Stanford Mathematics PhD Qualifying Exam Algebra – Spring 2005

Morning Session

- 1. Suppose p and q are odd primes and p < q. Let G be a finite group of order p^3q .
- (a) Prove that G has a normal Sylow subgroup.
- (b) Let n_p and n_q denote the number of p-Sylow and q-Sylow subgroups of G. Determine, with proof, all ordered pairs (n_p, n_q) that are possible for groups of order p^3q .
- 2. Let $f(X) \in \mathbb{Q}[X]$ be a monic irreducible polynomial of degree 4 with roots $\alpha, \beta, \gamma, \delta$. The discriminant of a polynomial with roots r_1, \dots, r_n is $\prod_{i < j} (r_i - r_j)^2$.
- (a) Prove that $\lambda = \alpha\beta + \gamma\delta$ is the root of a monic cubic polynomial $g(X) \in \mathbb{Q}[X]$ whose discriminant is the same as the discriminant of f.
- (b) If $f \in \mathbb{Z}[X]$ prove that $g \in \mathbb{Z}[X]$.
- 3. Let M be a finitely-generated module over the Noetherian commutative ring R. Prove that if $f: M \longrightarrow M$ is an R-module homomorphism, and if f is surjective, then f is also injective. Hint: consider the submodules $\ker(f^n)$.
- 4. Let G be the nonabelian group of order 16 with generators x and y subject to the relations

$$x^8 = y^2 = 1$$
, $yxy^{-1} = x^3$.

Determine the conjugacy classes of G and compute its character table.

5. If B is a positive-definite symmetric real matrix, show that there exists a unique positive-definite symmetric real matrix C such that $C^2 = B$.

Stanford Mathematics PhD Qualifying Exam Algebra – Spring 2005

Afternoon Session

- 1. Suppose that $A \subset B$ is an integral extension of commutative rings with unit.
- (a) If \mathfrak{q} is a maximal ideal of B, prove that $\mathfrak{p} = \mathfrak{q} \cap A$ is a maximal ideal of A.
- (b) Outline the proof that for any prime ideal $\mathfrak{p} \subset A$ there exists a prime ideal \mathfrak{q} of B with $\mathfrak{p} = \mathfrak{q} \cap A$.
- 2. Let $F = \mathbb{Z}/2\mathbb{Z}$, and let F[X,Y] be the polynomial ring in two variables. Let I be the ideal generated by $X^5 + X^3 + X$ and $Y^3 + (X^3 + 1)Y + 1$, and let R be the quotient ring F[X,Y]/I. Determine the number of maximal ideals in the ring R.

Hint: if $a \in \mathbb{F}_4$, what is a^3 ?

3. If G is a permutation group acting on a set S we say G is n-transitive if $|S| \ge n$ and whenever x_1, \dots, x_n are distinct elements of S and y_1, \dots, y_n are distinct elements of S there exists $g \in G$ such that $g(x_i) = y_i$. We will denote by $\chi(g)$ the number of fixed points of g. Prove that a necessary and sufficient condition for G to be 3-transitive is that

$$\frac{1}{|G|}\sum \chi(g)^3 = 5.$$

- 4. Suppose that A is an $n \times n$ matrix over \mathbb{C} with minimal polynomial $(X \lambda)^n$ where $\lambda \neq 0$. Find the Jordan form of A^2 . What if $\lambda = 0$?
- 5. Find the Galois group of the polynomial $X^5 + 99X 1$ over the fields $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/11\mathbb{Z}$ and \mathbb{Q} .