (a) ¥EHL; (b) —8. 1999/00 (—242, 2).

2000/01 (1,3), (-2 — V7, 13).

Question 3.

1993/94 a, = (2" —1)2(2" 1 = 1)2... (22 = 1)2(2 - 1)2 forn > 1
and ap = 1.

1998/99 (b) (a, 2£2). 1999/00 (n + 1)1/ 2.

2000/01 % + 5> = 1.

i 0wy
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Olympiad Paper 11

Problem 1.
1994/95 5. 1995/96 14. 1997/98 26 211,
n—1 1 —1
1999/00 n — (n —1 E—— . 2000/01 1594.
f00n=n-1| 3 =0 /

Problem 2.

1994/95 6044. 1996/97 8. 1997 /98 orthocentre of ABC.
1998/99 (a) —517; (b) 0, %, where v is the largest root of f(x)
1999/00 7. 2000,/01 258.

Problem 3.

1993/94 36. 1995/96 \/§ 1997/98 /bt

1998,/99 576. 1999/00 25. 2000/01 (a) 2; (b) 3750.




THE SOLUTIONS

1993 /94
Paper 1.

Section 1. Questions with Multiple Choices.

1. Since |tan7y| > 0 and sin? 7y > 0, each is 0, so that both 2 and
y are integers. From z? + ¢? < 2, we have z,y € {—1,0,1}. Hence
there are 9 such points (z,y).

2. The function g(z) = f(z) —4 is odd. Now

1
loglogs 10 = log <@> = —loglog 3.

It follows that

Ff(loglog3) = g(loglog3)+4
g(—loglog; 10) + 4
= —g(loglogs 10) + 4
—f(loglog; 10) +8
= 3.

3. For each a;, there are three possibilities. It may be in A only, in
B only, or in both. Hence there are 3% = 27 pairs (4, B) for which
AU B ={a1,a2,a3}.

4. The equation simplifies to

0 = 22— (arccosa + arcsin @)z
+42 4 (arccos o — arcsin a)y

m
= 2+ - 3%+ (arccos o — arcsin a)y.

This represents a circle which passes through (0,0). Moreover, the
chord which runs along the line # = 7 is a diameter. To minimize
its length, the centre of the circle should be as close to (0,0) as
possible. Hence it must be at (,0), occuring when arccosa =

arcsinc = 4. The length of this minimal diameter is 3.
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5. Let h be the altitude on AC. Then

so that
sin C' — sin A = sin C'sin A.

This is equivalent to

C+A . C-A 1
4 in = 5(005(0 — A) —cos(C + A))

2
= %(1—25111207‘4)

2 cos

It follows that

C+4,  C—4\°
cos 3 + sin =1.

This in turn implies that

C+A . C-A

cos ) + sin —5 =+1.
Since CoA Cia
— + 71'
0< —
2 < 2 < 2’
we have

C+A L C—-A
3 + sin

cos =1.

6. Note that n = |z + ni| + |z — mi| > 0. Also,

n

|z + ni| + |mi — z|

v

|z 4+ ni + mi — 2|
[(m + n)i|
[m +n).

I

This implies that m < 0. Finally,

n=|z+ni| + |z — mi| > |z +ni| — |z — mi| = —-m.

1993/94 a7

Now |z + ni| + |z — mié| = n is the equation of an ellipse with foci
(0,—n) and (0,m). Hence both foci are below the z-axis. On the
other hand, |z + ni| — |z — mi| = —m is the equation of the branch
of the hyperbola with foci (0,—n) and (0,m) which is closer to
(0, —m). Thus it opens upward.

Section 2. Questions requiring Answers Only:

1. Suppose there is a real root 7. Then

0 = Q-9+ OA+ar+(1+X)
(r2 +Ar+ 1)+ (=r2 +r+ ).
Hence
rP4Ar+1l=0=1r%—r—),
so that
A+ 1)(r+1)=0.
If A = —1, then
2 —r+1=0
but 7 is not real. Hence r = —1 and A = 2.

In order for the equation not to have a real root, all we need is

A£2.

. Let r =2? + 9% > 0. Let z = /T cosf and y = 4/rsind.

Then
47 cos® 0 — 5rcosfsinf + 4rsin? 6 = 5,

so that 8 10
sin 260 = " .
5r

Since |sin 26| < 1, we have
—5r < 8r —10 < br.

It follows that

10 10
— < r< —.
13- — 3
The minimum value is attained when 6 = %ﬂ and the maximum

value is attained when 6 = Z. The sum of their reciprocals is

13 3 8

FUETS
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. In the complex plane, let O be the origin, B be the point 22, A be

the point 22 — 4 and C be the point 22 + 4. Then AB=BC =4.
Moreover, OA makes an angle of 5?7_( and OC makes an angle of §
with the positive z-axis. Hence OBC is an equilateral triangle, so
that

2 2
22 = 4(00537r +isin§).

It follows that

z= iZ(cosg +isin g) = +(1+V3i).

. Long division yields

J = [1062—3-1031+9~—LJ =10%2-3.10% +8.

1093
{ 10T+ 3

1031 + 3

The last two digits of this number are 0 and 8.

. Let

y; = log Tin
Yi 1993 -
for 4 = 1,2, 3. Then the given inequality may be rewritten as

1 1 1 k
>

—t =t >
Y1 Y2 ¥z y1t+uituys
By the Arithmetic-Geometric Means Inequality,

(i+i+i> (y1+y2+ys) 23<3 ! )3(\3/M) =9.

Y1 Y2 Y3 Y1y2y3

Equality holds if and only if y1 = y2 = ys, or zo, z1, %2, x3 forms a
geometric progression. Hence the maximum value of k is 9.

. A three-digit number which is still a number when inverted must

have 0, 1, 6, 8 or 9 as its tens-digit, and 1, 6, 8 or 9 as its hundreds-
digit and units-digit. Thus there are 42.5 = 80 invertible three-digit
numbers.

However, some of them are the same either way up. Such a number
must have 0, 1 or 8 as its tens-digit, and for each possible hundreds-
digit, there is a unique units-digit which makes the number self-
inverted. There are 3 - 4 = 12 self-inverted three-digit numbers.

Hence the number of invertible pairs of three-digit numbers is
1(80—12) = 34.
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Section 3. Questions requiring Full Solutions:

1. Complete the rectangles ASBC’, SAB'C, SBA'C and the rectan-
gular block SAC’BCB'S'A’. D is therefore also the midpoint of
SC’, and we may take D’ to be the midpoint of C'S’. Now SS’ in-
tersects CD at some point N and DD’ at its midpoint O. Triangles
CSN and DON are similar, so that

ON _CS _
ND ™ DO~
Hence N coincides with the centroid M of triangle ABC.
C Al
DI
B! S
o
S B
D
A c’

(a) Since SN intersects DD’ at O, so does SM.

(b) O is the circumcentre of the rectangular block. Hence it is
also the circumcentre of the tetrahedron SABC.

2. Let the equations of £ and m be y—kx+ka = 0 and y—hz+
hb = 0 respectively. Then the equation of the conic section passing
through the desired four points of intersection is

(v® — z) + My — kz + ka)(y — hx + hb) = 0.
This may be rewritten as
(14 Ny? — Ak + R)zy + Mecha?
+A(ka + hb)y — (\kh(a + b) + 1)z + Akhab = 0.

This is a circle if and only if 1 + A = Akh and A(k + h) = 0. The
first equation shows that A # 0. From the second equation, we
then have h = —k. Solving for the point of intersection of £ and

m, we obtain
a+b k(b—a)
2’ 2 ’

b
and its locus is the line x = %.
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3. Let
T B
QGn—1

Then we have b, —2b,_1 = 1. In particular,

ay
bi=4/— =1 and by=2b;+1=3.
ag

Now
b1 ~2bp_g =1,
and subtraction yields
by, — 3bp—1 +2b,_5 = 0.
The characteristic equation is
2 —3z+2=(z—-1)(z-2)=0
with characteristic roots 1 and 2. Hence bn, = ¢1 + 2™ From
1=bi=c1+2cand 3 =1b;, = c1 + 4cg, we have ¢; = —1 and
c2 =1 so that
b, =2™ — 1.

Finally, for n > 1, we have

n = ap_1(2" —1)?
an—a(2" — 1)2(27 1 = 1)2

I

ap(2" = 122" — 1) (22 — 1)2(2 — 1)2.
Hence ag=1 and
Oy = <2n _ 1)2(27171 _ 1)2 . (22 _ 1)2(2 _ 1)2

for all n > 1.

Paper 11

- An obtuse triangle may be divided into n obtuse triangles for any

n 2> 1. Let AByB, be such that ZAByB, > 90°. Take points
By, By, ..., Bp_1 on ByB, and join each of them to A. Then we
have divided AByB,, into n obtuse triangles. A non-obtuse triangle
cannot be divided into n obtuse triangles for n < 2.

The case n = 1 is trivial.
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2.

In the case n = 2, the cut must be from one vertex to the opposite
side. There are no obtuse angles to begin with, and at most one
can be created where the cut meets the opposite side. On the other
hand, a non-obtuse triangle can be divided into 3 obtuse triangles.
Let the angle at A be the largest in a non-obtuse triangle. Drop a
perpendicular from A to BC until it reaches some point D inside
the semicircle with diameter BC. Joining D to the vertices of ABC
will result in 3 obtuse triangles. In the given quadrilateral, we can
first cut off the obtuse triangle CAD. Then we cut the non-obtuse
triangle C AB into 3 obtuse triangles. Thus ABCD can be cut into
4 obtuse triangles.

By cutting up one of the obtuse triangles in the manner described
above, we can obtain n obtuse triangles for any n > 4, establishing
sufficiency.

We now establish necessity. If each side of ABCD belongs to a
different triangle, we already have n > 4. Hence some triangle
must contain two adjacent sides of ABCD, implying that we cut
along one of the diagonals.

If we cut along AC, we have one obtuse triangle CAD, but it is not
possible to cut the non-obtuse triangle C AB into 2 obtuse triangles.

If the cut is along BD, at least one of triangles BAD and BCD is
non-obtuse, and it cannot be cut into 2 obtuse triangles.

(a) Note that
1 A (e — 4!

(|Xi|) nl

so that the desired result is equivalent to

m

> 1Al (n — At < nl.

i-1
Since there are n! permutations of the n elements, we have to
prove that A; accounts for

|Ai|(r — | As])!

of them, without overlap. The |A4;| elements in A; are listed
first, and they can be permuted among themselves in |A4;|!
ways. They are followed by the elements not in A;, which can
be permuted among themselves in (n — |A;])! ways.

Suppose the same permutation is generated by A; and A;. We
may assume that |4;] < |A;|. Then A; must be a subset of
A;, which contradicts the hypothesis.
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(b) The desired result may be derived from Cauchy’s Inequality Since

as follows: . AD-CE = AC-DE +CD - AE > CD - AE,
2 i 1 n the inequality is strict. Hence
: (Z S VA
=1 [Ai]

AC-BQ > AB-CR+ BC - AP.

I

L] LA (c) Suppose £ is disjoint from the circle. Let M S be a tangent and
< Z ( ™ ) Z (]A\) let T be the point on m inside the circle such that MT = M S.
=1\l =1 * Let O be the centre of the circle and r the radius. Then
i 2 _ 2,2
< > ( " ) AP® = OA*-7
= \|4i] = AM?+OM? —r?
L L = AM®+MS?
3. Denote by M the point of intersection of £ and m. — AM? 4+ MT?
(a) If ¢ is tangent to the circle, then AP = AM, BQ = BM and —  AT2.

CR = CM. We have

AB-CR+AP-BC = AB-CM+ (AC +CM)BC
: (AB + BC)CM + AC - BC

AC(CM + BC)

AC - BQ.

Hence AP = AT. Similarly, BQ = BT and CR = CT. Since
T, A, B and C are neither collinear nor concyclic, Ptolemy’s
Inequality yields

AB-CT + BC- AT > AC - BT.

Il

Olympiad Paper I

This is known as Ptolemy’s Theorem for collinear points.
1. (a) In the diagram on the left, let

(b) Suppose ¢ intersects the circle at D and E. Then we have
FD 1

AP? = AD - AE, BQ® = BD - BE and CR? = CD - CE.
Using Ptolemy’s Theorem for collinear points, we have
AC?BQ* — (AB-CR+ BC' - AP)?
= AC-BD(AC-BE)—AB?*CD-CE-BC?AD - AE
—2AB-BCYVCD -CE- AD - AE
= AC-BD(AB-CE + AE - BC)
—~AB-CE(AB-CD) — BC - AE(BC - AD)
—24AB-BCVCD-CE - AD - AE
= AB-CE(AC-BD - AB-CD)
+AE - BO(AC - BD — BC - AD)
—2AB-BCVCD-CE-AD - AE
AB-CE(AD - BC) + AE - BC(AB - AD)
—2AB-BCVCD -CE - AD - AE
AB-BC(WAD CE —+/CD - AE)?

for some k > 0.
D F _C D A

A E B F E
If we take [DFG] = 1, then [EFG] = [DAG] = k and
[AGE] = k2.
By the Arithmetic-Geometric Mean Inequality, 1(k?+1) > k.
It follows that [EFG] < L[ADFE].

Similarly, we can prove that [EFH] < ;[BCFE], so that
[EGFH] < 1{ABCD].

v
o
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(b) The answer is negative and we construct a counter-example
as follows. In the diagram on the right, we have switched the
labels A and F' in ADFE. Then [EFG] > }[ADFE].

Extend AFE to B and DF to C so that
i[BCFE] < [BFG] - i[ADFE].

Then we have [EGFH] > [EFG] > [ABCD].

2. Solution 1

Choose any box and call it B. If there are no smarties outside B,
the task is accomplished. Suppose there are at least two non-empty
boxes other than B. Take 1 smartie from each and put them in B.

Eventually, there is at most one other non-empty box X. If it has
at least 2 smarties, take 1 from X and 1 from B and put them in
a third box. Then take another 1 from X and one from this third
box and put them in B. So the number of smarties in B increases
by 1.

Eventually, there is only 1 smartie outside B. The task can then be
accomplished with the following transformation:

(0,0,1,m) — (2,0,0,n—1)
- (1,2,0,n—2)
- (0,2,2,n-3)
- (0,1,1,12—1)
— (0,0,0,n+1).

Solution 2

‘We use induction on the number n of smarties to prove that the
answer is affirmative.

For n = 4, we have

(1,1,1,1) — (0,0,3,1)
— (0,2,2,0)
— (0,1,1,2)
— (0,0,0,4).
Since this sequence includes all possible distributions of 4 smarties,
the basis is established. Suppose the result holds for some n > 4.
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Consider the next case with n + 1 smarties. For now, treat one
of them as non-existent. By the induction hypothesis, the other n
can be put into 1 box. If the (n -+ 1)-st smarty is there as well, we
have nothing further to do.

Otherwise, we perform

(0,0,1,m) — (2,0,0,n—1)
— (1,2,0,”42)
- (0,2,2,n—3)
— (O,I,I,TL—l)
- (0,0,0,n+1).

This completes the induction argument.

. Solution 1

‘We have
(f@)? =zf(z+1)+1.

Subtracting (z + 1)? from both sides,
(f@) — (e + 1)) (f(x) +z+1) =2(flz+1) - (z +2))

Since 1 < f(z) <2(z+1)and 1 < f(z+n) < 2(x+n+1), we
have

@ =l = ﬁ3|f(x+l)*(m+2)|
= xiz.iiilf($+2)*<$+3)l
<
z(z+1) .
= m'ﬂ’”“) (z+n+1)]
< olztl)
B z4+n

Since n may be arbitrarily large, we must have f(z) =z + 1, and
it is easy to verify that this function has all the desired properties.
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Solution 2
b 1)
z
9(z) = z+1
Then
< <
1S9 =2
and

sery- ey = LD (JOY

z+2 z+1
_ G@y-1 (@)’
) (z+1)

(f@)? — (@+1)*
z(z +2)(z + 1)2

(g(z))® —1

z(z +2)

If g(x) > 1 for some z > 1, then we have
g(z+1) > (g(x))? > 1.

Iteration yields
glz+n) > (g(z))2 .

Since n may be arbitrarily large, this contradicts g(z) < 2. If
g(z) < 1 for some z > 1, then we have

glz+1) < (g9(2))* < 1.
Iterating this now yields
g(e +n) < (g(2))*"

so that

rz+n+1

(é)ﬂ <(glz+n)?*" < g(z) <1.

However, the leftmost term may be made arbitrarily close to 1 by
increasing n, and we have a contradiction. It follows that g(z) =1
for all z > 1. Hence f(z) =z +1, and it is easy to verify that this
function has all the desired properties.

Olympiad Paper I1

i. Solution 1

Let
© 2 .. 27
w = cos — +isin—.
n n
We have v )
T4wf+ o™ =p
for j = 0 or n, but this sum is zero for j = 1,2,...,n — 1. For any

complex number A,

n—1

Z FOWR) = n(cod + ¢n).

k=0

Choose A so that [A| = 1 and ¢pA™ has the same argument as cp.
Then

n—1
FOW®)

k=0

1 n—1 1
YO 2 = |coA™ + cn| = lcol -+ |enl-
k=0

It follows that for some k, 0 < k <n — 1, 20 = M\w® satisfies

| (20)| = leo| + lenl-

Solution 2

First we suppose that c, # 0. Let

cole
glz) =coz* + 12" P+ Fep1z— lol L
lenl
Let its roots be 21, 22, ..., 2zn. Then
Co|Cn
|z122 - 20| = =
|enlco

It follows that at least one root zq satisfies |29| < 1 and

f(20) = g(20) + (M + 1> Cn.-

lenl
Hence |f(z0)| = |co| + |cn|. We now suppose that ¢, = 0. Let

9(z) = coz™ + 12"+ + 12 — o
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Let its roots be z1, 22, ..., z,. Then Solution 2

|z12 -+ 2n| = l_q. Consider the number of ways of choosing n of the 2n + 1 objects

a1, b1, ag, bz, ..., an, b, and c. First we choose k of the pairs

{ai,b;} and take exactly one from each pair. The number of ways
of doing this is 2F(}). The remaining n — k objects are chosen as
pairs {a;,b;} plus c if n — & is odd.

(st

ways. Since the total number of ways is obviously

() -2 G ()

3. Performing a half-turn about the point (997p,7 - 997p), We may
instead take 1(1994p,7 - 1994p) as the incentre and O(0,0) as the
vertex of the right angle of triangle OAB. Since the slope of OI is
7, the slope of one side, say OA, is

It follows that at least one root zq satisfies |29| < 1 and
|£(20)] = lg(20) + co| = |ca| = |co| + |cnl-
2. Solution 1 This can be done in

From the Binomial Theorem, we have

2 ()

=0

(1 + 1)271 (2n+1)

we have

= (@ +(1+20)"

- Z (TZ) o (1 + 22)"

=0

—~ \i ; i)
=0 =0

Comparing the coefficients of 2™ on both sides, we have

12J Y , W T-1 3
<2n) = Zznf% (n) (n - l) _ iQnizi n\ (2 . tan(arctan 7 — 45°) = -7
nis i) \n—2) 2 )\ i

i=0
. . . Then the slope of the other side OB is —3%.
Comparing the coefficients of ™~ on both sides, we have

L2 .
2n _ n—2i—1 n—1
(n—l) N 22 (7)(7172171)
lTJ

Z gn-2i-t T 2i+1
: 241 i ’

=0

We can deduce from
(3k)? + (4k)% = (5k)?

that the distance of any lattice point on OA or OB from O is a
multiple of 5. Rotate about O so that OA falls on the positive
z-axis and OB on the positive y-axis. Take as a new unit of length
5 times the old one. Then the new coordinates of I are (r,7) where
r = 1994p.

I

Adding the last two equations, we have

() = e ()(5)
: 22k< ) ()

Let the new coordinates of A and B be (r + 5,0) and (0,7 +t),
respectively. Then AB = s +t and we have

(r+s)?+(r+1)?=(s+1)%
This is equivalent to 2r% = (s — r)(t —r). Since the hypotenuse is

the longest side in a right triangle, both u = s —rand v =%t —r
are positive and we have 2r? = uv.
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We claim that for any pair (u,v) of positive integers such that
2r? = uw, the triangle OAB with O at (0,0), A at (2r + »,0) and
B at (0,2r + v) has incentre I(r,r). Since
(2r +u)? + (2r +v)? = 2r +u+v)?,
we have AB = 2r + u + v. The inradius is given by
1
g(OA +O0OB—AB)=r.

This justifies the claim. The problem now becomes finding the
number of pairs (u,v) of positive integers such that

uv = 2r% = 23997%p?.
For p = 2, the number of pairs of positive divisors of 259972 is

(G+1)2+1)=18.

For p = 997, the number of pairs of positive divisors of 239974 is
(3+1)(4+1)=20.

For any prime p other than 2 and 997, the number of pairs of
positive divisors of 22997%p? is

B+1)(2+1)(2+1) = 36.
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1994/95
Paper 1.

Section 1. Questions with Multiple Choices.

1. Suppose a? + b2 > 0. Let 8 be the angle such that

R b - a
sinf = —\/ﬁ and cosf = _\/a2:+b7

Then
asinz + beosz + ¢ = v/ a? + bZsin(z + 6) + c.
This is positive if and only if
c

VETE

Now sin(z + ) > —1, with equality if £ = 7 — 6. Hence the
necessary and sufficient condition is

sin(z +0) > —

C

or ¢ > va? + b2.

If a = b = 0, then the condition is ¢ > 0 = va? + b2.

. If a2 4+ b2 > 2, then both a? + b? and c? are real, and we certainly

have a2+ b% — ¢ > 0. On the other hand, if a? 4+ 5% — ¢ > 0, all we
can say is that a? +b%—c? is real. We may have a = 244, b = ¢ and
¢ =+/2(1+4). Then a®>+b*—c? = 2 > 0, but neither a®+5% = 2+4¢
nor ¢ = 4i is real. Thus we cannot conclude that a? + b2 > c2.

. Let b, = a, — 1. Then by = 8 and byy1 = A%bn. Hence {b,} is a

geometric progression with common ratio 4%‘ Summing the first
n terms yields

oneso () (o () oo ()
so-n-oi=a(5)"
o(3) - meomo(3)

It follows that the smallest value of n with the desired property is
7.
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4. Since 0<b<1, log, z is a decreasing function. Since 0<a <%, we 4. We have

have 0<sina<cosa<1. Hence
logy, sin o >log, cos >0

and
(sin a)log,, sina < (sin a)logb cos o - (COS a)logl7 cos o

. Let the regular n-gon at the base be fixed and let the vertex move
up and down along the axis. At one end, the pyramid degenerates
into its base, and the dihedral angles are w. At the other end, the
pyramid degenerates into an infinite prism, and the dihedral angles
are

(n—2)w
I

. Use the lines y = z and y = —=x to divide the plane into four
quadrants. The equation becomes

Ty Y-z

2a 2

1

in the north quadrant. This is a line which intersects y = z at (a, a)
and y = —z at (—b,b). In the east quadrant, we have a line joining
(a,a) to (b,—b). In the south quadrant, the line joins (b, —b) to
(—a,—a), and the rhombus is closed in the west quadrant. Since
a # b, the rhombus is not a square.

Section 2. Questions requiring Answers Only:

1. The line = 4 my 4+ m = 0 passes through the point R(0,—1) and

has slope —2. The line PQ has slope 1 and the line @R has slope
%. In order for z + my + m = 0 to intersect the extension of PQ,
Wemusthave%<—ﬁ <%0r73<m<7§.

. Let f(t) =13 +sint. Then

f(@) = 2a = (-2y)® +sin(—2y) = f(—2y).

Since f(t) is increasing on [—%,%], we must have £ = —2y or
z + 2y = 0. Hence cos(z + 2y) = 1.

. If (z,y) is a lattice point inside circle A, then 1 <z < 5. Forz =1,
3 <y <5 and all three are outside circle B. Forx =2,2<y <6
but only (2,2) and (2,3) are outside. For z =3 or 4, 2 < y < 6 but
only (z,2) is outside. For z =5, 3 < y < 5 but all three are inside
circle B. Hence AN B contains 3+2+1+1=7 lattice points.

(4 L0 .90
y:sin%(l%—cos@):sin 2(2 cos® 5):25111 5(1—sm2 5).

Let z = sin%. Then
2
92— = 22%(1 — 22)(1 — z2).

The three factors on the right sum to 2. Hence the maximum value

of %2, and of y, occurs at 2z° = £ or z = \/Lg It follows that the

maximum value of y is

L(-p)-18

. Let D be a vertex of a unit cube. Let A, B and C be the vertices

adjacent to D.

Let the plane be horizontal, and let the cube lie entirely above it.
Clearly none of the edges can be parallel to this plane. Hence there
is a vertex D which rises the highest above this plane. Let A, B
and C be the vertices adjacent to D. Since DA = DB = DC, D
must be at the same vertical height above each of A, B and C.
Hence the plane in question is parallel to ABC.

Let F be the vertex opposite to D, and let DF intersect the plane
ABC at K. Then

1 V3
= -pDF =X
DK 3D 3
and it follows that
. DK 3
sina = —7 = ==

There are altogether four families of parallel planes with the desired
property, each perpendicular to one of the space diagonals of the
cube.

. Let the number of +1s be m and the number of —1s be n. Then

m+n =95 and
a?+a+- - +ads =95

Let S denote the sum in question. Then
258 +95 = (a1+a2+~-~+a95)2 = (mfn)z.

The smallest positive S which makes a square when added to 95 is
13, with |m — n| = 11.
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This minimum value is attained when

(m,n) =(53,42) or (42,53).

Paper 11

. We have oo+ 3 = —z; while a8 = 23 + m. Hence

(@=p)? = (a+p)’—4ap
= z12 — 4z —4m
16 + 207 — 4m.

Since | — 8] = 2+/7, we have |4 -+ 5i — m| = 7. Hence the point M
representing m in the complex plane lies within a circle of radius 7
and centred at C'(4,5). Let O be the origin and AB be the diameter
of the circle through O, with A closer to O. Then

OC = /42 + 52 = \/41.

(a) The maximum value of m occurs when M = B, and we have
m=O0M =7+ V41.

(b) The minimum value of m occurs when M = A, and we have

m=0M =7 —/41.

. The number of positive integers less than 105 that are relatively

prime to 105 =3 x 5 x 7 is

()66 )

When 1000 is divided by 48, the quotient is 20 and the remainder

is 40. The positive integers relatively prime to 105 start with 1, 2,

4, 8,11, 13, 16 and 17, with 19 being the 9-th. Thus the 40-th is
105 — 19 = 86,

and the 1000-th is

105 x 20 + 86 = 2186.

. Let @ = /CAB and v = ZBCA. Then o+« = 120°. Extend AT

and BI to cut the circumcircle again at F' and M, respectively.
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(a) Since /ZMOA = 2/MBA = 60° and OA = OM, triangle
MOA is equilateral. Hence AM = R. Since

LMIA LMBA+ (BAI
= 30°+ %
= (MAC+ LCAI
= [/MAI,
we have MI = MA = R. Now
LIMO = LAMB — LAMO =~ —60°.
On the other hand,

[AEO = /ABF = 60° + g
so that
L AOFE = 180° — 2(60° + ) = 7 — 60°.

It follows that triangles AOFE and I MO are congruent, so that
AE = I0.

rat
K

F
(b) Since ZIFC = /ABC = 60° and

B

LICF = LICB + LBCF = 3 +2 = 60",
triangle ICF is equilateral. It follows that

IO+ IA+1IC=AFE+ AF > EF =2R.
On the other hand,

AFE + AF

I

2R(cos AFE +sin AFE)
= 2v2Rsin(45° + %LAOE)
= 2V3Rsin(15°+ )

< 2v2Rsin75°.
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=

‘We have
cos15° = sin(60° +15°)

3 1
\/7_ cos 15° + 5\/ 1 — cos? 15°.

Il

This simplifies to

(2 —v3)%cos® 15° = 1 — cos? 15°,

so that
cos? 15° = ! :8+4\/§=4+2\/§.
8 —4v/3 16 8
It follows that
1443

sin75° = cos 15° =

2v2
Hence

IO+ IA+1IC < (1+V3)R.

Suppose m —n > 2. We claim that

m n . m—1 n+1
(3>+(3) is larger than ( 3 >+( 3 )

Indeed, their difference is

m—1 n
("))
since m — 1 > n. It follows that the 1994 points should be
distributed among the 83 sets as evenly as possible. When
1994 is divided by 83, the quotient is 24 and the remainder is

2. Thus we should have 81 sets of size 24 and 2 sets of size
25, and the mimimum number of triangles is

24 25
81 2 = 168544.
( . ) + ( : ) 685
All that is needed is to show that the task can be accomplished
in a set with 25 points. The same method can then be applied

to each of the other sets, suppressing an arbitrary point if there
are only 24 points. Label the points (z,y) where 0 < z,y < 4.
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For two points (z1,y1) and (22, y2), if z1 — z2 = %1 (mod 5),
colour the segment joining them red. If z; —z9 = £2 (mod 5),
colour the segment green. If z; = z2 (mod 5), colour it yellow
if y1 — y2 = £1 (mod 5), and colour it blue if y; — yo = +2
(mod 5).

Consider any three points (z1,¥1), (z2,y2) and (z3,ys). If
they have different z-coordinates, then all three sides are red
or green. However,

(21 —x2) + (22 — 23) + (33 — 21) = 0.

Since no combination of three +1 and no combination of three
+2 can be equal to 0, there is at least one red side and one
green side. If exactly two z-coordinates are the same, the side
joining these two points will be blue or yellow while the other
two sides will be green or red.

Finally, if they have the same z-coordinates, then all three
sides are yellow or blue, but there must be at least one of each
colour since

(y1 —y2)+ (w2 —y3) + (yz —41) = 0.

Olympiad Paper 1

1. Let ¢; = b; —a; for 1 <4 < n. Then

cit+ceat o ten =0,
c1 <cogandc;+cip1 Scippfor1 <i<n—2.

We prove by induction on n that ch,—1 + ¢n > 0, weakening the
condition
erteatrten=0

to
cr+co+--+cy >0

For n = 2, this yields ¢; + ¢y > 0 immediately. For n =3, if ¢; <0,
then
co+c3 = (Cl +02+C3)7c1 > 0.

If¢; > 0, then cg > ¢1 > 0and cg > ¢ +c2 > 0, so that ca+c3 > 0.

Suppose that the result holds for n — 1 and n > 3. Consider the
next case with the numbers c¢i,ca,. .., Cpy1. If

c1+cagt o Fepm1 <0,
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then
Cntenpr=(c1+cot-+cp)—(c1teat--+eu1)>0.
If
cite+---+ep-1 20,

then
Cn 2 Cp2+Cp-12>0

by the induction hypothesis.

Hence
catceat--+cy >0,

and
Cnt1 2 Cpn—1+¢n 20

by the induction hypothesis. It follows that ¢, + cpp1 > 0.

. We have

3f(n)(F(2n+1) — f(2n)) = f(2n) <6f(n).
It follows that f(2n +1) — f(2n) < 2. Since f(n) and f(2n) are
both positive, f(2n+1) — f(2n) > 1. It follows that f(2n) = 3f(n)
and f(2n+1) = f(2n)+1 for all positive integers n. We now prove
by induction on n that if n = 29 4 2% -1 4 ... 4 2% then
fn) =3% 43% 71 ... 4 3%,
For n = 1, we have f(2°) = f(1) = 1 = 3°. Suppose the result
holds for 1, 2, ..., n — 1 for some n > 2. Consider
m= 2% 4201 4oL 4 2%,
where a, > a,—1 > ... >a; > ag > 0.

If ag > 1, let m = 29r=1 4 2911 ... 4 280~1 Then

fn) = f(2m)
= 3f(m)
= 3(3% L4301l .4 3%l
39 43971 ... 4 3%,
If ag = 0, let m = 29— 4 20—1=1 4 ... 4 291~1 Then

fln) = f@m+1)
= 3f(m)+1
— 3(3ar—1+3a,.,1—1+.“+3a1—1)+30
= 3 43% 4o+ 3%
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This completes the induction argument. Now let
k=2 and £=) 2°
beB ceC

Then

fE+f@=2 % 34+ Y 3+ > s

aeBNC beB—C ceC-B

If

Fk)+ f(0)=293=3°+3*+2.32+3' +2.3°,
we must have BN C = {0,2}. Since k < ¢, we must have 5 € C.

There are four ways to distribute 1 and 3 between B and C, yielding
the following four solutions:

£=254+23422421420 =47,
k=242 +20=7, £=12542% 122420 =45
k=23+22420=13, 0=2°%422421 420 =39,
E=2%4+224214+20=15 (£=25+224+20=3"

k=224+20=5,

. Let P;, P, ..., P, bepoints on aline in that order. We allow P, =

P;11. We wish to minimize X P, + X P,+- - -+ X P, where X ranges
over all points on that line. Note that we have XP,+ XP,, = P, P,
if X is on the segment P P,, and greater otherwise. Similarly, the
minimum value of X P, + X P,_; is P»P,_1, attained if and only
if X is on the segment P> P, 1. It follows that if n = 2m + 1, the
overall minimum is attained if and only if X = P41, and this
minimum is
PP+ PP, 1+ -+ PpPpyo.

If n = 2m, then X can be any point on the segment P, P41, and
the minimum sum is

PP, +PP, 1+ -+ PpPry1.
Consider now

10
fey) = Je+y - 10i.
=1

We have ten points 10, 20, ..., 100. The minimum value of f(z,y)
is

10((104+9+8+7+6)— (1+2+3+4+5)) =250,
attained if and only if 50 < z +y < 60. For

10

g(z,y) =Y |3z — 6y — 364,
j=1
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we have ten points 12, 24, ..., 120. The minimum value of g(z,y)
is
36((10+94+8+7+6)— (1+2+3+4+5)) =900,

attained if and only if 60 < z — 2y < 72. Finally, for

10

h(z,y) =Y k[19z — 95y — 95k],

k=1

we have fifty-five points consisting of one at 5, two at 10, three at

15 and so on, to ten at 50. The twenty-eighth point is the last one
at 7. Hence the minimum value of h(z,y) is

95((10% + 92 + 82) — (6 7+ 67 4 52 + 42 4 3% + 22 + 1%)) = 10640,

attained if and only if z + 5y = 35. It is easy to verify that
(55, —4) satisfies all three conditions. Hence these minimum val-
ues can be attained simultaneously, so that the minimum value of
f(@,9)g9(z, y)h(z,y) is

250 - 900 - 10640 = 2394000000.

Olympiad Paper II

. Let the centre of the small sphere be O and its radius be 7. Let A

and B be the centres of the spheres of radii 3, and C and D be the
centres of the spheres of radii 2. Let E be the midpoint of AB and
F be the midpoint of CD. Now A and B are symmetric to each
other with respect to the plane CDE, while C and D are symmetric
with respect to the plane ABF. These two planes intersect along
EF. By symmetry, O lies on the segment £F. Now

CE=+AC?— AE? = /52 -3 =4

and

EF = /CE? — CF? = /42 — 22 = 2\/3.
‘We also have

OE = /042 — AR? = \/(r +3) — 32 = \/r2 + 6r

OF =/OC2 — CE? = \/{r + 2)° — 22 = \/r2 + 4r.

Squaring both sides of the equation

V2 4 6r =2v3— /r2 +4r,
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we have
12 — 2r = 4+/3(r2 + 47).

Squaring both sides again, we have
1172 + 607 — 36 = (117 — 6)(r + 6) = 0.

_ 6
Hence r = 3.

. Let {a1,aq,...,a10) be the permutation of the fixed positive inte-

gers £1 < g < -+ < T30 which minimizes
a102 + az2a3 + -+ - + agaip + aG10a1.

‘We may assume that a19 = x19. We claim that either a; or ag is
z1. Suppose on the contrary that z; = a; for some j, 1 < j < 9.
Define bz = Gj+1—i for 1 S 7 S ] and bl = a; fOI'j +1 S i S 10.
Then

(a1a2 +agag + - - - + agaio + aioar)
*(blbz + bobs + -+ - + bobio + b1ob1)
= (ﬂjaj+1 + aipa1) — (alaj+1 + ajalﬁ)
= (am - aj)(al - aj)
> 0.

This contradicts the minimality assumption on (a1, as, . .., a,), and
the claim is justified. By symmetry, we may take a1 = ;. The
same argument yields ag = 2, as = x9, ag = Ts, a3 = T3, a7 = T4,
a4 =7, ag = s and as = 5. We now determine positive integers
z1 < Xy < -+ < x19 with sum 1995 such that

T1T9 + To3 + T3T7 + T7Ts + T5T6

+Texsa + T4X8 + TgX2 + TaX10 + T10%1

is a minimum. We claim that z; = ¢ for 1 <4 < 9 and z10 = 1950.
Suppose on the contrary that for some j, 1 < j < 9, z; = i for
1<i<j—1but z; #j. Let the two terms in the sum involving
z; be zpx; and z;z4. Then z, + x4 > 21 + 2. Define y; = z; for
1 <i <9 except for y; = z; — 1 and define y10 = ©10 + 1. Then

(z1®9 + o3 + - - - + ToT10 + T1021)
—(y1Y9 + Yoys + -+ + Y2Y10 + Y10Y1)
= (zp+zq) — (x1 +22)
> 0.
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This is a contradiction, and the claim is justified. It follows that
the desired minimum is

1-94+9-34+3-7+7-5+5-6+6-4

+4-8+8-2+4+2-19504 1950 - 1 = 6044.

. Let A%O)Ago) e A&O) be a regular n-gon with centre O. Label AEO)

with IEO) for 1 <4 < n. The numerical pattern has a unique axis
of symmetry passing through O and perpendicular to AQO)ASP).

For k > 1, let Agk) be the midpoint of AE’“‘”AE?&” for1<i<n,
interpreting Ag:?ll) as Agkil). Label Agk) with zgk), 1<i<m,
according to the given rule. Then the new numerical pattern has
the same unique axis of symmetry. Now rotate the n-gon

AP AE  A®

about O through an angle of 7- so that Al(-k) is collinear with O and
Agkfl), 1<i<n. Then delete the n-gon

Agkfl)Agkfl) o Aglk_l)

along with its associated labels. Now the new numerical pattern
still has a unique axis of symmetry, obtained from the old one by
a rotation about O through an angle of 7. Suppose X, = Xq for
some positive integer m. Then the unique axis of symmetry must
coincide with its initial position.

It follows that mZ = £ for some positive integer £, so that m = ¢n
as desired.
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1995/96
Paper 1.

Section 1. Questions with Multiple Choices.

1. Since ag > a3, the common difference is a negative number —d
where d > 0. We have

3(ar — 7d) = 5(ay — 12d)

or
oy 3
1=
Hence
= 19d = d
a0 = a1 — =3
while

d
a1 = a1 — 20d = —5.

It follows that S, is maximum when n = 20.

2. Since the greatest common divisor of 1995 and 20 is 5, the number
of distinct values is 20 + 5 = 4.

3. Let the 100 people have different heights and different weights,
with their heights in reverse order of their weights. Then all 100
are strong.

4. Clearly, k > 0. If k = 0, then ¢ = 2n is the only root. Hence k£ > 0.
Squaring yields
(z — 2n)? = k?z.

Now the parabola y = (z —2n)? and the straight line y = k% must
intersect twice on the interval (2n — 1,2n + 1). We must have

(x —2n)? > K’z

at z =2n —1 and
(x —2n)? > K’z

at = 2n + 1. The stronger of these two inequalities is

! > k.

Von+1
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5. Since § <1, 2. Let R be the radius of the sphere. Let r be the base radius of an

cosl <sinl <1< tanl.

Hence
logg, 1 tan1 < log,,,; tanl < 0,
0 <logys18inl < log,,e;cosl =1
and
1 =logg,sinl < logg,, ; cos1.
6. Since

LAPB = /BPC = LCPA,
denote their common value by ¢. Now O is equidistant from PAB,
PBC and PCA. Denote this common distance by d. Finally, let
0 be the angle made by one of PA, PB and PC with the plane
determined by the other two. The area of triangle PRS is
1
QPR - PSsin ¢.
The distance from @ to PRS is PQsinf. Hence the volume of
PQRS is
1
EPQ - PR PSsin¢gsinf.
We note PQRS is also the disjoint union of OPQR, OPRS and
OPSQ. Another expression for the volume of PQRS is
1
E(PQ-PR-&—PR» PS+ PS - PQ)dsin¢.

It follows that
1,1 1 sno
PQ PR ' PS 4

Section 2. Questions requiring Answers Only:

+

1. Let « =a+bi and f = a — bi. From

o — 8| = 2v3,
we have b = /3. Since
a o?
7~ (aB?

is real and so is a8, we conclude that o is real. Since
(a+bi)? = a(a® — 36%) + b(3a® — b?)i,
we have 3a® — b% = 0 so that |a| = 1. Hence

o] = Va2 + b2 =2.

inscribed cone and h be its height. Considering a plane section
through the axis of the cone, we have r* = h(2R — h). Now the
volume of the cone is

1 5 7r

—7mr’h = —h - h(4R — 2h).

37" gh i )
Since

h+h+ (4R —2h)=4R

is constant, the maximum volume occurs when h = %?‘—, and its

32%’1}23. The volume of the sphere, on the other hand, is

%i. Hence the desired ratio is 8:27.

value is

. Since |logz| < log, we have

(logz)? —logz — 2 < 0.
This is equivalent to —1 <log z <2.

When —1<logz <0, |logz|=—1 so that logz = +1. However,

logz = 1 is not in the specified range. Hence logz = —1 and
o1

T = i5-

When 0 < logz < 1, |logz] = 0 so that logz = +4/2. Neither

value is in range.

When 1 < logz < 2, |logz| = 1 so that logz = +v/3. From the
only acceptable case logz = V3, we have & = 103,

Finally, when logz = 2, |logz] = 2 and the equation is satisfied.
Thus = 100 is the third real root.

. The number of lattice points in the region bounded by z =0,y =0

and x +y = 100 is
100

> (k+1) = 5151

k=0
This includes those on the boundary.

z

The number of lattice points in the region bounded by y =0, y = 3

and z =75 is
75

E—1 25
E [—S—JZSE k = 975.
k=1 k=1

This includes those on the boundary other than y = §.
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The number of lattice points in the region bounded by z+y = 100,
rz=75and y=0is

100

> (101 k) = 325.

k=76
This includes those on the boundary except z = 75.

By symmetry, the number of lattice points in the region bounded
byy=%,y=3zand z+y =100 1is

5151 — 2(975 + 325) = 2551.

- The top vertex can be painted in 5 ways and one of the bottom

vertices in 4 ways. If the opposite vertex is painted the same colour,
each of the other two can be painted in 3 ways. If not, the opposite
vertex can be painted in 3 ways and each of the other two in 2
ways.

The total is

SX4x3x3+5x4x3x2x2=420.

. Remove first the

1995
[?J =133

multiples of 15. Then add back the

1995
—_ = 8
5]
multiples of 152. This yields a subset with 1870 elements which
satisfies the hypothesis.

On the other hand, for 9 < k < 133, both k& and 15k are in the
original set and at least one from each of the

133-9+1=125
pairs must be removed, so that the subset can have at most
1995 — 125 = 1879

elements.

Paper 11

1. Since both the line and the parabola pass through the origin, we

only have to determine their other point of intersection where x #
0. Eliminating vy, we have

(2sin 6 — cos 0 + 3)z* — (8sind — cosf + 1)z = 0.

Since
1
2sind — cosf + 3 = v/bsin (07 arctan5> +3>0,
we have _ 8sinf —cosf +1
¥ 2smf—cosf+3

Let . o

sinf = R

h

Then g

cosf Fpnrt
and we have 8+ 1

T st

Hence
2wt? + 2(x — 4t + (z — 1) = 0.

Since t is real, the discriminant is
4(z —4)? — 4(z — 1)2z > 0.

This is equivalent to (z + 8)(z —2) <0, so that 7.8 <z S 2. The
maximum value of |z| is 8. Hence the maximum distance is

/82 1+ 162 = 8+/5.

. The given equation may be factored as

(z — 1)(52® — 5pz + 66p — 1) = 0.

Hence one of its roots is 1.
Let the other two be v < v. Then

66p — 1
u+v=p and wv= 5
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. Let O be the centre of the circle and let L the point of tangency

Hence
25uv = 330(u+v) — 5
so that
(5u — 66)(5v — 66) = 4351 = 19 - 229.

Since u and v are positive integers, 5u — 66 = 19 and 5v— 66 = 229.
Hence u = 17, v =59 and

p=u+v="76.
of the circle with M N. Since we have ZAOE = /COF, /EOM =
/MOL and /LON = LFON,

2/AOFE +2/EOM +2/FON = 180°.

Hence
LFON =90° - LAOE — /EOM = /BOM.

A
H E
Q
M
I 0
r N
G F
C

It follows that
LAMO = /ABO+ /BOM = /COF + LFON = /CON.

Along with /M AO = LOCN, triangles M AO and OCN are sim-
ilar, so that

AM  CO

A0 ~ CN
or AM -CN = AO - CO.
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In the same way, we can prove that AQ - CP = AO - CO, so that
v _cp
AQ ~ CN’

Along with ZMAQ = LPCN, triangles M AQ and PCN are simi-

lar.

It follows that M@ is parallel to NP.

. We first prove that there is a monochromatic right triangle. Let P

and @ be any two points of the same colour and let PQRS be any
rectangle.

If either R or S has the same colour as P and (), we have a mono-
chromatic right triangle. Otherwise, any point on PS will form a
monochromatic right triangle with either P and Q or R and S. So
let (0,0), (1995a,0) and (0,1995b) be the vertices of a monochro-
matic right triangle T'.

Expand it into a rectangle R by adding (1995a, 1995b) as the fourth
vertex, and divide it into 19952 small rectangles of equal sizes, all
similar to R.

If any of them have three vertices of the same colour, then we have
a monochromatic right triangle similar to 7' and having side lengths

To55 the side lengths of T'.

Suppose this is not the case. Then (4,0), 0 < 4 < 1995, cannot
be alternating in colour as otherwise (0,0) and (1995a,0) will have
different colours.

Hence there exists a value 4,0 < i < 1994, such that (ia,0) and
((i + 1)a,0) have the same colour. Then (ia,b) and ((i + 1)a,b)
must both be of the other colour.

It follows that (ia, kb) and ((i + 1)a, kb) have the same colour for
0 < k < 1995. Similarly, there exists a value j, 0 <4 < 1994, such
that (0,b) and (0, (j + 1)b) have the same colour, so that (ka, jb)
and (ka, (j + 1)b) have the same colour for 0 < k < 1995.

This is a contradiction since (ia, jb), (ia, (j+1)b), ((i+1)a,jb) and
((i + 1)a, ( + 1)b) would all have the same colour.
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Olympiad Paper I

1. Let AH cut BC at D and let AB cut the circle at F. Then
LBFC = 90° = LADB. Hence BDHF is a cyclic quadrilateral,
so that AH - AD = AF - AB = AP2.

Let O be the midpoint of BC and let AO cut PQ at G.

A A

199596 81

B D C B o c

Then ZAPO = 90° = /AGP. Hence triangles APO and AGP
are similar, so that AP? = AG - AO. From AG - AO = AH - AD,
DHGO is a cyclic quadrilateral. Since ZHDO = 90°, we have
LHGO =90° = LQGO.

It follows that H lies on PQ.

2. Suppose a and b are positive integers such that a+b divides ab. Let

their greatest common divisor be d. Then a = dk and b = df for
some positive integers k and ¢ which are relatively prime. Hence
k + ¢ is relatively prime to k4.

However, d(k+ ¢) divides d?k¢. Hence k + ¢ must divide d, so that
k+£<d Sincea,be S, dk+4£) =a+b<99. It follows that
3<k+£€<9. The following 23 pairs of distinct positive integers
(a,b) in S have the desired property:

E+¢ (ab)
3 (3,6), (6,12), (9,18), (12,24),
(15,30), (18,36), (21,42), (24,48);

4 (4,12), (8,24), (12,36), (16,48);

5 (5,20), (10,40), (10,15), (20,30}, (30,45);
6 (6,36);

7 (7,42), (14,35), (21,28);

8 (2440);

9 (36,45).

We construct a graph where the 23 edges represent the above pairs
and the 24 vertices represent the individual numbers involved.

2=

@]

The twelve edges marked by double lines form an independent set,
that is, no two share a vertex. If we take any subset of S of size
k > 39, we will only be missing at most eleven numbers. Hence this
subset must contain both vertices of one of the twelve independent
edges, which means that it contains two distinct positive integers
a and b such that a + b divides ab.

On the other hand, the twelve vertices marked by squares form a
covering set, that is, every edge has at least one of them as a vertex.
If we remove these 12 elements from S, we will leave behind a subset
of S of size 38 in which a+b does not divide ab for any two distinct
elements a and b.

It follows that the desired minimum value is k£ = 39.
3. We have f(0) =0 by taking z =y =0, and
f(a®) = 2(f(2))*
by taking y = 0. This may be rewritten as
(@) = Ya(f(Vx)?,

showing that = and f(z) have the same sign. Let S be the set of
real numbers k such that f(kz) = kf(z). Clearly, 1€ S. If k€ 5,
then

ke(f(@))? = kf(a®) = f(ka?) = f(Vha)*) = Vha(f(Vha))?,
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which is equivalent to
(Vkf(@)* = (f(VEx))*.
By the sign consideration discussed above, we have
Vkf(z) = f(Vka),
so that ¥k € S. We claim that if b,k € S, then h+k € S. Indeed,
fh+k)z) = f(Vha)® + (VEz)?)
= (Vho+ VRa)((f(Vha)?
~f(Vha) f(VEz) + (f (Vz))?)

= (Vh+ VR)Ya(VR? — Rk + Vi) (/7))

= (h+k)f(z).
Since 1 € S, 14+1=2 ¢ 5. It follows that S contains all positive
integers. In particular, 1996 € S and f(1996z) = 1996(f(z)) for
all z.

Olympiad Paper II

. Let b be the number of concerts and A be the number of concerts

in which each pair of singers performs together. Counting the total
number of appearances of such pairs in two different ways, we have

8 4
A =b
() =)
or 14X = 3b. Since 3 and 14 are relatively prime, b must be divisible
by 14, so that b > 14. We now construct a diagram which shows
that b = 14 is sufficient.

2 3
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Represent the 8 singers by the vertices of a cube. The 14 concerts
are represented by the faces

(1,2,3,4),(5,6,7,8),(1,2,5,6),(3,4,7,8), (1,4,5,8),(2,3,6,7),
the cross-sections
(1,3,5,7),(2,4,6,8),(1,2,7,8), (3,4,5,6),(1,4,6,7),(2,3,5,8)

and the tetrahedra (1,3,6,8), (2,4,5,7).

. By the Arithmetic-Geometric Mean Inequality, we have

\/1+$()+x1+“'+$z‘41\/$1 + Zip1 + -+ Zn

<-(A4zotzi+-+za) =1

N =

for 1 <1 < n. Hence

n
T
;\/1+$0+$1+"'+$i—1\/iﬂi+xi+l+"'+l’n

For 0<i<m,since 0 <zg+x1+---+z: < 1, we may let
6; = arcsin(zo + @1 + -+ + Zn)-
Then 0 =6p < 6y <--- < bp, = 5. Now
cosf_1 = 1/1—sin®6;_;

= \/17*($0+$1+"'+$i;1)2
VIt o +a1 4+ Tim1y/Ti + Tir1 T F T

On the other hand,

r; = sinOi—sinei_l
~ geoglit O sineifgi—l
= 2c0s————sin——F—
L6, —0,_
< 2cosf;_1sin — 21 !

0; — i1
< 2cosf;—1 —T .
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1995/96 85

The last step follows from sinz < = whenever 0 < z < %. Finally,

k3
Ty
;\/1+$(]+w1+"'+xi—l\/£i+xi+l+"‘+$n

Set up a coordinate system with C at (0,0), A at (v/3,0) and B at
(0,1). Let D be any point on BC and let BD = d. Take E on AC

such that CE = Y34, and take F on AB such that BF = 1 — £.
By Pythagoras’ Theorem,

DE?* = (1—-d)? + <—‘/§>2 e _2dt1.
By the Law of Cosines,
DF? = &+ <1 - g)z —2d (1 - g) cos 60°
= ng +2d—1

and

2
EF? = <\/§—@> +(1+

N R,

>2
3d d
o (V3= Y39 (119 os00
2 2
7
= —d®4+2d—1.
1 +2d—1
Since d can take any value from O to 1, this means that we can

always inscribe an equilateral triangle DEF in ABC from any point
F on AB such that £ < BF < 1. Now

7 7 4 3
~d®+2d—1=—-(d—=)2+ 2.
4 + 4( 7) + 7

It follows that the minimum value of DE = EF = FD is \/g . Let

P be the point on AB with y-coordinate \/g and @ be the point
on AB with z-coordinate \/% . Then P lies on the segment B(Q.

Let XY Z be any triangle inscribed in ABC, with X on BC, Y on
CA and Z on AB. If Z lies on the segment BP, then

3
ZY > /<.
*\/;

If Z lies on the segment AQ), then

3
ZX >4/ =.
-7

1

Suppose Z lies on the segment PQ. Then 5 < ZB < 1. Hence
we may inscribe an equilateral triangle DEZ in ABC as before.
Now the y-coordinate of Z is greater than that of D, and the z-
coordinate of Z is greater than that of E. If X lies on the segment

CD, then
XZ>DZ> \/é

If Y lies on the segment C'E, then

3
BZ >4/
"\/;

If X lies on the segment BD and Y lies on the segment AE, then

XYZDEZ\/g.

Hence \/g is the desired minimum.

YZ

\%
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1996 /97
Paper 1.

Section 1. Questions with Multiple Choices.
1. Eliminating z from
9-9(y—1)? =922 =9 (y+1)?

we have
0=8y> — 20y +8 =402y — 1)(y — 2).

When y = 2, z = 0. When y = 1, 2 = /3. It is easy to verify
that these three points determine an equilateral triangle.

2. Let P, denote the product of the first n terms. Since 1536 =23,
we have ajg = —3, a11 = % and a1o = —%. Hence

|Pﬂ <'--<|P11‘ > |P12|> ‘P13|>---.

Since Pyo and Py are negative while Pz = Z Py > 0, P, is maxi-
mum when n = 12.

3. For any odd prime p = 2k + 1, take n = k2. Then
ViTn+va=vE+1Z+VEE=k+1+k=p.

4. Let y = —z. Then we have 0 < y < 3, a1 = cos(sinmy) > 0,
az = sin(cosy) > 0 and ag = cos(1 — y)m < 0. Since

1
sinwy 4 cosny = V2 sin (y+ Z) T<V2< g,
we have 0 < cosmy < § —sinwy < 5. It follows that
L (T
a3 < 0 <ag <sin (5 7smary) =a-

5. On [1,2],
r =z 1 5/1 3, 5
=2 24> -)=:
9(z) 2+2+%2,3( 4> 5(V2),

with equality occurring at § = ﬁ or z = ¥/2. Hence the minimum

value of ) )
e+ (-5)
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also occurs at z = +/2, which is not an endpoint. It follows that

V2-L—o
2
so that
p=-2(V2).
Moreover, the minimum value is
P 3.
- = 5(V2),
so that 3
q = 5(\75) + \B/Z
Note that 1
F=1-5(V2)+ V4
while 5
f@=4-5(2)+ V.
Since

F2) - f1)=3-2(Y2) >0,

the maximum value of f(z) on [1,2] is
5 3
4- (V2 + V4.

6. Let O be the centre of the small sphere, @ be the centre of the large
sphere, and C be the point of intersection of the axis of the cone
with the horizontal plane II passing through @. Since the large
sphere is tangent to the top face of the inverted cone, the portion
of the axis above C has length 3. The portion below O has length
2v/2. Hence OC = 3.

Since OQ =2+3 =35,
QC =+/52—32 =4.

Now the two tangents on I from C to the large sphere form an
angle 6 such that
.0
sing = .

Since % < 8 <1, we have

90° < 6 < 120°.
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The total number of large spheres that can fit is less than

360°
28y
90°

but can be as large as
360° _
1200 7

Hence there is room for 2 more.
Section 2. Questions requiring Answers Only:

1. Since
1

logs 10 = ———,
= logz

the inequality defining the set is equivalent to
1<logz <2

or
10 <z < 100.

Tt follows that the set has 90 elements and 2°° — 1 non-empty sub-
sets.

2. In the complex plane, let O, C, Z; and Z2 be represented by 0,
i, z1 and zz respectively. Then Z; and Z3 lie on the circle with
centre C and passing through O.

- T
Since argz; = §,

1002, = g = /02,0,

so that triangle COZ; is equilateral. Since the real part of Z1z2

is 0, argza — T = T or 3F, so that argz; = 2F or 3F. The latter
is rejected since Zs is above the z-axis. Hence /C0Z; = % and

171023 = %, so that

0Zy = /2,25 — 027 = /3.

It follows that

2 2
2 :ﬁ(cos% +7Zsin-7—r) :—ﬁ—kgi‘
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3. Let O be the origin and C be the point [2,0]. For any point P on

the polar curve,

CP? = OP?*+00?-20P-0OC cosf
= (1+cos8)®+4—4(1 +cosf)cosd

16 1\?
= ?—3<cosﬁ+§) .

The maximum value of CP is %,

Now the region swept over is a circle of radius %. Hence its area

occurring at 6 = arccos(—3).

1o 167
18 3 -

. Let the common base be an equilateral triangle ABC with side

length 2a. Let P and @ be the other two vertices. Then all other
edges have a common length b. Let O be the centre of ABC.

Then OA = &@ so that

2
OP = \/PA? — OA? = \/@4

4a
2 _ =
PQ=24/b 3

Let M be the midpoint of AB. Then PM = QM.

Let N be the foot of perpendicular from A to PB. Then AN =
CN. Moreover,

Hence

PM PB b

AN ~ AB 2
The dihedral angle ZANC between two faces on the same side of
ABC is equal to the dihedral angle /PMQ between two faces on
opposite sides.
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Hence the isosceles triangles ANC and PMQ are similar to each
other. It follows that

2P -4 po PM b

2a T AC T AN T 24’
Hence ) ,
4a b
- ==
3 4
so that A
a
b= —.
3

Since b < 2a, we have b = 2 and 2a = 3. Hence PQ =24 —2 < 3,
and the greatest distance between two vertices is AB = 3.

. If only three colours are used, each must be used to paint a pair

of opposite faces. There are (g) = 20 ways of choosing the colours,
and it does not matter how they are applied. If only four colours
are used, two must be used to paint two pairs of opposite faces.
They can be chosen in (g) = 15 ways. Two more colours are then
chosen, in (3) = 6 ways.

Since it does not matter how the colours are applied, the number of
ways in this case is 15 X6 = 90. If five colours are used, one must be
used to paint a pair of opposite faces. It can be chosen in 6 ways.
The other four colours can be chosen in (i) = 5 ways, and divided
into two pairs in 3 ways, each pair being used to paint a pair of
opposite faces. The number of ways in this case is 6 X 5 x 3 = 90
also.

Finally, suppose all six colours are used. They can be divided into
three pairs in 5 x 3 = 15 ways, each pair being used to paint a pair
of opposite faces. It is only when we come to the last pair that
we have to make a distinction which colour is used on which face.
Hence the number of ways in this case is 15 x 2 = 30 ways. The
total number of ways is therefore

20 + 90 + 90 + 30 = 230.

. The four lattice points (0,0), (199,199), (398,0) and (199, —199)

obviously lie on the circle. Suppose (z,y) is another such lattice
point. Then
(z —199)? + % = 1992
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Note that 199 is prime. Hence (z — 199,y,199) is a primitive
Pythagorean triple. It follows that

199 = m? + n?
for some integers m and n.

However, we have a contradiction since 199 = 3 (mod 4). Hence
there are only four lattice points on this circle.

Paper 1T
1. From a1 = 2a; — 1, we have a; = 1. From
an = (2a, — 1) — (2ap-1 — 1),

we have an, = 2a,_1 so that a, = 2!, Summing by = ax + bk
from k =1 to n, we have

bn+1:2an41+b1=2"+2.

Hence
bi+by+---+by,=2"—142n.
2. The inequality
1
(z + A)? +(I+B)2 > 3
may be rewritten as

2 B2_1
xz+(A+B>z+8AJfG—zo.

This holds for all real numbers z if and only if

2 2
-1
(A4 By ST 1 +iB <0,
which is equivalent to
1
2
_ > 2.
(A-B7 27

Hence it is sufficient to deal with

| =

(3+ 2sinf cosf — asinf — acosf)® >
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Consider first the case 3+ 2sinf# cosf — asinf — acosf > % Then

3+2sinfcosf — L
sinf + cos @
sin29+251n900s9+00529+%
sin @ + cos 6

1

. 3
= (sin® +cosf) + 2 Sin0 roosh

By the AM-GM Inequality, the minimum value of the last expres-
sion is 2 % = /6. Hence a < /6.
Consider now the case

1
3+ 2sinfcosf —asinf — acosd < —3

Then

5 1
> (sinf —
@ 2 (sinf + cos0) + 2 sinf + cosf

The minimum value of the function

51
f(a:)—x+2 p
oceurs at = 4/3.
Now
L (sin6 + cos0) '(9+”)
—=(S: cOs = sin — 1.
NG} 1
For0< 6<%,
i§sm(0+z>§1
2 4
Hence

1 <sind+ cosd < /2.

It follows that the maximum value of

5 1
ing -
(sin cos ) 2 sinf 4 cosf

occurs at sinf + cosf = 1, so that @ > 7.

In summary, either a < /6 or a > z
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3. Let O be the excentre opposite C and @ be that opposite B, and
let the extension of PA intersect BC at D.

P
G
H
0
4 Q
E B D CF

Note that we have
[PGA =180° — LAGE = 180° — /GEC.

Applying the Law of the Sines to triangle PG A,
AG AP AP
sinAPG  sinPGA ~ sinGEC’
Applying this law to triangle PDE, we have

DE __PD
sin APG ~ sinGEC’

Hence pE_PD
AG AP’
In the same way, we can prove that
DF _FPD
AH = AP’
so that DE _ DF
AG T AH
Now triangles AGO and AHQ are similar, so that
AG A0
AH — AQ°
Hence DE &
DF  AQ’
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Since OF and QF are parallel to each other, they are also parallel
to AD. It follows that AP is perpendicular to BC.

. Let a and b be two mutual acquaintances. Let A be the set of

mutual acquaintances of ¢ and B be that of b. If there exists
¢ € AN B, then a, b and ¢ form a desired trio. Hence we may
assume that AN B = ().

Since |A| > [%] and |B| > | %], we may assume that |4] = | 3]
and either |B| =n — |4] or

|Bl=n—|4]-1=[3].

In the former case, suppose there exist two mutual acquaintances
in A. Then they form a desired trio with a. If no two mutual
acquaintances exist in A, then we must have two in B. They form
a desired trio with b. In the latter case, there exists c ¢ AU B. If
we still have two mutual acquaintances in A, or two in B, we can
conclude as before.

Suppose they do not exist. Then we must have two mutual ac-
quaintances in A U {c} as well as in B U {c}. This means that c is
a mutual acquaintance with some a; € A and some by € B. Since
n > 6, c has at least 3 mutual acquaintances.

We may assume that a third one is az € A. Now b; is not a
mutual acquaintance with anyone in B. Hence b; must be a mutual
acquaintance with all but one of the others, which must include
either a; or as. By symmetry, we may assume that it is a;. Then
a1, by and ¢ form a desired trio.

Olympiad Paper I

. For positive real numbers m and h,

12
(m+ 1)+ (m -2 =>"(1+(-1)" <12)m12~khk
k=0

is an increasing function of h. If we have

1
——= <= <z < V3,

V3

we can increase the value of

12, 12 12
"+ ®y" 4+ Tiggr
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without changing the value of
1+ T2+ -+ T1997

by decreasing z; and increasing z; by the same amount, until either
the smaller one becomes —\% or the larger one becomes V3. It
follows that if
i +ap’ o wider

is maximum, then at most one of the numbers is strictly between
—% and /3. Let there be u copies of »%, v copies of v/3 and w
copies of numbers in between. We have already proved that w =0
or 1, and if w = 1, let that number be . Then v+ v+ w = 1997
and

u
—— +V3v + wt = —318V3.
V3
Eliminating u, we have
4v + (V3t + 1w = 1043.

Tt follows from
0< (V3t+1)w<4

and
1043 = 4(260) + 3

that v = 260, w = 1 and ¢t = %7 so that u = 1716. Thus the
maximum value of

12, 12 12
71T+ Ty + -t B1ger

12
1
—— ) uw+(V3)%0+1'? = 189548.
( \/§> v8)

. Instead of reflecting P across the sides, we simply project it onto

the sides since the two quadrilaterals so obtained are homothetic
to each other.

(a) Since
LPAsA1 =90° = LPDy Ay,

A1A2PD, is a cyclic quadrilateral, as illustrated by the dia-
gram on the left. Hence

LPA1Dy = [PA3Dy =--- = LPAig97 D1997-
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1996,/97 97

On the other hand,
LPA1By = [PDyAy = /PC3D3 = /PDy Ay

=/PAsBs = - = /PAgBg = --- = /P A1997B1g97.
It follows that

L{B1A1 Dy = [B5A5Ds = - - = /B19g7 A1997 D1907.

The same applies to the other three angles of the quadrilater-
als. Thus A1B1C1 D1, AsBsCsDs and AgBoCyDg are similar
to A1997Blgg701997D1997 via spiral homothety from P.

’ljhe diagram on the right, generated by the point of intersec-
tion of the outermost kite, shows that A;B;C;D; need not be
similar to A1997Blgg701997D1997 for i = 2, 3, 4, 6, 7, 8, 10, 11,
12.

A1

(b) As in (a), we have
ZBlAlDl + LD1C1 By
= [BgA3D3 + /D3C3B3

= [/B11A11Dn+ /D11CiBny

£ B19o7 A1997 D1997 + £ D1997C1997 B1ogr.

If A1997B199701997D1997 is cyclic, then so is AzBlClDz for
i =1,3,5,7,9,11. The same counter-examples in (a) show
that this is not necessarily so for i = 2,4,6,8,10,12.

3. Solution 1

Let S be the set of positive integers n with the desired property.

For such a 3 X n array, let the sum of each row be 6s and that of

each column be 6¢. Then

3n(3n+1)
2

so that n(3n +1) =125 and 3n + 1= 4¢.

Hence n = 0 (mod 3) and n = 1 (mod 4), and it follows that n =9
(mod 12). We prove that 9 € S. Let ay = (1), f1 = (2) and
1 = (3). Consider the 3 x 3 array

18s = = 6nt,

a1 B1+6 v +3 1 8 6
fi1+3 Y1 a;+6 = 5 3 7
y+6 a+3 o 9 4 2

Note that 3 ¢ S since the row sum 15 is not a multiple of 6. Let
as = (1,8,6), Bz = (5,3,7) and vz = (9,4,2) be the rows of this
magic square. Consider the 3 x 9 array

a3 Bs+18 349
Bz +9 V3 as + 18
v3+18 az+9 Bs

1 8 6 23 21 25 18 13 11
=]14 12 16 9 4 2 19 26 24
27 22 20 10 17 15 5 3 7

It is casy to verify that it has all the desired properties. We claim
that if m € S, then 9m € S. It will then follow that since 9 € .5, we
have 9% € S for all positive integers k, so that S is indeed infinite.
To justify the claim, let &m, Bm and vm be the rows of a 3 X m
array with all the desired properties. As before, we first construct
a 3 x 3m array

Qam, B +6m v, +3m
Bm +3m Ym Qm + 6m
Ym +6m oy +3m Bm.

It has all the desired properties except that the row and column
sums are not divisible by 6. Let &t3m, B3m and yam be the rows of
this array. It is easy to verify that the 3 x 9m array

Q3m Bam +18m  Y3m + 9M
Bam +9m Yam a3m + 18m
Yam + 18m  0gm + 9M Bsm
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has all the desired properties. Thus the claim is justified.
Solution 2
Let S be the set of positive integers with the desired property. As
in Solution 1, we focus on those of the form 12k + 9. We add
the condition that & = 2 (mod 9), the reason for which will soon
become clear. We first construct the following 3 x (4k + 3) array

1 4 7 10
6k+5 12k+8 6k+2 12k+5
12k+9 6k+3 12k+6 6k
12k—2 12k+1 12k+4 12k47
6k + 11 5 6k +8 2
6 6k+9 3 6k+6
Each column has sum 18k + 15. The sums of the three rows are
(4k +3)(6k+4), (4k+3)(6k+5) and (4k + 3)(6k+ 6) respectively.
Let ¢ = 2£55_ Since k = 2 (mod 9), £ is a positive integer. The
2(-th term in the first row is
4k +4
14302 1)= T+
while that in the third row is
16k + 13
6k+3-30—1) = T*
Switching these two terms will not change any column sum, but will
change all three row sums to (4k + 3)(6k + 5). Let qugis, Pakts
and 7y4x+3 be the rows of this adjusted array. It is easy to verify
that the 3 x (12k + 9) array
Qi3 Bakts + 6(4k+3)  Yarrs +3(4k+3)
Bakts + 3(4k+3) Vakt3 ount3 + 6(4k+3)
Yak+3 + 6(4k+3) itz + 3(4k+3) Bar+t3
has all the desired properties.
Olympiad Paper II
1. Let PF intersect the circle again at E’ and let G be the foot of

perpendicular from @ to PF. Now LADC = /PBC since ABCD
is cyclic. Let R be the point on PQ such that ZQRC has the same
measure.
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Then both PRCB and QDCR are cyclic quadrilaterals. It follows
that
PQ-PR=PC-PD=PE -PF

and
PQ-QR=QB-QC=QF2
Addition yields

PQ(PR+QR) = PE' - PF + QF~
Hence
PE' - PF = PQ? - QF? = PG — GF? = PF(PG - GF).
It follows that PE’ = PG — GF or
GF = PG - PE' =GE'.

This means that GQ passes through the centre of the circle and E’
is symmetric to F with respect to GQ. Hence E' = F and P, E
and F' are indeed collinear.

2. We first give an example where M = 8. Take f(i) = 3¢ — 2 (mod
17), with  and 3i—2 both in A. If f(¢) = f(j), then i = j (mod 17),
so that f is indeed a bijection. Iteration yields f ™) () = 37 —3"+1
(mod 17). Hence ™ (i+1)~— f™ (i) = 3" (mod 17). In modulo 17,
31=3 32=-8, 33=-7,3"=-4,3=53=-23=-6
and 3% = —1. Hence M =8.
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Now let f : A — A be a bijection with the largest possible M.
Let PoPi...Pig be a convex 17-gon. For any m, 1 < m < M,
if ™) +1) = a and f™ (i) = b, we connect P, and P,. Since
a—b# +1, P, P, is a diagonal. For each m, exactly 17 diagonals are
drawn, and no two are identical. We claim that the diagonals are
distinct for different values of m. Suppose on the contrary there
exist p and ¢, 1 < p < ¢ < M, such that f® () = f9(5) and
FP @ +1) = f@(j + 1) for some 7 and 7.

From f®)(i) = f@(j) = f@(f@P)(j)), we have FOP)(j) = i
(mod 17). Similarly, f@ P (j +1) =4+ 1 (mod 17). Since 1 <
q —p < M, this contradicts the definition of M. Thus the claim is
justified. Now there are M —1 values of m satisfying 1 <m < M, so
that 17(M —1) diagonals are drawn. The total number of diagonals,
on the other hand, is 17-7. From 17(M —1) < 17-7, we have M < 8.

. Solution 1

Note that 0 < ag < ag—1 + a1 < ag—2 + 2a1 < -++ < kay for any k.
If n = m, then

n
an < na; =may + (E — 1) Am-

Suppose n > m. Then

Gn G, < An—m + Gm am
n m n m
MAp—m — (N — M),

mn
_ n—m{an-m am
n n-m m)’

If n —m > m, we can iterate this process. Eventually, there exists
s, 1 < s < m, such that

n a_m<£(%_“7n)

n m ~ n\s m

Since as < sa1 and a; — %= > 0, we have
an  am _ § (1 am) <m(a am)
o tmeZ (ot ~(a; - ™).
n m ~n n m

This is equivalent to

n
an < may + (—~ — 1) Q-
m
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Solution 2

Note that 0 < ap < ak—1 +a1 < ax—2 +2a1 <--- < ka; for any k.
Let m be fixed. We drop the condition n > m and use induction
to prove that the desired result holds for all n. For n =1, we have

1
a1§ma1+<——1>am
m
is equivalent to a, < maq, which we have already proved. Suppose
n
angma1+<*—1)am
m

for some n > 1. Consider a,y1. Suppose n < m. Since we have
ant1 < (n+1)ay and a1 — %= >0,

2

an+1 a

m
n+1 m

m Qi
< g _0m < (a _ ‘) )
=T S a1\
This is equivalent to

n+1
ant1 < mai + <—m - 1> G-

Suppose n > m. Then n+1—m > 1 and ant1 < Gnt1-m + Am-
By the induction hypothesis,

n+1l—m
ant1 < may+ (———m - 1> QA+ Gm,

n+1
= mar+{———1)am.
m
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1997/98
Paper 1.

Section 1. Questions with Multiple Choices.

1.

We have 23 =b—a, z4 = —a, 5 = —b, zg = a — b, z7 = a and
zg = b. Hence for all n > 1, zp46 = x,, and S, = 0. It follows
that z190 = 24 = —a and S99 = S4 = 2b — a.

- Let G be the point on BC such that €& = A. Then EG is par-

allel to AC and F'G is parallel to BD. Since AC and BD are
perpendicular, /EGF = 90°. Now the angle between EF and AC
is ZGEF while the angle between EF and BD is /GFE. Their
sum is 180° — ZEGF = 90°.

. Let n be the number of terms, a be the first term and d the common

difference. The sum of all terms is
n(n—1)

na + 2

d=972,
so that

=tn(2a+ (n—1)d) = 2 x 972
Since 97 is prime and n > 3, n = 97, 2 x 97, 972 or 2 x 972, If
d > 0, then

2x 972 > n(n—1)d > n(n — 1),

and only n = 97 is possible.
This leads to (n,a,d) = (97,49,1) or (97,1,2). On the other hand,
if d = 0, then an = 972, and this leads to (n,a,d) = (97%,1,0) or
(97,97,0).

. Note that /22 + y? + 2y + 1 is the distance from any point (z,y)

on the curve to the point (0, —1). The distance from (z,y) to the
linex—2y+3=0is
|z — 2y + 3|

V5
It follows that the ratio of these two distances is the constant 4/ %

In order for this to be an ellipse, we must have 4/ % <lorm>5.

. The graph of f(z) is a parabola which opens up and has z = % as

its axis. Hence f(x) increases as |z — §| increases. Note that

T T om 2t 3w 51
< =< < =< = J— —_ —
1 Jéj 3 2<’y<3<4<§<6

™

I<a<
*<%
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Hence
‘Y— < <ﬂ**<—<(s**< <|x—<|,

so that

fle) > £(8) > £(B) > F(v)-

. Let the lines be £y, ¢1 and £3. We may choose a coordinate system
so that £y lies on the plane z = 0 and ¢; lies on the plane z = 1.
Now £, has at most two points with z-coordinates equal to 0 or 1.

Let P be any other point on £2 and let II be the plane determined
by P and £y. The planes IT and z = 1 intersect at a line £, which is
not parallel to £ as otherwise £y and ¢; would be parallel to each
other. Hence ¢; intersects IT at a point Q.

Since P and @Q have different z-coordinates, PQ is not parallel to
£o, and these two coplanar lines intersect at some point R. Now
PQR is a line with P on 43, Q on ¢; and R on £g.

Section 2. Questions requiring Answers Only:

1. Let f(t) = t3 + 1997t. Then it is an increasing function. Since

fe-1)=-1=Ff(1-y)

we must have z — 1 =1 —y so that z +y = 2.

2. The 2-coordinate of the right focus is 4/12 + (v/2)2 = /3.

From

vy -L -,

we have y = &2 so that the length of the vertical focal chord is 4.
This is the minimum length of any chord whose endpoints are on
the same branch. By symmetry, one of the three lines is either the
vertical focal chord or the horizontal axis. In the latter case, we
must have A = 2, the distance between the two vertices. However,
there are no other chords of this length. In the former case, we have
X = 4, and there are two other chords, with endpoints on different
branches, that have this length.

3. Let z=7(cosd + isinf). Then

2 1
:4r2+400829+—2=1.
T

1
2z + —
z
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This holds if and only if the two roots z; and z2 of the quadratic
equation

42 — (1 —4cos20)x +1=0
are both positive. Assume for now that they are real. Then they
have the same sign as 2122 = i > 0. In order for this sign to be
positive, we need
1
0<zy+29 = Z(l —4c0s20) or 1—4cos26>0.
Now the discriminant of the quadratic equation is
(1 —4cos260)% — 42.
In order for it to be non-negative, we must have
1—4cos26 >4 or 1—4cos26 < —4.
From the preliminary discussion, the latter is to be rejected. Hence
—2 > cos20. Tt follows that the range of § = arg z is
T 1 eco 3w " 1 3
——— arccos —, —+ — arccos —
5 T ATCe0s 4, ot S arccos 7
U 3n 1a00053 37r+1 3
g T3 ar 1) g Tgarccos .
4. Let D be the midpoint of AB. Then D is the circumcentre of ABC.

Since SA = SB = SC, D is also the projection of S onto ABC.
Moreover, O lies on the segment DS. Since OS = OA = OB, O is
the centre of the equilateral triangle SAB.

Hence 73
1 3
DO=-DS=Y2,
o} 3DS 3

. There are 2% = 8 ways for the frog to make the first three moves.

Two of the ways end in D. In the other six ways, the frog will
make two more moves, in 22 = 4 ways, since it cannot get to D on
the fourth move. Hence the total number of ways is 2 +6 x 4 = 26.

: ; 1 1
. We are comparing the logarithms of % +2, yz+ 3 and ;- +y. Let

m denote the largest of them, so that M = logm. We have

2 T 1 1 1
m2(—4+z)|—+y|=—+4yz|+{-+z] >4
Y Tz Yz T

Hence m > 2, and when z =y = 2z = 1, m = 2. It follows that
M =log?2.

1997/98
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Section 3. Questions requiring Full Solutions:

1.

(a) Note that

2 T
cos” — =
12
Hence
cos z siny cos z

This is achieved by

(b) Note that

Vs
rT=-—

2

Hence

coszsinycosz

(sin(z + y) — sin(z — y)) cos z

1
2
1.
< ism(ery)cosz
1
= ECOSQZ
1 .7
< = —
S 291
2443
= T
sin57rcoq—
€891 P9 P 1g
_ 5T T
= gsing5coso
= Ecoszlﬂ—2
2443
= o
Vs Vis ™ i
<X _ (Zi)=1,
W3-+ "3

= cosz(sin(y + z) + sin(y — z))

= coszsin(y + z)
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This is achieved by

coqzsinlcosﬁ “1g 7T—1
SRR T 1M Ty

(a) Let P(z1,41), Q(z2,y2) and R(z3,ys) be three points on the
same branch of the hyperbola zy = 1. We may assume that
0 <z <2 <23, 50 that y1 > y2 > y3 > 0. Hence

PQ? + QR? ~ RP?
= (z1—22) + (32 — 73)% — (x5 — 21)?
+1—y2)® + (Y2 —y3): — (yz —11)?
= 2(zs — 21)(z2 — z3) + 2(y2 — ¥1) (Y2 — ¥3)
< 0.

Hence PQR is an obtuse triangle, and cannot be equilateral.

(b) Let P(z1,v1), Q(z2,y2) and R(—1,—1) be the vertices of an
equilateral triangle, with 0 < 21 < z2. Then the slope of PQ
is —ﬁ. Hence the equation of the altitude from R to PQ is

Since it passes through the midpoint of PQ, we have

1/1 1 o T1 + T2
2<xl+z2>+1—$1$2<—2 +1),

or equivalently

(1 — 271272)((1}1 + 172)(1 + ZLZQ) + 2.’1)11’2) =0.

Since the second factor is positive, we have z12z2 = 1 or 75 =
%. Hence P and @ are symmetric about the line y = 2. Now

the slope of PR is equal to tan 75° = 2 + /3. Solving zy=1
and

y+1
=2
P +3,

we have x = 2—+/3 and y = 24++/3. Hence the coordinates for
P are (2— /3,2 + /3) while those of Q are (2+ /3,2 — V3).

3. We have

S=ai+at+astatas=a(l+q+¢ +¢+q°

where ¢ = 22. On the other hand,

ar”

1 1 1 1 1 4
5:4(_+,+_+;+_> =—(1+q++q +d).
a1 az as aq as a1q

! 14+g+@+q°+4* =0,
then ¢°® = 1. Hence |g| = 1, so that
la1| = las| = las| = laa| = |as],

which means that the points representing them all lie on some circle
centred at the origin. Suppose

1+q+a*+¢® +¢* #0.
Then a?q* = 4 or ag = £2. Moreover,

1

1 5
St =+l4g+q =+,
@ q 2

Letx:q+%. Then
S
x2+x—13F§:0-

Let s
f(a:):x2+z—1$§~

Since |S| < 2, we have

and s

f2)=57F 3 > 0.
Hence both roots  satisfy —2 < z < 2. For each of these roots, the
equation g% — zg + 1 = 0 has discriminant 2° — 4 < 0. If x = -2,
we have repeated root ¢ = —1 and |g| = 1. If || < 2, the two roots
are conjugate imaginary numbers with product 1, so that again
lg| = 1. In ecither case,

lai| = laz| = las| = |ad| = |as| = 2,

and the points representing them all lie on the circle centred at the
origin with radius 2.

<
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1.

2.

Paper II

If the common tangents at S and 7' are parallel, then S, O and T'
are collinear. It follows that N, S and T will not be collinear, and
OM will not be perpendicular to M N if the two smaller circles are
not of the same size. Hence we may assume that these two tangents
meet at some point K. Then OK is a diameter of a circle passing
through S and T'. Moreover, we have

LSMT = /SMN + /NMT = /NSK + /NTK.

We claim that M, N and K are collinear. Otherwise, suppose the
line KM intersects the first circle again at Ny and the second circle
again at Nj.

Then
KM-KN; =KS8%*=KT?=KM-KN,,

which implies that N; and Ny coincide at N. Suppose S, N and
T are collinear. Then

LSMT + /SKT = /NSK + /NTK + LSKT = 180°.

Hence M also lies on the circle with diameter OK, so that OM is
perpendicular to M N. Conversely, suppose OM is perpendicular
to MN. Then M also lies on the circle with diameter OK. Hence

/NSK + /NTK+ LSKT = /SMT + LSKT = 180°,
so that S, N and T are collinear.

n n n
2
We have E zl -k = g y2 —y2 and E Z;Y; = ToYo. Then by
i=1 i=1

i=1
Cauchy’s Inequality,

n 2 n n
sisd = (z y) < (zmz) (ny) |
=1 =1 i=1
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n n
If 22 > sz, then yg > Zyiz, but these contradict the above
i=1 i=1
inequality.
n
Hence xg < fo is a necessary condition. Conversely, suppose it
i=1
holds.
n
If 22 = fo, we can simply take y; = z; for 1 <4 < n.
i=1

n
Suppose 2 < fo Let a® > 0 be the difference. Since not all

i=1
z; = 0, we may assume that z,, # 0. Then we can take y; = 0 for
1<i<n—2,

[e57%

ATn—1
R ey Nl
Tp-1 + Tn Tn—1 + o
n

Hence z2 < 22 is also a sufficient condition.
0 i
i=1

and yp, = —

. We first construct an example to show that k£ > 97. Partition the

array into four 25 x 25 subarrays. In each, set 25 entries equal
to 0, with no two in the same row or the same column. Set the
remaining entries equal to i. Then the sum of each row of the
whole array is exactly 1.

After rearrangement, the one hundred 0s sink to the bottom 4 rows.
The sum of the entries in each of the first 96 rows is % >1. It
follows that k > 97. We now prove that k = 97. Let the entries
of the 97-th row after rearrangement be z;, 1 < j < 25. We wish
to show that their sum is at most 1. Now the bottom 3 rows after
rearrangement contain among them entries from at most 75 rows
before.

Hence there is an original row such that each entry y;, 1 <7 < 25,
is in the top 97 rows after rearrangement. Then z; < y; for 1 <
j<25 sothat z1 +za+ -+ oos <1+ Y2+ +yes < L
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Olympiad Paper I

1. Solution 1

Let the incircle of triangle ABC touch BC at X, CA at Y and AB
at Z. Let D be the midpoint of BC and F be the midpoint of AB.
Then

V20I = AB- AC
= (AZ+ZB)— (AY +Y0)
= ZB-YC
= XB-XC
= (%BC + XD) - (%BC ~ XD)
= 2XD.

Hence O = v/2X D. Since XD is the projection of OI onto BC,
the angle between OI and BC' is 45°. Since ZABC = 45°, OI is
either perpendicular or parallel to AB. In the first case, Z and F
coincide. By symmetry, AC = BC.

B D X C

It follows that we have ZCAB = /ABC = 45°, so that sin A = \%
In the second case, as illustrated in the diagram above, let r be the
inradius and R the circumradius. Then ZAOF = /ACB, OF =

I1Z =r and AO = R. Hence

cosC =

1097/98 111

3 LT
= 2sin% <cos (C — ?) — sin §>

sin(%—C) +sin(C—%)+cos£—1

= cosC +sin (C— %)

1
t "
Hence sin(C — ) =1— ﬁ and

sinA = sin(z—o— 7*0))

Il

3

w
e
N

|

Q

Se—

i
=
|
12}
=)
[N
~~
s
|
Q
S—

Solution 2
Let = be the inradius and R be the circumradius of triangle ABC.
By Euler’s Formula and the Law of Sines,
2(R?—2Rr) = (V20I)?
(AB — AC)?
4R?(sin C — sin B)?.

Also,

- &%C;C_Amg

R(v2 —1)(sinC + sin 4 — sin B).

Il

It follows that

142u6—1)GmC+QnA—i%>:2<$n0—i%>a

Since 3 1
T .
; —gin| > —A) = —=(sin A+ cos 4),
sin C sm< 1 ) \/§(
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we have
1-(2-V2)((V2+1)sinA +cos A — 1) = (sin A + cos 4 — 1)2.
This is equivalent to

(V2sin 4 - 1)(v2cos A — v/2+1) = 0.

Hence either sin A = % orcosA=1-— ﬁ The latter yields
. 1\? 1
sinA=4/1—(1-—=] =4/+v/2-=.
( \/5) 2

. We first prove that the upper bound holds for any 2n distinct pos-

itive integers satisfying the hypothesis. Note that we must have
a; < b; for some j, 1 < j < n, so that ?ijb, > 1. Tt follows that

aj

n

a,;—bi o sz’
Zaieri - Z<1_ai+b')

i=1 i=1

2b;
= n-
;ai‘l’bi
aj +b;
> n-—1

For 1 <4 < n—1, choose a; = 2Mi and b; = 2i where M is a
sufficiently large integer. Then

a; — bi _ M—-1 __ 2

a; + b; M+1 - M+1

Choose
an=(M—1)’n(n—1) and b, = M(M —1)n(n—1)
so that
@mtast-ta=M" —-M+Dnn—1)=by+by+-+by.
Then

"N a;— b
L:(n71)<1—i>— LI
Lt M+1) 2M—1

Since
1 S 2(n—1) 1
1998 M+1 + 2M -1

when M is sufficiently large, we have the desired lower bound.
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3. Solution 1

Since S contains 49 even numbers, a subset with n < 49 elements
may consist only of even numbers, and will not satisfy the desired
conditions. It follows that n > 50. We now prove that any subset
T with 50 elements contains a subset A of size 10 which satisfies
the desired conditions. Let e denote the number of even elements
in T. For any odd number z in S, let f(z) denote the number of
even elements in S which are not relatively prime to x.

In particular, if « is prime, then

fo) = | 2],

x

We claim that if f(z) < e —9 for any odd number z in T', then
the subset A exists. This is because we can take z and 9 of the
e — f(z) even numbers in T relatively prime to z to form A. Thus
the claim is justified.

Now in § there are f(3) = 16 odd numbers having 3 as the smallest
prime divisor. There are f(5) —2 = 7 odd numbers having 5 as the
smallest prime divisor, the adjustment —2 reflecting the exclusion
of 5-3 and 5- 32

Similarly, there are f(7) — 3 = 4 odd numbers having 7 as the
smallest prime divisor, and only 1 odd number having p as the
smallest prime divisor for any p > 7, namely, p itself. We consider
five cases.

Case 1. e > 25.
For any odd number z in T', we have
f@)<f(8)=16=25—-9<e—~9.
The desired conclusion follows from our earlier claim.
Case 2. 16 <e < 24.
The number of odd elements in T is at least
50—-24=26>1+16+7,

the first term in the sum accounting for the number 1. Hence T'
contains an odd number z whose smallest prime divisor is at least
7. Tt follows that

f@) <M =T=16-9<e—9,
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and we may appeal to our earlier claim again.
Case 3. 10 <e < 15.

The number of odd elements in T is at least
50—-15=35>14+164+7+44+6-1.

Hence T contains an odd number z whose smallest prime divisor
is at least 31. It follows that f(z) < f(31)=1=10-9<e—-9.

Case 4. e = 9.

The number of odd elements in T is
50-9=41>14+16+7+4+12-1.

Hence T contains an odd number z whose smallest prime divisor
is at least 59. It follows that f(z) < f(59) =0=e—9.

Case 5. e <8

The number of odd elements in T is at least
50-8=42>1+4+16+7+4+13-1.

Hence T contains an odd number z whose smallest prime divisor is
at least 61. This means that x > 61 is a prime. At most 49 — (50 —
8) = 7 odd numbers in S do not belong to T'. Hence T' contains at
least 9 odd multiples of 3. They along with z form A.

Solution 2

Since S contains 49 even numbers, a subset with n < 49 elements
may consist only of even numbers, and will not satisfy the desired
conditions. It follows that n > 50. We now prove that any subset
T with 50 elements contains a subset A of size 10 which satisfies
the desired conditions. Partition the odd numbers in S into the
following five sets:

0; = {1,53,59,61,67,71,73,79,83,89,97},
0, = {13,17,19,23,29,31,37,41,43,47},
03 = {49,55,65,77,85,91,95},

0, = {25,33,35,39,51,57,69,87,93},

0s = {3,5,7,9,11,15,21,45,63,75,81}.

‘We consider five cases.

1997/98 115

Case 1. TNO; #0.

In S, there are 33 odd numbers not divisible by 3. Hence T' contains
at least 17 numbers which are either even numbers or odd multiples
of 3. By the Pigeonhole Principle, T' contains either 9 even numbers
or 9 odd multiples of 3. We can take A to consist of these 9 numbers
together with an element of T'N O;.

Case 2. TNO; =0 but TNOz # 0.

T contains at most 38 odd numbers and hence at least 12 even
numbers. Let z € TN Oy. Then at most 3 of these 12 even
numbers are multiples of 13, the worst case. Hence we can take A
to consist of z and 9 even numbers which are not multiples of z.

Case 3. Tﬂ(01U02)=®bu’cTﬂO3#VJ.

T contains at most 28 odd numbers and hence at least 22 even
numbers. Let z € T'N Os. Since

2]-12]-[2)-»

* at least 22 — 13 = 9 even numbers in T' are relatively prime to 55,

the worst case. Hence we may take A to consist of z and 9 of these
even numbers.

Case 4. TN (01 UO2U0;3) =0 and TNO4 # 0.

T contains at most 21 odd numbers and hence at least 29 even
numbers. Let z € T'N Oy. Since

ERIREI R

at least 29 — 19 = 10 even numbers in T" are relatively prime to 33,
the worst case. Hence we may take A to consist of  and 9 of these
even numbers.

Case 5. TN (01 UO2 U035 UO4) =0.

T contains at most 12 odd numbers and hence at least 38 even
numbers. Let 2 € T'N Oy. Since

5]+ [2)-[5)-=

at least 38 — 22 = 16 even numbers in T are relatively prime to 15,
the worst case. Hence we may take A to consist of z and 9 of these
even numbers.
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1.

Olympiad Paper 11

Note that

(00 () - eo2tpoesn

m(m? — 3m + 8)
6

by setting m = n+1 > 4. In order to divide 22°°°, we must have

m(m? — 3m + 8)
6

=2k
for some integer k > 3. Hence
m(m? — 3m +8) = 3. 2k+1,
Suppose that m = 2* for some integer u > 3, so that
m? —3m+8=3-27,
where u+v=4k+1. If u >4, then 8 = 3.2 = 2" (mod 16). This

implies that v = 3 so that m? — 3m + 8 = 24 or m(m — 3) = 16.
This is impossible. Hence v =3, m =8 and n = 7.

()= )+ () +()-=

divides 22090, Suppose that m = 3 - 2 for some positive integer v.
Then

Indeed,

m?—3m+8=2Y

where v +v = k+ 1. If v > 4, we have 8 = 2V (mod 16). This
implies that v = 3 so that m? —3m+8 = 8 or m(m — 3) = 0. This
contradicts m > 4. If u = 1, then m = 6 but m? — 3m + 8 = 26 is
not a power of 2. If v = 2, then m = 12 but m2 —3m+8 = 116 is
not a power of 2 either.

Hence u = 3, m = 24 and n = 23. Indeed,

()= ()= (3) ()

divides 22000,
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2. Solution 1

We prove a stronger result that the left side of the given equation
is always greater than or equal to the right side, with equality
if and only if D is the orthocentre of triangle ABC. Complete
the parallelograms ADBE and ADCF. Then BCFUE is also a
parallelogram.

A

D
B C

Applying Ptolemy’s Inequality to the quadrilaterals ABCF and
AEBF, we have

DC-BC+ AB-DA=AF-BC+ AB-CF > AC -BF
and
DB-BF+DC-DA=AE-BF+AF-BE > AB-EF = AB-BC.
It follows that

DA-DB-AB+DB-DC-BC+DC-DA-CA
DB(AB-DA+ BC -DC)+ DC-DA-CA
DB-AC-BF +DC-DA-CA
AC(DB - BF 4+ DC - DA)

AC - AB- BC.

v

\%

Equality holds if and only if both quadrilaterals are cyclic, that
is, AEBCF is a cyclic pentagon. Since BCF'FE is a parallelogram,
it must be a rectangle, so that BF and CE are diameters of the
circumcircle. Hence /ZBAF = /CAE = 90°, so that AB is perpen-
dicular to CD and AC is perpendicular to BD. This means that
D is the orthocentre of triangle ABC.

Solution 2

In the complex plane, let the points 4, B, C and D be represented
by the complex numbers «, 3, v and ¢ respectively. Moreover, we
may assume that |a| = |8| = |y| = 1. In other words, triangle ABC
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is inscribed in the unit circle. Thus its orthocentre H is represented
by o+ B + . Define

_-a=8) (==  (-NE-q
T0= =069 el T BB
Note that this is a polynomial in z of degree at most 2. It follows
from f(a) = f(B) = f(v) =1 that f(z) =1 for all z. In particular,
f(6) =1. Now
‘ (6—a)(6-5)
(v =)y —8)

(I Chle)) +‘ 0= —a)
(@a=B)a-7| [B-NB-a)

Z @ =1

Hence

>1

=

DA-DB DB-DC DC-DA
CA-CB AB - AC BC-BA

so that
DA-DB-AB+DB-DC-BC+DC-DA-CA> AB-BC-CA.
Equality holds if and only if

‘(5—04)(5—@ =B = | [E=N0=a
(r=a)y =81 la=Bla-71| [B-1B-a)
Hence § = o, 8,y or a+ 3+ «. In other words, D coincides with

A, B, C or H. Since D is inside triangle ABC, it cannot be one of
the vertices, and must be the orthocentre.

. Solution 1

First,
2 =22+ (23 +$2)2 + (z2 +I3)2 + (@ +CEn)2 +1’31-

For a fixed k, 1 < k < n, it follows from the AM-GM Inequality
that

\/x% + (@14 22)2 + - + (zp-1 +25)?

k
S |@1] + |1 + @2] + -+ |wp—1 + 28]
- k
|1 — (w1 +22) + - + (1) Y@p—1 + 1)
- k
Izl

k
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b
This is equivalent to [
\

SES

22+ (w1 + 32)° 4 + (@1 +ax)? >

In the same way, we can prove that

2
z
(o Zhgn)? oo (o + ) h 2
Now addition yields
1 1 5 2k(n—k+1)
e S, Py i S A
22<k+n—k+1)xk or okl < ntl
for 1 < k < n. In the above inequalities, equality holds if and only
if
o1 = —(z1 +xg) == ()" zpo1 +zx)
and .
T + Tpt1 = *(mk_;_l + l‘kJrz) == (—1)"7 Ty

In other words, the maximum of xy is
[2k(n —k+1)
n+1

if we take ;
;= (—1)k_i%xk
for1<i<k-—1and

_(qy-en—dtl
2= (1) n—k+1k
fork+1<j<n.

Solution 2

We first determine the maximum value of z,. Rewrite the given
equation as

n—1

1= (Vaizi + 1= aiazin)” + (1 - (1~ an))z},

i=1

for suitably chosen constants a1, ag, ..., @n. Taking into consid-
eration that the coefficient of z;z;y1 for all 7 is 1 in the original
equation, we have a1 = 1 and

2\/0:\/1—(1,4;4_1 =1
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for 1 <i < n—1. In other words,

1
=1 —
Ait1 40111
so that
o i+1
T2
for 1 <4 < n. From the displayed equation, we have
n+1
1> (1~ (1—an))e} = Wﬂﬁi
or
2n
T .
"= Vn+l
By symmetry,
2n
1 <
n+1

also. For 2 <k <n—1, we have

k—1

1 = > (Vawi+V1I-amz)?

i=1

n—k
+ Z(\/(l_ﬂnfz‘ﬂ + V1= ai1%n)?
=1

+(1 =1~ ak) = (1 = Gnps1))a3-
It follows from
12 (1= (1 —a) — (1 - Gnps1))af
that we have
2k(n—k+1)
<) —=.
k= n+1
Note that this coincides with previous results when k =n or 1. In
all cases, the maximum can be attained when

0 = Vaixs +v1—aszs
Vaazrs + V1 — asxs

= Vag-1Tx—1 + V1 — apzi
Von—kZTr+1 + /1 — Gpn_pr17k

= Va1Tn + V1 —axzn_1.
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Starting with z in the middle, we can work our way outward and
choose zx_1, Tk_2, --., T1 as well as Tx41, Thy2, ..., Tn Which
satisfy the above equations.
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1998 /99
Paper I.

Section 1. Questions with Multiple Choices.
1. From
log(a + b) =loga + logb = log ab,

we have a + b = ab so that
l=ab—a—-b+1=(a—1)(b—1).
Hence

log(a — 1) +log(b — 1) =log(a —1)(b—1) =log1 =0.

2. In order for A # @), we must have 2a+1 < 3a—5or a > 6. In order
for AC ANB or A C B, we must have 2a+1> 3 and 3a—5 < 22.
The former leads to a > 1 while the latter leads to a < 9. Hence
6<a<9.

3. Let r be the common ratio of the progression. Let Sy = 0 and
b, = S10n — S10(n—1)

for n > 1. Then {b,} is a geometric progression with common ratio
710, Since
70 = by + by + b3 = by (1 + 10 4 20),

we have
0=7r® 470 —6=(043)(r'°-2).

Since r*° > 0, we must have 70 = 2. Hence

S0 =b1(1+ 710 4720 430y = 10(1 + 2 + 4+ 8) = 150.

4. Note that

o832

-1 3 -2
However, the solution set for #2 — 3z +2 > 0 is (—o0,1) U (2, 00)
while that for —z2 + 3z — 2 > 0 is (1,2). Hence Q is not sufficient
for P. On the other hand, 2> +z+1 > O and 22 +z+3 > 0
have the same solution set (—o0, 00), but the coeflicients are not in
proportion. Hence Q is not necessary for P either.

5. Let K be the point on BG such that EK is perpendicular to BG.
Then EK is perpendicular to the plane BCD. Since EF is parallel
to AC while FG is parallel to BD, /EFG = 90°. It follows that
/KFG = 90° also. Let H be the centre of triangle BCD. Taking
AC = 2, we have AG = BG = /3 so that

BK = HK = HG = ?
Hence N
2
AH =+/AG?2 - HG? = T6,
so that

1 V6
FK = 5 AH = .

Since EF = LAC = 1, we have

2
3
FK =+ EF?-EK?= %,

so that
FK
cot EFK = R 2
Since /ZEFK is the dihedral angle between EFG and BFG, the
dihedral angle between EFG and CFG is ™ — arccot@.

IS

6. The number of such lines joining two vertices of the cube is % =

28. The number of such lines joining the midpoints of two parallel
edges is 122 = 18. The number of lines joining the centres of two
opposite faces is % = 3. Since there are no other such lines, the

total number is 28-+18+43=49.

Section 2. Questions requiring Answers Only:

1. By the properties of f,

(3)-6-1) - ()12
((3)-16-2)-1(4) 1)
Similarly, we also have

)G 3)-13)

and
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. . . 1
Since f(z) is increasing on [0,1] and & < %—g < %, we have

(2) 1 (2)<r(2)

- Let S be represented by the complex number w. Since PQSRis a

parallelogram, w + z = 2z + (¢ +1)z or w = 2z + 2. Hence
[w|? = (22 +i2)(22 — i) = 5+ 2i(22 — 32) = 5 — 4sin20 <9,

with equality when 6 = ST", It follows that the maximum distance
of S from the origin is 3.

. The number of ways of choosing three even digits is (g) =10, and

only (0,2.,4) and (0,2,6) have sums less than 10. The number of ways
of choosing one even and two odd digits is () () =50, but (0,1,3),
(0,1,5), (0,1,7), (0,3,5), (1,2,3), (1,2,5) and (1,3,4) have sums less
than 10. Hence the total number of choices is 10 — 2 +50—7=51.

Let n be the number of terms and a be the first term. Then
a®+ (n - 1)a + 2n(n — 1) < 100.
In order that there exists at least one real number a which satisfies
a® +(n—a+ (2n® — 2n — 100) < 0,
we must have
(n—1)? = 4(2n® — 20— 100) > 0

or, equivalently,
Tn® — 6n — 401 < 0.

This leads to

3 — /2816 3+ 2816
— <n< ——""
7 - 7
Since
3+
8 < + 72816 <9
the maximium value of n is 8.
. Solving
4— Ay —a)? = 2% =2y,
we have

y:8a-2:t\/68~32a
3 .
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In order for y to be real, we must have 68 —32a > 0 or a < %.
We also need y to be non-negative. This is certainly the case if
0<a <. Suppose a < 0. Then we need

68 — 32a > 2 — 8a,

which leads to 1 > a?, so that —1 < a < 0. Thus the overall range
is
—-1<a<

ol

6. Let D be the midpoint of CM and let E be the point on BC
such that DE and CM are perpendicular to each other. Note that
we have AM = BM = CM = 2 so that CD = 1. Moreover,
AD =/3, DE = 2, CE = 22 and BC = 2/3. Hence AB? +

AC? = BC2, so that cos ACE = 49 = ¥3. Now

8

AE% = AC? 4 CE? — 2AC - CEcos ACD = 3

Hence AE%+CE?= AC?. Since we also have AE?+DE?=AD?,
The area of triangle MBC is %AC’ - BC = /3. Since AE is per-
pendicular to the plane containing M BC, the volume of ABCM

is LABV3 = 22,

3

Section 3. Questions requiring Full Solutions:

1. We have
z = 1—sinf —icosb
™ I
- 17cos(§—0)7zsm<§~9)
= own2 (TN g (0 r_0
= 2sin <4 2) 2zs1n(4 2)(:05(4 B
— _osin(® N qn(T_0 + 4 cos 0
= —2sin 173 sin 1 2 4 92
- _osn(T_°¢ 30N i (30
= “2sin{ 75 ){cos| 3 7 2))
H
ence C3r 8
argz = — o
2. Let
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Tt is an upsidedown parabola with maximum 3 — % occurring at
z = —2. Note that f(0) = 3 lies between —5 and 5. Suppose
3— 1 > 5 50 that —8 < @ < 0. Then |f(z)| < 5 until f(z) =5
for the first time after z = 0. Hence #(a) is the smaller root of the

equation az? + 8z + 3 = 5, and we have

Z(a):78+\/64+8a: 2 1
2a VI6+2a+4 2

Suppose 3 — 2 < 5, 50 that a < —8. Then |f(z)| < 5 until
f(z) = —5 for the first time after z = 0. Hence £(a) is the larger
root of the equation azx? + 8z + 3 = —5, and we have

—8 — /64 —32a
2a
4

V4—2a-2
i4

la)

T-2(-8) -2

V541
s

(a) Since ‘/52'*'1 > 1, the maximum value of £(a) is YL,

(b) The maximum value of £(a) occurs at a = —8.

. Let M(zo,y0), Mi(z1,y1) and Ma(z2,y2) be three points on the

parabola such that M M; passes through A and also M M, passes
through B. Then
Y1 =% _ Yo—b
T — o o — a’
which leads to
"= byo — 2pa
! vo—b
Similarly, we have
2pa
Yo =—":.
Yo

The equation of the line M Ms is

y1y2 = (Y1 + y2)y — 2p.

Eliminating y1 and yo, we have

(20 — by)ya + 2pbla — x)yo + 2p2(by — 2pa) = 0.
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(a) The system
2px — by = 2pb(a — z) = 2px(by — 2pa) =0

has a unique solution. Hence M; M, passes through a fixed
point.

(b) The unique solution is 2 = a and y = 22 Hence My M

passes through (a, 2%“)
Paper 11

1. Let BC = a, CA =10, AB = ¢, R be the circumradius and r, be
the exradius opposite A. The area of triangle ABC' is given by
1bcsin A as well as 37, (b + ¢ — a). It follows that

_ besinA  2RsinAsinBsinC
Te = Y c—a sinB+sinC—sind’

Now
sin B +sinC —sin 4
= 2si B+CcosB_Cf2s'nB+CcosB+c
= Zsin— ) 1 5 2
— 2si B+C B_C~cosB+C
= Zsin— cos — 3
= 4cos é sin B sin g
N 272 2"
Hence

., A B C
Tg = 4Rsm§ cos;cos 5

Let the extension of AI cut the circumcircle at K. Then K is the
midpoint of the arc BC, and OK is perpendicular to BC. Hence
triangles ADI and KOI are similar, so that

ﬂﬁAD_csinB
IK KO R

= 2sin BsinC.

On the other hand,
Al _ [CAI
IK = [CKI]

where [T] denotes the area of triangle T'.
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Then we have 1 c
[CAIl = §AC - CIsin X
Note that
(KCI=(KAB+ LICB = A—;ﬁ = g -
It follows that 1 B
[CKI = §CK -CI cos 7
Hence

Al AC sing . sinBsin%

2sin BsinC =

This reduces to
4 sin ~— cos — —C =1
in 0 =
2 ® 2 €os 2 ’

so that r, = R.
2. (a) Note that we have

1 3 ;
LoJa 1 _a_y
2 bi a,bL bi

It follows that

a
) S b_i<2 albl
Hence
0 > [Yebi 9 (o amo /2
2 bl bi
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l\J.| [us]

IK CK cos % sin % cos % '

Similarly, & < a; < 2b; leads to 0 > b2 +a? — Za;b;. It follows
that

|
IA

n a3 5 n n
PO DI D
i=1 =1 i=1

%

o

n

5 — 2
520? - 52(%2 +07)
i=1 =1
17 &
= pa
=1
2 — 1

(b) For equality to hold, we must have 3¢ = 3 or 2 for every ¢.
This means that one of a; and by is 1 and the other is 2. Since

n n

2 _ 2
E a; = E b7,
i=1 i=1

n must be even and a; = 1 occurs the same number of times
as a; = 2.

IN

3. Let zj be the largest integer such that there exist positive integers
n1,n2,...,ng for which

Fnk(Fnk—1("'(Fn1(a))"')): 1

for all positive integers a < z. Then A = z¢. We shall determine
1z, recursively and show that it is always even. For k = 1, choose
n1 = 2. Then F>(1) = F»(2) = 1 while F5(3) = 2, so that 21 > 2.
On the other hand, Fy,(2) = 2 for n # 2. Hence z; = 2 and it is
indeed even.

Suppose zj has been determined and is even. Then zx41 is the
largest integer such that there exists a positive integer n for which
E,(a) < z, for all positive integers a < zg41. Let pr1 = qn+7r
where 0 <r <n—1. Then

Fo(@pt) =q+r <z

so that
Try1 <z +g(n—1).

‘We also have
Folgn—1)=(¢—-1)+(n—1) <z

so that
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q(n—1)

IA

(=57
5]

_ i‘zk(xz+2) iJ

Since zj, is even, we have

xk(xk + 2)

gln—-1) < 1

so that
z(zr + 6)

Try1 <z +gn—1) < )

. Then we have

Now take n = w’“T“

zi(ze +6) _ xp +ﬁ

4 T2 2"
IfaSi’“(z’“i—l's),writeazanrrwithOSTSnfl.
If ¢ = %, then 7 < % so that fy.(a) = ¢ +7r < z.
Ifqg%&—l,thenrgnfl:%k—f—lsothatFn(a):qurgzk‘

It follows that

=

Since one of zx and xx + 6 is a multiple of 4 and the other is even,
Zx+1 s also even. From 1 = 2, we have z9 =4, z3 = 10, 24 = 40,
5 = 460 and A = xg = 53590.

Tr+1 =

Olympiad Paper I

. We first prove a preliminary result. Let GST be a triangle with

acute angles at S and T. Let P be a point on the same side of
ST as G such that GP is perpendicular to ST. Then P is the
orthocentre of GST if and only if ZSPT + /SGT = 180°.

Suppose P is the orthocentre. First assume that it is inside GST.
Let SP cut GT' at @, and let TP cut GS at R. Then /5QT =
90° = LGRT'. Hence

/SPT =90° + /GTR = 180° — LSGT.
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If P is outside GST', then the same argument applies with the roles
of G and P interchanged.

G

S T

Conversely, suppose that /SPT + £SGT = 180°. Let the ortho-
centre of GST be some point P’ which must lie on the line GP.
Since /GST and /GTS are both acute, P’ is on the same side of
ST as G and P. Since /SP'T = 180° — LSGT = LSPT, we must
have P’ = P.

F

C
H

B

D

Suppose F is the orthocentre of triangle ABC. Then CF is per-
pendicular to AB, and hence parallel to DH. Note that we have
/ACB = 180° — /AFB and /AHB = 180° — LADB by our pre-
liminary result.

Since ABDF is cyclic, LZAFB = (ADDB by Thales’ Theorem.
Hence /ACB = LAHB. By the converse of Thales’ Theroem,
ABHC is cyclic. Conversely, suppose C'F' is parallel to DH and
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2.

ABHC is cyclic. Then CF is perpendicular to AB. By Thales’
Theorem and our preliminary result,

LACB = (AHB =180° — LADB = 180° — LAFB.

By the converse of our preliminary result, F' is the orthocentre of
ABC.

(a) Since
(@) =zfo(z) + folaz) =z +1
we have
f1(@) = fo(z) = =.

‘We claim in general that

_ z
fn(x) - fn—l(m) =a" lwfn—l (;) .
‘We use induction on n, and the basis n = 1 holds since
1-1 LA
a " zfo (a) =uz.
Suppose the claim holds for some n > 1. Then

Jnt1(®) = fa(z)
= (xfn(z) + fn(a'x)) - (xfn—l(x) + fn—l(aw))
= m(fn(a:) - fnfl(x)) + (fn(ax) - fnfl(a‘z))
= za" ‘zf, 4 (g) +a" Y(ax) froi(z)

- (G () o)
et (2)

‘We now prove by induction on n that
e =212 (1)

For n = 0, we have fo(z) =1 and 2°fo (1) = 1. Suppose the
result holds for some n > 0. Then

fan(@) = fal@)+a"ofn (2)

- wn(5)+n (3 1 (2)
(5 (5 ()
" fra (%) .

Il
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(b) Let

n

FOEDPURIS
i=0
From the given conditions, we have

B = b = =0 =1,

n—1
Comparing the coefficient of % in fn(z) = 2™ fn(2), we have
b™ = ™. It follows that

B = b = =0 =1
Comparing the coefficients of 2* in

fo(@) = 2fa1(2) + fa-i(az),

we have
B 4 1 gign D),
Similarly,
b, = oD, + an iy

n—i— n—i
which is equivalent to
aib{™ = " + amp{" Y.
From the two displayed equations, we have
(a" = )6 = (@ - 1)p{"7 V.
It follows that

a” -1

i~ Dl
(a® — 1)(a™ ' - 1) pn=2)
T @D
(0"~ D@ D) @ 1)
@-D@ i -1-@-1 °
(an o 1)(0‘”71 o 1) .. (an—i+1 o 1)
@ - D@ -0 @1
Hence

B n (an_l)(a/nfl_1)'”(an—i+171) ;
fn(iB) - Z (a® — 1)(ai“1 “1)--(a—1) z.

=0
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3.

If a set of four space stations is not a group, it must consist of two
non-empty subsets X and Y such that all space-highways between
X and Y are one-way going from X to Y. Such a set may be
classified as type I, II or ITI according to whether |X| =1, 2 or 3.
Note that this classification is not mutually exclusive, so that a set
may be of two or even all three types.

‘We solve a more general problem with n space stations, wheren > 3
is an odd integer. For 1 < ¢ < m, let s; be the number of one-way
space highways from the i-th space station. Then the number of
type I sets with this space station as the sole member of X is (%),
s0 that the number of sets of type I is

Suppose a and b are positive integers such that ¢ < b+ 1. By
Pascal’s Formula,

@-C;l) (<G -(39)-6)
(5)+ ()< (s )-C37)

It follows that to minimize 7', we should make s;, 1 < i < n, equal
to one another if possible. Now

e (()-)-7

Denote this value by m. If s; = s = -~ = s, =m, then T = n(7})

and the number of groups is at most () — n(7). For n = 99, we

have m = 48 and
n m
(4) —n(g) = 2052072.

‘We now show that this maximum can be attained. Let the space
stations be 1, 2, ..., n clockwise round a circle. The space highways
joining two adjacent space stations are two-way. For non-adjacent
space stations ¢ and j, the one-way space highway goes from 4 to
j if and only if in going from ¢ to j clockwise round the circle, the
number of other space stations passed over is odd.
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Since n is odd, this scheme can be applied consistently. By symme-
try, there are exactly m one-way space highways from each space
station. It follows that the number of sets of type I is exactly n(’y).
To complete the argument, we prove that all sets not of type I are
groups. Suppose in {4, B,C, D}, A and B are joined by a two-way
space highway. Suppose the space highways joining C' to A and B
are both one-way. Then the space highway between A to C' goes
from A to C if and only if the one between B and C goes from C
to B. If either is two-way, it makes things even simpler.

In the same way, we can also go from D to A and B and vice versa.
Suppose {A < B < C < D} is of type II, with X = {4 < B} and
Y = {C < D}. If X and Y separate each other round the circle,
we may assume that A, C, B and D are in clockwise order. Then
the numbers of space stations from A to C and from B to D must
be odd.

Since n is odd, either the number of space stations from C to B or
that from D to A must be even. This will contradict the direction
of the one-way space highway between B and C or that between
A and D. Tt follows that X and Y cannot separate each other
round the circle, so that we may assume that A, B, C' and D are
in clockwise order. Now the number of space stations from A to
B, from B to C and from C to D must all be odd.

This means that we may redefine X = {A}andY = {B < C < D},
so that the set is also of type 1. Finally, suppose {4, B, C, D} is of
type IIL In order for this not to be of type I, we must have exactly
one one-way space highway from each of A, B and C to the other
two. We may assume that A, B and C are in clockwise order. If
the space highway between A and B goes from A to B, then the
numbers of space stations from A to B, from B to C and from C
to A must all be odd.

However, this is impossible since n is odd. Hence the space highway
goes from B to A, and the numbers of space stations from A to B,
from B to C and from C to A are all even. By symmetry, we may
assume that D is one of those between A and B. Since a one-way
space highway goes from A to D, the number of space stations from
A to D is odd.

However, this implies that the number of space stations from D
to B is even, contradicting the fact that a one-way space highway
goes from B to D.
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This completes the proof that all sets which are not of type I are
groups.

Olympiad Paper II

. Let n = 219, We claim that 19,3'%,..., (n — 1)' are not con-

gruent modulo 7 to one another. Let z and y be any odd numbers
with z # y (mod n). We have

29—y = (- )@+ 2Ty 2y + ).
The second factor being odd, z'® = %'® (mod n) would imply

= y (mod n). This justifies the claim. It follows that for any
integer m, 2m — 1 = a!® (mod n) for some odd integer a, so that
2m = a'® + 1% + kn for some integer k. If k > 0, we can simply
take b = 1. If not, take by = 1, a3 = a — hn and

19 _ 19
ki =k+ a‘&

Then 2m = ai® + b3° + kin, and if A is sufficiently large, we will
have k; > 0.

. Let the roots be 0 < a < < ~. Then o+ +~ = —a and

fl2) = (2 - a)(@ - B)(z — ).

(a) When 0 < z < @, the Arithmetic-Geometric Means Inequality

yields
—f(@) = (a—2)(B-z)(y—1x)
(-2 +(B-2)+(-2)\°
< ( 3 )
1
= 5(73.75711)3
< gla-ap

Hence f(z) > —5-(z — a)®. When 8 <z <. we have

—fl@) = @-o)z-p)(y-2)
@-a)+@-F+-o)\*
s ()
< f%@+a+ﬁ+w3
1
= —E(m—a)3.

]
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Hence f(z) > —&(z —a)®.

When a <z < forvy <z,

1
>——(z—a)d.
F@) > 02— —a)
We can take A = *2% since the cases of equality in (b) will
show that no larger value of X is possible.

When 0 < z < a, the necessary and sufficient conditions
for equality are « —z = f—z = v — 2 and -3z = z, or
equivalently « = f = vy and z = 0. When 8 < z < v,
the necessary and sufficient conditions for equality to hold are
z—a=z—0B=v—zand a+ B = —a— f, or equivalently
a=pf=0and 2y =2 When a <z < 3 or v < z, equality
cannot occur.

(b

=

In summary, we have two cases of equality,

0 =5 =50~ ap

when @ = 3 = v, and

3
1@)-R- )

3. Clearly, each vertical 1 x 1 x 4 stack contains exactly one red cube.
All we have to decide is whether it is on level 1, 2, 3 or 4. If we
represent the base of the cube as a 4 x 4 table, we fill in each square
with a number indicating the level of the red cube on that stack.

Also, each horizontal 1 x 1 x 4 slab contains exactly one red cube,
and for this to happen, no two numbers in each row and each
column in the table can be the same. The first row can be filled
in 4! ways, and by symmetry we only need consider the case when
the entries are 1, 2, 3 and 4 in that order.

The remaining entries of the first column are 2, 3 and 4 in some
order. They can be permuted in 3! ways, and we need only con-
sider the permutation 2, 3 and 4 in that order. Now the entry in
the second row and second column is 1, 3 or 4. If it is 3 or 4, the
remaining entries are determined uniquely. If it is 1, the remain-
ing entries in the second row and second column are determined
uniquely, but there are two ways to complete the table.

Thus there are four different tables with the elements in the first
row and the first column being 1, 2, 3 and 4 in that order, and
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these are shown in the diagram below. The number of different
t?,bles is therefore 4! x 3! x 4 = 576, which is also the number of
different ways of assembling the cube.

ol D | | | cof Do =
ol x| | v | =] i cof vl
D[ =] | Qo | D] | | o
= o ol mx| | eo] b |
w00 DO =] | ] Lo D] =
Cf x| =i o] | o | i Do
RO | Qo [ DO | = o
DO = ol i | = bof cof i
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1999/2000
Paper 1.

Section 1. Questions with Multiple Choices.
1. Let an, = a1¢™*. Then

bopr . a(l+a+E™ 3

b a(l+q+ q2)q3nf3 -
Hence {b,,} is a geometric progression with common ratio ¢°.

2. From
(2l = 1%+ (lyl - 1)* < 2,

we have (I'Tl - 17@‘ - 1) = (0¢0): (170)7 (_110)7 (071) or (07_1)~
The first yields (z,y) = (£1,%£1), the second (z,y) = (£2,£1),
the third (z,y) = (0,%1), the fourth (z,y) = (+1,%2) and the
fifth (z,y) = (£1,0). The total number of such lattice points is

4+4+2+4+2=16.

3. Let
F(t) = (logy 3)" — (log5 3)"-

Then f(t) is an increasing function. The given inequality states
that f(z) > f(-y). Hence z > —yor x +y 2 0.

4. Let a be a line on o which intersects ¢ at a point A, and let b be a
line on B which intersects ¢ at a point B.If A# B, thenaand b
are skew lines both of which intersect c. Hence P is false. For any
positive integer n, let the line £, lie in the plane z = n and have
slope n. These lines are pairwise skew. Hence Q is also false.

o

Let the number of games played among these three players be 7.
Then the total number of games played is

<n g 3) +r+(6—2r)=50,
so that
(n—3)(n—4) =88+2r.

Since 0 < r < 3, it is only when r =1 that 88 + 2r = 90 is the
product of two consecutive integers.
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6

Sect

1.

2.

. LE.Et the coordinates for B be (¢2,2t) and those for C be (s2,2s),
with s #t # 1 # s. Then the equation of BC is

y—2t z—t?

28— 2 s —¢2

or 2z — (s +1t)y +2st = 0. Since it passes through (5,—2), we have
(s 4+ 1)(t 4+ 1) = —4. Now the slope of AB is

2%-2 2
2-1 t+1
while that of AC is
23—2_ 2
s2—-1 s+41°

Hence their product is equal to

4

ErneE+n - "

so that ZCAB = 90°. In other words, ABC is a right triangle.

ion 2. Questions requiring Answers Only:

Let the number of consecutive integers be n, and let a be the first
one. Then their sum

nn=1) _ n(n+1)
> et

S =na+

From
nin+1
% < 2000,

we have 60 < n < 62.

When n = 60, we have 60a+ 30 x 59 < 2000. Hence a < 3, yielding
S = 1830, 1890 and 1950. When n = 61, we have 61a + 30 x 61 <
2000. Hence a < 2, yielding S = 1891 and 1952. B

Finally, when n = 62, we have 62a + 31 x 61 < 2000. Hence a < 1,
yielding § = 1953. -

‘We have

arg z=arg((12+5i)%(239—1)) = arg(28561+285617) :g.
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3. Note that
cos Asin B + cos Bsin A sin C
cot A +cot B = sin Asin B " sinAsinB’
Hence
cot C sinA [sinB s C
_— = sC.
cotA+cot B sinC \sinC

By the Laws of the Sines and Cosines,

Cc

cot C (a) b\ a? 10~ 9@ +b*) 92 5
2ab 18¢2 9

cot A+ cot B —\c

. Since VA% + 32 = 5, the equation of the right directrix is z = 8.

The right focus is at Fi(5,0) and the left focus is at F2(75,6).
Let d be the distance from P to the right directrix. If P is on the
right branch, then PF, — PF; = 8 while PF; + PF, = 2d. Hence
2PF, =2d — 8.

However,
PR _d-5 _,
d 8 ’
contradicting the fact that we have a hyperbola. It follows that P
is on the left branch. Now PF} — PFy, = 8 and 2PF; = 2d + 8.

Hence

PR, _d+4 5
d 4 4
It follows that d = 16 and the z-coordinate of P is
16 64
— —16=——.
5 5

. The slope of the line is —%. We may assume that a >0 and b <0

so that a # b. We must also have a # ¢ # b. If ¢ = 0, there are 3
ways to choose a and 3 ways to choose b.

However, the lines z —y = 0, 2z — 2y = 0 and 3z — 3y = 0 are
the same. Thus the number of lines in this case is 32 —2 = 7. If
¢ # 0, there are 3 ways to choose a, 3 ways to choose b and 4 ways
to choose ¢. Thus the number of lines in this case is 324 = 36. The
total is 7T+36=43.

. Let BH intersect SC at P. Since H is the orthocentre of triangle

SBC, BP is perpendicular to SC. A must lie on the plane through
BP perpendicular to SC, as otherwise AH will not be perpendicu-
lar to SBC. Note in particular that AB and SC' are perpendicular
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skew lines. Let the plane through SC perpendicular to AB cut it
at F. Then C'F is an altitude of triangle ABC, and the projection
O of S lies on it.

Repeat the above argument starting with @ as the point of inter-
section of CH and SB. We can show that SB and AC are also
perpendicular skew lines. If E is the point of intersection of AC
with the plane through SB perpendicular to AC, then O also lies
on the altitude BE of triangle ABC. Hence it is the orthocentre
of ABC.

Since ABC is equilateral, we have SA=SB=5C=2/3.

Let F be the point of intersection of CO and AB. Since CF is
perpendicular to AB, we have EF perpendicular to AB, so that the
dihedral angle between the planes ABH and ABC is LZEFC=30°.

Since EF is perpendicular to SC, ZECF=60°. It follows that

oCc = %SC’: V3,

SO = /8C?-0C?=3

20C (?) =3,

so that the volume of SABC is given by

1 2 V3 _ 93
§><3><3 XT—T‘

and AB

Section 3. Questions requiring Full Solutions:

1. Let

f(z) 2% cosd —z(l — z) + (1 — z)?sin
(zVcosd — (1 — z)v/sin §)>

+z(1 — z)(2Vcosfsing — 1).

[

In the open interval (0,1), the equation

zvVecosh = (1 — z)Vsind
has a root
_ Vsin 0
Vcosf + /sinf

C
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Hence

2vcosfsinf—-1=

>0.

fl)
c(l—c¢)

Conversely, if

2v/cosfsinf—1>0,

then f(x) >0 for 0 <z <1. This may be rewritten as sin26 > 1.
Now cosf = f(1) > 0 and sing = f(0) > 0, so that 0 < < 7 on
the interval [0, 27]. Hence 0 < 20 <.

It follows that T < 20 < 2 so that 7 < 0 < §5. Thus the entire
range is

s 5
2k7r+ﬁ<0<21mr+T2

for each integer k.

2. The z-coordinate of the foci are 4/52 — 42 = £3, the eccentricity
is % and the equation of the directrices are z = :t%s. Hence F is
(—3,0).

Let M and N be the respective feet of perpendicular from A and
B to the directrix z = —2. Then

AB+§BF:AB+BN2AN2AM,

which is fixed. Hence the minimum value occurs when Br \1/% the
point of intersection of AM with the ellipse. Hence B is (—2¥*,2).

3. Let apy1 = z and let the common difference of the arithmetic
progression be d. Then we have

n(n+1
S =apt1+anp2+ -+ a1 = (n+1)x+—(2——)d
so that s N nd
— =+ —.
n+1 2
Let p be a real number to be chosen later. We have
al+al,, = (¢ — nd)? + 2*
5\’ )
= pl——=) +@2-p}® -2 +p)nds
n+1
+ (1 — :Z) n2d?.
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The last three terms can be combined into a square if the discrim-
inant

2+p)% —4(2— -5
(2+p)° -4(2-p) (1 4) 0.
This yields p = % so that these terms become

8 , 12 9 5, 1
S22 2 — 2 (4 2
pd 5ndz+ 0" d“ = 10(437 3nd)? > 0.

It follows that

2/ 8 \?
M>d1ra®  >2(_ 5
= 1+an+175(n+1)

SS\/%(nle).

To show that this maximum value can be achiéved, we choose ¢ =
3k and d = % so that 4z — 3nd = 0, with k to be chosen later.

so that

Then
4k n(n+1)

S =3k 1)+ —
(n+ )+n 2

= 5k(n + 1).

Hence

2 (5k(n+1)\?
a%+ai+1:g<%> = 10k2.

Setting this equal to M, we have &k = 4/ %. It follows that if

= M =4 /M
z=3y/{5andd= 2 7g» then

S:\/%(nﬁ—l).

Paper 11

- Let BD intersect AC at H. Applying Ceva’s Theorem to triangle

BCD,
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I J
Since AH bisects /BAD, we have
BH _ BA
HD AD
so that BA-CG _AD-EC
GB =~ DE

Draw a line through C parallel to AB, cutting the extension of AG
at I. Since triangles BAG and CIG are similar,

_ BA-CG

CcI BG

Draw a line through C parallel to AD, cutting the extension of AE
at J.

As before, we have

_AD-EC

C7="p%

Tt follows that CI = CJ.
Along with AC = AC and
LACT = 180° — /BAC = 180° — LDAC = LACJ,
triangles ACI and ACJ are congruent.
Hence LCAG = LCAE.
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3.

2. Let
Z1
— =cosf +isinf
Z2
and
22
— = cos ¢ + isin¢.
23
Then we have
2 _ ..
o cos(—0 — @) +isin(—0 —

Since the sum of these numbers is 1, we have

0 = sinf+sing —sin(0+ ¢)

= 23in0+¢cosak(/)_2 0+¢ Sa+¢
3 2 2 2
_ QSmM(COSu;C%ew)
2 2 2
.0
= 4sin ;¢singsin§.

It follows t.hat 0 =2kmw, ¢ =2kmwor 0+ ¢ = 2k for some integer
k. Hence either z; = z9, 22 = 23 or z3 = 27. If 21 = 2, then

2
zZ1 z3 z
—+—==0 or I
Z3 2 21

Z3 .
Hence == = %4 so that
z1

laz1 + bzo + cz3| = |z1||a + b+ ci| = /(a4 b)2 + 2.
The other possible values are
JETFFE and TP,
arising from the cases 2z = z3 and z3 = 2y respectively.

(a) Let the weights of the tokens be the positive integers a1, as,
., ax in non-decreasing order. Then the weight of an object
that may be balanced is

k
w= E TiQs,
i=1

where @i = —1,00r 1for 1 <i<k. The possible values of
w must include the 2n + 1 integers from —n to n. It follows
that 20 + 1 < 3* so that n < -1,
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Let m be such that

3ml -1 3m-1
2 =T

Then k > m. We claim that we may have k = m, that by
taking a; = 3771 for 1 < i < m, we can balance any obJect of
weight w < n.

Note that

m
w+y 3FTH<3T -1
i=1

Let its base 3 representation be

m
> oy
i=1

where y; = 0, 1 or 2. Then

m
w = E 112‘131-1,
i=1

where z; = —1, 0 or 1.

Let 351 71

weight 1 3, , 3mi Work The heaviest token is only uaed
e

ifw> 32 5 and the balancing can be achieved up to 5L,

Hence if we replace this token by one of weight 3™! — 1 we
can still balance any weight up to 2 — 1. It follows that
the minimal set of tokens is not umque

Consider now the remaining case where n = 3%-1 We claim
that a; = 3i-1 for 1 < ¢ < m is the only minimal set of
m

tokens that works. Since inai, where z; = —1, 0 or 1,

i=1
can represent any of the 2n + 1 integers w from —n to n, and
97 + 1 = 3™, there are no duplicate representations.

Now -
O<w+y 371 <3m -
i=1
-

and it has a unique representation Zyiai where y; =0, 1 or

1
2. For i = 1, the smallest positive integer not yet represented
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is 1. Hence we must have a; = 1. Suppose a; = 3! for
1 <4 <j. Since

J

J
Z yrai =y 33!
=1

i=1

are the base 3 representations of 0, 1, ..., 37 —1, we must have
a;+1 = 3. The desired conclusion follows from mathematical
induction.

Olympiad Paper I
1. We have

a+b—2R—2r
2R
= sinA+sinB*1—4sin§sin£sin%
B+ A B—A

3 Ccos 3

+2(cosB;A—cosBiA)sing

—A( T-C_ O\ _,
sin 9 San

T—C

= 2sin

= 2cos

sin g
2

2
—4 cos g — sing — | cos? g — sin? g
2 2 2 2 2
( C . C)( B-A C . C)
= cos — — sin — 2cos —cos— —sin— ).
2 2 2 2 2

Since0 < B—-A<B<Cand0< B— A< B+ A, we have

+2cos

= 2cos

COSB'A> OSC

cos =2

2 2

d

o B-A B+A _ C
Cos >COST:SIH—2—.

It follows that the second factor in the last displayed expression is
always positive.
(a) fa+b—2R—2r >0, then cos § > sin

(b) fa+b—2R—2r =0, thencos%:sin

or LC < 90°.

c
2
% or /C =90°.

(c) fa+b—2R—2r <0, then cos € <sin% or LC > 90°
2. Solution 1

We may define ag = 1. Then a; = 0 = ao — 1. We prove by
induction on n that an = nan_1 + (=1)" for all n. > 1. We have

1 n(n+1 n+1
Gnt1 = n; an+—(7—)an71+(-1)"+1 (1* )
1 n+1
= e+ (e - (DY)

=1 (1 - n;ﬂ)

— (e Dan + ()M

Sy = Z:;(z + 1)(?)(1",1-.

Then the desired expression is equal to S, — (n+1). Note that
S = 2 while S = 4 = 25;. We now prove by induction on n that
S, =nSy_1 for all n > 2. We have

n+1
. n+1
Spy1 = Z(Hl)( ; )anﬂﬂ'
=0

n+l |
= i(l +1) ("H— 1) ((n+1—-1d)an—+ (—1)+1—%)
i=0

Let

I3

= DY 1)(?)%4

=0
n+1
I 1)(”j 1) (-1
=0

= (n+1)5,+ % (n + 1) (—1yr i
i=0

?
n+1l
n oyl
HrD Y (," D
= (n+1)8+ (1 +(~1)™*!

+(n+1) 2; CL) (-n)™*

= (4 DS+ (n+ T+ (=1)"
= (n+ I)Sn.
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It follows that S,, = 2n! and that the desired expression is equal to
2nl — (n+1).

Solution 2

In a permutations of {1,2,...,n}, ¢ is said to be a fixed point if it is
in the ¢-th place. The derangement number d,, counts the number
of permutations without fixed points. We have dy = 1 and d; = 0.

Suppose n > 2, There are n — 1 places where 1 can be. Suppose it
is in the k-th place for some k > 1. If k is in the first place, then
the remaining » — 2 numbers can be deranged in d,,—o ways.

Suppose k is not in the first place. We can pretend that it is 1.
Apart from the real 1 staying put in the k-th place, the remaining
n — 1 numbers can be deranged in d,,_; ways.
It follows that

dn = (TL — 1)(dn_1 —+ dn__z).

This may be rewritten as

dn - ndn,1 = 7(dn,1 - (n — 1)dn,2)
dnfz — (n — Q)dnfg

= (~1)"(d1 —do)
= (="
In the Solution 1, we have shown that the sequence {a,} satisfies

the same recurrence relation and has the same initial values. Tt
follows that a,, = d,, for all n. We claim that

n n n n
dn + (1>dn—1 + <2>dn—2+“'+ <n—2>d2+ <n— 1>d1

is equal to n!—1. This is because the first term d,, counts all permu-
tations of the set {1,2,...,n} with 0 fixed points, the second term
(})dn—1 counts all those with 1 fixed point, and so on. Since there
are n! permutations over all and the only one not counted is the
one with all n points fixed, we have justified the claim. Similarly,

(T)dn_1 +2<Z>dn_z+"'+(ﬂ* 1)<n7_11>d1
n(dn,ﬁ (nzl)dn_2+~~+ (Z:;)dl)

= n((n—1)1-1).
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1t follows that the desired expression is equal to

—14n(n—1)1—1)=2n!—(n+1).

3. We first prove that the number of participants is at least %4 + 3.

Consider a participant X who has played ay games. If X is in
only one pair, then there are ax other pairs who have played this
pair. Since each participant is in at most two pairs, there are at
least aj, participants in those ay pairs, yielding a total of at least
arp+2> % +3. If X is in two pairs, then there are aj, other pairs
who have played either of these two pairs, so that one of them has
played % pairs. It follows that the total number of participants is
at least % + 3.

We now give a construction that % + 3 participants are sufficient.
We use induction on k. For k = 1, divide the % +3 participants into
sets of three, and any two of the three form a pair. Pairs in different
sets play each other. The number of games each participant plays
is 24 = a; as desired.

For k = 2, divide the % + 3 participants into two subsets, with
% in S and the other 22201 1 3in T. Bach of S and T'is divided
into sets of three, and any two of the three form a pair. Pairs in
different sets play each other unless both are in T. The number of
games each participant in T plays is 2% = a1 while the number of
games each participant in S plays is 2(% — 3) + 2(%23% +3) =0
as desired.

Assume that such a tournament exists for some k — 1 with &k > 2.
Consider a tournament with 2 + 3 players. Divide them into
three subsets, with % in S, 25 + 3 in T and St % in U.
Fach of S, T and U is divided into sets of three, and any two of
the three form a pair. Pairs in S play all pairs not in the same set.

By the induction hypothesis, there exists a mini-tournament within
T for the set {ag —a1,a3 ~0a1,...,8k— a1}. The number of games
each participant in U plays is 2% = a;. The number of games
played by a participant in 7" who has played a; — a; games in the
mini-tournament within T is 2% + (a; —a1) = a; for i =2,..., k.
The number of games each participant in S plays is

al ar — a1 Qk+1 — Ak
a1 Y ia s S i R .
2(2 3)+2( - +3)+ ( - ) P

This completes the inductive argument.
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1.

Olympiad Paper II
Solution 1

Note that the sequence {b1,bs,...,b,} is non-descending and we
have byy1 = bgpo = -+ = b, = n for some k. Hence we must have
by = by = -+ = by = mfor some m < n. Clearly, a1 = m, ag41 =n
and a; < m for 2 <1 < k. It follows that £ < m. For fixed m
and k, (a2,as,...,ax) is permutation of k — 1 of the elements in
{1,2,...,m—1}. These elements can be chosen in ( i 1) ways and
then permuted in (k —1)! ways.

On the other hand, (ax+2,akys3,- .- ,an) is a permutation of the
remaining elements, and there are (n — k — 1)! such permutations.
It follows that the total number of permutatlons (a1,02,...,a,)
with the desired property is

n—1 m
(m=Dl(n—k—1)!
m:“; (m—Ek)!
N Dl 1S 1
= Z(m 1Y( 1|;<n7m71>
_ W — n—1
- ﬂ;(m )(n—m 1)1<nim)
n—1 1
= (n—l)!mzzzln_m,

Similarly, the total value of the first term of these permutations is

pRpRLTE e
it (m— k)

) 1
= Zm!(n—mfl)!<n_ >
= n—m
1

= (a1}
(n )n;n—m

It follows that the desired average is

nolo noly -1 nelg -1
S(Setm) e (i)

=1
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Solution 2

We have a; = m where m can be any value less than n. We can
then choose (::Tln) positions for the numbers m+1, m+2, ..., n.
Among these numbers, n must come first, while the remaining ones
can be permuted in (m — 1)! ways. The numbers 1, 2, k—1, k+1,

.., m — 1 fill in the remaining positions, in (n —m — 1)! ways.
Thus the number of permutations with the desired property and
a1 = m is given by

(m—1)l(n—m — 1)!<:: 1)

m

as in Solution 1. We can continue as before.

. Denote

2ik(n1 CD)np 1) (e —1)

by m. Since n = 2™ — 1 is odd, each n;, 1 <4 < k, is odd and
hence at least 5, so that

3
n; —1 ng—1
(1—2_) 24' 12 >nz‘

Suppose m > 10. It is easy to show then that 2™ —1 > m3. Hence

s GEDER-0P)

> ning - Nk,

which is a contradiction.

1t follows that m < 9, and it is routine to check that only when
m = 3 do we have a number n = 7 with the desired property.

. We first prove that n > 25. Divide the 2000 students into 4* =256

groups according to how they answer the first four questions. Since
7 % 256 = 1792 < 2000, at least one group consists of at least 8
students. Take 8 of them aside. Since 1792 < 1984, we can take
aside two more sets of 8 students, each set from one of the groups.

Among any 4 of these 24 students, 2 of them must be from the
same group and can answer differently at most one question. We
now give an example to show that we can have n = 25. Let the
groups be as before, and let the multiple choices be 0, 1, 2 and 3.
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We discard 6 groups at random and put 8 of the 2000 students in
each of the remaining groups.

Within each group, we insist that the last question be answered in
the same way, so that the total of the five answers is a multiple
of 4. Among any 25 students, there will always be 4 who are
from different groups, and they must answer at least one question
differently.

However, if they answer exactly one question differently, at least
one of the totals of their answers will not be a multiple of 4. It
follows that the desired minimum value is n = 25.
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2000,/01
Paper 1.

Section 1. Questions with Multiple Choices.
1. Since vz — 2 < 0, we have x — 2 = 0 so that A = {2}. Since
102°~2 =100 = 10%, 2 € B. Hence ANB = 0.
2. Let k be an arbitrary integer. From sina > 0 > cosa, we have

2km + 5 <a < 2km+mor

2%kr 9w «a 2km 0w

3 63 3 °®
When k = 3t, this becomes
T ™
2 — < = <2t —.
tm + 6 < 3 < 2tm + 3
When k = 3t + 1, we have

5
% + % < % < %m + .
Finally,

3« by
229 =
2t + B < 3 < 2tm + 3

when k = 3t + 2. From sin § > cos §, we have

5
& < okr 4 2T,

T
2k7r+z<3 1

Hence the range of § is

5
(2km + %,Zkﬂ' + %) U (2km + %,21{%—5—71’).

3. Let B be above the z-axis. Then the line AB has slope \/Tg and its

equation is
\/_g‘ \/—
4 37 3

Substituting this into z2 — y? = 1, we have
0=24%—2z—4=2(z+1)(z—2)

Since B is to the right of the y-axis, its coordinates are (2, V3).
Those of C are (2, —/3) and the area of triangle ABC' is

@2— (-1)V3=3V3.
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4. We have pg =a?, 20 =p+cand 2c =g+ b, s0 thatb:zf’—;q and

2000,/01
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2. From the Binomial Theorem, a,, =

(;‘) 372, Tt follows that

be

c:p——*ézq. Now
ptpt+a\({prt+tatgq
3 3

- (v73) (V57
= pq

The inequality is strict since p # ¢. The discriminant of the
quadratic equation is 4a? — 4bc < 0, and neither root is real.

5. Rewrite the equation of the line as 25z — 15y + 12 = 0. Then the
distance from a lattice point (u,v) to this line is

[25u — 1504+ 12| 5|5u —3v+ 2| +2
/252 + (—15)2 5v/34

Hence the numerator is at least 2, and this minimum value is

attained when v = v = —1. Hence the minimum distance is
2 _
5v34 85

6. We have

(z-1Dz—w)-(z—w) =201
On the other hand,
(z—D(z—w?) - (z—uw®)=2°~1

Hence
(z—w)(z—wd) - (z—-0®)=2"+1

Dividing both sides by z — w® = x + 1, we have
(z-w(rc-®)(z-w)(z-u)=2*—2®+2° -2+ 1
Section 2. Questions requiring Answers Only:
1. Note that 2000° = 117 + §. Hence
mnmm0°:sm4—g)

i

M m o
Since —% < —§ <

NE

arcsin(sin 2000°) = —g.

T
i:ls( ! _l).
U, n—1 n

Now
32 33 3n
et
as as Qn
P SNE NS SR S |
B 2 2 3 n—-1 n

1
= 18(1—-—].
n
As n tends to infinity, the sum tends to 18.

3. Let the common ratio be r. Then

a+log, 3

a+log, 3

a+logg3

a+log, 3

log, 3 —logg 3

logy 3 —logy 3

1log; 3 — 3 logy 3
logy 3 — % log, 3

1
5

c

4. The coordinates of F are (—c,0) where ¢* = a? — b*. From £ =

a

2
AF? = (c+a)?
= 3a2-¢
= a?4202 4+
= (@ +)+ 0+
= AB?+4 BF%
It follows that ZABF = 90°.
5. Let G be the centre of triangle BCD. Then BG = ?a. Hence

AG =+ AB? - BG? = ?a.

V51 we have 2c+a = v/5a which leads to ¢ + ac—a® = 0. Hence
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Let O be the centre of the sphere. Then
(AG —0A4)? = 0G? = OB? — BG>.
Since OA = OB, we have

AG? - BG* /6
OA = —Sic = Vi

Let E be the midpoint of AB. Then

OFE =+ OA? — AF? = ?a

is the radius of the sphere. Hence its volume is

41(@ >:f

3\ 2° 24 ¢

6. If only two different digits are used, they can be chosen in (3) =6
ways. The smaller serves as the first and third digits while the other
serves as the second and fourth digits. If three different digits are
used, they can be chosen in (3) = 4 ways.

The smallest goes first. If it also goes third, the other two can be
permuted in 2 ways. If the smallest digit is not repeated, then one
of the other two goes third while the other goes second and fourth.
Thus the number of choices in this case is 4(2+2)=16.

Finally, suppose all four digits are used. The smallest goes first
while the other three can be permuted in 3! = 6 ways. Hence the
total number of choices is 6416-+6=28.

Section 3. Questions requiring Full Solutions:

1. By the AM-GM Inequality, we have

(n+32)Sn11 ~ (n+32)(n+2)
Sn n n

= n+34+ %
n

> 3442V64

= 50.

Hence
Sn, 1

<

(n+32)8,11 50

For n = 8, we have

8 1

(8+32)(8+2) 50
Thus this is indeed the maximum value.

2. Let 1
7(e) = 513 - %),

Suppose 0 < a < b. Then f(z) is decreasing. Hence its maximum
value is f(a) = 2b and its minimum value is f(b) = 2a. Subtracting
1(13 — a?) = 2b from (13 — b?) = 2a, we have

%(a*b)(a+b):2(a—b)

so that

a+b=4.
From (13 — a?) = 2(4 — a), we have (a — 1)(a — 3) = 0. Hence
a=1and b=3. Suppose a < 0 < b. Then f(z) is increasing
on (a,0) and decreasing on (0,b). Hence its maximum value is
f(0) = B = 2b, so that b = 1. Tts minimum value is either
f(b)=2a or f(a)=2a. However,

13 1 169 39
B2V (13- =2 29
f<4> 2(13 16) 27 %
Thus it is 2a = f(a) = 3(13 — a?) so that o® +4a — 13 = 0. Hence

a=—-2— \/7, the positive root —2 + \/7 being rejected. Suppose
a < b<0. Then f(x) is increasing. Hence its minimum value is

1
2a = f(a) = 5(13 - a?),
so that a2 + 4a + 13 = 0. There are no real roots. In summary, the
desired values are (a,b) = (1,3) or (=2 —/7,2).

3. Such a parallelogram must be a rhombus whose centre is at the
origin O. Suppose it exists with P at (a,0). Then the opposite
vertex is at (—a,0) and the other two vertices are at (0, £b).

The equation of the side of the rhombus in the first quadrant is

§+Q:1 or bx+ay—ab=0.
a b
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Since it is tangent to the unit circle, we have
e 1 or L + 1_ 1
VaZ 1ot a2 B2
Conversely, suppose this condition holds. Let P be represented in
the complex plane by r1(cos@ + ¢sinf). Then an adjacent vertex
@ is represented by
I . T . )
T2 (cos (6’ + 5) + ésin (9 + 5)) = ro(sinf + icos )
for some rz. Then
LS S I |
oP2 " 0Q* = 1} 13
_ cos?9  sin’f  sin®0  cos’d
- a? b2 a? b?
11
R
= 1.
In the right triangle POQ, the distance h from O to PQ satisfies
L1t
h2 OP?2 ' 0Q2
Hence h = 1 and PQ is tangent to the unit circle. By symmetry,
so are the other sides of the rhombus.
Paper 11
1. Since ZAMF = 90° = /ANF, AMFN is a cyclic quadrilateral.

Hence /AMN = L/AFN and we have

[AHM = 180°— /AMN — /MAE
= 180° — LAFN — /FAN
LANF = 90°,

where H is the point of intersection of AD and MN. Hence the
area of AM DN is equal to %AD - MN. Now AF is a diameter of
the circumcircle of triangle M AN.

By the Extended Law of Sines, MN = AF sin CAB. Since the area
of ABC is equal to 2AB - ACsinCAB, we only need AD - AF =
AB-AC. We have ZADB = /ACF and /BAD = /FAC, so that
triangles BAD and FAC are similar.
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A
M
E
B F C
D
The desired result follows from
AB_AF
AD ~ AC
2. We have
a1 = Tag+6bp—3=4,
by = 8ag+Thh—4=4
and a2 = Tay + 6by — 3 =49.
Substituting

b = %(anﬂ —Tan +3)
into the other recurrence relation, we have

Qny2 — 14ap41 + an = 6.
Subtracting from this

an+1 — 14an +ap-1 =16,

we have
Gpy2 — 15an41 +15an — Gn-1 = 0.
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The characteristic equation is
22 —152% + 152 — 1= (z — 1)(z® — 14z +1) =0
with characteristic roots 1 and 7 + 4+/3. Hence
an = c1 + a7+ 4V3)™ + c3(7 — 4V/3)".
Using the initial values, we have
1 = atetos, ey
4 = ¢ +co(T—4V3) 4 c3(7 — 4V3), )
49 = ¢ + (97 + 56V/3) + c3(97 — 56v/3). (3)
Subtracting (1) from each of (2) and (3), we obtain
3 = c(6+4V3) +c3(6 — 4V/3), 4)
6 = (124 7V3) + cs(12 - 7V3). (5)
Subtracting 6 4+ 4+/3 times (5) from 12 4 7+/3 times (4), we have
—3v/3 = —12+/3¢3 so that c3 = ;. From (4), we have c; = 1 and
from (1), we have c; = 3. It follows that
1 1 = L n
an = 3 + 1(74’4\/3) + 1(7*4\/5)
1 1 1
= ZQ2+V3)" 4+ (2 V3"
4 2 4
1
= @V +2-Va”
Expanding the binomials inside the bracket in the last expression,
all the irrational terms cancel out and the final value is an even
integer. Hence a,, is the square of an integer for all n > 0.
3. Clearly, we must have n > 5. If n = 5 and every two friends have

a phone conversation exactly once, then the total number of phone
conversations among any 3 of them is 3. Hence the scenario is
possible with n = 5.

We now prove that this is the only possible value. For 1 <4,j < n,
let ¢; ; be the number of phone conversations between the i-th and
the j-th friend. Then ¢;; =0 and ¢; ; =0 or 1.
Let

ti=cateet o+ Cin
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[y

for 1 < 4 < n, and we may assume that ¢1 > ty > - > tn. The

total number of phone conversations is

T=C(t+ta+- +tn)

1

2

For any ¢ and j,
T—ti*tjﬁ-ci,j:?ym

for some constant m > 1. For 2 < k <n —1, we have

t1—tn = (t1+t)— (tn — tx)
= (T-3"+car) —(T—3"+cnk)
= CiL,k~ Cnk
< 1.

Ift;—t, =1, thencip =1and chp = 0for 2<k<n-—1. Hence
t1 > n — 2 while t, < 1. However, t1 —t, 2 n — 2 —1 > 2, which
is a contradiction.

1t follows that ¢ has a constant value ¢ for 1 <k <n. From.
Cij = T —2t— 3m7

¢;,; also has a constant value ¢ for 1 < 4,j < n, and we must have
c=1sothatt=n—1and

n(nfl).

T= 3

Now

1:%7—1)42@—1)43’"

simplifies to
(n—2)(n—-3)=2-3m.

Since n — 2 and n — 3 are relatively prime, one of them is equal to
9 and the other 3™. If n —2 =2, then n —3 =1 and m = 0. This
is not permitted. Hence n —3 =2, n—2=3 and m = 1.

This completes the proof that n = 5 is the only possible value.

Olympiad Paper I

. Let O be the centre of the unit circle. If we cut up A'B'C’' D" along

the radii OA, OB, OC and OD, we can rearrange the four pieces
in any order without affecting the result of the problem. Thus we
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may assume that AB = a while BC = +/4 —a?. Let AX be a
diameter of the circle.

c’ C_ B
B

D’ A A
Then C = X since

BX?=AX?~ AB* =4 -4 = BC%

Let AB cut OA’ at Y. Then OY = BTC. Since triangles AA’Y and
OBY are similar, we have

AA = ‘—AY‘OB -2
oYy Vi — a2
Now
AA'-CB'=BA' -BB'=0B?=1.
Hence
Vi—a2
op = YA= %
a

The area of AA'B'C is

AN OB = VAzat 4
V4 — a? a T avi—a?
while the area of ABC is
AB-BC av4-—a?
2 2

Consider now AD'C'C and ADC. The area of the former is given
by AD' + CC'. Since AD' - CC’ = 1, its value increases as D
moves away from the midpoint of the semicircular AC not passing
through B. On the other hand, the area of ADC, considering AC

as its base, decreases as D moves away from the midpoint of this
arc.
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(a) The minimum ratio of the areas of A’ B'C'D" and ABCD
occurs when AD = CD, and we have

4
’__+2
a4 —a? _ 4
a4 —a? 41 avi—a?
2

(b) Since we must have min{AD,CD} > BC, the maximum ratio
oceurs when AD = BC or CD = BC, and we have

4
avid—a?® _ 3

awi—a?  a*(d-a?)
2

2. The smallest power of 2 greater than 2001 is

2048 = 2001 4 47 = 2000 + 48 = - - - = 1025 +- 1023.

Leaving out 1024 for now, the next largest number not accounted
for is 46. The smallest power of 2 greater than 46 is

64 =464+ 18=45+19=---=33+3L

Leaving out 32 for now, we have 32 = 17+ 15. Leaving out 16 for
now, we have

16=14+2=13+3=...=9+T.

Only 1 and 8 are left. Thus we have divided the first 2001 positive
integers into 998 pairs plus the five single elements 1, 8, 16, 32 and
1024. In any subset with 999 elements, if it contains any of these
five, then it will have two identical elements whose sum is a power
of 2.

Otherwise, by the Pigeonhole Principle, it must contain both el-
ements of one of the 998 pairs. Hence it will have two distinct
elements whose sum is a power of 2. To prove that 999 is indeed
the minimum, we construct a set of 998 elements no two of which
add up to a power of 2. We simply take the larger element from
each of the above 998 pairs. In other words, we take

{9,10,...,14,17,33,34,.. ., 46,1025,1026, ..., 2001}

For any two elements in this set, if both are at least 1025, their
sum is greater than 2048 but less than 2096. If only one is at least
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1025, their sum is greater than 1024 but less than 2048. If neither
is, their sum is greater than 16 and less than 128, and it is easy to
verify that it cannot be 32 or 64.

. Identify each blue jay by its initial position J and denote its new

position by J’. Consider first a regular 2n-gon for n > 2. Let A
and B be two blue jays which are diametrically opposite. If A’ and
B’ are still diametrically opposite, then any third blue jay C' will
work since /ZACB =90° = LA'C'B’.

Otherwise, let C be the blue jay such that C’ is diametrically op-
posite to A’. Then ZACB = 90° = LA’B’C’. Note that the result
is trivially true for an equilateral triangle, while the following ex-
ample shows that it is false for a regular pentagon.

A

C D B’ E

Consider now a regular 2n + 1-gon for n > 3. Clearly there are
no right triangles. The number of obtuse triangles with a particu-
lar diagonal as the longest side is equal to the number of vertices
between the endpoints of this diagonal, going the shorter way.

Since there are 2n - 1 diagonals of each length, the total number
of obtuse triangles is
1
Cn+D(A+2+--+(n—-1)= §(n— 1)n(2n+1).

The total number of triangles is

(7)ot

Since

in-1) 1, n-2 1

fen—-1) 2 m—2"2
for n > 3, there are more obtuse triangles than acute ones. By the
Pigeonhole Principle, there exist three blue jays whose initial and
final positions both determine obtuse triangles.
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Olympiad Paper II

1. We may assume that a < b. Note that a+b =2 (mod 3). Suppose

a=0 (mod 3) and b =2 (mod 3). Then a =3 and c#0 (mod 3).
If c =1 (mod 3), then a + b+ ¢ = 0 (mod 3) is composite since it
is distinct from 3. If ¢ = 2 (mod 3), then a+b— ¢ =0 (mod 3) is
also composite.

Hence we must have a = b = 1 (mod 3). If ¢ = 1 (mod 3), then
a+b+c=0 (mod 3). Since a+b+cis the largest of the 7 distinct
primes, it cannot be equal to 3. If ¢ = 0 (mod 3), then ¢ = 3 and
c+a—b=0 (mod 3) is composite. Hence we must have ¢ = 2
(mod 3).

Now a4 b — ¢ = 0 (mod 3) is prime. Hence it is equal to 3, and is
the smallest of the 7 distinct primes. We have ¢ = 800 — 3 =797
and the desired difference is

(@a+b+c)—(a+b—c)=2c=1594

Note that @ = 7 and b = 793 yield the distinct primes 3, 7, 11, 793,
797, 1571 and 1597.

. Label the points 0 to 23 in cyclic order and arrange the labels in a

3 x 8 array as shown below.

0 3 6 9 12 15 18 21
8 11 14 17 20 23 2 5
16 19 22 1 4 7 10 13

Two adjacent labels in the same row (the first and the last labels
being considered adjacent) differ by 3 while two adjacent labels in
the same column (the top and the bottom labels being considered
adjacent) differ by 8.

Thus the problem is equivalent to choosing 8 mutually non-adjacent
labels. Since we can choose at most one from each column, we have
to take exactly one from each. In general, let z, be the number of
valid choices from a 3 X n array where n > 2. There are 3 choices
in the first column and 2 in each subsequent column.

However, it may happen that the labels in the first and the last
columns are adjacent. In this case, omission of the last column
yields a valid choice for the 3 x (n — 1) array. It follows that
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Ly + T =327 for n > 3, with 2, = 6. Hence

w5 = (@8 +27) — (T7 +26) + (v6 + 25) — (25 + 74)
(g + 3) — (3 + 22) + 22
= 3(2T-20+2° -2 +2° 27 +2)
= 258.

3. (a) Let
k= 4002m — m? + n?
2n '
Then
n(2k — n) = m(4002 — m).
If either m or n is odd, all four factors are odd. It follows that
m =n (mod 2). Now

4002m — 2mn + n? — m? + 2mn
2n
4002m — 2mn + 4002(n — m)
2n

k =

= 2001 —m.
Hence
2k —n < 2k < 4002 — 2m < 4002 — m,
so that n > m. Now
2mn < 4002(n —m) — (n? — m?)
= (n—m)(4002 —n —m).
It follows that 4002 — n — m > 0, so that the given expression
_ m(4002 —m —n)
n

E(m,n)
is positive. Also,

4002m — m? +n? —n? —mn

E(m,n) =
n
= 2k-n-m
= 0 (mod 2).
Hence E(m,n) > 2.
‘We have
8000

E@2,n)=— -2,
n

and the minimum value is attained at F(2,2000) = 2. It is
easy to verify that (m,n) = (2,2000) satisfies the hypothesis.
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(b) Recall that n>m and m=n (mod 2). Consider first

4002(n —2) — (n = 2)? —n(n—2)

n n
4004
= 400872(71*}'70)‘

To maximize the value of E{n — 2,n), we want n and f‘%‘ﬁ to
be as close to each other as possible. Since n must be a factor
of 4004 = 52 x 77, we can take n = 52.

It is easy to verify that (m,n) = (50,52) satisfies the hy-
pothesis while (m,n) = (75,77) does not. We claim that the
maximum value occurs at F(50,52) = 3750. In other words,
E(m,n) < 3750 for all n > m + 4. In such cases, we have

E(n—2,n)

(4002 — m)m
n
(4002 — m)m
= -m
m+4

m

E(m,n)

il

IN

I

16024
3998 -2 m+4+—

m+4
3998 — 24/16024
3998 — 2(126)
3746.

INIA

This justifies the claim.
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