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PREFACE

This book is a collection of the most beautiful problems proposed for the
mathematical competitions during the academical year 2001-2002 in Romania.
The participants to these competitions are Jjunior-high and high-school students,
hence all problems have elementary mathematical level, corresponding to the
school curricula. Nevertheless, the authors try to introduce new ideas and tech-
niques in order to help students to discover the beauty of mathematics.

The main mathematical competition in Romania, is the National Mathema-
tical Olympiad. It is held yearly since 1949 and a great number of young students
take part every year since. It is organized in several rounds starting with a school
examination for selection and ending with the Final National Contest. The Com-
mittee of the National Olympiad tries to select only original problems, proposed
by Romanian mathematicians. Then, the list is completed by the committee, in
order to insure a consistent examination. In this way, a list of problems was created
every year, including the presented one.

Many other competitions of regional character are also organized by the
Romanian Mathematical Society through its Departments. Some of these com-
petitions have already reached a strong tradition being organized in honour of
important Romanian Mathematicians: Gheorghe Titeica, Gheorghe Vranceanu,
Gheorghe Mihoc, Grigore Moisil, Spiru Haret and others. Many interesting math-
ematical problems arise from these competitions too.

The authors of this book collected the most beautiful problems given at
these competitions held in Fall 2001 and Spring 2002 with the aim to support the
creation of elementary mathematical problems. These problems have an important
contribution to the mathematical education of the young people. Our purpose was
also to encourage mathematical teachers to be involved in finding of new problems.

The series Romanian Mathematical Competitions was created and supported
by the Romanian Mathematical Society since 1994. In order to get a more exhaus-
tive collection, its contend was extended this year.

We thank the Romanian Mathematical Society and the Theta Foundation
for supporting the publishing of the present book.

Special thanks are due to Mrs. Luminita Stafi and Barbara ITonescu, from the
Theta Foundation, who carefully typed most of the manuscript and contributed
in time to the editing of this book.

Bucharest, Mircea Becheanu
July 16, 2002 Radu Gologan
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Part I: THE 53" NATIONAL MATHEMATICAL OLYMPIAD

PROPOSED PROBLEMS

L.1. FIRST ROUND. CITY OF BUCHAREST
January 26, 2002

9t GRADE

PROBLEM 1. Find all positive integers a, b for which the number

V2+./a
V3+vb
is a rational number.
LV. Maftei
PROBLEM 2. Let ABCD be a unit square and M, N be interior points on
the sides AB, BC respectively, such that
AM CN
ik 7 and NB = 2.
Let P be the intersection point of the lines CM and DN.

— —
a) Show that 13AP = 12AB + 5AD.
b) Compute the length AP.

Laurentiu Panaitopol
PROBLEM 3. Find all real functions f,g,h: R = R, such that
(@ = y)f() + h(z) - 2y +4* < h(y) € (z - y)g(2) + h(z) — 2y + 2,
for all real numbers z,y.
Marcel Chiritd

PROBLEM 4. Let ABCD be a rhombus and M, N, P be interior points on
the sides AB, BC,CD respectively. Show that the centroid of the triangle M NP
belongs to the line AC if and only if AM + DP = BN.

Marian Andronache

10** GRADE

PROBLEM 1. Solve in the set C of complex numbers the following equations:
a) |z —a| + |z — b] = b — a, where a,b are real numbers.
b) |z| + |z — 1|+ |z - 2|+ |z — 3| = 4.

Petrug Alexandrescu and Sorin Ridulescu
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PROBLEM 2. a) Let a be a real number, a > 1, and f,g,h: R = R be real
functions such that f(z) + g(z) +h(z) > 0, for all € R. Show that the equation

o/ @ 4 9@ 4 gh® = 3

has solutions if and only if the functions f, g, h have common zeros.
b) Solve the equation

51+cus1r:: +2z’—1 +4l—-|z| =3.
Valentin Matrosenco

PROBLEM 3. Let ABC be a triangle and M, N be the midpoints of the sides
BC, AC respectively. It is known that the orthocenter of the triangle ABC and
the centroid of the triangle AMN coincide. Find the angles of the triangle ABC.

Marian Andronache

PROBLEM 4. Let (an)np1 be an arithmetic progression that contains the
numbers 1 and v/2. Show that any three numbers from the sequence (as)n31 are
not in a geometric progression.

Laurentiu Panaitopol

11" GRADE

PROBLEM 1. Let a,b,c be real numbers such that a? + b* + ¢* = 4. Show

that the determinant
a+b b+c c+a

ct+a a+b b+c
b+c c+a a+bd

is not greater than 16.
Marcel Chirita
PROBLEM 2. Let (Zn)n>1 be an arithmetic progression of positive numbers.

For any positive integer n, denote by a(n) the arithmetic mean and by g(n) the
geometric mean of the first n terms of the progression. Compute

a(2n) — a(n)
neieo g(2m) — g(n)’
Marcel Chirita

PROBLEM 3. Let (an)n>1 be a sequence of real numbers such that ap, > —1
and @p — Gnt1 > Anan41, for all n > 1. Show that an >0 for alln > 1.
Dinu Serbanescu
PROBLEM 4. Let A be a 2 x 2 matrix with entries in C. For any positive
integer n, denote by z, = det(A"™ +1I). Show that if z; = o = 1, then z, is either
lor4.
Laurentiu Panaitopol

SECOND ROUND — DISTRICT LEVEL 3

12" GRADE

ProBLEM 1. Compute the following integrals:
2) /1 Va2 +1+z-1
a\Vz2+1l+z+1
1
b) / de )
a2 +z+14+Vet + 322 +1

Marcel Chiritd
f.’ROBLFTM 2.' Let o : M x M — M, ¢(z,y) = zy, be a composition law
possesing an identity element and satisfying the condition
o for any a,b,z,y € M, such that ab = zy, it follows that az = by.
Show that M is an abelian group with respect to .
Marian Andronache

PROBLEM 3. Let f : R — R be a function which has a derivative f' and

i:ztl 5 be an antiderivative function of f. We assume that the following properties
old:

(i) the limit lim zf'(z) exists;

T—00
(i) lim £& =1,
Compute the limits: lim o'

0 H i
mpute the limits: zgrolozf (z) and zli)nolof(a:).
Mihai Balund

PROBLEM 4. We are given a finite group with n elements. Suppose the

group contains two elements of order p, g, respectively, such that p > 2, ¢ > 2
are relatively prime and p+¢ > n — 1.’ Isind n. ’ pzoaz5pd

Laurentiu Panaitopol

1.2. SECOND ROUND (DISTRICT LEVEL)
February 16, 2002

7" GRADE

PROBLEM 1. Find the number of representations of the number 180 in the
form 180 = z +y + z, where z,y, z are positive integers that are proportional with
some three consecutive positive integers.

_PROBLEM 2. A group of 67 students pass an examination consisting of six
questions, la:be]ed with the numbers 1 to 6. A correct answer to question n is
quotgdtn points and for an incorect answer to the same question a student loses
n points.

a) Find the least possible positive difference between any two final scores.
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b) Show that at least four participants have the same final score.
c) Show that at least two students gave identical answers to all six questions.

Dan Branzei and Mircea. Fianu

PROBLEM 3. Let ABC be an equilateral triangle, G be its centroid and M
be an interior point. Let O be the midpoint of the segment MG. Through the
point M three segments are drawn that are parallel to the sides of the triangle
and have their endpoints on the sides of the triangle.

a) Show that the point O is at equal distance to the midpoints of these three

segments.
b) Show that the midpoints of the three segments are the vertices of an

equilateral triangle.
M. Asiminoaie

PROBLEM 4. Let ABCD be a rectangle and E, F' be points on the segments

BC and DC respectively, such that ZDAF = LFAE. Show that if DE + BE =
AE, then ABCD is a square.

Mircea Fianu

8" GRADE

PROBLEM 1. Let z,y, z be positive real numbers such that zyz(z+y+z) =1
Show that the following equality holds:

\/@2 + %) (y2 +$) (22 + %) =(z+y)(y+2)(z+1).

Find some numbers ,y,z which satisfy the given property.

PROBLEM 2. a) Let « be a real number such that 22 + z and 23 + 2z are

rational numbers. Show that z is a rational number.
b) Show that there exist irrational numbers & such that 22+ and 2° — 2z

are rational.

Florica Banu

PROBLEM 3. We are given a regular quadrilateral pyramid VABCD and let
O be the center of the square ABCD. The angle between two lateral opposite
sides of the pyramid is 45°. Denote by M the projection of the point A on the line
CV, by N the symmetrical point of M with respect to the plane (VBD), and by
P the symmetrical point of N with respect to 0.

a) Show that the polyhedron MDNBP is a regular pyramid.

b) Find the angle between the line ND and the plane (ABC).

Mircea Fianu

PROBLEM 4. Let ABCDA'B'C'D' be a cube. On sides AB,CC',D'A' one
considers the points K, L, M respectively.
a) Show that v3KL > KB+ BC +CL.
b) Show that KL + LM + MK > 2V/3AB.
Dan Branzei and Radu Gologan

SECOND ROUND — DISTRICT LEVEL 5

9t GRADE

PROBLEM 1. Prove that for every real number z, the following inequality
z+3 T+4 T+5 T+1 T+1
6 ] |6 " = - :
6 2 3
Cristinel Mortici

Circunl:g:)cl::riaa tzf{LP}; AIB;CII._.)I bs a cyclic quadrilateral and M be a point on its
. Let Hy, H,, H3, H4 be the orthocenters of the tri
MCD, MDA respectively. Prove that: o triangles MAB, MEC,

a) HyHyH3Hy is a parallelogram.
b) HyH; = 2EF.

holds

Nicolae Musuroia

PROBLEM 2. Let ABC be a triangl i i
. gle, G be its centroid i
on the sides AB, BC, C A respectively, such that ntroid and M, N, F'be points

AM _BN _CP
MB ~ NC P4’

Denote by Gi,G»,G3 the centroids of the tri
ety P s 3 of the triangles AMP,BMN,CNP respec-

a) the triangles_ ABC and G1G2G3 have the same centroid;
b) for every point D in the plane (ABC), one has '

3DG < DG, + DG2 + DG3 < DA+ DB + DC.

Vasile Cornea and Dan Marinescu

P)R?BLEM 4. Let n be a positive integer, n > 2. Prove that:

a) if a1,as, ..., a, are real numbers such that a1 +as +- - - + a,, = a? + a2
~~-+ﬁ§,,thena1+ag+-~~+a,.<n; ' ’ TS et
if z is a real number such that 1 < z < n, th i

en there ar
numbers ay, as, ..., an, such that D © nonnegative real

T=a+a+-+an=ai+ad+ - +ad.

Romeo Ilie

10" GRADE

PROBLEM 1. Find a closed formula for z,,, n > 2, where z; = 1 and

U&1Tn +222Tn—1 +323Tn_2+ - +nTn1) = (n+1)(T122 + ToT3 +- - +TnTns),
for each n > 1.

Nicolae Papacu
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PROBLEM 2. Solve in complex numbers the system:
z(z—y)(z—2)=3
yy-2)y-2)=3
2(z—z)(z — y)\: 3.
i Mihai Piticari
PROBLEM 3. Let a,b be real numbers such that 3° + 13® = 17 and

5% 4+ 7% = 115, Prove that a < b.
Cristinel Mortici

PROBLEM 4. For every positive integer n, n > 2, denote by f(n) the minimal
number of elements of a set S which satisfies the conditions:

(i)1leSandnes; . o

(ii) every element of S, except 1, is a sum of two, possible not distinct,
elements of S.

Prove that:

a) f(n) > logyn] +1.

b) f(n) = f(n + 1) for infinitely many numbers n.

Dorel Mihet

11t GRADE

PROBLEM 1. a) Let a and b be positive real numbers. Compute the limit

lim Vu+\/a+~--+\/a+\/5,
n—oo

the number of radicals being n.
b) Let (an)n>1 be a sequence of positive numbers and (zn)n31 be the se-
quence defined by

. :t,.z\/an-l- an_1+"'+va2+val~ .
Prove that:

(i) the sequence (Zn)ny: is bounded if and only if the sequence (an)a31 is
bounded. .
(ii) the sequence (Zn)n»1 is convergent if and only if the sequence (an)n31
is convergent.
. Valentin Matrosenco and Radu Gologan

ProBLEM 2. In a rectangular system of coordinates of a plane, we consider
the points An(n,n3), where n runs over all positive integers and the point B(0,1).
Prove that: . )

a) for every integers k > j > i > 1 the points 4;, A;, Ay are not on a line;

SECOND ROUND — DISTRICT LEVEL 7

b) for every positive integers 1 < 4y < iy < -++ < in—1 < in, the following
inequality holds:

LA4OB + LA,OB + -+ LA; OB < g
PROBLEM 3. a) Find a 3 x 3 matrix A with complex entries, A € M3(C),

such that A% # 0 and 43 =0.

"b) Let n, p numbers which are 2 or 3. We assume that there exists a function
f: M (C) = M,(C) with properties:
e f is a bijective function;

® f(XY) = f(X)- f(Y), for every X,Y € M,(C).
Prove that n = p.

Ion Savu
PROBLEM 4. Let f: R — R be a function which satisfies the conditions:
(i) f has lateral limits in any point @ € R and
fla=0) < f(a) < fa+0);
(ii) for any real numbers a,b, a < b, one has
fla=0) < f(b-0).
Prove that f is a monotonic increasing function.
Mihai Piticari and Sorin Ridulescu

12" GRADE

PROBLEM 1. Let A be a ring, a € 4, and n,k be integers such that n > 2,
k>2,1+1+...4+1=0and a* = a+ 1. Prove that:
N

ntimes
a) for every positive integer s, there exist non-negative integers po,p1,...,
Pk—1 such that

@ =po-1+pi-at- - +pey a7l
b) there exists a pozitive integer m such that a™ = 1. :
Marian Andronache
PROBLEM 2. a) For any positive integer n, let 4, be the ring
An=Zp x - xZy =178

Show that if n # m, then the rings 4, and Am are not isomorphic but there exists
a ring homomorphism f : 4, = A,p,.
b) Prove that there exist rings By, By, ..., By,,... such that, no homomor-
phism exists between B, and B, when n #m.
Barbu Berceanu

PROBLEM 3. For any real number a, 0 < a < 1, we denote

a
In(a)=/ In(l+z+---+2"1)dz, n3>2.
0
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Compute the limit: lim I,(a).
n-—+00
Mihai Piticari
PROBLEM 4. Let f: R — [0,00) be a continuous function which is periodic
of period 1. Prove that:

a+1 1
a)/‘z f(z)da::/0 f(z)dz,Va e R;
1 1 2
b tin [ f@sma)as= ( [ soaz)

Cristinel Mortici

1.3. FINAL ROUND
Réamnicu Valcea — March 18, 2002

7 GRADE

PrOBLEM 1. Eight card players are seated around a table. One remarks
that at some moment, any player and his two neighbours have alltogether an odd
number of winning cards.

Show that any player has at that moment at least one winning card.

PROBLEM 2. Prove that any real number z, 0 < z < 1, can be written as
difference of two positive and less than 1 irrational numbers.

PROBLEM 3. Let ABCD be a trapezoid and AB, respectively CD be its
parallel edges. Find, with proof, the set of interior points P of the trapezoid
which have the following property:

“P belongs to at least two lines each intersecting the segments AB and CD
and each dividing the trapezoid in two other trapezoids with equal areas”.

PROBLEM 4. a) An equilateral triangle of sides a is given and a triangle
MNP is. constructed under the following conditions: P € (AB), M € (BC),
N € (AC), such that MP 1L AB, NM 1 BC and PN 1 AC. Find the lenght of
the segment M P.

b) Show that for any acute triangle ABC one can find points P € (AB),
M € (BC), N € (AC), such that MP L AB, NM 1L BC and PN L AC.

Mircea Fianu

FINAL ROUND 9

8th GRADE

) PROBLEM 1. For any number n € N, n > 2, denote by P(n) the number of
pairs (a,b) whose elements are positive integers such that

n a b
ae(O,l), 36(1,2) and ;e(z,a).

a) Calculate P(3).
b) Find n such that P(n) = 2002.

Mircea Fianu

PROBLEM 2. Given real numbers a, ¢, d, show that there exists at m
| 0st one
function f : R — R which satisfies: T

flaz+c)+d<z < f(z+d)+c for any z € R.

Laurentiu Panaitopol

PROBLEM 3. Let [ABCA'B'C’] be a frustum of a regular pyramid. Let G
and G’ be the centroids of bases ABC and A'B'C" respectively. It i y
UB = a6, g s of bases AF pectively. It is known that

a) Prove that the planes (ABC"), (BCA'), (CAB') have a common poi

s point P,

and Gt?‘,'? planes (A'B'C), (B'C'A), (C'A'B) have’a common point P’, both situated
on .

b) Find the length of the segment [PP].

Dan Branzei

PROBLEM 4. The right prism [A1A2A3~~-A,.A’1A’2~--A:,], n€N,n > 3,
has la convex polygon as its base. It is known that A Ay L Ag Ay, A AL L
A3A4,.). .,A,é_lALl L AnAf, An AL L Ay A). Show that:

a)n=3;

b) the prism is regular.

Mircea Fianu

9" GRADE

PROBLEM 1. Let a,b,c be positive numbers such that ab+bc+ca = 1. Show

that: 1
1 1 ab be ca
—— by — > —
a+b b+c c+a/\/§+a+b+b+c+c+a'

Dinu Teodorescu

EA}}OBLEM 2. Let ABC be a right triangle ZA = 90° and let M € (AB) such

that B = 3\/5 — 4. It is known that the symmetric point of M with respect to

the line GI lies on AC. Find the measure of angle B (G is the centroid and I is
the center of the incircle).

Marian Andronache
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PROBLEM 3. Let k and n be positive integers, n > 2. Show that the equa-
tion: . .
" -yt =2
has no positive integer solutions.
Romeo Ilie

PROBLEM 4. Find all-functions f : N — N which satisfy the equality
Bz +2y) = f(2) f(v),

for all nonnegative integers z,y.
Gheorghe Iurea

10" GRADE

PROBLEM 1. Let X,Y, Z,T be four points in the plane. The segments [XY]
and [ZT] are said to be connected, if there is some point O in the plane such that
the triangles OXY and OZT are rightangled in O and isosceles.

Let ABCDEF be a convex hexagon such that the pairs of segments [AB],
[CE), and [BD], [EF] are connected. Show that the points A,C, D and F' are the
vertices of a parallelogram and that the segments [BC] and [AE] are connected.

Bogdan Enescu

PROBLEM 2. Find all real polynomials f, g which satisfy the condition:

@@ +z+1)-f@*-z+1)= (® -z +1)-g(z® +2z+1),
for all z € R. -
Marcel Chiritd

PRrROBLEM 3. Find all real numbers a,b,c,d, e in the interval [—2,2], that
satisfy:
a+b+c+d+e=0

S+ +E+d+ef =0
A+ + S +d+ef =10.
Titu Andreescu
PROBLEM 4. Let I C R be an interval and f : I — R be a function such

that:
. |f(z) — f@W)| < |z —yl, forall z,y €I

Show that f is monotonic on I if and only if, for any z,y € I, either f(z) <
£ (52) < F@) or f) < £ (33Y) < f(@).
Romeo Ilie

FINAL ROuND 11

11*" GRADE

PROBLEM 1. In the Carthesian plane Oy one considers the hyperbola
2
_ 2|25 2 _
r={M@yeR [ -t =1}
and a conic I, disjoint from I'. Let n(T,I") be the maximal number of pairs of
points (4, A’) € T x I such that A4’ < BB', for any (B,B'yeI'xTI".
For each p € {0,1,2,4}, find the equation of IV such that n(T,I') = p.
Justify the answer.
(The following curves are considered here as conics: the circle, the ellipse,
the hyperbola and the parabola.)
Barbu Berceanu
PROBLEM 2. Let f : R — R be a function which has limits at any point
and has no local extreme. Show that:
a) f is continuous;
b) f is strictly increasing or strictly decreasing.
Mihai Piticari and Sorin Ridulescu
PROBLEM 3. Let A € My(C) be a non-zero matrix.
a) If rank(A) = r < 4, prove that one can find two invertible matrices
U,V € M4(C), such that:
UAV = (1, 0) ,

0 0

where I, is the r-unit matrix.

b) Show that if A and A2 have the same rank k, then the matrix A® has
rank k, for any n > 3.

Marian Andronache and Ion Savu
PROBLEM 4. Let f : [0,1] — [0,1] be a continuous and bijective function.

Describe the set:
A={f(@) - f®)|zy€[0,1]\Q}.
(Consider the following result to be known: there is no one-to-one function
between the set of irrational numbers and Q)

Radu Gologan

12" GRADE

PROBLEM 1. Let A be a ring.

a) Show that the set Z(A) = {a € A|az = za, for all z € A} is a subring of
the ring A.

b) Prove that, if any commutative subring of A is a field, then A is a field.

(A subset B C A is called a subring if the following are true: z,y € B implies
7Y,Z —y € B and 1 € B, 1 being the unit of A.)

Ion Savu
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12

PROBLEM 2. Let f:[0,1] = R be an integrable function such that:
1

0< l / f(@)de
0

Show that there exist z; # T2, Z1,%2 € [0,1], such that:
T

/ i (@)dz = (21 — 22)**.
z1

<L

Radu Gologan

ProBLEM 3. Let f : R = R be a continuous and bounded function such

that: " .
:t/z f(t)dt:/ f()dt, for any z € R.
0
T
Prove that f is a constant function. e Piicast
PROBLEM 4. Let K be a field having ¢ = p" elements, where p is a prime

nes
number and n > 2 is an arbitrary integer number. For each a € K, one defi

ial f, = X?— X +a. Show tl{a'i::
the POl)yl}O_'fu(X{a_ X)1 — (XP - X) is divisible by fi;
Z 1. —has at least p"~! essentialy different irreduc1ble factor_s K[X]. sative)
o use the following classical result: any finite field is commutative.
(Onemey Marian Andronache

1.4. ELEMENTARY SCHOOL OLYMPIAD
City of Bucharest
May 5, 2002

5" GRADE

PROBLEM 1. Show that the number

is an integer.

PROBLEM 2. We consider the number

1 2 3 11
N=gptimtie ™+

Show that 0.12345679 < N < 0.1234568.

SHORTLISTED PROBLEMS 13

PROBLEM 3. A sports contest was organized during four days. The medals
were distributed as follows: each day half of the existing medals were awarded and
one more. How many medals were awarded each of the four days?

PROBLEM 4. The sets A and B consist each of a finite number of consecutive
positive integers. Let a be the arithmetic mean of the elements in A and b be the
arithmetic mean of elements in B. The arithmetic mean of @ and b is 12 and it is
known that ANB = {12}. Find the maximal number of elements in the set AU B.

6" GRADE

PROBLEM 1. Let A={a € Z| —2000< a 2000}.

a) Find the sum of elements of A.

b) Show that the sum of absolute values of elements of A is a perfect square.

PROBLEM 2. Find positive integers a, b which satisfy the conditions:

(i) 6a + b = 330;

(ii) the least common multiple of a and b is 12 times greater than the greatest
common divisor of @ and b. ‘

PROBLEM 3. Let a,b,c be positive integers such that

atb _b+c_c+a

be ca ab

Show that a = b= c.

PROBLEM 4. Let ABC be an isosceles triangle. The base of the triangle
ABC is AC, the length of AC is a and /B = 70°. On the segments AB, AC are
given the points D, E respectively, such that DA + AE = a. On the segments
AC, BC are given the points F,G respectively, such that FC + CG = a.. The
points E, F' are distinct. Find the angle between the lines DF and EG.

L5. SHORTLISTED PROBLEMS
for the National Mathematical Olympiad
Final Round

PROBLEM 1. Let a,b, ¢ be decimal digits and n a positive integer such that
14+2+---+n— abcabc.
Find the number abe.

7" Grade, Gheorghe Moraru
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PROBLEM 2. Let ABCD be a trapezoid with A a right angle and parallel
sides CD, CD. Prove that AB? + CD? = BC? + AD? if and only if AC L BD.

7th Grade, Dorin Popa

PROBLEM 3. A sheet of paper is a square with sides 10 centimeters. Prove

that one can cut an equilateral triangle of sides 10.3 cm but one cannot cut an
equilateral triangle of sides 10.4 cm.

7th Grade, Laurentiu Panaitopol

PROBLEM 4. Let z be a real number such that 72002 = 2003 4 1. Then z

cannot be rational.
7th Grade, P. Simion and S. Smarandache

PROBLEM 5. In a right triangle the sides are a,b, ¢ in standard notations.

Prove that
1o o b 142
b+c a2 2

7*h Grade, Petre Stangescu

PROBLEM 6. Let a,b, c be real numbers such that = = a2+ b%+¢? is positive.
Prove that
a® +b® + ¢ — 3abc < zV/x.
8th Grade, Marcel Chirit3
PROBLEM 7. Given positive numbers a, b, ¢ such that abc = 1, show that

a+b+c)G

(@a+b)+0(c+a) < ( 3

8th Grade, Valer Pop

PROBLEM 8. The numbers a, b, c are given, such that a,b,¢ > 1 and abc =
2v/2. Prove that
(@a+1)(b+1)(c+1) >8(a—-1)(b—1)(c—1).
8th Grade, Gheorghe Molea
PROBLEM 9. A convex n-gone is given and a is a positive integer such that
the number of diagonals equals 2. Find n.
8P Grade, Valer Pop
PROBLEM 10. We are given a right parallelipiped of diagonal 1 and M an
arbitrary point inside it. Denote by s(M) the sum of squares of distances of M
to the eight vertices of the parallelipiped. Find the maximal and minimal value
of s(M).
8th Grade, Valentin Matrosenco
PROBLEM 11. Given positive integers m and n prove that one can find pos-
itive integers a and b, such that
(m* —m? +1)(n* —n? +1) = a® + b2

SHORTLISTED PROBLEMS 15

8th Grade, Bogdan Enescu
PROBLEM 12. Given A and B, subsets of the set of real numbers, we denote
AB={zy|zec A, yeB)}.
Given a real number a, find the finite subsets X C R such that XX C {a}X.
9*h Grade, Marcel Tena

PROBLEM 13. We are given positive numbers a, b _
Prove that a,b,csuch that a+b+c=1.

5(a® + 5% + c?) < 6(a® + 5% + ) +1.
9*h Grade, Mihai Piticari and Dan Popescu

PROBLEM 14. Let A4, B, C, D be distinct poi i
] points on a circle of center O.
that if there are nonzero real numbers z,y such that O Prove

— —
c04 +yOB| = [¢OB +y0C| = [20C +yOD| = +0D + y0A,
then ABCD is a square.

9" Grade, Manuela Prajea

hat PROBLEM 15. Given positive numbers a,b,c such that a + b+ ¢ = 1, prove
al

(@) + (b0t + (ca)? < i

9th Grade, Dinu Teodorescu

PROBLEM 16. Let n be an integer, n > 3. Find all ¢ 1
that both z™ and (1 + 2)" are real numbers, omplex numbers z such

10*" Grade, Gheorghe Iurea
PROBLEM 17. Given the sequence of positive numbers (a,,),>; that satisfy

Ant1 = /6 —2a2, for any n > 1, prove that it is constant.
10*" Grade, Laurentiu Panaitopol

PROBLEM 18. We are given complex numbers q, b, c, isti
, mutually distinct, such
that [a] + [b] + e = 1 and [a — b2 + [ ¢f? + |c— af* > 8. Prove that

l(a+B)(b+c)(c+a)| < 1.

10" Grade, Dan Nedeianu
PROBLEM 19. Let A4, B be complex matrices of size 3 x 3. Prove that
det(AB — BA) = tr(AB(AB — BA)BA).

11** Grade, Radu Gologan

PROBLEM 19. Given 4 and B complex matrices of size i
. E n Xn, such that B is
obtained from A l.)y some permutations of its rows, show that either det(A+B) = l0
or for some positive integer r we have det(A + B) = 2" det(A).

11th Grade, Cornel Berceanu
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PROBLEM 20. Let (z1)n3>1 be a sequence of positive numbers that satisfies
(Tng1 — Tn)(TnTnsr —1) €0 and lim Zatl — 1. Prove that (Zn)n31 has a finite
n—oo Tn
limit.

11th Grade, Mihai Piticari

ProBLEM 21. Find with proof, all continuous periodical -functions,

f:R — R, such that for all real and any integer n we have |nf(z) f(nz)| < 1.
11th Grade, Cristinel Mortici

PROBLEM 22. Given a continuous non-constant function f:00,1] = [0,1],
prove that there exist z1,%2 € [0,1], =y # 2, such that

(1) = f(@)] = lor — 22,
11" Grade, Radu Gologan
PROBLEM 23. Given a real number a, find all continuous functions
f:R - R, such that f(f(z)) + f(z) = 2z +a, for any real .
11th Grade, Marcel Chiritd
PROBLEM 24. We consider the following sets of 2 x 2 complex matrices: M’ 2

is the set of all matrices that have square roots and M’ 3 is the set of matrices that
have cubic roots. Prove that M? = M>3.

11th Grade, Mihai Bélund
PROBLEM 25. Let A be a ring without divisors of 0 and such that there is

a € A satisfying a> —a =1+ 1. Prove that 1 +14+1=0 (here 1 stands for the
ring unit and 0 is the zero element in A).
12th Grade, Tiberiu Agnola
PROBLEM 26. Let A be a complex matrix of size 2 x 2 which is neither 0
or I. Given an integer n, consider the set of matrices S, = {X|X™ = A}. Prove
that the following conditions are equivalent:
a) Sy, is a multiplicative group isomorphic with the group of n-roots of unity;
b)A% = A.
12th Grade, Marian Andronache
PROBLEM 27. In aring'A we have 1 # 0. Suppose that there is an integer n

and an element € A such that z87+? = z. Prove that 1 -z + 22 is an invertible
element in A.

12th Grade, Nicolae Papacu
PROBLEM 28. Let f : [0,1] = R be an infinitely derivable function such
that (™ (0) = 0 for n > 2002 and

1
lim / |£ (z)|dz = 0.
n—0o0 0

Prove that f is polynomial.
12tP Grade, Daniel Jinga and Ionel Popescu

SHORTLISTED PROBLEMS 17
PROBLEM 29. Let K and L be fields and F be the i
) 3 ! dL group of all functions
f:K =L A “(K, L)-integral” will be a group morphism I : ¥ — L, which has
the following properties: '
(i) for any a € K, f € F we have I(f ot,) = I(f), wheret, = ;
(i) I(1) = 1z, unde 1(z) = 1z. W) =1(f), whereta(z) = o +o;
Prove that:
a) if p > 3 is a prime number, then I(f) = 0) + f(1) +--- —1) i
(T 2) e H=fO+fM)+--+flp-1isa
ﬁeldsl}z’ 1afn ::1 L(.K , L)-integral” exists, then there are no morphisms between the

12th Grade, Barbu Berceanu
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Part II: THE 53t NATIONAL MATHEMATICAL OLYMPIAD
SOLUTIONS

I1.1. FIRST ROUND. CITY OF BUCHAREST

i
3}

9" GRADE

ProBLEM 1. Find all positive integers a, b for which the number

V2++/a
V3+vb

is a rational number.
SOLUTION. Let a € Q such that
V2iva_
V3+vh o
We write the equality under the form
Va—oavb=aV3-V2.
After squaring, we obtain
a+a?b— 2av/ab = 3a? + 2 — 20V/6.
It follows that V- Vi=peqQ.

By squaring the equality v/ab = v/6 + 8, we obtain ab =6 + ° + 23+/6, which is
the same as 23v/6 = ab — 6 — 8%. The last equality is possible‘ only when § = 0;
that is ab = 6. Taking into account all possible cases, one obtains:

V2+1 1 I
= = i = ———— = — an irrational number
a=1,b=6, thatis B o
. 22 _ V2
a=2,b=3,thatxsa—5‘7§—\/§,
VZ+V3
=3 b= sa=Y2TV" _1¢
a=3,b=2, thatis o BV Q

V2+6

a=6,b=1, thatis a = —m = /2, an irrational number

an irrational number

Thus the answer is a = 3, b= 2.
PROBLEM 2. Let ABCD be a unit square and M, N be interior points on
the sides AB, BC respectively, such that
AM CN

o = — =2,
Y ]
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Let P be the intersection point of the lines CM and DN.

—
a) Show that 13AP = 124B + 5AD.
b) Compute the length AP.

SoLUTION. We shall use coordinates. Take the origin of a rectangular sys-
tem of coordinates to be A(0,0), such that one has B(1,0),C(1, 1),M(§,0) and
N(1, %) The lines DN and C'M have respectively the equations:

(CM) 8z —y=17

(DN) 2z + 3y =3.
Solving the system we obtain for the coordinates of P: z = 1%, y = &. Since
—
AB = e1, AD = e, are the orthogonal unit vectors of the choosen coordinate
system, we have: AP = {2e; + fie; = 24B + £ AD.

It follows, by standard computation that

2 2
e CECR

answering thus to the last question.

PROBLEM 3. Find all real functions f,g,h: R — R, such that

(@ = 9)f (@) + h(z) -2y +¥* < h(y) < (= - y)9(2) + h(z) — 2y + 37,
for all real numbers z,y.

SoLuTION. Comparing the extreme parts of the given inequality, one obtains

(z = 9)f(2) +h(z) — 2y +* < (e - y)9(z) + h(z) — 2y + 37,

that is (¢ — y)f(z) < (¢ — y)g(z) for all 7,y € R. For y = z + 1 this gives
f(2) < g(z) and for y = x — 1 it reduces to f(z) > g(z). Hence f(z) = g(z) for
all real z. The given inequality then becomes

() . (z-9)f(@) + h(z) — zy + y* = h(y), for all z,y € R.
For z =0 in (1), we obtain
(2) h(y) = y* — f(0)y + h(0), for all y € R.

It follows that h is a quadratic function. Denote f(0) = a, h(0) = b and use
formula (2) in (1), to obtain

(z-y)f(x)+a®—az+b—ay+y’ =y> —ay +b, forall z,y € R,

“ that is (z — y)f(z) + z(z — y) — (z — y)a = 0, for all 2,y € R. Since z,y are

arbitrary, the last equality gives f(z) +z —a = 0 for all z € R. We may conclude
that

@) = 9@) =~z +a

h(z) =2 —az +b,
for all z € R, a,b being real constants.
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PROBLEM 4. Let ABCD a rhombus and M, N,p be interior points on the
sides AB, BC,CD respectively. Show that the centroid of the triangle MNP
belongs to the line AC if and only if AM + DP = BN.

SOLUTION. Let O be the intersection point of the diagonals of the given
rhombus. We shall use vectors. Put

AM BN _ DP

IB=™ BG-™ DO
Since AB = BC = DC, the condition AM +DP = BN is equivalent to m+p = n.
Consider the vectors

— — = — - —
OM = (1—-m)OA +mOB, ON = (1-n)OB +n0C, OP = (1-p)OD +pOC.

=p.

1 — — —
Let G be the centroid of the triangle M NP. Since OA = —0OC,0D = —OB and
— T = = S
30G = OM + ON + OP, we obtain

— —
300 = (m +n +p—1)0C + (m —n +p)OB.

— —
The point G belongs to the line AC if and only if the vectors OG and OC are
colinear, that is if and only if m —n +p = 0.

10" GRADE

PROBLEM 1. Solve in the set C of complex numbers the following equations:

a) |z — a| + |z — b| = b — a, where a,b are real numbers;

b) |z|+ |z =1+ |2 =2+ |2 = 3| =4

SoLUTION. a) The geometric interpretation of the distance in the complex
plane and the triangle’s inequality, show that z should be a point on the segment
[a,B].

' b) By previous arguments: o

o |z|+|2—3| > |2 — 2+ 3| = 3, and equality holds if and only if z is real and
023 . o
o |z—1|+|2—2| > |z—1-z+2| =1, and equality holds if and only if z is
realand 1 <z <2; .

By adding these inequalities, we obtain

lel + 1z =1+ |z -2+ |2 =3 =4,

if and only if z is real and 1 € z < 2.

PROBLEM 2. a) Let a be a real number, a > 1, and f,g,h: R > R be r‘eal
functions such that f(z) + g(z) + h(z) > 0, for all z € R. Show that the equation

/@) 4 9@ 4 gh@) = 3

has solutions if and only if the functions f, g, h have common zeros.
b) Solve the equation

pltcosmz 2z2—1 4 4l-lel = 3,
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SOLUTION. a) By the AM-GM ineqﬁality, we have
1= é (aﬂz) +a9® 4 ahw) > Va/@)a9@)h() = /af@+e(@)+h() > Va0 = 1.
Therefore, if z is a solution of the given equation, we must have
/@ = a9C) = ¢"® and f(z) + g(z) + h(z) = 0.

That is f(z) = g(z) = h(z) and consequently f(z) = g(z) = h(z) = 0.
b) The equation may be written in the form

9(1+cosma)logy 5 2z2—1 +9201=l2]) = 3,

Hence, considering f(z) = (1 + cosmz)log, 5, g(z) = 22 — 1, h(z) = 2(1 - |z|),
we have f(z) + g(z) + h(x) = (1 + cosmz)log, 5 + (|z] — 1)2 > 0. The previous
result implies that the solution of the equation consists of the common roots of
the functions f,g,h. These are z =1 and z = —1.

PROBLEM 3. Let ABC be a triangle and M, N be the midpoints of the sides
BC, AC respectively. It is known that the orthocenter of the triangle ABC and
the centroid of the triangle AM B coincide. Find the angles of the triangle ABC.

SoLuTION. We shall use complex numbers. Take the circumcenter O of the
triangle ABC as the origin of the coordinate plane. Denote by a, b, ¢ the complex
numbers that are the afixes of the points A, B, C respectively. The orthocenter of
the triangle ABC corresponds to the complex number h = a+ b+ c. The centroid
of the triangle AM N corresponds to the complex number

1 b+c c+a 3a+b+2c
9—3(a+ 2+ 2)_———6 .
From g = h we get 3a + 5b + 4c = 0. Without loss of generality, we may assume
a = 1 and consequently |b] = |¢| = 1. The previous equality becomes 3+5b+4c = 0
and taking conjugates one also has 3+ 5b+4¢=0, or 3+ 3 + % = 0. Solving for b
and c the system given by the two equalities, one obtains, either ¢ =i, b = — % - %i
or ¢ = —i, b:—%+§i.
The obtained triangles are congruent since they are symmetrical with respect
to the real axis. By standard computation we obtain /B = %, /A = arctan3 and
LC = arctan?2.

PROBLEM 4. Let (an)n»1 be an arithmetic progression that contains the

numbers 1 and v/2. Show that any three numbers from the sequence (@n)n3 are
not in a geometric progression.

SOLUTION. Assume that the arithmetic progression ay, as, ... an,.. ., of ratio
r satisfies for some positive integers k, I, ax = 1 and a; = v/2. Then v2—1 = (I-k)r
orr = % Proceeding by contradiction, assume that a,a, and a, are in a
geometric progression, in that order. Denote for convenience TT_kk =N, % =M
and 2=£ = P. We have
am=ar+m—k)r=1+MH2-1)
an=ar+(n-kr=1+N(2-1)
ap=ar+(—kr=1+P\2-1).
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The condition @ = ana, then reads
2
((1—N)+Nﬂ) =(a-m +MV3) (1= P) + PV3),
that is
(1-N)?+2N?+2N(1-N)VZ=((1- M)(1-P)+2MP)
+(MQ1—-P)+P(1—-M))V2.
Since M, N, P are rationals, the following equalities must hold
3N?2 -2N =3MP—-M-P
9N —2N?=M + P -2MP.
Summing up, we conclude N2 = M P which gives 2N = M + P and (M + P)? =

4MP. Thus (M — P)? = 0 which gives M = N = P and consequently m =n =p,
a contradiction.

11*" GRADE

PROBLEM 1. Let a,b,c be real numbers such that a? + b% + ¢* = 4. Show

that the determinant
a+b b+c c+a

c+a a+b b+c
b+c c+a a+bd

is not greater than 16.
SoLuTION. The given determinant is circulant, and its value is
D =2(a+b+c)(a®+b* +c* —ab—bc—ca).
Denote s = a + b + ¢. The hypothesis implies s?> = 4 + 2(ab + bc + ca), that is
ab+bc+ca = ’2;4. It follows D = 2s (4 - "2;4) = 5(12 — s?). The condition

D < 16 can be written as follows: s(12—s%) < 16 or (s—2)%(s+4) > 0. It remains
to prove that s +4 > 0. From the well-known inequality

(a+b+0?<3@+b%+cP)
we obtain s? < 12. Therefore s > —2v/3 > —4.

PROBLEM 2. Let (Z1)n31 be an arithmetic progression of positive numbers.
For any positive integer n, denote by a(n) the arithmetic mean and by g(n) the
geometric mean of the first n terms of the progression. Compute
a(2n) — a(n)
m —— -
00 g(2n) — g(n)
SOLUTION. Let 7 be the ratio of the given progression (z»)n3»1. By standard
computations, we obtain

Ty +2T, 201+ —Dr
an) = 225 = 5
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and
a(n) lim 2z + (n— )r _r

lim —= = .
n—co N n—00 2n 2
Consider the sequence given by y, = %: (yn > 0). Since
Unsl _ (n+1)"_n+1 (14 1\" n+1
Yn n Tni1 n) z +nr’
we derive
lim Yo+t _ &
n—oo Yp r

Using the Cauchy-D’Alembert convergence criterion, we conclude
. n .
lim — = lim y, = <,
r

nooo g(n) n—oo
and (M) th (—m" )
)y ? e sequences | <5 31 and

(1522—:2) o are convergent to the same limits, respectively. Therefore, we obtain
nz

Being subsequences of (ﬂnﬂl)

n21

e g g
noo0 g(2n) — g(n) ~ nooo 9Cn) _ 1 e() Tz _1.T T 3°
2n 2 n e 2 e

PROBLEM 3. Let (as)n31 be a sequence of real numbers such that a, > —1
and @p — Gnt1 > @nany for all n > 1. Show that a, > 0 for alln > 1.

SOLUTION. Since a2 > 0 > anGni1 + Gni1 — ap, We get
) an(@n +1) > anyi(an +1).

We can improve a, > ~1 and from (1) we deduce an > an+1. Thus the sequence is
decreasing and bounded. We conclude that it is convergent. Let I = lim a,. Tak-
n—

ing limits in the original inequality one obtains [ = 0. Since (@n)n31 isotci)ecreasing
we obtain a, > 0 for any n.

ALTERNATIVE SOLUTION. From a, > an41(1+a,) and 1+a, > 0 we obtain

Qan . SR
ita > any1. The following inequality is true for all numbers z, z > —1:
n
z
> —.

"2 1+z
Therefore
2 an 2 ﬁ > ant1.

It follows that the sequence is convergent to I and (2) implies [ > xLH > 1 that is
1= 0. By consequence a, > =0.

. PROBLEM 4. Let A be a 2 x 2 matrix with entries in C. For any positive
Ilnteger n, denote by z, = det(A™+1I). Show that if z; = z; = 1, then z,, is either
or 4.
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det(A— X1I) be the characteristic polynomial of the
— X2 — aX + b where a = tr A and b = det(4).
Moreover, A verifies the characteristic equation, that is A21— _azil -it-hbaIt ; ‘01.+b o
Usir;g the hypothesis, we have z; = det(A+I) = R(— ) _‘], isath =0
In order to use z2 = 1, observe that A%+1I = (A+iI)(A—il), whe
Then we have . .
1 =g = P(-))P(i) = (-1 +ai+b)(-1 —ai+b)=(0b-1)7°+a". ;
ins ei = =1an
=- 2 4 2 — 2b = 0. One obtains either b=0or b
= —band a4 b A ows A7 = 0 and A" = 0 for all n > 2,

SoLUTION. Let P(X) =
matrix A. It is known that P(X)

Consequently a
a=0ora=-1. Incasea=
and t%ifglezuljo:ﬁz 1. Then P(X) = X2+ X +1, implying A? tkA +II = g
and also A3 =1 (0= (A-I)(A2+A+]) = A3 —3{). By[;nductlon_Ax =k :;J;ld
23 = det(2]) = 4. In the same way AkHL = ASKA = A, 1:3,2.1; a; ,
A3k+2 — A3k 4% = A2, T3p40 = 2 = 1. It follows that 2, € {1,4} for any n.

12t GRADE

ProBLEM 1. Compute the following integrals:
RS R A

2 /_1 V2 +l+z+1

T

1 d:
b)/—1 @2+ +1+ Vet +3¢% +1
SOLUTION. a) Let

22 +1-(z-1)? _ z )
f@) = Vo rlte+ )/ +l-a+1) Vai+1+1

It is obvious that f is an odd function. 1t follows that f2 is also odd, and

/ ' Peya =0.
-1

1
- = We
b) Consider g: [-1,1] > R defined by g(z) = 22—z + Vel + 322 +1

have the equality
Pzl VATIEFl _ Ptatl-VaEs@ 1
9(@) = @ +z+1)— (ot + 32+ 1) - 2(a® +2)

1
which is valid for all nonzero z. Because g(z) + 9(-z) = zog for = # 0, and

)

g(0) = i—,, we can write

/—11 g(z)dz = /_01 g(z)dz + /0l g(z)dz = - /10 g9(—y)dz + /01 g(z)dz

0 'l d —arctanz|1=£<
-/ (9(0) + gt~ do = | zqde = b=17
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PROBLEM 2. Let ¢ : M x M — M, o(z,y) = zy, be a composition law
possesing an identity element and satisfying the condition

o for any a,b,z,y € M, such that ab = zy, it follows that az = by.

Show that M is an abelian group with respect to .

SOLUTION. We prove that the composition law is associative. Let e,e€ M,
be the identity element. For any a,b € M we have ab = e(ab) which implies
a = ae = b(ab) = (ab)b. Since (ab)a = b and c(bc) = b, for all a,b,c € M, we
deduce (ab)a = c(bc), that is (ab)c = a(bc), proving thus the associativity.

From ae = ea = e we obtain aa = ee = e, that is a2 = e, which in turn
proves that any element a € M is invertible.

To prove that M is abelian, observe that from the hypothesis ab = zy implies
az = by and by = az implies ba = yz. Therefore ab = zy implies ba = yz. Let
ab = c. From ab = ce we thus conclude ba = ec = ¢ = ba. Since a,b € M are
arbitrary, we obtain the commutativity.

PROBLEM 3. Let f : R — R be a function which has a derivative f' and let
F be a antiderivative function of f. We assume that the following properties hold:

(i) the limit lim zf'(z) exists;

T—00
(ii) im £&) =1,
T—00
Compute the limits: lim zf'(z) and lim f(z).
T—00 T—00

SOLUTION. Let = Jim zf'(z), where I may be £oo. As (zf(z) ~ F(z))' =
o0
zf'(z), we can use L’Hospital rule to compute
i 2@ = F(@) _
T—00 2

l

Since f(z) - F(z) | F(a)
Tj(x)— T Z
flo) ===+
we get Illn;o flz) =1+1. As f(z) = %()3,1, using again L’Hospital rule we find
lim ﬂzﬂ =1+1. We conclude ! =0 and lim f(z)=1.
T—00 T—00

PROBLEM 4. We are given a finite group with n elements. Suppose that the
group contains two elements of order p, g, respectively, such that P22,922,pq
are relatively prime and p+¢ > n — 1. Find n.

SoLuTION. Let G be the given group and |G| = n. Since (p,q) = 1, there
exists an element of order pq in G. Hence pg|n and also pea<nE<p+qg+1. It
follows that 2—”—*",“ =1+ s > =L

On the other hand

11,1 111
P g pg 2 36

It follows that there is only one possibility, that is p=2,¢=3 and n = 6.
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7" GRADE

PROBLEM 1. Find the number of representations of the number 180 in the
form 180 = z +y + z, where z,y, z are positive integers that are proportional with
some three consecutive positive integers.

SOLUTION. Let n > 2 such that L -¥ - _Z_ We have more:
6011 -1 n n+1 1
T ¥ 2 _2HvHE %0 iows that y = 60, z = 22 . 60
n—-1 n 1 n+1 3n n n
and z = 2 + -60. Since (n —1,n) = (n,n + 1) = 1 it follows that n should be a

n
divisor of 60. That is n takes one of the values n = 2,3,4, 5,6,10,12, 15, 20, 30, 60.
For any of these numbers we get a represention. So, the required number is 11.

PROBLEM 2. A group of 67 students pass an examination consisting of six
questions, labeled with the numbers 1 to 3. A correct answer to question n is
quoted n points and for an incorect answer to the same question a student loses
n points.

a) Find the least possible positive difference between any two final scores.

b) Show that at least four participants have the same final score.

c) Show that at least two students gave identical answers to all six questions.

SOLUTION. a) The least positive difference between two answers to the same
question is 2. It is obtained when two students gave different answers to the
question 1 and the same answers to remaining questions.

b) The greatest score is 1 +2 + 3 + 4+ 5+ 6 = 21 and the least score is
—21. The difference between two scores is an even number. So, all scores should
be elements of the set S = {-21,-19,-17,...,-1,1,...,17,19,21}. The set S
has 22 elements. If every score has been obtained by at most three students, we
can have no more than 66 students. So, at least four students have the same score.

c) Every final score is a sum of the form:

+1+2+£3£4£5+6.

There are 2% = 64 possibilities to choose signes + or —, so there are 64 possibilities
to give answers. Since there are 67 students it follows that at least two students
gave identical answers.
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F:ROB.LEM 3. Let ABC be an equilateral triangle, G be its centroid and M
be_a.n interior point. Let O be the midpoint of the segment MG. Throu h the
point M three segments are drawn that are parallel to the sides of the tf 1
and have their endpoints on the sides of the triangle. ’ e

a) Show that the poi i i idpoi
Segmen)ts. point O is at equal distance to the midpoints of these three

b) Show that the midpoints of the three segments e the v
s .
. g are t ertices of an

5 SOLUTION. a) Let D,E,F be the midpoints of the segments parallel to
C,CA, AB. The segment CF is perpendicular to the segment MF, so it passes
through G. It follows that the triangle GFM is rectangular in F M G is its hy-

pothenuse and then OF = EMG' In the same way one obtains OD = OF = lMG'
(see figure). 2

D

b) We have the points D, E,F,G,M on a circle wi i
Aﬂ}ss.ume that M is an interior point of the angle ;’Fl'tglgéngi;eor (ssitlex;‘:;ium >
sunilar. We have: /FOD = /FOM + /MOD = 360° — ZYLFMG - ZLCV‘]\IZISDM—e
360° — 2/FMD = 360° — 240° = 120°. Also, LFOE = [FOG + /GOE -
2/OMF+2/OME =2/FME = 120°. It follows that /EOD = 120°. Therefore_,

the points D, E, F cut the circle i t] i
ot ) s e in three equal arcs and 5o, the triangle DEF is

PROBLEM 4. Let ABCD be a rectangl i
gle and E, F be points on th
BC and DC respectively, such that /ZDAF i
f = LFAE. i =
AE, then ABCD is a square. Show that it DE + B =

SOLUTION. Let AF intersects BC i i i
inte.rsects the line BC in N. Since lg;ﬁ”‘Mza?]?lj;‘ﬁ?ﬁ;&t?i;;?ﬁ;;ﬂ? M
an isosceles triangle and AE = EM. Since AMAN is rectangular triangle i zl:
;tl follows that AAEN is isosceles triangle with equal angles /ZENA = glElfrllN
Dt;xce, NE = AE. Because B is interior point of the segment NE, we havé
+ FB = AE = EB + BN and deduce DF = BN. We also have YéBAN =

LDAF. Therefore, th i
obtain A ADr.e, e rectangle triangles DAF and BAN are congruent. We
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PROBLEM 1. Let z,y, z be positive real numbers such that zyz(z+y+z) =1.
Show that the following equality holds:

\/(774- y%) (y2 + -21;) (z2 + :—2) =‘(z+y)(y+ z)(z +x).

Find some numbers z,y, z which satisfy the given property.

SOLUTION. a) Using the condition we obtain:

z zz(z+y+2
$2+%=$2+1y2(1‘;-2y+ ):$2+ ( yy )
_Pytazety+2) _sy+2)@+2)
- y - y '
In the same way we obtain the equalities:
y2+_15=y(z+z)(y+x) and zz+%=z(z+y)(z+y).
z z z z

After multiplication of these equalities we obtain
1 1 1 2 2 2
2 2 2, -\ .
(z +y~2)(y +;2—)(z +12) (z+9)*(y+2)°(z+2)

b) One may takez =y = land ztobea solution of the equation z(z+2) = L.
Equivalently, 22 + 2z — 1 = 0. The positive solution is z = VBl
Another possibility is to take = y = z and obtain the solution of 3z* = 1:

7
PROBLEM 2. a) Let & be a real number such that 2* + z and 23 + 2z are
rational numbers. Show that = is a rational number.
b) Show that there exist irrational numbers z such that z2 + z and 2° — 2z
are rational.

SOLUTION. a) Denote 22 + = = a, @® + 2¢ = b, where a,b € Q. Then

=

b=ad+22—a? —z+z+28=2(?+3) - (2% +2) + 3¢
—az—a+3z=z(a+3)-a
We shall prove that a # —3. Indeed, if % +2 = —3 one obtains z2+z+3=0and

2 .
(z + %) + 1711- = 0, which contradicts that z is a real number. So, since a # —3
we obtain Catb
Ty

which proves that z is a rational number. . o

b) Let 2® + ¢ = a and 2° — 2¢ = ¢, where a,c € Q. Using a similar method
we obtain

z(a—1)=a+ec
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. 1 5
We may choose a = 1; other way we get z € Q. Fora = 1, we obtainz = ——-:i:%,
which is an irrational number. For both values of z, one obtains ¢ = 2% — 2z =
—a = —1 and c is a rational number.

PROBLEM 3. We are given a regular quadrilateral pyramid VABCD and let
O be the center of the square ABCD. The angle between two lateral opposite
sides of the pyramid is 45°. Denote by M the projection of the point A on the
line CV, by N the symmetric of M with respect to the plane (VBD), and by P
the symmetric point of N with respect to O.

a) Show that the polyhedron M DN BP is a regular pyramid.

b) Find the angle made by the line ND with the plane (ABC).

SOLUTION. a) The symmetrical segment of the side V'C' with respect to the
plane (VBD) is the side VA. Hence, the symmetric point of M is the point
N of VA such that VM = VN. We have the isosceles triangle VAC in which
LAVC = 45° and AM,CN are the altitudes from A, C respectively. The point O
is the median point of the side AC. The symmetrical point P of N with respet to O
is situated in the plane (VAC) too. Since AM 1L MC we have MO = AO = OC.
Then AMOC is isosceles and LMOC = 45°. It follows that MO is orthogonal
on NO.

1%

P

Since O is the midpoint of the segments BD and NP, it follows that BNDP
is a parallelogram. Since BD is orthogonal on the plane (VAC), we obtain that
BD is orthogonal on NP so BNDP is a thombus. Because BD = AC = NP,
BNDP is a square, since it is a rhombus with equal diagonals.

Also we have BD L MO, MO 1L NO, so MO is orthogonal on the plane
(BNDP). 1t follows that M BNDP is a regular pyramid.

b) Let S be the projection of N on the side AC. Since ZNOS = 45° we
obtain NSv/2 = NO. On the other hand, from NO = OD and NO L OD we
obtain ND = NOv/2, in ANOD. So,

NS 2NS NOvV2 1
i NDS= — == —— =,
sinLNDS = 55 = 58D = anovE - 2
We obtain that ZNDS = 30°.
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PROBLEM 4. Let ABCDA'B'C'D’ be a cube on which sides AB,CC",D'A’
one considers the points K, L, M respectively.

a) Show that v/3KL > KB + BC + CL.

b) Show that KL + LM + MK > 2V/AB.

ot Ky 00 AN e whener0 S avp. s % a. By wsing Pythagoras
theorem we obtain:
KL* =2 +y* +a®
KM?=(a—z)?+2*+d®
ML? = (a—2)*+ (a—y)* +d
Using the well-known inequality:
¢)) 3@+ +c%) = (a+b+0)’
we obtain from each of above:
V3KL>z+y+a=KB+BC+CL
VKM > (a—z)+z+a
V3ML > (a—2)+(a—y)+a.
By adding these inequalities one obtains

V3(KL+ LM+ ML) > 6a= KL+ LM + ML > 2V/3AB.

The equality occurs if and only if all three inequalities deduced frf)m (1) are equal-
ities. But in (1), we have equality if and only if a = b = e In this case we should
have £ = y = a and a — ¢ = z = a, which is a contradiction. Therefore

KL+LM + MK >2V3AB.

AUTHOR’S REMARK. It can be shown (for example by using the Cauchy-
Buniakowsky inequality) that the minimum in b) is 342§AB.
9" GRADE

PROBLEM 1. Prove that for every real number z, the following equality holds

=55 -5 )

z+1

= y. The equality can be written:

SoLUTION. Denote

[y.{.%J - ly+%J +Jy+§J = 3y - (29
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It can be proved by using the identities of Hermite:
1
(20) =J) + |y + 5
1 2
L8] = L)+ [y + 3]+ [y + 2],

Alternative solution. We can represent z under the form z = 6k + y, where
k €Z and y € [0,6). The identity becomes:

2 - 2 - o2

6 6 2 3
It can be easily checked by taking each of the cases:
vell), yel2), ye23), ye[3,4), [45), ye [5,6).

PROBLEM 2. Let ABCD be a cyclic quadrilateral and M be a point on its
circumcircle. Let Hy, Hy, Hj, Hj be the orthocenters of the triangles M AB, M BC,
MCD,MDA respectively. Prove that:

a) HiHyH3Hy is a paralleogram.

b) HiH; = 2EF.

SOLUTION. a) We shall use vector algebra. The incenter of all triangles
MAB,MBC,MCD,MDA is O. Hence, by Sylvester’s formula we have:
—>—>—)—)——;—)—)—>-—>——)——>—>
OH, =OM +OA +0B; OH, =0M +0B+0C; OH; = OM +0C +0D
and

— = 5
OHy = OM + 0D + OA.
More computations give:

—_— = - — —
HiH, = OH, — OH, = OC - OA = OH, - OH, = T

b) Using again vectors:

—_—
HiHy = OH; — OH; = OC + 0D — OA - OB = 4D + BC = 25P.

Hence H,H; = 2EF.
PROBLEM 3. Let ABC be a triangle, G its centroid and M, N, P be points
on the sides AB, BC,C A respectively, such that
AM BN CP
MB ™~ NC~ P4’
Denote by G1,Gs,G3 the centroids of the triangles AM P, BM N,CNP respec-
tively. Prove that:
a) the triangles ABC and G1G2G3 have the same centroid,;
b) for every point D in the plane (ABC), one has
3DG < DG, + DGy + DG;3 < DA + DB + DC.
AM _BN (P

SOLUTION. a) Let MB-NC=PAi= A. Then
GM=11Gi+ 2 GB, Gh-—L ah, X ga
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and
Gb= L b+ 2-Gh
TA+1 A+1
Therefore
O = ST T T —
GG1+GG2+GG3=§(GA+GM+GN+GB+GM
— = =2 =
+GP +GC +GP +GA4)
— =2 =
=GA+GB+GC=0.

This proves that G is the centroid of AG1G2G3.
b) The first inequality follows from

—- == = =
3DG = DGy + DG2 + DGs,

which is a consequence of the previous result. Then apply the length of vectors
—— —

and the obvious fact that DG4, DG», DG3 are not colinear vectors.
The second inequality comes from

56 = |2DA+ =2 DB+ —DC
IDG1| = |3P4+ 355) 30+

1

2 A
: _ 2 pB+———DC.
<3DA+55gP + 507172

and two other similar inequalities, which are added together.
PROBLEM 4. Let n be a positive integer, n > 2. Prove that:
a) if a1, az, .. -,an are real numbers such that a; +as + -+ +an = 6f +a2+

.. +a2, then a +ag + -+ +an <
b) if z is a real number such that 1 < z < n, then there are nonnegative real

numbers ay,az, - - - , @n, Such that

—a tagttan=altdd - tan
SOLUTION. a) By Cauchy-Schwarz inequality we have:
@+ tan <Vn a}+---+ak.

When a; +-+-+an = a?+-+ a2, the required inequality follows.
b) Assume k < T < k+1, where k < n. Then we can take ag = - = Qn-k =
n_+1 =0, Gnkt2 =" = 0n-1= a, = 1 and it remains to find a;,as such that
mta=d+a=c—(k-1).

Letobservethatlsx—k+1<2. Denotez —k+1=y. Since 1 < y < 2, the

equation
2 -2ya+y*—y=0

has positive roots ai, @z, which are required numbers.

h
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PROBLEM 1. Find a closed formula for Tn,n 2 2, where z; =1 and
4(z120+2 )
(2120 +222T 01 +323Tp 2+ +1T0@1) = (N +1) (@122 + T2 + - -+ T2
for eachn > 1. -

SOLUTION. Put n = 1 i
. . = 1 in the recursive i :
Since o1 = 1, it follows 2y — 2. ve relation and obtain 4z} = 2z,z,.

For n = 2 in the same relation, we obtain
4(z172 + 22921) = 3(z1T2 + Zoz3).
Since z; =1, z = 2, it follows z3 = 3.

We shall prove by inclusion that z, = n for 1n ssu t Ty =
y t
<r< n al Assume that k k for

42 kTrTnp1—k = (n+1) szzkﬂ

k=1 peet
> 4ik2(n+1 k) S
—k)=(m+1
Pt (n+1) kz=:1 k(k+1) + (n + D)nzppy
n n
= 4(n+1)2k2_4 & = (n = n-1
=m+1 2
= ’; ( )kz::lk +("+1)];k+"("+1)2n+1
- 4n(n-;-1)6(2n+1)_4”2(n+1)2 =
4
_ n(n+1)(n—1)(2n — 1) + (n+n(n —1)
& ) 26 ) +n(n+ 1)z,
n+
> z+1:%_n(n+l)_(—w_n_l
6
_(+1)Bn+4-6n) 2m2-2 2
6 T =n+1

PROBLEM 2. Solve in complex numbers the system:
z(z—y)(z—2)=3
Yl -z)(y—2)=3.
2(z—2)(z2-y)=3

SOLUTION. In any i ve #0, 2 andz #y
. solution (z,y z) we have £ # 0 0, z# 0 and

y S )Y 2 » Y
Y # 2, 2 # x. We can divide each equation by others and obtai;l new equations: '

(1) 2 +y’ =yz 4z
y2+z2=xy+zx
12+12=Zy+yz.
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By adding them one obtains the equality:
(2) 2+ + 22 =y +yz+ 2w

After substracting equations (1), the second from the first, one obtains z+y+z = 0.
By squaring this identity one obtains an improvement of (2):

(3) 22+t +2t=ay+yz+2z=0.
Using (3) in (1) one obtains:

(4) P=zy, yr=zz, ZF=xy
and also:

2=y’ =23 =ayz
It follows that z,y,z are distinct roots of the same complex number a = zyz.
From 7% = 33 = 2° = zyz = a we obtain
(5) z=+Va, y=ecYa, z=¢7a,
where €2 + e+ 1 =0, €2 = 1. When introduce relations (5) in the first equation
of the original system, one obtains a®(1 —€)(1— €2) = 3. Taking into account the
computation:
(l-e)(1-e*)=1-e-+1=3,

we have a® = 1. Hence, we obtain using (5) that (z,y,z) is a permutation of the
set {1,¢,€%}.

PROBLEM 3. Let a,b be real numbers such that 32 +13° = 17% and 5% + 7=
11°. Prove that a < b.

SOLUTION. Assume by contradiction that a > b. Then 13% > 13° and 5% >
55, From the equality 3% + 13% = 17% one obtains 3° + 137 > 17°. Equivalently,

3\a 13\ a . 3\* 13\= . .
(-ﬁ) + (—1,—7) > 1 T3he rela; funi':on f(z) = (ﬁ) + (ﬁ) is monotonic
decreasing and f(1) = = AT < 1. Since f(a) > 1 > f(1), we obtain

a<l.
From the equality 5% + 7% = 11° one obtains 5° + 7° < 11°. Equivalently,
5\b £ 7\b . Be 3 TN\E !
(ﬁ) + (—ﬁ) <L 5The r7ea1 fx;x;cmon g(z) = (1—1-) + (ﬁ) is monotonic
decreasing and g(1) = — + —= = 7= > L. Since g(b) <1 < g(1), we obtain b > 1.

1 11 11
The inequalities a < 1 < b are in contradiction with the original supposition:

a > b. Since we get a contradiction, it follows that we can only have a < b.

PROBLEM 4. For every positive integer n, n > 2, denote by f(n) the minimal
number of elements of a set S which satisfies the two conditions:

(i)l1eSandnesS;

(ii) every element of S, except 1, is a sum of two, possible not distinct,
elements of S.

Prove that:

a) £(n) > [logyn] + 1.

b) f(n) = f(n+ 1) for infinitely many numbers n.
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SOLUTION. a) Let n > 2, f(n) = k and S be a set of k elements 1 = a; <
az < +++ < ar = n as required. Then a; = a; +a; = 1+ 1 = 2 and either
a3z = a1 +a; or ag = a; +az. It follows that a3 = 2 or a3 = 4; in any case as < 22.
We assume by induction that a; < 2i=1. Then @iy = a, +a, < 271 + 2“:1 <
2i=1 4 2-1 = 2% Tt follows that n = ap, < 2 and k > 1+ logyn > 1 + [log. n]\

b) The previous argument shows that if S has 1 + [log, n] elements tlhen'
n = 2¥=1. Therefore, it follows that f(2¥+1) > k+2 and f(2*+2) > k -{‘- 2 for
all integers k > 2. One the other hand, the sets ~

S =1{1,2,2%,...,25,2F + 1}, S, ={1,2,2%,...,2%,2" + 2}

have k + 2 elements and satisfy the requirements (i) and (ii). So, f(2F +1) =
FREr2) =k+2. ) and (@) So. S+ D =

11" GRADE

PROBLEM 1. a) Let a and b be positive real numbers. Compute the limit

the number of radicals being n.
b) Let (an)n31 be a sequence of positive numbers and (), the sequence

defined by
Prove that:

boun é;)d'the sequence (Zn)n31 is bounded if and only if the sequence (an)np1 is

(ii) the sequence (Zn)n>1 is convergent if and only if the
is convergent. "z € Y sequence (an)n3>1

SOLUTION. a) We consider the sequence ()
n)n>1, Where ; = Vb and
Tnt1 = Va + T, for all n > 1. Since !

_ Tni1l — Tn

Tntl = Tn4l = e,
Va+Thp +Va+ 2z,

it follows that the sequence is monotonic (increasing or decreasing).
I].t.l t,.hel ca;i tlie sequence is dzecreasing, then it is bounded and convergent to

some limit /. The limit satisfies > — — a = 0. Solvi i
i 21+4ﬂ4 olving for I and using [ > 0, we
In the case (Tn)n>1 is increasing, observe that \/a+ Z = Tn41 > T, which
implies 2, — £ — a < 0. Solving for z, we get z, < liyitde

is bounded in this case also. :

b) Assuming (z,),>; bounded, let M > 0 be such that z, < M for
n> s all n.
As ap < zn < M, it follows that (as)n>; is bounded too. "

. Therefore (Zn)n31
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Conversely, assume (an)n>1 bounded, that is ap, < M for some positive M.

Then z, < VM +VM+---+ VM. Denote by y, the last quantity. By the
preceeding result, the sequence (Yn)nx1 is convergent, in particular bounded. It
follows that (zn)az1 is also bounded.

Assume now that the sequence (Tn)a31 i convergent. As Tp, = Van + Tn-1,
we obtain an = T2 — Tn—1, implying that (an)n>1 18 also convergent.

Converselly, assume that (an)az1 is a converget sequence and let a = ,,ll.néo an.
Consider the following situations.

Suppose a is nonzero. We shall prove, that in this case nlgrgo Tn =

indeed, let € be a positive number, such that 0 < & < Va, and let A =a— &2,
B = a+¢€2. As a is the limit of a,, one can find a positive integer N = N, such
that A < an < B, for any n > N. Consider the sequences defined by

An=\A+ A+ + VA
B, = B+\/B+-~+VB+\/M+---+\/H,

in both the total number of radicals being n and in the second the number of
radicals that involve M being n — N — 1.
By previous considerations

1+vi+aa V;M‘l and li_r'n anf___ “;4'43
n—oo

1+V1+4a
-

and

lim =
n—00

Moreover we have A, < Tn < Ba. The definitions of A and B imply the easy to
check inequalities
1++v/1+44A S 1++/1+4a e
2 2 ’

and

1+vV/1+4B _1++V1+t4a
——’2——‘ < ’2—_‘ + €.
We can therefore find N! = N', such that for all n > N’ the following inequalities

are true

1++v1+4a 1+\/1+4a+6
2 2 '
For n > max(N, N') we infer that

14+ I+ 4 . 1+vI+da
+—2ﬂ—e<An<zn<Bﬂ<—+—2+—E+e.

An > e, Ba<

These prove that lim z, = Livitie,

n—oo
In case a = 0, we shall prove that I’i_r)r;o z, = 1. Indeed, it is obvious that
n-
o
z, > %/a; and lim of" =1. As in the preceeding considerations we get for some
n—o0
N, that z, < 1+¢ for any n > N. This shows that 1i_r'n z, = 1 in this case.
n—0o0
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REMARK. The use of lim sup and liminf can make the i
: reecedin,
elegant, but a little bit non-elementary. P g proafmore

the pEE{tOBI;.Ezw 2.3)In ahrectangulax system of coordinates of a plane, we consider
ints A, (n,n%), where n runs over all positive int i
the points - N P! egers and the point B(0,1).
g)) ffor every integers k > j > i > 1 the points A;, A;, A; are not on a line;
or every positive integers 1 < i) < iy < +++ < - i i
inequatity hetan < 2 n—1 < in, the following

LAy OB + LA;,OB +---+ LA; OB < g

SoLUTION. a) For any three distinct poi i i<j
S points Ay, Aj, Ak, Wi <
condition of colinearity is 1o Ay A Wit 1 <3 < gk, the

kK1
A=|j 2 1|=0
i 21

The value of A being (k — j)(k — @)(j — i)(k + j + 1), it is clear that A # 0.

) b) Let us denote ZA;OB = x;, for any i > 1. We have tanz; = £ = %. For
i=1weget z; = § and for i > 1, we deduce z; < §. The inequali';y z < tang
(z > 0), and the fact that i3 > 2,43 2 3,...,i, 2 n,..., implies

n n n
™ ™ 1
E Iik<_+i tanz;kg—+§ =
k=1 Rt D

N T S SR |
<= — < =4 = —
\4+k¥k2<4+4+2k2

=2 k=3
n

T 1 1
<=—+=+)
g:_sk(kﬂ)

4
1 1 1 1 1 1 1
- + _— - —_— - e —_——
1 (2 3>+(3 4)+ +(n—1 n)
<T43cT
4 4 2
PROBLEM 3. a) Find a 3 x 3 matrix A wit! i
such thae 0 ot A5, rix A with complex entries, A € M3(C),
b) Let n,p be numbers which are 2 or 3. We assume th i
| ) . t th
function f : M,(C) — M,(C) with properties: o there exisia &
e f is a bijective function;
o f(XY) = f(X): f(Y), for every X,Y € M,(C).
Prove that n = p.

'S

+

010
SOLUTION. a) Take A= (0 0 1).
000
b) {\sgum§ by contradiction that n # p. Since the inverse function f~! is
also multiplicative, we may suppose that f : M3(C) = M,(C).
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i = hat f(Y) = Oz, we get f(O3) = 0.

Taking X = O3 and Y € M;3(C), such t © %

Consider now A as in a) and put B = f(A). Then B3 = f(AY = f(OZ;,) —002 ;n(i

B? = f(A?) # f(Os3) = O2. We infer B € M2(C), B® = Qg and B2 # 21.3 uB

this is impossible, because B3 = 0, implies det B = 0 and in turn B =2 (ir O) .

and B® = (trB) - B, hence trB = 0 or B = 0,. In both cases B* = Oz, 2

contradiction. N
PROBLEM 4. Let f: R — R be a function which satisfies the conditions:
(i) f has lateral limits in any point a € R and

f(a=0) < fa) < fla+0); -
(ii) for any real numbers a,b, a < b, one has
fla=0) < f(b=0).
Prove that f is a monotonic increasing function.

SoruTioN. Take real numbers a,b ?uch 3;1&; ?(j b,oé;nd assume that f(a) >
hypothesis it follows that f(a+0) > —0).

10 I}?)}gﬁ 0) > f(b—0), choose y € R such that f(a+0) >y > f(b Eb()_),eaxg;i
& > 0 such that f(z) >y forany z € (a,a+e¢) and f(z) <y for axbly z eb) b~ h,ave.
We may suppose a +¢ < b—e. Then, fo_r a€ (a,a+¢) ‘an.d Beb-e,
a<pBand fla+0)>y>f(B— 0), which is gcqntra.dmtlon. B - )=

It remains the case f(a+0) = f(b—0) which implies f(a+(.)) —hf(a) = f( a;
f(b—0). Take c € (a,b). Supposing f(a+0) > f(c—0) we get in the Tame wg{ain
above a contradiction. Thus we have f(a+0) < f (b—0). Analogoug y<w;(§ s
f(c+0) < f(b—0). We collect fla+0) < fle—0) < flo) < f(c+b)) \a i 2,
implying that f is constant on (a,b). Itc follows Phat for a, ﬂ € (a,b), s
get f(a—0)= f(B-0), which contradicts the given condition.

REMARK FOR AN ALTERNATIVE SOLUTION. A more elegant proof can be
obtained considering the same kind of arguments by using 1 = sup{c| f(c) > f(b)}
under the supposition that a < b and f(a) > f (b).

12" GRADE
PROBLEM 1. Let A be aring, a € A, and n, k be integers such that n > 2,

k>2 1+1+...+1=0anda* =a+1. Prove that:
’\__\’_J

ntimes

a) for every positive integer s, there exist non-negative integers po, p1, - - - » Pk—1

such that _
as=Pa'1+,’D1'a+"'+27k—1'ak L

b) there exists a pozitive integer m such that a™ = 1.

SOLUTION. a) We proceed by induction on s. For s < k there is nothing to
prove. For s > k, assume that

@ =p-l+p-at-+pe-1°0,
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and obtain
Hl=a-a’ =poa+pa +- +pera
=pk -1+ (o +pk-1) + p1a® + - + pr_sa*.

We observe that all computations are considered in the subring Z[a] of A, which
is commutative.

b) Since af = a + 1 gives a(a*~! — 1) = 1, we obtain that a is a unit of
the ring Z[a]. Moreover, since n -1 = 0 in Z[a], we conclude that the number of
polynomial expressions

a

k—1

no+nia+ - +ng_1a¥t € Z[d]

is finite (it only involves the n; with 0 < n; < n). Therefore, Z[a] is a finite
ring. Any unit of Z[a] is an element of finite order in the group of units of Z[a),
concluding thus the proof.

PROBLEM 2. a) For any positive integer n, let A,, be the ring
Apn =2y x - x Ly =17%

Show that if n # m, then the rings A, and A, are not isomorphic but there exists
a ringhomomorphism f : A, = A,,.

b) Prove that there exists rings By, B, ..., By, ... such that, no homomor-
phism exists between B, and B, whatever are the numbers n # m.

SoLUTION. a) The rings Z* and Z} are not isomorphic for m # n, as in
that case they have different cardinalities.

For any n and all 4, 1 < @ < n, consider the projections p; : Z3 — Zs, given by
pi(a1,az,...,a,) = a;, which are also ring homomorphisms. Define, for any m the
ring homomorphism A : Zy — Z7*, by A(0) = (0,0,...,0) and A(1) = (1,1,...,1).
The composition of functions Z3 — Zy — Z7*, is a ring homomorphism.

b) We can get several examples as required.

Let py <p2 < -+ < pp < --- be the sequence of prime numbers. The fields
B; = Z,, are not connected by any morphism, as being of different characteristics.

Another example is: take B; = Q(y/p;). There are no homomorphisms
between them, like the following lemma concludes.

LEMMA. Let p, g be distinct prime numbers. There is no ring homomorphism

f:Qp) - Q(va)

PRroOF. If f would be such a homomorphism, then f(a) = a for any a € Q.
Supposing f(y/p) = a + b/g, with a,b € Q, from (v/P)* = p we obtain by the
morphism condition f(,/p)* = f(p), and thus (a+b\/g)? = p. Therefore 2ab,/g =
p—a®—b?q. One cannot have a = 0 or b = 0, because this should imply that fli or
p are perfect squares in Q. We conclude ab # 0 and therefore Vi= ‘%ﬂ €Q
which is a contradiction.

PROBLEM 3. For any real number a, 0 < a < 1, we denote

a
N In(a):/ In(l+z+--+2"1)dz, n>2.
0
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41
Compute the limit: lim In(a). PROBLEM 4. Let f: R — [0, 00) be a continuous function which is periodic
n—00

of period 1. Prove that:
SoLuTIoN. Consider the following two cases: a < landa=1.

a+1 1
If a < 1, standard computations lead to a) /a f(z)dz = /0 f(z)de, Ya € R;
11—z ] 1 N )
I,(a) =/o In - dz. b) "151;10/0 f(@)f(nz)dz = (/o f(z) dz) )
Since : 1 _an 1-zm 1 SoLuTION. a) Consider an integer n such that a < n. Then
1—1:S 1—z<1-z' a+1 n a1
: : [ t@ae= [Ci@ass [ s
for z € [0,a], we obtain . A A
¢ 1-a" @ 1 1 atlon
/ In T dzsln(a)sj lnl—xdx' =/ f(t+n—1)dt+/ 16+ mdt
0 -z 0 a—n+1 0
. . . . ] — ,
Computation of thg integrals leads to the inequalities _ / fodt+ / it / roi
(1) (l—an)[a+(1—a)ln(l-a)] < In(a) <a+(1 —a)ln(1 —a). amnt1 A A
As lim a™ .= 0, we conclude b) We have
n—00 . . 1 In(1 ) 1 1 n t . 1 n=1 k41 :
©Jim (@ =a+(1-@)h-o). /0 f@(na)do = — /0 f (5) foar=15° / ; (E) .
Consider the case a = 1. We shall prove that ,}l{r;o I,(1) = 1. Observe first, =k
that for a < 1 the sequence In(a) is increasing. The above result implies then gll:i :mean value property shows that there exist points c, % <ck < ’i;‘;—l, such

I(e) €a+(1-a)ln(l-a)

1 nol k4l n—1
. ) . 1
for all n > 2. For any n > 2, the function I, : [0,1] = [0, 00), given by /0 f(@)f(nz)dz = : Z/ Hewf ()it = % z f(ck)/ fo
. a k=0"'k = 0
Iy(a) = / In(l +z + -+ +z""1)dz, o
o

n—1
7 Since 3 f(ck) is a Riemann sum for f on the interval [0, 1], we conclude
is continuous at 1. We conclude, therefore, that k=0
] =l <l +(1-a)ln(l —a)), n—1 1
0< In(1) = lim In(a) < lim (o + (1 = @) In(1 ~ @) . Jim S fer) = / Fb)dt,
for any n > 2. As the sequence I,(1) is increasing and bounded, it is convergent. k=0 o

Denote | = linéo In(1). From from where the result easily follows.

1
I(a) = In(1)— / In(l+z+-- +z" Ndz < In(1),
we obtain, In(a) < I,n(l) < 1 Taking limits as n — 00, IL3. FINAL ROUND

one derives a + (1 —a)ln(1 —a) <1 < 1, forany a € (0,1). Fora — 1, we
finally conclude I = 1.

. th
ALTERNATIVE SOLUTION. Consider the double inequality easily obtained in 7" GRADE
the previous calculations, for any a < 1:
2) In(a) € In(1) < In(a) + 1 —a)lnn.

that ProBLEM 1. Eight card players are seated around a table. One remarks
at at some moment, any player and his two neighbours have alltogeth

Puta = a, = 1— 122 It easy to see that an — 1 and 1—ap — 1 whenn I—> To‘_Bly i number of winning cards. ¢ ogether an odd
inequality (1) from part a), taking limits asn — coin (2) we derive "lg!;o (1) =1 Show that any player has at that moment at least one winning card.
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N. We shall prove more: each player has an odd number of.winning
cards.s ]?)Iézgtlg the players d?sposed around the table and identify them with num-
bers: 1,2,3,4,5,6,7,8,1,2,.... We shall attach to each player the pumber 0 if the
number of winning cards he has is even and the number 1 otherwise. )

One obtains a sequence of zeroes and ones such that to any consecutive three
numbers the number 1 is attached once or to all three.

If the number 0 is attached to a player, say player number 1 than only the
following possibilities can occur:

12345678 12345678_
01001001 00100100
In both cases players 8, 1 and 2 have alltogeather an even number of winning
cards, and this is a contradiction.

PROBLEM 2. Prove that any real number z, 0 < z < 1 can be written as a
difference of two positive and less than 1 irrational numbers.

SOLUTION. Let z be an arbitrary real number such that 0 < z < 1.

Consider the cases:
a)z € Q. Let 7o € R\Q, zp > 0. One can find n € N* such that z+ % < 1.

Denoting y» =« + %2, we have y» € R\ Q,0<y; <1 Ify; = £ then evidently
cR and 0 < y; < 1. It is clear that z = yo — y1. )
. b)\zQe R\ Q. Consider n € N* such that z + £ < 1. Consider yp =z + &
and y) = £. Then z =y, —y1 and 41,92 € R\ Q.
PROBLEM 3. Let ABCD be a trapezoid and AB.respectively CD be i.ts
parallel edges. Find, with proof, the set of interior points P of the trapezoid

which have the following property: :
“P belongs to at least two lines each intersecting the_ segments AB :md CcD
and each dividing the trapezoid in two other trapezoids with equal areas”.

SoLUTION. We shall prove that the only point P tihat satisﬁe§ the: condition
is the midpoint of the median. Denote by M, N respectively the midpoints of AD
and BC.

A

If a line d having the given property, intersects CD and AB in E and F
respectively, than using the area formula for a trapezoid, DE + AF = 2‘5) -(i;DBF
which is equivalent to DE+AF = CD—DE+AB~AF,or DE+AF = ABLCD -
MN.
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If two such lines d and d' intersect at P and have the given property, then,
denoting with £’ and F' the intersection of d' with CD and AB respectively, the
former relation imply that the segments determinated by E,E' on DC and F,F’
on AB are congruent, that is the triangles PEE' and PFF' are congruent. This
easily implies that P belongs to M N.

If P€ MN, from DE + AF = MN we conclude MP = MN/2, that is P is
the midpoint of M N.

Reciprocally, it is trivial to see that the midpoint of M N satisfies the given
condition.

PROBLEM 4. a) An equilateral triangle of sides a is given and a triangle
MNP is constructed under the following conditions: P € (AB), M ¢ (BC),
N € (AC), such that MP L AB, NM L BC and PN 1 AC. Find the lenght of
the segment M P.

b) Show that for any acute triangle ABC one can find points P € (AB),
M € (BC), N € (AC), such that MP L AB, NM L BC and PN 1 AC.

SoLUTION. a) Having equal angles, the triangles NPM and ABC are sim-
ilar, implying that ANPM is also equilateral. This means AAPN = ABMP =
ACNM. As AP=z wehave AN =BP=a—-z and z = 45 thatisz=¢. In
the right triangle APN the Pitagorean formula gives PN = “T‘/g

b) Let P, be an arbitrary point on AB, Ny its projection on AC and M,
be the intersection between the perpendicular dropped from Ny to BC and the
perpendicular raised from Py to AB. Suppose AM, intersects BC' at M. The
homothety of center A and ratio :—%— sends the triangle MNP, to the triangle
MNP with the desired properties.

8" GRADE

PROBLEM 1. For any number n € N, n > 2, denote by P(n) the number of
pairs (a,b) whose elements are of positive integers such that

n a b
P’ €(0,1), 3 €(1,2) and o €(2,3).

a) Calculate P(3).
b) Find n such that P(n) = 2002.

SOLUTION. From 2 € (0,1), ¢ € (1,2), £ € (2,3) weinfer 2n < b < a <
2b < 6n.

Easily 2n < b < 3n implies b € {2n +1,...,3n — 1}, that is b can take only
n — 1 different values. For each such b we have a € {b+1,...,20— 1}, that is a
can take only b — 1 distinct values.

For b = 2n + 1 we obtain 2n distinct values for a, collecting thus 2n pairs
(a,b). In the same way for b = 2n + 2 we obtain 2n + 1 pairs, a.s.0. and for
b=3n — 1 we have 3n — 2 pairs. Summing up

P(n)=2n+(2n+1)+-~+(3n-2)=__("‘%5"‘2)_



44 SOLUTIONS

In particular P(3) = 13. For P(n) = 2002 we easily find n = 29.

PROBLEM 2. Given real numbers q, ¢, d, show that there exists at most one -

function f: R — R which satisfies:
flaz+c)+d <z < f(z+d) +c, forany z € R.

SoLuTION. If a = 0 we would have z > d+ f(c), for any real z, a contradic-
tion.
Suppose a # 0 and let az + ¢ = y. The first inequality then yields
y ad+c
fly) < PR
for any y € R.
If we substitute y = z + d in the second inequality, we get f(y) >y —d —c,
for any real y. The two obtained relations imply

@) >0

for all y € R. As y — £ takes positive and negative values, we conclude a = 1.
Hence f(y) = y — d — c is the answer of the problem.

PRrROBLEM 3. Let [ABCA'B'C'] be a frustum of a regular pyramid. Let G
and G’ be the centroids of bases ABC and A'B'C’ respectively. It is known that
AB = 36, A'B' =12 and GG' = 35.

a) Prove that the planes (ABC'),(BCA'),(CAB') have a common point P,
and the planes (A'B'C), (B'C'A), (C' A’ B) have a common point P’, both situated
on GG'.

b) Find the length of the segment [PP'].

SoLuTION. a) Let N and N’ be the midpoints of the segments BC and B'C’
respectively. Suppose A'N and GG’ intersect at P. Triangles A'PG' and NPG
are similar, hence

GP_Ga _ AN 2
GP GN AN 3

Since A'N C (A'BC) we deduce that the plane (A'BC) intersects the segment
GG’ at the point P such that

G'P_2
GP ~ 3
Similar arguments show that planes (BCA’) and (CAB') also pass through P.
In the same way we can show that planes (AB'C’), (BC'A') and (CB'A’) pass
through the point P’ on GG’ such that G'P' = 5.

b) Let M be the projection of A’ onto (ABC). Obviously M € AA; and
A'M = GG'. By the similarity of the triangles PC1 4, with PC'A' and PGA;
with A’M A; we get

PG _Ph MG P18

GG' — AA, T AICT T ACT T 18+12°
From GG' = 35 we obtain PG = 21. Analogously, it is easy to find P'G' = 5.
Finally PP' =35—-21-5=09.
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PROBLEM 4. The right prism [A;A3A3--- A A AL --- A", n € N, n > 3,
has a convex polygon as its base. It is known that A;Aj 1 A;A} A, AL 1
AzAly, ..., Anq A, L AR AL, AR Al L Ay Ay Show that:

a)yn=3;

b) the prism is regular.

SOLUTION. a) If we consider the point B3, symmetrical to Az with respect
to Az, we notice that the equadrilateral Ay A3 A5 Bs is a parallelogram, hence A} B
is parallel to Ay Aj. Tt follows that ZA; A3B; = 90°. Since Aj is the projection
of Aj on the base plane, it results that ZA3A43B3 > 90°, thus ZA; Ay A3 < 90°.
Similar arguments show that all the angles of the base polygon are acute. This
yields 180°(n — 2) < 90°n, or n < 4, hence n = 3.

b) Let B, a point such that the segment A, By is parallel and equal to 4; A3.
It is not difficult to find that the sides A3 A;, A3Bs and A} By, of the tetraedron
A5 Ay B3 By are mutuallly perpendicular, hence the projection of 4} on the plane
A; B3 B4 — namely the point A — is the orthocenter of the triangle A; B3 By. Since
A1 A2 B4 A3 is a parallelogram, B3A; is a median in the triangle A; B3By, hence
AzAy = A3By = AyBs. Tt follows that A;A;Aj; is an equilateral triangle. By
symmetry we arrive at the given conclusion.

9" GRADE

PROBLEM 1. Let a, b, c be positive numbers such that ab+bc+ca = 1. Show
that:
1 1 1 ab be ca

>V3 .
a+b+b+c+c+a/\/_+a+b+b+c+c+a

SoLuTION. Solving ab + bc + ca = 1 for ¢, we deduce c(a + b) = 1 — ab and
1 ab

a+b a+b

and the similar ones.
Summing up, we find

1 N 1 + 1 ab be ac
a+b b+c c+a a+b a+b a+c

As (a+b+c)? = a® +b2+c*+2(ab+be+ca) > 3(ab+be+ca) = 3 by a well-known
inequality, we conclude the proof.

PRrROBLEM 2. Let ABC be a right triangle /A = 90° and let M € AB such
that % = 3v/3 — 4. It is known that the symmetric point of M with respect to
the line GT lies on AC. Find the measure of angle B (G is the centroid and I is
the center of the incircle).

SoLuTION. We shall use vectors. Let N be the symmetric point of M with

— —

resqp;ect to the midpoint of GI. Consider o and 3 such that AM = aAB, AN =

BAC, GI = GM + GN = (2 - 20 — /)GA + (8 - 2)GC.



46 SOLUTIONS

On the other side

— —
=3 (a=bGA+ (c-bGC
Gl=—"t 7
at+b+c
1 b 1 3-3
By identifying coefficients, we get o = 3 + TThTe"3 + 6‘/—'

Denote z = b/a, y = ¢/a. One obtains

?2+y?=1
z 3-v3

l+z+y =76
Solving for z, we get z = 1/2, implying therefore m(ZB) = 30°.

PRrROBLEM 3. Let k and n be positive integers with n > 2. Show that the
equation:
o -y = 2k
has no positive integer solutions.

SoLUTION. We shall proceed by contradiction. Let ng > 2 be minimal for
which there exists m > 0 such that and z™ —y™ = 2™, If ng is even, say no = 2k,
k € N, then by decomposition, 2 — y* = (zF — y*)(z* + y*), we conclude that
zF — y* is a power of 2. This contradicts the minimality condition.

It follows that ng is odd. Define the set

A = {p € N*|there are z,y € N*, with g™ — y™ = 27},

Let po be the minimal element in A. If z"0 — y™ = 2P0 it follows that z,y have
the same parity. As (z —y)(z™~! + .-+ y™~1) = 27 we deduce that z and y
are even.

Consider z = 2z1,y = 2y;. It follows z]° — y}'® = 2Po="0, contradicting the
minimality of po or z7° — " = 1. It is trivial to see that the last equation has no
positive integer solutions for ng > 2.

PROBLEM 4. Find all functions f : N — N which satisfy the equality

B3z +2y) = f()f(y),
for all z,y € N.

SoLuTION. For z = y = 0 we have f(0) = f(0)?, that is f(0) = 0 or
f0)=1.

The case f(0) = 0 gives f(2y) = f(3z) for any z,y € N. Letting f(1) = a,
we obtain f(5) = f(3-1+2-1) = a?. In the same way, f(25) = a®. On the other
side £(25) = f(2-2+3-7) = 0, implying a = 0.

Because any integer k > 4 can be written in the form k = 3z + 2y, for some
integers z,y, we find out f(k) = 0 for all &.

For the choice f(0) = 1 we have f(2y) = f(y), f(3z) = f(z) and letting
F(1) = a we derive f(2) = q, f(5) = a®, f(25) = a® = a*. These relations lead to
a=0ora=1.

In conclusion, we obtain the following functions:
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_Jf1 forz=0
f(z)_{o forz >0

or f(z) =1for all z € N.

10" GRADE

PROBLEM 1. Let X,Y, Z, T be four points in the plane. The segments [XY]
si [ZT] are said to be connected, if there is some point O in the plane such that
the triangles OXY and OZT are rightangled in O and isosceles.

Let ABCDEF be a convex hexagon such that the pairs of segments [AB],
[CE], and [BD], [EF) are connected. Show that the points A, C, D and F are the
vertices of a parallelogram and that the segments [BC] and [AE] are connected.

SOLUTION. Suppose that the triangles OXY are OZT are counterclockwise
oriented, and let z, v, z, ¢ be the afixes of the points X, Y, Z, T and let m be the afix
of O. As these triangles are right and isosceles we have z —m = i(y — m),z—m =
i(t —m). It follows m(1 —i) = z — iy = z — it. We deduce z — z = i(y —t).

Reciprocally, if z — iy = z — it, the afix of O is m = Z=¥, and the triangles
OXY and OZT are right and isosceles.

Let a,b,c,d,e, f be the afixes of the given hexagon in that order. We can
write a — ib = ¢ —ie,b —id = e — if. It follows a +d = c + f, that is ACDF is a
parallelogram.

Multiplying the first equality by i, we obtain b — ic = e — ia, that is BC and
AE are connected.

ALTERNATIVE SOLUTION. We shall consider geometrical transformations.
Let O; be the common vertex of the right isosceles triangles O; AB and O,CE
and let O3 be the common point of the triangles O, BD and O,EF. If R; denotes
the rotation with center O; and angle 3, then

A=Ri(B), B=RyD), thatis A= (R;oR,)(D).
Analogously
E=R{'(C), F=R;Y(E), thatis F=(Ry'oR)(C) = (I o Ry)~(C).

Remark that R; o R, is a rotation of angle 7. This implies (RioR2)™' = RyoRy,
and by consequence, A and F are obtained from D and C, respectively, by the
same rotation of angle 7. We conclude that ACDF is a parallelogram.

PROBLEM 2. Find all real polynomials f and g, such that:
(@ +z+1) f@-z+1) =@ —c+1)-g@a® +z+1),
for all z € R..

SoLuTioN. Put f(X) = Xa(X), g(X) = Xb(X). For w a non-real cubic
root of 1, we get (as w?+w+1 = 0) g(0) = 0 and for a a nonreal root of —1 we get
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£(0) = 0. This proves that a(X) and b(X) are real polynomials. The condition in
the hypothesis simplifies to a(z® — z + 1) = b(z* + z +1).

Changing z with —z we get a(z® +z+1) = b(z> —z+1). As a(z?—z+1) =
bz +z+1)=b((z+1)2— (z+1)+1) =a((z+1)* + (z +1) + 1) we find out
(1) a@®—z+1) =a((z+1)*+(z+1)+1).

We shall prove by induction that a(n? + 3n + 3) = a(1), for any integer n.

Indeed, for z = 1 the previous equality gives a(1) = a(7). Supposing a(n? +
3n + 3) = a(1), we write

a((n+1?+3mn+1)+3)=a((n+2°+(®n+2)+1)
=a((n+1)?~(n+1)+1) =a(n® +n+1),
by (1), finishing thus the induction step. But all numbers n?+n+1 are all mutually
different, that is a(X) is the constant polynomial. In conclusion f(X) = kX, where
k is a real constant. This, in turn, easily implies g(X) = kX.

PROBLEM 3. Find all real numbers a,b,c,d,e in the interval [—2,2], that

satisfy:
a+b+c+d+e=0
A+ +E+d+ef=0
S+ +E+d®+e =10

SoLUTION. It is natural to use the following substitutions a= 2cosz, b =
2cosy, ¢ =2cosz, d = 2cost, e = 2cosu.

By standard formulas 2cos5z = (2cosz)® — 5(2cosz)® + 5(2cosz) = a® —

5a° + 5a.
It follows

ZZcos5z = Za5 —5203 +52a= 10.

that is 3 cos 5z = 5, implying cos 5z = cos 5y = cos 5z = cos 5t = cos5u = 1. The
relation cos5a = 1 is equivalent to 5a = 2k, for integer k. Since cos 2?« = 52’1 s
cos 4T = — ‘/52“, cos0 = 1, we conclude a,b,c,d, e € {2, 3&2‘-1, —lézﬂ}.

As Y a'= 0 it is clear that one of the numbers must be 2, other two equal
¥5=1 and the other equal —3%"—‘

> .
One checks that in this case the equality 3" a® = 0 is also fullfiled.

PROBLEM 4. Let I C R be an interval and f : I — R a function such that:

[f(@) - fW) < lz—yl, forall o,y € I.
Show that f is monotonic on I if and only if, for any z,y € I, either f(z) <
F(55¥) < f) or f) < F () < f(@).

SOLUTION. Suppose, by contradiction, that f fails to be monotone. In that
case one can find ¢ < y < z (z,y,2 € I) such that f(z) < f(y) > f(2) or
f(@) > f(y) < f(2)-

By symmetry, it is sufficient to consider the case f(z) < f(y) > f(2). Let
X € R be such that f(z) < A, f(z) < XA and X < f(y). Consider the midpoint
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of Iy = [z,2]. The point y is situated in one of the half intervals determined by
this midpoint. Denote it by I1. As f(%%) < X, the values of f at the endpoints
of I are less than \. Consider the midpoint of I; and I, be the subinterval that
contains y a.s.0. Inductively, we can find intervals I, = [an,bs], n € N* having
the property: f(an) < A, f(bn) < A, y € In, by — an = Z5%. The inequality in the
hypothesis implies

z—z
@) - Flen) <lan -l < E2 2,
that is f(y) < A+ 5%, Vn € N™.
As A < f(y) we can find a positive integer no such that A + 222 < f(y),
which contradicts the previous inequality.

11*" GRADE

PrOBLEM 1. In the Carthesian plane zOy consider the hyperbola
2
- 2|27 2
I‘_{M(m,y)eR 7Y 1}

and a conic I", disjoint from I'. Let n(T,I') be the maximal number of pairs of
points (A4, A’) € T x I such that AA’ < BB', for any (B,B') € T x I

For each p € {0,1,2,4}, find, the equation of I for which n([,I') = p.
Justify the answer.

(The following curves are considered here as conics: the circle, the ellipse,
the hyperbola and the parabola.)

SOLUTION. R
Case p = 0. Let I be the hyperbola given by the equation & — y2+1=0.

Choosing the points B (n, ,/"72 — 1) el, B (n, 1/"72 - 2) € I, we have by an

easy computation BB’ < 2. Since BB' — 0 when n — 00, it follows n(I',I') = 0.

Case p = 1. Let I' be the circles given by the equation 2% —z + 3% = 0,
and let A(2.0), A’(1.0). Let (M.M') € (U x ') and N, N’ the intersection points
between MM’ and the tangents to I',I" at A, A’. It is not difficult to see that
AA" < NN' < MM', with equality if and only if A = M and A’ = M'. Thus
n(C,T) = 1.

Case p = 2. Let I" be the circle of equation z? + y*> = 1. Points A4;(2,0),
A%(1,0), A2(—2,0) and A%(—1,0) can be used to prove in a similar way that
(0, I = 2.

Case p = 4. Consider I', the hyperbola of equation ”; —z? = 1 and the points
A (,8) 4 (£ 45) 4 (<55, 9) 4 (S£,95) . 4 (54 =6),
44 (25,245, 4, (94, 55) 45 (., =42) . In this case n(I,T') = 4.

PROBLEM 2. Let f: R — R be a function that has limits at any point and
has no local extrema. Show that:
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a) f is continuous;
b) f is strictly monotone.

SOLUTION. a) Let zo € R be arbitrary in R. If f(zo) < li)n; f(z) then zo
T 0
is a local minimum point and if f(zo) > li’m f(z), then z is a local maximum
P

point. Both cases contradict the given condition. It follows that f is continuous
at zg.

b) We shall prove that f is one-to-one. If not, let a,b, @ < b such that
f(a) = f(b). As f is not constant on [a, b] (otherwise any point ¢ € (a,b) is a local
extremum point), it follows that one can find an extremum point d € (a,b), and
we get a contradiction. We conclude that f is one-to-one. Being continuous, the
intermediate value property implies that f is strictly monotone.

ProBLEM 3. Let A € M;(C) a non-zero matrix.
a) If rank(A) = r < 4, prove the existence of two invertible matrices U,V €

M,4(C), such that:
vav=(1 90
“\0 0)

where I, is the r-unit matrix.
b) Show that if A and A? have the same rank k, then the matrix A™ has
rank k, for any n > 3.

SOLUTION. We shall consider the general case when A € M,(C), m € N*.

a)Leti#j€{l,...,m}and a € C*. ;

Consider the matrices P;; obtained from the identity I, by permuting rows i
and j; the matrices T;(a), obtained from I, by multiplying row i by a and S;;(a),
derived from I, by adding row ¢ multiplied by a, to row j. All these matrices are
invertible.

To multiply A to the left by these matrices, corresponds to the following
operations, respectively: permute rows ¢ and j; multiplying row ¢ by a, and adding
to row j the row i multiplyied by a. Multiplying A to the right by the same
matrices, coresponds to similar operations on the columns of A. It follows that
by a sequence of such multiplications to the left and/or right, one should obtain
a matrix of the required form. The matrix U will be the product of all matrices
used in the multiplication to the left and V' represents the product of the sequence
of matrices used in the multiplication to the right of A.

b) If rank(A) = m then det(A) # 0. It follows that det(A™) # 0, that is
rank(A4") = m.

I

Let k = rang(A) < m. By using a) we have UAV = 0 g), where U

and V invertible. As Ié‘ g) = C - D, where C = (I(;“), D = (I 0),and

A=U"1C-DV~! we obtain A = EF, where E=U"'C and F = D -V ™!, both
having rank k.

From A? = EFEF we deduce rank(FE) > k. As rank(FE) < k, we have
rank(FE) = k with FE € M(C).

From FA"E = (FE)™*! we derive rank(FA"E) = k. This, in turn, implies
rank(A™) > k, and as rank(A™) < k we conclude rank(A") = k for any n > 3.
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PROBLEM 4. Let f : [0,1] — [0,1] be a continuous and bijective function.
Describe the set:

A={f(=) - f®) =y €[0,1]\Q}.

(The following result is considered to be known: there is no one-to-one func-
tion between the set of irrational numbers and Q.)

SoLuTION. It is obvious that A C [~1,1]. As f is continuous and one-to-
one, we deduce that f is strictly monotonic, that is {£(0), f(1)} = {0,1} and
—1,1 ¢ A. It follows that A C (—1,1). It is easy to see that 0 € A and that a € 4
implies —a € A. Suppose, for simplicity that f is strictly increasing (otherwise
use g = 1 f). Let a € (0,1). Then a = f(b) with b € (0,1). For any z €
(5,1) N (R\ Q) = I, there is an unique y, € [0,1], such that f(z) — f(ys) = a. If
yz € R\ Q, then a € A. In the case y, € Q for any z € I, consider the function
g : I = Q given by g(z) = y,. The function g is one-to-one from I to Q, a
contradiction. It follows that (—1,1) C A concluding that 4 = (~1,1).

12'" GRADE

PROBLEM 1. Let A be a ring.

a) Show that the set Z(4) = {a € A|az = za, for all z € A} is a subring of
the ring A.

b) Prove that, if any commutative subring of A is a field, then 4 is a field.

SOLUTION. a) Let a,b € Z(A). From (a—b)z = az—bz = za—zb = z(a—b),
and (ab)z = azb = z(ab), Yz € A, we obtain a — b € Z(A) and ab € Z(A). As
1€ Z(A), it follows that Z(A) is a subring.

b) Consider a € A — {0} and B = Z(A). Define D = {f(a) | f € B[X]},
where B[X] is the ring of polynomials having coefficients in B. It easy to verify
that D is a commutative subring of A, that is D is a field. It is obvious that
a™! € D. Thus a is invertible and because it was arbitary, we conclude that A
itself is a field.

PROBLEM 2. Let f:[0,1] — R be an integrable function such that:
1
0< [/ f(z)dml <L
)
Show that there exist 1 # z2, 71,22 € [0,1], such that:
T2
/ f(z)dz = (z1 — 32)%°°2,
T
SoLuTioN. Consider F' : [0,1] — R defined by F(z) = [7 f(t)dt. We
distinguish two cases.

First case: For all a,b € [0,1], a # b, we have |F(a) — F(b)| > |a — 2002,
Then, we can take z; = 1,2, =0 (1 > |fo1 f(t)de| > 12002),
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Second case: For any z; # T € [0,1], we have |F(z1)—F(z2)| < |21 —22[*°%2,
which in turn can be written
- F
‘F(Il) (22)] < lo1 = 2o
T — X2

Letting x5 — 1, we derive F'(z;) = 0, and as z; is arbitrary, we conclude F' =0,
contradicting thus the condition in the hypothesis 0 < |F(1) — F(0)|.

Therefore, we can find a,b,c,d € [0,1] such that

0<a<bg 1, |F(b) - F(a)| > |b— a|*** and

0<c<d< 1, |F(d) = F(c)| < |d— >

Consider the continous function g(t) = |F(y:) — F(2¢)| — |y: — zt|2"°22,0 gghere
0< 2z = (1-t)a+tb < yp = (1-t)c+td < 1. Asg(0) = ]E(d)—F(c)|—ld—c| %02 <0
and g(1) = |F(a) — F(b)| - la—b[***® > 0, the intermediate value property implies
the existence of ¢' € (0,1) such that g(') = 0. The points z; = y» and 22 = 2z¢
satisfy the conclusion of the problem.

PROBLEM 3. Let f : R — R be a continuous and bounded function such
that If

a+1 @
x/ ft)dt = / f(t)dt, for any z € R.
P 0
Prove that f is a constant function.

SoLuTIoN. Consider F(z) = [ f(t)dt. The given equality can gives z(F(z+
@ _F
1) - F(z)) = F(a), that is & = K& vz € (0,00). Define p(z) = J-l as
a function p : (0,00) — R. It has finite derivative and p am? p' are periodic of
period 1. The equality F(z) = zp(z) implies f(z) = p(z) + zp'(z)

Suppose that there is o > 0 such that p'(z¢) # 0. Then f(zo +n) =
p(zo + 1) + (zo + n)p' (zo + 1) = p(xo) + (To + n)p'(z0), for all n € N. It follows
that the limit lim f(zo + n) is infinite, a contradiction. Thus p(z) = k, for all

n—00
n € (0,00), that is f(z) = k, for all = € (0,00). o

The case when z € (—00,0) is analoguous. By continuity, f(z) = k, for all

z€R.

PROBLEM 4. Let K be a field having ¢ = p" elements, where p is a prime
number and n > 2 is an arbitrary integer number. For any a € K, one defines the
polynomial f, = X7 — X + a. Show that:

a) f = (XP - X)? — (XP? — X) is divisible by fi;

b) f, has at least p"~! essentialy different irreducible factors K[X].

SOLUTION. a) Because p-1 =0, one has (a +b)? = a? 4+ b? for any a,b € K
(Frobenius morphism). The divisibility f1|f is an easy consequence of t}:e formula
(XP—X)P"—(XP-X) = X" —Xx7" —XP+X = (XPT = X+1)P = (X"~ X +1).

b) The decomposition of fo is fo = X? — X = ble_IK(X — b), and it contains
p" irreducible factors.

For any a € K*, using the fact that f,(aX) = a’X? —aX +a = afi(X), we
infer that it will be sufficient to verify the property for fi.
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Consider the polynomial g = X? — X. From-a) and the factorisation formula
for fo we get fi = (f1,9° —9) = (f1, Il (9-0) = I1 (f1,9 = b). Given that
be be

grfi = p™ and gr(f1,9—b) < p, for b € K, we conclude that at least P! between
the polynomials (f1, g —b) have the degree > 1. Taking into account that all these
polynomials are relatively prime and each of them contains at least an irreducible
factor, we get the conclusion.

II.4. ELEMENTARY SCHOOL OLYMPIAD
City of Bucharest

5" GRADE

PROBLEM 1. Show that the number

is an integer.

SoLuTioN. & — o —lo - =88 L -
PROBLEM 2. We consider the number

N=l+l+i+...+£_

10 102 103 1011

Show that 0.12345679 < N < 0.1234568.
SoLUTION. Using decimal representation, one has
N =0.12345679011.

PROBLEM 3. A sport contests was organized during four days. The medals
were distributed as follows: each day half of the existing medals were awarded and
one more. How many medals were awarded each of the four days?

SoLUTION. Let ¢ be the number of remaining medals after third day. Then,
in the fourth day £ + 1 = ¢ medals were distributed. Hence t = 2.

Let z be the number of remaining medals after second day. Then, in the
third day, £ + 1 = z — 2 medals were distributed. Hence z = 6.

Let y be the number of remaining medals after the first day. In the same
way we get y = 14.

Let z be the total number of medals. Then 5+1=2z—14 and z = 30. So,
the number of awarded medals was: 16, 8, 4, 2.

PROBLEM 4. The sets A and B consist each of a finite number of consecutive
positive integers. Let a be the arithmetic mean of the elements in A and b be the
arithmetic mean of elements in B. The arithmetic mean of a and b is 12 and it is
known that ANB = {12}. Find the maximal number of elements in the set AU B.
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SOLUTION. Since A = {12} and A, B contain consecutive numbers, we may
assume that 12 is the greatest element of A and the least element of B. Since
a€ Aandbe B, Aand B have an odd number of elements. In A we have 12-a
elements. From %% = 12 one obtains 12 — a = b~ 12. Then 4 has 2(12 - a) +1
elements and B has 2(b — 12) + 1 = 2(12 — a) + 1 elements. Hence AU B has
4(12 — @) + 2 — 1 elements. The least value for a is 7, hence the greatest N is 21.

6" GRADE

PROBLEM 1. Let A= {a € Z| — 2000 < a < 2000}.
a) Find the sum of elements of A.
b) Show that the sum of absolute values of elements of A is a perfect square.

SoLUTION. The sum of elements in A is 2001.
The sum of absolute values is

2(1+2+ 3+ - -+ + 2000) + 2001 = 2001”.
PROBLEM 2. Find positive integers a, b which satisfy the conditions:
(i) 6a + b= 330;
(ii) the least common multiple of a and bis 12 times greater than the greatest
common divisor of a and b.

SoLuTION. Let d be the g.c.d. and a = da’,b = db'. Then dﬁ’b’ = 12d and
d(6a’ +b') = 330. One gets a = 45 and b = 60.
PROBLEM 3. Let a,b,c be positive integers such that
a+b_b+c _ct+a

be ca ab

Show that a =b=c.
SoLuTION. The equation is equivalent to
a(a +b) =b(b+c) =c(c+d).
Let d be the g.c.d. of a,b,c and a = dA,b = dB,c = dC. One gets
A(A+B)=B(B+C)=C(C+A).
If p is prime and a divisor of 4, it is necesarily a divisor of B and of C. It follows,
as g.c.d(4,B,0) =1,that A=B=C=1and thena=b=c.

PROBLEM 4. Let ABC be an isosceles triangle. The base of triangle ABC
is AC, the length of AC is a and ZB = 70°. On the segments AB, AC are given
the points D, E respectively, such that DA + AE = a. On the segments AC,BC
are given the points F, G respectively, such that FC + CG = a. The points E, F
are distinct. Find the angle between the lines DF and EG.

SoLUTION. Let DF and EG intersect in O. We have ADAF = AECG,
since AF = CG, AD = EC and LDAF = LECG. The conclusion is LFOE =
55°.
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Part III: SELECTION EXAMINATIONS
for the International Mathematical Oympiad,
Balkan Mathematical Olympiad
and Junior Balkan Mathematical Olympiad

III.1. PROPOSED PROBLEMS

First selection examination for the 43" IMO and 19*" BMO

Ramnicu Valcea, March 21, 2002

PrROBLEM 1. Find all pairs of sets A, B, which satisfy the conditions:
(i) AUB=1Z;

(ii) if ¢ € A, then z — 1 € B;

(iii) if z € Band y € B, then z +y € A.

Laurentiu Panaitopol

PROBLEM 2. Let (an)n3o be the sequence defined as follows: ag = a; = 1
and an41 = 14a, —ap—1, for any n > 1. Show that the number 2a, — 1 is a perfect
square, for all positive integers n.

Bogdan Enescu and Titu Andreescu

PROBLEM 3. Let ABC be an acute triangle. The segment M N is the midline
of the triangle that is parallel to side BC and P is the projection of the point N
on the side BC. Let A; be the midpoint of the segment M P. Points B, and C;
are constructed in a similar way. Show that if AA;, BB; and CC} are concurent
lines, then the triangle ABC has two equal sides.

Mircea Becheanu

PROBLEM 4. For any positive integer n, let f(n) be the number of possible
choices of signes + or — in the algebraic expression 1+ 2+ - - -+ n, such that the
obtained sum is zero. Show that f(n) satisfies the following conditions:

a) f(n) =0 for n = 1(mod 4) or n = 2(mod 4);

b) 2871 < f(n) < 2" — 281, for n = 0(mod 4) or n = 3(mod 4).

Toan Tomescu
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Second selection examination for the 434 MO and 19" BMO

Bucharest, April 13, 2002

PROBLEM 5. Let ABCD be a unit square. For any interior points M, N,
such that the line MN does not contain a vertex of the s<.1uare, we denote. by
s(M,N) the least area of triangles having their vertices in the set of pomtls1
{A,B,C,D,M,N}. Find the least number k such that s(M,N) < k, for al
such points M, N.

Dinu Serbanescu

PROBLEM 6. Let P(X) and Q(X) be integer polynomials of degree 1.],(1 re-
spectively. Assume that P(X) divides Q(X) and all their coefficients are either 1
or 2002. Show that p + 1 is a divisor of ¢ + 1.

Mihai Cipu

PROBLEM 7. Let a,b be positive real numbers. For any positive integer n,
denote by z,, the sum of digits of the number [an+b] in its decimal representation.
Show that the sequence (Zn)n31 contains a constant subsequence.

Laurentiu Panaitopol

PROBLEM 8. At an international conference there are four official languages.

Any two participants can discuss in one of these languages. Show that at least
60% of the participants can speak the same language.

Mihai Balund

Third selection examination for the 4374 IMO and 19" BMO

Bucharest, April 14, 2002

PRrOBLEM 9. Let ABCDE be a cyclic pentagon inscribed in a circle of center
O which has angles /B = 120°, £LC =120°, (D = 130°, LE = 100°. Show that
the diagonals BD and CE meet at a point belonging to the diameter AO.

Dinu Serbdnescu

PROBLEM 10. Let n > 4 be an integer and a1, ag,...,a, be positive real
2 —
numbers such that a? +a} + -+ +ap =1.
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Show that the following inequality holds:

a ag an 4
> = 2
Zritarit @ s evataeva b taya,)”

Mircea Becheanu and Bogdan Enescu

PROBLEM 11. Let n be a positive integer and S be the set of all positive
integers a such that 1 < @ < n and a*~! — 1 is divisible by n. Show that if
S = {n — 1}, then n is twice a prime number.

Mihai Cipu and Nicolae Ciprian Bonciocat

PROBLEM 12. Let f : Z — {1,2,...,n} be a function that satisfies the
condition

e f(z) # f(y), for all z,y € Z such that |z —y| € {2,3,5}.

Show that n > 4.

Ioan Tomescu

Fourth selection examination for the 43¢ IMO

Bucharest, June 1%¢, 2002

PROBLEM 13. Let (an)n»1 be a sequence of positive integers defined as
follows:

®qa; >0,a2>0;

® a4 is the least prime divisor of an—1 + an, for all n > 2.

Show that a real number z whose decimals are the digits of the numbers
a1,0Q3,...,0n,. .. Written in that order, is a rational number (digits are considered
in the decimal representation).

Laurentiu Panaitopol

PROBLEM 14. Find the least positive real number r with the property:

e whatever four disks are considered, each with center in the edges of a unit
square and such that the sum of their radii equals r, there exists an equilateral
triangle which has its edges in three of these disks.

Radu Gologan

PROBLEM 15. After elections, every parliament member (PM), has his own
absolute rating. When the parliament set up, he enters in a group and gets a
relative rating, that is the ratio of its own absolute rating to the sum of all absolute
ratings of the PM’s in the group. A PM can move from a group to another only
if in his new group his relative rating is greater. In a given day only one PM
can change the group. Show that only a finite number of group move is possible
(Remark: a rating is a positive real number).

Kvant
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Fifth selection examination for the 43" IMO
Bucharest, June 2™, 2002

PROBLEM 16. Let m,n be positive integers of distinct parities and such that
m < n < 5m. Show that there exist a partition with two element subsets of the
set {1,2,3,...,4mn} such that the sum of numbers in each set is a perfect square.

Dinu Serbinescu

PROBLEM 17. Let ABC be a triangle such that AC # BC, AB < AC and
let K be its circumcircle. The tangent line to X at the point A intersects the line
BC in the point D. Let K; be the circle tangent to X and to the segments (AD),
(BD). We denote by M the point where K touches (BD). Show that AC = MC
if and only if AM is the bisector line of the angle /ZDAB.

Neculai Roman

PROBLEM 18. There are n players, n > 2, which are playing a card game
with np cards in p rounds. The cards are coloured in n colours and each colour is
labeled with numbers 1,2,...,p. The game submits to the following rules:

e each player receives p cards;

o the player who begins the first round throws a card and each player have to
discard a card of the same colour, if he has one; otherways they may give an
arbitrary card;

e the winner of the round is the player wo has put the greatest card of the
same colour as the first one;

e the winner of the round starts the next round with a card that he selects
and the play continues with the same rules;

o the played cards are out of the game.

Show that if all cards labelled with number 1 are winners, then p > 2n.

Barbu Berceanu

First selection examination for the
6" Junior Balkan Mathematical Olympiad

Ramnicu Vélcea, March 21, 2002

PROBLEM 1. For any positive integer n, let
Fn) = 4dn +V4n? — 1
T VIt l+von-1
Compute the sum f(1) + f(2) + - + f(40).
Titu Andreescu

PROBLEM 2. Let k,n,p be positive integers such that p is a prime number,
k < 1000 and vk = n,/p.
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a) Prove that if the equation vk +100z = (n + z),/p has a non-zero integer
solution, then p is a divisor of 10.
b) Find the number of all non-negative solutions of the above equation.

Mircea Fianu

ProBLEM 3. Consider a 1 x n rectangle and some tiles of size 1 x 1 of four
different colours. The rectangle is tiled in such a way that no two neighbouring
square tiles have the same colour.

a) Find the number of distinct symmetrical tilings.

b) Find the number of tilings such that any consecutive square tiles have
distinct colours.

Dan Branzei
PROBLEM 4. Let ABCD be a parallelogram of center O. Points M and N

are the midpoints of BO and CD, respectively. Prove that if the triangles ABC
and AMN are similar, then ABCD is a square.

Dinu Serbanescu

Second selection examination for the
6" Junior Balkan Mathematical Olympiad

Bucharest, April 13, 2002

PROBLEM 5. A square of side 1 is decomposed into 9 equal squares of sides
é and the one in the center is painted in black. The remaining eight squares are
analogously divided into nine squares each, and squares in the centres are painted
in black.

Prove that after 1000 steps the total area of the black region exceeds 0.999.

Costel Chiteg and Cristinel Mortici
PROBLEM 6. Find all positive integers a, b, c,d such that
a+b+c+d—-3=ab+cd

Dinu Serbanescu

PROBLEM 7. Let ABC be an isosceles triangle such that AB = AC and
LA = 20°. Let M be the foot of the altitude from C and let N be a point on the
side AC such that CN = ;BC.

Find the measure of the angle ZAMN.

Dinu Serbanescu
PROBLEM 8. Let ABCD be a unit square. For any interior points M and
N such that the line MN does not contain any vertex of the square, denote by

s(M, N) the least area of a triangle having vertices in the set {4, B,C,D, M, N}.
Find the least number k such that s(M, N) < k, for all such points M, N.

Dinu Serb&nescu
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PROBLEM 9. Let n be an even positive integer and let a, b be two relatively
prime positive integers.
Find a and b such that a + b is a divisor of a™ + b™.
Dinu Serbanescu
PROBLEM 10. The diagonals AC and BD of a convex quadrilateral ABCD
meet at O. Let m be the measure of the acute angle formed by these diago-
nals. A variable angle zOy of measure m intersects the quadrilateral by a convex
quadrilateral of constant area.
Prove that ABCD is a square.
Mircea Fianu
PROBLEM 11. A given equilateral triangle of side 10 is divided into 100
equilateral triangles of side 1 by drawing parallel lines to the sides of the original
triangle.
Find the number of equilateral triangles, having vertices in the intersection
points of that parallel lines and whose sides lie on the parallel lines.

. Dinu Serbanescu

PROBLEM 12. Prove that for any real numbers a, b, ¢ such that 0 < a,b,c <
1, the following inequality holds

Vabe+ /(1 —a)1-b)(1-0) < L

Dinu Serbdnescu
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PROBLEM 13. Let a be an integer. Prove that for any real number z, 2% < 3,
both the numbers v/3 — 22 and V/a — 23 cannot be rational.
Laurentiu Panaitopol
PROBLEM 14. The last four digits of a perfect square are equal. Prove that
all of them are zeros.
Laurentiu Panaitopol
PrROBLEM 15. Let C1(0;) and C3(O;) be two circles such that C; passes

through O,. Point M lies on C; such that M ¢ 0,0;. The tangents from M at
Cy meet again C; at A and B.
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Prove that the tangents from A and B at C, - others than M A and MB —
meet at a point located on Cj.

D. Serb

PROBLEM 16. Five points are given in the plane such that each of the 10
triangles they define has its area greater than 2. Prove that there exists a triangle
of area greater than 3.

Laurentiu Panaitopol

Fifth selection examination for the
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PROBLEM 17. Let m,n > 1 be integer numbers. Solve in positive integers

" +y"t =2m.

Laurentiu Panaitopol

PrOBLEM 18. We are given n circles which have the same center. Two
lines Dy, Dy are concurent in P, a point inside all circles. The rays determined
by P on the line D; meet the circles in points A, A, ... An and A, A5, AL
respectively and the rays on D, meet the circles at points By, B,,...,B, and
Bi,B;..., B, (points with the same indices lie on the same circle).

Prove that if the arcs A; B; and A, B, are equal then the arcs A; B; and A/B]
are equal, for all ¢ = 1,2,...n.

Dinu Serb&nescu

PROBLEM 19. Let ABC be a triangle and a = BC, b= CA and ¢ = AB be
the lengths of its sides. Points D and E lie in the halfplane determined by BC
and A. Suppose that DB = ¢, CE = b and that the area of DECB is maximal.
Let F be the midpoint of DE and let FB = z.

Prove that FC = ¢ and 4z° = (a® + b% + ¢2)z + abe.

Dan Branzei

] PROBLEM 20. Let p,g be two distinct primes. Prove that there are positive
integers a,b such that the arithmetic mean of all positive divisors of the number
n = p°g’ is an integer.

Laurentiu Panaitopol
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ProBLEM 1. Find all pairs of sets A, B, which satisfy the conditions:
(i) AuUB=1Z;

(i) ifz € A, thenz —1€ B;

(ili)if z € Bandy € B, thenz +y € A.

SOLUTION. We shall prove that exactly two pairs of sets verify the given
ditions: either A=B=Zor A=2Z,B=2Z+1.

o If 0 € B it follows form (iii) that = +0 € 4, for all z € B. Therefore B C A
d by (i) we conclude that A = B = Z, in this case. . o
o gu(p)pose now that O ¢ B. Then by (i) 0 € A and by (ii), -1 € B. Usmg (.u),
we get succesively —2 = (—1)+(—1) € A, -3 € B, —4 € A, and by easy induction

- —2n — 1 € B, for all positive integers n. o
o eIf‘/; aén% chn 2+ (—-71) =1€ Aand 1 -1 =0 € B, contradiction. Hence
d2-1=1€B. . o
2¢ AV%’: shall prove that 2n € A for all n. If by contradiction, n > 1is mmu.r.l'al
with 2n € B, then 2n —1 € A by (iii) and 2n - 1) =1 =2(n - 1) € B by (iii),
contradicting the minimality condition. Thus, all even positive integers belong to
A and do not belong to B, while all odd integers arein Bandnotin A. As -1 € A
would imply —2 € B, which in turn implies 3 + (—2) = —1 € B, we conclude that
g4 o
Hence A = 2Z and B = 2Z + 1 in this case.
PROBLEM 2. Let (an)n3o be the sequence defined las follows:
=a; =1 and ap4; = 14a, — ap_q, for any n > 1. o
g?lowatlhat the nurggér 2a, —"1 is a perfect square, for all positive integers n.

i i defined by by =
10N. Consider also the sequence (b,)n3o of integers e !
-1 blsiLijznd bpt1 = 4b, — bp—1, for all n > 1. We shall prove l?y mdu(.:t,lon t}.lat
2a. - 1 = b2, for all integer n. More precisely, for sake of simplify the induction
n ny

proof, we shall prove

(i) 2an—1= bﬁ; 4

ii) 2b,bp—1 = an + an—1 — 4.

Et)is clr;a,; that bg = 220 —~1=1,b? =2a; — 1 and 2bb; = -2 =ap+ a1 — 4.
Assume that equalities (i) and (ii) are true for n. Then

B340 = (4B, — by)? = 162 — 8bubut + b2,
=16(2an — 1) + (2an-1 — 1) = 4(an + an-1— 4)
=28a, — 2a5-1 — 1 = 2(l4an — an1) = 1 = 2041 — 1

d
an 264160 = 2(4b5 — bp1)bn = 8b% — 2bpbn1

=8(2an — 1) = an — an-1 +4 =15, — an_y — 4

=14an — @n-1 +ap — 4 = any1 +an — 4.
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REMARK FOR AN ALTERNATIVE SOLUTION. The terms of the sequence can
be computed by using the characteristic equation of the recursive relation. One

can prove by induction and using that closed formula, that 2a, — 1is a perfect
square.

PROBLEM 3. Let ABC be an acute triangle. The segment M N is the midline
of the triangle that is parallel to side BC and P is the projection of the point N
on the side BC. Let A; be the midpoint of the segment M P. Points By and C;
are constructed in a similar way. Show that if AA;, BB, and CC} are concurent
lines, then the triangle ABC has two equal sides.

SOLUTION.

A

1

y
B o pp €

Denote for simplicity the sides BC,CA,AB by a,b,c respectively. Let Q be
the projection of the point M on BC. Then A, is the centroid of the rectangle
MNPQ. Let D,E be the intersection points of AA; with sides BC and MN
resepectively. Denote for simplicity by z, y the lengths of the segments DP, QD
respectively. We have ME =z, EN = yand MN =z +y = 5
By similarity, we obtain

BD ME_:I:_BD+$_BP %+BQ_a+ccosB

%zﬁ_y T DC+y CQ 2+CP  a+bcosC’
In the same way, if we denote by F,G the intersection points of BB, CC; with
CA and AB, respectively, we obtain the ratios
’ CF _b+acosC AG _ c+bcosA

FA " btceosd’ and GB ~ ctacesB’
By Ceva’s theorem, the segments AD, BF and CG are concurent if and only if
) a+ccosB'b+acosC_c+bcosA=

a+bcosC b+ccosA c+acosB

By cosine’s law, we have:

a?+c -8 3?42 —p?
2a - 2a ’
and the other similar identities. Therefore, (1) becomes

a+ccosB=a+

3a®+c2 - 3b% +a? -2 3+ —a®
a2+ —c? 32+c2—a? 3 tai_12
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Let be for simplicity, u = ¢ —b*, v =a> =%, w = b2 — a2. The last equality is
then equivalent to

(3% + u)(36% +v)(3¢* + w) = (3a® — u)(3b? — v)(3c* — w).
Canceling similar members, one obtains
18(b%c%u + ?a®v + o’ B*w) + 2uvw = 0.
Replacing u, v, w by their expresions in a, b, c, we conclude
(2 = b)) (¥ —a?)(a® - *) =0,
whence the conclusion of the problem.

PROBLEM 4. For any positive integer 7, let f(n) be the number of possible
choices of signes + or — in the algebraic expression +1 £ 2+£---En, such that the
obtained sum is zero. Show that f(n) satisfies the following conditions:

a) f(n).= 0 for n = 1(mod4) orn = 2(mod 4);

b) 2371 < f(n) < 2" — 2(3*, for n = O(mod 4) or n = 3(mod 4).

SOLUTION. The number f(n) can be also defined as the number of par.titions
of the set {1,2,...,n} in two subsets of equal sums. The sum of elements in each
. subset being %(1 +24--4n) = ﬂnTﬂZ’ we conclude that this number is an
integer if and only if n = Oor 3 (mod 4). ) )
‘Assume that n = 4k or n = 4k + 3 for some integer k. Since 1+2 -3 = 0
and —1 — 2+ 3 = 0, one has f(3) = 2. In a similar way one shows that. f(4) = 2.
We shall prove that f(n +4) > 4f(n) for all n > 3. Let Cy,Cs be th_e two
classes of a ”good” partition of {1,2,... ,n}. We can produce four new partitions
as follows:
a) CiU{n+1,n+4} and CyU{n+2,n+3}.
b) C1 U{n+2,n+3} and CoU{n+1,n+4}.
c) Assume that 1 € Cz. Then produce (Ci\{1h u{n +2,n+4} and
C,U{l,n+1,n+2}.
: {d) Assume that 2 € C;. Then we produce (Cy \ {2}) U {n + 3,n + 4} and
CoU{2,n+1,n+2}. ) o
This argument shows that for n +4 we have at least four times more “good
partitions, that is f(n +4) > 4f(n), for any n > 3.
Finally, if n = 4k, we obtain

F(4K) > Af(dk—4) > 42 f(4k—4-2) 3 -~ 2 471 f(ak—4(k—1)) = 2.4k-1 = 9231
and for n = 4k + 3, we get
n_1 n_
fak+3)>4f(4(k—1)+3) > > 4kf(3) =220+ = 2877 > 257
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PROBLEM 5. Let ABCD be a unit square. For any interior points M, N,
such that the line MN does not contain a vertex of the square, we denote by
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s(M,N) the least area of triangles having their vertices in the set of points
{4,B,C,D,M,N}. Find the least number k such that s(M,N) < k, for all
such points M, N.

SOLUTION. Let E, F be the midpoints of AD and BC respectively and let
M, N be the midpoints of OF and OF'. It is easy to check that s(M,N) = %, that
is k > £. We shall prove that k = }.

A B A B
EM N|F
D Cc D C

Notice that Area(BMC)+Area(AMD) = %, for any interior point M. We
may assume that N is an interior point of the triangle AM D. Therefore

Area(AND) + Area(ANM) + Area(DNM) + Area(BMC) = %

It follows that one of the triangle involved in the preceeding sum has area greater
than 3.

AUTHOR NOTE. A similar problem for a single interior point leads to the
same answer: k = %. The same question for three points is a more challenging
problem.

PROBLEM 6. Let P(X) and Q(X) be integer polynomials of degree p, q re-
spectively. Assume that P(X) divides Q(X) and all their coefficients are either 1
or 2002. Show that p+ 1 is a divisor of ¢ + 1.

SoLuTION. Let p(X) and ¢(X) be the polynomials obtained after considering
modulo 3 the coefficients of P(X) and Q(X), respectively. It follows that p(X) is
a divisor of ¢(X) in the ring Z3[X]. Since p(X) = XP + XP~1 +---+ X +1 and
g(X) = X9+ X9t + -+ X +1, it follows that XP*! — 1|X9+! — 1 in Z;[X].
By standard considerations we get g.c.d(XPt! — 1, X9+ — 1) = X9 — 1, where
d=gcd.(p+1,g+1). It follows that d = p+ 1, and p+ 1jg + 1.

PROBLEM 7. Let a,b be positive real numbers. For any positive integer n,
denote by z,, the sum of digits of the number [an+b] in its decimal representation.
Show that the sequence (z5),>1 contains a constant subsequence.

SoLuTioN. For any integer k we denote ny = [W] Then

k _ k -
10'°=a(m—+aa—b—l)+b<ank+b=a[£]-%b}+b<10’°+b.
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It follows that

10* = [any, + b] < 10% + [b).
If k is sufficiently large, that is 10¥~ > b, it follows from above that z,, is 1 plus
the sum of the digits of one of the numbers ¢ in the set {0,1,...,[b]}. Since k
takes infinitely many values and the set of numbers ¢ is finite, it follows that for
infinitely many k, the sum of digits of numgers [an + b] is the same.

PROBLEM 8. At an international conference there are four official languages.
Any two participants can discuss in one of these languages. Show that at least
60% of the participants can speak the same language.

SoLUTION. Denote, for simplicity, by 1,2,3,4 the spoken languages. We
distinguish the following three cases.

1. There is a participant who speakes only one language. It is then clear
that all participants have to speak it.

2. Any participant is speaking at least two of the given languages but there
is no language spoken by all those who speak exactly two. In that case, suppose
by symmetry, that the groups of spoken languages that participants know are
(12), (13), (23), (123), (124), (134), (234) and (1234). If languages 1,2,3 are not
spoken each, by at least % of the participants, then, denoting by z;; .. the number
of those who speak simultaneously the languages i, 7, ..., we get

3
T12 + Z13 + T123 + T124 + T134 + T1234 < ¢ E Tij...
5 i
3
T12 + Taz + T123 + T124 + T23a + T1234 < 5 Z Tij...
Q..
3
13 + T23 + T123 + T134 + T34 + T1234 < 5 Z Tij....
i
Summing up, we get
9
2 Z Tij.. + T123 + T34 < & Z Tij...,

which is a contradiction.

3. Any participant speakes at least two languages and there is a language
that is common to those speaking exactly two languages. Suppose that this case is
described by the following groups of languages (12), (13), (14), (123), (124), (134),
(234),(1234). Assume be contradiction the required condition on each of the
languages 1,2,3,4, and obtain:

3
T12 + 213 + T14 + T123 + T124 + T134 + T1234 < 5 Z Tij...
i
3
T12 + T123 + T124 + T34 + T1234 < 5 Z Tij...
G

3
T13 + T123 + T13a + Taza + T1230 < ¢ Z Tij...
Qg

3
T14 + T124 + T134 + To24 + T1234 < 5 Z Tij....
i
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Multiplying the first inequality by 2 and summing up, we get:

3(z12 + T13 + T14) + 4(T123 + T124 + T134) + 3T234 + 5T1234 < 3 Z Tij....
This is a contradiction.

ALTERNATIVE SOLUTION. Let n be the number of persons attending the
conference. Consider the incidence matrix (a;;), given by

a;; =1 if and only if languagei is spoken by person i,

foranyi=1,2,3,4and j =1,2,...n.

We have to prove that there is a row having more than 60% of ones as
its entries. Suppose that the last row contains the greatest number of ones and
arrange the other rows in the succesion of the number of ones. We get the following
block matrix.

1{ol1]1|1|1]1
1 o|1(1|0]|1
17 10|0[1]1]0
1 111 0|0
2 x Yz

We distinguish the cases:

l.a< %" It easily implies z +y + z > 3?"

2.a> 25—" We can suppose z < ¥ and y < g, otherwise a +z or a + y will
satisfy the conclusion. We conclude z+y < 2?" and z > ¢ which imply a+2z > 3?“
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PROBLEM 9. Let ABCDE be a cyclic pentagon inscribed in a circle of center
O which has angles /B = 120°, £C = 120°, /D = 130°, Z/E = 100°. Show that
the diagonals BD and CE meet at a point belonging to the diameter AO.

SoLuTION. We shall use complex numbers. By standard computations, we
find that, on the circumscribed circle, the sides of the pentagon are supported by

. the following arcs: arcAB = 80°, arcBC = 40°, arcCD = 80°, arcDE = 20° and

arcEA = 140°. It is then natural to consider all these measures as multiples of 20°
which corresponds to the 18*"-primitive root of unity, say w = cos %—’8'- +isin %’-. We
thus asign, to each vertex, starting from A = 1 the corresponding root of unity:
B=uw! C=wb, D=w® E=uw' Weshall use the following properties of w:
Ww=10=-1,0" =w®¥*and w® - wd+1=0.
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6 B=(J.)4

A=

We need to prove that the affix of the common point of the lines BD and
CE is a real number.
The equation of the line BD is

z i4 1
1) W@ 1]=0,
w0 10 1
and the equation of the line CE is
z z 1
(2) W@ 1f=0.
wll u—)ll 1

The equation (1) can be written as follows:
2w — w?) — Z(w? - W) + (W2 - W) =0,

or
268(wW8 = 1) + 2wt (W - 1) +wf(Wf ~1) =0.

Using the properties of w we derive the simplified version of (1):

(1" 2wt +z2+w? =0.

In the same way, equation (2) becomes

2 w+z-wd(wt-1)=0.

From (1') and (2') we obtain the following expression for z
Wt —w? - twi-w w-1

z= = =-1+ .
wi—w wb wb

To prove that z is real, it will suffice to prove that it coincides with its conjugate.

It is easy to see that _
w=—1 -1

wd @

is equivalent to 4 s 4 5
@ -@° =w' -w’,

that is w!? — w!3 = w? — w5, which is true due to the relations verified by w.
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PROBLEM 10. Let n > 4 be an integer and a1,as,...,a, be positive real
numbers such that af + af + -+ + a% = 1. Show that the following inequality
holds:

a as an 4 2
> = .
prang] + P +oee 4 a1 5(a1\/51 +a2vay + - + anv/ay,)

SOLUTION. By the Cauchy-Schwarz inequality, we get

2 2
ay Q.
(V&) + - + (Van)?) ((_\/Il) o (\/;n> ) 2 (a1 +as+-- +an)?,
for any positive z1,zs,...,z,, that is
2 2 2 2
U, %, 0y @tatta)

T T Tn~ Ti+To4eodan
When applying this inequality to the left member of the given inequality, one gets
a ap an a? a3 2

Qa;
drit@ert ot

o = ek z
@i +1  aldd+a? " aZal+al a2a? + a2
>(a1\/¢ﬁ+az\/a_2+~~~+an an)?

afe] +ajai + - +ala} +1

Therefore, it will suffice to prove the following inequality

1
aia} +aja +-- +ahal < 7,
wheren >4 and @ + a? +--- +a2 = 1.
This inequality is general: if n > 4 and positive numbers T1,%3,...T, are
given, such that z; + 2 + -+ 4+ 2, = 1, then

1
T1Z2 + ZToT3 + -+ Tpxy < 1

If n is even, the proof is immediate, as
1
T1Z + T3 + - + Tn@1 (T + T3+ ) (T2 + T4+ 0 T) € e
since the product of two positive numbers of sum 1 has 1 as its maximum.
If n is odd, n > 5, we may consider ; > x,, and because
T1Z2 + TaT3 + T3T4 < T1(T2 + T3) + (T2 + T3) 24,

we may replace the numbers z1,zs,...,7, by the n — 1 numbers T1,Ty + T3,
Z4,...,%n. The left ' member of the given inequality increases, the sum remains
one, and we have an even set of numbers, so the preceeding argument can be
applied.

PROBLEM 11. Let n be a positive integer and S be the set of all positive
integers a such that 1 < a < n and a®! — 1 is divisible by n. Show that if
S = {n — 1}, then n is twice a prime number.

SOLUTION. We prove first that n is square-free. Assume that n = q°r, where
q is a prime divisor of n, b > 2 and r is a positive integer coprime to q Ifr>2
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the number a = ¢(¢®)r + 1 = (¢* — ¢®~!)r + 1 has the property a = 1 mod r,
implying that a®~! = 1 modulo 7. When b > 2, then ¢ is a divisor of ¢(q"), and
hence g.c.d(q,a) = 1. By Euler’s theorem, we obtain a#@") = 1(mod¢?), and
therefore a®~! = a“’f"b)’ = 1(mod¢®). By the Chinese remainders theorem, we
obtain a1 = 1(modn), and since ¢(¢®)r + 1 < ¢*r, we obtain 1 < ¢*~1r. That
is a contradiction.

‘We may thus assume that n = 2¢r, where ¢ > 2 is a prime number and r > 2
is an odd number, relatively prime to ¢. In the case g is not divisible by r — 1, it
follows that the number a = (¢—1)r+1 satisfies a = 1(mod 2r) and g.c.q.(a,q) = 1.
By Fermat’s theorem, we obtain a?~! = 1(mod ¢) and a®~! = 1(mod ¢). We thus
get a solution of the congruence a®~! = 1(modn) with 1 < a < n.

The last case is when n = 2pgr, where p, ¢ are distinct odd primes, r > 1,
p|(gr — 1) and g|(pr — 1). We show that the number a = (p — 1)(¢ — 1)r + 1 has
the properties in the hypothesis of the problem. Indeed, as p is not a divisor of
(g—1)r—1nor ¢ is a divisor of (p—1)r—1, a is relatively prime to pg. By Fermat’s
theorem and the Chinese remainders theorem, we get as in the first part that a
satisfies: a®~! = 1(modn) and 1 < a < n.

It remains only the possibility n = 2p, with p prime.

PROBLEM 12. Let f : Z — {1,2,...,n} be a function that satisfies the
condition
o f(z) # f(y), for all z,y € Z such that |z —y| € {2,3,5}. Show that n > 4.

SoLuTION. We shall identify a function f : Z — {1,2,...,n} with a bi-
infinite sequence (z)rez, where z € {1,2,...,n}. We have to prove that if such
a sequence has the property that it does not contain the same values at distance
2,3 or 5 apart, then n > 4.

It is clear that such a sequence does not exist if n = 1. For n = 2 it is clear
that any block of five consecutive terms contains two having the same value at
distance 2 or 3.

For n = 3 take a minimal block of s > 2 consecutive terms such that the
first and the last term are equal and all terms inside the block are different from
those at the extremities. It is clear that s < 7. For if not, the block obtained by
removing the extremities is formed only by two values, and thus discussed in the
preceeding case. For s = 6 we contradict the condition of distance 5. For s = 5 the
generic case is a, b, b, c,a followed by b or c. All possibilities give a contradiction.
For s < 5 the analysis is obvious.

The sequence of blocks ...1,2,3,4,1,2,3,4,1... satisfies the condition for
n=4.
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PROBLEM 13. Let (an)n31 be a sequence of positive integers defined as
follows:
ea; >0,a; >0
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® 4,11 is the least prime divisor of an_; + an, for all n > 2.

Show that a real number z whose decimals are the digits of the numbers
@1,Q,...,0n,... Written in that order, is a rational number (digits are considered
in the decimal representation).

SOLUTION. It is easy to see that there is a 2 among the first five members
of the sequence. This can be shown by considering the parity of the members.

Ifa; =ai41 =2,thena; =2foralln > 1.

If one obtains one of the pairs 2,3 or 3,2, then the sequence is periodic; for
example

2,3,5,2,7,3,2,5,7,2,3,...

Let us assume a; = 2 and a@i41 is an odd prime. Then we have either
aiy1 = 1(mod6) or a;;1 = —1(mod6). The pairing 2,6k + 1 gives rise to the
sequence

2,6k+1,3,2,...

and one obtains a periodic sequence.
We have to check only the pairing a; = 2, a;41 = 6k — 1. Then a;4,|6k + 1.
If a;42 = 1(mod 6) we obtain the sequence
2,6k—1,60+1,2,3,...
which becames periodic.
Assume that a;42 = —1(mod6). Since a;tp = 61 — 1, the inequalities

6k +1
2

6l-1< <6k—1,

imply ! < k and a4 < ai41. Moreover, a;;3 = 2.

When assuming that a;;4 = —1(mod 6), one obtains a;+4 < a1 < Qig1.

Repeating the above procedure, with the assumption that all odd primes
from the sequence are congruent to ~1 modulo 6, we obtain a decreasing sequence
of prime numbers. It cannot be infinite, thus there exists an i such that a; = 2
and a;4; = 6k + 1.

In conclusion, all possibilities give rise to a sequence a;,as, ..., Qn,..., that
becomes periodic. Thus z is a rational number.

PROBLEM 14. Find the least positive real number r with the property:

o whatever four disks are considered, each with center in the edges of a unit
square and the sum of their radii equals r, there exists an equilateral triangle
which has its edges in three of these disks.

SoLUTION. Let us denote by D(4,z) the disk of center A and radius z, the
border included. We shall use the following lemma.
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LEMMA. Let D; = D(01,71) and Dy = D(0Oa,73) be two disks and O3 be
the third vertex of the equilateral triangle 010,0;. Let ABC be an equilateral
triangle with variable vertices B, C, in the disks D;, D respectively. Then, the
locus of the vertex 4 is the disk D3(Os, 1 +72), and also its reflection with respect
to the line 0, 0.

PROOF OF THE LEMMA. The vertices of the equilateral triangles O; CA when
C € D, can be obtained by rotating the disk D, about O, with an angle of £60°.
When B; is arbitrary, one may add a translaton with vector of length at most r;.
Since the triangles are equilateral, it is clear that any point Ds is obtained in this
way.

For the solution of the problem, let A; A; A3 A4 be the unit square and D; =
D(Ai,7i), i = 1,2,3,4, be the disks and 7 = 3" r;. We may assume without loss
of generality that 7y +ry + 73 > %r, this being the best evaluation for a minimal
sum of three radii.

Consider the disk D(A,7; +73), by using the disks D;, D3 (see figure). It
intersects D if and only if

V3 V2
Z\/i-T—?.

T1+T2+ T2

‘We conclude that the minimal required value is 7 = AVE-v)

3
It can be seen that the same value is obtained when two consecutive vertices
are considered.

PROBLEM 15. After elections, every parliament member (PM), has his own
absolute rating. When the parliament set up, he enters in a group and gets a
relative rating. The relative rating is the ratio of its own absolute rating to the
sum of all absolute ratings of the PM’s in the group. A PM can move from a
group to another only if in his new group his relative rating is greater. In a given
day, only one PM can change the group. Show that only a finite number of group
moves is possible (Remark: a rating is a positive real number).
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SOLUTION. Suppose that an arbitrary MP has rating R. When he enters a

- N . _ R T )
group, say group Gj, he carries the relative rating r; = g, where S; MPEEG‘_ R

When he moves from the group G; to the group G, the given condition translates
into the inequality R . R
Si Sj +R’
1t is obviously equivalent to R+ S; — S; <0. )
After moving from G; to G, one has new sums of absolute ratings:
S£=Si—R, S}=5j+R.

The idea is to associate to the Parliament a daily invariant:
L=3s%
i

the sum being considered after all groups G;. When a MP moves from a group to
another, the invariant L changes value to a new one
L'=Y" Se+(Si—R)*+(S; + R
ktij
It is easy to see that
L'—L=(S;—R)*+(S; + R)> = S} - S} =2R(R+ S; — i) < 0.
Therefore L' < L. Since there are only finitely many possibilities to arrange the

PM’s in groups, the invariant L can take only a finite number of values. Thus it
cannot decrease indefinitely.

Fifth IMO selection examination

PROBLEM 16. Let m,n be positive integers of distinct parities and such that
m < n < 5m. Show that there exist a partition with two elem.ent subsets of the
set {1,2,3,...,4mn} such that the sum of numbers in each set is a perfect square.

SoLUTION. We look for a,b, a < b, such that

(1) (2a + 1) +4mn = (2b+ 1)%, and

(2) (2a+1)? < 4mn. ) .

We group consecutive numbers 1,2,...,4mn, in the following way

1,2,...,2a+1)% - 2,(2a + 1)2 = 1,(2a +1)?,(2a + 1)%,...,4mn — 1,4mn..
S— — S—

By (1), we have mn = (b—a)(b+a+1). Since m <n, put m =b—a,n =b+a+1,
and obtain a-m-1 b_m+"—1
a= 2 , b= 5 .
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They are positive integers. As for (2), since 2a+1 = n—m, we get (m-n)? < 4mrz.
The former inequality is equivalent to m? — 6mn +n? <0 or < 3+ 2/2. This
is true because m < 5n.

PROBLEM 17. let ABC be a triangle such that AC # BC, AB < AC a.nd
let K be its circumcircle. The tangent line to K at the point A intersects the line
BC in the point D. Let K; be the circle tangent to K and to the segments (AD),
(BD). We denote by M the point where K; touches (BD). Show that AC = MC
if and only if AM is the bisector line of the angle ZDAB.

SOLUTION. Let N be the tangent point of K; and AD and J be the centgr
of the excribed circle which is tangent to the side AB. For convenience, we will
denote by A4, B,C the measures of the angles of the triangle ABC, respectively.
Then LJAC = 90° + }A, /BAD = C and LADC = B — C. 1t follows that

(DMN = L(180° - B +c).

We shall use the following preliminary result.

LEMMA. The points J, M, N are colinear. E

PROOF. Let L be the intersection point of the lines M N and AC. By Casey’s
theorem, we have aNA + bM B = cMC, and also
(1) aAIZ_é' + bﬁ—g =
By Menelaos theorem applied to the line ML and triangle ADC, we have

C.

and then £4 = #4. From (1) and the last relation, weobtain

It follows that M N passes through the center of K.
From the lemma and the formula for ZDMN we get:

1
2) ZJMC=B+§A.

FIFTH SELECTION EXAMINATION — SOLUTIONS 75

Let us assume AC = MC; thus we have ZAMC = /M AC and CJ is the perpen-
dicular bisector of the segment AM. The triangles JAC and JM C are congruent
and then ZJAC = £JMC. Since /JAC = 90° + %A, taking into account also (2),
we get 90°+ 14 =B ¢ 1A, that is B = 90°,

Hence ZCAD = 90° too. Since B = LCAD, we have

LAMC + LMAB = /IMAC + LMAD,

and thus ZMAD = /M AB. So, AM is the bisector line of LDAB.

Let us assume that ZMAB = /MAD. Let P be the intersection point of
AD and K. Because /ZMAB = /M AD, it follows that the arcs AP and BP on
the circle K are equal, AP is the bisector of ZACD and AP passes through J.
Moreover PA = PB.

Again for angles ZJBP = /JBA — LPBA and

®) tBp=232 24

In the triangle JBC, /BJB = 180° — 3C-B-44C - 3A. From this estimation
and (3) one gets PJ = PB. Moreover /JMP = B+i4-B+ 3Cand ZJMP =
5—;2‘ In the triangle JM C we have /M JC = 180° — % —-B— %, that is ZMJC =
5—"2“2. Hence PJ = PM. Since we have also PA = PB = PM it follows that

in AAMC the segment CP is median and bisector of the angle C. One obtains
AC = MC.

PROBLEM 18. There are n players, n > 2, which are playing a card game
with np cards in p rounds. The cards are coloured in n colours and each colour is
labeled with numbers 1,2,...,p. The game submits to the following rules:

e each player receives p cards.
the player who begins the first round throws a card and each player have to
discard a card of the same colour, if he has one; otherways they can give an
arbitrary card.
the winner of the round is the player wo has put the greatest card of the
same colour as the first one.
the winner of the round starts the next round with a card that he selects
and the play continues with the same rules.
the played cards are out of the game.
Show that if all cards labelled with number 1 are winners, then P2 2n.

SOLUTION. Let t1,82,...,tn be the number of rounds in which the cards
labeled by 1 win the round. We may assume that these labeled 1 cards have
succesively the colours C1,C2,...,Cn and players Jy, J, ... ,Jn have played them.
The solution is described in the following steps.

Step 1. In the round t, all cards of colour ¢; which are still unused, belong
to the player J; (since the others don’t have this colour).

Step 2. In the round ¢,, any colour belongs to at most one player (use step 1).

Step 3. The players Jy, Js, ... »Jn are distinct. It follows from step 2 and the
equal numbers of players and colours.

Step 4. We have t; > 2. If assuming the contrary, in the first round the card
labeled 1 of colour ¢; is winning and J; has all cards of colour ¢;. It follows that
J1 wins the temaning rounds by using only cards of colour c.
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Step 5. t ti + Y i wi d J; by playing card 1 of

D i+ .+ 2. The player J; wins the round J; : f

colour ¢; It.foilolwf t}:at the card labeled 1 of colour c;+1 belongs to a player Jit1
2

i i istinct from Ji. :
WthhF{rsoiis:;z;s 4(:md 5 it follows that p > tn > 2n. The player Ji41 should play

an intermediate round between rounds t; and ti41-
First JBMO selection examination

ProBLEM 1. For any positive integer 7, let
4n + m
1) = T van -1
Compute the sum f(1) + f(2) +--- + £(40). o o
SoLuTION. Let a = v2n+1and b= 2n —1. Then a® +b* = 4n, ab =
4n2 — 1 and a? — b = 2. Hence

@ tirab o B 1 /riiy - /@ -))

f) = a+b a?-b 2

and thus

f(1)+f(2‘)++~~-+f(40)=%(‘/3_3"‘/1—3+‘/5§-\/§§+”'+\/§T_ﬁ9—3)

1
- L WEE VD) = %(93 ~1)= 5729 - 1) = 364
2 .
PROBLEM 2. Let k,n,p be positive integers such that p is a prime number,

k < 1000 and V& = ny/p- o
a) Prove that if the equation vk + 100z = (n+ 7)/P has a non-zero integer
i i ivisor of 10. )

Somtmb!)l,Fti}xlle;tI})x;s n?u?lll‘)ltlesroof all non-negative solutions of the above equation.

members of the equation we get k + 100z =

SoLuioN. 2) By squaring the ). The conclusion follows from the fact that

n2p+ 2nap + z°p, or 100 = p(2np + 2
is a prime number.

i lf)lfp:Z, then 50 = 2n+z and 0 < n <

d we have 23 solutions. ) ek

fOllOWISfthaitg fhii ;8 =w2n +z and 0 < n < 10. Notice that n? = =% < 2(1)10

. < 1,0 therefore we have other 11 solutions. We have 34 solutions in all.

for any n < ! :
PrOBLEM 3. Considet alxn rectangle and some tiles of size 1 x 1 of four

different colours. The rectangle is tiled in such a way that no two neighboring

i lour.
square tiles have the same colour cal tilings
i mber of distinct symmetric gs- )
z)) Fl;‘llrxlsi t:.l}?enxl:umber of tilings such that any consecutive square tiles have

distinct colours.

25. Since n? = & = § <500, it
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SOLUTION. a) If n = 2k, there are no such symmetrical tilings (otherwise
the k and k + 1 tiles must have the same colour).

If n = 2k + 1, the problem is to count the possible tilings for k + 1 squares.
There are 4+ 3 - 3---3 = 4 - 3* such tilings.
N——

b) There are4-3-2-2---2=4-3-2"2 tilings.
——
PRrROBLEM 4. Let ABCD be a parallelogram of center O. Points M and N

are the midpoints of BO and CD, respectively. Prove that if the triangles ABC
and AMN are similar, then ABCD is a square.

SoLuTION. From the similarity of the triangles AM N and ABC, we obtain

AM AN

@ A5 - ac

and

) LMAN = [BAC or [BAM = /CAN.

The relations (1) and (2) imply the similarity of the triangles BAM and CAN.
Hence, we obtain the proportions:
®) AN _AB _BM
AN~ AC T CN
and LABM = LACN. The last equality implyies that ABCD is a rectangle.
To conclude the proof, notice that BM = 1BD = 1AC and CN = 14B.
Hence the last equality in (3) becomes 42 = AC that is 24B2 = AC? =

ac =
AB? + BC?, which proves that ABCD is a square.

Second JBMO selection examination

PROBLEM 5. A square of side 1 is decomposed into 9 equal squares of sides
% and the one in the center is painted black. The remaining eight squares are
analogously divided into nine squares each, and squares in the centres are painted
in black.

Prove that after 1000 steps the total area of the black region exceeds 0.999.

SOLUTION. The first step give rise to one black square of area (%)2 =L
After the second step we obtain eight more squares of side L, the black region
increasing thus by 9—85. In the same manner, the third step increases the black area
by 8% = 64 black squares, each of area 21—7, that is at this stage the black area
becomes
82

18,8
9 92 93’
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We conclude that after 1000 steps, the area of the black region is

1,8 8 899 1 8 (8\? 8%
§+¥+§§+"'+W=§ 1+§+(§) ++(§)

=1.1_-_(§£"_°f=1_(§)‘°°°,

9 T 1-8¢ 9

It is left to prove that the last number is greater than 0.001. This easy follows by
using a binomial expansion evaluation, that is

9100 1\ 71000\ 1 _ 1000-999
(g) —(“g) >( 2 )‘8—2—764—“000’

the proof being complete.
PROBLEM 6. Find all positive integers a, b, c,d such that
a+b+c+d-3=ab+cd
SoLUTION. We have ab+cd =2(a+b+c+d) —6 or
(@=2)(b—2)+(c—-2)(d-2)=2.

Assuming that a is the smallest number among a,b,c,d, we get -1 < a—2< 1.
Ifa—2=1thenb—-2=c-2=d-2=1landa=b=c=d=3.
Ifa—2=0,thenc-2=1landd-2=2(orc—2=2andd-2=1). It

follows that ¢-d = 12,a = 2, that is b = 6.
Ifa—2=-1,thena=1landb+c+d—-2=">=cd Hencec+d =2,

implyingc=d=1and b=1.

We conclude that the solutions are (a,b,c,d) = (3,3,3,3);(1,1,1,1);
(2,6,3,4);(6,2,3,4);(2,6,4,3); (6,2,4,3); (3,4,2,6); (3,4,6,2); (4,3,2,6);
(4,3,6,2).

PROBLEM 7. Let ABC be an isosceles triangle such that AB = AC and

LA =20°. Let M be the foot of the altitude from C and let N be a point on the
side AC such that CN = }BC.

SoLUTION. Let P the midpoint of BC. Since M P is a median in the right-
angled triangle M BC, it follows that PB = MP = PC =CN.
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The point R is considered such that PCNR is a parallelogram (in fact a
rhombus). Notice that

LRPM = /RPB - /MPB = LACB — (180° — 2/M BC) = 60°,

and RP = M P, that is M PR is an equilateral triangle. Hence MR = RP = RN
and ZMRN = /MRP + /PRN = 60° + 80° = 140°. Then ZRMN = /RNM =
20°, LZANM = 20° + 80° = 100° and the required angle ZAMN equals 60°.

PROBLEM 8. Let ABCD be a unit square. For any interior points M and
N such that the line M N does not contain any vertex of the square, denote by
s(M, N) the least area of a triangle having vertices in the set {4, B,C, D, M,N}.

SoLUTION. This is the same problem as Problem 5 for the IMO selection.

Third JBMO selection examination

PROBLEM 9. Let n be an even positive integer and let a, b be two relatively
prime positive integers.
Find a and b such that a + b is a divisor of a™ + b™.

SOLUTION. Asn is even, we have
a" =" = (a® = b)(@"% — a0 4 -+ b72),
Since a + b is a divisor of a? — b?, it follows that a + b is a divisor of a® — b™. In
turn, a + b divides 2a” = (a” + b") + (a™ — b"), and 2b™ = (a” + b") — (a™ — b™).

But a and b are coprime numbers, and so g.c.d.(2a”,2b") = 2. Therefore a + b is
a divisor of 2, hence a = b= 1.

PrOBLEM 10. The diagonals AC and BD of a convex quadrilateral ABCD
meet at O. Let m be the measure of the acute angle formed by these diago-
nals. A variable angle Oy of measure m intersects the quadrilateral by a convex
quadrilateral of constant area.

Prove that ABCD is a square.

SoLuTiOoN. Consider ZAOD = m < 90°. As the angles ZA0OD and Z/BOC
equal m, we find area(AOD) =area(BOC). 1t follows

%AO -DO -sinm = %BO -COsinm,

that is 43 = 29. Since LAOB = £DOC, the triangles AOB and DOC are
similar and AB is parallel to DC.
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A,"Hiirs
K
m
D F o

Draw line EF that contains O,such that ZAOE = /COF = m and E €
(AB), F € (DC). The triangles AOE and COF are similar and have the same
area, that is they are congruent. It follows that AO = OC and in the same way
BO = OD. In conclusion AD || BC. Moreover area(COF) =area(BOC), and
since ABCD is a parallelogram, we find area(BOC) =area(DOC). Hence D = F
and m = LCOF = (DOF = (BOC = 90°. We thus proved that ABCD is a
rhombus.

To conclude, consider the bisector lines OM and ON of angles ZAOD
and /DOC respectively, where M € (AD),N € (DC). It is easy to check
that ZMON = m = 90°, whence area(MON) =area(AOD). Thus area(DON)
=area(AOM), that is area(AOM) =area(DOM) = }area(AOD). It follows that
OM is a median in the triangle AOD, that is AO = OD, which proves that the
rhombus ABCD is a square.

PROBLEM 11. A given equilateral triangle of side 10 is divided into 100
equilateral triangles of side 1 by drawing parallel lines to the sides of the original
triangle.

Find the number of equilateral triangles, having vertices in the intersection
points of parallel lines whose sides lie on the parallel lines.

SOLUTION Let us consider the general case, that is to consider the number a,,
of equilateral triangles formed by division in n segments. We shall find a recurence
relation.

Consider an equilateral triangle with sides partitioned into n + 1 equal seg-
ments and draw the n parallels to each side of the given triangle. We will count all
triangles with at least one vertex on BC}; the remaining ones are triangles counted
in a,.

Consider first the triangles that have two vertices on BC. When choosing two
division points on BC, one counts exactly one triangle, namely that one obtained
by drawing parallels from M;, N; to AB, AC respectively. Hence we add 3"—*'2)5(”—*'12
new triangles.

Considering triangles with only one vertex on BC, observe that for any point
of division, inside the side BC, we count one triangle of side 1, one triangle of side
2, and so on. Hence we add n + (n — 2) 4 (n — 4) + - - - triangles with one side on
BC. Tt follows that we have

(n+2)(n+1)

2 +n+n—=-2)+(Mn—4)+---.

Qnt1 = Qn +
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Changing n with n + 1, we get

@i3¥259+m+1nwn—1w4n—m=-m

Gny2 = Qn41 +
Adding up, we obtain

+ (n+2)(n+1) . (n+3)(n+2) . (n+1)(n+2)

nt2 = @n 2 2 2
(n+2)(3n +5)
=a, + ——=.
5
It follows that
aio =(ls+1—0(—3.28—.’.52 =ag+ 145 =ag +237=--- = ap + 315 = 315.

Therefore, the number of triangles is 315.

PROBLEM 12. Prove that for any real numbers a, b, ¢ such that 0 < a,b,¢ <
1, the following inequality holds

Vabe+ /(I -a)1-b1—0) < 1.

SOLUTION. Observe first that /z < ¢/z for z € [0, 1]. Thus, we have Vabc <
Vabc and

VI-9(1-0{I-¢ < V1-a)1-b)(1~0).
By the AM-GM inequality, we get

Vabe < Vabe < E?—E,
and
VIS -Da-9< YT-al-Di-0 <
S'umming up, we obtain
@+m:—(:—)<a+l—a+b+;—b+c+l—c:1’
as desired.

1-a)+(1=-b)+(1-¢)
3 .

Fourth JBMO selection examination

PROBLEM 13. Let a be an integer. Prove that for any real number z, z° < 3,
both the numbers v/3 — z2 and V/a — z3 cannot be rational.

SOLUTION. Suppose, by way of contradiction, that v = v/3—z2 and v =
¥/a — 23 are rational numbers. It follows that 22 = 3 — u? and 23 = a — 3, that
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is a —v® = £(3 — u?)v/3 — u2. It follows that v/3 — u2 = ¢ has to be rational, and
3 = u? + ¢, both u and ¢ being rationals.

Let m,n, p be integers with g.c.d.(m,n,p) = 1, such that u = % and v =2,
Then 3p? = m? +n2, that is 3 is a divisor of m? +n?. It is easy to see that 3 has
to be a divisor of both m and n. Furthermore 9 is a divisor of 3p?, implying that
3 divides p. Since g.c.d.(m,n,p) =1 we get a contradiction.

PROBLEM 14. The last four digits of a perfect square are equal. Prove that
all of them are zeros.

SoLuTION. Denote by n? the perfect square and by a the digit that appears
in the last four positions. It easily follows that a is one of the numbers 0,1,4,5,6
or 9. It follows n? = a - 1111(mod 10*) and consequently n? = a - 1111(mod 16).

When a = 0 we are done. Suppose that a is 1,5 or 9. Since n2 =0 or 1 or 4
(mod 8) and 1111 = 7(mod 8), we obtain 1-1111 = 7(mod8), 5- 1111 = 3(mod 8)
and 9-1111 = 7(mod 8). Thus the congruence n> = a-1111(mod 16) cannot hold.

Suppose a is 4 or 6. As 1111 = 7(mod 16), 4 - 1111 = 12 (mod 16) and
6-1111 = 10 (mod 16). We conclude that in this case the congruence n? =
a - 1111(mod 16) cannot hold, also.

PROBLEM 15. Let C1(0;1) and C>(02) be two circles such that C; passes
through O,. Point M lies on C; such that M ¢ O;0,. The tangents from M at
C3 meet again C; at A and B.

Prove that the tangents from A and B at C5 — others than M A and MB —
meet at a point located on Cj.

SOLUTION. Since O; is at equal distances from the tangents M A and M B,
it follows that MO is a bisector line of the angle ZAM B or of the exterior angle
defined by M A and M B.

In the first case we find arcO,A =arcO;B. In the second case, using the
notations in the figure, we have arcBO, =arcMs+arcAM =arcAO, and O3B =
02A.

Reflecting the figure with respect to the line O;0,, the circles C; and C»
remain fixed, A reflects in B and M reflects in N. It is obvious that N A, the
reflected of M B is tangent to C> and the same is valid for NB. Observe that N
is on C}, proving thus the claim.
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PROBLEM 16. Five points are given in the plane that each of 10 triangles

they define has area greater than 2. Prove that there exists a triangle of area
greater than 3.

SOLl:JTION. Denote by A, B,C, D, E the five given points. If the pentagon
ABCPE 1s concave, we can suppose that D is situated inside the triangle ABC
or inside the quadrilateral ABCD (see figure).

In first case area(ABC) :area(ABD)+area(DBC)+area(DAC) >6> 3.
In the second case, D is inside the one of triangles BCE, ACE, ABC or

%?D. Suppose, without loss of generality, that D is inside to the triangle BCE
en '

area(BCE) > area(BDC) + area(CDE) > 4> 3.

) Considgr now the case when ABCD is a convex pentagon. Let M and N be
the intersection points of BE with AC and AD respectively.

A

c D

The following result will be useful.
LEMMA. Let PQRS be a quadrilateral and T a point on the side PQ. Then
area(T'RSR) > min(area(PSR), area(QSR)).
The proof consists of simply observing that the distance from T i
to SR
bounded up and below by the distances from P and Q to SR. ° ®
In our case, suppose that BM > %BE, which yields BM > %MEA Then
area(BDE) = area(BDM) + area(MDE) > %area(MDE) + area(M DE)
3 3
= Earea(MDE) > Emin(area(CDE),a.rea(ADE)) > g -2=23.

The case when NE > %BE is similar. It is left to consider the case when MN >
$BE. We then have: ”

area(AMN) > area(ABE) > ;,

area(MND) >

W= W

area(BED) > ;
and
area(MCD) > min(area(BCD), area(ECD)) > 2.
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Summing up, we conclude

2 2
area(ACD) > 2+ 3 + 3 >3,

and the proof is complete.

Fifth JBMO selection examination

PROBLEM 17. Let m,n > 1 be integer numbers. Solve in positive integers
g +y" =2"

SoLuTIoN. Let d = g.c.d.(z,y) and z = da, y = db, where (a,b) =1. Itis
easy to see that a and b are both odd numbers and a”+b" = 2* for some integer k.

Suppose that n is even. As a? = b? =1 modulo 8 we have also a"=b"=1
modulo 8. As 2¢ = a® + b" = 2(mod8), we conclude k = 1 and a = b = 1, thus
r=y=d.

The equation becomes £ = 2™~1. It has an integer solution if and only if n
isadivisorofm-landa::y:Zﬂn_—!.

Consider the case when n is odd. From the decomposition a™ + b" = (a+
b)(a™! — @™ 2+ -+ + b"71), we easily get a +b = 2k = g™ + b". In this case
a=b=1, and the proof goes on the lines of the previous case. .

To conclude, the given equation has solutions if and only if ”‘T‘l is an integer
and in that case z =y = 2P.

PROBLEM 18. We are given n circles which have the same center. Two
lines Dy, D, are concurent in P, a point inside all circles. The rays determined
by P on the line D; meet the circles in points A, As, ..., An and A}, Ah,..., A}
respectively and the rays on Dy meet the circles at points By, Ba,...,Bn and

' B...,B! (points with the same indices lie on the same circle).

Prove that if the arcs A; By and A»Bj are equal then the arcs A;B; and A}B;

are equal, for all i = 1,2,...n.

SoLUTION. Let O be the common center of the n circles and o = arcA1 B, =
arcA» B, (the considered arcs are oriented). Rotate the figure about center O by
angle a such that A, Ay become By, By respectively. The above rotation R maps
lines into lines, that is R(D;) = D, since D, = A1 A, and Dy = By B,. Moreover,
a point M of a circle Cj, with center 0, remains on the same circle after rotation.
Because R(4;) lies on D; and on C;, we get that R(A;) = B, that is arc4;B; = a.
In the same way we get R(A}) = Bj and arcA}B} = a. This concludes the proof.

PROBLEM 19. Let ABC be a triangle and a = BC, b= CA and ¢ = AB be
the lengths of its sides. Points D and E lie in the same halfplane determined by
BC as A. Suppose that DB = ¢, CE = b and that the area of DECB is maximal.
Let F be the midpoint of DE and let FB = z.

Prove that FC = z and 4a3 = (a? +b* + ¢%)z + abe.
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SoLuTION. Let DECB be the quadrilateral of i i
prove that ZDBE = /DCE = 90°. SIS ey te

It follows FB = FC = BE = z and that th i i i
5 e quadrilateral DBCE .

B}; Ptolemey’s theorem we have DC - BE = BC - DE + DB - CE. Squ:i:g(:lvl\fe

gel ,

(422 — b?)(42? - ) = (2az + be)?,
that is
4zt — (0% + ¢?)z? + b%c? = 4a%2? + dabez + b2C2.
From this we obtain 4z° = (a? + b% + ¢®)z + abc, as desired.
PRrOBLEM 20. Let p,q be two distinct primes. Prove that there are positive

integersba, b such that the arithmetic mean of all positive divisors of the number
n = p?q° is an integer.

SoLUTION. The sum of all divisors of n is given by the formula
+p+p+ o +p) g +a +---+ ),
as it can be easily seen by expanding the brackets. The numb
positive divisors and their arithmetic mean is ernhas e+ Do+ )
e QPP+ 4p) 14+ P+ 4 )
(a+1)(b+1) :

If p and ¢ are both odd numbers, we can take a = db= it i
see that m is an integer. ' G=pandh=ganditis caay to
If p = 2 and ¢ is odd, one can choose agai = i
I ¢ gain b = ¢ and consider a + 1 =
lg(-iq +---+¢%t. Thenm =1+2+2%+ .-+ 2% and it is an integer. For p
odd and ¢ = 2, we choose @ = p and b = p? + - - - + pP~!, concluding the proof.
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Part IV: SIXTH REGIONAL CONTEST
“ALEXANDRU PAPIU ILARIAN”
Téargu Mures, October 27, 2001

PROPOSED PROBLEMS
9" GRADE

PROBLEM 1. Find the least positive integer n such that 32°°! is a divisor of
(n+1)(n+2)---3n.
Ion Chescd

PROBLEM 2. Find the first 2001 digits of the number
VoIl 1.
2001 times
Dorin Popovici

PROBI:EM 3. Let A be a 2001 point set in the plane. Show that there exists
a circle which passes through exactly one point of A and contains 1000 points of
A in its interior.
Marian Andronache and Ion Savu
PROBLEM 4. Let G be the centroid of the triangle ABC. The line d through
G intersects the sides BC,CA, AB in the points A, By, Cy respectively. Let L be
an interior point of the triangle which is also contained in d. Show that
LA, | LB, | LC _ 3
AG BiG GG ’

Marian Dincad

10" GRADE

PROBLEM 1. Let a,b be real numbers such that a < b. Show that the
interval (a,b) contains infinitely many irrational numbers z such that z% is a
rational number.

Valentin Matrosenco and Marcel Chirita

PROBLEM 2. Show that for any distinct positive integers a;,az,...,an, the
following inequality holds:

2n+1
a+a}+-+ad> 3

(a1 + a2+ +an).

Laurentiu Panaitopol

12" GRADE 87

PROBLEM 3. We are given n+ 1 vectors in the plane which have the lengths
1,2,...,2" Show that the sum of any subset of these vectors is a vector of length
at least 1.

Barbu Berceanu

PROBLEM 4. We are given 2n distinct points in a plane. Show that there
exist n disjoint segments which connect n pairs of these points.

Mathematical Olympiad of Republic of Moldova

11** GRADE

PROBLEM 1. Show that no four points on the graph of a convex real function
are the vertices of a parallelogram.

Romeo Ilie

PROBLEM 2. Let a,as,...an,... be an arithmetic progression of positive
integers. Show that for any integer k, the sequence

i1 1
a’ay’ ey’
contains £ numbers in arithmetic progression.
Marian Andronache and Ion Savu
PROBLEM 3. Let ag,ai,...,a,, be real numbers such that the equation
ap+a1¢CoST + -+ apcosnz =0
has 2n + 1 distinct solutions in the interval [0, 27]. Show that

a=a; =---=a,=0.

Sorin Rédulescu and Ion Savu

PROBLEM 4. Let n > 4 be an integer number. We are given a pyramid

SA1As ... Ay, whose base is the convex polygon A; Az ... A,. A plane intersect

the edges SA1, SA4s, ..., SAn in the points By, Bs, ..., By, respectively. Show that

if the polygons A1 4> ... A, and By B; . .. B, are similar, then the planes containing
them, are parallel.

Laurentiu Panaitopol

12t GRADE

PROBLEM 1. a) Show that for any positive integer n, the following inequality
holds
1 1

1
T+5+-~-+;>ln(n+1).
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b) Let (zn)n>1 be a sequence of positive numbers such that

Ty H+TaH o+ T <1

. (1 1 1)
lim (—4+—+---+— | =o00.
Tn

n—o00 \ Ty T2

for all n > 1. Show that

Mihai Piticari
PROBLEM 2. Let f,g: R — R be real functions.

a) Show that if f, g have the intermediate value property, then so go f.
b) Show that if g has the intemediate value property and

1f(z) = f@) < lg(z) — 9(w)l;
for all real numbers z,y, then f has the intermediate value property as well.

Sorin Rédulescu and Marius Radulescu

PROBLEM 3. Show that any n x n real matrix can be written as a difference
of two real matrices of the same size and which have negative determinants.
George Stoianovici
PROBLEM 4. Let n be a positive integer. Show that there exists a matrix
with real entries n x n and such that all its square submatrices have positive
determinants.
" Ton Savu

SOLUTIONS

9" GRADE

PROBLEM 1. Find the least positive integer n such that 320°! is a divisor of
(n+1)(n+2)---3n.

SoLUTION. We look for the exponent of 3 in the prime decomposition of
the number a, = (n + 1)(n + 2)---(3n). An elementary remark gives us a, =
3".1.2-4.5-7-8--+(3n - 2)(3n — 1). Hence the exponent of 3 in a, is n. It
follows that the required number is 2001.

PROBLEM 2. Find the first 2001 digits of the number

V0. 11---1.

2001 times
Dorin Popovici

SoLUTION. Leta = 0.11...1 be the given number. We have 9a = 0.99...9 =
1 — sa30r < 1. For any positive real number z such that 0 < z < 1, one has
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z </ < 1. Then, 9a < v9a = 0.99...9.... We also have v9a = 3/a.
Therefore 1/a = 0.33...3.... The conclusion is: first 2001 decimals are 3’s.

PROBLEM 3. Let A be a 2001 point set in the plane. Show that there exists
a circle which passes through exactly one point of A and contains 1000 points of
A in its interior.

SOLUTION. Let A = {41, A2, ..., Aso1} be the point set. There are MQ
segments which have their edges in the set A. We have 2001:2000 hisector lines of
these segments. Take an arbitrary point O in the plane which is not on any of
these bisectors. The distances d; = OA; are all distinct and we may put them
on an increasing sequence. Consider a circle with center O and radius dygo;. It

satisfies the required conditions.

PROBLEM 4. Let G be the centroid of the triangle ABC. The line d through
G intersects the sides BC, CA, AB in the points A, B, C; respectively. Let L be
an interior point of the triangle which is also contained in d. Show that

LA | LB, LG _
AG " BIG ' GG T
SoLUTION. For any triangle XY Z of the plane, let us denote by Sxyz its

area and let S = Sypc. Consider the points Ly, Gy, the feet of the perpendiculars
from L and G respectively, on BC.

3.

Then

AL _ LL, SLBC

AG ~ GGi " Sgsc’

Because Sgpc = £, we obtain

AL 3SLBc
AHG TS
- BiL _ 3SLBc CiL _ 3Spam .
I 1 = - = — i
n a similar way B.G 5 and reXel Summing up and using

S = SpaB + Stec + SLca we get the result.



920 REGIONAL CONTEST: “ALEXANDRU PAPIU ILARIAN”

10** GRADE

PROBLEM 1. Let a,b be real numbers such that a < b. Show that the
interval (a,b) contains infinitely many irrational numbers z such that z® is a
rational number.

SOLUTION. If an integer number a has the form a = 4n + 2, then it is not a
perfect cube. It follows that for any integer m, the number z = j@ is irrational
and z? is rational.

It suffices to prove that for any ¢,d, ¢ < d, we can find infinitely many
integers m, n, such that

4 2
c< n-: <d,
m

which can be easily proved.

PROBLEM 2. Show that for any distinct positive integers a1, as, ..., an, the
following inequality holds:
2n+1
3 (a1 + a2+ +ap).
SoLUTION. We introduce the quadratic function f : R — R, f(z) = 2% —
2nkly. It is decreasing on the interval [0, 2n41) and increasing on the interval
(22, +00). We have

af+aj+--+al>

far) + f(az) +--- + f(an) 2 0.

It is easy to see that f(1) + f(2) +---+ f(n) = 0. For any z, £ > n + 1, one also
has f(z) > f(k) for k = 1,2,...,n. Therefore if we change the set {1,2,...,n}
with another set of distinct positice integers {a1,a2,...,an}, we have

n n
S fla) =Y f@) >0
i=1 i=1

This ends the proof.

PROBLEM 3. We are given n+ 1 vectors in the plane which have the lengths
1,2,...,2". Show that the sum of any subset of these vectors is a vcctor of length
at least 1.

. SoruTiON. Let {v;,,...,v;,} a subset of vectors of the given set. We may
assume that i; < --- < i,. Then :

|Uh + +Uik| 2 lvikl - |vi1 +"‘+'Uikq| 2 lvik[ - |ui\| - |Uik71|

> 2k —fk-1 .00 >

PROBLEM 4. We are given 2n distinct points in a plane. Show that there
exist n disjoint segments which connect n pairs of these points.

SOLUTION. there are n(2n—1) segments which connect pairs of given points.
There are ("(2:_”) possibilities to choose a familly of n segments from the set of
all segments. For each familly of n segments we compute the sum of their length

10*" GRADE 91

and choose a familly for which the sum is least. We will prove that this familly
satisfies the required condition.

If by contradiction, two segments, say AB and C'D have a common point
O, then AC + BD < AO + OC + DO + OB = AB + CD. Therefore, when
changing AB, C'D with AC and BD the sum of length decreases. This contradicts
the minimality.

11** GRADE

PROBLEM 1. Show that no four points on the graph of a convex real function
are the vertices of a parallelogram.

SOLUTION. Assume by contradiction, that there exist real numbers a < b <
¢ < d such that the points A(a, f(a)), B(b, f(b)),C(c, f(c)), D(d, f(d)) are the
vertices of a parallelogram.

We have a +d = b+ c and f(a) + f(d) = f(b) + f(c). Suppose a < b <
¢ < d. This implies the existence of A, € (0,1) such that b = Xa + (1 — A)d
and ¢ = pa + (1 — p)d. The convexity implies f(b) < Af(a) + (1 — ) f(d) and
£(0) < uf(@) + (1~ w)f(d). Summing up we get A+ = 1 and £(5) + 1(c) <
A+ p)f(a) + (2= X — p)f(d). This gives f(b) + f(c) < f(a) + f(d), which is a
contradiction.

PROBLEM 2. Let aj,as,...an,... be an arithmetic progression of positive in-
tegers. Show that for any integer k, there are k numbers in arithmetic progression,
in the sequence

11 1
e, e
a1’ ay an

SOLUTION. Suppose a, = a; + (n — 1)r, r > 0, gives the progression. For
p > 3, the number N = a;(1+7)(1 4+ 2r)--- (1 + (p — 1)r) is a member of the
progression, as being of the form a; + kr.

Remark that the numbers b; = —;-,bg = 1—;{,’—', s by = li(‘;’v;l)l, all belong to
the set ﬁ, and are in arithmetical progression.

PROBLEM 3. Let ag,a1,...,an, be real numbers such that the equation
ag+a;cosT+ -+ aycosne =0
has 2n + 1 distinct solutions in the interval [0, 27]. Show that
ap=a = =ap,=0.

SoLUTION. Consider the complex number z = cos z+isinz. We get cos kz =
%(z" + ;11;) The given equation transforms in a polynomial equation of degree 2n
with 2n + 1 distinct roots. The polynomial coefficient’s are thus all zero. This
imlply that all the a;’s are zero.

PROBLEM 4. Let n > 4 be an integer number. We are given a pyramid
SA; A, ... A,, whose base is the convex polygon A;A;...A,. A plane intersect
the edges SA;,SAs,...,SAy in the points By, Bs, ..., By, respectively. Show that
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if the polygons A1 A, ... An and B B, ... B,, are similar, then the planes containing
them, are parallel.
SOLUTION. Denote by Vx the volume of any solid X. We then have, by
elementary results
VsB,B.Bs _ SB;-SB;-SB; _ h
Vsa, 424, SAy - SAy - SA; H’
where ) is the ratio of similitude of the given polygons, k and H respectively, are

the altitudes of the two pyramids.
By similar calculations we finaly get that
SBy _SBy 8B,

54 54, T sAy
which implies that the two planes are parallel.

12 GRADE

PROBLEM 1. a) Show that for any positive integer n, the following inequality
holds —

1
T+§+W+E>ln(n+1)‘

b) Let (zn)n>1 be a sequence of positive numbers such that
@1+ T+ T <P

for all n > 1. Show that

. (1 1 1)
lim (—+4+—+4:--+ — ] =0c0.

n—oo \ I1 T2 Tn

SOLUTION. a) The proof is a standard use of Lagrange’s formula for the
function f(z) =Inz.

b) Consider y, = le +o-+ z—lﬂ It is an increasing sequence. It will suffice
to prove that the limit is not finite.

‘We have
n2
TR
Y2n = Yn 2 Tor1 -t T
by Cauchy-Schwarz inequality, and because

n? n? n?

> >
Tpg1+ -+ Ton ~ T AT+ +To, T 42

we get the result.

PROBLEM 2. Let f,g: R — R be real functions.
a) Show that if f,g have the intermediate value property, then so g o f.
b) Show that if g has the intemediate value property and

[7(2) = F W)l < lg(z) - 9(w)l,

10" GRADE 93

for all real numbers z,y, then f has the intermediate value property as well.

SOLUTION. a) It is a standard use of the definition.

b) Using the given condition, one can define a function & : Im(g) — Im(f)
by h(g(z)) = f(z). The function h is easily seen to be continuous by the given
condition. As Im(g) is an interval, the conclusion follows from a).

PROBLEM 3. Show that any n x n real matrix can be written as a difference
of two real matrices of the same size and which have negative determinants.

SoLuTION. Write given matrix as the difference of two triangular matrices
both having positive products of the elements on the main dyagonal.

PROBLEM 4. Let n be a positive integer. Show that there exists a matrix
with real entries of size n x n such that all its square submatrices have positive
determinants.

SOLUTION. We shall construct the matrix by induction. For n = 2 the
matrix 4 = (i ;) satisfies the condition.

Suppose A, was constructed for n, and consider the matrix A,,; of the
following form

1
7,
An z3
Appr = 2]
2 3 an
1 2% 2% 28 23

where z > 0 is large enough.
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