
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2009

• 5044: Proposed by Kenneth Korbin, New York, NY.

Let N be a positive integer and let{
x = 9N2 + 24N + 14 and
y = 9(N + 1)2 + 24(N + 1) + 14.

Express the value of y in terms of x, and express the value of x in terms of y.

• 5045: Proposed by Kenneth Korbin, New York, NY.

Given convex cyclic hexagon ABCDEF with sides

AB = BC = 85
CD = DE = 104, and
EF = FA = 140.

Find the area of 4BDF and the perimeter of 4ACE.

• 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N. Deshpande
of Nagpur, India.

Let 4n successive Lucas numbers Lk, Lk+1, · · · , Lk+4n−1 be arranged in a 2× 2n matrix
as shown below: 

1 2 3 4 · · · 2n

Lk Lk+3 Lk+4 Lk+7 · · · Lk+4n−1

Lk+1 Lk+2 Lk+5 Lk+6 · · · Lk+4n−2


Show that the sum of the elements of the first and second row denoted by R1 and R2

respectively can be expressed as

R1 = 2F2nL2n+k

R2 = F2nL2n+k+1

where {Ln, n ≥ 1} denotes the Lucas sequence with L1 = 1, L2 = 3 and Li+2 = Li + Li+1

for i ≥ 1 and {Fn, n ≥ 1} denotes the Fibonacci sequence,
F1 = 1, F2 = 1, Fn+2 = Fn + Fn+1.
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• 5047: Proposed by David C. Wilson, Winston-Salem, N.C.

Find a procedure for continuing the following pattern:

S(n, 0) =
n∑

k=0

(
n

k

)
= 2n

S(n, 1) =
n∑

k=0

(
n

k

)
k = 2n−1n

S(n, 2) =
n∑

k=0

(
n

k

)
k2 = 2n−2n(n + 1)

S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3n2(n + 3)

...

• 5048: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”
Rome, Italy.

Let a, b, c, be positive real numbers. Prove that

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥ 54

(a + b + c)2
(abc)3√

(ab)4 + (bc)4 + (ca)4
.

• 5049: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find a function f : < → < such that

2f(x) + f(−x) =
{
−x3 − 3, x ≤ 1,
3− 7x3, x > 1.

Solutions

• 5026: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P has coordinates (x, 3). Find the value of x if

area 4PAD + area 4PBC = area 4PAB + area 4PCD. (1)

Solution by Bruno Salgueiro Fanego, Viveiro, Spain.

(1) ⇔ 1
2

∣∣∣∣det

 x 3 1
−3 0 1
0 4 1

 ∣∣∣∣+ 1
2

∣∣∣∣det

 x 3 1
12 0 1
4 15 1

 ∣∣∣∣
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+
1
2

∣∣∣∣det

 x 3 1
−3 0 1
12 0 1

 ∣∣∣∣+ 1
2

∣∣∣∣det

x 3 1
4 15 1
0 4 1

 ∣∣∣∣
⇔ | − 4x− 3| + |156− 15x| = 45 + |11x + 4|. (2)

If x ≤ −3
4

, then (2) ⇔ −4x− 3− 15x + 156 = 45− 11x− 4 ⇔ x = 14, impossible.

If
−3
4

< x ≤ −4
11

, then (2) ⇔ 4x + 3− 15x + 156 = 45− 11x− 4 ⇔ x = 159 = 41,

impossible.

If
−4
11

< x ≤ 52
5

, then (2) ⇔ 4x + 3− 15x + 156 = 45 + 11x + 4 ⇔ x = 5.

If x >
52
5

, then (2) ⇔ 4x + 3 + 15x− 156 = 45 + 11x + 4 ⇔ x =
101
4

.

Thus, there are two possible values of x : x = 5 and
101
4

.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Mark Cassell
(student, St. George’s School), Spokane, WA; Grant Evans (student, St.
George’s School), Spokane, WA; John Hawkins and David Stone (jointly),
Statesboro, GA; Peter E. Liley, Lafayette, IN; Paul M. Harms, North
Newton, KS; Charles, McCracken, Dayton, OH; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA; Britton Stamper, (student, St. George’s
School), Spokane, WA; Vu Tran (student, Texas A&M University), College
Station, TX, and the proposer.

• 5027: Proposed by Kenneth Korbin, New York, NY.

Find the x and y intercepts of

y = x7 + x6 + x4 + x3 + 1.

Solution by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy.

The point (0, 1) is trivial. To find the x intercept we decompose
x7 + x6 + x4 + x3 + 1 = (x4 + x3 + x2 + x + 1)(x3 − x + 1) and the value we are looking
for is given by x3 − x + 1 = 0 since

x4 + x3 + x2 + x + 1 = (x2 − x
−1 +

√
5

2
+ 1)(x2 − x

−1−
√

5
2

+ 1) 6= 0.

Applying the formula for solving cubic equations, the only real root of x3 − x + 1 = 0 is(
−1

2
+
√

1
4
− 1

27

)1/3

+

(
−1

2
−
√

1
4
− 1

27

)1/3

=

(
−1

2
+
√

69
18

)1/3

+

(
−1

2
−
√

69
18

)1/3

whose approximate value is −1.3247 . . .

Also solved by Brian D. Beasley, Clinton, SC; Mark Cassell and Britton
Stamper (jointly, students at St. George’s School), Spokane, WA; Michael
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Fried, Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS; John
Hawkins and David Stone (jointly), Statesboro, GA; Charles McCracken,
Dayton, OH; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA, and
the propser.

• 5028: Proposed by Michael Brozinsky, Central Islip, NY .

If the ratio of the area of the square inscribed in an isosceles triangle with one side on the
base to the area of the triangle uniquely determine the base angles, find the base angles.

Solution 1 by Brian D. Beasley, Clinton, SC.

Let θ be the measure of each base angle in the triangle, and let y be the length of each
side opposite a base angle. Let x be the side length of the inscribed square. We first
consider the right triangle formed with θ as an angle and x as a leg, denoting its
hypotenuse by z. Then x = z sin θ. Next, we consider the isosceles triangle formed with
the top of the inscribed square as its base; taking the right half of the top of the square
as a leg, we form another right triangle with angle θ and hypotenuse y − z. Then
1
2x = (y− z) cos θ, so y = x(csc θ + 1

2 sec θ). Denoting the area of the square by S and the
area of the original triangle by T , we have

T

S
=

1
2y2 sin(π − 2θ)

x2
=

1
2

sin(2θ)
(

csc θ +
1
2

sec θ

)2

=
1
4

tan θ + cot θ + 1.

Let f(θ) = 1
4 tan θ + cot θ + 1 for 0 < θ < π/2. Then it is straightforward to verify that

lim
θ→0+

f(θ) = lim
θ→π

2
−

f(θ) = ∞

and that f attains an absolute minimum value of 2 at θ = arctan(2). Hence the ratio
T/S (and thus S/T ) is uniquely determined when θ = arctan(2) ≈ 63.435◦.

Solution 2 by J. W. Wilson, Athens, GA.

With no loss of generality, let the base of the isosceles triangle b be a fixed value and
vary the height h of the triangle. Then if f(h) is a function giving the ratio for the
compared areas, in order for it to uniquely determine the base angles, there must be
either a minimum or maximum value of the function. Let f(h) represent the ratio of the
area of the triangle to the area of the square.

It is generally known (and easy to show) that side s of an inscribed square on base b of a
triangle is on-half of the harmonic mean of the base b and the altitude h to that base.
Thus

s =
hb

h + b
. So,

f(h) =
bh

2s2
. Substituting and simplifying this gives :

f(h) =
h2 + 2bh + b2

2bh
.

For h > 0 it can be shown, by using the arithmetic mean−geometric mean inequality,
that this function has a minimum value of 2 when h = b.

f(h) =
h2 + 2bh + b2

2bh
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=
h + 2b +

b2

h
2b

.

Since b is fixed, and using the arithmetic mean−geometric mean inequaltiy, we may write:

h +
b2

h
≥ 2

√
h

b2

h
= 2b, with equality holding if, and only if,

h =
b2

h
.

Therefore f(h) reaches a maximum if, and only if, h = b. This means the base angles can
be uniquely determined when the altitude and the base are the same length. Thus, by
considering the right triangle formed by the altitude and the base, the base angle would
be arctan 2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; John Hawkins and
David Stone (jointly; two solutions), Statesboro, GA; Peter E. Liley,
Lafayette, IN; Kenneth Korbin, New York, NY; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA, and the proposer.

• 5029: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x > 1 be a non-integer number. Prove that(
x + {x}

[x]
− [x]

x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
>

9
2
,

where [x] and {x} represents the entire and fractional part of x.

Solution by John Hawkins and David Stone, Statesboro, GA.

We improve the lower bound by verifying the more accurate inequality

#
(

x + {x}
[x]

− [x]
x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
>

16
3

.

In fact,
16
3

is a sharp lower bound for
(

x + {x}
[x]

− [x]
x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
for x

in the interval (1, 2), while this expression becomes much larger for larger x.

For convenience, we let

f(x) =
(

x + {x}
[x]

− [x]
x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
.

The function f , defined for x > 1, x not an integer, has a“repetitive” behavior. Its graph
has a vertical asymptote at each positive integer. On each interval (n, n + 1), f(x)
decreases(strictly) from infinity to a specific limit, hn (which we will specify), then
repeats the behavior on the next interval, but does not drop down as far, because
hn < hn+1 (so f(x) never comes close to h1 = 16

3 again.)
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We verify these statements by fixing n and examining the behavior on f(x) on the
interval (n, n + 1). In this case, we let x = n + t, where 0 < t < 1; therefore, [x] = n and
|x| = t. Thus

f(x) =
(

n + t + t

n
− n

n + t + t

)
+
(

n + t + n

t
− t

n + t + n

)
=

n + 2t

n
− n

n + 2t
+

2n + t

t
− t

2n + t
.

We handle the above claims in order:

(1) lim
t→0+

f(x) = lim
t→0+

n + 2t

n
− n

n + 2t
+

2n + t

t
− t

2n + t
= +∞.

(2) Because f(x) has been expressed in terms of t, say

g(t) =
n + 2t

n
− n

n + 2t
+

2n + t

t
− t

2n + t
,

we can show that g(t) is decreasing by showing its derivative is negative.

We compute the derivative with respect to t:

g′(t) =
2
n

+
2n

(2t + n)2
− 2n

t2
− 2n

(t + 2n)2
.

Basically, this is negative because of the dominant term
−2n

t2
, but we can make this more

precise:

g′(t) < 0

⇔ 2
n

+
2n

(2t + n)2
− 2n

t2
− 2n

(t + 2n)2
< 0

⇔ 1
n

+
n

(2t + n)2
<

n

t2
+

n

(t + 2n)2

⇔ (2t + n)2 + n2

n(2t + n)2
<

n(t + 2n)2 + nt2

t2(t + 2n)2

⇔ t2(t + 2n)2
[
(2t + n)2 + n2

]
< n(2t + n)2

[
n(t + 2n)2 + nt2

]
⇔ t2(t + 2n)2

[
(2t2 + 2tn + n2

]
< n2(2t + n)2

[
t2 + 2tn + 2n2

]
⇔ 2t6 + 10t5n + 17t4n2 + 12t3n3 + 4t2n4 < 2n6 + 10n5t + 17n4t2 + 12n3t3 + 4n2t4

⇔ 0 < 2
(
n6 − t6

)
+ 10nt

(
n4 − t4

)
+ 17n2t2

(
n2 − t2

)
− 4n2t2

(
n2 − t2

)
⇔ 0 < 2

(
n6 − t6

)
+ 10nt

(
n4 − t4

)
+ 13n2t2

(
n2 − t2

)
,

and this last inequality is true because 0 < t < 1 < n.

(3) Finally, we compute the lower bound at the right-hand endpoint:

lim
t→1−

f(x) = lim
t→1−

[
n + 2t

n
− n

n + 2
+

2n + t

t
− t

2n + t

]
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=
n + 2

n
− n

n + 2
+

2n + 1
1

− 1
2n + 1

= 2n + 1− 1
2n + 1

+
4(n + 1)
n(n + 2)

.

Thus, we see that hn = 2n + 1− 1
2n + 1

+
4(n + 1)
n(n + 2)

≈ 2n + 1, so the intervals’ lower

bounds increase linearly with n.

Note that h1 = 3 +
7
3

=
16
3

, so f(x) >
16
3

for 1 < x < 2. So inequality (#) has been
verified.

As stated above, the lower bound on x then grows, for instance,

h2 = 5 +
13
10

=
63
10

, so f(x) >
63
10

for 2 < x < 3,

and

h3 = 7 +
97
105

=
832
105

, so f(x) >
832
105

for 3 < x < 4.

Comment: The inequality # is sharp in the sense that no value larger than
16
3

can be

used. That is, by (3) above, we know that values of x very close to 2 produce values of

f(x) just above and arbitrarily close to
16
3

. We can see this precisely:

f

(
2− 1

m

)
= f

(
1 +

m− 1
m

)

=


2m− 1

m
+

m− 1
m

1
− 1

2m− 1
m

+
m− 1

m

+


2m− 1

m
+ 1

m− 1
m

−

m− 1
m

2m− 1
m

+ 1



=
3m− 2

m
− m

3m− 2
+

3m− 1
m− 1

− m− 1
3m− 1

=
16
3

+
2
3

[
3

m(m− 1)
− 1

3(m− 1)(3m− 2)

]
.

(John and David accompanied their above solution with a graph generated by Maple

showing how the lower bounds increase from
16
3

for various values of x.)

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Paolo Perfetti, Mathematics Department, University
“Tor Vergata,” Rome, Italy; Vu Tran (student, Texas A&M University),
College Station, TX; Boris Rays, Chesapeake, VA, and the proposer.

• 5030: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let A1, A2, · · · , An ∈ M2(C), (n ≥ 2 ), be the solutions of the equation Xn =
(

2 1
6 3

)
.
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Prove that
n∑

k=1

Tr(Ak) = 0.

Solution by John Hawkins and David Stone, Statesboro, GA.

The involvement of the Trace function is a red herring. Actually, for A1, A2, A3, . . . , An

as specified in the problem, we have
n∑

k=1

Ak = 0. Therefore, since Tr is linear,

n∑
k=1

Tr(Ak) = Tr

( n∑
k=1

(Ak

)
= Tr(0) = 0. In fact

n∑
k=1

Tr(Ak) = 0 for any linear

transformation T : M2(C) −→ W to any complex vector space W .

Here is our argument. For convenience, let B =
(

2 1
6 3

)
. Note that B2 = 5B. Thus

B3 = BB2 = B5B = 5B2 = 52B. Inductively, Bk = 5k−1B for k ≥ 1.

Therefore, B =
1

5n−1
Bn =

[
1

5(n−1)/n
B

]n
, so A1 =

1
5(n−1)/n

B is an nth root of B:

An
1 =

[
1

5(n−1)/n
B

]n
=

1
5n−1

Bn =
1

5n−1
5n−1B = B.

Now let ξ = e2πi/n be the primitive nth root of unity. Then

0 = ξn − 1 = (ξ − 1)(ξn−1 + ξn−2 + ξn−3 + · · ·+ ξ + 1),

so,
(#) (ξn−1 + ξn−2 + ξn−3 + · · ·+ ξ + 1) = 0.

With A1 =
1

5(n−1)/n
B as above, let Ak = ξk−1A1 for k = 2, 3, . . . , n. These n distinct

matrices are the nth roots of B, namely:

An
k = [ξk−1A1]n = ξ(k−1)nAn

1 = (ξn)k−1An
1 = 1k−1An

1 = An
1 = B.

Therefore,

n∑
k=1

Ak =
n∑

k=1

ξk−1A1 =
( n∑

k=1

ξk−1
)

A1

= 0 ·A1 by (#)

= 0.

Comment 1: Implicit in the problem statement is that the given matrix equation has
exactly n solutions. This is true for this particular matrix B. But it is not true in
general. Gantmacher (“Matrix Theory”, page 233) gives an example of a 3× 3 matrix

with infinitely many square roots:

 0 1 0
0 0 0
0 0 0

.
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Comment 2: The result would be true for B any 2× 2 matrix having determinant zero
but trace non-zero. In that case, we would have B2 = Tr(B)B and we use

A1 =
1

Tr(B)(n−1)/n
B.

Comment 3: More generally, let V be a vector space over C and c1, c2, . . . , cn be complex
scalars whose sum is zero. Also let A be any vector in V and let Ak = ckA for
k = 1, 2, · · · , n. Then

n∑
k=1

Ak =
n∑

k=1

ckA =
( n∑

k=1

ck

)
A = 0 ·A = 0.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.

• 5031: Ovidiu Furdui, Toledo, OH.

Let x be a real number. Find the sum
∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solution 1 by Paul M. Harms, North Newton, KS.

We know that ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

The expression

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
= (−1)n−1n

(
xn+1

(n + 1)!
+

xn+2

(n + 2)!
+ · · ·

)
.

So the sum
∞∑

n=1

(−1)n−1n

(
xn+1

(n + 1)!
+

xn+2

(n + 2)!
+ · · ·

)
equals

(
x2

2!
+

x3

3!
+ · · ·

)
− 2

(
x3

3!
+

x4

4!
+ · · ·

)
+ 3

(
x4

4!
+

x5

5!
+ · · ·

)
− 4

(
x5

5!
+ · · ·

)
+ · · ·

=
(1)x2

2!
+

(1− 2)x3

2!
+

(1− 2 + 3)x4

4!
+

(1− 2 + 3− 4)x5

5!
+ · · ·

=
x2

2!
− x3

3!
+

2x4

4!
− 2x5

5!
+

3x6

6!
− 3x7

7!
+

4x8

8!
− 4x9

9!
· · ·

We need to find the sum of this alternating series..

We have

sinhx = x +
x3

3!
+

x5

5!
+ · · · · · ·

x

2
sinhx =

1
2
x2 +

2
4x4

3!
+

3
6x6

5!
+

4
8x8

7!
+ · · ·

=
x

2!
+

2x4

4!
+

3x6

6!
+

4x8

8!
+ · · · .

The positive terms of the alternating series sum to
x

2
sinhx. Each negative term of the

alternating series is an antiderivative of the previous term except for the minus sign. The
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general anitderivative of
x

2
sinhx is

1
2

[
x coshx− sinhx

]
+ C. Using Taylor series we can

show that
−1
2

[
x coshx− sinhx

]
equals the sum of the negative terms of the alternating

series. The sum in the problem is

x

2
sinhx− 1

2

[
x coshx− sinhx

]
=

x + 1
2

sinhx− x

2
coshx.

Solution 2 by N. J. Kuenzi, Oshkosh, WI.

Let

F (x) =
∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Differentiation yields

F ′(x) =
∞∑

n=1

(
(−1)n−1n(ex − 1− x− · · · − xn−1

(n− 1)!

)

=
∞∑

n=1

(
(−1)n−1n(ex − 1− x− · · · − xn−1

(n− 1)!
− xn

n!
+

xn

n!

)

= F (x) +
∞∑

n=1

(−1)n−1n
xn

n!

= F (x) + x

(
1− x +

x2

2!
− x3

3!
+ · · ·+ (−1)m xm

m!
+ · · ·

)
= F (x) + xe−x.

Solving the differential equation

F ′(x) = F (x) + xe−x with initial conditions F(0) = 0 yields

F (x) =
ex − (1 + 2x)e−x

4
.

Also solved by Charles Diminnie and Andrew Siefker (jointly), San Angelo,
TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paolo Perfetti, Mathematics
Department, University “Tor Vergata,” Rome, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2009

• 5050: Proposed by Kenneth Korbin, New York, NY.

Given 4ABC with integer-length sides, and with 6 A = 120o, and with (a, b, c) = 1.
Find the lengths of b and c if side a = 19, and if a = 192, and if a = 194.

• 5051: Proposed by Kenneth Korbin, New York, NY.

Find four pairs of positive integers (x, y) such that
(x− y)2

x + y
= 8 with x < y.

Find a formula for obtaining additional pairs of these integers.

• 5052: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.

If a ≥ 0, evaluate: ∫ +∞

0
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

dx

1 + x2
.

• 5053: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b and c be the sides, r the in-radius, and R the circum-radius of 4ABC. Prove or
disprove that

(a + b− c)(b + c− a)(c + a− b)
a + b + c

≤ 2rR.

• 5054: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x, y, z be positive numbers such that xyz = 1. Prove that

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
≥ 1.

• 5055: Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let α be a positive real number. Find the limit
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lim
n→∞

n∑
k=1

1
n + kα

.

Solutions

• 5032: Proposed by Kenneth Korbin, New York, NY.

Given positive acute angles A,B, C such that

tanA · tanB + tanB · tanC + tanC · tanA = 1.

Find the value of
sin A

cos B · cos C
+

sinB

cos A · cos C
+

sinC

cos A · cos B
.

Solution 1 by Brian D. Beasley, Clinton, SC.

Since A, B, and C are positive acute angles with

1 =
sinA sinB cos C + cos A sinB sinC + sinA cos B sinC

cos A cos B cos C

=
cos A cos B cos C − cos(A + B + C)

cos A cos B cos C
,

we have cos(A + B + C) = 0 and thus A + B + C = 90◦. Then
sinA

cos B cos C
+

sinB

cos A cos C
+

sinC

cos A cos B
=

sinA cos A + sinB cos B + sinC cos C

cos A cos B cos C
.

Letting N be the numerator of this latter fraction, we obtain

N = sin A cos A + sinB cos B + cos(A + B) sin(A + B)
= sin A cos A + sinB cos B + (cos A cos B − sinA sinB)(sinA cos B + cos A sinB)
= sin A cos A(1 + cos2 B − sin2 B) + sin B cos B(1 + cos2 A− sin2 A)
= sin A cos A(2 cos2 B) + sin B cos B(2 cos2 A)
= 2 cos A cos B(sinA cos B + cos A sinB)
= 2 cos A cos B sin(A + B)
= 2 cos A cos B cos C.

Hence the desired value is 2.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

The condition tan A tanB + tanB tanC + tanC tanA = 1 is equivalent to
cot A + cot B + cot C = cot A cot B cot C. Since it is well known that

cos(A + B + C) = − sinA sinB sin C

(
cot A + cot B + cot C − cot A cot B cot C

)
,

so cos(A + B + C) = 0 and A + B + C =
π

2
. Hence,

sin 2A + sin 2B + sin 2C = 2 sin(A + B) cos(A−B) + 2 sinC cos C
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= 2 cos C( cos(A−B) + cos(A + B))

= 4 cos A cos B cos C.

If follows that

sinA

cos B cos C
+

sinB

cos A cos C
+

sinC

cos A cos B
=

sin 2A + sin 2B + sin 2C
2 cos A cos B cos C

= 2.

Solution 3 by Boris Rays, Chesapeake, VA.

tanA tanB + tanB tanC + tanC tanA = 1 implies,

tanB(tanA + tanC) = 1− tanA tanC

tanA + tanC

1− tanA tanC
=

1
tanB

tan(A + C) = cotB = tan(90o −B).

Similarly, we obtain:

tan(B + C) =
1

tanA
= cot A = tan(90o −A)

tan(A + B) =
1

tanC
= cot C = tan(90o − C),which implies

A = 90o − (B + C)
B = 90o − (A + C)
C = 90o − (A + B).

Therefore,

sinA

cos B cos C
+

sinB

cos A cos C
+

sinC

cos A cos B

=
sin(90o − (B + C))

cos B cos C
+

sin(90o − (A + C))
cos A cos C

+
sin(90o − (A + B))

cos A cos B

=
cos(B + C)
cos B cos C

+
cos(A + C)
cos A cos C

+
cos(A + B)
cos A cos B

=
cos B cos C − sinB sinC

cos B cos C
+

cos A cos C − sinA sinC

cos A cos C
+

cos A cos B − sinA sinB

cos A cos B

=
(

1− tanB tanC

)
+

(
1− tanA tanC

)
+

(
1− tanA tanB

)
= 1 + 1 + 1− (tanA tanB + tanB tanC + tanA tanC)

= 3− 1 = 2.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie
(jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
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Harms, North Newton, KS; John Hawkins, and David Stone (jointly),
Statesboro, GA; Valmir Krasniqi, Prishtin, Kosovo; David E. Manes,
Oneonta, NY; Charles McCracken, Dayton, OH; David C.Wilson,
Winston-Salem, NC, and the proposer.

• 5033: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P is on side AB and point Q is on side CD. Find the coordinates of P and Q if
area 4PCD = area 4QAB = 1

2area quadrilateral ABCD. (1)

Solution by Bruno Salgueiro Fanego, Viveiro, Spain.

P is on side AB : y = 0⇒ P (p, 0).

Q is on side CD : y =
11
4

x + 4⇒ Q(4q, 11q + 4).

Area quadrilateral ABCD=area 4ABD+area 4BCD, so

(1) ⇔ 1
2

∣∣∣∣ det

 p 0 1
4 15 1
0 4 1

 ∣∣∣∣ = 1
2

∣∣∣∣ det

 4q 11q + 4 1
−3 0 1
12 0 1

 ∣∣∣∣

=
1
2

∣∣∣∣ det

−3 0 1
12 0 1
0 4 1

 ∣∣∣∣+ 1
2

∣∣∣∣ det

 12 0 1
4 15 1
0 4 1

 ∣∣∣∣
⇔

∣∣∣∣11p + 16
∣∣∣∣ = 30 + 74 = 15

∣∣∣∣11q + 4
∣∣∣∣⇔ 11p + 16 = ±104 = 15(11q + 4)

⇔ P1(8, 0) or P2(−120/11, 0) and Q1(16/15, 104/15) or Q2(−656/165,−104/15).

Observations by Ken Korbin. The following four points are on a straight line:
midpoint of AC, midpoint of BD, P1, and Q1. Moreover, the midpoint of P1P2 = the
midpoint of Q1, Q2 = the intersection point of lines AB and CD.

Also solved by Brian D. Beasley, Clinton, SC; Michael N. Fried, Kibbutz
Revivim, Israel; John Hawkins and David Stone (jointly), Statesboro, GA;
Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette, IN; David E.
Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris Rays,
Chesapeake, VA; David C.Wilson, Winston-Salem, NC, and the proposer.

• 5034: Proposed by Roger Izard, Dallas, TX.

In rectangle MDCB, MB ⊥MD. F is the midpoint of BC, and points N,E and G lie
on line segments DC, DM and MB respectively, such that NC = GB. Let the area of
quadrilateral MGFC be A1 and let the area of quadrilateral MGFE be A2. Determine
the area of quadrilateral EDNF in terms of A1 and A2.

Solution by Paul M. Harms, North Newton, KS.

Put the rectangle MDCB on a coordinate system. Assume all nonzero coordinates are
positive with coordinates

4



M(0, 0), B(0, b), C(c, b), D(c, 0) and E(e, 0), F (c/2, b), G(0, g), N(c, g).

The coordinates satisfy e < c and g < b. The area A1 of the quadrilateral MGFC = the
area of 4MGF+ area of 4MFC. Then

A1 =
1
2
g(c/2) +

1
2
(c/2)b =

1
2
(c/2)(b + g).

The area A2 of the quadrilateral MGFE = area of 4MGF+ area of 4MEF . Then

A2 =
1
2
g(c/2) +

1
2
eb.

The area of the quadrilateral EDNF = area of 4EFD+ area of 4FDN . The area of
the quadrilateral EDNF is then

=
1
2
(c− e)b +

1
2
g(c/2)

= 2(
1
2
)(c/2)b− 1

2
eb +

1
2
g(c/2)

= 2A1 −A2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; John Hawkins and
David Stone (jointly), Statesboro,GA; Kenneth Korbin, New York, NY;
Peter E. Liley, Lafayette, IN; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeake, VA, and the proposer.

• 5035: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers. Prove that

(aabbcc)2(a−(b+c) + b−(c+a) + c−(a+b))3 ≥ 27.

Solution 1 by David E. Manes, Oneonta, NY.

Note that the inequality is equivalent to

3

a
1

b+c + b
1

c+a + c
1

b+c

≤ 3
√

a2ab2bc2c.

Since the problem is symmetrical in the variables a, b, and c, we can assume a ≥ b ≥ c.
Therefore, ln a ≥ ln b ≥ ln c. By the Rearrangement Inequality

a ln a + b ln b + c ln c ≥ b ln a + c ln b + a ln c and

a ln a + b ln b + c ln c ≥ c ln a + a ln b + b ln c.

Adding the two inequalities yields

2a ln a + 2b ln b + 2c ln c ≥ (b + c) ln a + (c + a) ln b + (a + b) ln c.
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Therefore,

ln
(

a2ab2bc2c
)

≥ ln
(

ab+cbc+aca+b
)

or

a2ab2bc2c ≥ ab+cbc+aca+b and so

3
√

a2ab2bc2c ≥ 3
√

ab+cbc+aca+b.

By the Harmonic-Geometric Mean Inequality

3

a
1

b+c + b
1

c+a + c
1

b+c

≤ 3
√

ab+cbc+aca+b ≤ 3
√

a2ab2bc2c.

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy.

Taking the logarithm we obtain,

2
∑
cyc

ln a + 3 ln

(∑
cyc

a−(b+c)

)
≥ 3 ln 3.

The concavity of the logarithm yields,

2
∑
cyc

ln a + 3

(
ln 3−

∑
cyc

(b + c) ln a

)
≥ 3 ln 3.

Defining s = a + b + c gives, ∑
cyc

(3a− s) ln a ≥ 0.

Since the second derivative of the function f(x) = (3x− s) ln x is positive for any x and
s, (f ′′(x) = 3/x + s/x2) it follows that,∑

cyc

(3a− s) ln a ≥
∑
cyc

(3a− s) ln a
∣∣∣a=s/3 = 0.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Chesapeake, VA, and the proposer.

• 5036: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all triples (x, y, z) of nonnegative numbers such that{
x2 + y2 + z2 = 1
3x + 3y + 3z = 5

Solution 1 by John Hawkins and David Stone, Statesboro, GA.

We are looking for all first octant points of intersection of the unit sphere with the
surface 3x + 3y + 3z = 5. Clearly, the intercept points (1, 0, 0), (0, 1, 0) and (0, 0, 1) are
solutions. We claim there no other solutions.
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Consider the traces of our two surfaces in the xy-plane: the unit circle and the curve
give by 3x + 3y = 4. Our only concern is in the first quadrant, where we have a unit

quarter circle and the curve y =
ln(4− 3x)

ln 3
. The two curves meet on the coordinate

axes; otherwise graphing software shows that the logarithmic curve lies inside the
quarter circle.

By the symmetry of the variables, we have the same behavior when we look at the
traces in the xz- and yz-planes. That is, at our boundaries of concern, the exponential
surface starts inside the sphere. By implicit differentiation of 3x + 3y + 3z = 5, we have

the partial derivatives
∂z

∂x
= −3x

3z
and

∂z

∂y
= −3y

3z
, which are both negative for

nonnegative x, y and z. Therefore, the exponential surface descends from a trace inside
the sphere to a trace which lies within the sphere. So the two surfaces have no points of
intersection within the interior of the first octant.

Solution 2 by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Such triples are (x, y, z) = (1, 0, 0), (0, 1, 0), (0, 0, 1). We note that the first equation
implies that x, y, z ∈ [0, 1]. On the other hand, using Bernoulli’s inequality we obtain
that 

3x = (1 + 2)x ≤ 1 + 2x
3y = (1 + 2)y ≤ 1 + 2y
3z = (1 + 2)z ≤ 1 + 2,

and hence, 5 = 3x + 3y + 3z ≤ 3 + 2(x + y + z). It follows that 1 ≤ x + y + z. This
implies that x2 + y2 + z2 ≤ x + y + z, and hence, x(1− x) + y(1− y) + z(1− z) ≤ 0.
Since the left hand side of the preceding inequality is nonnegative we obtain that
x(1− x) = y(1− y) = z(1− z) = 0 from which it follows that x, y, z are either 0 or 1.
This combined with the first equation of the system shows that exactly one of x, y, and
z is 1 and the other two are 0, and the problem is solved.

Solution 3 by the proposer.

By inspection we see that (1, 0, 0), (0, 1, 0) and (0, 0, 1) are solutions of the given system.
We claim that they are the only solutions of the system. In fact, for all t ∈ [0, 1] the
function f(t) = 3t is greater than or equal to the function g(t) = 2t2 + 1, as can be easily
proven, for instance, by drawing their graphs when 0 ≤ t ≤ 1.

Since x2 + y2 + z2 = 1, then x ∈ [0, 1], y ∈ [0, 1] and z ∈ [0, 1]. Therefore

3x ≥ 2x2 + 1,
3y ≥ 2y2 + 1,
3z ≥ 2z2 + 1.

Adding up the preceding expressions yields

3x + 3y + 3z ≥ 2(x2 + y2 + z2) + 3 ≥ 5

and we are done

Also solved by Charles McCracken, Dayton, OH; Paolo Perfetti,
Mathematics Department, University “Tor Vergata,” Rome, Italy, and Boris
Rays, Chesapeake,VA.

7



• 5037: Ovidiu Furdui, Campia Turzii, Cluj, Romania

Let k, p be natural numbers. Prove that

1k + 3k + 5k + · · ·+ (2n + 1)k = (1 + 3 + · · ·+ (2n + 1))p

for all n ≥ 1 if and only if k = p = 1.

Solution 1 by Carl Libis, Kingston, RI.

Since
(

1 + 3 + · · ·+ (2n + 1)
)p

=
[
(n + 1)2

]p
= (n + 1)2p, it is clear that(

1 + 3 + · · ·+ (2n + 1)
)p

is a monic polynomial of degree 2p.

Let S2n+1
k =

2n+1∑
i=1

ik. Then

S2n+1
k =

n+1∑
i=1

(2i− 1)k +
n∑

i=1

(2i)k =
n∑

i=0

(2i + 1)k + 2k
n∑

i=1

ik =
n∑

i=0

(2i + 1)k + 2kSn
k .

Then
n∑

i=0

(2i + 1)k = S2n+1
k − 2kSn

k . It is well known for sums of powers of integers Sn
k ,

that the leading term of Sn
k is

nk+1

k + 1
. Thus the leading term of

1k + 3k + 5k + · · ·+ (2n + 1)k is

(2n + 1)k+1

k + 1
− 2knk+1

k + 1
=

2k+1nk+1 − 2knk+1

k + 1
=

2knk+1

k + 1
.

This is monic if, and only if, k = 1. When k = 1 we have that

n∑
i=0

(2i + 1) = S2n+1
1 − 2Sn

1 =
(2n + 1)(2n + 2)

2
− 2

n(n + 1)
2

= (n + 1)2.

For k, p natural numbers we have that

1k + 3k + 5k + · · ·+ (2n + 1)k =
(

1 + 3 + · · ·+ (2n + 1)
)p

for all n ≥ 1 if, and only if,

k = p = 1.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

If k = p = 1, the equality 1k + 3k + 5k + · · ·+ (2n + 1)k = (1 + 3 + · · ·+ (2n + 1))p is
trivial. Now suppose that the equality holds for all n ≥ 1. By putting n = 1, 2, we
obtain 1 + 3k = 4p and 1 + 3k + 5k = 9p. Hence

3k = 4p − 1 and
5k = 9p − 4p.

Eliminating k from the last two equations, we obtain 9p = 4p + (4p − 1)(ln 5/ ln 3). Hence,

9p < 2
(

4p(ln 5/ ln 3)
)

p ln 9 < ln 2 +
p(ln 4)(ln 5)

ln 3
, and
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p <
(ln 2)(ln 3)

(ln 3)(ln 9)− (ln 4)(ln 5)
= 4.16 · · · .

Thus p = 1, 2, 3, 4. But it is easy to check that only the case p = 1 and k = 1 admits
solutions in the natural numbers for the equation 1 + 3k = 4p, and this completes the
solution.

Solution 3 by Paul M. Harms, North Newton, KS.

Clearly if k = p = 1, the equation holds for all appropriate integers n. For the only if
part of the statement consider the contrapostive statement:

If p 6= 1 or k 6= 1, then for some n ≥ 1 the equation does not hold.

Consider n = 1. Then the equation in the problem is 1k + 3k = (1 + 3)p = 4p. If k = 1
with p > 1, then 4 < 4p so the equation does not hold.
If k > 1 with p = 1, then 1k + 3k > 4 so the equation does not hold.

Now consider both p > 1 and k > 1 using the equation in the form
3k = 4p − 1k = (2p − 1)(2p + 1).
If p > 1, then 2p − 1 > 1 and 2p + 1 > 1. Also, the expressions 2p − 1 and 2p + 1 are 2
units apart so that if 3 is a factor of one of these expressions then 3 is not a factor of the
other expression. Since both expressions are greater than one, if 3 is a factor of one of
the expressions, then the other expression has a prime number other than 3 as a factor.
Thus (2p − 1)(2p + 1) has a prime number other than 3 as a factor and cannot be equal
to 3k, a product of just the prime number 3. Thus the equation does not hold when
both p > 1 and k > 1.

Solution 4 by John Hawkins and David Stone, Statesboro, GA.

Denote 1k + 3k + 5k + · · ·+ (2n + 1)k = (1 + 3 + · · ·+ (2n + 1))p by (#). The condition
requesting all n ≥ 1 is overkill. Actually, we can prove the following are equivalent:

(a) condition (#) holds for all n ≥ 1,

(b) condition (#) holds for all n = 1,

(c) k = p = 1.

Clearly, (a)⇒ (b).
Also (c) ⇒ (a), for if k = p = 1, then (#) becomes the identity

1 + 3 + 5 + · · ·+ (2n + 1) = (1 + 3 + · · ·+ (2n + 1)).

Finally, we prove that (b) ⇒ (c). Assuming the truth of (#) for n = 1 tells us that
3k = 4p − 1.

If k = 1, we immediately conclude that p = 1 and we are finished.

Arguing by contradiction, suppose k ≥ 2, so 3k is actually a multiple of 9. Thus
4p ≡ 1(mod 9). Now consider the powers of 4 modulo 9:

40 ≡ 1(mod 9)
41 ≡ 4(mod 9)

9



42 ≡ 7(mod 9)
43 ≡ 1(mod 9)

That is, 4 has order 3(mod 9), so 4p ≡ 1(mod 9) if and only if p is a multiple of 3. Based
upon some numerical testing, we consider 4p modulo 7: 4p = 43t ≡ 64t ≡ 1t ≡ 1(mod 7).
That is, 7 divides 4p − 1, so 4p − 1 cannot be a power of 3. We have reached a
contradiction.

Solution 5 by the proposer.

One implication is easy to prove. To prove the other implication we note that

1+3+ · · ·+(2n+1) =
n+1∑
k=1

(2k−1) = 2
n+1∑
k=1

k−(n+1) = (n+1)(n+2)−(n+1) = (n+1)2.

It follows that
1k + 3k + 5k + · · ·+ (2n + 1)k = (n + 1)2p.

We multiply the preceding relation by 2/(2n + 1)k+1 and we get that

2
2n + 1

((
1

2n + 1

)k

+
(

3
2n + 1

)k

+ · · ·+
(

2n + 1
2n + 1

)k
)

= 2
(n + 1)2p

(2n + 1)k+1
. (1)

Letting n→∞ in (1) we get that

1∫
0

xkdx =
1

k + 1
= lim

n→∞
2

(n + 1)2p

(2n + 1)k+1
.

It follows that 2p = k + 1 and that 1
k+1 = 1

2k . However, the equation k + 1 = 2k has a
unique positive solution namely k = 1. This can be proved by applying Bernouli’s
inequality as follows

2k = (1 + 1)k ≥ 1 + k · 1 = k + 1,

with equality if and only if k = 1. Thus, k = p = 1 and the problem is solved.

Also solved by Boris Rays, Chesapeake, VA.

Late Solutions

Late solutions were received from David C. Wilson of Winston-Salem, NC to
problems 5026, 5027, and 5028.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2009

• 5056: Proposed by Kenneth Korbin, New York, NY.

A convex pentagon with integer length sides is inscribed in a circle with diameter
d = 1105. Find the area of the pentagon if its longest side is 561.

• 5057: Proposed by David C. Wilson, Winston-Salem, N.C.

We know that 1 + x + x2 + x3 + · · · =
∞∑

k=0

xk =
1

1− x
where −1 < x < 1.

Find formulas for
∞∑

k=1

kxk,
∞∑

k=0

k2xk,
∞∑

k=0

k3xk,
∞∑

k=0

k4xk, and
∞∑

k=0

k5xk.

• 5058: Proposed by Juan-Bosco Romero Márquez, Avila, Spain.

If p, r, a,A are the semi-perimeter, inradius, side, and angle respectively of an acute
triangle, show that

r + a ≤ p ≤ p

sinA
≤ p

tan
A

2

,

with equality holding if, and only if, A = 90o.

• 5059: Proposed by Panagiote Ligouras, Alberobello, Italy.

Prove that for all triangles ABC

sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 6

√
3 + 1
8

.

• 5060: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Show that there exists c ∈ (0, π/2) such that∫ c

0

√
sinx dx + c

√
cos c =

∫ π/2

c

√
cos x dx + (π/2− c)

√
sin c

1



• 5061: Michael P. Abramson, NSA, Ft. Meade, MD.

Let a1, a2, . . . , an be a sequence of positive integers. Prove that

n∑
im=1

im∑
im−1=1

· · ·
i2∑

i1=1

ai1 =
n∑

i=1

(
n− i + m− 1

m− 1

)
ai.

Solutions

• 5038: Proposed by Kenneth Korbin, New York, NY.

Given the equations
√

1 +
√

1− x − 5 ·
√

1−
√

1− x = 4 · 4
√

x and

4 ·
√

1 +
√

1− y − 5 ·
√

1−
√

1− y = 4
√

y.

Find the positive values of x and y.

Solution by Brian D. Beasley, Clinton, SC.

(a) To find x, we square and simplify to obtain

13(1−
√

x) = 12
√

1− x.

Squaring again and factoring produces

(313
√

x− 25)(
√

x− 1) = 0;

we note that x = 1 fails in the original equation but x = (25/313)2 = 625/97969 works.

(b) To find y, we square and simplify to obtain

41(1−√y) = 9
√

1− y.

Squaring again and factoring produces

(881
√

y − 800)(
√

y − 1) = 0;

we note that y = 1 fails in the original equation but y = (800/881)2 = 640000/776161
works.

Addendum. The two given equations, along with the equation in Problem 5024 (see
108(5), May 2008), generalize to

a
√

1 +
√

1− x − b
√

1−
√

1− x = c 4
√

x,

where a, b, and c are positive real numbers with c = b− a. Then the solution is

x =

(
2a2b2

a4 + b4

)2

.

Also solved by Scott H. Brown, Montgomery, AL; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Grant
Evans (student, Saint George’s School), Spokane, WA; Bruno Salgueiro
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Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Valmir
Krasniqi, Prishtinë, Kosova; David E. Manes, Oneonta, NY; Paolo Perfetti,
Mathematics Department, University “Tor Vergata,” Rome, Italy; John
Nord, Spokane, WA; Boris Rays, Chesapeake, VA; Armend Sh. Shabani,
Republic of Kosova; John Hawkins and David Stone (jointly), Statesboro,
GA, and the proposer.

• 5039: Proposed by Kenneth Korbin, New York, NY.

Let d be equal to the product of the first N prime numbers which are congruent to
1(mod4). That is

d = 5 · 13 · 17 · 29 · · ·PN .

A convex polygon with integer length sides is inscribed in a circle with diameter d.
Prove or disprove that the maximum possible number of sides of the polygon is the N th

term of the sequence t = (4, 8, 20, 32, 80, · · · , tN , · · ·) where tN = 4tN−2 for N > 3.

Examples: If N = 1, then d = 5, and the maximum polygon has 4 sides (3, 3, 4, 4). If
N = 2, then d = 5 · 13 = 65 and the maximum polygon has 8 sides
(16, 16, 25, 25, 25, 25, 33, 33).

Editor’s comment: In correspondence with Ken about this problem he wrote that he
has been unable to prove the formula for N > 5; so it remains technically a conjecture.

Another note: No solutions to this problem were received, but Ken Korbin made
observations with hope that they will encourage readers to either prove the problem or
find a counter-example to it. Following are Ken’s observations on this problem.

In the following examples, let x be the length of the side, and let F be the frequency.
Note that

√
d2 − x2 is always an integer.

Examples:

• If N = 1, d = 5

x F
3 2
4 2

4∑
F = 4 = t1

• If N = 2, d = 5 · 13 = 65

x F
16 2
25 4
33 2

8∑
F = 8 = t2

• If N = 3, d = 5 · 13 · 17 = 1105

3



x F
47 2
105 4
169 8
264 6

20∑
F = 20 = t3

• If N = 4, d = 5 · 13 · 17 · 29 = 32045

x F
716 6
1363 2
3045 10
3955 6
4901 8

32∑
F = 32 = t4

• If N = 5, d = 5 · 13 · 17 · 29 · 37 = 1185665

x F Fx
12415 10 124150
26492 20 529840
49959 24 1199016
50431 12 605172
70200 6 421200
105444 8 843552

80 3722930

∑
Fx = P = Perimeter = 3722930.∑
F = 80 = t5.

Circumference = C = 1185665π
P/C ≈ 0.9994782

• For each value of N , there is essentially exactly one maximum polygon. For example, if
N = 2, then the maximum polygon has sides (16, 16, 25, 25, 25, 25, 33, 33) in some order.

• The sides of the maximum polygon have exactly N + 1 different values. For example, if
N = 2, then the three values are (16, 25, 33).

• If N > 1, then each side of the maximum polygon is equal to the length of the shorter
leg of a Pythagorean triangle with hypotenuse d. For example, if N = 2, then the three
Pythagorean triples are (16, 63, 65), (25, 60, 65), and (33, 56, 65).

• Formula:
∑

F · arcsin
(

x

d

)
= 1800. For example, if N = 2, d = 65,

∑
F · arcsin

(
x

d

)
= 2 · arcsin

(
16
65

)
+ 4 · arcsin

(
25
65

)
+ 2 · arcsin

(
33
65

)
= 1800.
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• It will be interesting to see if the above comments hold for N > 5.

The circle from this problem has yielded many interesting results. For example, the

number of different inscribed integer-sided rectangles is
3n − 1

2
.

If the formula for SSM problem 4996 has the ‘+’ changed to a ‘–’, then you have the
number of different inscribed integer-sided trapezoids, and the circle for n = 3 yields the
pentagon for SSM problem 5056 listed above.

• 5040: Proposed by John Nord, Spokane, WA.

Two circles of equal radii overlap to form a lens. Find the distance between the centers

if the area in circle A that is not covered by circle B is
1
3

(
2π + 3

√
3
)

r2.

Editor’ s comment: A mistake was made in stating this problem and as such, there is
no solution to it. But Colin Hill, Bruno Salgueriro, and John Hawkins and David Stone
caught the mistake and showed how the problem could be altered to yield the solution
that John had intended.

Solution by Bruno Salgueiro Fanego, Viveiron, Spain.

Two circles A and B of equal radii r overlap to form a lens. Find the distance bewteen

the centers if the area of A∪B that is not covered by the lens A∩B is
1
3

(
2π + 3

√
3
)

r2.

We will show that the distance d between the centers of A and B is r.
Being A and B of equal radii r, the area in circle A that is not covered by circle B is the
same as the area in circle B that is not covered by circle A, so if C = A ∩B is the lens,
we have area(A− C) = area(B − C) (by symmetry with respect to C) and

area(A− C) + area(B − C) = area(A ∪B)− area(C) =
1
3

(
2π + 3

√
3
)

r2 (by

hypothesis), and hence area(A− C) =
1
6

(
2π + 3

√
3
)

r2.

But
1
6

(
2π + 3

√
3
)

r2 + area(C) = area(A− C) + area(C)

= area(A) = πr2 ⇒
area(C) =

1
6

(
4π − 3

√
3
)

r2.

Being the area of a circular segment the difference between the areas of the circular
sector and the correspondng triangle, if α is the measure in radians of the central angle
of the circular sector with center in the center of A or B we have

1
2
area(C) = area(sector) = area(sector)− area(triangle)

=
1
2
αr2 − 1

2
(sinα)r2

=
1
2
(α− sinα)r2,

so area(C) = (α− sinα)r2.

Hence
1
6

(
4π − 3

√
3
)

r2 = (α− sinα)r2, that is, α− sinα =
1
6

(
4π − 3

√
3
)

.
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The function f(x) = x = sinx, 0 < x < 2π, is strictly increasing, so there is a unique

solution to the equation f(α) =
1
6
(4π − 3

√
3). It is easy to show that α =

2π

3
satisfies

this equation, so this is the measure of the central angle.

The equaltiy cos
(

α

2

)
=

d/2
r

implies that d = 2r cos
(

π

3

)
= r.

Also solved by Colin Hill of Spokane, WA and by John Hawkins and David
Stone of Stateboro, GA.

• 5041: Proposed by Michael Brozinsky, Central Islip, NY .

Quadrilateral ABCD (with diagonals AC = d1 and BD = d2 and sides
AB = s1, BC = s2, CD = s3, and DA = s4) is inscribed in a circle. Show that:

d2
1 + d2

2 + d1d2 >
s2
1 + s2

2 + s2
3 + s2

4

2
.

Solution by Kenneth Korbin, New York, NY

Let d1 ≤ d2 and let R =
(S1 + S3)2 + (S2 + S4)2

(d1 + d2)2
.

It can be shown that 1 ≤ R < 2.

If quadrilateral ABCD is a rectangle, then d1 = d2 and R = 1.

If
d1

d2
−→ 0+ then R −→ 2−.

By the Theorem of Ptolemy, d1d2 = S1S3 + S2S4.

2 > R

=
(S1 + S3)2 + (S2 + S4)2

(d1 + d2)2

=
S2

1 + S2
3 + S2

2 + S2
4 + 2

[
S1S3 + S2S4

]
d2

1 + d2
2 + 2d1d2

=
S2

1 + S2
2 + S2

3 + S2
4 + 2d1d2

d2
1 + d2

2 + 2d1d2

Therefore,

2
[
d2

1 + d2
2 + 2d1d2

]
> S2

1 + S2
2 + S2

3 + S2
4 + 2d1d2

d2
1 + d2

2 + d1d2 >
S2

1 + S2
2 + S2

3 + S2
4

2
.

Also solved by the proposer.

• 5042: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero Barcelona, Spain.
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Let A(z) = zn +
n−1∑
k=0

akz
k (ak 6= 0) and B(z) = zn+1 +

n∑
k=0

bkz
k (bk 6= 0) be two prime

polynomials with roots z1, z2, . . . , zn and w1, w2, . . . , wn+1 respectively. Prove that

A(w1)A(w2) . . . A(wn+1)
B(z1)B(z2) . . . B(zn)

is an integer and determine its value.

Solution by John Hawkins and David Stone, Statesboro, GA.

In factored form, we have
A(z) = (z − z1)(z − z2)(z − z3) · · · (z − zn) and
B(z) = (z − w1)(z − w2)(z − w3) · · · (z − wn+1),
so,

A(wi) = (wi − z1)(wi − z2)(wi − z3) · · · (wi − zn) =
n∏

j=1

(
wi − zj

)
for each

i = 1, 2, · · · , n + 1,

and

B(zj) = (zj − w1)(zj − w2)(zj − w3) · · · (zj − wn+1) =
n+1∏
i=1

(
zj − wi

)
for each

j = 1, 2, · · · , n.
If it were the case that some wi equals some zj , then A(z) and B(z) would have a
common factor z − wi = z − zj , contradicting the given condition. Thus each term
wi − zj 6= 0.
Therefore,

A(w1)A(w2)A(w3) · · ·A(wn+1)
B(z1)B(z2) · · ·B(zn)

=

n+1∏
j=1

A(wi)

n∏
j=1

B(zj)
=

n+1∏
i=1

n∏
j=1

(wi − zj)

n∏
j=1

n+1∏
i=1

(zj − wi)

= (−1)n(n+1) = 1,

by repeated cancellation.

Comment: It is implicit in the problem statement that none of the roots of A(z) are
roots of B(z), else we would have division by zero. If the reverse were true, that is if
some wi were a root of A(z), we would have the quotient (Q) equal to zero. This is not
bad, but it muddies the water a bit. The co-primality condition eliminates any such
concerns: for polynomials over the compex field, co-primality is equivalent to having no
common roots. So none of the terms in (Q), numerator or denominator, are zero.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; David E. Manes, Oneonta, NY; Boris Rays, Chesapeake,
VA; Armend Sh. Shabani, Republic of Kosova, and the proposers.

• 5043: Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Solve the following diophantine equation in positive integers k, m, and n

k · n! ·m! + m! + n! = (m + n)!.
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Solution 1 by R. P. Sealy, Sackville, New Brunswick, Canada.

The only solution is m = n = 2, k = 5.
Write

k =
(m + n)!−m!− n!

m!n!

=
(m + n)!

m!n!
− m!

m!n!
− n!

m!n!

=

(
m + n

n

)
− 1

n!
− 1

m!
.

Therefore k is an integer if and only if
1
n!

+
1
m!

is an integer.
The solution m = n = 1 implies k = 0.
The only other solution is m = n = 2, k = 5.

Solution 2 by Paul M. Harms, North Newton, KS.

Suppose n < m. Dividing k · n! ·m! + m! + n! = (m + n)! by m! gives

k(n!) + 1 +
n!
m!

=
(m + n)!

m!
.

Note that every term is an integer except the term
n!
m!

. This term is a positive fraction
less than one. Thus the equation cannot be true.

If m < n, the same type of argument shows that the equation cannot be true. If there
are any solutions, n = m.

Consider n = m = 1. Then the equation becomes k + 2 = 2 or k = 0. Since k must be
positive, this is not a solution.

Now consider n = m = 2. The equation becomes 4k + 4 = 24 or k = 5. In this case
k = 5, n = m = 2 represents a solution.

Now consider n = m > 2. The equation can be written as k(n!)2 + 2(n!) = (2n)! or

k(n!) + 2 = 2n(2n− 1)(2n− 2) · · · (n + 1).

Divide both sides of the previous equation by 2 to obtain

kn(n− 1)(n− 2) · · · (3) + 1 = n(2n− 1)(2n− 2) · · · (n + 1).

When n > 2 we see that two of the three terms have a factor of the prime number
3,while the third does not have 3 as a factor. Thus the equation cannot be true.

The only solution is k = 5, n = m = 2.

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Bruno Salgueiro Fanego, Viveiro, Spain; John Hawkins and David Stone,
Statesboro, GA; N. J. Kuenzi, Oshkosh, WI; David E. Manes, Oneonta, NY;
Boris Rays, Chesapeake, VA; Armend Sh. Shabani, Republic of Kosova, and
the proposer.
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Late and Misplaced Solutions

From time to time I notice solutions on my computer that seem to have been mailed to
me days before their due-dates, but somehow I missed them. So in the future, if I do not
acknowledge receipt of your solutions within a week or so after you have mailed them,
please send me note inquiring if they have arrived.

Solutions to 5022 and to 5024 were received from Patrick Farrell of Andover, MA,
and to 5027 from Pat Costello of Richmond, KY. Mea culpa, once again.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2009

• 5062: Proposed by Kenneth Korbin, New York, NY.

Find the sides and the angles of convex cyclic quadrilateral ABCD if
AB = BC = CD = AD − 2 = AC − 2.

• 5063: Proposed by Richard L. Francis, Cape Girardeau, MO.

Euclid’s inscribed polygon is a constructible polygon inscribed in a circle whose
consecutive central angle degree measures form a positive integral arithmetic sequence
with a non-zero difference.

a) Does Euclid’s inscribed n-gon exist for any prime n greater than 5?
b) Does Euclid’s n-gon exist for all composite numbers n greater than 2?

• 5064: Proposed by Michael Brozinsky, Central Islip, NY.

The Lemoine point of a triangle is that point inside the triangle whose distances to the
three sides are proportional to those sides. Find the maximum value that the constant
of proportionality, say λ, can attain.

• 5065: Mihály Bencze, Brasov, Romania.

Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that

1)
n∑

i,j=1

|(i− j)(xi − xj)| =
n

2

n∑
i,j=1

|xi − xj |.

2)
n∑

i,j=1

(i− j)2 =
n2(n2 − 1)

6
.

• 5066: Proposed by Panagiote Ligouras, Alberobello, Italy.
Let a, b, and c be the sides of an acute-angled triangle ABC. Let abc = 1. Let H be the
orthocenter, and let da, db, and dc be the distances from H to the sides BC, CA, and AB
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respectively. Prove or disprove that

3(a + b)(b + c)(c + a) ≥ 32(da + db + dc)2.

• 5067: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be complex numbers such that a + b + c = 0. Prove that

max {|a|, |b|, |c|} ≤
√

3
2

√
|a|2 + |b|2 + |c|2.

Solutions

• 5044: Proposed by Kenneth Korbin, New York, NY.

Let N be a positive integer and let{
x = 9N2 + 24N + 14 and
y = 9(N + 1)2 + 24(N + 1) + 14.

Express the value of y in terms of x, and express the value of x in terms of y.

Solution by Armend Sh. Shabani, Republic of Kosova.

One easily verifies that
y − x = 18N + 33. (1)

From 9N2 + 24N + 14− x = 0 one obtains N1,2 =
−4±

√
2 + x

3
, and since N is a

positive integer we have

N =
−4 +

√
2 + x

3
. (2)

Substituting (2) into (1) gives:

y = x + 9 + 6
√

2 + x. (3)

From 9(N + 1)2 + 24(N + 1) + 14− y = 0 one obtains N1,2 =
−7±

√
2 + y

3
, and since N

is a positive integer we have

N =
−7 +

√
2 + y

3
. (4)

Substituting (4) into (1) gives:

x = y + 9− 6
√

2 + y. (5)

Relations (3) and (5) are the solutions to the problem.

Comments: 1. Paul M. Harms mentioned that the equations for x in terms of y, as
well as for y in terms of x, are valid for integers satisfying the x, y and N equations in
the problem. The minimum x and y values occur when N = 1 and are x = 47 and
y = 98. 2. David Stone and John Hawkins observed that in addition to (47, 98),
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other integer lattice points on the curve of y = 9 + x + 6
√

2 + x in the first quadrant are
(4, 98), (98, 167), (167, 254), (254, 359), and (23, 62).

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, San
Angelo, TX; José Luis Dı́az-Barrero, Barcelona, Spain; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael C. Faleski, University Center, MI; Michael
N. Fried, Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS;
David E. Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; José
Hernández Santiago (student UTM), Oaxaca, México; David Stone and John
Hawkins (jointly), Statesboro, GA; David C.Wilson, Winston-Salem, NC,
and the proposer.

• 5045: Proposed by Kenneth Korbin, New York, NY.

Given convex cyclic hexagon ABCDEF with sides

AB = BC = 85
CD = DE = 104, and
EF = FA = 140.

Find the area of 4BDF and the perimeter of 4ACE.

Solution by Kee-Wai Lau, Hong Kong, China.

We show that the area of 4BDF iis 15390 and the perimeter of 4ACE is
123120

221
.

Let 6 AFE = 2α, 6 EDC = 2β, and 6 CBA=2γ so that
6 ACE = π − 2α, 6 CAE = π − 2β, and 6 AEC = π − 2γ.

Since 6 ACE + 6 CAE + 6 AEC = π, so

α + β + γ = π

cos α + cos β + cos γ = 4 sin
α

2
sin

β

2
sin

γ

2
+ 1 or

(cos α + cos β + cos γ − 1)2 = 2(1− cos α)(1− cos β)(1− cos γ). (1)

Denote the radius of the circumcircle by R. Applying the Sine Formula to 4ACE, we
have

R =
AE

2 sin 2α
=

EC

2 sin 2β
=

CA

2 sin 2γ
.

By considering triangles AFE, EDC, and CBA respectively, we obtain

AE = 280 sin α, EC = 208 sin β, CA = 170 sin γ.

It follows that cos α =
70
R

, cos β =
52
R

, and cos γ =
85
2R

. Substituting into (1) and
simplifying, we obtain

4R3 − 37641R− 1237600 = 0 or(
2R− 221

)(
2R2 + 221R + 5600

)
= 0.
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Hence,

R =
221
2

, cos α =
140
221

, sinα =
171
221

cos β =
104
221

, sinβ =
195
221

cos γ =
85
221

, sin γ =
204
221

,

and our result for the perimeter of 4ACE.

It is easy to check that 6 BFD = α, 6 FDB = β, 6 DBF = γ so that
6 BAF = π − β, 6 DEF = π − γ.
Applying the cosine formula to 4BAF and 4DEF respectively, we obtain BF = 195
and DF = 204.
It follows, as claimed, that the area of

4BDF =
1
2

(
BF

)(
DF

)
sin 6 BFD =

1
2
(195)(204)

171
221

= 15390.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; David E. Manes,
Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N.
Deshpande of Nagpur, India.

Let 4n successive Lucas numbers Lk, Lk+1, · · · , Lk+4n−1 be arranged in a 2× 2n matrix
as shown below:


1 2 3 4 · · · 2n

Lk Lk+3 Lk+4 Lk+7 · · · Lk+4n−1

Lk+1 Lk+2 Lk+5 Lk+6 · · · Lk+4n−2


Show that the sum of the elements of the first and second row denoted by R1 and R2

respectively can be expressed as

R1 = 2F2nL2n+k

R2 = F2nL2n+k+1

where {Ln, n ≥ 1} denotes the Lucas sequence with L1 = 1, L2 = 3 and
Li+2 = Li + Li+1 for i ≥ 1 and {Fn, n ≥ 1} denotes the Fibonacci sequence,
F1 = 1, F2 = 1, Fn+2 = Fn + Fn+1.

Solution by Angel Plaza and Sergio Falcon, Las Palmas, Gran Canaria,
Spain.

R1 = Lk + Lk+3 + Lk+4 + Lk+7 + · · ·+ Lk+4n−2 + Lk+4n−1, and since Li = Fi−1 + Fi+1,
we have:
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R1 = Fk−1 + Fk+1 + Fk+2 + Fk+4 + Fk+3 + Fk+5 + · · ·+ Fk+4n−2 + Fk+4n

= Fk−1 +
4n∑

j=1

Fk+j − Fk+4n−1

= Fk−1 − Fk+4n−1 +
4n+k∑
j=0

Fj −
k∑

j=0

Fj

And since
m∑

j=0

Fj = Fm+2 − 1 we have:

R1 = Fk−1 − Fk+4n−1 + Fk+4n+2 − 1− Fk+2 + 1 = 2Fk+4n − 2Fk

where in the last equation it has been used that Fi+2 − Fi = Fi+1 + Fi − Fi−1 = 2Fi.
Now, using the relation LnFm = Fn+m − (−1)mFn−m (S. Vajda, Fibonacci and Lucas
numbers, and the Golden Section: Theory and Applications, Dover Press (2008)) in the
form L2n+kF2n = F4n+k − (−1)2nF2n+k−2n it is deduced R1 = 2F2nL2n+k.
In order to prove the fomula for R2 note that

R1 + R2 =
4n−1∑
j=0

Lk+j =
4n+k−1∑

j=0

Lj −
k−1∑
j=0

Lj

As before,
4n+k−1∑

j=0

Lj = Fk+4n + Fk+4n+2, while
k−1∑
j=0

Lj = Fk + Fk+2, so

R1 + R2 = Fk+4n − Fk + Fk+4n+2 − Fk+2

= L2n+kF2n + L2n+k+2F2n

And therefore,

R2 = F2n (L2n+k+2 − L2n+k) = F2nL2n+k+1

Also solved by Paul M. Harms, North Newton, KS; John Hawkins and
David Stone (jointly), Statesboro, GA, and the proposers.)

• 5047: Proposed by David C. Wilson, Winston-Salem, N.C.

Find a procedure for continuing the following pattern:

S(n, 0) =
n∑

k=0

(
n

k

)
= 2n

S(n, 1) =
n∑

k=0

(
n

k

)
k = 2n−1n

S(n, 2) =
n∑

k=0

(
n

k

)
k2 = 2n−2n(n + 1)

5



S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3n2(n + 3)

...

Solution by David E. Manes, Oneonta, NY.

Let f(x) = (1 + x)n =
n∑

k=0

(
n

k

)
xk. For m ≥ 0,

S(n, m) =
(

x
d

dx

)m

(f(x))
∣∣∣∣
x=1

, where
(

x
d

dx

)m

is the procedure x
d

dx
iterated m times

and then evaluating the resulting function at x = 1. For example,

S(n, 0) = f(1) =
n∑

k=0

(
n

k

)
= 2n. Then

x
d

dx
(f(x)) = x

d

dx
(1 + x)n = x

d

dx

( n∑
k=0

(
n

k

)
xk
)

implies

nx(1 + x)n−1 =
n∑

k=0

(
n

k

)
k · xk. If x = 1, then

n∑
k=0

(
n

k

)
k = n · 2n−1 = S(n, 1).

For the value of S(n, 2) note that if

x
d

dx

[
nx(1 + x)n−1

]
= x

d

dx

[ n∑
k=0

(
n

k

)
kxk

]
, then

nx(nx + 1)(1 + x)n−2 =
n∑

k=0

(
n

k

)
k2xk. If x = 1, then

n(n + 1)2n−2 =
n∑

k=0

(
n

k

)
k2 = S(n, 2)

Similarly,

S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3 · n2(n + 3) and

S(n, 4) =
n∑

k=0

(
n

k

)
k4 = 2n−4 · n(n + 1)(n2 + 5n− 2.)

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro GA, and the proposer.
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• 5048: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”
Rome, Italy.

Let a, b, c, be positive real numbers. Prove that

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥ 54

(a + b + c)2
(abc)3√

(ab)4 + (bc)4 + (ca)4
.

Solution1 by Boris Rays, Chesapeake, VA.

Rewrite the inequality into the form:√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ·

(
a+b+c

)2

·
√

(ab)4 + (bc)4 + (ca)4 ≥ 54(abc)3 (1)

We will use the Arithmetic-Geometric Mean Inequality (e.g., x + y + z ≥ 3 3
√

xyz and
u + v ≥ 2

√
uv) for each of the three factors on the left side of (1).√

c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥
√

3 3

√
c2(a2 + b2)2 · b2(c2 + a2)2 · a2(b2 + c2)2

≥
√

3 3

√
(abc)2(a2 + b2)2(c2 + a2)2(b2 + c2)2

≥
√

3 3

√
(abc)2(4a2b2)(4c2a2)(4b2c2)

=
√

3(abc)2/3 3
√

43a4b4c4

=
√

3(abc)2/34(abc)4/3

=
√

3 · 22(abc)2

= 2
√

3(abc) (2)

Also, since (a + b + c) ≥ 3 3
√

abc, we have

(a + b + c)2 ≥ 32
(

3
√

abc

)2

= 32(abc)2/3 (3)

√
(ab)4 + (bc)4 + (ca)4 ≥

√
3 3

√
(ab)4(bc)4(ca)4

=
√

3 3
√

a8b8c8

=
√

3(abc)8/3

=
√

3(abc)4/3 (4)

Combining (2), (3), and (4) we obtain:

7



√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ·

(
a + b + c

)2

·
√

(ab)4 + (bc)4 + (ca)4

≥ 2
√

3(abc) · 32(abc)2/3
√

3(abc)4/3

= 2 · 33(abc)1+2/3+4/3

= 54(abc)3.

Hence, we have shown that (1) is true, with equality holding if a = b = c.

Solution 2 by José Luis Dı́az-Barrero, Barcelona, Spain.

The inequality claimed is equivalent to√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2

√
(ab)4 + (bc)4 + (ca)4 ≥ 54(abc)3

(a + b + c)2

Applying Cauchy’s inequality to the vectors ~u = (c(a2 + b2), b(c2 + a2), a(b2 + c2)) and
~v = (a2b2, c2a2, b2c2) yields√

c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2
√

(ab)4 + (bc)4 + (ca)4

≥ abc(ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2))

So, it will be suffice to prove that

(ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2))(a + b + c)2 ≥ 54a2b2c2 (1)

Taking into account GM-AM-QM inequalities, we have

ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2) ≥ 2(a2b2 + b2c2 + c2a2) ≥ 6abc
3
√

abc

and
(a + b + c)2 ≥ 9 3

√
a2b2c2

Multiplying up the preceding inequalities (1) follows and the proof is complete

Solution 3 by Kee-Wai Lau, Hong Kong, China.

By homogeneity, we may assume without loss of generality that abc = 1. We have√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2

=

√(
a2 + b2

ab

)2

+
(

c2 + a2

ca

)2

+
(

b2 + c2

bc

)2

=

√(
a2 − b2

ab

)2

+
(

c2 − a2

ca

)2

+
(

b2 − c2

bc

)2

+ 12

8



≥ 2
√

3.

By the arithmetic-geometric mean inequality, we have (a + b = c)2 ≥ 9(abc)2/3 = 9 and√
(ab)4 + (bc)4 + (ca)4 ≥

√
3(abc)4/3 =

√
3. The inequality of the problem now follows

immediately.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ovidiu Furdui, Campia
Turzii, Cluj, Romania; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Armend Sh. Shabani, Republic of Kosova, and the proposer.

5049: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find a function f : < → < such that

2f(x) + f(−x) =
{
−x3 − 3, x ≤ 1,
3− 7x3, x > 1.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly), San
Angelo, TX .

If x > 1, then
2f (x) + f (−x) = 3− 7x3. (1)

Also, since −x < −1, we have

2f (−x) + f (x) = − (−x)3 − 3 = x3 − 3. (2)

By (1) and (2), f (x) = 3− 5x3 and f (−x) = −3 + 3x3 when x > 1. Further,
f (−x) = −3 + 3x3 when x > 1 implies that f (x) = −3 + 3 (−x)3 = −3− 3x3 when x < −1.

Finally, when −1 ≤ x ≤ 1, we get −1 ≤ −x ≤ 1 also, and hence,

2f (x) + f (−x) = −x3 − 3, (3)

2f (−x) + f (x) = − (−x)3 − 3 = x3 − 3. (4)

As above, (3) and (4) imply that f (x) = −x3 − 1 when −1 ≤ x ≤ 1.

Therefore, f (x) must be of the form

f (x) =

−3− 3x3 if x < −1,
−1− x3 if −1 ≤ x ≤ 1, (5)
3− 5x3 if x > 1.

With some perseverance, this can be condensed to

f (x) =
∣∣∣x3 + 1

∣∣∣− 2
∣∣∣x3 − 1

∣∣∣− 4x3

9



for all x ∈ <. Since it is straightforward to check that this function satisfies the given
conditions of the problem, this completes the solution.

Also solved by Brian D. Beasely, Clinton, SC; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton,
KS; N. J. Kuenzi, Oshkosh, WI; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeake, VA; David C. Wilson, Winston-Salem, NC, and the proposer.

Late Solutions

Late solutions were received from Pat Costello of Richmond, KY to problem 5027;
Patrick Farrell of Andover, MA to 5022 and 5024, and from David C. Wilson of
Winston-Salem, NC to 5038.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion
University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solu-
tions can be sent by e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at
http://ssmj.tamu.edu

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2009

• 5068: Proposed by Kenneth Korbin, New York, NY

Find the value of √
1 + 2009

√
1 + 2010

√
1 + 2011

√
1 + · · ·.

• 5069: Proposed by Kenneth Korbin, New York, NY

Four circles having radii
1
14

,
1
15

,
1
x

and
1
y

respectively, are placed so that each of the circles is

tangent to the other three circles. Find positive integers x and y with 15 < x < y < 300.

• 5070: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all real solutions to the system

9(x2
1 + x2

2 − x2
3) = 6x3 − 1,

9(x2
2 + x2

3 − x2
4) = 6x4 − 1,

. . . . . . . . .
9(x2

n + x2
1 − x2

2) = 6x2 − 1.


• 5071: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let ha, hb, hc be the altitudes of 4ABC with semi-perimeter s, in-radius r and circum-radius R,
respectively. Prove that

1
4

(
s(2s− a)

ha
+

s(2s− b)
hb

+
s(2s− c)

hc

)
≤ R2

r

(
sin2 A + sin2 B + sin2 C

)
.

• 5072: Proposed by Panagiote Ligouras, Alberobello, Italy

Let a, b and c be the sides, la, lb, lc the bisectors, ma,mb,mc the medians, and ha, hb, hc the
heights of 4ABC. Prove or disprove that

a)
(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ 4

3

(
ma · la + lb · hb + hc ·mc

)
1



b) 3
∑
cyc

(−a + b + c)3

a
≥ 2

∑
cyc

[ma(la + ha)].

• 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania

Let m > −1 be a real number. Evaluate∫ 1

0
{lnx}xmdx,

where {a} = a− [a] denotes the fractional part of a.

Solutions

• 5050: Proposed by Kenneth Korbin, New York, NY

Given 4ABC with integer-length sides, and with 6 A = 120o, and with (a, b, c) = 1.
Find the lengths of b and c if side a = 19, and if a = 192, and if a = 194.

Solution 1 by Paul M. Harms, North Newton, KS

Using the law of cosines we have a2 = b2 + c2 − 2bc cos 120o = b2 + c2 + bc.

When a = 19 we have 192 = 361 = b2 + c2 + bc. The result b = 5, c = 16 with a = 19 satisfies
the problem.

Some books indicate that the Diophantine equation a2 = b2 + c2 + bc has solutions of the form

b = u2 − v2, c = 2uv + v2, and a = u2 + v2 + uv .

For the above u = 3, v = 2 and a = 19 = 32 + 22 + 2(3).

Let a2
1 = b2

1 + c2
1 + b1c1 be another Diophantine equation which has solutions of the form

b1 = u2
1 − v2

1, c1 = 2u1v1 + v2, and a1 = u1 + v2
1 + u1v1. Let u1 be the largest and v1 be the

smallest of the numbers {b, c}. If b = c, the Diophantine equation becomes a2
1 = 3b2

1 which has
no integer solutions. Suppose c > b. (If b > c, a procedure similar to that below can be used).

Let u1 = c and v1 = b. Then b1 = c2 − b2 and c1 = 2cb + b2. The expression
b2
1 + c2

1 + b1c1 = (c2 − b2)2 + (2cb + b2)2 + (c2 − b2)(2cb + b2) = (c2 + b2 + bc)2 = (a2)2 = a4 = a2
1.

In this case a1 = a2.

Now start with the above solution where a = 19, u = 3, v = 2, b = 5, and c = 16. For a = 192, let
u = 16 and v = 5. Then we have the solution b = 2312, c = 185 where
a2 = 194 = 231 + 1852 + 231(185).

For a = 194, let u = 231 and v = 185. Then b = 19136, c = 119695 and
a2 = 198 = 191362 + 1196952 + 19136(119695). Since 19 is not a factor of the b and c solutions
above, (a, b, c) = 1.

The solutions I have found are (19, 5, 16), (192, 231, 185), and (194, 19136, 119695).

Solution 2 by Bruno Salguerio Fanego, Viveiro, Spain

If 4ABC is such a triangle, by the cosine theorem a2 = b2 + c2 − 2bc cos A, that is

c2 + bc + b2 − a2 = 0, c =
−b±

√
4a2 − 3b2

2
and 4a2 − 3b2

2



must be positive integers and the latter a perfect square, with (a, b, c) = 1.

When a = 19, 0 < b ≤ 2 · 19/
√

3 ⇒ 0 < b ≤ 21; 4 · 192 − 3b2 is a positive perfect square for
b ∈ {24, 5} so c ∈ {5, 24}, and (a, b, c) = 1.

When a = 192, 0 < b ≤ 2 · 192/
√

3 ⇒ 0 < b ≤ 416; 4 · 194 − 3b2 is a positive perfect square
that is not a multiple of 19 for b ∈ {3 · 7 · 11, 5 · 37}, so c ∈ {5 · 37, 3 · 7 · 11}, and (a.b.c) = 1.

When a = 194, 0 < b ≤ 2 · 194/
√

3 ⇒ 0 < b ≤ 150481; 4 · 198 − 3b2 is a positive perfect square
that is not a multiple of 19 for b ∈ {5 · 37 · 647, 26 · 13 · 23}. So c ∈ {26 · 13 · 23, 5 · 37 · 647}, and
(a, b, c) = 1.

And reciprocally, the triangular inequalities are verified by a = 19, 16, 5, by a = 192, 231, 185,
and by a = 194, 119695, 19136, so there is a 4ABC with sides a, b and c with these integer
lengths, and with 6 A = 120o, and (a, b, c) = 1.

Thus, if a = 19, then {b, c} = {5, 16}; if a = 192, then {b, c} = {185, 231}, and if a = 194, then
{b, c} = {19136, 119695}.

Note: When a = 192, 4 · 194 − 3b2 is a perfect square for b ∈ {24 · 19, 3 · 7 · 11, 5 · 37, 5 · 19}.
When a = 194, 4 · 198 − 3b2 is a perfect square for
b ∈ {5 ·37 ·647, 24 ·193, 24 ·32 ·5 ·7 ·19, 3 ·7 ·11 ·192, 5 ·192 ·37, 17 ·19 ·163, 5 ·193, 26 ·13 ·23}.

Also solved by John Hawkins and David Stone (jointly), Statesboro, GA; David E.
Manes, Oneonta, NY; Boris Rays, Brooklyn, NY; David C.Wilson, Winston-Salem,
NC, and the proposer.

• 5051: Proposed by Kenneth Korbin, New York, NY

Find four pairs of positive integers (x, y) such that
(x− y)2

x + y
= 8 with x < y.

Find a formula for obtaining additional pairs of these integers.

Solution 1 by Charles McCracken, Dayton, OH

The given equation can be solved for y in term of x by expanding the numerator and
multiplying by the denominator to get

x2 − 2xy + y2 = 8((x + y) =⇒ y2 − (2x + 8)y + (x2 − 8x) = 0.

Solving this by the quadratic formula yields y = x + 4 + 4
√

x + 1.

Since the problem calls for integers we choose values of x that will make x + 1 a square.
Specifically

x = 3, 8, 15, 24, 35, · · · or
x = k2 + 2k, k ≥ 1

The first four pairs are (3, 15), (8, 24), (15, 35), (24, 48).

In general, x = k2 + 2k and y = k2 + 6k + 8, k ≥ 1.

Solution 2 by Armend Sh. Shabani, Republic of Kosova

The pairs are (3, 15), (8, 24), (15, 35), (24, 48). In order to find a formula for additional pairs we
write the given relation (y − x)2 = 8(x + y) in its equivalent form y − x = 2

√
2(x + y).

3



From this it is clear that x + y should be of the form 2s2, and this gives the system of equations:{
x + y = 2s2

y − x = 4s

The solutions to this system are x = s2 − 2s, y = s2 + 2s, and since the solutions should be
positive, we choose s ≥ 3.

Solution 3 by Boris Rays, Brooklyn, NY

Let {
x + y = a
y − x = b

Since x < y and a and b are positive integers, it follows that b2 = 8a and that b=2
√

2a. Since b
is a positive integer we may choose values of a so that 2a is a perfect square. Specifically, let
a = 22n−1, where n = 1, 2, 3, · · ·. Therefore, 2a = 2 · 22n−1 = 22n = (2n)2, where n = 1, 2, 3, · · · .
Similarly, b = 2n+1 n = 1, 2, 3, · · ·.
Substituting these values of a and of b into the original system gives:

x =
22n−1 − 2n+1

2
= 2n(2n−2 − 1)

y =
22n−1 + 2n+1

2
= 2n(2n−2 + 1)

and since we want x, y > 0 we choose n = 3, 4, 5, · · ·. The ordered triplets

(n, x, y) : (3, 8, 24), (4, 48, 80), (5, 224, 288), (6, 960, 1088).

satisfy the problem. It can also be easily shown that our general values of x and y also satisfy
the original equation.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Pat Costello, Richmond,
KY; Michael C. Faleski, University Center, MI; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Jahangeer Kholdi (with John Viands
and Tyler Winn (students),Western Branch High School, Chesapeake, VA),
Portsmouth, VA; Tuan Le (student, Fairmont, High School), Anaheim, CA; David
E. Manes, Oneonta, NY; Melfried Olson, Honolulu, HI; Jaquan Outlaw (student,
Heritage High School) Newport News, VA and Robert H. Anderson (jointly),
Chesapeake, VA; Boris Rays, Brooklyn, NY; Vicki Schell, Pensacola, FL; David
Stone and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5052: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain

If a ≥ 0, evaluate: ∫ +∞

0
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

dx

1 + x2
.

Solution by Kee-Wai Lau, Hong Kong, China

4



Denote the integral by I. We show that

I =



π

4
arctg

2a

1− a2
, 0 ≤ a < 1;

π2

8
, a = 1; (1)

π

4

(
π − arctg

2a

a2 − 1
− 4arctg

√
a4 + a2 − 1− a

1 + a2

)
, a > 1.

Let J =
∫ +∞

0

2a(ax2 + 2x + a)arctg(x)

(1 + x2)
(

(a2 + 1)x2 + 4ax + a2 + 1
)dx. Integrating by parts, we see that for

0 ≤ a < 1,

I =
∫ +∞

0
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

d(arctg(x))

=
[
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

arctg(x)
]+∞
0

−
∫ +∞

0
arctg(x)d

(
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

)
= J.

For a ≥ 1, let ra =
√

a4 + a2 − 1− a

1 + a2
be the non-negative root of the quadratic equation

(1 + a2)x2 + 2ax + 1− a2 = 0 so that

I =
[
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

arctg(x)
]ra

0

+
[
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

arctg(x)
]+∞
ra

+ J

= −πarctg(ra) + J.

By substituting x =
1
y

and making use of the fact that arctg(1/y) =
π

2
− arctg(y) we obtain

J = 2a

∫ +∞

0

(ay2 + 2y + a)arctg(1/y)

(1 + y2)
(

(a2 + 1)y2 + 4ay + a2 + 1
)dy

5



= 2a

(
π

2

∫ +∞

0

(ay2 + 2y + a)

(1 + y2)
(

(a2 + 1)y2 + 4ay + a2 + 1
)dy

)
− J

so that J =
πa

2

∫ +∞

0

(ay2 + 2y + a)

(1 + y2)
(

(a2 + 1)y2 + 4ay + a2 + 1
)dy. Resolving into partial fractions

we obtain
J =

π

4

(∫ +∞

0

dy

1 + y2
+ (a2 − 1)

∫ +∞

0

dy

(1 + a2)y2 + 4ay + 1 + a2

)
.

Clearly, J =
π2

8
for a = 1. For p > 0, pr > q2, we have the well know result

∫ +∞

0

dy

py2 + 2qy + r
=

1√
pr − q2

arctg
q√

pr − q2
,

so that for a ≥ 0, a 6= 1

J =
π

4

(
π

2
+

a2 − 1
|a2 − 1|

arctg
2a

|a2 − 1|

)
.

Hence (1) follows and this completes the solution.

Also solved by Paolo Perfetti, Mathematics Department, University “Tor Vergata”,
Rome, Italy, and the proposer.

• 5053: Proposed by Panagiote Ligouras, Alberobello, Italy

Let a, b and c be the sides, r the in-radius, and R the circum-radius of 4ABC. Prove or
disprove that

(a + b− c)(b + c− a)(c + a− b)
a + b + c

≤ 2rR.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Roger
Zarnowski (jointly), San Angelo, TX

The given inequality is essentially the same as Padoa’s Inequality which states that

abc ≥ (a + b− c) (b + c− a) (c + a− b) ,

with equality if and only if a = b = c. We will prove this using the approach presented in [1].

Let x =
a + b− c

2
, y =

b + c− a

2
, and z =

c + a− b

2
. Then, x, y, z > 0 by the Triangle

Inequality and a = x + z, b = x + y, c = y + z. By the Arithmetic - Geometric Mean Inequality,

abc = (x + z)(x + y)(y + z)

≥ (2
√

xz)(2
√

xy)(2
√

yz)

= (2x)(2y)(2z)

= (a + b− c)(b + c− a)(c + a− b),

with equality if and only if x = y = z, i.e., if and only if a = b = c.
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If A = Area(4ABC) and s =
a + b + c

2
, then

R =
abc

4A
and A = rs = r

(
a + b + c

2

)
,

which imply that 2rR =
abc

a + b + c
. Hence, the problem reduces to Padoa’s Inequality.

Reference:
[1] R. B. Nelsen, Proof Without Words: Padoa’s Inequality, Mathematics Magazine 79
(2006) 53.

Also solved by Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; Tuan Le (student, Fairmont High School),
Anaheim, CA; David E. Manes, Oneonta, NY; Manh Dung Nguyen (student,
Special High School for Gifted Students), HUS, Vietnam; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.)

• 5054: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let x, y, z be positive numbers such that xyz = 1. Prove that

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
≥ 1.

Solution 1 by Ovidiu Furdui, Campia Turzii, Cluj, Romania

First we note that if a and b are two positive numbers then the following inequality holds

a2 − ab + b2

a2 + ab + b2
≥ 1

3
(1).

Let

S =
x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
.

We have,

S =
x3 − y3 + y3

x2 + xy + y2
+

y3 − z3 + z3

y2 + yz + z2
+

z3 − x3 + x3

z2 + zx + x2

= (x− y) +
y3

x2 + xy + y2
+ (y − z) +

z3

y2 + yz + z2
+ (z − x) +

x3

z2 + zx + x2

=
y3

x2 + xy + y2
+

z3

y2 + yz + z2
+

x3

z2 + zx + x2
.

It follows, based on (1), that

S =
1
2

(S + S)

=
1
2

(
x3 + y3

x2 + xy + y2
+

y3 + z3

y2 + yz + z2
+

z3 + x3

z2 + zx + x2

)
=

1
2

(
(x + y)

x2 − xy + y2

x2 + xy + y2
+ (y + z)

y2 − yz + z2

y2 + yz + z2
+ (z + x)

z2 − xz + x2

z2 + zx + x2

)
7



≥ 1
2

(
x + y

3
+

y + z

3
+

z + x

3

)
=

x + y + z

3
≥ 3
√

xyz = 1, and the problem is solved.

Solution 2 by Manh Dung Nguyen (student, Special High School for Gifted
Students) HUS, Vietnam

Firstly, we have,

∑ x3 − y3

(x2 + xy + y2)
=
∑ (x− y)(x2 + xy + y2)

(x2 + xy + y2)
=
∑

(x− y) = 0.

Hence, ∑ x3

x2 + xy + y2
=
∑ y3

x2 + xy + y2
.

So it suffices to show that, ∑ x3 + y3

x2 + xy + y2
≥ 2.

On the other hand,

3(x2 − xy + y2)− (x2 + xy + y2) = 2(x− y)2 ≥ 0.

Thus, ∑ x3 + y3

x2 + xy + y2
=
∑ (x + y)(x2 − xy + y2)

x2 + xy + y2
=
∑ x + y

3
=

2(x + y + z)
3

.

By the AM-GM Inequality, we have,

x + y + z ≥ 3 3
√

xyz = 3,

so we are done.
Equality hold if and only if x = y = z = 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It can be checked readily that,

x3

x2 + xy + y2
=

(2x− y)
3

+
(x + y)(x− y)2

3(x2 + xy + y2)
≥ (2x− y)

3
.

Similarly,
y3

y2 + yz + z2
≥ (2y − z)

3
,

z3

z2 + zx + x2
≥ (2z − x)

3
.

Hence by the arithmetic mean-geometric mean inequality, we have:

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2

≥ x + y + z

3

8



≥ 3
√

xyz

= 1.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie (jointly), San
Angelo, TX; Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Tuan Le (student, Fairmont High
School), Anaheim, CA; Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy; Boris Rays, Brooklyn, NY; Armend Sh. Shabani, Republic
of Kosova, and the proposer.

• 5055: Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania

Let α be a positive real number. Find the limit

lim
n→∞

n∑
k=1

1
n + kα

.

Solution 1 by Paolo Perfetti, Mathematics Department, University “Tor Vergata”,
Rome, Italy

Answer:

The limit is


0, if α > 1;
1, if 0 < α < 1;
ln 2, if α = 1.

Proof: Let α > 1.

Writing kα =
N∑

i=1

kα

N
, by the AGM we have

1
n + kα

=
1

n
2 + n

2 + kα

N + . . . + kα

N

≤ 1

n
2 +

(
n

2
kαN

NN

) 1
N+1

=
1

n
2 +

n
1

N+1 k
αN

N+1

2
1

N+1 N
N

N+1

≤ 1

n
1

N+1

1
2 +

k
αN

N+1

2
1

N+1 N
N

N+1



and we observe that αN/(N + 1) > 1 if N > 1/(α− 1). Thus we write

0 <
n∑

k=1

1
n + kα

≤ n−1/(N+1)
∞∑

k=1

1(
1
2 + k

αN
N+1

2
1

N+1 N
N

N+1

)
The series converges and the limit is zero.

Let α < 1. Trivially we have
n∑

k=1

1
n + kα

≤
n∑

k=1

1
n

= 1.

Moreover,
n∑

k=1

1
n + kα

≥
n∑

k=1

1
n

1
1 + kα

n

≥
n∑

k=1

1
n

(1− kα

n
) = 1−

n∑
k=1

kα

n2
≥ 1− n1+α

n2
,

9



1 ≥ (1− x2) has been used. By comparison the limit equals one since

1 ≤
n∑

k=1

1
n + kα

≤ 1− n1+α

n2

The last step is α = 1. We need the well known equality Hn ≈
n∑

k=1

1
k

= ln n + γ + o(1) and then

n∑
k=1

1
n + k

=
2n∑

k=n+1

(H2n −Hn) = ln(2n)− lnn + o(1) → ln 2

The proof is complete.

Solution 2 by David Stone and John Hawkins, Statesboro, GA

Below we show that for 0 < α < 1, the limit is 1; for α = 1, the limit is ln 2; and for α > 1, the
limit is 0.

For α = 1 we get ∫ 1

0

1
1 + u

du ≥
n∑

k=1

1
n + k

≥
∫ (n+1)/n

1/n

1
1 + u

du.

Since
1
2
≤ 1

1 + u
≤ 1, we know that the limit exists as n approaches infinity and is given by

lim
n→∞

n∑
k=1

1
n + kα

=
∫ 1

0

1
1 + u

du = ln(1 + u)
∣∣∣∣1
0

= ln 2− ln 1 = ln 2.

Next suppose α < 1. Then
0 < kα ≤ nα for 1 ≤ k≤n, so

n < n + kα ≤ n + nα and

1
n + nn

≤ 1
n + kα

<
1
n

. Thus,

n∑
k=1

1
n + nα

≤
n∑

k=1

1
n + kα

<
n∑

k=1

1
n

= 1, or

n

n + nα
≤

n∑
k=1

1
n + kα

< 1. Hence,

lim
n→∞

n

n + nα
≤ lim

n→∞

n∑
k=1

1
n + kα

≤ 1

lim
n→∞

1
1 + αnα−1

≤ lim
n→∞

n∑
k=1

1
n + kα

≤ 1. But,

lim
n→∞

1
1 + αnα−1

= 1, since α− 1 < 0. Therefore,

lim
n→∞

n∑
k=1

1
n + kα

= 1.

Finally, suppose α > 1.
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We note that
1

n + kα
is a decreasing function of k and as a result we can write

0 ≤
∞∑

k=1

1
n + kα

≤
∫ n

0

1
n + kα

dk =
1
n

∫ 1

0

1

1 +
kn

nα/α

dk.

Using the substitution u =
k

u1/α
with du =

1
n1/α

dk, the above becomes,

0 ≤
n∑

k=1

1
n + kα

≤ n1/α

n

∫ n(n−1)/n

0

1
1 + uα

du =
1

n(α−1)/α

∫ n(n−1)/α

0

1
1 + uα

du

≤ 1
n(α−1)/α

∫ n

0

1
1 + uα

du

≤ 1
n(α−1)α

∫ 1

0

1
1 + uα

du +
1

n(α−1)/α

∫ n

1

1
1 + uα

du

≤ 1
n(α−1)/α

(1) +
1

n(α−1)/α

∫ n

1

1
1 + u

du

=
1

n(α−1)/α
(1) +

1
n(α−1)/α

(1)
[
ln(1 + n)− ln 2

]
.

That is,

0 ≤ lim
n→∞

n∑
k=1

1
n + kα

≤ lim
n→∞

1
n(α−1)/α

+ lim
n→∞

ln
(

n+1
2

)
n(α−1)/α

.

Using L’Hospital’s rule repeatedly we get,

lim
n→∞

1
n(α−1)/α

+ lim
n→∞

ln
(

n+1
2

)
n(α−1)/α

= 0 + lim
n→∞

2
n+1(

α−1
α

)
n−1/α

= lim
n→∞

2αn1/α

(α− 1)(n + 1)

= lim
n→∞

2
(α− 1)(n)1−1/α

= 0.

Thus, lim
n→∞

n∑
k=1

1
n + kα

= 0 for α > 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that lim
n→∞

n∑
k=1

1
n + kα

=


1, 0 < α < 1;
ln 2, α = 1;
0, α > 1.

For 0 < α < 1, we have

11



1
1 + nα−1

=
n∑

k=1

1
n + nα

≤
n∑

k=1

1
n + kα

<
n∑

k=1

1
n

= 1 and so lim
n→∞

n∑
k=1

1
n + kα

= 1.

For α = 1 we have

lim
n→∞

n∑
k=1

1
n + kα

= lim
n→∞

n∑
k=1

1
n + k

= lim
n→∞

n∑
k=1

1
n

1
(1 + k/n)

=
∫ 1

0

dx

1 + x
= ln 2.

For α > 1, let t be any real number satisfying
1
α

< t < 1 and let m = bntc.

We have

0 <
n∑

k=1

1
n + kα

=
m∑

k=1

1
n + kα

+
n∑

k=m+1

1
n + kα

<
m

n
+

n−m

(m + 1)α
≤ 1

n1−t
+

1
nαt−1

,

which tends to 0 as n tends to infinity. It follows that lim
n→∞

n∑
k=1

1
n + kα

= 0.

This completes the solution.

Also solved by Valmir Krasniqi, Prishtina, Kosova, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2009

• 5074: Proposed by Kenneth Korbin, New York, NY

Solve in the reals: √
25 + 9x + 30

√
x−

√
16 + 9x + 30

√
x− 1 =

3
x
√

x
.

• 5075: Proposed by Kenneth Korbin, New York, NY

An isosceles trapezoid is such that the length of its diagonal is equal to the sum of the
lengths of the bases. The length of each side of this trapezoid is of the form a + b

√
3

where a and b are positive integers.
Find the dimensions of this trapezoid if its perimeter is 31 + 16

√
3.

• 5076: Proposed by M.N. Deshpande, Nagpur, India

Let a, b, and m be positive integers and let Fn satisfy the recursive relationship

Fn+2 = mFn+1 + Fn, with F0 = a, F1 = b, n ≥ 0.

Furthermore, let an = F 2
n + F 2

n+1, n ≥ 0. Show that for every a, b, m, and n,

an+2 = (m2 + 2)an+1 − an.

• 5077: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all triplets (x, y, z) of real numbers such that

xy(x + y − z) = 3,
yz(y + z − x) = 1,
zx(z + x− y) = 1.


• 5078: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”

Rome, Italy

Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

a√
b(b + c)

+
b√

c(a + c)
+

c√
a(a + b)

≥ 3
2

1√
ab + ac + cb

.
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• 5079: Proposed by Ovidiu Furdui, Cluj, Romania

Let x ∈ (0, 1) be a real number. Study the convergence of the series

∞∑
n=1

x
sin

1
1

+ sin
1
2

+ · · ·+ sin
1
n .

Solutions

• 5056: Proposed by Kenneth Korbin, New York, NY

A convex pentagon with integer length sides is inscribed in a circle with diameter
d = 1105. Find the area of the pentagon if its longest side is 561.

Solution by proposer

The answer is 25284.

The sides are 561, 169, 264, 105, and 47 (in any order).

Check: arcsin
(

561
d

)
= arcsin

(
169
d

)
+ arcsin

(
264
d

)
+ arcsin

(
105
d

)
+ arcsin

(
47
d

)
.

Let AB = 561, BC = 105, CD = 47, DE = 169, EA = 264. Then Diag AC = 468.

Check: arcsin
(

468
d

)
= arcsin

(
47
d

)
+ arcsin

(
169
d

)
+ arcsin

(
264
d

)
.

Area 4ABC =
√

567 · 99 · 462 · 6 = 12474.

Diag AD = 425.

Check: arcsin
(

425
d

)
= arcsin

(
169
d

)
+ arcsin

(
264
d

)
.

Area 4ACD =
√

470 · 45 · 423 · 2 = 4230, and
Area 4ADE =

√
429 · 260 · 165 · 4 = 8580.

Area pentagon = 12474 + 4230 + 8580 = 25284.

Editor’s comments: Several solutions to this problem were received each claiming, at
least initially, that the problem was impossible. I sent these individuals Ken’s proof and
some responded with an analysis of their errors. Brian Beasley of Clinton, SC
responded as follows:

“My assumption was that the inscribed pentagon was large enough to contain the center
of the circle, so that I could subdivide the pentagon into five isosceles triangles, each
with two radii as sides along with one side of the pentagon. But this pentagon is very
small compared to the circle; it does not contain the center of the circle, and the ratio of
its area to the area of the circle is only bout 2.64%. Attached is a rough diagram with
two attempts to draw such an inscribed pentagon.”
“This has been a fascinating exercise! I found a Wolfram site and a Monthly paper with
results about cyclic pentagons: <http://mathworld.wolfram.com/CyclicPentagon.html>
and Areas of Polygons Inscribed in a Circle, by D. Robbins, American Mathematical
Monthly, 102(6), 1995, 523-530.”
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“I salute Ken for creating this problem and for finding the arcsine identities to make it
work.”

David Stone and John Hawkins of Statesboro GA wrote: “Using MATLAB, we
found the following four cyclic pentagons which have a side of length 561 and can be
inscribed in a circle of diameter 1105. The first one has longest side 561, as required by
the problem.”

561 264 169 105 47 Area = 25284
817 663 663 561 520 Area = 705276
817 744 576 561 520 Area = 699984
817 744 663 561 425 Area = 692340

• 5057: Proposed by David C. Wilson, Winston-Salem, N.C.

We know that 1 + x + x2 + x3 + · · · =
∞∑

k=0

xk =
1

1− x
where −1 < x < 1.

Find formulas for
∞∑

k=1

kxk,
∞∑

k=0

k2xk,
∞∑

k=0

k3xk,
∞∑

k=0

k4xk, and
∞∑

k=0

k5xk.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

By differentiating the geometric series when |x| < 1,

∞∑
k=1

xk =
1

1− x

⇒
∞∑

k=1

kxk−1 =
1

(1− x)2

⇒
∞∑

k=1

kxk =
x

(1− x)2
(1)

Similarly, by differentiating (1),

∞∑
k=1

k2xk−1 =
1 + x

(1− x)3

⇒
∞∑

k=1

k2xk =
x(1 + x)
(1− x)3

.

Continuing this technique, it can be shown that

∞∑
k=1

k3xk =
x(x2 + 4x + 1)

(1− x)4
∞∑

k=1

k4xk =
x(x3 + 11x2 + 11x + 1)

(1− x)5
∞∑

k=1

k5xk =
x(x4 + 26x3 + 66x2 + 26x + 1)

(1− x)6

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy
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The sums are respectively:

x

(1− x)2
,

x(x + 1)
(1− x)3

,
x(x2 + 4x + 1)

(1− x)4
,

x(x3 + 11x2 + 11x + 1)
(1− x)5

,
x(x4 + 26x3 + 66x2 + 26x + 1)

(1− x)6

One might invoke standard theorems about the differentiability of convergent power
series, but we propose the following proof which we believe is attributed to Euler.
We define

Sp(x) .=
∞∑

k=1

kpxk, p = 1, . . . , 5 and employ
∞∑

k=1

xk =
( ∞∑

k=0

xk
)
− 1 =

1
1− x

− 1 =
x

1− x
.

To compute
∞∑

k=0

xk − 1 =
1

1− x
we proceed as follows:

P
.=
∞∑

k=0

xk = 1 + x(1 + x + x2 + . . .) = 1 + xP =⇒ P =
1

1− x
.

S1(x) :

∞∑
k=1

kxk =
∞∑

k=2

(k − 1)xk +
∞∑

k=0

xk − 1 = x
∞∑

n=1

nxn +
1

1− x
− 1 or

(1− x)
∞∑

k=1

kxk =
x

1− x
=⇒

∞∑
k=1

kxk =
x

(1− x)2
.

S2(x) :

∞∑
k=1

k2xk =
∞∑

k=2

(k − 1)2xk + 2
∞∑

k=1

kxk −
∞∑

k=1

xk or

∞∑
k=1

k2xk − x
∞∑

n=1

n2xn = 2
∞∑

k=1

kxk −
∞∑

k=1

xk

=
2x

(1− x)2
− x

(1− x)
=⇒ S2(x) =

x(x + 1)
(1− x)3

.

S3(x) :

∞∑
k=1

k3xk =
∞∑

k=2

(k − 1)3xk + 3
∞∑

k=1

k2xk − 3
∞∑

k=1

kxk +
∞∑

k=1

xk

= x
∞∑

k=1

k3xk + 3
∞∑

k=1

k2xk − 3
∞∑

k=1

kxk +
∞∑

k=1

xk or

(1− x)
∞∑

k=1

k3xk = 3S2(x)− 3S1(x) +
x

1− x
=⇒ S3(x) =

x(x2 + 4x + 1)
(1− x)4

.

S4(x) :
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∞∑
k=1

k4xk =
∞∑

k=2

(k − 1)4xk + 4
∞∑

k=1

k3xk − 6
∞∑

k=1

k2xk + 4
∞∑

k=1

kxk −
∞∑

k=1

xk

= x
∞∑

k=1

k4xk + 4
∞∑

k=1

k3xk − 6
∞∑

k=1

k2xk + 4
∞∑

k=1

kxk −
∞∑

k=1

xk or

(1−x)
∞∑

k=1

k4xk = 4S3(x)− 6S2(x)+4S1(x)− x

1− x
=⇒ S4(x) =

x(x3 + 11x2 + 11x + 1)
(1− x)5.

S5(x) :

∞∑
k=1

k5xk =
∞∑

k=2

(k − 1)5xk + 5
∞∑

k=1

k4xk − 10
∞∑

k=1

k3xk + 10
∞∑

k=1

k2xk − 5
∞∑

k=1

kxk +
∞∑

k=1

xk

= x
∞∑

k=1

k5xk + 5S4(x)− 10
∞∑

k=1

k3xk + 10
∞∑

k=1

k2xk − 5
∞∑

k=1

kxk +
∞∑

k=1

xk or

(1− x)
∞∑

k=1

k5xk = 5S4(x)− 10S3(x) + 10S2(x)− 5S1(x) +
x

1− x

=⇒ S5(x) =
x(x4 + 26x3 + 66x2 + 26x + 1)

(1− x)6
.

Also solved by Matei Alexianu (student, St. George’s School), Spokane,WA;
Brian D. Beasley, Clinton, SC; Sully Blake (student, St. George’s School),
Spokane,WA; Michael Brozinsky, Central Islip, NY; Mark Cassell (student,
St. George’s School), Spokane,WA; Richard Caulkins (student, St. George’s
School), Spokane,WA; Pat Costello, Richmond, KY; Michael C. Faleski,
University Center, MI; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
Harms, North Newton, KS; John Hawkins and David Stone (jointly),
Statesboro, GA; David E. Manes, Oneonta, NY; John Nord, Spokane, WA;
Nguyen Pham and Quynh Anh (jointly; students, Belarusian State
University), Belarus; Boris Rays, Brooklyn, NY, and the proposer.

• 5058: Proposed by Juan-Bosco Romero Márquez, Avila, Spain.

If p, r, a,A are the semi-perimeter, inradius, side, and angle respectively of an acute
triangle, show that

r + a ≤ p ≤ p

sinA
≤ p

tan
A

2

,

with equality holding if, and only if, A = 90o.

Solution by Manh Dung Nguyen,(student, Special High School for Gifted
Students) HUS, Vietnam
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1) r + a ≤ p :

tan
A

2
≤ 1 for all A ∈ (0, π/2], so by the well known formula tan

A

2
=

(p− b)(p− c)
p(p− a)

we

have (p− b)(p− c) ≤ p(p− a). Letting S be the area of 4ABC and using Heron’s
formula,

S2 = p2r2 = p(p− a)(p− b)(p− c) ≤ p2(p− a)2. Thus

r ≤ p− a or r + a ≤ p.

2) p ≤ p
sinA

:

We have sinA ≤ 1 for all A ∈ (0, π), so p ≤ p

sinA
.

3)
p

sinA
≤ p

tan
A
2

:

For A ∈ (0, π/2] we have

sinA− tan
A

2
= sin

A

2

(
2 cos

A

2
− 1

cos
A

2

)
=

sin
A

2
cos A

cos
A

2

≥ 0. Hence

p

sinA
≤ p

tan
A

2

.

Equality holds if and only if A = 900.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Scott H. Brown, Montgomery, AL; Bruno
Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; John
Hawkins and David Stone (jointly), Statesboro, GA; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

• 5059: Proposed by Panagiote Ligouras, Alberobello, Italy.

Prove that for all triangles ABC

sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 6

√
3 + 1
8

.

Editor’s comment: Many readers noted that the inequality as stated in the problem is

incorrect. It should have been
3(2

√
3 + 1)
2

.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We need the following inequalities

sin(A) + sin(B) + sin(C) ≥ sin(2A) + sin(2B) + sin(2C) (1)

sin(A) + sin(B) + sin(A) ≤ 3
√

3
2

(2)

6



sin(
A

2
) + sin(

B

2
) + sin(

C

2
) ≤ 3

2
(3)

Inequalities (1), (2), (3) appear respectively as inequalities 2.4, 2.2(1),and 2.9 in
Geometric Inequalities by O. Bottema, R.Z. Dordevic, R.R. Janic, D.S. Mitrinovic, and
P.M. Vasic, (Groningen), 1969.

It follows from (1),(2),(3) that

sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 3(2

√
3 + 1)
2

.

Solution 2 by John Hawkins and David Stone, Statesboro, GA

We treat this as a Lagrange Multiplier Problem: let

f(A,B, C) = sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
.

We wish to find the maximum value of this function of three variables, subject to the
constraint g(A,B, C) : A + B + C = π. That is, (A,B, C) lies in the closed, bounded,
triangular region in the first octant with vertices on the coordinate axes:
(π, 0, 0), (0, π, 0), (0, 0, π).

By taking partial derivatives with respect to the variables A,B, and C and setting

∇f(A,B, C) = λ∇g(A,B, C) or
〈

fA, fB, fC

〉
= λ

〈
gA, gB, gC

〉
= λ〈1, 1, 1〉, we are lead

to the system 

2 cos(2A) + cos(A) + 1
2 cos

(
A

2

)
= λ

2 cos(2B) + cos(B) + 1
2 cos

(
B

2

)
= λ

2 cos(2C) + cos(C) + 1
2 cos

(
C

2

)
= λ

It is clear that one solution is to let A = B = C. We claim there are no others in our
domain.

To show this, we investigate the fuction h(θ) = 2 cos(2θ) + cos(θ) +
1
2

cos
(

θ

2

)
on the

interval 0 ≤ θ ≤ π. Finding a solution to our system is equivalent to finding values A,B
and C such that h(A) = h(B) = h(C) = λ.

We determine that h(0) = 3.5; then the function h decreases, passing through height 1
at (0.802,1), reaching a minimum at (1.72,−1.73), then rising to height 1 at π. No
horizontal line crosses the graph three times, so we cannot find distinct A,B and C with
h(A) = h(B) = h(C). In fact, because the function is decreasing from 0 to 1.72, and
increasing from 1.72 to π, any horizontal line crossing the graph more than once must
do so after θ = 0.802. That is all of A,B and C would have to be greater than 0.802,
and at least one of them greater than 1.72. Because 0.802 + 0.802 + 1.72 = 3.324 > π,
this violates the condition that A + B + C = π.
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Thus the maximum value occurs when A = B = C =
π

3
:

f

(
π

3
,
π

3
,
π

3

)
= 3 sin

(
2π

3

)
+ 3 sin

(
π

3

)
+ 3 sin

(
π

6

)
= 6

√
3

2
+

3
2

=
6
√

3 + 3
2

.

This method tells us that the only point on the plane A + B + C = π (in the first
octant) where the function f achieves a maximum value is the point we just found. We
must check the boundaries for a minimum.

Note that f(π, 0, 0) = 1 = f(0, π, 0) = f(0, 0, π). That is f achieves the lower bound 1 at
the vertices of our triangular region.

We also consider the behavior of the function f along the edges of this region. For
instance, in the AB-plane where C = 0, we have A + B = π. Then

f(A, π −A, 0) = 2 sinA + sin
(

A

2

)
+ cos

(
A

2

)
, which has value 1 (of course) at the

endpoints A = 0 and A = π, and climbs to a local maximum value of 2 +
√

2 when

A =
π

2
. This value is less than f

(
π

3
,
π

3
,
π

3

)
.

There is identical behavior along the other two edges.

In summary, the function f achieves an absolute maximum of
6
√

3 + 3
2

at the interior

point A = B = C =
π

3
, and f achieves its absolute minimum of 1 at the vertices.

However, for a non-degenerate triangle ABC

1 < sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin
(

A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 6

√
3 + 3
2

,

and the lower bound is never actually achieved.

Solution 3 by Tom Leong, Scranton, PA

This inequality follows from summing the three known inequalities labeled (1), (2), and
(3) below. Both sinx and sin

x

2
are concave down on (0, π). Applying the AM-GM

inequality followed by Jensen’s inequality gives

sinA sinB sinC ≤
(

sinA + sinB + sinC

3

)3

≤ sin3
(

A + B + C

3

)
=

3
√

3
8

(1)

and

sin
A

2
sin

B

2
sin

C

2
≤

sin
A

2
+ sin

B

2
+ sin

C

2
3


3

≤ sin3
(

A + B + C

6

)
=

1
8
. (2)

For the third inequality, we use the AM-GM inequality along with the identity

sin 2A + sin 2B + sin 2C = 4 sin A sin B sinC

and (1):

sin 2A sin 2B sin 2C ≤
(

sin 2A + sin 2B + sin 2C

3

)3

=
(

4 sinA sin B sinC

3

)3
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≤
(

4
3
· 3
√

3
8

)3

=
3
√

3
8

. (3)

Equality occurs if and only if A = B = C = π/3 as it does in every inequality used
above.

Also solved by Brian D. Beasley, Clinton, SC; Scott H. Brown, Montgomery,
AL; Michael Brozinsky, Central Islip, NY; Elsie Campbell, Dionne Bailey,
and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Manh Dung Nguyen (student, Special High School for Gifted
Students) HUS, Vietnam; Boris Rays, Brooklyn, NY, and the proposer.

• 5060: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Show that there exists c ∈ (0, π/2) such that∫ c

0

√
sinx dx + c

√
cos c =

∫ π/2

c

√
cos x dx + (π/2− c)

√
sin c

Solution 1 by Paul M. Harms, North Newton, KS

Let

f(x) =
∫ x

0

√
sin t dt + x

√
cos x−

∫ π/2

x

√
cos t dt− (

π

2
− x)

√
sinx where x ∈ [0, π/2].

For x ∈ [0, π/2], each term of f(x) is continuous including the integrals of continuous
functions. Then f(x) is continuous for x ∈ [0, π/2]. For any x ∈ [0, π/2], the two
integrals of nonnegative functions are positive except when the lower limit equals the
upper limit. We have

f(0) = −
∫ π/2

0

√
cos t dt < 0 and f(π/2) =

∫ π/2

0

√
sin t dt > 0.

Since f(x) is continuous for x ∈ [0, π/2], f(0) < 0 and f(π/2) > 0, there is at least one
c ∈ (0, π/2) such that

f(c) = 0 =
∫ c

0

√
sin t dt + c

√
cos c−

∫ π/2

c

√
cos t− (π/2− c)

√
sin c.

This last equation is equivalent to the equation in the problem.

Solution 2 by Michael C. Faleski, University Center, MI

The given equation will hold if the integrals and their constants of integration are the
same on each side of the equality.

For the integral
∫ c

0

√
sinxdx we substitute x =

π

2
− y to obtain

∫ c

0

√
sinxdx =

∫ π/2−c

π/2

√
sin
(

π

2
− y

)
(−dy) =

∫ π/2

π/2−c

√
cos ydy.

We substitute this into the original statement of the problem and equate the integrals

9



on each side of the equation.∫ π/2

π/2−c

√
cos ydy =

∫ π/2

c

√
cos ydy

For equality to hold the lower limits of integration must be the same; that is,
π

2
− c = c =⇒ c =

π

4
We now check the constants of integration on each side of the equality when c =

π

4
, and

we see that they are equal.
π

4

(
1√
2

)1/2

=
π

4

(
1√
2

)1/2

Hence, the value of c =
π

4
satisfies the original equation.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie, and
Andrew Siefker (jointly), San Angelo, TX; Brian D. Beasley, Clinton, SC;
Bruno Salgueiro Fanego, Viveiro, Spain; Ovidiu Furdui, Cluj, Romania;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Nguyen
Pham and Quynh Anh (jointly; students, Belarusian State University),
Belarus; Angel Plaza, Las Palmas, Spain; Paolo Perfetti, Mathematics
Department, University “Tor Vergata,” Rome, Italy; David Stone and John
Hawkins (jointly) Statesboro, GA , and the proposer.

• 5061: Michael P. Abramson, NSA, Ft. Meade, MD.

Let a1, a2, . . . , an be a sequence of positive integers. Prove that
n∑

im=1

im∑
im−1=1

· · ·
i2∑

i1=1

ai1 =
n∑

i=1

(
n− i + m− 1

m− 1

)
ai.

Solution by Tom Leong, Scranton, PA

We treat the a’s as variables; they don’t necessarily have to be integers. Fix an i,
1 ≤ i ≤ n, and imagine completely expanding all the sums on the lefthand side. We wish
to show that, in this expansion, the number of times that the term ai appears is(

n− i + m− 1
m− 1

)
. Now each term in this expansion corresponds to some m-tuple of

indices in the set

I = {(i1, i2, . . . , im) : 1 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n}.

We want to count the number of elements of I of the form (i, i2, . . . , im). Equivalently,
using the one-to-one correspondence between I and

J = {(j1, j2, . . . , jm) : 1 ≤ j1 < j2 < · · · < jm ≤ n + m− 1}

given by

(i1, i2, . . . , im) ↔ (j1, j2, . . . , jm) = (i1, i2 + 1, i3 + 2 . . . , im + m− 1),

we wish to count the number elements of J of the form (i, j2, . . . , jm). This number is
simply the number of (m− 1)-element subsets of {i + 1, i + 2, . . . , n + m− 1} which is

just

(
n− i + m− 1

m− 1

)
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2010

• 5080: Proposed by Kenneth Korbin, New York, NY

If p is a prime number congruent to 1 (mod4), then there are positive integers a, b, c,
such that

arcsin
(

a

p3

)
+ arcsin

(
b

p3

)
+ arcsin

(
c

p3

)
= 90o.

Find a, b, and c if p = 37 and if p = 41, with a < b < c.

• 5081: Proposed by Kenneth Korbin, New York, NY

Find the dimensions of equilateral triangle ABC if it has an interior point P such that
PA = 5, PB = 12, and PC = 13.

• 5082: Proposed by David C. Wilson, Winston-Salem, NC

Generalize and prove:

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

n(n + 1)
= 1− 1

n + 1
1

1 · 2 · 3
+

1
2 · 3 · 4

+ · · ·+ 1
n(n + 1)(n + 2)

=
1
4
− 1

2(n + 1)(n + 2)
1

1 · 2 · 3 · 4
+

1
2 · 3 · 4 · 5

+ · · ·+ 1
n(n + 1)(n + 2)(n + 3)

=
1
18
− 1

3(n + 1)(n + 2)(n + 3)
1

1 · 2 · 3 · 4 · 5
+ · · ·+ 1

n(n + 1)(n + 2)(n + 3)(n + 4)
=

1
96
− 1

4(n + 1)(n + 2)(n + 3)(n + 4)

• 5083: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let α > 0 be a real number and let f : [−α, α] → < be a continuous function two times
derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α). Prove that the
sequence {xn}n≥1 defined by

xn =


n∑

k=1

f

(
k

n2

)
, n >

1
α

;

0, n ≤ 1
α

is convergent and determine its limit.

1



• 5084: Charles McCracken, Dayton, OH

A natural number is called a “repdigit” if all of its digits are alike.
Prove that regardless of positive integral base b, no natural number with two or more
digits when raised to a positive integral power will produce a repdigit.

• 5085: Proposed by Valmir Krasniqi, (student, Mathematics Department,) University of
Prishtinë, Kosova

Suppose that ak, (1 ≤ k ≤ n) are positive real numbers. Let ej,k = (n− 1) if j = k and
ej,k = (n− 2) otherwise. Let dj,k = 0 if j = k and dj,k = 1 otherwise.

Prove that
n∏

j=1

n∑
k=1

ej,ka
2
k ≥

n∏
j=1

( n∑
k=1

dj,kak

)2

.

Solutions

• 5062: Proposed by Kenneth Korbin, New York, NY.

Find the sides and the angles of convex cyclic quadrilateral ABCD if
AB = BC = CD = AD − 2 = AC − 2.

Solution 1 by David E. Manes, Oneonta, NY

Let x = AB = BC = CD and let y = BD. Then AD = AC = x + 2.

Let α = 6 CAB, β = 6 ABD, and γ = 6 DBC. Finally, in quadrilateral ABCD, we
denote the angle at vertex A by 6 A and similarly for the other three vertices. Then
AB = BC implies α = 6 BCA. Since angles inscribed in the same arc are congruent, it
follows that

α = 6 CAB = 6 CDA,
α = 6 BCA = 6 BDA,
β = 6 ABD = 6 ACD, and
γ = 6 DBC = 6 DAC

Therefore,

6 A = α + γ, 6 B = β + γ, 6 C = α + β and 6 D = 2α = β since AC = AD .

From Ptolemy’s Theorem, one obtains

AC ·BD = AB · CD + AD ·BC or
(x + 2)y = x2 + x(x + 2)

y =
2x(x + 1)

x + 2
.

In triangles ACD and BCD, the law of cosines implies cos γ =
2(x + 2)2 − x2

2(x + 2)2
and

cos γ =
y

2x
=

x + 1
x + 2

respectively. Setting the two values equal yields the quadratic

equation x2 − 2x− 4 = 0 with positive solution x = 1 +
√

5. Hence,

AB = BC = CD = 1 +
√

5 and AD = 3 +
√

5 .

2



Moreover, note that

cos γ =
x + 1
x + 2

=
2 +

√
5

3 +
√

5
=

1 +
√

5
4

implies that

γ = arccos
(

1 +
√

5
4

)
= 360

In 4ACD, γ + β + 2α = 180o or γ + 2β = 1800 so that β =
1800 − 360

2
= 720 and

α = β/2 = 360.

Therefore,

6 A = α + γ = 720 = 2α = 6 D and

6 B = β + γ = 1080 = α + β = 6 C.

Solution 2 by Brian D. Beasley, Clinton, SC

We let a = AB, b = BC, c = CD, d = AD, p = BD and q = AC. Then
a = b = c = d− 2 = q − 2. According to the Wolfram MathWorld web site [1], for a
cyclic quadrilateral, we have

pq = ac + bd (Ptolemy′sTheorem) and q =

√
(ac + bd)(ad + bc)

ab + cd
.

Thus a + 2 =
√

2a2 + 2a, so the only positive value of a is a = 1 +
√

5. Hence
a = b = c = 1 +

√
5 and d = p = q = 3 +

√
5. Using the Law of Cosines, it is

straightforward to verify that 6 ABC = 6 BCD = 108◦ and 6 CDA = 6 DAB = 72◦.

[1] Weisstein, Eric W. “Cyclic Quadrilateral.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/CyclicQuadrilateral.html

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

We show that the sides are 1 +
√

5, 1 +
√

5, 1 +
√

5, 3 +
√

5 and the angles are
1080, 720, 720, 1080.

Let α = AB = BC = CD = AD − 2 = AC − 2, β = 6 CBA and R the circumradius of
ABCD.

By solution 1 of SSM problem 4961,

R =
1
4

√
[aa + a(a + 2)][a(a + 2) + aa][aa + a(a + 2)]

(2a + 1− a)(2a + 1− a)(2a + 1− a)[2a + 1− (a + 2)]
=

a

2

√
2a

a− 1
.

From this and the generalized sine theorem in 4ABC,

a

2R
= sin

(
1800 − β

2

)
=⇒ cos

(
β

2

)
=

√
a− 1
2a

.

By the law of cosines in 4ABC,

cos β =
a2 + a2 − (a + 2)2

2a2
=⇒ cos

(
β

2

)
=

√
1 + cos β

2
=
√

3a2 − 4a− 4
2a

.

3



Hence, √
a− 1
2a

=
√

3a2 − 4a− 4
2a

=⇒ a2 − 2a− 4 = 0 =⇒ a = 1 +
√

5 = 2φ,

so the sides are

AB = BC = CD = 1 +
√

5 and AD = a + 2 = 3 +
√

5 .

Then β = 2arccos

√ √
5

2(1 +
√

5)
= 1080, so the angles are

6 CBA = 1080, 6 DCB = 6 CBA = 1080, 6 ADC = 1800− 1080 = 720 and 6 BAD = 720.

Also solved by Michael Brozinsky, Central Islip, NY; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Charles McCracken, Dayton,
OH; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5063: Proposed by Richard L. Francis, Cape Girardeau, MO.

Euclid’s inscribed polygon is a constructible polygon inscribed in a circle whose
consecutive central angle degree measures form a positive integral arithmetic sequence
with a non-zero difference.

a) Does Euclid’s inscribed n-gon exist for any prime n greater than 5?
b) Does Euclid’s n-gon exist for all composite numbers n greater than 2?

Solution by Joseph Lupton, Jacob Erb, David Ebert, and Daniel Kasper,
students at Taylor University, Upland, IN

a) For an inscribed polygon to fit this description, there has to be an arithmetic
sequence of positive integers where the number of terms in the sequence is equal to the
number of sides of the polygon and the terms sum to 360. So if the first term is f and
the constant difference between the terms is d, the sum of the terms is

f · n +
n(n− 1)

2
d = 360.

Thus, f · n +
n(n− 1)

2
d = 360 =⇒ n

∣∣∣∣360. That is, n is a prime number greater than five

and n

∣∣∣∣23 · 33 · 5. But there is no prime number greater than five that divides 360. So

there is no Euclidean polygon that can be inscribed in a circle whose consecutive central
angle degree measures form a positive integral arithmetic sequence with a non-zero
difference.

b) Euclid’s inscribed n-gon does not exist for all composite numbers greater than two.
Obviously, if n gets too large, then the terms n(n−1)

2 d will be greater than 360 even if
d = 1 which is the minimal d allowed. There is no Eculidean inscribed n-gon for n = 21.

If there were, the the sum of central angles would be f · n + n · d · n− 1
2

implies that 21
divides 360. Similarly, there is no 14-gon for if there were, it would imply that 7 divides
360.

• Comments and elaborations by David Stone and John Hawkins, Statesboro
GA
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We note that this problem previously appeared as part of Problem 4708 in this journal
in March, 1999; however the solution was not published. Also, a Google search on the
internet turned up a paper by the proposer in the Bulletin of the Malaysian
Mathematical Sciences Society in which the answer to both questions is presented as
being “no”. {See “The Euclidean Inscribed Polygon” (Bull. Malaysian Math Sc. Soc
(Second series) 27 (2004), 45-52).}
David and John solved the problem and then elaborated on it by considering the
possibility that the inscribed polygon many not enclose the center of the circle. And it is
here that things start to get interesting.

(In the case where the inscribed polygon does not include the center of the circle, and
letting a be the first term in the arithmetic sequence and d the common difference, they
noted that the largest central angle must be the sum of the previous n− 1 central
angles, and they proceeded as follows:)

a + (n− 1)d = Sn−1 =
n− 1

2

(
2a + (n− 2)d

)
or

2a + 2(n− 1)d = 2a(n− 1) + (n− 1)(n− 2)d or

2a(n− 2) = −(n− 1)(n− 4)d.

For n = 3, this happens exactly when a = d; although n = 3 is of no concern for the
stated problem, we shall return to this case later.

For n ≥ 4, this condition is never satisfied because the left-hand side is positive and the
right-hand side ≤ 0.

David and John then determined all Euclidean inscribed n-gons as follows:

The cited paper by the poser points out that 30 is the smallest constructible angle of
positive integral degree. In fact, it is well known that an angle is constructible if, and
only if, its degree measure is an integral multiple of 30. This implies that a and d must
both be multiples of 3. We wish to find all solutions of the Diophantine equation
(1) n(2a + (n− 1)d) = 24 · 32 · 5, where a and d are multiples of 3.

Letting a = 3A and d = 3D, the above equation becomes

(2) n

(
2A + (n− 1)D

)
= 24 · 3 · 5 = 240, so n must be a divisor of 240.

Moreover, the cofactor 2A + (n− 1)D is bounded below. That is

2A + (n− 1)D ≥ 2 + (n− 1) = n + 1. So

240
n

= 2A + (n− 1)D ≥ 1, and

n(n + 1) ≤ 240.

These conditions allow only n = 3, 4, 5, 6, 8, 10, 12, and 15.
First we show that n = 12 fails. For in this case (2) becomes

12(2A + 11D) = 240, or
2A + 11D = 20,

5



and this linear Diophantine equation has no positive solutions.

All other possible values of n do produce corresponding Euclidean n−gons.

The case n = 3 is perhaps the most interesting. There are twenty triangles inscribed in
semi-circle: (3A, 6A, 9A) for A = 1, 2, . . . 20, each having a = d, and nineteen more
triangles which properly enclose the center of the circle: (3t, 120, 240− 3t), for
t = 21, 22, . . . , 39, each with d = 120− a.

We consider in detail the case n = 4, in which case Equation (2) becomes
4(2A + 3D) = 24 · 3 · 5, or 2A + 3D = 60. The solution of this Diophantine equation is
given by {

A = 3t
D = 20− 2t

where the integer parameter t satisfies 0 < t < 10.

We exhibit the results in tabular form, with all angles in degrees:

t A a = 3A D d = 3D Central angles of inscribed quarilateral
1 3 9 18 54 9, 63, 117, 171
2 6 18 16 48 18, 66, 114, 162
3 9 27 14 42 27, 69, 111 153
4 12 36 12 36 36, 72, 108, 144
5 15 45 10 30 45, 75, 105, 135
6 18 54 8 24 54, 78, 102, 126
7 21 63 6 18 63, 81, 99, 117
8 24 72 4 12 72, 84, 96, 108
9 27 81 2 6 81, 87, 93, 99

That is, the central angles are (9t, 60 + 3t, 120− 3t, 180− 9t) for t = 1, 2, . . . , 9. Thus
we have nine Euclidean inscribed quadrilaterals.

Similarly for n = 5, we have eleven Euclidean inscribed pentagons, with central angles
(6t, 36 + 3t, 72, 108− 3t, 144− 6t) for t = 1, 2, . . . , 11.

Similarly for n = 6, we have three Euclidean inscribed hexagons, with central angles
(45, 51, 57, 63, 75), (30, 42, 54, 66, 78, 90) and (15, 33, 52, 69, 105).

For n = 8, we have two Euclidean inscribed octagons with central angles
(24, 30, 36, 42, 48, 54, 60, 66) and (3, 15, 27, 39, 51, 63, 75, 87).

For n = 10, we have one Euclidean inscribed decagon, with central angles
(9, 15, 21, 27, 33, 39, 45, 51, 57, 63).

For n = 15, we have one Euclidean inscribed 15-gon with central angles
(3, 6, 9, 12, 15, 18, 21, 24 27, 30, 33, 36, 39, 42, 45).

There is a grand total of 66 Euclidean inscribed n-gons!

A final note: If n(n + 1) divides 240, then a = d = 3
240

n(n + 1)
=

720
n(n + 1)

produces a

Euclidean inscribed n−gon.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Boris Rays,
Brooklyn, NY, and the proposer.

• 5064: Proposed by Michael Brozinsky, Central Islip, NY.
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The Lemoine point of a triangle is that point inside the triangle whose distances to the
three sides are proportional to those sides. Find the maximum value that the constant
of proportionality, say λ, can attain.

Solution 1 by David E. Manes, Oneonta, NY

The maximum value of λ is
√

3/6 and is attained when the triangle is equilateral.

Given the triangle ABC let [ABC] denote its area. The distance from the Lemoine point

to the three sides are in the ratio λa, λb, λc where λ =
2[ABC]

a2 + b2 + c2
and a, b, c denote

the length of the sides BC, CA and AB respectively. Let α = 6 BAC, β = 6 CBA, and
γ = 6 ACB. Then

[ABC] =
1
2
bc · sinα =

1
2
ac · sinβ =

1
2
ab · sin γ.

Therefore,

a2 + b2 + c2 ≥ ab + bc + ca = [ABC]
(

1
sinα

+
1

sinβ
+

1
sin γ

)
.

The function f(x) =
1

sinx
is convex on the interval (0, π). Jensen’s inequality then

implies

f(α) + f(β) + f(γ) ≥ 3f

(
α + β + γ

3

)
= 3f

(
π

3

)
=

3

sin (
π

3
)

= 2
√

3

with equality if and only if α = β = γ = π/3. Therefore, a2 + b2 + c2 ≥ 4
√

3 · [ABC] so
that

λ =
2[ABC]

a2 + b2 + c2
≤ 2[ABC]

4
√

3 · [ABC]
=
√

3
6

with equality if and only if the triangle ABC is equilateral.

Solution 2 by John Nord, Spokane, WA

Without loss of generality we can denote the coordinates of 4ABC as
A(0, 0), B(1, 0), C(b, c), the coordinates of the Lemoine point L as (x1, y1), the constant
of proportionality from L to the sides as λ, the coordinates on AB of the foot of the
perpendicular from L to AB as D(x1, 0), the coordinates on BC of the foot of the
perpendicular from L to BC as E(x2, y2) and the coordinates on AC of the foot of the
perpendicular from L to AC as F (x3, y3).

The distance from L to AB equals LD = λ · 1.
The distance from L to BC equals LE = λ ·

√
(1− b)2 + c2 and

The distance from L to AC equals LF = λ ·
√

b2 + c2.

The coordinates of E can be found by finding the intersection of LE and BC. That is, by
solving: 

y =
c

b− 1
x +

c

1− b
, and

y =
1− b

c
x + y1 +

b− 1
c

x1.
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And the coordinates of F can be found by finding the intersection of LF and AC. That
is, by solving, 

y =
c

b
x and

y =
−b

c
x + y1 +

b

c
x1.

Once we have computed (x2, y2) and (x3, y3) in terms of b, c, x1 and λ, we apply the
distance relationships above. This results in:

x1 =
b + b2 + c2

2(1− b + b2 + c2)
y1 = λ =

c

2(1− b + b2 + c2)
.

The maximum value of λ is obtained by solving the system of partial derivatives
∂λ

∂b
= 0

∂λ

∂c
= 0.

This yields: c =
√

3
2

and b =
1
2
. Substituting these values into y1 above gives λ =

√
3

6
as

the maximum value of the constant of proportionality.

Solution 3 by Charles Mc Cracken, Dayton, OH

The Lemoine point is also the intersection of the symmedians.

The medians of a triangle divide the triangle in two equal areas.

The medians intersect at the centroid, G.

Any point other than G is closer than G to one side of the triangle.

In 4ABC let a denote the side (and its length) opposite 6 A, b the side opposite 6 B,
and c the side opposite 6 C. Let L denote the Lemoine point.

If the distance from L to side a is λa, then λa less the distance from G to a we call γa.

Similarly for sides b and c.

For λ = γ, L must coincide with G.

This will happen when the medians and symmedians coincide.

This occurs when the triangle is equiangular (600 − 600 − 600) and hence equilateral
(a = b = c).

In that case, λ =
√

3
6
≡ 0.289.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, John Hawkins and
David Stone (jointly), Statesboro, GA; Kee-Wai Lau, Hong Kong, China;
Tom Leong, Scranton, PA, and the proposer.

• 5065: Mihály Bencze, Brasov, Romania.

Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that

1)
n∑

i,j=1

|(i− j)(xi − xj)| =
n

2

n∑
i,j=1

|xi − xj |.
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2)
n∑

i,j=1

(i− j)2 =
n2(n2 − 1)

6
.

Solution 1 by Paul M. Harms, North Newton, KS

1) Both summations in part 1) have the same terms for i > j that they have for i < j
and have 0 for i = j. Equality will be shown for i > j.

Each row below is the left summation of part 1) of the problem for i > j and for a fixed
j starting with j = 1.

1(x2 − x1) + 2(x3 − x1) + . . . + (n− 1)(xn − x1)
1(x3 − x2) + 2(x4 − x2) + . . . + (n− 2)(xn − x2)

...
1(xn−1 − xn−2) + 2(xn − x

n−2)

1(xn − xn−1)

The coefficient of x1 is (−1)[1 + 2 + . . . + (n− 1)] =
−(n− 1)n

2
. Note that the coefficient

of xn (looking at the diagonal from lower left to upper right is

1 + 2 + . . . + (n− 1) =
(n− 1)n

2
.

The coefficient of x2 is (−1)[1 + 2 + . . . + (n− 2)] + 1 =
−(n− 2)(n− 1)

2
+ 1, where the

one is the coefficient of x2 in row 1.

The coefficient of xn−1 is the negative of the coefficient of x2.

The coefficient of xr where r is a positive integer less than
n + 1

2
is

(−1)[1 + 2 + . . . (n− r)] + 0 + 1 + . . . (r − 1) =
(−1)(n− r)(n− r + 1)

2
+

(r − 1)r
2

=
(−1)n(n− 2r + 1)

2
= (−1)

n

2
[(n− r) + (1− r)].

The coefficients of xr andxn+1−r are the negatives of each other.

If we write out the right summation of part 1) for i > j, we can obtain a triangular form
like that above except that each coefficient of the difference of the x′s is 1. Using the
form just explained, the coefficient of x1 is (−1)(n− 1) and the coefficient of xn along
the diagonal is (n− 1).

The coefficient of x2 is (−1)(n− 2) + 1 where the (+1) is the coefficient of x2 in row 1.

For xr, where r is a positive integer less than
n + 1

2
, the coefficient is

(−1)(n− r) + (r − 1) where (r − 1) comes from the xr having coefficients of one in each
of the first (r− 1) rows. The coefficient of xr on the right side of the inequaity of part 1)
is then

n

2
(−1)[(n− r) + (1− r)] which is the same as the left side of the inequality.

Also, the coefficients of xr and xn+1−r are negative of each other.
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2) To show part 2), first consider the summation of each of the three terms i2, j2,−2ij.

For each j, the summation of i2 from i = 1 to n is 12 + 22 + . . . n2 =
n(n + 1)(2n + 1)

6
.

Then the summation of i2 where both i and j go from 1 to n is
n(n + 1)(2n + 1)

6
. The

summation of j2 is the same value.

The summation of ij is

1(1 + 2 + . . . + n) + 2(1 + 2 + . . . + n) + . . . + n(1 + 2 + . . . + n) = (1 + 2 + . . . + n)2

=
n2(n + 1)2

22

The total summation of the left side of part 2) is

2n2(n + 1)(2n + 1)
6

− 2n2(n + 1)2

22
= n2(n + 1)

[
2n + 1

3
− n + 1

2

]
=

n2(n + 1)(n− 1)
6

.

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy

We begin with 1). The result is achieved by a double induction. For n = 1 there is
nothing to say. Let’s suppose that 1) holds for any 1 ≤ n ≤ m. For n = m + 1 the
equality reads as

m+1∑
i,j=1

|i− j| |xi − xj | =

m∑
i,j=1

|i− j| |xi − xj |+
m+1∑
i=1

|i−m− 1| |xi − xm+1|+
m+1∑
j=1

|m + 1− j| |xm+1 − xj | =

m

2

m∑
i,j=1

|xi − xj |+ 2
m+1∑
i=1

|i−m− 1| (xm+1 − xi).

(in the second passage the induction hypotheses has been used) and we need it equal to

m + 1
2

m+1∑
i,j=1

|xi − xj | =
m

2

m∑
i,j=1

|xi − xj |+
1
2

m∑
i,j=1

|xi − xj |+ (m + 1)
m∑

i=1

|xi − xm+1|.

Comparing the two quantities we have to prove

2
m+1∑
i=1

(m + 1− i)(xm+1 − xi) =
1
2

m∑
i,j=1

|xi − xj |+ (m + 1)
m∑

i=1

|xi − xm+1|

or

m∑
i=1

(xm+1 − xi)(m + 1− 2i) =
1
2

m∑
i,j=1

|xi − xj |

or
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−
m∑

i=1

xi(m + 1− 2i) =
1
2

m∑
i,j=1

|xi − xj | since
m∑

i=1

(m + 1− 2i) = 0.

Here starts the second induction. For m = 1 there is nothing to do as well. Let’s suppose
that the equality holds true for any 1 ≤ m ≤ r. For m = r + 1 we have to prove that

−
r+1∑
i=1

xi(r + 2− 2i) =
1
2

r∑
i,j=1

|xi − xj |+
1
2

r+1∑
i=1

(xr+1 − xi) +
1
2

r+1∑
i=1

(xr+1 − xi).

which, by using the induction hypotheses is

−
r∑

i=1

xi(r + 1− 2i)−
r∑

i=1

xi + rxr+1 = −
r∑

i=1

xi(r + 1− 2i) +
r+1∑
i=1

(xr+1 − xi).

or

−
r∑

i=1

xi + rxr+1 = (r + 1)xr+1 − xr+1 −
r∑

i=1

xi.

namely the expected result.

To prove 2) we employ 1) by calculating
n

2

n∑
i,j=1

|i− j|. The symmetry of the absolute

value yields

n

2

n∑
i,j=1

|i− j| = n
n∑

1≤i<j≤n

(j− i) = n
n∑

i=1

n∑
j=i+1

(j− i) = n
n∑

i=1

n−i∑
k=1

k =
n

2

n∑
i=1

(n− i)(n− i+1).

The last sum is equal to
n

2

n−1∑
k=1

k(k + 1).

In the last step we show that
n−1∑
k=1

k(k + 1) =
n3 − n

3
.

For n = 1 both sides are 0. Let’s suppose it is true for 1 ≤ n ≤ m− 1.
For n = m we have

m−1∑
k=1

k(k+1)+m(m+1) =
m3 −m

3
+m(m+1) = m(m+1)

m + 2
3

=
(m + 1)3 − (m + 1)

3
.

Finally,
n

2
n3 − n

3
= n2 n2 − 1

6
The proof is complete.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Michael C. Faleski,
University Center, MI; Kee-Wai Lau, Hong Kong, China; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.
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• 5066: Proposed by Panagiote Ligouras, Alberobello, Italy.
Let a, b, and c be the sides of an acute-angled triangle ABC. Let abc = 1. Let H be the
orthocenter, and let da, db, and dc be the distances from H to the sides BC, CA, and AB
respectively. Prove or disprove that

3(a + b)(b + c)(c + a) ≥ 32(da + db + dc)2.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the inequality. First we have (a + b)(b + c)(c + a) ≥ (2
√

ab)(2
√

bc)(2
√

ca) = 8.

Hence it suffices to prove that da + db + dc ≤
√

3
2

. Let s, r, R be respectively the
semi-perimeter, in-radius and circumradius of triangle ABC. Let the foot of the
perpendicular from A to BC be D and the foot of the perpendicular from B to AC be
E so that 4BCE ∼ 4BHD. Hence,

da = DH =
(BD)(CE)

BE

=
(c cos B)(a cos C)

c sinA
= 2R cos B cos C, and similarly,

db = 2R cos C cos A and dc = 2R cosA cosB .

Therefore, by the well known equality

cos A cos B + cos B cos C + cos C cos A =
r2 + s2 − 4R2

4R2
, we have

da + db + dc =
r2 + s2 − rR2

2R
.

And by a result of J. C. Gerretsen: Ongelijkheden in de Driehoek Nieyw Tijdschr.Wisk.
41(1953), 1-7, we have s2 ≤ 4R2 + 4Rr + 3r2. Thus

da + db + dc =
2r(R + r)

R
≤ 3r,

which follows from L. Euler’s result that R ≥ 2r.

It remains to show that r ≤ 1
2
√

3
. But this follows from the well known result that

s ≥ 3
√

3r and the fact that 1 = abc = 4rsR ≥ 4r(3
√

3)r(2r) = 24
√

3r3.

This completes the solution.

Also solved by the proposer.

• 5067: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be complex numbers such that a + b + c = 0. Prove that

max {|a|, |b|, |c|} ≤
√

3
2

√
|a|2 + |b|2 + |c|2.
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Solution by Tom Leong, Scranton, PA

Since a + b + c = 0, |a|, |b|, and |c| form the sides of a (possibly degenerate) triangle. It
follows from the triangle inequality that the longest side, max{|a|, |b|, |c|}, cannot exceed

half of the perimeter,
1
2

(|a|+ |b|+ |c|), of the triangle. Using this fact along with the
Cauchy-Schwarz inequality gives the desired result:

max{|a|, |b|, |c|} ≤ 1
2

(|a|+ |b|+ |c|)

=
1
2

(1 · |a|+ 1 · |b|+ 1 · |c|)

≤ 1
2

√
12 + 12 + 12

√
|a|2 + |b|2 + |c|2

=
√

3
2

√
|a|2 + |b|2 + |c|2.

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, Centeral
Islip, NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Manh Dung Nguyen (student, Special High School for Gifted Students),
HUS, Vietnam; Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer
(student, Harvey Mudd College), Claremont, CA; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2010

• 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum
2
3

+
8
9

+ · · ·+ 2N2

3N
.

• 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c, and d such that (a + b + c + d)2 = 2(a2 + b2 + c2 + d2)
with a < b < c < d. Rationalize and simplify

√
x + y −

√
x√

x + y +
√

x
if

{
x = bc + bd + cd, and
y = ab + ac + ad.

• 5088: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

ϕ(ab)√
ϕ2(a2) + ϕ2(b2)

≤
√

2
2

,

where ϕ(n) is Euler’s totient function.

• 5089: Proposed by Panagiote Ligouras, Alberobello, Italy

In 4ABC let AB = c,BC = a,CA = b, r = the in-radius and ra, rb, and rc= the
ex-radii, respectively.
Prove or disprove that

(ra − r)(rb + rc)
rarc + rrb

+
(rc − r)(ra + rb)

rcrb + rra
+

(rb − r)(rc + ra)
rbra + rrc

≥ 2
(

ab

b2 + ca
+

bc

c2 + ab
+

ca

a2 + bc

)
.

• 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary
matrices En×n over the field Zp.

• 5091: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k, p ≥ 0 be nonnegative integers. Evaluate the integral∫ π/2

−π/2

sin2p x

1 + sin2k+1 x +
√

1 + sin4k+2 x
dx.

Solutions

• 5068: Proposed by Kenneth Korbin, New York, NY.

Find the value of √
1 + 2009

√
1 + 2010

√
1 + 2011

√
1 + · · ·.

Solution by Dmitri V. Skjorshammer (student, Harvey Mudd College),
Claremont, CA

To solve this, we apply Ramanujan’s nested radical. Consider the identity
(x + n)2 = x2 + 2nx + n2, which can be rewritten as

x + n =
√

n2 + x((x + n) + n).

Now, the (x + n) + n term has the same form as the left-hand side, so we can write it in
terms of a radical:

x + n =
√

n2 + x
√

n2 + (x + n)((x + 2n) + n)

Repeating this process, ad infinitum, yields Ramanujan’s nested radical:

x + n =

√
n2 + x

√
n2 + (x + n)

√
n2 + · · ·

With n = 1 and x = 2009, the right-hand side becomes the expression in the problem. It
follows that the value is 2010.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Pat Costello,
Richmond, KY; Michael N. Fried, Kibbutz Revivim, Israel; David E. Manes,
Oneonta, NY; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; David Stone and John Hawkins (jointly), Statesboro,
GA; Nguyen Van Vinh (student, Belarusian State University), Minsk,
Belarus, and the proposer.

• 5069: Proposed by Kenneth Korbin, New York, NY.

Four circles having radii
1
14

,
1
15

,
1
x

and
1
y

respectively, are placed so that each of the

circles is tangent to the other three circles. Find positive integers x and y with
15 < x < y < 300.

Solution by Bruno Salgueiro Fanego, Viveiro, Spain
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If all the circles are tangent in a point, the problem is not interesting because x and y
can take on any value for which 15 < x < y < 300. So we assume that the circles are not
mutually tangent at a point.
By Descarte’s circle theorem with ε1, ε2 and ε3 being the curvature of the first three
circles, the curvature ε4 of the fourth circle can be obtained with Soddy’s formula:

ε4 = ε1 + ε2 + ε3 ± 2
√

ε1ε2 + ε2ε3 + ε3ε1, that is,

y = 14 + 15 + x± 2
√

14 · 15 + 15 · x + x · 14

y = 29 + x +±2
√

210 + 29x

Then, 210 + 29x must be a perfect square, say a2. Since, 15 < x < 300,

252 < 210 + 29x < 952, so

26 ≤ a ≤ 94.

Thus,

29
∣∣∣∣(a2 − 210).

The only integers a, 26 ≤ a ≤ 94, which satisfy this condition are 35, 52, 64, 81, and 93.
Taking into account that 15 < x < y < 300, we have:

For a = 35, x = 35 and so y = 29 + x ± 2a = 134
For a = 52, x = 86 and y = 219 ;
For a = 64, x = 134 and y = 291 ;

and for a ∈ {81, 93}, none of the obtained values of y is valid.

Thus the only pairs of integers x and y with 15 < x < y < 300 are

(x, y) ∈
{

(35, 134), (86, 219), (134, 291)
}

.

Also solved by Michael N. Fried, Kibbutz Revivim, Israel; Paul M. Harms,
North Newton, KS; John Hawkins and David Stone (jointly), Statesboro,
GA; Antonio Ledesma Vila, Requena-Valencia, Spain, and the proposer.

• 5070: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az- Barrero, Barcelona, Spain.

Find all real solutions to the system

9(x2
1 + x2

2 − x2
3) = 6x3 − 1,

9(x2
2 + x2

3 − x2
4) = 6x4 − 1,

. . . . . . . . .
9(x2

n + x2
1 − x2

2) = 6x2 − 1.


Solution by Antonio Ledesma Vila, Requena -Valencia, Spain
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Add all

9(x2
1 + x2

2 − x2
3) = 6x3 − 1

9(x2
2 + x2

3 − x2
4) = 6x4 − 1

· · ·
9(x2

n + x2
1 − x2

2) = 6x2 − 1

9

(
n∑

i=1

x2
i +

n∑
i=1

x2
i −

n∑
i=1

x2
i

)
= 6

n∑
i=1

xi − n

9
n∑

i=1

x2
i = 6

n∑
i=1

xi − n

n∑
i=1

(3xi)
2 = 2

n∑
i=1

(3xi)− n

n∑
i=1

(3xi)
2 − 2

n∑
i=1

(3xi) + n = 0

n∑
i=1

(3xi − 1)2 = 0,

xi =
1
3

for all i

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai
Lau, Hong Kong; China; David E. Manes, Oneonta, NY; John Nord,
Spokane, WA; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer
(student, Harvey Mudd College), Claremont, CA, and the proposer.

• 5071: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let ha, hb, hc be the altitudes of 4ABC with semi-perimeter s, in-radius r and
circum-radius R, respectively. Prove that

1
4

(
s(2s− a)

ha
+

s(2s− b)
hb

+
s(2s− c)

hc

)
≤ R2

r

(
sin2 A + sin2 B + sin2 C

)
.

Solution by Charles McCracken, Dayton, OH

Multiply both sides of the inequality by 4 to obtain

s(2s− a)
ha

+
s(2s− b)

hb
+

s(2s− c)
hc

≤ (2R)2

r

[
sin2 A + sin2 B + sin2 C

]

s(2s− a)
ha

+
s(2s− b)

hb
+

s(2s− c)
hc

≤ 1
r

[
(2R)2 sin2 A + (2R)2 sin2 B + (2R)2 sin2 C

]
.
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Now 2R =
a

sinA
=

b

sin B
=

c

sinC
so the inequality becomes

s(2s− a)
ha

+
s(2s− b)

hb
+

s(2s− c)
hc

≤ 1
r

(
a2 + b2 + c2

)
.

From Johnson (Roger A. Johnson, Advanced Euclidean Geometry, Dover, 2007, p. 11)
we have

ha =
2∆
a

, hb =
2∆
b

, hc =
2∆
c

, where ∆ represents the area of the triangle.

The inequality now takes the form

as(2s− a)
2∆

+
bs(2s− b)

2∆
+

cs(2s− c)
2∆

≤ 1
r

(
a2 + b2 + c2

)
.

Since ∆ = rs, we now have our inequality in the form

as(2s− a)
2rs

+
bs(2s− b)

2rs
+

cs(2s− c)
2rs

≤ 1
r

(
a2 + b2 + c2

)

a(2s− a)
2

+
b(2s− b)

2
+

c(2s− c)
2

≤
(

a2 + b2 + c2
)

Substituting a + b + c for 2s we have

a(b + c) + b(c + a) + c(a + b) ≤ 2a2 + 2b2 + 2c2

ab + ac + bc + ba + ca + cb ≤ 2a2 + 2b2 + 2c2

ab + bc + ca ≤ a2 + b2 + c2

This last inequality, ab + bc + ca ≤ a2 + b2 + c2, can be readily proved true for any triple
of positive numbers a, b, c by letting b = a + δ and c = a + ε with 0 < δ < ε. Hence the
original inequality holds.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.

• 5072: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b and c be the sides, la, lb, lc the bisectors, ma,mb,mc the medians, and ha, hb, hc

the heights of 4ABC. Prove or disprove that

a)
(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ 4

3

(
ma · la + lb · hb + hc ·mc

)
b) 3

∑
cyc

(−a + b + c)3

a
≥ 2

∑
cyc

[ma(la + ha)].

5



Solution by proposer

We have

(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ a2 + b2 + c2. (1)

In fact, the equality is homogeneous and putting a + b = c = 1 gives

(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ a2 + b2 + c2 ⇔

∑
cyc

(1− 2a)3

a
≥
∑
cyc

a2. (2)

Applying Chebyshev’s Inequality gives

∑
cyc

(1− 2a)3

a
=
∑
cyc

1
a
(1− 2a)3 ≥ 1

3

(∑
cyc

1
a

)
·
[∑

cyc

(1− 2a)3
]
. (3)

Using the well known equalities

∑
x3 =

(∑
x

)3

− 3(x + y)(y + z)(z + x). (4)

(a + b + c)
(

1
a

+
1
b

+
1
c

)
≥ 32 = 9 (5)

and applying (4), (3), and (5) we have

∑
cyc

(1− 2a)3

a
≥ 1

3

(∑
cyc

1
a

)
·
[∑

cyc

(1− 2a)3
]

=
1
3

(∑
cyc

1
a

)
·
[
(1− 2a + 1− 2b + 1− 2c)3 − 3(1− 2a + 1− 2b)(1− 2b + 1− 2c)(1− 2c + 1− 2a)

]

=
1
3

(∑
cyc

1
a

)
· [1− 24abc]

=
1
3

(∑
cyc

1
a

)
· (
∑

a)− 24
3

(∑
cyc

ab

)

≥ 1
3
· 9− 8

(∑
cyc

ab

)

⇔
∑
cyc

(1− 2a)3

a
≥ 3− 8

(∑
cyc

ab

)
. (6)

We have
3− 8

(∑
cyc

ab

)
≥
∑
cyc

a2. (7)

In fact,

3− 8
(∑

cyc

ab

)
≥
∑
cyc

a2 ⇔ 3− 6
(∑

cyc

ab

)
≥
∑
cyc

a2 + 2
(∑

cyc

ab

)

6



⇔ 3− 6
(∑

cyc

ab

)
≥
(∑

cyc

a

)2

= 1 ⇔ 3− 6
(∑

cyc

ab

)
≥ 1− 3

⇔
∑
cyc

ab ≤ 1
3

=

(∑
a

)2

3

⇔
∑
cyc

(a− b)2 ≥ 0, and this last statement is true.

Using (6) and (7) we have

∑
cyc

(1− 2a)3

a
≥ 3− 8

(∑
cyc

ab

)
≥
∑
cyc

a2

⇔
∑
cyc

(1− 2a)3

a
≥
∑
cyc

a2, and (1) is true.

Is well known that

a2 + b2 = 2m2
c +

1
2
c2 (A)

c2 + b2 = 2m2
a +

1
2
a2 (B)

c2 + a2 = 2m2
b +

1
2
b2 (C)

For (A),(B), and (C)

m2
a + m2

b + m2
c =

3
4
(a2 + b2 + c2) and

a2 + b2 + c2 =
4
3
(m2

a + m2
b + m2

c) (8)

It is also well known that

ma ≥ la ≥ ha, mb ≥ lb ≥ hb, mc ≥ lc ≥ hc. (9)

Using (9) we have

m2
a ≥ ma · la ≥ ma · ha, m2

b ≥ mb · lb ≥ mb · hb, m2
c ≥ mc · lc ≥ mc · hc (D)

m2
a ≥ la · ha, m2

b ≥ lb · hb, m2
c ≥ lc · hc, (E)

Using (8) and (D) we have

a2 + b2 + c2 ≥ 4
3
(mala + mblb + mclc). (10)

7



a2 + b2 + c2 ≥ 4
3
(maha + mbhb + mchc). (11)

And using (8), (D), and (E) we have

a2 + b2 + c2 ≥ 4
3
(mala + lbhb + hcmc). (12)

For part a of the problem, using (1) and (12) we have

(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ 4

3

(
ma · la + lb · hb + hc ·mc

)
For part b of the problem, using (1), (10) and (11) we have

2
[
(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c

]
≥

4
3

(
ma · la + mb · lb + mc · lc

)
+

4
3

(
ma · ha + mb · hb + mc · hc

)

⇔ (−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c

≥ 2
3

(
ma · la + mb · lb + mc · lc + ma · ha + mb · hb + mc · hc

)

⇔ (−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c

≥ 2
3

[
ma · (la + ha) + mb · (lb + hb) + mc · (lc + hc)

]

• 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania.

Let m > −1 be a real number. Evaluate∫ 1

0
{lnx}xmdx,

where {a} = a− [a] denotes the fractional part of a.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Im =
∫ 1

0
{lnx}xmdx =

∫ 1

0
(lnx− [lnx])xmdx =

∫ 1

0
(lnx)xmdx−

∫ 1

0
[lnx]xmdx = A−B

where A =
∫ 1

0
(lnx)xmdx and B =

∫ 1

0
[lnx]xmdx. Integrating by parts( ∫

udv = uv −
∫

vdu with u = ln x and dv = xmdx

)
, and by using Barrow’s and

L’Hospital’s rule we obtain,∫
(lnx)xmdx =

(lnx)xm+1

m + 1
−
∫

xm

m + 1
dx =

(lnx)xm+1

m + 1
− xm+1

(m + 1)2

8



=⇒ A =
(lnx)xm+1

m + 1
− xm+1

(m + 1)2

∣∣∣∣1
0

=
(ln 1)1m+1

m + 1
− 1m+1

(m + 1)2
−
(

lim
x→0+

(lnx)xm+1

m + 1
− 0m+1

(m + 1)2

)

=
−1

(m + 1)2
− lim

x→0+

(lnx)
(m + 1)x−(m+1)

=
−1

(m + 1)2
− lim

x→0+

x−1

−(m + 1)2x−(m+2)

=
−1

(m + 1)2
+ lim

x→0+

xm+1

(m + 1)2

=
−1

(m + 1)2

With the partition
{

. . . , e−n, e−n+1, e−n+2, . . . , e−2, e−1, e0 = 1
}

of (0, 1], being

[lnx] = −n for e−n ≤ x < e−n+1, and
∣∣∣∣e−m−1

∣∣∣∣ < 1,

B =
∫ 1

0
[lnx]xmdx =

∞∑
n=1

∫ e−n+1

e−n
[lnx]xmdx

=
∞∑

n=1

∫ e−n+1

e−n
(−n)xmdx =

∞∑
n=1

−nxm+1

m + 1

∣∣∣∣e−n+1

e−n

=
∞∑

n=1

−n

(
e(−n+1)(m+1) − e−n(m+1)

)
m + 1

=
∞∑

n=1

−n

(
em+1e(−n)(m+1) − e−n(m+1)

)
m + 1

=
∞∑

n=1

−n

(
e(m+1) − 1

)
e−n(m+1)

m + 1

=
∞∑

n=1

(
1− e(m+1)

)
n

(
e−m−1

)n

m + 1

9



=

(
1− em+1

)
e−m−1

m + 1

∞∑
n=1

(
e−m−1

)n−1

=
e−m−1 − 1

m + 1

∞∑
n=1

d

dx
xn

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

m + 1
d

dx

∞∑
n=1

xn

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

m + 1
d

dx

x

1− x

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

(m + 1)(1− x)2

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

(m + 1)(e−m−1 − 1)2
=

1
(m + 1)(e−m−1 − 1)

, so

Im = A−B = − 1
(m + 1)2

− 1
(m + 1)(e−m−1 − 1)

=
mem+1 + 1

(m + 1)2(em+1 − 1)
.

Solution 2 by the proposer

The integral equals
em+1

(m + 1)(em+1 − 1)
− 1

(1 + m)2
.

We have, by making the substitution lnx = y, that

1∫
0

{lnx}xmdx =
0∫

−∞

{y} e(m+1)ydy

=
∞∑

k=0

−k∫
−k−1

{y} e(m+1)ydy

=
∞∑

k=0

−k∫
−k−1

(y − (−k − 1)) e(m+1)ydy

=
∞∑

k=0

−k∫
−k−1

(y + k + 1)) e(m+1)ydy

10



=
∞∑

k=0

(
y + k + 1

m + 1
e(m+1)y

∣∣∣∣−k

−k−1
− e(m+1)y

(m + 1)2

∣∣∣∣−k

−k−1

)

=
∞∑

k=0

e−(m+1)k

m + 1
− 1

(m + 1)2

∞∑
k=0

(
e−(m+1)k − e−(m+1)(k+1)

)

=
em+1

(m + 1)(em+1 − 1)
− 1

(1 + m)2
,

and the problem is solved.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome,
Italy; and David Stone and John Hawkins (jointly), Statesboro, GA.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2010

• 5092: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with altitude h and with cevian CD. A circle with
radius x is inscribed in 4ACD, and a circle with radius y is inscribed in 4BCD with
x < y. Find the length of the cevian CD if x, y and h are positive integers with
(x, y, h) = 1.

• 5093: Proposed by Worapol Ratanapan (student), Montfort College, Chiang Mai,
Thailand

6 = 1 + 2 + 3 is one way to partition 6, and the product of 1, 2, 3 is 6. In this case, we
call each of 1, 2, 3 a part of 6.

We denote the maximum of the product of all parts of natural number n as N(n).

As a result, N(6) = 3× 3 = 9, N(10) = 2× 2× 3× 3 = 36, and N(15) = 35 = 243.

More generally, ∀n ∈ N, N(3n) = 3n, N(3n + 1) = 4× 3n−1, and N(3n + 2) = 2× 3n.

Now let’s define R(r) in the same way as N(n), but each part of r is positive real. For
instance R(5) = 6.25 and occurs when we write 5 = 2.5 + 2.5

Evaluate the following:

i) R(2e)
ii) R(5π)

• 5094: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let a, b, c be real positive numbers such that a + b + c + 2 = abc. Prove that

2(a2 + b2 + c2) + 2(a + b + c) ≥ (a + b + c)2.

• 5095: Proposed by Zdravko F. Starc, Vršac, Serbia

Let Fn be the Fibonacci numbers defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n = 1, 2, · · ·).
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Prove that √
Fn−2Fn−1 + 1 ≤ Fn ≤

√
(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

• 5096: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a

b + 4
√

ab3
+

b

c + 4
√

bc3
+

c

a + 4
√

ca3
≥ 3

2
.

• 5097: Proposed by Ovidiu Furdui, Cluj, Romania

Let p ≥ 2 be a natural number. Find the sum

∞∑
n=1

(−1)n

b p
√

nc
,

where bac denotes the floor of a. (Example b2.4c = 2).

Solutions

• 5074: Proposed by Kenneth Korbin, New York, NY

Solve in the reals: √
25 + 9x + 30

√
x−

√
16 + 9x + 30

√
x− 1 =

3
x
√

x
.

Solution by Antonio Ledesma Vila, Requena-Valencia, Spain

Note that the domain of definition is x ≥ 1, and that the two radicands are perfect
squares:

25 + 9x + 30
√

x =
(

3
√

x + 5
)2

16 + 9x + 30
√

x− 1 =
(

3
√

x− 1 + 5
)2

So √
25 + 9x + 30

√
x−

√
16 + 9x + 30

√
x− 1 =

3
x
√

x√(
3
√

x + 5
)2

−

√(
3
√

x− 1 + 5
)2

=
3

x
√

x∣∣∣∣3√x + 5
∣∣∣∣− ∣∣∣∣3√x− 1 + 5

∣∣∣∣ =
3

x
√

x

(3
√

x + 5)− (3
√

x− 1 + 5) =
3

x
√

x

2



√
x−

√
x− 1 =

1
x
√

x

1
√

x−
√

x− 1
= x

√
x

√
x +

√
x− 1 = x

√
x

√
x− 1 = (x− 1)

√
x

(x− 1) = (x− 1)2x

(x− 1)
(

1− (x− 1)x
)

= 0

Therefore, x = 1 or x2 − x− 1 = 0 =⇒ x =
1±

√
5

2
. But

1−
√

5
2

is an extraneous root.

Hence, the only two real solutions are x = 1 and x =
1 +

√
5

2
= φ, the golden ratio.

Also solved by Daniel Lopez Aguayo, Puebla, Mexico; José Luis Dı́az-Barrero,
Barcelona, Spain; Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey, and
Charles Diminnie (jointly), San Angelo, TX; Katherine Janell Eyre (student,
Angelo State University), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro,
Spain; Michael N. Fried, Kibbutz Revivim, Israel; G. C. Greubel, Newport News,
VA; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA; Ercole
Suppa, Teramo, Italy; David C. Wilson, Winston-Salem, NC, and the proposer.

5075: Proposed by Kenneth Korbin, New York, NY

An isosceles trapezoid is such that the length of its diagonal is equal to the sum of the lengths
of the bases. The length of each side of this trapezoid is of the form a + b

√
3 where a and b

are positive integers.

Find the dimensions of this trapezoid if its perimeter is 31 + 16
√

3.

Solution by Michael N. Fried, Kibbutz Revivim, Israel

Let the equal sides be s = a + b
√

3 and the bases be b1 = p + q
√

3 and b2 = u + v
√

3. Since
each of its diagonals d is the sum of the bases, we have:

d = b1 + b2 = (p + u) + (q + v)
√

3 = y + x
√

3,

where a, b, p, q, u, v, and accordingly, y and x are all positive integers.
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We begin by making some observations.
I. Since the diagonal d = b1 + b2, we have P = 2s + d = 31 + 16

√
3 (1)

II. From (1), we have,

s = a + b
√

3 =
(

31− y

2

)
+
(

16− x

2

)√
3 or

a =
31− y

2
(2)

b =
16− x

2
(3)

And since a and b are positive integers, (2) and (3) imply that y is odd and x even.

III. Since any isosceles trapezoid can be inscribed in a circle, we can apply Ptolemy’s theorem
here to obtain the equation: d2 − s2 = b1b2 (4). This, together with the fact that d = b1 + b2,
implies that the bases b1 and b2 are the solutions of the equation b2− db+(d2− s2) = 0. Thus:

b1 =
1
2

(
d +

√
4s2 − 3d2

)
(5)

b2 =
1
2

(
d−

√
4s2 − 3d2

)
(6)

IV. Since b1 = p + q
√

3 and b2 = u + v
√

3 where p, q, u, and v are integers, it follows from (5)
and (6) that

4s2 − 3d2 =
(

K + L
√

3
)2

= K2 + 3L2 + 2KL
√

3 (7)

where K and L are integers.

Now, let us find bounds for d and, from those, bounds for y and x. But to start, let us find
bounds for

s

d
.

From equation (4), we have:

s2

d2
= 1− b1b2

d2
= 1− b1b2

(b1 + b2)2

= 1− 1
4

(
(b1 + b2)2 − (b1 − b2)2

(b1 + b2)2

)

=
3
4

+
1
4

(
b1 − b2

b1 + b2

)2

Thus,
3
4

<
s2

d2
< 1

or √
3

2
<

s

d
< 1.

From this, we can write,

1 +
√

3 <
2s + d

d
< 3.
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By (1), we can substitue 31 + 16
√

3 for 2s + d, thus eliminating s. With that, we obtain:

31 + 16
√

3
3

< d <
31 + 16

√
3

1 +
√

3
(8)

Replacing d by y + x
√

3, we can rewrite (8) as bounds for y in terms of x:

31 + (16− 3x)
√

3
3

< y <
(31− 3x) + (16− x)

√
3

1 +
√

3
(9)

Since y must be a positive integer, x cannot exceed 11, otherwise y will be either negative or
less than 1. Also, recalling observation II, x must be even and y must be odd. Replacing x
successively by 2, 4, 6, 8, and 10, then, we find by (9) that the corresponding values of y will be
17, 13, 11, 7, and 3. From these values, in turn, we can then find a and b by equations (2) and
(3). The five possibilities we have to check are summarized in the following table.



d = y + x
√

3 s = a + b
√

3
x = 2 y = 17 a = 7 b = 7
x = 4 y = 13 a = 9 b = 6
x = 6 y = 11 a = 10 b = 5
x = 8 y = 7 a = 12 b = 4
x = 10 y = 3 a = 14 b = 3


Now, in observation IV, we found 4s2 − 3d2 =

(
K + L

√
3
)2

= K2 + 3L2 + 2KL
√

3 which of

course must be a positive number. This immediately eliminates the first and last possibilities,
d = 17 + 2

√
3, s = 7 + 7

√
2, and d = 3 + 10

√
3, s = 14 + 3

√
2 since the rational part of

4s2 − 3d2 (that is, the part not multiplying
√

3) is negative for these pairs.

This leaves only the second, third, and fourth possibilities. The rational parts of 4s2 − 3d2 for
these are, respectively, 105, 13, and 45. It is then easy to check that only 13 = 12 + 3× 22

corresponding to d = 11 + 6
√

3, s = 10 + 5
√

3 can be written in the form K2 + 3L2, and the
irrational part is also 4 = 2KL.

Hence, these together with equations (5) and (6), give us our solution:

s = 10 + 5
√

3
b1 = 6 + 4

√
3

b2 = 5 + 2
√

3

Also solved by Mayer Goldberg, Beer-Sheva, Israel; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

5076: Proposed by M.N. Deshpande, Nagpur, India

Let a, b, and m be positive integers and let Fn satisfy the recursive relationship

Fn+2 = mFn+1 + Fn, with F0 = a, F1 = b, n ≥ 0.

5



Furthermore, let an = F 2
n + F 2

n+1, n ≥ 0. Show that for every a, b, m, and n,

an+2 = (m2 + 2)an+1 − an.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX

From the given,

an+2 = F 2
n+2 + F 2

n+3

= F 2
n+2 + (mFn+2 + Fn+1)2

= F 2
n+2 + m2F 2

n+2 + mFn+1Fn+2 + mFn+1Fn+2 + F 2
n+1

= F 2
n+2 + m2F 2

n+2 + mFn+1Fn+2 + mFn+1(Fn + mFn+1) + F 2
n+1

= F 2
n+2 + m2F 2

n+2 + mFn+1(Fn+2 + Fn) + m2F 2
n+1 + F 2

n+1

= F 2
n+2 + m2F 2

n+2 + (Fn+2 − Fn)(Fn+2 + Fn) + m2F 2
n+1 + F 2

n+1

= F 2
n+2(m

2 + 2) + F 2
n+1(m

2 + 1)− F 2
n

= (F 2
n+2 + F 2

n+1)(m
2 + 2)− (F 2

n + F 2
n+1)

= (m2 + 2)an+1 − an.

Solution 2 by G. C. Greubel, Newport News, VA

Changing the terms slightly we shall use the more familiar Fibonacci polynomial terminology.
The fibonacci polynomials are given by

Fn+2(x) = xFn+1(x) + Fn(x).

The Binet form of the Fibonacci polynomials is given by

Fn(x) =
αn − βn

α− β
,

where

α = α(x) =
1
2

(
x +

√
x2 + 4

)
β = β(x) =

1
2

(
x−

√
x2 + 4

)
.

Also, the Lucas polynomials are given by

Ln(x) = αn + βn

and satisfies the recurrence relation

Ln+2(x) = xLn+1(x) + Ln(x).
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The term to be considered is

an = F 2
n+1(x) + F 2

n(x).

It can be seen that

F 2
n(x) =

1
x2 + 4

(L2n(x)− 2(−1)n) .

This leads to the relation

an =
1

x2 + 4
(L2n+1(x) + L2n(x)) .

The relation being asked to show is given by

an+2 =
(
x2 + 2

)
an+1 − an.

Let φn =
(
x2 + 2

)
an+1 − an for the purpose of demonstration. With the use of the above

equations we can see the following:(
x2 + 4

)
φn =

(
x2 + 4

) [(
x2 + 2

)
an+1 − an

]
=

(
x2 + 2

)
(L2n+3 + L2n+2)− (L2n+1 + L2n)

=
(
x2 + 2

) ((
x2 + x + 1

)
L2n+1 + (x + 1)L2n

)
− (L2n+1 + L2n)

=
(
x4 + x3 + 3x2 + 2x + 1

)
L2n+1 +

(
x3 + x2 + 2x + 1

)
L2n

=
(
x3 + x2 + 2x + 1

)
L2n+2 +

(
x2 + x + 1

)
L2n+1

=
(
x2 + x + 1

)
L2n+3 + (x + 1)L2n+2

= xL2n+4 + L2n+4 + L2n+3

= L2n+5 + L2n+4. (1)

From the equation an =
1

x2 + 4
(L2n+1(x) + L2n(x)) we have

(
x2 + 4

)
an+2 = L2n+5 + L2n+4. (2)

Comparing the result of (1) to that of (2) leads to φn = an+2. Thus we have the relation

an+2 =
(
x2 + 2

)
an+1 − an

and this provides the relation being sought.

Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas Lutheran
University) Seguin, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA; David C. Wilson, Winston-Salem, NC, and the proposer.
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5077: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all triplets (x, y, z) of real numbers such that

xy(x + y − z) = 3,
yz(y + z − x) = 1,
zx(z + x− y) = 1.


Solution by Ercole Suppa, Teramo, Italy

From the second and third equation it follows that

yz(y + z) = zx(z + x) ⇐⇒ (x− y)(x + y + z) = 0.

If x + y + z = 0 the first two equations yield −2xyz = 3 and −xyz = 1 which is impossible.

If x = y then the system can rewritten as

x2(2x− z) = 3
z2y = 1
z2x = 1

Thus x =
1
z2

and

1
z4

(
2
z2
− z

)
= 3

3z6 + z3 − 2 = 0

(3z3 − 2)(z3 + 1) = 0

The equation (3z3 − 2)(z3 + 1) = 0 factors into(
31/3z − 21/3

)(
32/3z2 + (31/3 · 21/3)z + 22/3

)
(z + 1)(z2 − z + 1) = 0.

Setting each factor equal to zero we see that only the first and third factors give real roots for

the unknown z. So, the real roots are z = 3

√
2
3

and z = −1. And since x = y =
1
z2

we see that

(1, 1,−1) and

(
3

√
9
4
,

3

√
9
4
,

3

√
2
3

)
are the only real triplets (x, y, z) that satisfy the given system.

Also solved by Daniel Lopez Aguayo, Puebla, Mexico; Valmir Bucaj (student,
Texas Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey,
and Charles Diminnie (jointly), San Angelo, TX; M. N. Deshpande, Nagpur,
India; Bruno Salgueiro Fanego, Viveiro, Spain; G. C. Greubel, Newport News,
VA; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York, NY;
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Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA;
Antonio Ledesma Vila, Requena-Valencia, Spain, and the proposers.

5078: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,” Rome,
Italy

Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

a√
b(b + c)

+
b√

c(a + c)
+

c√
a(a + b)

≥ 3
2

1√
ab + ac + cb

.

Solution by Kee-Wai Lau, Hong Kong, China

For x > 0, let f(x) be the convex function x−1 so that we have

a√
b(b + c)

+
b√

c(a + c)
+

c√
a(a + b)

= af

(√
b(b + c)

)
+ bf

(√
c(a + c)

)
+ cf

(√
a(a + b)

)

≥ f

(
a
√

b(b + c) + b
√

c(a + c) + c
√

a(a + b)
)

=
1

a
√

b(b + c) + b
√

c(a + c) + c
√

a(a + b)
. (1)

By the Cauchy-Schwarz inequality, we have

a
√

b(b + c) + b
√

c(a + c) + c
√

a(a + b)

=
(√

ab(b + c)
)(√

a(b + c)
)

+
(√

bc(a + c)
)(√

b(a + c)
)

+
(√

ca(a + b)
)(√

c(a + b)
)

≤
(√

ab(b + c) + bc(a + c) + ca(a + b)
)(√

a(b + c) + b(a + c) + c(a + b)
)

=
(√

ab2 + bc2 + ca2 + 3abc

)(√
2(ab + bc + ca)

)
. (2)

By (1) and (2), it suffices for us to show that ab2 + bc2 + ca2 + 3abc ≤ 2
9
. In fact,

ab2 + bc2 + ca2 + 3abc
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=
(

a + b + c− 2
3

)
(ab + bc + ca) +

a + b + c

9
− b

(
a− 1

3

)2

− c

(
b− 1

3

)2

− a

(
c− 1

3

)2

≤ ab + bc + ca

3
+

1
9

=
(a + b + c)2

9
− (a− b)2 + (b− c)2 + (c− a)2

18
+

1
9

≤ 2
9
.

This completes the solution.

Also solved by Boris Rays, Brooklyn, NY, and the proposer.

5079: Proposed by Ovidiu Furdui, Cluj, Romania

Let x ∈ (0, 1) be a real number. Study the convergence of the series

∞∑
n=1

x
sin

1
1

+ sin
1
2

+ · · ·+ sin
1
n .

Solution 1 by Kee-Wai Lau, Hong Kong, China

For positive integers n and x ∈ (0, 1), let an = an(x) = x
sin

1
1

+ sin
1
2

+ · · ·+ sin
1
n

.

Since sin
1

n + 1
=

1
n

+ O

(
1
n2

)
as n tends to infinity, so∣∣∣∣ an

an+1

∣∣∣∣ = exp
((

sin
1

n + 1

)(
ln

1
x

))

= 1 +
(

sin
1

n + 1

)(
ln

1
x

)
+

∞∑
m=2

((
sin

1
n + 1

)(
ln

1
x

))m

m!

= 1 +
1
n

ln
(

1
x

)
+ O

(
1
n2

)
,

where the constant implied by the last O depends at most on x. Hence, by Gauss’ test, the

series of the problem is convergent if 0 < x <
1
e

and is divergent if
1
e
≤ x < 1.

10



Solution 2 by David Stone and John Hawkins (jointly), Statesboro, GA

Our answer: we have convergence if 0 < x <
1
e

and divergence if
1
e
≤ x < 1.

We start by looking at the sum
n∑

i=1

sin
1
k
. Each term of the sum, sin

1
k
, can be expanded in an

alternating series sin
1
k

=
1
k
− 1

3!

(
1
k

)3

+ · · ·. The error from terminating the series after the

first term does not exceed the second term. Thus we have∣∣∣∣ sin 1
k
− 1

k

∣∣∣∣ <
1
3!

(
1
k

)3

, so

− 1
6k3

< sin
1
k
− 1

k
<

1
6k3

1
k
− 1

6k3
< sin

1
k

<
1
k

+
1

6k3
. Therefore,

n∑
k=1

1
k
− 1

6

n∑
k=1

1
k3

<
n∑

k=1

sin
1
k

<
n∑

k=1

1
k

+
1
6

n∑
k=1

1
k3

.

The series
∞∑

k=1

1
k3

is known to be convergent, say to L, which is grater than any of its partial

sums.

Moreover, by looking at the graph of y = 1/x we see that

1
k

<

∫ k

k−1

1
u

du = ln k − ln(k − 1), and

1
k

>

∫ k+1

k

1
u

du = ln(k + 1)− ln(k).

Using these for our bound on the partial sum of sin
1
k
, we obtain

n∑
k=1

(
ln(k + 1)− ln k

)
− 1

6

n∑
k=1

1
k3

<
n∑

k=1

1
k
− 1

6

n∑
k=1

1
k3

<
n∑

k=1

sin
1
k
, so

ln(n + 1)− 1
6
L <

n∑
k=1

1
k
− 1

6

n∑
k=1

1
k3

<
n∑

k=1

sin
1
k
.

On the other hand,
n∑

k=1

sin
1
k

<
n∑

k=1

1
k

+
1
6

n∑
k=1

1
k3

< 1 + lnn +
1
6
L.

Thus we have bounds on the sine sum:

ln(n + 1)− 1
6
L <

n∑
i=1

sin
1
k

< 1 + lnn +
1
6
L.
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We use this to investigate the convergence so the series
∞∑

n=1

x
sin

1
1

+ sin
1
2

+ · · ·+ sin
1
n .

Since 0 < x < 1, we know that xu is a decreasing function of u. Thus

x−
1
6
L+ln(n+1) > x

n∑
k=1

sin
1
k

> x
1
6
L+ln n

and we have

x
1
6
L+1

t∑
n=1

xln n <
t∑

n=1

x

n∑
k=1

sin
1
k

< x−
1
6
L

t∑
n=1

xln(n+1).

Noting that
xln n = eln(xln n) = e(ln n)(ln x) = eln nln x

= nln x

we can rewrite the outside sums to obtain

x
1
6
L+1

t∑
n=1

nln x <
t∑

n=1

x

n∑
k=1

sin
1
k

< x−
1
6
L

t∑
n=1

(n + 1)ln x.

It is well known that the series
∞∑

n=1

nα diverges if α ≥ −1. Hence, if lnx ≥ −1, the series

∞∑
n=1

x

n∑
k=1

sin
1
k

dominates the divergent series
∞∑

n=1

xln x and thus diverges. That is, we have

divergence if 1 > x ≥ 1
e
.

Likewise, it is well known that
∞∑

n=1

(n + 1)α converges if α < −1. So if lnx < −1, the series

∞∑
n=1

x

n∑
k=1

sin
1
k

is dominated by the convergent series
∞∑

n=1

(n + 1)ln x and thus converges.

That is, we have convergence if 0 < x <
1
e
.

Also solved by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2010

• 5098: Proposed by Kenneth Korbin, New York, NY

Given integer-sided triangle ABC with 6 B = 60◦ and with a < b < c. The perimeter of
the triangle is 3N2 + 9N + 6, where N is a positive integer. Find the sides of a triangle
satisfying the above conditions.

• 5099: Proposed by Kenneth Korbin, New York, NY

An equilateral triangle is inscribed in a circle with diameter d. Find the perimeter of the
triangle if a chord with length d− 1 bisects two of its sides.

• 5100: Proposed by Mihály Bencze, Brasov, Romania

Prove that
n∑

k=1

√
k

k + 1

(
n

k

)
≤

√
n(2n+1 − n)2n−1

n + 1

• 5101: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India

An unbiased coin is tossed repeatedly until r heads are obtained. The outcomes of the
tosses are written sequentially. Let R denote the total number of runs (of heads and
tails) in the above experiment. Find the distribution of R.

Illustration: if we decide to toss a coin until we get 4 heads, then one of the possibilities
could be the sequence T T H H T H T H resulting in 6 runs.

• 5102: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer and let a1, a2, · · · , an be any real numbers. Prove that

1
1 + a2

1 + . . . + a2
n

+
1

FnFn+1

(
n∑

k=1

akFk

1 + a2
1 + . . . + a2

k

)2

≤ 1,

where Fk represents the kth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

• 5103: Proposed by Roger Izard, Dallas, TX

A number of circles of equal radius surround and are tangent to another circle. Each of
the outer circles is tangent to two of the other outer circles. No two outer circles
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intersect in two points. The radius of the inner circle is a and the radius of each outer
circle is b. If

a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0,

determine the number of outer circles.

Solutions

• 5080: Proposed by Kenneth Korbin, New York, NY

If p is a prime number congruent to 1 (mod 4), then there are positive integers a, b, c,
such that

arcsin
(

a

p3

)
+ arcsin

(
b

p3

)
+ arcsin

(
c

p3

)
= 90◦.

Find a, b, and c if p = 37 and if p = 41, with a < b < c.

Solution 1 by Paul M. Harms, North Newton, KS

The equation in the problem is equivalent to

arcsin
(

a

p3

)
+ arcsin

(
b

p3

)
= 90◦ − arcsin

(
c

p3

)
.

Taking the cosine of both sides yields

(p6 − a2)1/2(p6 − b2)1/2

p6
− ab

p6
=

c

p3
.

(p6 − a2)1/2(p6 − b2)1/2 − ab = cp3.

Since p3 is a factor on the right side I made some assumptions on a and b so that the
left side also had p3 as a factor.
Assume a = p2a1 and b = pb1 where all numbers are positive integers. Then we have

c = (p2 − a1)1/2(p4 − b2
1)

1/2 − a1b1.

I then looked for perfect squares for (p2 − a2
1) and (p4 − b2

1).

When p = 37, (372 − a2
1) = (37− a1)(37 + a1) and a1 = 12 yields a product of the

squares 25 and 49.
When p = 37, (374 − b2

1) = (372 − b1)(372 + b1).

I checked for a number b1 where both (372 − b1) and(372 + b1) were perfect squares. The
numbers b1 which make (372 − b1) a square are

0, 37 + 36 = 73, 73 + (36 + 35) = 144, 144 + (35 + 34) = 213, · · · .

When b1 = 840, both factors involving b1 are perfect squares.

When p = 37 a result is a = (12)372 = 16428, b = 840(37) = 31080 and c = 27755.

Since the problem conditions state that a < b < c, I will switch notation. One answer is

a = 16428, b = 27755, and = 31080
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with approximate angles 18.925◦, 33.226◦ and 37.849◦.

When p = 41, (41− a1)(41 + a1) is a perfect square when a1 = 9 or 40. The product
(412 − b1)(412 + b1) is a perfect square when b1 = 720. One answer is

a = 9(412) = 15129, b = 720(41) = 29520 and c = 54280

with approximate angles 12.757◦, 25, 361◦, and 51.959◦.

When a1 = 40 and b1 = 720, c was less than zero so this did not satisfy the problem.

Solution 2 by Tom Leong, Scotrun, PA

Fermat’s Two-Square Theorem implies that every prime congruent to 1 mod 4 can be
represented as the sum of two distinct squares. We give a solution to the following
modest generalization. Suppose the positive integer n is the sum of two distinct squares,
say, n = x2 + y2 with 0 < x < y. Then a solution to

arcsin
A

n
+ arcsin

B

n2
+ arcsin

C

n3
= 90◦

in positive integers A,B, C is

(A,B, C) =



(s, 2st, 2(xs + yt)(xt− ys)) if 1 <
y

x
<
√

3

(t, t2 − s2, 2(xs + yt)(ys− xt)) if
√

3 <
y

x
< 1 +

√
2

(s, s2 − t2, (xs + yt)2 − (ys− xt)2) if 1 +
√

2 <
y

x
< 2 +

√
3

(t, 2st, (ys− xt)2 − (xs + yt)2) if
y

x
> 2 +

√
3

where s = y2 − x2 and t = 2xy.
We can verify this as follows. Since arcsin(A/n) + arcsin(B/n2) and arcsin(C/n3) are
complementary,

tan
(

arcsin
A

n
+ arcsin

B

n2

)
= cot

(
arcsin

C

n3

)
.

Using the angle sum formula for tangent and tan(arcsin z) = z/
√

1− z2, this reduces to

A
√

n4 −B2 + B
√

n2 −A2

√
n2 −A2

√
n4 −B2 −AB

=
√

n6 − C2

C
.

Now verifying the solutions is straightforward using the following identities

n = x2 + y2, n2 = s2 + t2, n3 = (xs + yt)2 + (ys− xt)2

and the following inequalities

y

x
<
√

3 ⇔ ys < xt,
y

x
< 1 +

√
2 ⇔ s < t,

y

x
< 2 +

√
3 ⇔ ys− xt < xs + yt.

As for the original problem, for n = 37, since 37 = 12 + 62, we have
x = 1, y = 6, s = 35, t = 12 which gives

arcsin
12
37

+arcsin
840
372

+arcsin
27755
373

= arcsin
16428
373

+arcsin
31080
373

+arcsin
27755
373

= 90◦.
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For n = 41, since 41 = 42 + 52, we have x = 4, y = 5, s = 9, t = 40 which gives

arcsin
9
41

+arcsin
720
412

+arcsin
54280
413

= arcsin
15129
413

+arcsin
29520
413

+arcsin
54280
413

= 90◦.

Comment by editor: David Stone and John Hawkins of Statesboro, GA
developed equations:

b =

√
p3(p3 − c)

2

a =
−bc +

√
b2c2 + p6 (p6 − b2 − c2)

p3
.

Using Matlab they found four solutions for p = 37,

a = 16428 b = 27755 c = 31080
a = 3293 b = 32157 c = 36963
a = 7363 b = 27188 c = 38332
a = 352 b = 25123 c = 43808

and two solutions for p = 41,

a = 15129 b = 29520 c = 54280
a = 5005 b = 31529 c = 58835.

Also solved by Brian D. Beasley, Clinton, SC, and the proposer.

• 5081: Proposed by Kenneth Korbin, New York, NY

Find the dimensions of equilateral triangle ABC if it has an interior point P such that
PA = 5, PB = 12, and PC = 13.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let the length of the sides of the equilateral triangle be x. We show that

x =
√

169 + 60
√

3.

Applying the cosine formula to triangles APB, BPC, and CPA respectively, we obtain

cos 6 APB =
169− x2

120
, cos 6 BPC =

313− x2

312
, cos 6 CPA =

194− x2

130
.

Since

6 APB + 6 BPC + 6 CPA = 360◦ so

cos 6 CPA = cos(6 APB + 6 BPC) and

sin 6 APB sin 6 BPC = cos 6 APB cos 6 BPC − cos 6 CPA.

Hence,(√
338x2 − x4 − 14161

120

)(√
626x2 − x4 − 625

312

)
=

(
169− x2

120

)(
313− x2

312

)
− 194− x2

130
or

4



√
338x2 − x4 − 14161

√
626x2 − x4 − 625 = (169− x2)(313− x2)− 288(194− x2).

Squaring both sides and simplifying, we obtain

576x6 − 194668x4 + 10230336x2 = 0 or

576x2(x4 − 338x2 + 17761) = 0.

It follows that x =
√

169− 60
√

3,
√

160 + 60
√

3. Since 6 APB, 6 BPC, 6 CPA are not

all acute, the value of
√

169− 60
√

3 must be rejected.

This completes the solution.

Comments and Solutions 2 & 3 by Tom Leong, Scotrun, PA

Comments: This problem is not new and has appeared in, e.g., the 1998 Irish
Mathematical Olympiad and T. Andreescu & R. Gelca, Mathematical Olympiad
Challenges, Birkhäuser, 2000, p5. A nice elementary solution to this problem uses a
rotation argument (Solution 2 below). A quick solution to a more general problem can
be found using a somewhat obscure result of Euler on tripolar coordinates (Solution 3
below).
Solution 2
Rotate the figure about the point C by 60◦ so that B maps onto A. Let P ′ denote the
image of P under this rotation. Note that triangle PCP ′ is equilateral since PC = P ′C
and 6 PCP ′ = 60◦. So 6 P ′PC = 60◦. Furthermore, since PP ′ = 13, triangle APP ′ is a
5-12-13 right triangle. Consequently,

cos 6 APC = cos( 6 APP ′ + 60◦) =
5
13
· 1
2
− 12

13
·
√

3
2

=
5− 12

√
3

26
.

So by the Law of Cosines,

AC =

√
52 + 132 − 2 · 5 · 13 · 5− 12

√
3

26
=
√

169 + 60
√

3

Solution 3
A generalization follows from a result of Euler on tripolar coordinates (see, e.g., van
Lamoen, Floor and Weisstein, Eric W. “Tripolar Coordinates” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/TripolarCoordinates.html.) Suppose triangle
ABC is equilateral with side length s, and P is a point in the plane of ABC. The triple
(x, y, z) = (PA,PB,PC) is the tripolar coordinates of P in reference to triangle ABC.
A result of Euler implies these tripolar coordinates satisfy

s4 − (x2 + y2 + z2)s2 + x4 + y4 + z4 − x2y2 − y2z2 − z2x2 = 0

which gives the positive solutions

s =

√
x2 + y2 + z2 ±

√
(x2 + y2 + z2)2 − 2(x− y)2 − 2(y − z)2 − 2(z − x)2

2
.
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The larger solution refers to the case where P is interior to the triangle, while the smaller
solution refers to the case where P is exterior to the triangle. In the case where (x, y, z)
is a Pythatgorean triple with x2 + y2 = z2, this simplifies to the surprisingly terse

s =
√

z2 ± xy
√

3.

In the original problem, with (x, y, z) = (5, 12, 13), we find

s =
√

169± 60
√

3

with the larger solution s =
√

169 + 60
√

3 being the desired answer.

A conjecture by David Stone and John Hawkins, Statesboro, GA

If a, b, c form a right triangle with a2 + b2 = c2, then

1. the side length of the unique equilateral triangle ABC having an interior point P

such that PA = a, PB = b, and PC = c is s
√

c2 + ab
√

3, and

2. the side length of the unique equilateral triangle with an exterior point P satisfying

PA = a, PB = b, and PC = c is s
√

c2 − ab
√

3.

Also solved by Scott H. Brown, Montgomery, AL; Valmir Bucaj (student,
Texas Lutheran University), Seguin, TX; Pat Costello, Richmon, KY; Paul
M. Harms, North Newton, KS; Antonio Ledesma López, Requena-Valencia,
Spain; David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH;
John Nord, Spokane, WA; Boris Rays, Brooklyn, NY; Armend Sh. Shabani,
Republic of Kosova; David Stone and John Hawkins, Statesboro, GA, and
the proposer.

• 5082: Proposed by David C. Wilson, Winston-Salem, NC

Generalize and prove:

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

n(n + 1)
= 1− 1

n + 1
1

1 · 2 · 3
+

1
2 · 3 · 4

+ · · ·+ 1
n(n + 1)(n + 2)

=
1
4
− 1

2(n + 1)(n + 2)
1

1 · 2 · 3 · 4
+

1
2 · 3 · 4 · 5

+ · · ·+ 1
n(n + 1)(n + 2)(n + 3)

=
1
18
− 1

3(n + 1)(n + 2)(n + 3)
1

1 · 2 · 3 · 4 · 5
+ · · ·+ 1

n(n + 1)(n + 2)(n + 3)(n + 4)
=

1
96
− 1

4(n + 1)(n + 2)(n + 3)(n + 4)

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We will give two different proofs, each relies on the telescoping property.

First proof:

Our quantity may be written as
n∑

k=1

1
k(k + 1) · · · (k + m)

where m is a positive integer.

Next we observe

6



1
k(k + 1) · · · (k + m− 1)

− 1
(k + 1) · · · (k + m)

=
m

k(k + 1) · · · (k + m)

yielding, also by telescoping,

n∑
k=1

1
k(k + 1) · · · (k + m)

=
1
m

n∑
k=1

(
1

k(k + 1) · · · (k + m− 1)
− 1

(k + 1) · · · (k + m)

)

=
1
m

(
1
m!

− 1
(n + 1) · · · (n + m)

)

Second proof:

If ak =
1

k(k + 1) · · · (k + m)
, then

ak+1

ak
=

k · (k + 1) · · · (k + m)
(k + 1)(k + 2) · · · (k + m)

=
k

k + 1 + m

and then mak = kak − (k + 1)ak+1 and therefore

m
n∑

k=1

ak = m
n−1∑
k=0

ak+1 = m
n−1∑
k=0

(kak − (k + 1)ak+1)

=
1
m!

− 1
(n + 1)(n + 2) · · · (n + m)

and the result is immediate.

Solution 2 by G. C. Greubel, Newport News, VA

It can be seen that all the series in question are of the form

Sm
n =

n∑
k=1

(k − 1)!
(k + m)!

.

Making a slight change we have

Sm
n =

1
m!

n∑
k=1

(k − 1)!m!
(k + m)!

=
1
m!

n∑
k=1

B(k, m + 1),

where B(x, y) is the Beta function. By using an integral form of the Beta function,
namely,

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt,

the series becomes

Sm
n =

1
m!

n∑
k=1

∫ 1

0
tm(1− t)k−1dt

=
1
m!

∫ 1

0
tm(1− t)−1 · (1− t)(1− (1− t)n)

t
dt

=
1
m!

∫ 1

0
tm−1(1− (1− t)n)dt
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=
1
m!

(∫ 1

0
tm−1dt−B(n + 1,m)

)

=
1
m!

(
1
m
−B(n + 1,m)

)

=
1
m

[
1
m!

− n!
(n + m)!

]
.

The general result is given by

n∑
k=1

(k − 1)!
(k + m)!

=
1
m

[
1
m!

− n!
(n + m)!

]
.

As examples let m = 1 to obtain

n∑
k=1

1
k(k + 1)

= 1− 1
n + 1

and when m = 2 the series becomes

n∑
k=1

1
n(n + 1)(n + 2)

=
1
4
− 1

2(n + 1)(n + 2)
.

The other series follow with higher values of m.

Comments by Tom Leong, Scotrun, PA

This series is well-known and has appeared in the literature in several places. Some
references include

1. Problem 241, College Mathematics Journal (Nov 1984, p448–450)

2. Problem 819, College Mathematics Journal (Jan 2007, p65–66)

3. K. Knopp, Theory and Application of Infinite Series, 2nd ed., Blackie & Son, 1951,
p233

4. D.O. Shklarsky, N.N. Chentzov, and I.M. Yaglom, The USSR Olympiad Problem
Book, W.H. Freeman and Company, 1962, p30

In the first reference above, four different perspectives on this series are given.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; N. J.
Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong Kong, China; Antonio Ledesma
López, Requena-Valencia, Spain; Tom Leong, Scotrun, PA; David E. Manes,
Oneonta, NY; Boris Rays, Brooklyn, NY; Raúl A. Simón, Santiago, Chile;
Armend Sh. Shabani, Republic of Kosova; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5083: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let α > 0 be a real number and let f : [−α, α] → < be a continuous function two times
derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α). Prove that the
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sequence {xn}n≥1 defined by

xn =


n∑

k=1

f

(
k

n2

)
, n >

1
α

;

0, n ≤ 1
α

is convergent and determine its limit.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Clearly, for n large enough, we will have n >
1
α

. Therefore, we only need to show that
n∑

k=1

f

(
k

n2

)
converges and to find its limit as n →∞.

Since f(0) = 0 and f ′(x) exist in [0, k/n2] ⊂ [0, 1/n] ⊂ [−α, α], there is some

ξk ∈ [0, k/n2] such that f

(
k

n2

)
= f ′ (ξk)

k

n2
by the mean value theorem.

Let f ′(Mn) =maxkf
′(ξk) and f ′(mn) =minkf

′(ξk).

Then, since
n∑

k=1

f

(
k

n2

)
=

n∑
k=0

f ′(ξk)
k

n2
, we have:

f ′(mn)
n∑

k=1

k

n2
≤

n∑
k=1

f

(
k

n2

)
≤ f ′(Mn)

n∑
k=1

k

n2
, or

f ′(mn)
(

1
2

+
1
2n

)
≤

n∑
k=1

f

(
k

n2

)
≤ f ′(Mn)

(
1
2

+
1
2n

)
.

But f ′ is bounded in [−α, α] and, thus, in every subinterval of [−α, α]. Therefore, f ′ is
continuous in every subinterval of [−α, α]. Hence,

lim
n→∞

f ′(mn) = lim
n→∞

f ′(Mn) = f ′(0), so that

lim
n→∞

n∑
k=1

f

(
k

n2

)
=

f ′(0)
2

Heuristically, we can approach the problem in a slightly different way. Keeping in mind
that f(0) = 0, write:

n∑
k=1

f

(
k

n2

)
= n2

n∑
k=0

(
k

n
× 1

n

)
1
n2

≈ n2
∫ 1

n

0
f (ξ) dξ.

The approximation become exact as n →∞ (this is the heuristic part!)
Since f ′ is bounded in (0, α) (being bounded in (−α, α)), and since f(0) = 0 we can
write, for some s ∈ (0, 1/n):

n2
∫ 1

n

0
f(ξ)dξ = n2

∫ 1
n

0

(
f ′(0)ξ +

f ′′(s)
2

ξ2
)

dξ

9



= n2
(

f ′(0)
2

1
n2

+
f ′′(s)

6
1
n3

)

=
f ′(0)

2
+

f ′′(s)
6

1
n

=
f ′(0)

2
as n →∞.

Solution 2 by Ovidiu Furdui, Cluj, Romania

The limit equals
f ′(0)

2
.

We have, since f(0) = 0, that for all n >
1
α

one has

xn =
n∑

k=1

f

(
k

n2

)
=

n∑
k=1

(
f

(
k

n2

)
− f(0)

)

=
n∑

k=1

k

n2
f ′ (θk,n)

=
n∑

k=1

k

n2

(
f ′(θk,n)− f ′(0)

)
+

n∑
k=1

k

n2
f ′(0)

=
n∑

k=1

k

n2
θk,nf ′′(βk,n) +

f ′(0)(n + 1)
2n

. (1)

We used, in the preceding calculations, the Mean Value Theorem twice where

0 < βk,n < θk,n <
k

n2
. Now,∣∣∣∣ n∑

k=1

k

n2
θk,nf ′′(βk,n)

∣∣∣∣≤ M
n∑

k=1

k

n2
θk,n ≤ M

n∑
k=1

k2

n4
= M

(n + 1)(2n + 1)
6n3

,

where M = sup
x∈(−α,α)

|f ′′(x)|. Thus,

lim
n→∞

n∑
k=1

k

n2
θk,nf ′′(βk,n) = 0. (2)

Combining (1) and (2) we get that the desired limit holds and the problem is solved.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie (jointly),
San Angelo, TX; Tom Leong, Scotrun, PA; Paolo Perfetti, Department of
Mathematics, Tor Vergata Universtiy, Rome, Italy, and the proposer.

• 5084: Charles McCracken, Dayton, OH
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A natural number is called a “repdigit” if all of its digits are alike.
Prove that regardless of positive integral base b, no natural number with two or more
digits when raised to a positive integral power will produce a repdigit.

Comments by David E. Manes, Oneonta, NY; Michael N. Fried, Kibbutz
Revivim, Israel, the proposer, and the editor.

Manes: The website <http://www.research.att.com/ njas/sequences/A158235> appears
to have many counterexamples to problem 5084.
Editor: Following are some examples and comments from the above site.

11, 20, 39, 40, 49, 78, 133, 247, 494, 543, 1086, 1218,

1651, 1729, 2172, 2289, 2715, 3097, 3258, 3458, 3801,

171, 4344, 4503, 4578, 4887, 5187, 5430, 6194, 6231.

(And indeed, each number listed above can be written as repdigit in some base. For
example:)

112 = 11111 in base 3
202 = 1111 in base 7
392 = 333 in base 22
402 = 4444 in base 7
492 = 777 in base 18
782 = (12)(12)(12) in base 22

12182 = (21)(21)(21)(21) in base 41

McCracken: When I wrote the problem I intended that the number and it’s power be
written in the same base.

Editor: Charles McCracken sent in a proof that was convincing to me that the
statement, as he had intended it to be, was indeed correct. No natural number with two
or more digits (written in base b), when raised to a positive integral power, will produce
a repdigit (in base b). I showed the problem, its solution, and Manes’ comment, to my
colleague Michael Fried, and he finally convinced me that although the intended
statement might be true, the proof was in error.

Fried: The Sloan Integer Sequence site (mentioned above) also cites a paper which
among other things, refers to Catalan’s conjecture, now proven, stating that the only
solution to xk − yn = 1 is 32 − 23 − 9− 8 = 1. This is the fact one needs to show that
Charles’ claim is true for base 2 repdigits. For in base 2 only numbers of the form
11111 . . . 1 are repdigits. These numbers are equal to 2n − 1. So if one of these numbers
were equal to xk, we would have 2n − 1 = xk or 2n − xk = 1. But by the proven Catalan
conjecture, the latter can never be satisfied.

Editor: So, dear readers, let’s rephrase the problem: Prove or disprove that regardless of
positive integral base b, no natural number with two or more digits when raised to a
positive integral power will produce a repdigit in base b.
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• 5085: Proposed by Valmir Krasniqi, (student, Mathematics Department,) University of
Prishtinë, Kosova

Suppose that ak, (1 ≤ k ≤ n) are positive real numbers. Let ej,k = (n− 1) if j = k and
ej,k = (n− 2) otherwise. Let dj,k = 0 if j = k and dj,k = 1 otherwise.

Prove that
n∏

j=1

n∑
k=1

ej,ka
2
k ≥

n∏
j=1

( n∑
k=1

dj,kak

)2

.

Solution by proposer

On expanding each side and reducing, the inequality becomes

n∏
k=1

[
(n− 2)S + a2

k

]
≥

n∏
k=1

(T − ak) , where

S =
n∑

k=1

a2
k and T =

n∑
k=1

ak.

Since (T − a1)2 ≤ (n− 1)(S − a2
1), etc., it suffices to prove that

n∏
k=1

[
(n− 2)S + a2

k

]
≥ (n− 1)n

n∏
k=1

(S − ak) . (1)

If we now let xk = S − a2
k where k = 1, 2, 3, . . . , n so that S =

x1 + x2 + . . . + xn

n− 1
and

a2
k = S − xk, then (1) becomes

n∏
k=1

(
S

′ − xk

)
≥ (n− 1)n · x1 · x2 · . . . · xn, where S

′
=

n∑
k=1

xk .

The result now follows by applying the AM-GM inequality to each of the factors
(S

′ − xk) on the left hand side. There is equality if, and only if, all the ak’s are equal.

Also solved by Tom Leong, Scotrun, PA
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2010

• 5104: Proposed by Kenneth Korbin, New York, NY

There are infinitely many primitive Pythagorean triangles with hypotenuse of the form
4x4 + 1 where x is a positive integer. Find the dimensions of all such triangles in which
at least one of the sides has prime integer length.

• 5105: Proposed by Kenneth Korbin, New York, NY

Solve the equation
x + y −

√
x2 + xy + y2 = 2 +

√
5

if x and y are of the form a + b
√

5 where a and b are positive integers.

• 5106: Proposed by Michael Brozinsky, Central Islip, NY

Let a, b, and c be the sides of an acute-angled triangle ABC. Let H be the orthocenter
and let da, db and dc be the distances from H to the sides BC,CA, and AB respectively.

Show that
da + db + dc ≤

3
4
D

where D is the diameter of the circumcircle.

• 5107: Proposed by Tuan Le (student, Fairmont, H.S.), Anaheim, CA

Let a, b, c be positive real numbers. Prove that
√

a3 + b3

a2 + b2
+
√

b3 + c3

b2 + c2
+
√

c3 + a3

c2 + a2
≥ 6(ab + bc + ac)

(a + b + c)
√

(a + b)(b + c)(c + a)

• 5108: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

1
n

tan
[ 4n+1∑

k=1

arctan
(

1 +
2

k(k + 1)

)]
.

• 5109 Proposed by Ovidiu Furdui, Cluj, Romania

1



Let k ≥ 1 be a natural number. Find the value of

lim
n→∞

(k n
√

n− k + 1)n

nk
.

Solutions

• 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum
2
3

+
8
9

+ · · ·+ 2N2

3N
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

If x 6= 1, the formula for a geometric sum yields

N∑
k=0

xk =
xN+1 − 1

x− 1
.

If we differentiate and simplify, we obtain

N∑
k=1

kxk−1 =
NxN+1 − (N + 1) xN + 1

(x− 1)2
.

Next, multiply by x and differentiate again to get

N∑
k=1

kxk =
NxN+2 − (N + 1) xN+1 + x

(x− 1)2

and
N∑

k=1

k2xk−1 =
N2xN+2 −

(
2N2 + 2N − 1

)
xN+1 + (N + 1)2 xN − x− 1

(x− 1)3
.

Finally, multiply by x once more to yield

N∑
k=1

k2xk =
N2xN+3 −

(
2N2 + 2N − 1

)
xN+2 + (N + 1)2 xN+1 − x2 − x

(x− 1)3
.

In particular, when we substitute x =
1
3

and simplify, the result is

N∑
k=1

k2

3k
=

3N+1 −
(
N2 + 3N + 3

)
2 · 3N

.

Therefore, the desired sum is

N∑
k=1

2k2

3k
=

3N+1 −
(
N2 + 3N + 3

)
3N

.
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Solution 2 by Ercole Suppa, Teramo, Italy

The required sum can be written as SN =
2

3N
· xn, where xn denotes the sequence

xn = 12 · 3n−1 + 22 · 3n−2 + 32 · 3n−3 + · · ·+ n2 · 30.

Since
xn+1 = 12 · 3n + 22 · 3n−1 + 32 · 3n−2 + · · ·+ n2 · 31 + (n + 1)2 · 30,

such a sequence satisfies the linear recurrence

xn+1 − 3xn = (n + 1)2. (∗)

Solving the characteristic equation λ− 3 = 0, we obtain the homogeneous solutions
xn = A · 3n, where A is a real parameter. To determine a particular solution, we look for
a solution of the form x

(p)
n = Bn2 + Cn + D. Substituting this into the difference

equation, we have

B (n + 1)2 + C (n + 1) + D − 3
[
Bn2 + Cn + D

]
= (n + 1)2 ⇔

−2Bn2 + 2 (B − C) n + B + C − 2D = n2 + 2n + 1.

Comparing the coefficients of n and the constant terms on the two sides of this equation,
we obtain

B = −1
2
, C = −3

2
, D = −3

2
and thus

x(p)
n = −1

2
n2 +−3

2
n− 3

2
The general solution of (∗) is simply the sum of the homogeneous and particular
solutions, i.e.,

xn = A · 3n − 1
2
n2 +−3

2
n− 3

2

From the boundary condition x1 = 1, the constant is determined as
3
2
.

Finally, the desired sum is

SN =
3N+1 −N2 − 3N − 3

3N

and we are done.

Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Pat Costello, Richmond, KY; G. C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS; Enkel
Hysnelaj, Sydney, Australia & Elton Bojaxhiu, Germany; Kee-Wai Lau,
Hong Kong, China; David E. Manes, Oneonta, NY; John Nord, Spokane,
WA; Paolo Perfetti, Department of Mathematics, Tor Vergata Universtiy,
Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA;
Taylor University Problem Solving Group, Upland, IN, and the proposer.
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• 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c, and d such that (a + b + c + d)2 = 2(a2 + b2 + c2 + d2)
with a < b < c < d. Rationalize and simplify

√
x + y −

√
x√

x + y +
√

x
if

{
x = bc + bd + cd, and
y = ab + ac + ad.

Solution by Paul M. Harms, North Newton, KS

From the equation given in the problem we have

(a + b + c + d)2 = a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd = 2
(
a2 + b2 + c2 + d2

)
.

From the last equation we have

2 (ab + ac + ad + bc + bd + cd) = a2 + b2 + c2 + d2.

We note that,

x + y = ab + ac + ad + bc + bd + cd, then

2 (x + y) = a2 + b2 + c2 + d2

From the identity in the problem,

2 (x + y) =
(a + b + c + d)2

2
or

(x + y) =
(a + b + c + d)2

22

Also note that,

y = a(b + c + d) or

y

a
= b + c + d. Then

x + y =
(a + (y/a))2

22
=

(a2 + y)2

(2a)2
.

We have,

x = (x + y)− y

=
(a2 + y)2

(2a)2
− y

=
a4 + 2a2y + y2 − 4a2y

4a2

=
(a2 − y)2

(2a)2
.

4



From a < b < c < d, we see that

a2 − y = a2 − a (b + c + d) < 0. Thus√
(a2 − y)2 = y − a2.

Working with the expression to be simplified, we have
√

x + y −
√

x√
x + y +

√
x

=
(
√

x + y −
√

x)2

y

=
[
(a2 + y)/(2a)− (y − a2)/(2a)

]2
y

=
(
2a2/2a

)2
y

=
a2

y

=
a

b + c + d
.

Also solved by Brian D. Beasley, Clinton, SC; G. C., Greubel, Newport
News, VA; Enkel Hysnelaj, Sydney, Australia & Elton Bojaxhiu, Germany;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris
Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5088: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

ϕ(ab)√
ϕ2(a2) + ϕ2(b2)

≤
√

2
2

,

where ϕ(n) is Euler’s totient function.

Solution by Tom Leong, Scotrun, PA

We show

ϕ(ab) ≤
√

ϕ(a2)ϕ(b2) ≤

√
ϕ2a2) + ϕ2(b2)

2
which implies the desired result. The second inequality used here is simply the AM-GM
Inequality. To prove the first inequality, let pi denote the prime factors of both a and b,
and let qj denote the prime factors of a only and rk the primes factors of b only. Then

ϕ(ab) = ab
∏
i

(
1− 1

pi

)∏
j

(
1− 1

qj

)∏
k

(
1− 1

rk

)

ϕ(a2)ϕ(b2) =

a2
∏
i

(
1− 1

pi

)∏
j

(
1− 1

qj

)[b2
∏
i

(
1− 1

pi

)∏
k

(
1− 1

rk

)]

5



where we understand the empty product to be 1. Then ϕ(ab) ≤
√

ϕ(a2)ϕ(b2) reduces to

∏
j

(
1− 1

qj

)∏
k

(
1− 1

rk

)
≤ 1

which is obviously true.

Editor’s comment: Kee-Wai Lau of Hong Kong, China mentioned in his solution to
this problem that in the Handbook of Number Theory I (Section 1.2 of Chapter I by J.
Sándor, D.S. Mitrinovi, and B. Crstic, Springer, 1995), the proof of
(ϕ(mn))2 ≤ ϕ(m2)ϕ(n2), for positive integers m and n is attributed to a 1940 paper by
T. Popoviciu. Kee-Wai then wrote

√
ϕ2(a2) + ϕ2(b2) ≥

√
2ϕ(a2)ϕ(b2) ≥

√
2ϕ(ab),

proving the inequality.

Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Enkel Hysnelaj, Sydney, Australia &
Elton Bojaxhiu, Germany; David E. Manes, Oneonta, NY; Paolo Perfetti,
Department of Mathematics, University Tor Vergata, Rome, Italy; David
Stone and John Hawkins (jointly), Statesboro, GA; Ercole Suppa, Teramo,
Italy; and the proposers.

• 5089: Proposed by Panagiote Ligouras, Alberobello, Italy

In 4ABC let AB = c,BC = a,CA = b, r = the in-radius and ra, rb, and rc= the
ex-radii, respectively.
Prove or disprove that

(ra − r)(rb + rc)
rarc + rrb

+
(rc − r)(ra + rb)

rcrb + rra
+

(rb − r)(rc + ra)
rbra + rrc

≥ 2
(

ab

b2 + ca
+

bc

c2 + ab
+

ca

a2 + bc

)
.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the inequality.

Let s and S be respectively the semi-perimeter and area of 4ABC. It is well known that

r =
S

s
, ra =

S

s− a
, rb =

S

s− b
, rc =

S

s− c
.

Using these relations, we readily simplify

(ra − r)(rb + rc)
rarc + rrb

to
a
c
,

(rc − r)(ra + rb)
rcrb + rra

to
c
b
, and

(rb − r)(rc + ra)
rbra + rrc

to
b
a

.

Since b2 + ca ≥ 2b
√

ca, c2 + ab ≥ 2c
√

ab, and a2 + bc ≥ 2a
√

bc, so

2
(

ab

b2 + ca
+

bc

c2 + ab
+

ca

a2 + bc

)
≤
√

a

c
+

√
b

a
+
√

c

b
.

By the Cauchy-Schwarz inequality, we have

√
a

c
+

√
b

a
+
√

c

b
≤
√

3
(

a

c
+

b

a
+

c

b

)
,
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and by the arithmeic mean-geometric mean inequality we have

3 = 3

(
3

√(
a

c

)(
b

a

)(
c

b

)
≤ a

c
+

b

a
+

c

b
.

It follows that
√

a

c
+

√
b

a
+
√

c

b
≤ a

c
+

b

a
+

c

b
and this completes the solution.

Also solved by Tom Leong, Scotrun, PA; Ercole Suppa, Teramo, Italy, and
the proposer.

• 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary
matrices En×n over the field Zp.

Solution by Paul M. Harms, North Newton, KS

The notation 0 and 1 will be used for the additive and multiplicative identities,
respectively.

There are three types of matrices which make up the set of elementary matrices. One
type is a matrix where two rows of the identity matrix are interchanged. Since there are
n rows and we interchange two at a time, the number of elementary matrices of this

type is
n(n− 1)

2
, the combination of n things taken two at a time.

Another type of elementary matrix is a matrix where one of the elements along the main
diagonal is replaced by an element which is not 0 or 1. There are (p− 2) elements which
can replace a 1 on the main diagonal. The number of elementary matrices of this type is
(p− 2)n.

The third type of elementary matrix is the identity matrix where at most one position,
not on the main diagonal, is replaced by a non-zero element. There are (n2 − n)
positions off the main diagonal and (p− 1) non-zero elements. Then there are
(n2 − n)(p− 1) different elementary matrices where a non-zero element replaces one zero
element in the identity matrix. If the identity matrix is included here, the number of
elementary matrices of this type is (n2 − n)(p− 1) + 1.

The total number of elementary matrices is

n(n− 1)
2

+ (p− 2)n + (n2 − n)(p− 1) + 1 = n2
(

p− 1
2

)
− 3n

2
+ 1.

Comment by David Stone and John Hawkins of Statesboro, GA. There
doesn’t seem to be any need to require that p be prime as we form and count these
elementary matrices. However, if m were not prime then Zm would not be a field and
the algebraic properties would be affected. For instance, it’s preferable that any
elementary matrix be invertible and the appearance of non-invertible scalars would

produce non-invertible elementary matrices such as
(

1 0
0 2

)
over Z4.

Also solved by David E. Manes, Oneonta, NY; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.
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• 5091: Proposed by Ovidiu Furdui, Cluj, Romania

Let k, p ≥ 0 be nonnegative integers. Evaluate the integral∫ π/2

−π/2

sin2p x

1 + sin2k+1 x +
√

1 + sin4k+2 x
dx.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the integral equals
(2p− 1)!!

(2p)!!
π

2
, independent of k.

Here (−1)!! = 0!! = 1, n!! = n(n− 2) . . . (3)(1) if n is a positive odd integer and
n!! = n(n− 2) . . . (4)(2) if n is a positive even integer.

By substituting x = −y, we have∫ 0

−π/2

sin2p x

1 + sin2k+1 x +
√

1 + sin4k+2 x
dx =

∫ π/2

0

0 sin2p y

1− sin2k+1 y +
√

1 + sin4k+2 y
so that

∫ π/2

−π/2

sin2p x

1 + sin2k+1 x +
√

1 + sin4k+2 x
dx

=
∫ π/2

0
sin2p x

(
1

1 + sin2k+1 x +
√

1 + sin4k+2 x
+

1

1− sin2k+1 x +
√

1 + sin4k+2 x

)
dx

= 2
∫ π/2

0
sin2p x

 1 +
√

1 + sin4k+2 x(
1 + sin2k+1 x +

√
1 + sin4k+2 x

) (
1− sin2k+1 x +

√
1 + sin4k+2 x

)
 dx

=
∫ π/2

0
sin2p xdx.

The last integral is standard and its value is well known to be
(2p− 1)!!

(2p)!!
π

2
.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata,
Rome, Italy

The answer is:
(2p)!

22p(p!)2
π

2
for any k.

Proof Let’s substitute sinx = t∫ 1

−1

t2p

1 + t2k+1 +
√

1 + t4k+2

dt√
1− t2

=
∫ 1

−1

t2p(1 + t2k+1 −
√

1 + t4k+2)
2t2k+1

dt√
1− t2

Now ∫ 1

−1

t2p

2t2k+1

dt√
1− t2

=
∫ 1

−1

t2p
√

1 + t4k+2

2t2k+1

dt√
1− t2

= 0

since the integrands are odd functions. It remains

8



1
2

∫ 1

−1

t2p

√
1− t2

dt =
1
2

∫ π/2

−π/2
(sinx)2pdx

after changing variable t = sinx. Integrating by parts we obtain

∫ π/2

−π/2
(sinx)2pdx =

∫ π/2

−π/2
(− cos x)′(sinx)2p−1dx

= − cos x(sinx)2p−1
∣∣∣π/2

−π/2
+(2p− 1)

∫ π/2

−π/2
cos2 x(sinx)2p−2dx

= (2p− 1)
∫ π/2

−π/2
(sinx)2p−2dx− (2p− 1)

∫ π/2

−π/2
(sinx)2pdx

and if we call I2p =
∫ π/2

−π/2
(sinx)2pdx, then we have I2p =

2p− 1
2p

I2p−2. It results that

I2p =
(2p− 1)!!

(2p)!!
π =

(2p)!
22p(p!)2

π and then
1
2

∫ 1

−1

t2p

√
1− t2

dt =
π

2
(2p− 1)!!

(2p)!!
=

(2p)!
22p(p!)2

π

2

Editor’s comment: The two solutions presented,
(2p− 1)!!

(2p)!!
π

2
and

(2p)!
22p(p!)2

π

2
, are

equivalent to one another.

Also solved by Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2010

• 5110: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with an interior point P and with coordinates A(0, 0), B(6, 8), and
C(21, 0). The distance from point P to side AB is a, to side BC is b, and to side CA is
c where a : b : c = AB : BC : CA.

Find the coordinates of point P .

• 5111: Proposed by Michael Brozinsky, Central Islip, NY.

In Cartesianland where immortal ants live, it is mandated that any anthill must be
surrounded by a triangular fence circumscribed in a circle of unit radius. Further-
more, if the vertices of any such triangle are denoted by A,B, and C, in counter-
clockwise order, the anthill’s center must be located at the interior point P such that
6 PAB = 6 PBC = 6 PCA.

Show PA · PB · PC ≤ 1.

• 5112: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let 0 < a < b be real numbers with a fixed and b variable. Prove that

lim
b→a

∫ b

a

dx

ln
b+ x

a+ x

= lim
b→a

∫ b

a

dx

ln
b(a+ x)
a(b+ x)

.

• 5113: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let x, y be positive real numbers. Prove that

2xy
x+ y

+

√
x2 + y2

2
≤ √xy +

x+ y

2
+

(
x+ y

6
−
√
xy

3

)2

2xy
x+ y

.
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• 5114: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let M be a point in the plane of triangle ABC. Prove that

MA
2 +MB

2 +MC
2

AB
2 +BC

2 + CA
2 ≥

1
3
.

When does equality hold?

• 5115: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let G be a finite cyclic group. Compute the number of distinct composition series of G.

Solutions

• 5092: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with altitude h and with cevian CD. A circle with radius
x is inscribed in 4ACD, and a circle with radius y is inscribed in 4BCD with x < y.
Find the length of the cevian CD if x, y and h are positive integers with (x, y, h) = 1.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA;

We let the length of cevian = d. Since the altitude of the equilateral triangle is h, the

length of the side AC is
2h√

3
. Let F be the center of the circle inscribed in 4ACD. Let

α = 6 ACF = 6 FCD. Therefore 6 ACD = 2α.

Let E be the point where the inscribed circle in 4ACD is tangent to side AC. Since AF
bisects the base angle of 60◦, we know that 4AEF is a 30◦− 60◦− 90◦ triangle, implying

that AE =
√

3x. Thus the length of CE is AC −AE =
2h√

3
−
√

3x =
2h− 3x√

3
.

Applying the Law of Sines in triangle 4ADC, we have

sin 2α
AD

=
sin 60◦

d
=

sin(6 ADC)
AC

. (1)

Because 6 ADC = 180◦ − 60◦ − 2α = 120◦ − 2α, we have

sin (6 ADC) = sin (120◦ − 2α)

= sin 120◦ cos 2α− cos 120◦ sin 2α

=
√

3
2

cos 2α+
1
2

sin 2α

=
√

3
2

(
cos2 α− sin2 α

)
+

1
2

(2 sinα sinα) .

2



Thus from (1) we have

√
3

2d
=

[√
3
(
cos2 α− sin2 α

)
+ (2 sinα sinα)

]√
3

4h
.

Therefore, we can solve for d in terms of h and α:

d =
2h[√

3
(
cos2 α− sin2 α

)
+ (2 sinα sinα)

] .
In the right triangle 4EFC, we have

FC =

√
x2 +

(
2h− 3x√

3

)2

=

√
3x2 + 4h2 − 12hx+ 9x2

3
=

2√
3

√
3x2 + h2 − 3hx.

Thus, sinα =
√

3x
2
√

3x2 + h2 − 3hx
and cosα =

2h− 3x
2
√

3x2 + h2 − 3hx
. Therefore,

cos2α− sin2 α =
(2h− 3x)2

4 (3x2 + h2 − 3hx)
− 3x2

4 (3x2 + h2 − 3hx)

=
4h2 − 12hx+ 6x2

4 (3x2 + h2 − 3hx)
=

2h2 − 6hx+ 3x2

2 (3x2 + h2 − 3hx)
.

and 2 sinα cosα =
√

3x (2h− 3x)
2 (3x2 + h2 − 3hx)

.

Therefore the denominator in the expression for d becomes
√

3(2h2 − 6hx+ 3x2)
2 (3x2 + h2 − 3hx)

+
√

3x (2h− 3x)
2 (3x2 + h2 − 3hx)

=
√

3
2h2 − 4hx

2 (3x2 + h2 − 3hx)
.

Thus, d =
2h√

3(2h2 − 4hx)
2(3x2 + h2 − 3hx)

=
2(3x2 + h2 − 3hx)√

3(h− 2x)
.

Similarly, working in 4BCD, we can show that d =
2(3y2 + h2 − 3hy)√

3(h− 2y)
.

We note that x and y both satisfy the same equation when set equal to d. Thus for a
given value of d, the equation should have two solutions. The smaller one can be used for
x and the larger for y.

We also note that if x, h and y are integers, then d has the form d =
r√
3

, for r a rational

number. We substitute this into the equation x:

d =
2
(
3x2 + h2 − 3hx

)
√

3(h− 2x)
=

r√
3
, so

3



r =
2(3x2 + h2 − 3hx)

h− 2x
.

Now we solve this for x:

rh− 2xr = 6x2 + 2h2 − 6hx

6x2 − (6h− 2r)x+ 2h2 − rh = 0

x =
6h− 2r ±

√
36h2 − 24hr + 4r2 − 48h2 + 24hr

12
=

3h− r ±
√
r2 − 3h2

6
.

Of course we would have the exact same expression for y.

Thus we take x =
3h− r −

√
r2 − 3h2

6
and y =

3h− r −
√
r2 − 3h2

6
and find h and r so

that x and y turn out to be positive integers.

Subtracting x from y gives y−x =
√
r2 − 3h2

3
. Thus we need r and h such that

√
r2 − 3h2

3
is an integer.

It must be the case that r2 − 3h2 ≥ 0, which requires 0 <
√

3h ≤ r. In addition it must
be true that

3h− r −
√
r2 − 3h2 > 0

9h2 − 6hr + r2 > r2 − 3h2

12h2 − 6hr > 0

6h(2h− r) > 0

0 < r < 2h. Thus,

√
3h ≤ r < 2h.

If we restrict our attention to integer values of r, then both h and r must be divisible by
3.

For h = 3, 6 and 9, no integer values of r divisible by 3 satisfy
√

3h ≤ r < 2h. So the first
allowable value of h is 12. Then the condition 12

√
3 ≤ r < 24 forces r = 21. From this

we find that x = 2 and y = 3 and d = 7
√

3. (Note that (2, 3, 12) = 1.)

This is only the first solution. We programmed these constraints and let MatLab check
for integer values of h and appropriate integer values of r which make x and y integers
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satisfying (x, y, h) = 1. There are many solutions:

r y x y cevian

21 12 2 3 7
√

3

78 45 9 10 26
√

3

111 60 5 18 37
√

3

114 63 7 18 38
√

3

129 72 9 20 43
√

3


Editor’s note: David and John then listed another 47 solutions. They capped their
search at h = 1000, but stated that solutions exist for values of h > 1000. They ended the
write-up of their solution with a formula for expressing the cevian in terms of x, y and h.

y − x =
√
r2 − 3h2

3

9(y − x)2 = r2 − 3h2

r2 = 3h2 + 9(y − x)2

r =
√

3h2 + 9(y − x)2

Length of cevian
r√
3

=
√
h2 + 3(y − x)2.

Ken Korbin, the proposer of this problem, gave some insights into how such a problem
can be consructed. He wrote:

Begin with any prime number P congruent to 1(mod 6). Find positive integers [a, b] such
that a2 + ab+ b2 = P 2. Construct an equilateral triangle with side a+ b and with Cevian
P . The Cevian will divide the base of the triangle into segments with lengths a and b.
Find the altitude of the triangle and the inradii of the 2 smaller triangles. Multiply the
altitude, the inradii and the Cevian P by

√
3 and then by their LCD. This should do it.

Examples: P = 7, [a, b] = [3, 5]. P = 13, [a, b] = [7, 8]. And so on.

• 5093: Proposed by Worapol Ratanapan (student), Montfort College, Chiang Mai, Thai-
land

6 = 1 + 2 + 3 is one way to partition 6, and the product of 1, 2, 3, is 6. In this case, we
call each of 1, 2, 3 a part of 6.

We denote the maximum of the product of all parts of natural number n as N(n).

As a result, N(6) = 3× 3 = 9, N(10) = 2× 2× 3× 3 = 36, and N(15) = 35 = 243.

More generally, ∀n ∈ N,N(3n) = 3n, N(3n+ 1) = 4× 3n−1, and N = (3n+ 2) = 2× 3n.
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Now let’s define R(r) in the same way as N(n), but each part of r is positive real. For
instance R(5) = 6.25 and occurs when we write 5 = 2.5 + 2.5

Evaluate the following:

i) R(2e)
ii) R(5π)

Solution by Michael N. Fried, Kibbutz Revivim, Israel

Let R(r) =
∏
i

xi, where
∑

i

xi = r and xi > 0 for all i. For any given r, find the maximum

of R(r).

Since for any given r and n the arithmetic mean of every set {xi} i = 1, 2, 3 . . . n is
r

n
by

assumption, the geometric-arithemetic mean inequality implies that

R(r) =
n∏

i=1

xi ≤
(
r

n

)n

.

Hence the maximum of R(r) is a function of n. Let us then find the maximum of the

function R(x) =
(
r

x

)x

, which is the same as the maximum of

L(x) = ln (R(x)) = x ln r − x lnx.

L(x) indeed has a single maximum at x =
r

e
.

Let m = br
e
c and M = dr

e
e. Then the maximum value of R(r) is

max

((
r

m

)m

,

(
r

M

)M
)
.

To make this concrete consider r = 5, 2e, and 5π.

For r = 5, r/e = 1.8393 . . ., so maxR(5) = max
(
5, (5/2)2

)
= max(5, 6.25) = 6.25

For r = 2e, r/e = 2, so maxR(2e) = e2.

For r = 5π, r/e = 5.7786 . . ., so maxR(5π) = max

((
5π
5

)5

,

(
5π
6

)6
)

=
(

5π
6

)6

.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; Kee-Wai Lau, Hong Kong, China; David Stone and John Hawkins
(jointly), Statesboro, GA; The Taylor University Problem Solving Group, Up-
land, IN, and the proposer.

• 5094: Proposed by Paolo Perfetti, Mathematics Department Tor Vergata University,
Rome, Italy

Let a, b, c be real positive numbers such that a+ b+ c+ 2 = abc. Prove that

2
(
a2 + b2 + c2

)
+ 2 (a+ b+ c) ≥ (a+ b+ c)2 .

6



Solution 1 by Ercole Suppa, Teramo, Italy

We will use the “magical” substitution given in “Problems from The Book” by Titu
Andreescu and Gabriel Dospinescu, which is explained in the following lemma:

If a, b, c are positive real numbers such that a + b + c + 2 = abc, then there exists three
real numbers x, y, z > 0 such that

a =
y + z

x
, b =

z + x

y
, and c =

x + y
z

. (∗)

Proof: By means of a simple computation the condition a+ b+ c+2 = abc can be written
in the following equivalent form

1
1 + a

+
1

1 + b
+

1
1 + c

= 1.

Now if we take
x =

1
1 + a

, y =
1

1 + b
, and z =

1
1 + c

,

then x+ y+ z = 1 and a =
1− x
x

=
y + z

x
. Of course, in the same way we find b =

z + x

y

and c =
x+ y

z
.

By using the substitution (∗), after some calculations, the given inequality rewrites as

z4(x− y)2 + x4(y − z)2 + y4(x− z)2 + 2(x3y3 + x3z3 + y3z3 − 3x2y2z2)
x2y2z2

≥ 0,

which is true since
x3y3 + x3z3 + y3z3 ≥ 3x2y2z2

by virtue of the AM-GM inequality.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

First let x = a+ b and y = ab. Hence x ≥ 2
√
y.

From a+ b+ c+ 2 = abc, we have c =
x+ 2
y − 1

. Hence, y > 1.

Noting that x2 − 2y = a2 + b2, it follows readily that the original inequality can be
rewritten as

(y − 2)2 x2 + 2
(
y2 − 3y + 4

)
x− 4y3 + 8y2 ≥ 0, (1)

where y > 1 and x ≥ 2
√
y. For y > 1 arbitrary but fixed, we denote by fy(x), for x ≥ 2

√
y,

the function on the left-hand side of (1).

Trivially, fy(x) ≥ 0 for y = 2. For y 6= 2 (which we henceforth assume), fy(·), when ex-

tended to <, is a quadratic function (parabola) attaining its minimum at x0 =
−
(
y2 − 3y + 4)
(y − 2)2

.

Noting that x0 < 0, it follows that

min
{x:x≥2

√
y}
fy(x) = fy(2

√
y)
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= 4
√
y
(
y2 − 3y + 4− 2y3/2 + 4

√
y
)
.

Thus the inequality (1) will be proved if we show that

ϕ(y) := y2 − 3y + 4− 2y3/2 + 4
√
y ≥ 0. (2)

This is trivial for 1 < y < 2 since in this case both y2 − 3y + 4 and −2y3/2 + 4
√
y are

greater than 0.
For y > 2, it is readily seen that ϕ′′(y) > 0. Hence, ϕ′(y) is increasing for y > 2. Noting
that ϕ′(4) = 0, it thus follows that min{y>2} ϕ(y) = ϕ(4). Since ϕ(4) = 0, inequality (2)
is proved.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Firstly, we have

2(a2 + b2 + c2) + 2(a+ b+ c)− (a+ b+ c)2 = (a+ b+ c)(a+ b+ c+ 2)− 4(ab+ bc+ ca)

Let p = a+ b+ c, q = ab+ bc+ ca, r = abc , so that r = p+ 2.

We need to show that q ≤ p(p+ 2)
4

(1)

It is well known that a, b, and c are the positive real roots of the cubic equation

x3 − px2 + qx− r = 0 if, and only if,

p2q2 − 4p3r + 18pqr − 4q3 − 27r2 ≥ 0.

By substituting r = p + 2 and simplifying, we reduce the last inequality to f(q) ≤ 0,
where

f(q) = 4q3 − p2q2 −
(
36p+ 18p2

)
q + 4p4 + 8p3 + 27p2 + 108p+ 108

= (q + 2p+ 3)
(
4q2 − (p2 + 8p+ 12)q + 2p3 + p2 + 12p+ 36

)
. Thus

4q2 − (p2 + 8p+ 12)q + 2p3 + p2 + 12p+ 36 ≤ 0. (2)

By the arithmetic mean-geometric inequality we have
abc = a+ b+ c+ 2 ≥ 4(2abc)1/4 so that abc ≥ 8 and p = a+ b+ c ≥ 6.

From (2) we obtain q ≤ 1
8

(
p2 + 8p+ 12 +

√
(p+ 2)(p− 6)3

)
and it remains to show that

1
8

(
p2 + 8p+ 12 +

√
(p+ 2)(p− 6)3

)
≤ p(p+ 2)

4
. (3)

Now (3) is equivalent to
√

(p+ 2)(p− 63)≤ (p− 6)(p+ 2) or, on squaring both sides and
simplifying, −8(p+ 2)(p− 6)2 ≤ 0.
Since the last inequality is clearly true, we see that (1) is true, and this completes the
solution.

Also solved by Tom Leong, Scotrun, PA; Bruno Salgueiro Fanego, Viveiro,
Spain, and the proposer.

8



• 5095: Proposed by Zdravko F. Starc, Vršac, Serbia

Let Fn be the Fibonacci numbers defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n = 1, 2, · · ·).

Prove that √
Fn−2Fn−1 + 1 ≤ Fn ≤

√
(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

Solution 1 by Valmir Bucaj (student, Texas Lutheran University), Seguin, TX

First, using mathematical induction, we show that

F 2
n = Fn−1Fn+1 + (−1)n+1, for n = 2 , 3 , . . . (2 ).

For n = 2 we have:
F 2

2 = 1 = 1 · 2− 1 = F1F3 + (−1)3.

Assume that (2) holds for n. We show that it is true also for n+ 1.

FnFn+2 + (−1)n+2 = Fn (Fn + Fn+1) + (−1)n+2

= F 2
n + FnFn+1 + (−1)n+2

= Fn−1Fn+1 + FnFn+1 + (−1)n+1 + (−1)n+2

= Fn+1 (Fn−1 + Fn) = F 2
n+1.

So (2) hold for any n ≥ 2.

Next we show that, √
Fn−2Fn−1 + 1 ≤ Fn, holds.

By applying (2) several times we obtain:

F 2
n = Fn−1Fn+1 + (−1)n+1

= Fn−1 (Fn + Fn−1) + (−1)n+1

= Fn−1Fn + F 2
n−1 + (−1)n+1

= Fn−1Fn + Fn−2Fn + (−1)n + (−1)n+1

= Fn−1Fn + Fn−2Fn−1 + F 2
n−2

= 2Fn−1Fn−2 + Fn−2Fn + F 2
n−2 + (−1)n+1

= 3Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1

= Fn−1Fn−2 + 2Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1

9



≥ Fn−1Fn−2 + 2
√
Fn−1Fn−2 + 1

=
(√

Fn−1Fn−2 + 1
)2

Taking the square root of both sides we obtain:

Fn ≥
√
Fn−1Fn−2 + 1,

which is the first part of (1).

To prove the second part of (1), we proceed similarly. That is:

F 2
n = Fn−1Fn+1 + (−1)n+1

= Fn−1 (Fn + Fn−1) + (−1)n+1

= Fn−1Fn + F 2
n−1 + (−1)n+1

= Fn−1Fn + Fn−2Fn + (−1)n + (−1)n+1

= Fn−1Fn + Fn−2Fn−1 + F 2
n−2

= 2Fn−1Fn−2 + Fn−2Fn + F 2
n−2 + (−1)n+1

= 3Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1

≤ 3Fn−1Fn−2 + 2Fn−1Fn−2 + 1

= 5Fn−1Fn−2 + 1

≤ (n− 2)Fn−1Fn−2 + 1 for n ≥ 7.

Taking the square root of both sides we obtain:

Fn ≤
√

(n− 2)Fn−1Fn−2 + 1 ≤
√

(n− 2)Fn−1Fn−2 + 1, (4)

which proves the second part of (1) for n ≥ 7.

On can easily show that (4) also holds for n = 3, 4, 5, and 6 by checking each of these
cases separately. So combining (3) and (4) we have proved that:√

Fn−2Fn−1 + 1 ≤ Fn ≤
√

(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Given n = 3, 4, · · · , we can use (because all the Fn are positive) the Geometric Mean-
Arithmetic Mean Inequality applied to Fi, i = n−1, n−2, the facts that Fn = Fn−1+Fn−2

and Fn ≥ 2 with equality if, and only if, n = 3, to obtain:√
Fn−2Fn−1 + 1 ≤ Fn−2 + Fn−1

2
+ 1 =

Fn

2
+ 1 ≤ Fn,

10



which is the first inequality to prove, with equality if, and only if, n = 3.

The second inequality, if n = 3, 4, · · · can be proved using that Fn =
n−2∑
i=1

Fi + 1, the

Quadratic Mean-Arithmetic Mean inequality applied to the positive numbers Fi, i =

1, 2, · · · , n− 2, and that Fn−2Fn−1 =
n−2∑
i=1

F 2
i , because

Fn =
n−2∑
i=1

Fi + 1 ≤

√√√√(n− 2)
n−2∑
i=1

F 2
i + 1 =

√
(n− 2)Fn−2Fn−1 + 1,

with equality if, and only if, n = 3 or n = 4.

Solution 3 by Shai Covo, Kiryat-Ono, Israel

The left inequality is trivial. Indeed, for any n ≥ 3,√
Fn−2Fn−1 + 1 ≤

√
Fn−1Fn−1 + Fn−2 = Fn.

As for the right inequality, the result is readily seen to hold for n = 3, 4, 5, 6. Hence, it
suffices to show that for any n ≥ 7 the following inequality holds:

Fn = Fn−2 + Fn−1 <
√

5Fn−2Fn−1.

With x and y playing the role of Fn−2 and Fn−1 (n ≥ 7), respectively, it thus suffices to
show that x+ y <

√
5xy, subject to x < y < 2x (x ≥ F5 = 5).

It is readily checked that, for any fixed x > 0 (real), the function φx(y) =
√

5xy− (x+ y),
defined for y ∈ [x, 2x], has a global minimum at y = 2x, where φx(y) = (

√
10− 3)x > 0.

The result is now established.

Solution 4 by Brian D. Beasley, Clinton, SC

Let Ln = α
√
αFn−2Fn−1 − 1 and Un = α

√
αFn−2Fn−1 + 1, where α = (1 +

√
5)/2. We

prove the stronger inequalities Ln ≤ Fn ≤ Un for n ≥ 3, with improved lower bound for
n ≥ 5 and improved upper bound for n ≥ 7.

First, we note that the inequalities given in the original problem hold for 3 ≤ n ≤ 6. Next,
we apply induction on n, verifying that L3 ≤ F3 ≤ U3 and assuming that Ln ≤ Fn ≤ Un

for some n ≥ 3. Then (Fn − 1)2 ≤ α3Fn−2Fn−1 ≤ (Fn + 1)2, which implies

(Fn+1 − 1)2 = (Fn − 1)2 + 2Fn−1(Fn − 1) + F 2
n−1 ≤ α3Fn−2Fn−1 + 2Fn−1(Fn − 1) + F 2

n−1

and

(Fn+1 + 1)2 = (Fn + 1)2 + 2Fn−1(Fn + 1) +F 2
n−1 ≥ α3Fn−2Fn−1 + 2Fn−1(Fn + 1) +F 2

n−1.

Since α3Fn−1Fn = α3Fn−2Fn−1 + α3F 2
n−1, it suffices to show that

2Fn−1(Fn − 1) + F 2
n−1 ≤ α3F 2

n−1 ≤ 2Fn−1(Fn + 1) + F 2
n−1,

that is, 2(Fn − 1) + Fn−1 ≤ α3Fn−1 ≤ 2(Fn + 1) + Fn−1. Using the Binet formula
Fn = (αn − βn)/

√
5, where β = (1 −

√
5)/2, these latter inequalities are equivalent to

2βn−1 − 2 ≤ 0 ≤ 2βn−1 + 2, both of which hold since −1 < β < 0. (We also used the
identities 2α+ 1− α3 = 0 and α3 − 1− 2β = 2

√
5.)
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Finally, we note that Un is smaller than the original upper bound for n ≥ 7, since α3 +2 <
7. Also, a quick check verifies that Ln is larger than the original lower bound for n ≥ 5;
this requires

(α3 − 1)2(Fn−2Fn−1)2 − 8(α3 + 1)Fn−2Fn−1 + 16 ≥ 0,

which holds if Fn−2Fn−1 ≥ 4.
Also solved by Paul M. Harms, North Newton, KS; Tom Leong, Scotrun, PA;
Boris Rays, Brooklyn NY; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 5096: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a

b+ 4
√
ab3

+
b

c+ 4
√
bc3

+
c

a+ 4
√
ca3
≥ 3

2
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

We have, since 4
√
xy3 ≤ x+ 3y

4
, that

∑
cyclic

a

b+ 4
√
ab3
≥ 4

∑
cyclic

a

7b+ a
= 4

∑
cyclic

a2

7ba+ a2
≥ 4

(a+ b+ c)2∑
a2 + 7

∑
ab
,

and hence it suffices to prove that

8(a+ b+ c)2 ≥ 3(a2 + b2 + c2) + 21(ab+ bc+ ca).

However, the last inequality reduces to proving that

a2 + b2 + c2 ≥ ab+ bc+ ca,

and the problem is solved since the preceding inequality holds for all real a, b, and c.

Solution 2 by Ercole Suppa, Teramo, Italy

By the weighted AM-GM inequality we have

a

b+ 4
√
ab3

+
b

c+ 4
√
bc3

+
c

a+ 4
√
ca3

≥ a

b+
1
4
a+

3
4
b

+
b

c+
1
4
b+

3
4
c

+
c

a+
1
4
c+

3
4
a

=
4a

a+ 7b
+

4b
b+ 7c

+
4c

c+ 7a
.

So it suffices to prove that

a

a+ 7b
+

b

b+ 7c
+

c

c+ 7a
≥ 3

8
.
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This inequality is equivalent to

7(13a2b+ 13b2c+ 13ac2 + 35ab2 + 35a2c+ 35bc2 − 144abc)
8(a+ 7b)(b+ 7c)(c+ 7a)

≥ 0

which is true. Indeed according to the AM-GM inequality we obtain

13a2b+ 13b2c+ 13ac2 ≥ 13 · 3 · 3
√
a3b3c3 = 39abc

35ab2 + 35a2c+ 35bc2 ≥ 35 · 3 · 3
√
a3b3c3 = 105abc

and, summing these inequalities we obtain:

13a2b+ 35ab2 + 35a2c+ 13b2c+ 13ac2 + 35bc2 ≥ 144abc.

This ends the proof. Clearly, equality occurs for a = b = c.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San An-
gelo, TX

We start by considering the function

f(t) =
1

et + e
3
4
t

on <. Then for all t ∈ <,

f ′′(t) =
16e2t + 23e

7
4
t + 9e

3
2
t

16
(
et + e

3
4
t
)3 > 0,

and hence, f(t) is strictly convex on <.

If x = ln
(
b

a

)
, y = ln

(
b

a

)
, and z = ln

(
b

a

)
, then

x+ y + z = ln
(
b

a
· c
b
· a
c

)
= ln 1 = 0.

By Jensen’s Theorem,

a

b+ 4
√
ab3

+
b

c+ 4
√
bc3

+
c

a+ 4
√
ca3

=
1(

b

a

)
+
(
b

a

)3/4
+

1(
c

b

)
+
(
c

b

)3/4
+

1(
a

c

)
+
(
a

c

)3/4

= f(x) + f(y) + f(z)

≥ 3f
(
x+ y + z

3

)
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= 3f(0)

=
3
2
.

Further, equality is attained if, and only if, x = y = z = 0, i.e., if, and only if, a = b = c.

Solution 4 by Shai Covo, Kiryat-Ono, Israel

Let us first represent b and c as b = xa and c = yxa, where x and y are arbitrary positive
real numbers. By doing so, the original inequality becomes

1
x+ x3/4

+
1

y + y3/4
+

yx

1 + (yx)1/4
≥ 3

2
. (1)

Let us denote by f(x, y) the expression on the left-hand side of this inequality. Clearly,
f(x, y) has a global minimum at some point (α, β) ∈ (0,∞)×(0,∞), a priori not necessar-
ily unique. This point is, in particular, a critical point of f ; that is, fx(α, β) = fy(α, β) =
0, where fx and fy denote the partial derivatives of f with respect to x and y. Calculating
derivatives, the conditions fx(α, β) = 0 and fy(α, β) = 0 imply that

1 + 3
4α
−1/4(

α+ α3/4
)2 =

β
[
1 + 3

4(βα)1/4
]

[
1 + (βα)1/4

]2 and

1 + 3
4β
−1/4(

β + β3/4
)2 =

α
[
1 + 3

4(βα)1/4
]

[
1 + (βα)1/4

]2
, (2)

respectively. From this it follows straight forwardly, that

1 + 3
4α
−1/4

α
(
1 + α−1/4

)2 =
1 + 3

4β
−1/4

β
(
1 + β−1/4

)2 .
Writing this equality as ϕ(α) = ϕ(β) and noting that ϕ is strictly decreasing, we conclude
(by virtue of ϕ being one-to-one) that α = β. Substituting this into (2) gives

1 + 3
4α
−1/4(

α+ α3/4
)2 =

α
(
1 + 3

4α
1/2
)

(
1 + α1/2

)2 .

Comparing the numerators and denominators of this equation shows that the right-hand
side is greater than the left-hand side for α > 1, while the opposite is true for α < 1.
We conclude that α = β = 1. Thus f has a unique global minimum at (x, y) = (1, 1),
where f(x, y) = 3/2. The inequality (1), and hence the one stated in the problem, is thus
proved.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong Kong,
China; Tom Leong, Scotrun, PA; Paolo Perfetti, Mathematics Department
Tor Vergata University, Rome, Italy, and the proposer.
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• 5097: Proposed by Ovidiu Furdui, Cluj, Romania

Let p ≥ 2 be a natural number. Find the sum

∞∑
n=1

(−1)n

b p
√
nc
,

where bac denotes the floor of a. (Example b2.4c = 2).

Solution 1 by Paul M. Harms, North Newton, KS

Since the series is an alternating series it is important to check whether the number of
terms with the same denominator is even or odd. It is shown below that the number of
terms with the same denominator is an odd number.

Consider p=2. The series starts:

(−1)1

1
+

(−1)2

1
+

(−1)3

1
+

(−1)4

1
+ . . .+

(−1)8

2
+

(−1)9

3
+ . . .

=
(−1)3

1
+

(−1)8

2
(−1)15

3
+ . . .

= −1 +
1
2
− 1

3
+ . . . .

The terms with 1 in the denominator are from n = 12 up to (not including) n = 22, and
the terms with 2 in the denominator come from n = 22 up to n = 32. The number of
terms with 1 in the denominator is 22 − 12 = 3 terms.

For p = 2 the number of terms with a positive integer m in the denominator is (m+ 1)2−
m2 = 2m+ 1 terms which is an odd number of terms.

For a general positive integer p, the number of terms with a positive integer m in the
denominator is (m+ 1)p −mp terms. Either (m+ 1) is even and m is odd or vice versa.
An odd integer raised to a positive power is an odd integer, and an even integer raised
to a positive power is an even integer. Then (m + 1)p −mp is the difference of an even
integer and an odd integer which is an odd integer. Since, for every positive integer p the

series starts with
(−1)1

1
= −1 and we have an odd number of terms with denominator 1,

the last term with 1 in the denominator is
−1
1

and the other terms cancel out.

The terms with denominator 2 start and end with positive terms. They all cancel out

except the last term of
1
2

.

Terms with denominator 3 start and end with negative terms. For every p we have the
series

−1
1

+
1
2
− 1

3
+

1
4
− 1

5
+ . . . = − ln 2.

Solution 2 by The Taylor University Problem Solving Group, Upland, IN
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First note that the denominators of the terms of this series will be increasing natural
numbers, because p

√
n will always be a real number greater than or equal to 1 for n ≥ 1,

meaning that its floor will be a natural number. Furthermore, for a natural number a,
ap is the smallest n for which a is the denominator, because b p

√
apc = bac = a. In other

words, the denominator increases by 1 each time n is a perfect pth power. Thus, a natural
number k occurs as the denominator (k+1)p−kp times in the series. Because multiplying
a number by itself preserves parity and k+ 1 and k always have opposite parity, (k+ 1)p

and kp also have opposite parity, hence their difference is odd. So each denominator
occurs an odd number of times. Because the numberator alternates between 1 and -1,
all but the last of the terms with the same denominator will cancel each other out. This
leaves an alternating harmonic series with a negative first term, which converges to − ln 2.

This can be demonstrated by the fact that the alternating harmonic series with a positive
first term is the Mercator series evaluated at x = 1, and this series is simply the opposite
of that.

Incidentally, this property holds for p = 1 as well.

Also solved by Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro Fanego, Viveiro,
Spain; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Mathematics Depart-
ment Tor Vergata University, Rome, Italy; David Stone and John Hawkins
(jointly), Statesboro, GA; Ercole Suppa, Teramo, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 15, 2010

• 5116: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on side AB, and with point Q on side BC such that

AP

PB
=

BQ

QC
> 5.

The cevians DP and DQ divide diagonal AC into three segments with each having
integer length. Find those three lengths, if AC = 84.

• 5117: Proposed by Kenneth Korbin, New York, NY

Find positive acute angles A and B such that

sinA + sinB = 2 sin A · cos B.

• 5118: Proposed by David E. Manes, Oneonta, NY

Find the value of√
2011 + 2007

√
2012 + 2008

√
2013 + 2009

√
2014 + · · ·

• 5119: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a non-negative integer. Prove that

2 +
1

2n+1

n∏
k=0

csc
(

1
Fk

)
< Fn+1

where Fn is the nth Fermat number defined by Fn = 22n
+ 1 for all n ≥ 0.

• 5120: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate

lim
n→∞

1
2n

n∑
k=0

(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
.
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• 5121: Proposed by Tom Leong, Scotrun, PA

Let n, k and r be positive integers. It is easy to show that

∑
n1+n2+···+nr=n

(
n1

k

)(
n2

k

)
· · ·
(

nr

k

)
=

(
n + r − 1
kr + r − 1

)
, n1, n2, · · ·nr ∈ N

using generating functions. Give a combinatorial argument that proves this identity.

Solutions

• 5098: Proposed by Kenneth Korbin, New York, NY

Given integer-sided triangle ABC with 6 B = 60◦ and with a < b < c. The perimeter of
the triangle is 3N2 + 9N + 6, where N is a positive integer. Find the sides of a triangle
satisfying the above conditions.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Since 3n2 + 9n + 6 = 3(n + 1)(n + 2) = 3K, we can rephrase the problem as follows:
Find an integer-sided triangle ABC with angle B = 60◦ and a < b < c whose perimeter
is the same as an equilateral triangle PBQ whose side is K.

Let us then consider a triangle derived from PBQ by lengthening PB by an integer x
and shortening BQ by an integer y such that the resulting triangle still has perimeter
3K.

Thus, we can write the following expression:

Perimeter (4ABC ) = (K+x )+(K−y)+
[
(K + x )2 + (K − y)2 − (K + x )(K − y)

]1/2
= 3K (1)

Also we must make sure that,

(K + x)2 + (K − y)2 − (K + x)(K − y) = M2, for some interger M (2)

Note also that BC < CA < AB since 6 BAC < 60◦ < 6 BCA.

Equation (1) can be transformed into the much simpler equation,

xy = K(y − x) = (n + 1)(n + 2)(y − x) (3)

The most obvious solution of (3) is x = n + 1 and y = n + 2.

Substituting these expressions into the left hand side of (2) and simplifying, we get

(K +x)2+(K−y)2−(K +x)(K−y) = (n+1)4+2(n+1)3+3(n+1)2+2(n+1)+1 (4)

But the right hand side of (4) is just
[
(n + 1)2 + (n + 1) + 1

]2, so that (2) is satisfied
when x = n + 1 and y = n + 2.

Hence, we have at least one solution:

AB = K + x = (n + 1)(n + 2) + (n + 1) = (n + 1)(n + 3)
BC = K − y = (n + 1)(n + 2)− (n + 2) = n(n + 2)
CA = (n + 1)2 + (n + 1) + 1

2



Solution 2 by David Stone and John Hawkins, Statesboro, GA

We show that the following triangle satisfies the conditions posed in the problem:

a = N2 + 2N = N(N + 2)
b = N2 + 3N + 3 = (N + 1)(N + 2) + 1
c = N2 + 4N + 3 = (N + 1)(N + 3).

But by no means does this give all acceptable triangles and we exhibit some others (and
methods to produce them).

The given sum for the perimeter does have a connection to triangles: 3N2 + 9N + 6 is
6TN+1, the N + 1st triangular number!

Since a < b < c are all integers, we let m and n be positive integers such that b = a + m
and c = a + m + n.
By the Law of Cosines, b2 = a2 + c2 − 2ac cos 60◦ = a2 − ac + c2. Replacing b = a + m
and c = a + m + n we get

(a + m)2 = a2 − a(a + m + n) + (a + m + n)2 or
−am + an + n2 + 2mn = 0. (1)

Likewise, substituting b = a + m and c = a + m + n into the proscribed perimeter
conditions produces

3a + 2m + n = 3(N + 1)(N + 2). (2)

From equation (1), we have am = n(a + 2m + n); and from this we see that n must be a
factor of am. There are many ways for this to happen, but the simplest possible is that
n|s or n|m.

Case I: a = nA.

Then

nAm = n(nA + 2m + n),
Am = nA + 2m + n, or

(A− 2)m = n(A + 1). (1a)

The simplest possible solution to Equation (1a) is

n = A− 2
m = A + 1

In this case, equation (2) becomes

3nA + 2m + n = 3 (N + 1) (N + 2) ,
3(A− 2)A + 2(A + 1) + (A− 2) = 3(N + 1)(N + 2),

3A2 − 3A = 3(N + 1)(N + 2), or
(A− 1)A = (N + 1)(N + 2).

Because A− 1 and A are consecutive integers, as are N + 1 and N + 2, we must have
A = N + 2 (so n = N and m = N + 3). It then follows that

a = nA = N(N + 2)

3



b = a + m = N(N + 2) + (N + 3) = N2 + 3N + 3
c = a + m + n = N(N + 2) + (N + 3) + N = N2 + 4N + 3.

It is straightforward to check that such a, b, c satisfy equations (1) and (2). Here are the
first few solutions:

N a b c
1 3 7 8
2 8 13 15
3 15 21 24
4 24 31 35
5 35 43 48
6 48 57 63
7 63 73 80
8 80 91 99
9 99 111 120
10 120 133 143
11 143 157 168
12 168 183 195
13 195 211 224
14 224 241 255
15 225 273 288

There are more solutions to the equation (1a) : (A− 2)m = n(A + 1). For instance, we
could look for solutions with m = d(A + 1) and n = d(A− 2), with d > 1. In this case,
equation (2) becomes dA(A− 1) = (N + 1)(N + 2) which is quadratic in A. By varying
d (and using Excel) we find more solutions:

d N a b c
2 2 6 14 16
2 19 390 422 448
3 8 72 93 105
3 34 1197 1263 1320
5 4 15 35 40
5 13 175 215 240
5 98 9675 9905 10120

Note that these solutions are scalar multiples of the (fundamental?) solutions found
above. Many more solutions are possible.

Case II: n|m, or m = nC.

In this case, am = n(a + 2m + n) becomes

anC = n(a + 2nC + n) or
aC = a + 2nC + n or

(C − 1)a = n(2C + 1) (1b)

Once again, there are many ways to find solutions to this, but no general solution valid
for all values of N. We stop by giving one more: with N = 54 we find
a = 231, b = 4449, c = 4560.

Also solved by Brian D. Beasley, Clinton, SC; G. C. Greubel, Newport
News, VA; Paul M. Harms, North Newton, KS; David C. Wilson,
Winston-Salem, NC, and the proposer.
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• 5099: Proposed by Kenneth Korbin, New York, NY

An equilateral triangle is inscribed in a circle with diameter d. Find the perimeter of the
triangle if a chord with length d− 1 bisects two of its sides.

Solution 1 by Boris Rays, Brooklyn, NY

Let O be the center of the inscribed equilateral triangle ABC. Let the intersection of
the altitude from vertex A with side BC be F ; from vertex B with side AC be H, and
from vertex C with side AB be E . Since 4ABC is equilateral, AF,BH, and CE are
also the respective angle bisectors, perpendicular bisectors, and medians of the
equilateral triangle, and AH = HC = CE = FB = BE = EA.

Let line segment EF be extended in each direction, intersecting BH at K, and the
circumscribing circle of 4ABC at points D and G, where D is on the minor arcÂB and
G is on the minor arc B̂C. Note that points D,E,K,F, and G lie on line segment DG
and that AO = OG. Also note, by the givens of the problem, that

DG = d− 1 and

AO = BO = CO = r =
d

2
, (1)

where r and d are correspondingly the radius and diameter of the circumscribed circle.

BH ⊥ AC,AH = HC, 6 BAO = 6 OAH = 30◦.

OH =
1
2
AO =

d

4
.

AH =

√(
d

2

)2

−
(

d

4

)2

=
d

4

√
3.

AC = 2AH =
d

2

√
3 (2)

The perimeter P of triangle 4ABC will be

P = 3 ·AC =
3
2

√
3d. (3)

BK =
1
2
BH =

1
2
· 3 ·OH =

3
8
d.

KO = BO −BK =
d

2
− 3

8
d =

d

8
.

GK =
1
2
DG =

d− 1
2

.

Triangle 4GKO is a right triangle with DG ⊥ BH and GK ⊥ BO. Therefore,

GO2 = GK2 + KO2 (4)

Substituting the values of the component parts of 4GKO into (4),

GO = r =
d

2
, GK =

d− 1
2

, KO =
d

8
,

5



we obtain (
d− 1

2

)2

−
(

d

8

)2

=
(

d

2

)2

. (5)

Simplifying the last equation (5) we find that d = 4 ·
(
4 +

√
15
)
. Therefore,

AC =
4(4 +

√
15)

2

√
3 = 2

(
4
√

3 + 3
√

5
)

, and

P = 3 · 2
(
4
√

3 + 3
√

5
)

= 24
√

3 + 18
√

5.

.

Solution 2 by Brian D. Beasley, Clinton, NC

We model the circle using x2 + y2 = r2, where r = d/2, and place the triangle with one
vertex at (0, r), leaving the other two vertices in the third and fourth quadrants.
Labeling the fourth quadrant vertex as (a, b), we have b = r −

√
3a and thus a =

√
3r/2,

b = −r/2. Then two of the midpoints of the triangle’s sides are

(√
3

4
r,

1
4
r

)
and(

0,−1
2
r

)
. We find the endpoints of the chord through these two midpoints by

substituting its equation, y =
√

3x− r/2, into the equation of the circle; the two
x-coordinates of these endpoints are x = sr and x = tr, where

s =
√

3 +
√

15
8

and t =
√

3−
√

15
8

.

Hence the length of the chord is√
(s− t)2r2 + (

√
3(s− t))2r2 = d(s− t).

If the chord length is d− k, where 0 < k < d, then d = k/(1− s + t) = 4k(4 +
√

15).
Thus the perimeter of the triangle is P = 3

√
3r = k(24

√
3 + 18

√
5). For the given

problem, since k = 1, we obtain P = 24
√

3 + 18
√

5.

Also solved by Michael Brozinsky, Central Islip, NY; Paul M. Harms, North
Newton, KS; John Nord, Spokane, WA; Raúl A. Simón, Santiago, Chile;
David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5100: Proposed by Mihály Bencze, Brasov, Romania

Prove that
n∑

k=1

√
k

k + 1

(
n

k

)
≤

√
n(2n+1 − n)2n−1

n + 1

Solution 1 by Kee-Wai Lau, Hong Kong, China

We need the identities
n∑

k=0

(
n

k

)
xk = (1 + x)n (1)

n∑
k=0

k

(
n

k

)
xk−1 = n (1 + x)n−1 (2)
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and
n∑

k=0

(
n
k

)
x k+1

k + 1
=

(1 + x)n+1 − 1
n + 1

(3)

Identity (1) is the well known binomial expansion, whilst identities (2) and (3) follow
respectively by differentiating and integrating (1). By the Cauchy-Schwarz inequality
and putting x = 1 in (2) and (3) we obtain

n∑
k=1

√
k

k + 1

(
n

k

)
=

n∑
k=1


√√√√k

(
n

k

)
√√√√(n

k

)
1

k + 1



≤

√√√√( n∑
k=1

k

(
n

k

))(
n∑

k=1

(
n

k

)
1

k + 1

)

=

√
(n2n−1)

(
2n+1 − 1

n + 1
− 1

)

=

√
n (2n+1 − n− 2) 2n−1

n + 1
,

and the inequality of the problem follows.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

We shall prove a substantially better upper bound than the one stated in the problem.
Namely, we show that

n∑
k=1

√
k

k + 1

(
n

k

)
<

n

n + 1

(
2n − 1

2

)
.

It is readily checked that our bound is less than the bound of

√
n(2n+1 − n)2n−1

n + 1
that

the problem suggests; moreover, we have verified numerically that it is much tighter.

Now to the proof. The key observation is that√
k

k + 1
< 1− 1

2(k + 1)

for all k ∈ N (actually, for any real k > 0; its origin lies in the mean value theorem
applied to the function f(x) =

√
x and points a = k/(k + 1), b = 1.

Thus, using the elementary identity
n∑

k=0

(
n

k

)
= 2n (twice), we get

n∑
k=1

√
k

k + 1

(
n

k

)
<

n∑
k=1

(
n

k

)
− 1

2

n∑
k=1

1
k + 1

(
n

k

)
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= 2n − 1− 1
2(n + 1)

n∑
k=1

(
n + 1
k + 1

)

= 2n − 1− 2n+1 − (n + 1)− 1
2(n + 1)

=
n

n + 1

(
2n − 1

2

)
.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

We prove the slightly more general statement

n∑
k=1

√
k

k + 1

(
n

k

)
≤

√
(2n − 1) [(n− 1) 2n + 1]

n + 1
. (1)

To show that this implies the desired inequality, we begin by letting P (n) be the
statement: 2n+1 > (n− 1)2 + 3. P (1) is obvious and if we assume P (n) is true for some
n ≥ 1, then

2n+2 = 2 · 2n+1 > 2
[
(n− 1)2 + 3

]
=
(
n2 + 3

)
+
(
n2 − 4n + 5

)
=

(
n2 + 3

)
+
[
(n− 2)2 + 1

]
> n2 + 3,

and P (n + 1) is also true. By Mathematical Induction, P (n) is true for all n ≥ 1.

Then, for n ≥ 1,

n
(
2n+1 − n

)
2n−1 − (2n − 1) [(n− 1) 2n + 1]

= 2n−1
[
2n+1 − (n− 1)2 − 3

]
+ 1

> 0

and we have

(2n − 1) [(n− 1) 2n + 1] < n
(
2n+1 − n

)
2n−1. (2)

It follows that statement (1) implies the given inequality.

To prove statement (1), we note that since
n∑

k=0

(
n

k

)
= 2n, we get

n∑
k=1

(n
k

)
2n − 1

= 1.

Because f (x) =
√

x is concave down on [0,∞), Jensen’s Theorem implies that

n∑
k=1

(
n

k

)
1

2n − 1

√
k

k + 1
≤

√√√√ n∑
k=1

(
n

k

)
1

2n − 1
k

k + 1
=

√√√√ 1
2n − 1

n∑
k=1

(
n

k

)
k

k + 1
,

and hence,
n∑

k=1

(
n

k

)√
k

k + 1
≤

√√√√(2n − 1)
n∑

k=1

(
n

k

)
k

k + 1
. (3)
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For k = 1, 2, . . . , n, (
n

k

)
k

k + 1
=

k

n + 1

(
n + 1
k + 1

)
and we get

n∑
k=1

(
n

k

)
k

k + 1
=

1
n + 1

n∑
k=1

k

(
n + 1
k + 1

)
=

1
n + 1

n+1∑
k=2

(k − 1)

(
n + 1

k

)
. (4)

Finally, the Binomial Theorem yields

n+1∑
k=0

(
n + 1

k

)
xk = (1 + x)n+1 .

It follows that when x 6= 0,

n+1∑
k=1

(
n + 1

k

)
xk−1 =

(1 + x)n+1 − 1
x

and, by differentiating,

n+1∑
k=2

(k − 1)

(
n + 1

k

)
xk−2 =

x (n + 1) (1 + x)n −
[
(1 + x)n+1 − 1

]
x2

.

In particular, when x = 1,

n+1∑
k=2

(k − 1)

(
n + 1

k

)
= (n + 1) 2n − 2n+1 + 1 = (n− 1) 2n + 1. (5)

Then, statements (3), (4), and (5) imply statement (1), which (by statement (2)) yields
the desired inequality.

Also solved by G. C. Greubel, Newport News, VA, and the proposer

• 5101: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India

An unbiased coin is tossed repeatedly until r heads are obtained. The outcomes of the
tosses are written sequentially. Let R denote the total number of runs (of heads and
tails) in the above experiment. Find the distribution of R.

Illustration: if we decide to toss a coin until we get 4 heads, then one of the possibilities
could be the sequence T T H H T H T H resulting in 6 runs.

Solution by Shai Covo, Kiryat-Ono, Israel

It is readily seen that R can be represented as

R = 1 + Y1 + 2
r∑

i=2

Yi, (1)

where Yi, i = 1, . . . , r, is a random variable equal to 1 if the i-th head follows a tail and
equal to 0 otherwise. The Yi′s are thus independent Bernoulli (1/2) variables, that is

9



P (Yi = 1) = P (Yi = 0) = 1/2. Noting that R is odd if and only if Y1 = 0, and even if
and only if Y1 = 1, it follows straightforwardly from (1) that

P (R = n) =
1
2
P

(
r∑

i=2

Yi =
n− 1

2

)
for n = 1, 3, . . . , (2r − 1) and

P (R = n) =
1
2
P

(
r∑

i=2

Yi =
n− 2

2

)
for n = 2, 4, . . . , 2r .

(2)

Finally, since
r∑

i=2

Yi has a binomial distribution with parameters r − 1 and
1
2

(defined as

0 if r = 1), we conclude that

P (R = n) =

(
r − 1

(n− 1)/2

)
1
2r

for n = 1, 3, . . . , (2r − 1)

and

P (R = n) =

(
r − 1

(n− 2)/2

)
1
2r

for n = 2, 4, . . . , 2r .

Remark 1. More generally, if the probability of getting a head on each throw is
p ∈ (0, 1), then P (R = n) is given, in a shorter form, by

P (R = n) =

(
r − 1
bn−1

2 c

)
(1− p)bn/2cpr−bn/2c, n = 1, 2, . . . , 2r,

where b·c denotes the floor function. This is proved in the same way as in the unbiased
case, only that now the Yi are Bernoulli (1− p) variables.

Remark 2. From (1) and the fact that E(Yi) = 1/2 and V ar(Yi) = 1/4, we find that
the expectation and variance of R are given by

E(R) = 1 +
1
2

+ 2(r − 1)
1
2

= r +
1
2

and V ar(R) =
1
4

+ 4(r − 1)
1
4

= r − 3
4
.

In the more general case of Remark 1, where E(Yi) = 1− p and V ar(Yi) = (1− p)p, the
expectation and variance of R are given by

E(R) = 2(1− p)r + p and Var(R) = 4(1− p)pr − 3(1− p)p.

Also solved by David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposers.

• 5102: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer and let a1, a2, · · · , an be any real numbers. Prove that

1
1 + a2

1 + . . . + a2
n

+
1

FnFn+1

(
n∑

k=1

akFk

1 + a2
1 + . . . + a2

k

)2

≤ 1,

10



where Fk represents the kth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

Solution by Kee-Wai Lau, Hong Kong, China

By Cauchy-Schwarz’s inequality and the well known identity
n∑

k=1

F 2
k = FnFn+1 we have

1
FnFn+1

(
n∑

k=1

akFk

1 + a2
1 + . . . + a2

k

)2

=
1

FnFn+1

(
n∑

k=1

(
ak

1 + a2
1 + . . . + a2

k

)
Fk

)2

≤ 1
FnFn+1

(
n∑

k=1

a2
k(

1 + a2
1 + . . . + a2

k

)2
)(

n∑
k=1

F 2
k

)

=
n∑

k=1

a2
k(

1 + a2
1 + . . . + a2

k

)2
Hence it remains for us to show that

1
1 = a2

1 + . . . + a2
n

+
n∑

k=1

a2
k(

1 + a2
1 + . . . + a2

k

)2 ≤ 1. (1)

Denote the left hand side of (1) by f(n). Since f(1) =
1 + 2a2

1

1 + 2a2
1 + a4

1

, so f(1) ≤ 1.

Now

f(m + 1)− f(m)

=
1

1 + a2
1 + . . . + a2

m+1

+
a2

m+1(
1 + a2

1 + . . . + a2
m+1

)2 − 1
1 + a2

1 + . . . + a2
m

=
(
1 + a2

1 + . . . + a2
m

) (
1 + a2

1 + . . . + a2
m + 2a2

m+1

)
−
(
1 + a2

1 + . . . + a2
m+1

)2(
1 + a2

1 + . . . + a2
m+1

)2 (1 + a2
1 + . . . + a2

m

)
= −

a4
m+1(

1 + a2
1 + . . . + a2

m+1

)2 (1 + a2
1 + . . . + a2

m

)
≤ 0,

so in fact f(n) ≤ 1 for all positive integers n. Thus (1) holds and this completes the
solution.

Also solved by the proposers.

• 5103: Proposed by Roger Izard, Dallas, TX

11



A number of circles of equal radius surround and are tangent to another circle. Each of
the outer circles is tangent to two of the other outer circles. No two outer circles
intersect in two points. The radius of the inner circle is a and the radius of each outer
circle is b. If

a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0,

determine the number of outer circles.

Solution by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
San Angelo, TX

Let CA be the inner circle centered at point A with radius a. Similarly, let CB be a fixed
outer circle centered at point B with radius b. Circle CB is tangent to two other outer
circles; let T1 and T2 be these points of tangency. Then,

BT1 ⊥ AT1 and BT ⊥ AT.

If θ is the measure of 6 T1AT2, then 0◦ < θ < 180◦. Further, triangle T1AB is a right
triangle where

m6 T1AB =
θ

2
, T1B = b, and AB = a + b

which yields

sin
(

θ

2

)
=

b

a + b
. (1)

The given condition a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0 implies that

a4 + 4a3b + b4 = 10a2b2 + 28ab3

a4 + 4a3b + 6a2b2 + 4ab3 + b4 = 16a2b2 + 32ab3

(a + b)4 = 16b2(a2 + 2ab)

(a + b)4 = 16b2(a2 + 2ab + b2)− 16b4

(a + b)4 = 16b2(a + b)2 − 16b4

1 =
16b2(a + b)2 − 16b4

(a + b)4

1 = 16
(

b

a + b

)2

− 16
(

b

a + b

)4

.

By equation (1) and the half-angle formula, sin2

(
θ

2

)
=

1− cos θ

2
, it follows that:

1 = 16
(

1− cos θ

2

)
− 16

(
1− cos θ

2

)2

1 = 8(1− cos θ)− 4(1− cos θ)2

1 = 4− 4 cos2 θ

12



cos2 θ =
3
4

cos θ = ±
√

3
2

θ = 30◦ or 150◦.

Since the number of outer circles is
360◦

θ
, then θ = 30◦ and there must be 12 outer

circles.

Comment by editor: David Stone and John Hawkins of Statesboro, GA observed
in their solution that “the circle passing through the centers of the outer bracelet of
circles has circumference almost equal, but slightly larger than, the perimeter of the

regular polygon determined by these centers: 2π(a + b) ≈ n(2b). Thus n ≈ a + b

b
π (in

fact, n must be slightly smaller than
a + b

b
π).”

They went on to say that since

a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0,

a4

b4
+

4a3b

b4
− 10a2b2

b4
− 28ab3

b4
+

b4

b4
= 0, implies

x4 + 4x3 − 10x2 − 28x + 1 = 0, where x =
a

b
.

Therefore,
a

b
=
√

6±
√

2− 1, and since n ≈ a + b

b
π, n = 12. But then they went further.

The equation sin
(

π

n

)
=

b

a + b
=

1

1 +
a

b

, provides the link between n and the ratio
a

b
;

we can solve for either:

n =
π

sin−1

(
1

1 + a/b

) and
a
b

=
1

sin(π/n)
− 1.

The problem poser cleverly embedded a nice ratio for
a

b
in the fourth degree polynomial;

nice in the sense that the n turned out to be an integer. In fact, the graph of the
increasing function y =

π

sin−1

(
1

1 + r

) is continuous and increasing for the positive ratio

r. Thus any lager value of n is uniquely attainable (given the correct choice of r =
a

b
).

Or we can reverse the process: fix the number of surrounding circles and calculate r =
a

b
.

A nice example (by letting b = 1): if we want to surround a circle with a bracelet of 100
unit circles, how large should it be? Answer:

radius = a =
a
1

=
1

sin
π

100

− 1 = 30 .836225 .

Also solved by Michael Brozinsky, Central Islip, NY; Michael N. Fried,
Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS; Kenneth

13



Korbin, New York, NY; Boris Rays, Brooklyn, NY; Raúl A. Simón,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
The Taylor University Problem Solving Group, Upland, IN, and the
proposer.

14



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2010

• 5122: Proposed by Kenneth Korbin, New York, NY

Partition the first 32 non-negative integers from 0 to 31 into two sets A and B so that
the sum of any two distinct integers from set A is equal to the sum of two distinct
integers from set B and vice versa.

• 5123: Proposed by Kenneth Korbin, New York, NY

Given isosceles triangle ABC with AB = BC = 2011 and with cevian BD. Each of the
line segments AB, BD, and CD have positive integer length with AD < CD.

Find the lengths of those three segments when the area of the triangle is minimum.

• 5124: Proposed by Michael Brozinsky, Central Islip, NY

If n > 2 show that
n∑

i=1

sin2
(

2πi

n

)
=

n

2
.

• 5125: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

ab

2(c + a) + 5b
+

bc

2(a + b) + 5c
+

ca

2(b + c) + 5a
<

11
32

.

• 5126: Proposed by Pantelimon George Popescu, Bucharest, Romania and José Luis
Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be positive real numbers and f : [a, b] → [c, d] be a function such that
|f(x)− f(y)| ≥ |g(x)− g(y)|, for all x, y ∈ [a, b], where g : R → R is a given injective
function, with g(a), g(b) ∈ {c, d}.
Prove

(i) f (a) = c and f (b) = d , or f (a) = d and f (b) = c.

(ii) If f (a) = g(a) and f (b) = g(b), then f (x ) = g(x ) for a ≤ x ≤ b.

1



• 5127: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let Tn(x) =
n∑

k=1

(−1)k−1 x2k−1

(2k − 1)!
, denote the (2n− 1)th

Taylor polynomial of the sine function at 0. Calculate∫ ∞
0

Tn(x)− sinx

x2n+1
dx.

Solutions

• 5104: Proposed by Kenneth Korbin, New York, NY

There are infinitely many primitive Pythagorean triangles with hypotenuse of the form
4x4 + 1 where x is a positive integer. Find the dimensions of all such triangles in which
at least one of the sides has prime integer length.

Solution by Brian D. Beasley, Clinton, SC

It is well-known that a primitive Pythagorean triangle (a, b, c) satisfies a = 2st,
b = s2 − t2, and c = s2 + t2 for integers s > t > 0 of opposite parity with gcd(s, t) = 1.
Then a is never prime. Letting x be a positive integer and taking

c = 4x4 + 1 = (2x2 + 2x + 1)(2x2 − 2x + 1),

we see that c can only be prime if 2x2 − 2x + 1 = 1, meaning x = 1. Thus s = 2 and
t = 1, which produces the triangle (4, 3, 5). Similarly, b = (s + t)(s− t) can only be
prime if s− t = 1, which would yield

4x4 + 1 = 2t2 + 2t + 1 and hence 2x4 = t(t + 1).

But this would force one of the consecutive positive integers t or t + 1 to be a fourth
power and the other to be twice a fourth power, meaning t = 1. Once again, our only
solution is the triangle (4, 3, 5).

Also solved by Paul M. Harms, North Newton, KS; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer

• 5105: Proposed by Kenneth Korbin, New York, NY

Solve the equation
x + y −

√
x2 + xy + y2 = 2 +

√
5

if x and y are of the form a + b
√

5 where a and b are positive integers.

Solution by Shai Covo, Kiryat-Ono, Israel

We let x = a + b
√

5 and y = c + d
√

5, with a, b, c, d ∈ N . Since the solution of

x + y −
√

x2 + xy + y2 = 2 +
√

5 (1)

is symmetric in x and y, it suffices to consider the case x ≤ y. Hence, we let y = xα
with α ≥ 1. Substituting into (1) gives

(a + b
√

5)
[
(1 + α)−

√
1 + α + α2

]
= 2 +

√
5 (2)

2



It is immediately verified by taking the derivative that the function
ϕ(α) = (1 + α)−

√
1 + α + α2 is increasing . From ϕ(α)

[
(1 + α) +

√
1 + α + α2

]
= α it

is readily seen that ϕ(α) → 1
2

as α →∞. On the other hand, ϕ(1) = 2−
√

3. We thus

conclude from (2) that

4 + 2
√

5 < a + b
√

5 ≤ 2 +
√

5
2−

√
3
.

We verify numerically that this leaves us with the following set of pairs (a,b):

{(1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 2),
(5, 3), (5, 4), (6, 2), (6, 3), (6, 4), (7, 1), (7, 2),
(7, 3), (8, 1), (8, 2), (8, 3), (9, 1), (9, 2), (9, 3),
(10, 1), (10, 2), (11, 1), (11, 2), (12, 1), (13, 1)}.

It follows straightforwardly from (1) that

y =

(
4 + 2

√
5
)

x− 9− 4
√

5

x− 4− 2
√

5
.

Substituting x = a + b
√

5 and multiplying the numerator and denominator on the right
hand side by (a− 4)− (b− 2)

√
5 gives, after some algebra,

y =
4a2 − 5a + 20b− 20b2 − 4

(a− 4)2 − 5(b− 2)2
+

2a2 − 4a + 13b− 10b2 − 2
(a− 4)2 − 5(b− 2)2

√
5. (3)

This determines the constants c and d forming y in an obvious manner, since
a, b, c, d ∈ N . In particular, we see that

c− 2d =
3a− 6b

(a− 4)2 − 5(b− 2)2
. (4)

From this, noting that c− 2d is an integer, it follows readily that a and b cannot be both
odd; furthermore if a and b are both even, then a must be divisible by 4. This restricts
the set of all possible pairs (a, b)given above to

{(1, 4), (1, 6), (2, 3), (2, 5), (3, 4), (4, 3), (4, 4),
(4, 5), (5, 2), (5, 4), (6, 3), (7, 2), (8, 1), (8, 2),
(8, 3), (9, 2), (10, 1), (11, 2), (12, 1)}.

The requirement that the right-handside of (4) be an integer further restricts the set to

{(2, 3), (5, 2), (6, 3), (7, 2)}.

With these values of a and b, calculating c and d according to (3) give the following x, y
pairs:

x = 2 + 3
√

5, y = 118 + 53
√

5

x = 5 + 2
√

5, y = 31 + 14
√

5

3



x = 6 + 3
√

5, y = 10 + 5
√

5

x = 7 + 2
√

5, y = 13 + 6
√

5.

Substituting into (1) show that these x, y pairs constitute the solution of (1) for x ≤ y.
The complete solution then follows by symmetry in x and y.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro,GA, and the proposer.

• 5106: Proposed by Michael Brozinsky, Central Islip, NY

Let a, b, and c be the sides of an acute-angled triangle ABC. Let H be the orthocenter
and let da, db and dc be the distances from H to the sides BC, CA, and AB respectively.

Show that
da + db + dc ≤

3
4
D

where D is the diameter of the circumcircle.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

From the published solution of SSM problem 5066 and Gerretsen and Euler’s inequality,
we have that

da + db + dc =
r2 + s2 − 4R2

2R
≤ r2 + 4Rr + 3r2

2R
=

2
R

(r + R) ≤ 1
(

R

2
+ R

)
=

3
4
D,

with equality if and only if 4ABC is equilateral.

Solution 2 by Ercole Suppa, Teramo, Italy

Let Ha, Hb, Hc be the feet of A, B, C onto the sides BC, CA, AB respectively and let
R be the circumradius of 4ABC. We have

da = BHa · tan(90◦ − C) = c cos B cot C.

Hence, taking into account the extended sine law, we get

da = 2R sin C cos B cot C = 2R cos B cos C. (1)

Now, by using (1) and its cyclic permutations, the given inequality rewrites as

2R cos B cos C + 2R cos C cos A + 2R cos A cos B ≤ 3
4
· 2R

cos B cos C + cos C cos A + cos A cos B ≤ 3
4

(2)

which is true. In fact, from the well known formulas∑
cos2 A = 1− 2 cos A cos B cos C

and
0 ≤ cos A cos B cos C ≤ 1

8
,

each of which is valid for an acute-angled triangle, we immediately obtain

4



∑
cos2 A ≥ 3

4
. (3)

Hence, by applying the known inequality

1 < cos A + cos B + cos C ≤ 3
2
,

we obtain

(cos A + cos B + cos C)2 ≤ 9
4
⇒

∑
cos2 A + 2

∑
cos B cos C ≤ 9

4
⇒

2
∑

cos B cos C ≤ 9
4
−
∑

cos2 A ≤ 9
4
− 3

4
=

3
2
⇒

∑
cos B cos C ≤ 3

4
,

and the conclusion follows. Equality holds for a = b = c.

Also solved by Scott H. Brown, Montgomery, AL; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China;

• 5107: Proposed by Tuan Le (student, Fairmont, H.S.), Anaheim, CA

Let a, b, c be positive real numbers. Prove that
√

a3 + b3

a2 + b2
+
√

b3 + c3

b2 + c2
+
√

c3 + a3

c2 + a2
≥ 6(ab + bc + ac)

(a + b + c)
√

(a + b)(b + c)(c + a)

Solution by Kee-Wai Lau, Hong Kong, China

By the Cauchy-Schwarz inequality, we have

a2 + b2 ≤
√

(a + b) (a3 + b3), b2 + c2 ≤
√

(b + c) (b3 + c3), c2 + a2 ≤
√

(c + a) (c3 + a3).

Hence it suffices to show that

1√
a + b

+
1√

b + c
+

1√
c + a

≥ 6(ab + bc + ac)
(a + b + c)

√
(a + b)(b + c)(c + a)

or

√
(a + b)(b + c) +

√
(b + c)(c + a) +

√
(c + a)(a + b) ≥ 6(ab + bc + ac)

(a + b + c)
.

By the arithmetic mean-geometric mean-harmonic inequalities, we have√
(a + b)(b + c) +

√
(b + c)(c + a) +

√
(c + a)(a + b)

≥ 3 3

√
(a + b)(b + c)(c + a)

5



≥ 9
1

a + b
+

1
b + c

+
1

c + a

=
9(a + b)((b + c)(c + a)

a2 + b2 + c2 + 3(ab + bc + ca)
.

It remains to show that

3(a + b + c)(a + b)(b + c)(c + a) ≥ 2(ab + bc + ca)
(
a2 + b2 + c2 + 3 (ab + bc + ca)

)
.

But this follows from the fact that

3(a + b + c)(a + b)(b + c)(c + a)− 2(ab + bc + ca)
(
a2 + b2 + c2 + 3(ab + bc + ca)

)
= a3b + ab3 + a3c + ac3 + b3c + bc3 − 2a2bc− 2ab2c− 2abc2

= a(b + c)(b− c)2 + b(c + a)(c− a)2 + c(a + b)(a− b)2

≥ 0,

and this completes the solution.

Also solved by Pedro H.O. Pantoja (student, UFRN), Natal, Brazil; Paolo
Perfetti, Department of Mathematics, University of Rome, Italy, and the
proposer.

• 5108: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

1
n

tan
[ 4n+1∑

k=1

arctan
(

1 +
2

k(k + 1)

)]
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

The limit equals 4. A calculation shows that

arctan
(

1 +
2

k(k + 1)

)
= arctan(1) + arctan

1
k2 + k + 1

,

=
π

4
+ arctan

1
k
− arctan

1
k + 1

.

And it follows that

4n+1∑
k=1

arctan
(

1 +
2

k(k + 1)

)
= (4n + 1)

π

4
+ arctan 1− arctan

1
4n + 2

= (4n + 1)
π

4
+ arctan

4n + 1
4n + 3

.

Thus,

tan

[
4n+1∑
k=1

arctan
(

1 +
2

k(k + 1)

)]
= tan

(
(4n + 1)

π

4
+ arctan

4n + 1
4n + 3

)

6



=
tan((4n + 1)

π

4
) +

4n + 1
4n + 3

1− tan((4n + 1)
π

4
)
4n + 1
4n + 3

=
1 +

4n + 1
4n + 3

1− 4n + 1
4n + 3

= 4n + 2.

So the limit equals 4, and the problem is solved.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

We will show that

lim
n→∞

1
n

tan
[ 4n+1∑

k=1

arctan
(

1 +
2

k(k + 1)

)]
= 4. (1)

From the identity tan(x + mπ) = tan(x), m integer, it follows that the equality (1) will
be proved if we show that

4n+1∑
k=1

arctan
(

1 +
2

k(k + 1)

)
= arctan(4n + 2) + mπ, (2)

for some integer m. In fact, as we will see at the end, the m in (2) is equal to n. We first
prove the following lemma.

Lemma. Define a sequence (ak)k≥1 recursively by a1 = 2 and, for k ≥ 2,

ak =
ak−1 +

(
1 +

2
k(k + 1)

)
1− ak−1

(
1 +

2
k(k + 1)

) . (3)

If ak−1 = k, for some k ≥ 2, then

ak = −k + 2
k

, ak+1 = − 1
k + 2

, ak+2 =
k + 2
k + 4

, ak+3 = k + 4.

Hence, in particular, a4n+1 = 4n + 2 for all n ≥ 0.

Proof. Suppose that ak−1 = k, k ≥ 2. Substituting this into (3) gives

ak = −(k2 + 1)(k + 2)
(k2 + 1)k

= −k + 2
k

. (4)

From (3) and (4) we find

ak+1 = − k2 + 2k + 2
(k2 + 2k + 2)(k + 2)

= − 1
k + 2

. (5)

7



From (3) and (5) we find

ak+2 =
(k2 + 4k + 5)(k + 2)
(k2 + 4k + 5)(k + 4)

=
k + 2
k + 4

. (6)

Finally, from (3) and (6) we find

ak+3 =
(k2 + 6k + 10)(k + 4)

k2 + 6k + 10
= k + 4.

The lemma is thus established.

We make use of the addition formula for arctan:

arctan(x) + arctan(y) =


arctan

(
x + y

1− xy

)
, if xy < 1,

arctan
(

x + y

1− xy

)
+ πsign(x), if xy > 1, (7)

the case where xy = 1 being irrelevant here. Now, let (ak)k≥1 be the sequence defined in
the above lemma. If follows readily from (7) and the lemma that, for all k ≥ 2,

arctan(ak−1) + arctan
(

1 +
2

k(k + 1)

)
= arctan(ak) + πσk,

where σk = 1 or 0 accordingly, as k is or is not of the form k = 4j + 2, j ≥ 0 integer.
From this it follows that

l∑
k=1

arctan
(

1 +
2

k(k + 1)

)
= arctan(al) + π

l∑
k=1

σk.

Recalling the conclusion in the lemma, it thus follows that (2) holds with m = n, and so
we are done.

Remark: From (2), where m = n, and the fact that∫
arctan

(
1 +

2
x(x + 1)

)
dx =

1
2

log(x2 + 1)− 1
2

log(x2 + 2x + 2)

+ arctan
(

1 +
2

x(x + 1)

)
+ arctan(x + 1) + C,

it follows readily the following interesting result:

∫ 4n+1

0
arctan

(
1 +

2
x(x + 1)

)
dx−

4n+1∑
k=1

arctan
(

1 +
2

k(k + 1)

)
−→ 1

2
log 2, as n →∞.

Also solved by Kee-Wai, Hong Kong, China, and the proposer.

• 5109: Proposed by Ovidiu Furdui, Cluj, Romania

Let k ≥ 1 be a natural number. Find the value of

lim
n→∞

(k n
√

n− k + 1)n

nk
.
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Solution 1 by Angel Plaza and Sergio Falcon, Las Palmas de Gran Canaria,
Spain

Let

xn =
(k n
√

n− k + 1)n

nk
. Then,

lnxn = ln(k n
√

n− k + 1)n − lnnk = n ln(k n
√

n− k + 1)− k lnn

= n
(
ln(k n

√
n− k + 1)− k ln n

√
n
)

=
ln

k n
√

n− k + 1
( n
√

n)k

1
n

≈

k n
√

n− k + 1
( n
√

n)k
− 1

1
n

=
k n
√

n− k + 1− ( n
√

n)k

( n
√

n)k 1
n

.

Now, taking into account that lim
n→∞

n
√

n = 1 and the equivalence of the infinitesimals

k(x− 1) + 1− xk ≈ k(k − 1)
2

(x− 1)2 when x → 1, we have

lim
n→∞

lnxn = lim
n→∞

k(k − 1)
2

(
n
√

n− 1
)2

1
n

=
k(k − 1)

2
lim

n→∞
(lnn)2

1
n

=
k(k − 1)

2
lim

n→∞
(lnn)2

n
= 0. Therefore,

lim
n→∞

xn = 1.

Solution 2 by Kee-Wai Lau of Hong Kong, China

As n →∞, we have n
√

n = eln n/n = 1 +
lnn

n
+ O

(
ln2 n

n2

)
. Since ln(1 + x) = x + O

(
x2
)

as x → 0, so

n ln
(
1 + k

(
n
√

n− 1
))
− k lnn = n

(
k lnn

n
+ O

(
ln2 n

n2

))
− k lnn = O

(
ln2 n

n

)
,

where the constant implied by the last O depends at most on k. It follows that the limit
of the problem equal 1, independent of k.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy, and the proposer.

Late Solution

A late solution to 5099 was received from Charles McCracken of Dayton, OH.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2011

• 5128: Proposed by Kenneth Korbin, New York, NY

Find all positive integers less than 1000 such that the sum of the divisors of each integer
is a power of two.

For example, the sum of the divisors of 3 is 22, and the sum of the divisors of 7 is 23.

• 5129: Proposed by Kenneth Korbin, New York, NY

Given prime number c and positive integers a and b such that a2 + b2 = c2, express in
terms of a and b the lengths of the legs of the primitive Pythagorean Triangles with
hypotenuses c3 and c5, respectively.

• 5130: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, calculus has not been discovered. A bride
and groom start out from A(−a, 0) and B(b, 0) respectively where a 6= b and a > 0 and
b > 0 and walk at the rate of one unit per second to an altar located at the point P on
line L : y = mx such that the time that the first to arrive at P has to wait for the other
to arrive is a maximum. Find, without calculus, the locus of P as m varies through all
nonzero real numbers.

• 5131: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a + b + 3c

3a + 3b + 2c
+

a + 3b + c

3a + 2b + 3c
+

3a + b + c

2a + 3b + 3c
≥ 15

8
.

• 5132: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all all functions f : C → C such that f(f(z)) = z2 for all z ∈ C.

• 5133: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be a natural number. Calculate

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy.

1



Solutions

• 5110: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with an interior point P and with coordinates A(0, 0), B(6, 8), and
C(21, 0). The distance from point P to side AB is a, to side BC is b, and to side CA is
c where a : b : c = AB : BC : CA.

Find the coordinates of point P

Solution 1 by Boris Rays, Brooklyn, NY

From the given triangle we have AB = 10, BC = 17 and CA = 21. Also
a : b : c = 10 : 17 : 21.

Let a = 10t, b = 17t, and c = 21t, where t is real number, t > 0. (1)

Area 4ABC = Area 4APB + Area 4BPC + Area 4CPA. (2)

Express all of the terms in (2) by using formulas in (1).

1
2
· 21 · 8 =

1
2
· 10 · 10t +

1
2
· 17 · 17t +

1
2
· 21 · 21t

=
1
2
t
(
102 + 172 + 212

)
=

1
2
830t

From the above we find that t =
84
415

=
22 · 3 · 7
5 · 83

.

The y-coordinate of point P is c, the distance to side CA.

yP = c = 21t = 21 · 84
415

=
1764
415

.

Let points E and F lie on side CA, where PE ⊥ CA and BF ⊥ CA.

Hence we have PE = C =
422

415
, BF = 8, and AF = 6.

Area 4APB + Area 4APE + Area BPEF = Area 4ABF.

Letting AE = x we have EF = 6− x. Therefore,

1
2
· 10 · a +

1
2
· x · c +

1
2

(
PE + BF

)
· EF =

1
2
AF ·BF

1
2
· 100 · 84

415
+

1
2
· x · 422

415
+

1
2

(
422

415
+ 8

)
(6− x) =

1
2
6 · 8.

From the above equation we find x.

x =
1
8

(
8400 + 6(42)2

415

)
=

2373
415

.

Hence, the coordinates of point P are
(

2373
415

,
1764
415

)
.
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Solution 2 by Charles McCracken, Dayton, OH

AB = 10 BC = 17 CA = 21

The equations of AB,BC and CA are respectively,

4x− 3y = 0 8x + 15y − 168 = 0 y = c

Then,

a =
4x− 3y

5
b =

8x + 15y − 168
17

c = y

(
4x− 3y

5

)
y

=
10
21

(
8x + 15y − 168

−17

)
y

=
17
21

21 (4x− 3y) = 50y 21 (8x + 15y − 168) = −289y

84x− 113y = 0 168x + 604y = 3528

These last two equations give:

(x, y) =
(

2373
415

,
1764
415

)
Note that P is the Lemoine point of 4ABC, that is, the intersection of the symmedians.
(Editor: A symmedian is the reflection of a median about its corresponding angle
bisector.)

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, Central
Islip, NY; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; John Nord, Spokane, WA; Raúl A. Simón,
Santiago, Chile; Danielle Urbanowicz, Jennie Clinton, and Bill Solyst
(jointly; students at Taylor University), Upland, IN; David Stone and John
Hawkins (jointly), Satetesboro, GA, and the proposer.

• 5111: Proposed by Michael Brozinsky, Central Islip, NY.

In Cartesianland where immortal ants live, it is mandated that any anthill must be
surrounded by a triangular fence circumscribed in a circle of unit radius. Furthermore, if
the vertices of any such triangle are denoted by A,B, and C, in counterclockwise order,
the anthill’s center must be located at the interior point P such that
6 PAB = 6 PBC = 6 PCA.

Show PA · PB · PC ≤ 1.

Solution by Kee-Wai Lau, Hong Kong, China

It is easy to check that 6 APB = 180◦ −B, 6 BPC = 180◦ − C, and 6 CPA = 180◦ −A.

It is well known that the area of 4ABC = 2R2 sin A sinB sinC, where R is the
circumradius of the triangle. Here we have R = 1. Since the area of 4ABC equals the

3



sum of the areas of triangles APB,BPC and CPA, we have

Area 4ABC = Area 4APB + Area 4BPC + Area 4CPA

2 sinA sinB sin C =
1
2

(
PA · PB sinB + PB · PC sinC + PC · PA sinA

)
.

By the arithmetic mean-geometric mean inequality, we have

PA·PB sinB+PB·PC sinC+PC·PA sinA ≥ 3
(
PA · PB · PC

)2/3
(sinA sinB sinC)1/3 .

It follows that (
PA · PB · PC

)2/3
≤ 4

3
(sinA sinB sinC)2/3 . (1)

By the concavity of the function ln (sinx) for 0 < x < π, we obtain

ln(sin A) + ln(sinB) + ln(sinC) ≤ 3
(

sin
(

A + B + C

3

))
= 3 ln

(√
3

2

)
.

Therefore,

sinA sinB sinC ≤ 3
√

3
8

. (2)

The result PA · PB · PC ≤ 1 now follows easily from (1) and (2) immediately above.

Comments: The proposer, Michael Brozinsky, mentioned in his solution that point P
is precisely the Brocard point of the triangle, and David Stone and John Hawkins
noted in their solution that given an inscribed triangle and letting
θ = 6 PAB = 6 PBC = 6 PCA, then the identity

sin θ =
abc

2
√

a2b2 + a2c2 + b2c2

allows one to find the unique angle θ and thus sides PA,PB, and PC.

Also solved by David Stone and John Hawkins (jointly), Satetesboro, GA,
and the proposer.

• 5112: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let 0 < a < b be real numbers with a fixed and b variable. Prove that

lim
b→a

∫ b

a

dx

ln
b + x

a + x

= lim
b→a

∫ b

a

dx

ln
b(a + x)
a(b + x)

.

Solution by Shai Covo, Kiryat-Ono, Israel

We begin with the left-hand side limit. Writing ln
b + x

a + x
as ln(b + x)− ln(a + x), we have

by the mean value theorem that this expression is equal to
1
ξ

(b− a) where ξ = ξ(a, b, x)

is some point between (a + x) and (b + x). Since x varies from a to b, it thus follows that

b− a

2b
≤ ln

b + x

a + x
≤ b− a

2a
.

4



Hence,

2a =
∫ b

a

2a

b− a
dx ≤

∫ b

a

dx

ln
b + x

a + x

≤
∫ b

a

2b

b− a
dx = 2b,

and so

lim
b→a

∫ b

a

dx

ln
b + x

a + x

= 2a.

Applying this technique to the computation of the right-hand side limit gives

a(b− a)
ab + b2

≤ ln
b(a + x)
a(b + x)

≤ b(b− a)
ab + a2

,

from which it follows immediately that also

lim
b→a

∫ b

a

dx

ln
b(a + x)
a(b + x)

= 2a.

Also solved by Michael Brozinsky, Central Islip, NY; Kee-Wai Lau, Hong
Kong, China; Paolo Perfetti, Department of Mathematics, University of
Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 5113: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let x, y be positive real numbers. Prove that

2xy

x + y
+

√
x2 + y2

2
≤ √xy +

x + y

2
+

(
x + y

6
−
√

xy

3

)2

2xy

x + y

.

Solution 1 by Kee-Wai Lau, Hong Kong, China

By homogeneity, we may assume without loss of generality that xy = 1. Let
t = x + y ≥ 2

√
xy = 2. Then the inequality of the problem is equivalent to

2
t

+

√
t2 − 2

2
≤ 1 +

t

2
+

t(t− 2)2

72

⇔ 36t
√

2 (t2 − 2) ≤ t4 − 4t3 + 40t2 + 72t− 144

⇔
(
t4 − 4t3 + 40t2 + 72t− 144

)
− 2592t2

(
t2 − 2

)
≥ 0

⇔ t8 − 8t7 + 96t6 − 176t5 − 1856t4 + 6912t3 − 1152t2 − 20376t + 20376 ≥ 0

⇔ (t− 2)2
(
t6 − 4t5 + 76t4 + 144t3 − 1584t2 + 5184

)
≥ 0.
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Since

t6 − 4t5 + 76t4 + 144t3 − 1584t2 + 5184

= t4(t− 2)2 + 72(t− 2)4 +
16(3t− 8)2(15t + 11) + 832

3
> 0,

the inequality of the problem holds.

Solution 2 by Paul M. Harms, North Newton, KS

Le w =
x + y

2
√

xy
and z =

√
xy. For x and y positive

(√
x−√y

)2 = x + y − 2
√

xy ≥ 0 =⇒ w =
x + y

2
√

xy
≥ 1. Also z > 0 .

From the substitutions we have the following expressions :

2xy = 2z2

x + y = 2zw
x2 + y2 = (x + y)2 − 2xy = 4z2w2 − 2z2 = 2z2(2w2 − 1)

The inequality becomes

2z2

2zw
+

√
2z2 (2w2 − 1)

2
≤ z +

2zw

2
+

(
2zw − 2z

6

)2

2z2

2zw

Simplifying and dividing both sides of the inequality by z yields the inequality

1
w

+
√

2w2 − 1 ≤ 1 + w +
1
9

(w − 1)2 w.

After multiplying both sides by 9w and isolating the square root term we get

9w
√

2w2 − 1 ≤ −9 + 9w + 9w2 + (w − 1)2w2 = w4 − 2w3 + 10w2 + 9w − 9.

Now let w = L + 1. Since w ≥ 1, we check the resulting inequality for L ≥ 0. Replacing
w by L + 1 and squaring both sides of the inequality we obtain

81 (L + 1)2
[
2L2 + 4L + 1

]
= 81

(
2L4 + 8L3 + 11L2 + 6L + 1

)
≤

(
L4 + 2L3 + 10L2 + 27L + 9

)2

= L8 + 4L7 + 24L6 + 94L5 + 226L4 + 576L3 + 909L2 + 486L + 81

Moving all terms to the right side, we need to show for L ≥ 0, that

0 ≤ L2
[
L6 + 4L5 + 24L4 + 94L3 + 64L2 − 72L + 18

]
.

Let
g(L) = 94L3 + 64L2 − 72L + 18.
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If g(L) ≥ 0 for L ≥ 0, then the inequality holds since all other terms and factors of the
inequality not involved with g(L) are non-negative.

The derivative g′(L) = 2
[
141L2 + 64L− 36

]
. The zeroes of g′(L) are L = −0.7810 and

L = 0.3297 with a negative derivative between these two L values. It is easy to check
that g(0.3297) > 0 is the only relative minimum and that g(L) > 0 for all L ≥ 0. Thus
the inequality holds.

A comment by the editor: David Stone and John Hawkins of Statesboro, GA
sent in a solution path that was dependent on a computer, and this bothered them.
They let y = ax in the statement of the problem and then showed that the original
inequality was equivalent to showing that

2a

1 + a
+

√
1 + a2

2
≤ (

√
a + 1)2

2
+

(a + 1) (
√

a− 1)4

72a
.

They then had Maple graph the left and right hand sides of the inequality respectively;
they analyzed the graphs and concluded that the inequality held (with equality holding
for a = 1.) But this approach bothered them and so they let a = z2 in the above
inequality and they eventually obtained the following:

(z − 1)4
(

z12 − 4z11 + 82z10 + 124z9 − 1265z8

+392z7 + 2492z6 + 392z5 − 1265z4 + 124z3 + 82z2 − 4z + 1
)
≤ 0.

Again they called on Maple to factor the above polynomial, and it did into linear and
irreducible quadratic factors. They then showed that there were no positive real zeros
and so the inequality must be true. They also noted that equality holds if and only if
z = 1; that is, equality holds for the original statement if and only if x = y. They ended
their submission with the statement:

“The bottom line: with the use of a machine’s assistance, we believe the original
inequality to be true.”

In their letter submitting the above to me David wrote:

“Last week I mentioned that our solution to Problem 5113 was dependent upon machine
help. We are still in that position, so I send this to you as a comment, not as a solution.
There is a nice reduction to an inequality in a single variable, but we never found an
analytic verification for the inequality.”

All of this reminded me of the comments in 1976 surrounding Appel and Haken’s proof
of the four color problem which was done with the aid of a computer. The concerns
raised then, still exist today.

Also solved by Shai Covo, Kiryat-Ono, Israel; Boris Rays, Brooklyn, NY,
and the proposer.

• 5114: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let M be a point in the plane of triangle ABC. Prove that

MA
2 + MB

2 + MC
2

AB
2 + BC

2 + CA
2 ≥ 1

3
.
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When does equality hold?

Solution by Michael Brozinsky, Central Islip, NY

Without loss of generality let the vertices of the triangle be A(0, 0), B(a, 0), and C(b, c)
and let M be (x, y). Now completing the square shows

AM
2 + BM

2 + CM
2 − 1

3

(
AB

2 + BC
2 + AC

2
)

=
(

x2 + y2 + (x− a)2 + y2 + (x− b)2 + (y − c)2 − 1
3

(
a2 +

(
b− a)2 + c2 + b2 + c2

))

= 3 ·
((

x− a + b

3

)
+
(

y − c

3

)2
)

and thus the given inequality follows at once and equality holds iff M is
2
3

of the way

from vertex C to side AB. Relabeling thus implies that M is the centroid of the triangle.

Comments in the solutions of others: 1) From Kee-Wai Lau, Hong Kong,
China. The inequality of the problem can be found at the top of p. 283, Chapter XI in
Recent Advances in Geometric Inequalities by Mitrinovic, Pecaric, and Volenec, (Kluwer
Academic Press), 1989.

The inequality was obtained using the Leibniz identity

MA
2 + MB

2 + MC
2 = 3MG

2 +
1
3

(
AB

2 + BC
2 + CA

2
)

where G is the centroid of triangle ABC. Equality holds if and only if M = G.

2) From Bruno Salgueiro Fanego, Viveiro Spain. This problem was solved for
any point M in space using vectors. (See page 303 in Problem Solving Strategies by
Arthur Engel, (Springer-Verlag), 1998.) Equality holds if, and only if, M is the centroid
of ABC.

Another solution and a discussion of where the problem mostly likely originated can be
found on pages 41 and 42 of

http : //www.cpohoata.com/wp− conent/uploads/2008/10/inf081019.pdf.

Also, a local version of the Spanish Mathematical Olympiad of 1999 includes a version
of this problem and it can be seen at
http : //platea.pntic.mec.es/ ∼ csanchez/local99.htm.

3) From David Stone and John Hawkins (jointly), Statesboro, GA. Because
the given problem has the sum of the squares of the triangle’s sides as the denominator,
one might conjecture the natural generalization

n∑
i=1

MAi
2

n∑
i=1

AiAi+1
2
≥ 1

n
,
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but this is not true. Instead, we must also allow all squares of diagonals to appear in the
sum in the denominator. Of course, a triangle has no diagonals.

Also solved by Shai Covo, Kiryat-Ono, Israel; Michael N. Fried, Kibbutz
Revivim, Israel; Paul M. Harms, North Newton, KS; Michael N. Fried,
Kibbutz Revivim, Israel; Raúl A. Simón, Santiago, Chile, and the proposer.

• 5115: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let G be a finite cyclic group. Compute the number of distinct composition series of G.

Solution 1 by Kee-Wai Lau,Hong Kong, China

Denote the order of a group S by |S|. Let E = G0, < G1 < G2 < . . . < Gm = G be a
composition series for G, where E is the subgroup of G consisting of the identity
element only. A composition series is possible if and only if the factor groups
G1/G0, G2/G1, . . . , Gm/Gm−1 are simple. For cyclic group G, where all these factor
groups are also cyclic, this is equivalent to saying that

|G1/G0| = p1, |G2/G1| = p2, . . . , |Gm/Gm−1| = pm,

where p1, p2, . . . , pm are primes, not necessarily distinct. By the Jordan-Hölder theorem,
m is uniquely determined and the prime divisors, p1, p2, · · · , pm themselves are unique.
Any other composition series therefore correspond with a permutation of the primes
p1, p2, . . . , pm. Note that

|G| = |Gm| =
|Gm|
|Gm−1|

|Gm−1|
|Gm−2|

. . .
|G2|
|G1|

|G1|
1

= pmpm−1 . . . p2p1.

We rewrite |G| in standard form |G| = qa1
1 qa2

2 . . . qak
k , where a1, a2, . . . , ak are positive

integers and q1 < q2 < . . . qk are primes. The number of distinct composition series of G
then equals

(a1 + a2 + · · ·+ ak)!
a1!a2! . . . ak!
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Solution 2 by David Stone and John Hawkins (jointly), Statesboro, GA

Let G have order n, where n has prime factorization n =
m∏

i=1

pei
i . Then the number of

distinct composition series of G is the multinomial coefficient
(

e1 + e2 + e3 + . . . + em

e1, e2, e3, . . . , em

)
.

Letting e=e1 + e2 + e3 + . . . + em, this can be computed as(
e

e1

)(
e− e1

e2

)(
e− e1 − e2

e3

)
· · ·
(

em−1 + em

em−1

)(
em

em

)
=

e!
(e1!)(e2!)(e3!) · · · (em!)

.

Our rationale follows.

We’ll simply let G be Zn, written additively and denote the cyclic subgroup generated
by a as < a >= {ka| ∈ Z}.
Note that < a > is a subgroup of < b > if and only if a = bc for some c in G. We’ll
denote this by < a > ≤ < b >. That is, to enlarge the subgroup < a > to < b >, we
divide a by some group element c to obtain b. In particular, if we divide a by a prime p
to obtain b, then the factor group < b > / < a > is isomorphic to the simple group Zp.

In the lattice of subgroups of G, any two subgroups have a greatest lower bound, given
by intersection , and a least upper bound, given by summation.The maximal length
(ascending) chains are the distinct composition series. All such chain have the same
length (by the Jordan-Hölder Theorem).

For a specific example, let n = 12 = 22 · 31. In Z12, the distinct subgroups are:

0 = {0},

< 2 > = {0, 2, 4, 6, 8, 10},

< 4 > = {0, 4, 8},

< 3 > = {0, 3, 6, 9},

< 6 > = {0, 6},

< 1 > = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12,

and the maximal length ascending chains (composition series) are

0 ≤ < 4 > ≤ < 2 > ≤ < 1 >,

0 ≤ < 6 > ≤ < 2 > ≤ < 1 >,

0 ≤ < 6 > ≤ < 3 > ≤ < 1 > .

Note that the composition factors (the simple factor groups) of the first chain are

< 4 > /0 ∼= Z3

< 2 > / < 4 > ∼= Z2, and

10



< 1 > / < 2 > ∼= Z2.

Thus, the sequence of composition factors is Z3, Z2, Z2.

Similarly for the second chain, the sequence of composition factors is Z2, Z3, Z2, and for
the third chain the sequence of composition factors is Z2, Z2, Z3. The three elements of
each chain are Z2, Z2, and Z3, forced by the factorization of 12. The number of possible
chains is simply the number of ways to arrange these three simple groups: 3. Note that(

2 + 1
2, 1

)
=

(
3

2, 1

)
=

(
3
2

)
·
(

1
1

)
= 3.

Method: For arbitrary n =
m∏

i=1

pei
i , this example demonstrates a constructive method for

generating (and counting) all such maximal chains:

(i) Start with 0 =< n >.

(ii) Divide (in the usual sense, not mod n) by one of n′s prime divisors, p, to obtain
k =

n

p
, so that 0 =< n > ≤ < k > and the factor group < k > / < n >∼= Zp.

(iii) Next, divide k by any unused prime divisor, say q of n to obtain h =
k

q
,

so that < k > ≤ < h > and the factor group < h > / < k >∼= Zq.

(In this process, each prime factor p will be used ei times, so there will be
e = e1 + e2 + e3 = . . . + em steps.)

We now have the beginning of a composition series: 0 ≤ < k > ≤ < h >. Continue with
the division steps until the supply of prime divisors of n is exhausted, so the final
division will produce the final element of the chain: < 1 > = Zn. We will have thus
constructed a composition series. In the procedure there will be e1 divisions by p1, e2

divisions by p2, etc.

Therefore, the number of ways to carry out this procedure is the number of ways to
carry out these dvisions: choose e1 places from e possible spots to divide by p,
choose e2 places from the remaining e− e1 possible spots to divide by p2 etc.
So we can count the total number of ways to carry out the process:(

e

e1

)(
e− e1

e2

)(
e− e1 − e2

e3

)
· · ·
(

em−1 + em

em−1

)(
em

em

)
.

Moreover, if we let S be the sequence of simple groups consisting of e1 copies of Zp1 , e2

copies of Zp2 , etc., then S will have e = e1 + e2 + e3 + · · ·+ em elements and each of our
composition series will have some rearrangement of S as its sequence of compositions
factors.

Example: Let n = 360 = 23 · 32 · 51.
Then the sequence of divisors 3, 5, 2, 2, 3, 2 will produce he composition series

0 =< 360 > ≤ < 120 > ≤ < 24 > ≤ < 12 > ≤ < 6 > ≤ < 2 > ≤ < 1 > = Z360,

with composition factors Z3, Z5, Z2, Z2, Z3, Z2.

11



There are

(
3 + 2 + 1

3, 2, 1

)
=

(
6
3

)
·
(

3
2

)
·
(

1
1

)
= 60 different ways to construct a divisors

sequence from 2, 2, 2, 3, 3, 5, so Z360 has 60 distinct composition series.

Also solved by the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2011

• 5134: Proposed by Kenneth Korbin, New York, NY

Given isosceles 4ABC with cevian CD such that 4CDA and 4CDB are also isosceles,
find the value of

AB

CD
− CD

AB
.

• 5135: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that 
ab + bc + ca = −3
a2b2 + b2c2 + c2a2 = 9
a3b3 + b3c3 + c3a3 = −24

with a < b < c.

• 5136: Proposed by Daniel Lopez Aguayo (student, Institute of Mathematics, UNAM),
Morelia, Mexico

Prove that for every positive integer n, the real number(√
19− 3

√
2
)1/n

+
(√

19 + 3
√

2
)1/n

is irrational.

• 5137: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive numbers such that abc ≥ 1. Prove that∏
cyclic

1
a5 + b5 + c2

≤ 1
27

.

• 5138: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let n ≥ 2 be a positive integer. Prove that

n

FnFn+1
≤ 1

(n− 1)F 2
1 + F 2

2

+ · · ·+ 1
(n− 1)F 2

n + F 2
1

≤ 1
n

n∑
k=1

1
F 2

k

,

where Fn is the nth Fibonacci number defined by F0 = 0, F1 = 1 and for all
n ≥ 2, Fn = Fn−1 + Fn−2.
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• 5139: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate ∞∑
n=1

∞∑
m=1

ζ(n + m)− 1
n + m

,

where ζ denotes the Riemann Zeta function.

Solutions

• 5116: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on side AB, and with point Q on side BC such that

AP

PB
=

BQ

QC
> 5.

The cevians DP and DQ divide diagonal AC into three segments with each having
integer length. Find those three lengths, if AC = 84.

Solution by David E. Manes, Oneonta, NY

Let E and F be the points of intersection of AC with DP and DQ respectively. Then
AE = 40, EF = 37 and FC = 7.

Since ABCD is a square with diagonal of length 84, it follows that the sides of the

square have length 42
√

2. Let
AP

PB
=

BQ

QC
= t > 5. Then AP = t · PB and

AP + PB = AB = 42
√

2. Therefore,

PB(t + 1) = 42
√

2

PB =
42
√

2
1 + t

, and

AP =
42
√

2 · t
1 + t

.

Similarly, QC =
42
√

2
1 + t

and BQ =
42
√

2 · t
1 + t

.

Coordinatize the problem so that

A = (0, 0), B = (42
√

2, 0), C = (42
√

2, 42
√

2), D = (0, 42
√

2),

P =

(
42
√

2 · t
1 + t

, 0

)
, and Q =

(
42
√

2,
42
√

2 · t
1 + t

)
.

Let L1 be the line through the points D and P . Then the equation of L1 is

y − 42
√

2 = −
(

1 + t

t

)
x. The point of intersection of L1 and the line y = x is the point

E. Therefore,

x− 42
√

2 = −
(

1 + t

t

)
x, and so
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x =
42
√

2 · t
2t + 1

. Thus,

E =

(
42
√

2 · t
2t + 1

,
42
√

2 · t
2t + 1

)
so that

AE =

√√√√2

(
42
√

2 · t
2t + 1

)2

=
84 · t
2t + 1

.

Let L2 be the line through D and Q. Then the equation of L2 is

y − 42
√

2 = −
(

1
1 + t

)
x. Since F is the point of intersection of L2 and y = x, we obtain

x =
42
√

2(t + 1)
t + 2

. Thus,

F =

(
42
√

2(t + 1)
t + 2

,
42
√

2(t + 1)
t + 2

)
so that

AF =
84(t + 1)

t + 2
.

Using the distance formula, one obtains

CF =

√√√√2

(
42
√

2− 42
√

2(t + 1)
t + 2

)2

=
84

t + 2
.

As a result,

AE =
84 · t
2t + 1

, AF =
84(t + 1)

t + 2
, and CF =

84
t + 2

If t = 10, then AE = 40, AF = 77, and CF = 7. Therefore EF = AF −AE = 37,
yielding the claimed values. Finally, one checks that for these values all triangles in the
figure are defined.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paul M. Harms, North
Newton, KS; Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5117: Proposed by Kenneth Korbin, New York, NY

Find positive acute angles A and B such that

sinA + sin B = 2 sin A · cos B.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA

There are infinitely many solutions, given by
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A = sin−1

(√
1− t2

2t − 1

)
, B = cos−1 t , where

4
5

< t < 1 .

Here’s why.

The given condition is equivalent to

2 sinA(2 cos B − 1) = sin B

so we see that 2 cos B − 1 > 0, that is, 0 < B <
π

3
.

Solving for sinA, we must have sinA =
sinB

2 cos B − 1
, which requires 0 ≤ sinB

2 cos B − 1
≤ 1.

Upon squaring, this is equivalent to

sin2 B ≤ 4 cos2 B − 4 cos B + 1

1− cos2 B ≤ 4 cos2 B − 4 cos B + 1

cos B ≥ 4
5
.

So if we choose angle B to make cos B ≥ 4
5
, then we can choose angle A to make

sinA =
sinB

2 cos B − 1
.

Since cosine is decreasing in the first quadrant, the size condition on cos B forces

B ≤ cos−1

(
4
5

)
≈ 36.87◦.

In fact, for any t, with
4
5
≤ t ≤ 1, we can let B = cos−1 t, in which case

sinB =
√

1− t2 , and let A = sin−1

(√
1− t2

2t − 1

)
.

Note that the endpoint “solution” given by t = 1 is A = 0, B = 0, which we disregard.

Also, the endpoint solution given by t =
4
5

is A =
π

2
, B = cos−1 4

5
.

It is worth noting that we thus have a right triangle solution, but it doesn’t quite meet
the problem’s criteria, so we’ll disregard this one. Thus, there are infinitely many

solutions, given in terms of the parameter t for
4
5

< t < 1.

We also note that one could also say that all solutions are given by sinA =
sinB

2 cos B − 1
,

where angle B is chosen so that cos B >
4
5
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Michael Brozinsky, Central Islip, NY; Shai Covo,
Kiryat-Ono, Israel; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Charles McCracken, Dayton, OH; Raúl A. Simón, Santiago,
Chile; Taylor University Problem Solving Group; Upland, IN, and the
proposer.
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• 5118: Proposed by David E. Manes, Oneonta, NY

Find the value of√
2011 + 2007

√
2012 + 2008

√
2013 + 2009

√
2014 + · · ·

Solution 1 by Shai Covo, Kiryat-Ono, Israel

The value is 2009. More generally, for any integer n ≥ 3 we have

n =

√√√√
(n + 2) + (n− 2)

√
(n + 3) + (n− 1)

√
(n + 4) + n

√
(n + 5) + · · ·

(n = 2009 corresponds to the original problem.) The claim follows from an iterative
application of the identity n =

√
(n + 2) + (n− 2)(n + 1), as follows:

n =
√

(n + 2) + (n− 2)(n + 1)

=
√

(n + 2) + (n− 2)
√

(n + 3) + (n− 1)(n + 2)

=

√
(n + 2) + (n− 2)

√
(n + 3) + (n− 1)

√
(n + 4) + n(n + 3)

= · · · .

Solution 2 by Taylor University Problem Solving Group, Upland, IN

We use Ramanujan’s nested radical approach. Beginning with

(x + n + a)2 = x2 + n2 + a2 + 2ax + 2nx + 2an,

we see that

x + n + a =
√

x2 + n2 + a2 + 2ax + 2nx + 2an

=
√

ax + n2 + a2 + 2an + x (x + 2n + a)

=
√

ax + (n + a)2 + x (x + 2n + a).

However, the (x + 2n + a) term on the right is basically of the same form as the left
(with n replaced by 2n). We can make the corresponding substitution, and continue this
process indefinitely, until we are left with x + n + a =√

ax + (n + a)2 + x

√
a(x + n) + (n + a)2 + (x + n)

√
a (x + 2n) + (n + a)2 + (x + 2n)

√
· · ·

Substituting in x = 2007, n = a = 1 produces

2009 =

√
2007 + 4 + 2007

√
2008 + 4 + 2008

√
2009 + 4 + 2009

√
· · ·

=

√
2011 + 2007

√
2012 + 2008

√
2013 + 2009

√
· · ·.
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Hence, the value is 2009.

Also solved by Scott H. Brown, Auburn University, Montgomery, AL; G. C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS: Kenneth
Korbin, NY, NY; Charles McCracken, Dayton, OH; Paolo Perfetti,
Department of Mathematics, University of Rome, Italy; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Stateboro GA, and
the proposer.

• 5119: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a non-negative integer. Prove that

2 +
1

2n+1

n∏
k=0

csc
(

1
Fk

)
< Fn+1

where Fn is the nth Fermat number defined by Fn = 22n
+ 1 for all n ≥ 0.

Solution by Charles R. Diminnie, San Angelo, TX

To begin, we note that for x ∈
(

0,
π

3

)
, cos x is decreasing and the Mean Value Theorem

for Derivatives implies that there is a point cx ∈ (0, x) such that

sinx = sin x− sin 0

= cos cx (x− 0)

> cos
π

3
· x

=
x

2
.

As a result, when x ∈
(

0,
π

3

)
,

x csc x < 2.

Since Fn ≥ F0 = 3 for all n ≥ 0, it follows that 0 <
1
Fn

≤ 1
3

<
π

3
and hence,

1
Fn

csc
(

1
Fn

)
< 2, or

csc
(

1
Fn

)
< 2Fn (1)

Let P (n) be the statement

n∏
k=0

csc
(

1
Fk

)
< 2n+1 (Fn+1 − 2) (2)

By (1),

csc
(

1
F0

)
< 2F0 = 2 · 3 = 2 (F1 − 2)

6



and P (0) is true. If P (n) is true for some n ≥ 0, then by (1),

n+1∏
k=0

csc
(

1
Fk

)
= csc

(
1

Fn+1

) n∏
k=0

csc
(

1
Fk

)
< csc

(
1

Fn+1

)
· 2n+1 (Fn+1 − 2)

< 2Fn+1 · 2n+1 (Fn+1 − 2)

= 2n+2
(
22n+1

+ 1
) (

22n+1 − 1
)

= 2n+2
(
22n+2 − 1

)
= 2n+2 (Fn+2 − 2)

and P (n + 1) follows. By Mathematical Induction, P (n) is true for all n ≥ 0.

Since (2) is equivalent to the given inequality, the proof is complete.

Also solved by Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro Fanego,
Viveiro, Spain; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposers.

• 5120: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate

lim
n→∞

1
2n

n∑
k=0

(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

The limit equals 0. More generally, we prove that if f : [0, 1] → < is a continuous
function then

lim
n→∞

1
2n

n∑
k=0

(−1)k

(
n

k

)
f

(
k

n

)
= 0.

Before we give the solution of the problem we collect the following equality from [1]
(Formula 0.154(3), p.4): If p ≥ 0 is a nonnegative integer, then the following equality
holds

n∑
k=0

(−1)k

(
n

k

)
kp = 0. (1)

Now we are ready to solve the problem. First we note that for a polynomial

P (x) =
m∑

j=0

ajx
j we have, based on (1), that

1
2n

n∑
k=0

(−1)k

(
n

k

)
P

(
k

n

)
=

m∑
j=0

aj

nj
· 1
2n

(
n∑

k=0

(−1)k

(
n

k

)
kj

)
= 0. (2)

Let ε > 0 and let Pε be the polynomial that uniformly approximates f , i.e.
|f(x)− Pε(x)| < ε for all x ∈ [0, 1]. We have, based on (2), that
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1
2n

n∑
k=0

(−1)k

(
n

k

)
Pε

(
k

n

)
= 0. Thus,

∣∣∣∣ 1
2n

n∑
k=0

(−1)k

(
n

k

)
f

(
k

n

) ∣∣∣∣ =
∣∣∣∣ 1

2n

n∑
k=0

(−1)k

(
n

k

)(
f

(
k

n

)
− Pε

(
k

n

)) ∣∣∣∣
≤ 1

2n

n∑
k=0

(
n

k

) ∣∣∣∣ f (k

n

)
− Pε

(
k

n

) ∣∣∣∣
≤ ε

2n

n∑
k=0

(
n

k

)
= ε.

Thus, the limit is 0 and the problem is solved.

[1] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Sixth Edition,
Alan Jeffrey, Editor, Daniel Zwillinger, Associate Editor, 2000.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

We will show that

lim
n→∞

1
2n

n∑
k=0

(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
= 0. (1)

(The log function in (1) has no significant role in the analysis below, we could replace it by
any other continuous function.)

The lemma below follows straightforwadly from the Central Limit Theorem (CLT). We recall
that, according to the CLT, if X1, X2, . . . is a sequence of independent and identically
distributed (i.i.d) random variables with expectation µ and variance σ2, then

P

(
a <

X1 + · · ·+ Xn − nµ

σ
√

n
≤ b

)
→ Φ(b)− Φ(a) (2)

as n →∞, for any a, b ∈ < with a < b where Φ is the distribution function of the Normal
(0, 1) distribution (i.e., Φ(x) = (2π)−1/2

∫ x
−∞ e−µ2/2du).

Lemma: For any ε > 0, there exists an r > 0 such that

1
2n

∑
0≤k≤n/2−r

√
n

n/2+r
√

n<k≤n

(
n

k

)
< ε (3)

for all n sufficiently large.

Proof: Fix ε > 0. Choose r > 0 sufficiently large so that Φ(2r)− Φ(−2r) > 1− ε. Let
X1, X2 . . . be a sequence of i.i.d. variables with P (Xi = 0) = P (Xi = 1) = 1/2. Put
Yn =

∑n
i=1 Xi. Thus Yn has a binomial (n, 1/2) distribution. The Xi’s have expectation

µ = 1/2 and variance σ2 = 1/4. Hence by (2) (with a = −2r and b = 2r),

P (n/2− r
√

n < Yn ≤ n/2 + r
√

n) > 1− ε

8



for all n sufficiently large. In turn, by taking complements, we conclude (3), since the

distribution of Yn is given by P (Yn = k) =
1
2n

(
n

k

)
, k = 0, . . . , n.

It follows from the lemma and the fact that
∣∣∣∣(−1)k log

(
2n− k

2n + k

) ∣∣∣∣ is bounded uniformly in k

(say, by 2) that (1) will be proved if we show that

lim
n→∞

1
2n

∑
n/2−r

√
n<k<n/2+r

√
n

(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
= 0 (4)

for any fixed r > 0. This is shown as follows. We first write∣∣∣∣(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
+ (−1)k

(
n

k + 1

)
log

(
2n− (k + 1)
2n + (k + 1)

) ∣∣∣∣
=

(
n

k

)∣∣∣∣ log
(

2n− k

2n + k

)
− n− k

k + 1
log

(
2n− (k + 1)
2n + (k + 1)

) ∣∣∣∣. (5)

Clearly, the expression multipying

(
n

k

)
on the right of the equality in (5) can be made

arbitrarily small uniformly in k ∈ [n/2− r
√

n, n/2 + r
√

n], where r > 0 is fixed, by choosing

n sufficiently large. Then, in view of the triangle inequality, (4) follows from
1
2n

n∑
k=0

(
n

k

)
ε = ε

(where ε > 0 is arbitrarily small) and

(
n

k

)/
2n unif.−→ 0 (to be used if the sum in (4) consists of

an odd number of terms). The desired result (1) is thus proved.

Also proved by Boris Rays, Brooklyn, NY and the proposer.

5121: Proposed by Tom Leong, Scotrun, PA

Let n, k and r be positive integers. It is easy to show that

∑
n1+n2+···+nr=n

(
n1

k

)(
n2

k

)
· · ·
(

nr

k

)
=

(
n + r − 1
kr + r − 1

)
, n1, n2, · · ·nr ∈ N

using generating functions. Give a combinatorial argument that proves this identity.

Solution 1 by Shai Covo, Kiryat-Ono, Israel

Suppose we have n identical boxes and kr (≤ n) identical balls. The stated equality is trivial
if r = 1, hence we can assume r > 1.

We begin with the left-hand side of the stated equality. Assuming n1, . . . , nr ≥ k, it gives the
number of ways to divide the n boxes into r groups–the ith group having ni ≥ k elements–and
put exactly k balls in each group.
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As for the right-hand side, suppose that in addition to the n boxes and the kr balls we have
r − 1 separators. This gives rise to an (n + r − 1)-tuple of boxes and separators. We denote
this tuple by M . We identify a sequence (i1, i2, . . . , ikr+r−1) such that
1 ≤ i1 < i2 < · · · < ikr+r−1 ≤ n + r − 1 with the following arrangement: the ijth
(j = 1, . . . , kr + r − 1) element of M is a separator if j is a multiple of k + 1 and a box
containing a ball otherwise. (The remaining n− kr elements are empty boxes.) We thus

conclude that

(
n + r − 1
kr + r − 1

)
gives the number of ways to place r − 1 separators between the n

boxes and kr balls into the boxes, such that each of the resulting r groups contains exactly k
balls. This establishes the equality of the left-and right-hand sides.

Solution 2 by the proposer

Both sides count the number of possible ways to arrange kr + r− 1 green balls and n− kr red
balls in a row. This is clearly true for the right side. In the left side, note that any term in the
sum with ni < k for some i is equal to zero; so we may assume ni ≥ k for all i. For each
composition n1 + · · ·+ nr = n of n, consider the row of n red and r− 1 green balls arranged as

RR · · ·R︸ ︷︷ ︸G
n1 balls

RR · · ·R︸ ︷︷ ︸G
n2 balls

RR · · ·R︸ ︷︷ ︸G · · ·
n3 balls

G RR · · ·R︸ ︷︷ ︸
nr−1 balls

G RR · · ·R︸ ︷︷ ︸
nr balls

From each block of red balls, choose k of them and paint them green. The number of ways to

do this is

(
n1

k

)(
n2

k

)
· · ·
(

nr

k

)
. This results in a row consisting of kr + r − 1 green balls and

n− kr red balls. Conversely, in any row consisting of kr + r − 1 green balls and n− kr red
balls, we can determine a unique composition n1 + n2 + · · ·+ nr = n of n by reversing the
process.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2011

• 5140: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with an interior point P such that

AP = 22 + 16
√

2
BP = 13 + 9

√
2

CP = 23 + 16
√

2.

Find AB.

• 5141: Proposed by Kenneth Korbin, New York, NY

A quadrilateral with sides 259, 765, 285, 925 is constructed so that its area is maximum.
Find the size of the angles formed by the intersection of the diagonals.

• 5142: Proposed by Michael Brozinsky, Central Islip, NY

Let CD be an arbitrary diameter of a circle with center O. Show that for each point A
distinct from O,C, and D on the line containing CD, there is a point B such that the
line from D to any point P on the circle distinct from C and D bisects angle APB.

• 5143: Proposed by Valmir Krasniqi (student), Republic of Kosova

Show that

∞∑
n=1

Cos−1 1 +
√

n2 + 2n ·
√

n2 − 1
n (n + 1)

=
π

2
.

(Cos−1 = Arccos)

• 5144: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

n∏
k=1

1 + ln

(
k +

√
n2 + k2

n

)1/n
 .

• 5145: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k ≥ 1 be a natural number. Find the sum of

∞∑
n=1

(
1

1− x
− 1− x− x2 − · · · − xn

)k

, for |x| < 1.

Solutions

• 5122: Proposed by Kenneth Korbin, New York, NY

Partition the first 32 non-negative integers from 0 to 31 into two sets A and B so that
the sum of any two distinct integers from set A is equal to the sum of two distinct
integers from set B and vice versa.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Suppose A contains 0. This means that any other number in A must be the sum of two
numbers in B. The next number in A, therefore, must be at least 3 since 3 is the
smallest number that is the sum of two positive integers. On the other hand, the next
number in A cannot be greater than 3, for 1 and 2 must still be in B. This group of four
numbers forms a kind of unit, which we can represent graphically as follows:

0
1
t3

2
or

1
0
u2

3

The symmetry of the unit reflects the fact that a + b = c + d if and only if b− d = a− c,
that is if and only if there is some number k such that c = a + k and d = b− k. Thus
any four consecutive integers forming such a figure will have the property that the sum
of the top pair of numbers equals the sum of the bottom pair.

(This makes the problem almost a geometrical one, for arranging the numbers in set A
and B in parallel lines as in the figure above, the condition of the problem becomes that
every pair of numbers in the first line corresponds to a pair of numbers in the second
line.)

So our strategy for the problem will be to assemble units such as those above to produce
larger units satisfying in each case the condition of the problem.

Let us then start with two. The first, as before is:

0
1
t3

2

And as we have already argued, the first two numbers of A and B must be arranged in
this way. The second unit, then, will be either

4
5
t7

6
or

5
4
u6

7
The symmetrical combination,

0
1
t3

2
4
5
t7

6
fails, because the pair (0, 4) in the upper row has no matching pair in the second row.
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However, the non-symmetrical combination works:

0
1
t3

2
5
4
u6

7
Again, these two form a new kind of unit, and, as before, any eight consecutive integers
forming a unit such as the above, will have the property that any pair of numbers in the
top row will have the same sum as some pair in the bottom row.

So, let us try and fit together two units of this type, and let us call them R and S. As
before, there are two possibilities, one symmetric and one anti-symmetric.
Since the anti-symmetric option worked before, let us try it again and call the top row
A and the bottom row B.

R︷ ︸︸ ︷
0
1
t3

2
5
4
u6

7

S︷ ︸︸ ︷
8
9
u11

10
13
12
t14

15

A = {0, 3, 5, 6, 8, 11, 13, 14}
B = {1, 2, 4, 7, 9, 10, 12, 15}

Now, to check whether this combination works we do not have to check

(
8
2

)
= 28 pairs

of numbers.

All of the subunits will satisfy the condition of the problem. Indeed, we do not have to
check pairs contained in the first and second, second and third and third and fourth
terms, because they represent eight consecutive integers as discussed above. And we do
not have to check pairs from the first and fourth terms because these also behave like a
single unit R (where for example the pair (0,13) corresponds to (1,12) just as (0,5)
corresponded to (1,4). So we only have to check pairs of numbers coming from the first
and third elements and the second and fourth. But here we find a problem, for (2,10) in
B cannot have a corresponding pair in A.

Let us then check the symmetrical arrangement:

R︷ ︸︸ ︷
0
1
t3

2
5
4
u6

7

S︷ ︸︸ ︷
9
8
t10

11
12
13
u15

14

A = {0, 3, 5, 6, 9, 10, 12, 15}
B = {1, 2, 4, 7, 8, 11, 13, 14}

As in the anti-symmetrical arrangement, we need not check pairs of numbers in R or S,
or, in this case, pairs if the first and third elements or second and fourth, which behave
exactly as R and S individually. We need only check non-symmetrical pairs in the first
and fourth elements and in the second and third. For the former this means (3,15) and
(0,12) in A and (1,13) and (2,14) in B. For these we have corresponding pairs (3,15) to
(7,8), (0,12) to (4,8), (1,13) to (5,9) and (2,14) to (6,10). Similarly, corresponding pairs
exist for each non-smmetric pair in A and B in the second and third elements.

The above arrangement is then a new unit of 16 consecutive numbers satisfying the
condition that every pair in the upper row A, has a correspnding pair of numbers in the
second row B, with the same sum.
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Finally, then, we want to join together two units, each of 16 consecutive integers as
above, to partition the set of 32 consecutive integers {0, 1, 2, . . . , 31}.
Reasoning as above, and checking only the critical elements in the unit for
corresponding sums, we see that the symmetric case works.

The symmetric case :︷ ︸︸ ︷
0
1
t 3

2
5
4
u 6

7
9
8
u 10

11
12
13

t 15
14

and

︷ ︸︸ ︷
16
17

t 19
18

21
20

u 22
23

25
24

u 26
27

28
29

t 31
30

Thus,

A = {0, 3, 5, 6, 9, 10, 12, 15, 16, 19, 21, 22, 25, 26, 28, 31}
B = {1, 2, 4, 7, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30}

Editor’s comment: In Michael’s solution each element in the set of four consecutive
integers was written as being the vetex of an isosceles trapezoid. (The trapezoids were
oriented with the bases being parallel to the top and bottom edges of page; Michael then
manitpulated the trapezoids by flipping their bases.)

Adoración Mart́ınez Ruiz of the Mathematics Club of the Institute of
Secondary Education (No. 1) in Requena-Valencia, Spain also approached the
problem geometrically in an almost identical manner as Michael. I adopted Adoración
Mart́ınez’ notation of “cups” t and “caps” u instead of Michael’s isosceles trapezoids in
writing-up Michael’s solution. (If the shorter base of the trapezoid was closer to the
bottom edge of the page than the longer base, then that trapezoid became a cup, t;
whereas if the shorter base of the trapezoid was closer to the top edge of the page than
the longer base, then that trapezoid became a cap, u.

Michael’s solution and Adoración Mart́ınez’ solution were identical to one another up
until the last step. At that point Michael took the symmetric extension in moving from
the first 16 non-negative integers to the first 32 non-negative integers, whereas
Adoración Mart́ınez took the anti-symmetric extension, and surprisingly (at least to
me), each solution worked.

Adoración Mart́ınez′ anti− symmetric case :︷ ︸︸ ︷
0
1
t 3

2
5
4
u 6

7
9
8
u 10

11
12
13

t 15
14

and

︷ ︸︸ ︷
17
16

u 18
19

20
21

t 23
22

24
25

t 27
26

29
28

u 30
31

A = {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30}
B = {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

So now we have two solutions to the problem, each motivated by geometry, and it was
assumed (at least by me) that their were no other solutions. Michael challenged Mayer
Goldberg, a colleague in CS here at BGU, to find other solutions, and he did; many of
them! Following is his approach.

Solution 2 by Mayer Goldberg, Beer-Sheva, Israel

Notation: For any set S of integers, the set aS + b is the set {ak + b : k ∈ S}.
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Construction: We start with the set A0 = {0, 4}, b0 = {1, 2}. We define An, Bn

inductively as follows:

An+1 = (2An + 1) ∪ (2Bn)

Bn+1 = (2An) ∪ (2Bn + 1)

Claim: The sets An, Bn partition the set {0, . . . , 2n+2} according to the requirements of
the problem.

Proof: By Induction. The sets A0B0 satisfy the requirement trivially, since they each
contain one pair, and by inspection, we see that the sums are the same. Assume that
An, Bn satisfy the requirement. Pick x1, x2 ∈ An+1.

• Case I: x1 = 2x3 + 1, x2 = 2x4 + 1, for x3, x4 ∈ An. Then by the induction hypothesis
(IH), there exists y3, y4 ∈ Bn, such that x3 + x4 = y3 + y4. Consequently,

x1 + x2 = 2(x3 + x4) + 2 = 2(y3 + y4) + 2 = (2y3 + 1) + (2y4 + 1).

So let y1 = 2y3 + 1, y2 = 2y4 + 1 ∈ Bn+1.

• Cases II & III: x1 = 2x3 + 1, x2 = 2y4, for x3 ∈ An, y4 ∈ Bn.

x1 + x2 = 2(x3 + 1) + 2y4 = 2x3 + (2y4 + 1).

So let y1 = 2x3, y2 = 2y4 + 1 ∈ Bn+1.

• Case IV: x1 = 2y3, x2 = 2y4, for y3, y4 ∈ Bn.Then by the IH, there exists x3, x4 ∈ An,
suc that y3 + y4 = x3 + x4. Consequently,

x1 + x2 = 2y3 + 2y4 = 2(y3 + y4) = 2(x3 + x4) = 2x3 + 2x4.

So let y1 = 2x3, y2 = 2y3 ∈ Bn+1

Editor: This leads to potentially thousands of such pairs of sets that satisfy the criteria
of the problem. Mayer listed about one hundred such examples, a few of which are
reproduced below:

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 19, 20, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 16, 19, 20, 21, 25, 26, 28, 31}
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A = {0, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 14, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 15, 16, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 14, 19, 20, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 13, 15, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 11, 12, 14, 16, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 11, 15, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 12, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 15, 16, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 11, 12, 13, 14, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 19, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 18, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 19, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 18, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 18, 19, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 18, 19, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = 1, 2, 4, 7, 8, 11, 12, 13, 16, 18, 19, 21, 25, 26, 28, 31}

Editor (again): Edwin Gray of Highland Beach, FL working together with John
Kiltinen of Marquette, MI claimed and proved by induction the following more
general theorem:

Let S = {0, 1, 2, 3, . . . , 2n − 1}, n > 1. Then there is a partition of S, say A, B such that

1) A ∪B = S, A ∩B = ∅, and

2) For all x, y ∈ A, there is an r, s ∈ B, such that x + y = r + s, and vice versa.

That is, the sum of any two elements in B has two elements in A equal to their sum.

David Stone and John Hawkins both of Statesboro, GA also claimed and
proved a more general statement: They showed that: for n ≥ 2, the set
Sn = {0, 1, 2, . . . , 2n − 1} consists of the non-negaitve integers which can be written with
n or fewer binary digits. E.g.,

S2 = {0, 1, 2, 3} = {00, 01, 10, 11} and
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S3 = {0, 1, 2, 3, 4, 5, 6, 7} = {000, 001, 010, 011, 100, 101, 110, 111}

Their proof consisted of partitioning Sn into two subsets: En: those elements of Sn

whose binary representation uses an even number of ones, and On: those numbers in Sn

whose binary reprsentation uses an odd number of ones. Hence, for any x 6= y in
En, x + y can be written as x + y = w + z for some w 6= z in On, and vice versa. This
lead them to Adoración Mart́ınez’ solution, and they speculated on its uniqueness.

All of this seemed to be getting out-of-hand for me; at first I thought the solution is
unique; then I thought that there are only two solutions, and then I thought that there
are many solutions to the problem. Shai Covo’s
solutio/Users/admin/Desktop/SSM/For Jan 11/For Jan 11; Jerry.texn however, shows
that the answer can be unique if one uses a notion of sum multiplicity.

Solution 3 by Shai Covo, Kiryat-Ono, Israel

We give two solutions, the first simple and original, the second sophisticated and more
interesting, thanks to the Online Encyclopedia of Integer sequences(OEIS).

Assuming that 0 ∈ A, one checks that we must have either

{0, 3, 5, 6} ∪ {25, 26, 28, 31} ⊂ A and {1, 2, 4, 7} ∪ {24, 27, 29, 30} ⊂ B
or

{0, 3, 5, 6} ∪ {24, 27, 29, 30} ⊂ A and {1, 2, 4, 7} ∪ {25, 26, 28, 31} ⊂ B.

In view of the first possibility, it is natural to examine the following sets:

A = {0, 3, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 28, 31}

B = {1, 2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30}.

To see why this is natural, connect the numbers with arrows, in increasing order,
starting with a vertical arrow pointing down to 1. Now, define

C = {a1 + a2 | a1, a2 ∈ A, a1 6= a2} ⊂ {3, 4, 5, . . . , 59} and

D = {b1 + b2 | b1, b2 ∈ B, b1 6= b2} ⊂ {3, 4, 5, . . . , 59}.

We want to show that C = D, or equivalently, for every x ∈ {3, 4, 5, . . . , 59} either
x ∈ C ∩D or x 6∈ C ∪D. Checking each x value, we find that

C ∩D = {3, 4, 5, . . . , 59} \ {4, 7, 55, 58} and {4, 7, 55, 58} ∩ (C ∪D) = ∅.

Thus, C = D, and so the problem is solved with A and B as above.

We now turn to the second solution. OEIS sequences A001969 (numbers with an even
number of 1’s in their binary expansion) and A000069 (numbers with an odd number of
1’s in their binary expansion) “give the unique solution to the problem of splitting the
nonnegative integers into two classes in such a way that sums of pairs of distinct
elements from either class occur with the same multiplicities. [Lambek and Moser].” We
have verified (by computer) that, in the case at hand, the sets

A = {A001969(n) : A001969(n) ≤ 30}

7



= {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30} and

B = {A000069(n) : A000069(n) ≤ 31}
= {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

split the first 32 nonnegative integers from 0 to 31 in the manner stated for splitting the
nonnegative integers. (The number 32 plays an important role here.) However, this is
not the case for the sets A and B from the previous solution (consider, for
example,12=3+9 versus 12=1+11, 12=4+8; there are seven more such examples.)

Editor (still again): I did not understand the notion about sums having the same
multiplicity, but this is the key for having a unique solution to the problem, as it states
in the OEIS. So I asked Shai to elaborate on this notion. Here is what he wrote:

—————–
The point is that “given the unique solution to the problem of splitting the nonnegative
integers...” refers to the infinite set {0, 1, 2, 3, ...} and not the finite set {0, 1, 2, ..., 31}. I
should have stressed this point in my solution. As far as I can recall, I considered doing
so, but decided not to, based on the following: “... the manner stated for splitting the
nonnegative integers” only refers to “splitting the nonnegative integers into two classes
in such a way that sums of pairs of distinct elements from either class occur with the
same multiplicities,” and not to “give the unique solution to the problem of splitting the
nonnegative integers...”.
—————–

In explaining the notion of itself, Shai wrote:

—————–
Consider Michael Fried’s sets:

A = {0, 3, 5, 6, 9, 10, 12, 15, 16, 19, 21, 22, 25, 26, 28, 31}

B = {1, 2, 4, 7, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30}.

For set A, the number 16 can be decomposed as 0+16 and 6+10; hence the multiplicity
is 2. For set B, on the other hand, 16 can only be decomposed as 2+14 (8+8 does not
count, since we consider distinct elements only); hence the multiplicity is 1.

——————

Also solved by Brian D. Beasley, Clinton, SC; Edwin Gray, Highland Beach,
FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
John Kiltinen, Marquette, MI; Charles McCracken, Dayton, OH; Adoración
Mart́ınez Ruiz, Requena-Valencia, Spain; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5123: Proposed by Kenneth Korbin, New York, NY

Given isosceles triangle ABC with AB = BC = 2011 and with cevian BD. Each of the
line segments AD, BD, and CD have positive integer length with AD < CD.
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Find the lengths of those three segments when the area of the triangle is minimum.

Solution by Shai Covo, Kiryat-Ono, Israel

We begin by observing that AC ∈ {3, 4, . . . , 4021}. This follows from
AC < AB + BC = 4022 and the assumption that AC = AD + CD is the sum of the
distinct positive integers. The area S of triangle ABC can be expressed in terms of AC
as

S = S
(
AC

)
=

AC

2

√√√√20112 −
(

AC

2

)2

.

Define f(x) = x2(20112 − x2), x ∈ [0, 2011]. Then S
(
AC

)
=
√

f
(
AC/2

)
. It is readily

verified that the function f (and hence
√

f) is unimodal with mode m = 2011/
√

2; that
is, it is increasing for x ≤ m and decreasing for x ≥ m. If thus follows from
f(4021/2) < f(127/2) that S(4021) < S(k) for any integer 127 ≤ k ≤ 4020. Next by the
law of cosines, we find that

BD
2 = 20112 + AD

2 − 2 · 2011 ·AD · AC/2
2011

.

Hence,
AD

2 −AC ·AD +
(
20112 −BD

2
)

= 0.

The roots of this quadratic equation are given by the standard formula as

AD1,2 =
AC ±

√
AC

2 − 4
(
20112 −BD

2
)

2
.

However, we are given that AD < CD; hence AD = AD2 and CD = AD1, and we must
have AC

2
> 4

(
20112 −BD

2
)
. Since, obviously, BD ≤ 2010, we must have

AC2 > 4
(
20112 − 20102

)
= 4 · 4021; hence, 127 ≤ AC ≤ 4021.

Thus, under the condition that S is minimum, we wish to find an integer value of
BD(≤ 2010) that makes AD1,2 (that is, CD and AD) distinct integers when AC is set
to 4021.

We thus look for BD ∈ {1, 2, . . . , 2010} for which the discriminant
∆ = 40212 − 4(20112 −BD2) is a positive perfect square, say ∆ = j2 with j ∈ N
(actually, j =CD −AD). This leads straightforwardly to the following equation:(

2BD + j
) (

2BD − j
)

= 3 · 7 · 383.

Since 3,7, and 383 are primes, we have to consider the following four cases:

•
(
2BD − j

)
= 1 and

(
2BD + j

)
= 3 · 7 · 383. This leads to BD = 2011; however, BD

must be less than 2011.

•
(
2BD − j

)
= 3 and

(
2BD + j

)
= 7 · 383. This leads to BD = 671 and j = 1339, and

hence to our first solution:

AD = 1341, BD = 671, CD = 2680.
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•
(
2BD − j

)
= 7 and

(
2BD + j

)
= 3 · 383. This leads to BD = 289 and j = 571, and

hence to our second solution:

AD = 1725, BD = 289, CD = 2296.

•
(
2BD − j

)
= 3 · 7 and

(
2BD + j

)
= 383. This leads to BD = 101 and j = 181, and

hence to our third solution:

AD = 1920, BD = 101, CD = 2101.

Editor: David Stone and John Hawkins made two comments in their solution. They
started off their solution by letting r = AC, the length of the triangle’s base. By Heron’s
formula, they obtained the triangle’s area: K =

r

4

√
40222 − r2 and then they made the

following observations.

• a) BD = 1 and CD = 2011 gives us a triangle ABC with

area

(
1
2
− 1

4 (2011)2

)√
4 (20112)− 1 ≈ 2010.999689 which is the smallest value that can

be obtained not requiring AD to be an integer.

• b) Letting m = AD,n = CD, k = BD, (where 1 ≤ m < n and AC = m + n ≤ 4021),
and letting α be the base angle at vertex A (and at C), and dropping an altitude from B
to side AC, we obtain a right triangle and see that

cos α =
AC/2
2011

=
m + n

2 · 2011
.

Using the Law of Cosines in triangle BDC, we have

k2 = n2 + 20112 − 2 · 2011 · n cos α = 20112 + n2 − n(m + n),

so we have a condition which the integers m,n and k must satisfy

k2 = 20112 −mn (1)

There are many triangles satisfying condition (1), some with interesting characteristics.
There are no permissible triangles with base 4020, five with base 4019 and six with base
4018. All have larger areas than the champions listed above.

The altitude of each triangle in our winners group is 44.8 so the “shape ratio”,
altitude/base, is very small: 0.011. A wide flat triangle indeed!

One triangle with base 187 has a relatively small area: 187,825.16. This is as close as we
can come to a tall, skinny triangle with small area. Its altitude/base ratio is 10.7.

In general, the largest isosceles triangle is an isosceles right triangle. With side lengths
2011, this would require a hypotenuse (our base) of 2011

√
2 ≈ 2843.98. There are no

permissible triangles with r = 2844. Letting r = 2843, we find the two largest
permissible triangles:

m = 291, n = 2552, cevian = 1817 and area 2, 022, 060.02

m = 883, n = 1960, cevian = 1521 and area 2, 022, 060.02

10



The triangle with m = 3, n = 2680 (hence base =2683) has a large area: 2,009,788,52.
The cevian has length 2009; it is very close to the side AB.

The triangle with m = 1524, n = 1560 and cevian=1291, comes closer than any other we
found to having the cevian bisect the base. Its area is 1,990,528.49

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5124: Proposed by Michael Brozinsky, Central Islip, NY

If n > 2 show that
n∑

i=1

sin2
(

2πi

n

)
=

n

2
.

Solution 1 by Piriyathumwong P. (student, Patumwan Demonstration
School), Bangkok, Thailand

Since cos 2θ = 1− 2 sin2 θ, we have

n∑
i=1

sin2
(

2πi

n

)
=

1
2

n∑
i=1

(
1− cos

(
4πi

n

))
=

n

2
− 1

2

n∑
i=1

cos
(

4πi

n

)

We now have to show that S =
n∑

i=1

cos
(

4πi

n

)
= 0.

Multiplying both sides of S by 2 sin
(

2π

n

)
, gives

2 sin
(

2π

n

)
· S = 2 sin

(
2π

n

)
cos

(
4π

n

)
+ 2 sin

(
2π

n

)
cos

(
8π

n

)
+ . . . + 2 sin

(
2π

n

)
cos

(
4nπ

n

)
=

(
sin
(

6π

n

)
− sin

(
2π

n

))
+
(

sin
(

10π

n

)
− sin

(
6π

n

))
+ . . .

+
(

sin
(

(4n + 2)π
n

)
− sin

(
(4n− 2)π

n

))
= sin

(
(4n + 2)π

n

)
− sin

(
2π

n

)
= 0

Hence, S = 0, and we are done.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

To avoid confusion with the complex number i =
√
−1, we will consider

n∑
k=1

sin2
(

2πk

n

)
.

11



If R = e
(
4πi/n

)
, with n > 2, then R 6= 1 and Rn = e4πi = 1. Then, using the formula

for a geometric sum, we get

n∑
k=1

Rk = R
Rn − 1
R− 1

= 0,

and hence,

n∑
k=1

cos
(

4πk

n

)
=

n∑
k=1

Re
(
Rk
)

= Re

(
n∑

k=1

Rk

)
= 0.

Therefore, by the half-angle formula,

n∑
k=1

sin2
(

2πk

n

)
=

1
2

n∑
k=1

[
1− cos

(
4πk

n

)]
=

n

2
.

Also solved by Daniel Lopez Aguayo (student, Institute of Mathematics,
UNAM), Morelia, Mexico; Valmir Bucaj (student, Texas Lutheran
University), Seguin, TX; Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael N. Fried, Kibbutz Revivim, Israel; G.C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; Pedro H. O. Pantoja, Natal-RN, Brazil; Paolo
Perfetti, Department of Mathematics, University of Rome, Italy; Boris Rays,
Brooklyn, NY; Raúl A. Simón, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5125: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

ab

2(c + a) + 5b
+

bc

2(a + b) + 5c
+

ca

2(b + c) + 5a
<

11
32

.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the sharp inequality

ab

2(c + a) + 5b
+

bc

2(a + b) + 5c
+

ca

2(b + c) + 5a
<

1
3
. (1)

Let x =
a

a + b + c
, y =

b

a + b + c
, z =

c

a + b + c
so that (1) can be written as

(a + b + c)
(

xy

3y + 2
+

yz

3z + 2
+

zx

3x + 2

)
≤ 1

3
. (2)

Since

a + b + c =
√

3 (a2 + b2 + c2)− (a− b)2 − (b− c)2 − (c− a)2 ≤
√

3 (a2 + b2 + c2) = 3

so to prove (2), we need only prove that

12



xy

3y + 2
+

yz

3z + 2
+

zx

3x + 2
≤ 1

9
. (3)

whenever x, y, z are positive and x + y + z = 1. It is easy to check that (3) is equivalent
to

x

3y + 2
+

y

3z + 2
+

z

3x + 2
≥ 1

3
. (4)

By the convexity of the function
1
t
, for t > 0 and Jensen’s inequality, we have

x

3y + 2
+

y

3z + 2
+

z

3x + 2
≥ 1

x(3y + 2) + y(3z + 2) + z(3x + 2)
=

1
3 (xy + yz + zx) + 2

.

Now

xy + yz + zx =
2 (x + y + z)2 − (x− y)2 − (y − z)2 − (z − x)2

6
≤ 1

3
and so (4) holds. This proves (1) and equality holds when a = b = c = 1.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy, and the proposer.

• 5126: Proposed by Pantelimon George Popescu, Bucharest, Romania and José Luis
Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be positive real numbers and f : [a, b] → [c, d] be a function such that
|f(x)− f(y)| ≥ |g(x)− g(y)|, for all x, y ∈ [a, b], where g : R → R is a given injective
function, with g(a), g(b) ∈ {c, d}.
Prove

(i) f (a) = c and f (b) = d , or f (a) = d and f (b) = c.

(ii) If f (a) = g(a) and f (b) = g(b), then f (x ) = g(x ) for a ≤ x ≤ b.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

To avoid trivial situations, we will assume that a < b. Then, since g (x) is injective and
g (a) , g (b) ∈ {c, d}, it follows that c < d also.

First of all, the fact that f (x) ∈ [c, d] for all x ∈ [a, b] implies that

|f (x)− f (y)| ≤ d− c

for all x, y ∈ [a, b].
(i) In particular, since g (a) , g (b) ∈ {c, d}, we have

d− c ≥ |f (a)− f (b)| ≥ |g (a)− g (b)| = d− c.

Hence, |f (a)− f (b)| = d− c with c ≤ f (a) , f (b) ≤ d, and we get f (a) = c and
f (b) = d, or f (a) = d and f (b) = c.

13



(ii) Suppose f (a) = g (a) = c and f (b) = g (b) = d. The proof in the other case is
similar. Then, since c ≤ f (x) ≤ d for all x ∈ [a, b], we obtain

d− c = (d− f (x)) + (f (x)− c)
= |d− f (x)|+ |f (x)− c|
= |f (b)− f (x)|+ |f (x)− f (a)|
≥ |g (b)− g (x)|+ |g (x)− g (a)|
= |d− g (x)|+ |g (x)− c|
≥ |d− c|
= d− c.

Thus, for all x ∈ [a, b],

|d− f (x)| = |d− g (x)| and |f (x)− c| = |g (x)− c| .

If there is an x0 ∈ [a, b] such that f (x0) 6= g (x0), then

d− f (x0) = g (x0)− d and f (x0)− c = c− g (x0)

and hence,
2d = f (x0) + g (x0) = 2c.

This is impossible since c 6= d. Therefore, f (x) = g (x) for all x ∈ [a, b].

Remark. The condition that a, b, c, d > 0 seems unnecessary for the solution of this
problem.

Editor: Shai Covo suggested that the problem can be made more interesting by
adding a third condition. Namely:

iii) Iff(a) 6= g(a) (or equivalently, f(b) 6= g(b)), then f(x) + g(x) = c + d for all x ∈ [a, b]

and, hence, f(x)− f(y) = g(y)− g(x) for all x, y ∈ [a, b].

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 5127: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let Tn(x) =
n∑

k=1

(−1)k−1 x2k−1

(2k − 1)!
, denote the (2n− 1)th

Taylor polynomial of the sine function at 0. Calculate∫ ∞
0

Tn(x)− sinx

x2n+1
dx.

Solution by Paolo Perfetti, Department of Mathematics, University of
Rome, Italy

Answer:
π(−1)n−1

2(2n)!

14



Proof: Integrating by parts:

∫ ∞
0

Tn(x)− sinx

x2n+1
dx = − 1

2n

∫ ∞
0

(Tn(x)− sinx)(x−2n)′dx

=
Tn(x)− sinx

−2nx2n

∣∣∣∞
0

+
1
2n

∫ ∞
0

T ′n(x)− cos x

x2n
dx

=
1
2n

∫ ∞
0

T ′n(x)− cos x

x2n
dx

using Tn(x)− sinx = −
∞∑

k=n+1

(−1)k−1 x2k−1

(2k − 1)!
in the last equality.

After writing T ′n(x)− cos x = −
∞∑

k=n+1

(−1)k−1 x2k−2

(2k − 2)!
, we do the second step.

∫ ∞
0

T ′n(x)− cos x

(2n)x2n
dx =

−1
2n(2n− 1)

∫ ∞
0

(T ′n(x)− cos x)(x−2n+1)′dx

=
T ′n(x)− cos x

−2n(2n− 1)x2n−1

∣∣∣∞
0

+
1

2n(2n− 1)

∫ ∞
0

T ′′n (x) + sin x

x2n−1
dx

=
1

2n(2n− 1)

∫ ∞
0

T ′′n (x) + sin x

x2n−1
dx.

After 2n steps we obtain

(−1)n−1

(2n)!

∫ ∞
0

sin
x

dx =
π(−1)n−1

2(2n)!

Also solved by Shai Covo, Kiryat-Ono, Israel; Kee-Wai Lau, Hong Kong,
China; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2011

• 5146: Proposed by Kenneth Korbin, New York, NY

Find the maximum possible value of the perimeter of an integer sided triangle with
in-radius r =

√
13.

• 5147: Proposed by Kenneth Korbin, New York, NY

Let {
x = 5N2 + 14N + 23 and
y = 5(N + 1)2 + 14(N + 1) + 23

where N is a positive integer. Find integers ai such that

a1x
2 + a2y

2 + a3xy + a4x + a5y + a6 = 0.

• 5148: Proposed by Pedro Pantoja (student, UFRN), Natal, Brazil

Let a, b, c be positive real numbers such that ab + bc + ac = 1. Prove that

a2

3
√

b(b + 2c)
+

b2

3
√

c(c + 2a)
+

c2

3
√

a(a + 2b)
≥ 1.

• 5149: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

A regular n-gon A1, A2 · · · , An (n ≥ 3) has center F , the focus of the parabola y2 = 2px,
and no one of its vertices lies on the x axis. The rays FA1, FA2, · · · , FAn cut the
parabola at points B1, B2, · · · , Bn.

Prove that
1
n

n∑
k=1

FB2
k > p2.

• 5150: Proposed by Mohsen Soltanifar(student, University of Saskatchewan), Saskatoon,
Canada

Let {An}∞n=1, (An ∈ Mn×n(C)) be a sequence of matrices such that det(An) 6= 0, 1 for all
n ∈ N . Calculate:

lim
n→∞

nn ln(|det(An)|)
ln (|det (adj◦n (An)) |)

,

where adj◦n refers to adj ◦ adj ◦ · · · ◦ adj, n times, the nth iterate of the classical adjoint.

1



• 5151: Proposed by Ovidiu Furdui, Cluj, Romania

Find the value of
∞∏

n=1

(√
π

2
· (2n− 1)!!

√
2n + 1

2nn!

)(−1)n

.

More generally, if x 6= nπ is a real number, find the value of

∞∏
n=1

(
x

sinx

(
1− x2

π2

)
· · ·
(

1− x2

(nπ)2

))(−1)n

.

Solutions

• 5128: Proposed by Kenneth Korbin, New York, NY

Find all positive integers less than 1000 such that the sum of the divisors of each integer
is a power of two.

For example, the sum of the divisors of 3 is 22, and the sum of the divisors of 7 is 23.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

For n ≥ 1, let σ (n) denote the sum of the positive divisors of n. The problem is to find
all positive integers n < 1000 such that σ (n) = 2k for some integer k ≥ 0. We note first
that n = 1 is a solution since σ (1) = 1 = 20. For the remainder, we will assume that
n ≥ 2. Our key result is the following:

Lemma. If p is prime and k and e are positive integers such that σ (pe) = 2k, then
e = 1 and p = 2k − 1 (i.e., p is a Mersenne prime).

Proof. First of all, p 6= 2 since σ (2e) = 1 + 2 + . . . + 2e, which is odd. Further, since p
must be odd,

2k = σ (pe) = 1 + p + . . . + pe

implies that e is also odd. It follows that

2k = (1 + p) +
(
p2 + p3

)
+
(
p4 + p5

)
+ . . . +

(
pe−1 + pe

)
= (1 + p)

(
1 + p2 + p4 + . . . + pe−1

)
. (∗)

Then, 1 + p divides 2k and 1 + p > 1, which leads us to conclude that 1 + p = 2m, with
1 ≤ m ≤ k. Statement (*) reduces to

2k−m = 1 + p2 + p4 + . . . + pe−1.

If e ≥ 3, then m < k and using the same reasoning as above, we get

2k−m =
(
1 + p2

)
+
(
p4 + p6

)
+ . . . +

(
pe−3 + pe−1

)
=

(
1 + p2

) (
1 + p4 + . . . + pe−3

)
,

which implies that 1 + p2 = 2i, for some positive integer i ≤ k −m. Thus,

2i = 1 + p2 = 1 + (2m − 1)2 = 22m − 2m+1 + 2,

2



or
2i−1 = 22m−1 − 2m + 1 = 2m

(
2m−1 − 1

)
+ 1.

This requires i = m = 1, which is impossible since this would entail
p = 2m − 1 = 2− 1 = 1. Therefore, e = 1 and 2k = σ (p) = p + 1, i.e., p = 2k − 1.

To return to our problem, we may write

n = pe1
1 pe2

2 · · · pem
m

for distinct primes p1, . . . , pm and positive integers e1, . . . , em. Since σ is multiplicative
and pe1

1 , . . . , pem
m are pairwise relatively prime,

2k = σ (n) = σ (pe1
1 ) σ (pe2

2 ) · · ·σ (pem
m ) .

Further, for i = 1, . . . ,m, σ (pei
i ) ≥ pi + 1 > 1. Hence, there are positive integers

k1, . . . , km such that
σ (pei

i ) = 2ki

for i = 1, . . . ,m. By the Lemma, e1 = e2 = . . . = em = 1 and

pi = 2ki − 1

for i = 1, . . . ,m. Therefore, n = p1p2 · · · pm, where each pi is a distinct Mersenne prime.

To solve our problem, we need to find all Mersenne primes < 1000 and all products of
distinct Mersenne primes for which the product < 1000. The Mersenne primes < 1000
are 3, 7, 31, and 127. All solutions of σ (n) = 2k, with n < 1000, are listed below.

n σ (n)
1 20

3 22

7 23

21 = 3 · 7 25

31 25

93 = 3 · 31 27

127 27

217 = 7 · 31 28

381 = 3 · 127 29

651 = 3 · 7 · 31 210

889 = 7 · 127 210

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris
Rays, Brooklyn, NY; Harry Sedinger, St. Bonaventure, NY; Raúl A. Simón,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
Tran Trong Hoang Tuan (student, Bac Lieu High School for the Gifted), Bac
Lieu City, Vietnam, and the proposer.

• 5129: Proposed by Kenneth Korbin, New York, NY
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Given prime number c and positive integers a and b such that a2 + b2 = c2, express in
terms of a and b the lengths of the legs of the primitive Pythagorean Triangles with
hypotenuses c3 and c5, respectively.

Solution 1 by Howard Sporn, Great Neck, NY

A Pythagorean Triple (a, b, c) can be represented by the complex number a + bi, with
modulus c. By multiplying two Pythagorean Triples in this form, one can generate
another Pythagorean Triple. For instance, the complex representation of the 3-4-5
triangle is 3 + 4i. By multiplying the complex number by itself, (and taking the absolute
value of the real and imaginary parts), one obtains the 7-24-25 triangle:

(3 + 4i)(3 + 4i) = −7 + 24i

72 + 242 = 252

By cubing a + bi, one can obtain a Pythagorean Triple whose hypotenuse is c3.

(a + bi)3 = (a + bi)2(a + bi)

= (a2 − b2 + 2abi)(a + bi)

= a3 − 3ab2 + i
(
3a2 − b3

)
One can verify that the modulus of this complex number is

(
a2 + b2

)3 = c3. Thus we
obtain the Pythagorean Triple

(∣∣a3 − 3ab2
∣∣ , ∣∣3a2b− b3

∣∣ , c3
)
.

That this Pythagorean Triangle is primitive can be seen by factoring the lengths of the
legs:

a3 − 3ab2 = a
(
a2 − 3b2

)
, and

3a2b− b3 = b
(
3a2 − b2

)
,

generally have no factors in common.

Example: If we let (a, b, c) = (3, 4, 5), we obtain the Pythagorean Triple (117, 44, 125).

By a similar procedure , one can obtain a Pythagorean Triple whose hypotenuse is c5.

(a + bi)5 = (a + bi)3 (a + bi) (a + bi)

=
[
a3 − 3ab2 + i

(
3a2b− b3

)]
(a + bi) (a + bi)

=
[
a4 − 6a2b2 + b4 + i

(
4a3b− 4ab3

)]
(a + bi)

= a5 − 10a3b2 + 5ab4 + i
(
5a4b− 10a2b3 + b5

)
.

Thus we obtain the Pythagorean Triple(∣∣∣a5 − 10a3b2 + 5ab4
∣∣∣ , ∣∣∣5a4b− 10a2b3 + b5

∣∣∣ , c5
)

.

Example: If we let (a, b, c) = (3, 4, 5), we obtain the Pythagorean Triple
(237, 3116, 3125).
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Solution 2 by Brian D. Beasley, Clinton, SC

Given positive integers a, b, and c with c prime and c2 = a2 + b2, we may assume
without loss of generality that a < b < c. Also, we note that c must be odd and that c
divides neither a nor b. Using the classic identity

(w2 + x2)(y2 + z2) = (wy + xz)2 + (wz − xy)2,

we proceed from c2 = a2 + b2 to obtain c4 = (−a2 + b2)2 + (2ab)2. Similarly, we have

c6 = (−a3 + 3ab2)2 + (3a2b− b3)2

and

c10 = (a5 − 10a3b2 + 5ab4)2 + (−5a4b + 10a2b3 − b5)2.

Thus the leg lengths for the Primitive Pythagorean Triangle (PPT) with hypotenuse c3

are

m = | − a3 + 3ab2| and n = |3a2b− b3|,
while the leg lengths for the PPT with hypotenuse c5 are

q = |a5 − 10a3b2 + 5ab4| and r = | − 5a4b + 10a2b3 − b5|.

To show that these triangles are primitive, we first note that (−a2 + b2, 2ab, c2) is a
PPT, since c cannot divide 2ab. Next, we prove that (m, n, c3) is also a PPT: If not,
then c divides both a(−a2 + 3b2) and b(3a2 − b2), so c divides −a2 + 3b2 and 3a2 − b2;
thus c divides the linear combination (−a2 + 3b2) + 3(3a2 − b2) = 8a2, a contradiction.
Similarly, we prove that (q, r, c5) is a PPT: If not, then c divides both
a(a4 − 10a2b2 + 5b4) and b(−5a4 + 10a2b2 − b4), so c divides a4 − 10a2b2 + 5b4 and
−5a4 + 10a2b2 − b4; thus c divides the linear combinations

(a4 − 10a2b2 + 5b4) + 5(−5a4 + 10a2b2 − b4) = 8a2(−3a2 + 5b2)

and

5(a4 − 10a2b2 + 5b4) + (−5a4 + 10a2b2 − b4) = 8b2(−5a2 + 3b2).

But this means that c divides the linear combination
3(−3a2 + 5b2)− 5(−5a2 + 3b2) = 16a2, a contradiction.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; David E. Manes, Oneonta, NY, and the proposer.

• 5130: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, calculus has not been discovered. A bride
and groom start out from A(−a, 0) and B(b, 0) respectively where a 6= b and a > 0 and
b > 0 and walk at the rate of one unit per second to an altar located at the point P on
line L : y = mx such that the time that the first to arrive at P has to wait for the other
to arrive is a maximum. Find, without calculus, the locus of P as m varies through all
nonzero real numbers.

Solution 1 by Michael N. Fried, Kibbtuz Revivim, Israel

Let OQ be the line y = mx. Since it is the total time which must be a minimum, we
might as well consider the minimum time from A to a point P on OQ and then from P
to B. But since the speed is equal and constant for both the bride and groom the
minimum time will be achieved for the path having the minimum distance. This, as is
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well-known, occurs when 6 APO = 6 BPQ. Accordingly, OP is the external angle

bisector of angle APB, and, thus,
BP

AP
=

BO

OA
= a constant ratio. So, P lies on a circle

(an Apollonius circle) whose diameter is OAC, where OC is the harmonic mean between
OA and OB.

Solution 2 by the proposer

Since the bride and groom go at the same rate, then for a given m, P is the point such
that the maximum of ||AQ| − |BQ|| for points Q on L occurs when Q is P . Let A′

denote the reflection of A about this line.

Now since ||AQ| − |BQ|| = ||A′Q| − |BQ|| ≥ |A′B| (from the triangle inequality) we have
this maximum must be |A′B| since it is attained when P is the point of intersection of
the line through B and A′, with L. (Note that the line through A′ and B is not parallel
to L because that would imply that the origin is the midpoint of AB because the line
through the midpoint of AA′ and the midpoint of AB is parallel to the line through A′

and B.)

Let M be the midpoint of segment AA′. Now, since triangles A′PM and APM are
congruent, L is the angle bisector at P in triangle ABP , and since an angle bisector of
an angle of a triangle divides the opposite side into segments proportional to the

adjacent sides we have
AP

BP
=

a

b
(1).

Denoting P by P (X, Y ) we thus have Y 6= 0 and thus X 6= 0 and so from (1)√
(X + a)2 + (mX)2√
(X − b)2 + (mX)2

=
a

b
,

and since X 6= 0, we have by squaring both sides and solving for X, that

X =
2ab

(a− b)(m2 + 1)
, and thus

Y =
2mab

(a− b)(m2 + 1)

are parametric equations of the locus. Now replacing m by
Y

X
and simplifying, we obtain

X =
2abX2

(X2 + Y 2)(a− b)

which is just the circle
(X2 + Y 2)(a− b) = 2abX

with the endpoints of the diameter deleted. The endpoints of the diameter occur when

Y = 0; that is, at (0, 0), and at
(

2ab

a− b
, 0
)

.

Note that if the line x = 0 were a permissible altar line, then we would add (0, 0) to the
locus, while if the x−axis were a permissible altar line, then the union of the rays

(−∞,−a] ∪ [b,∞) would be part of the locus, and in particular, this includes
(

2ab

a− b
, 0
)

.
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• 5131: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a + b + 3c

3a + 3b + 2c
+

a + 3b + c

3a + 2b + 3c
+

3a + b + c

2a + 3b + 3c
≥ 15

8
.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

The inequality is homogeneous, so we can assume without loss of generality that
a + b + c = 1, being equivalent to

1 + 2c

3− c
+

1 + 2b

3− b
+

1 + 2a

3− a
≥ 15

8
,

which is Jensen’s inequality f(c) + f(b) + f(a) ≥ 3f

(
c + b + a

3

)
applied to the convex

function f (x) =
1 + 2x

3− x
and the numbers c, b, a on the interval (0, 1); equality occurs if

and only if a = b = c.

Solution 2 by Javier Garćıa Cavero (student, Mathematics Club of the
Instituto de Educación Secundaria- No 1), Requena-Valencia, Spain

Changing the variables, that is to say, calling

x = 2a + 3b + 3c,
y = 3a + 2b + 3c, and
z = 3a + 3b + 2c

it is easy to see, solving the corresponding system of equations, that

a + b + c =
x + y + z

8
and that

a =
−5x + 3y + 3z

8

b =
3x− 5y + 3z

8
, and

c =
3x + 3y − 5z

8
.

The numerators of the fractions will thus be:

a + b + 3c =
7x + 7y − 9z

8
, a + 3b + c =

7x− 9y + 7z

8
, 3a + b + c =

−9x + 7y + 7z

8

Replacing everything in the initial expression:

a + b + 3c

3a + 3b + 2c
+

a + 3b + c

3a + 2b + 3c
+

3a + b + c

2a + 3b + 3c

=
7x + 7y − 9z

8z
+

7x− 9y + 7z

8y
+
−9x + 7y + 7z

8x
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=
(

7x

8z
+

7y

8z
+
−9
8

)
+
(

7x

8y
+
−9
8

+
7z

8y

)
+
(−9

8
+

7y

8x
+

7z

8x

)

= 3 ·
(−9

8

)
+

7
8

(
x

z
+

y

z
+

x

y
+

z

y
+

y

x
+

z

x

)

−27
8

+
7
8

((
x

z
+

z

x

)
+
(

y

z
+

z

y

)
+
(

x

y
+

y

x

))

≥ −27
8

+
42
8

=
15
8

,

since r +
1
r
≥ 2. Equality occurs for x = y = z and, therefore, for a = b = c.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Since
a + b + 3c

3a + 3b + 2c
+

b + c + 3a

3b + 3c + 2a
+

c + a + 3b

3c + 3a + 2b
− 15

8

=
7
(
6a3 + 6b3 + 6c3 − a2b− ab2 − b2c− bc2 − c2a− ca2 − 12abc

)
8 (3a + 3b + 2c) (3b + 3c + 2a) (3c + 3a + 2b)

=
7
(

(3a + 3b + 2c)(a− b)2 + (3b + 3c + 2a)(b− c)2 + (3c + 3a + 2b)(c− a)2
)

8(3a + 3b + 2c)(3b + 3c + 2a)(3c + 3a + 2b)

≥ 0,

the inequality of the problem follows.

Solution 4 by P. Piriyathumwong (student, Patumwan Demonstration
School), Bangkok, Thailand

The given inequality is equivalent to the following:∑
cyc

(
a + b + 3c

3a + 3b + 2c
− 5

8

)
≥ 0 ⇔

∑
cyc

(−a− b + 2c

3a + 3b + 2c

)
≥ 0

⇔
∑
cyc

(
(c− a) + (c− b)

3a + 3b + 2c

)
≥ 0

⇔
∑
cyc

(a− b)
(

1
2a + 3b + 3c

− 1
3a + 2b + 3c

)
≥ 0

⇔
∑
cyc

(a− b)2

(2a + 3b + 3c)(3a + 2b + 3c)
≥ 0,
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which is obviously true.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Valmir Bucaj (student, Texas Lutheran
University), Seguin, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
University “Tor Vergata”, Rome, Italy; Boris Rays, Brooklyn, NY; Tran
Trong Hoang Tuan (student, Bac Lieu High School for the Gifted), Bac Lieu
City, Vietnam, and the proposer.

• 5132: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all all functions f : C → C such that f(f(z)) = z2 for all z ∈ C.

Solution by Kee-Wai Lau, Hong Kong, China

We show that no such functions f(z) exist by considering the values of
f(1), f(−1), f(i), f(−i), where i =

√
−1.

From the given relation
f(f(z)) = z2 (1)

we obtain f(f(f(z))) = f(z2) so that

(f(z))2 = f
(
z2
)

. (2)

Replacing z by z2 in (2), we get

f(z4) = (f(z))4 . (3)

By putting z = 1 into (2), we obtain f(1) = 0 or 1. If f(1) = 0, then by putting z = i
into (3), we get 0 = f(i4) = (f(i))4, so that f(i) = 0. Putting z = i into (1) we get
f(0) = −1 and putting z = 0 into (2) we obtain (−1)2 = −1 which is false. It follows
that

f(1) = 1. (4)

By putting z = −1 into (2) we get (f(−1))2 so that f(−1) = −1 or 1.

If f(−1) = −1 then by (1), −1 = f(f(−1)) = (−1)2 = 1, which is false.

Hence,
f(−1) = 1. (5)

By putting z = i into (3), we are (f(i))4 = 1, so that f(i) = −1, 1, i,−i.

If f(i) = ±1, then by (1), (4) and (5), 1 = f(f(i)) = i2 = −1, which is false.

If f(i) = i, then by (1), i = f (f((i)) = −1, which is also false. Hence,

f(i) = −i (6)

By putting z = −i into (3), we have (f(−i))4 = 1, so that f(−i) = −1, 1, i,−i.

If f(−i) = ±1, then by (1), (4), and (5) 1 = f(f(−i)) = (−i)2 = −1, which is false.

If f(−i) = ±i, then by (1) and (6) −i = f(f(−i)) = (−i)2 = −1, which is also false.
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Thus f(−i) can take no value, showing that no such f(z) exists.

Also solved by Howard Sporn and Michael Brozinsky (jointly), of Great
Neck and Central Islip, NY (respectively), and the proposer.

• 5133: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be a natural number. Calculate

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy.

Solutions 1 and 2 by Valmir Bucaj (student, Texas Lutheran University),
Seguin, TX

Solution 1) We first calculate
∫ 1

0
(x− y)ndx .

Letting u = x− y we get∫ 1

0
(x− y)n =

∫ 1−y

−y
undu

=
1

n + 1

[
(1− y)n+1 + (−1)n yn+1

]
.

Now,

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy

=
1

n + 1

∫ 1

0

[
(1− y)n+1 + (−1)n yn+1

]
dy

=


2

(n + 1)(n + 2)
: n even

0 : n odd

Solution 2) Using the fact that

(x− y)n =
n∑

k=0

Ck
n

(
−1
)

kxn−kyk,

we get

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy

=
∫ 1

0

∫ 1

0

n∑
k=0

Ck
n (−1)k xn−kykdxdy

10



=
n∑

k=0

Ck
n (−1)k 1

(n− k + 1)(k + 1)
.

Comment: Comparing Solution 1 with Solution 2, we obtain an interesting side-result:
namely the identity

n∑
k=0

Ck
n (−1)k 1

(n− k + 1)(k + 1)
=


2

(n + 1)(n + 2)
: n even

0 : n odd

,

which one can verify directly, as well.

Solution 3 by Paul M. Harms, North Newton, KS

Let f(x, y) = (x− y)n. The integration region is the square in the x, y plane with
vertices at (0, 0), (1, 0), (1, 1), and (0, 1). The line y = x divides this region into two
congruent triangles. I will use the terms lower triangle and upper triangle, for these two
congruent triangles.

The points (x, y) and (y, x) are symmetric with respect to the line y = x. Let n be an
odd integer. For each point (x, y) in the lower (upper) triangle we have a point (y, x) in
the upper (lower) triangle such that f(y, x) = −f(x, y). Thus the value of In = 0 when
n is an odd integer.

When n is an even integer, f(y, x) = f(x, y) and the value of the original double integral
should equal 2

∫ 1
0

∫ 1
y (x− y)ndxdy where the region of the integration is the lower

triangle. The first integration of the last double integral yields

(x− y)n+1

n + 1

∣∣∣∣1
y

=
(1− y)n+1

n + 1
.

The second integration of the double integral then yields the expression

−2(1− y)n+2

(n + 1)(n + 2)

∣∣∣∣1
0

=
2

(n + 1)(n + 2)
= In

when n is an even integer.

Also solved by Brian D. Beasley, Clinton, SC; Michael C. Faleski, University
Center, MI; G. C. Greubel, Newport News, VA; David E. Manes, Oneonta,
NY; Paolo Perfetti, Department of Mathematics, University “Tor Vergata,”
Rome, Italy; James Reid (student, Angelo State University), San Angelo,
TX; Raúl A. Simón, Santiago, Chile; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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