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FOREWORD

The 15" volume of the Romanian Mathematical Contests series contains more
than 200 problems given at different stages of the Romanian Mathematical Olym-
piad and other Romanian Contests. Most of them are original, but some problems
from other sources were used as well during competitions.

Most of the problems were discussed by the contributors for a long time pro-
viding thus some significant comments in the text.

Some of the solutions belong to students and were given during contests; we
thank them all.

We thank the Ministry of Education and Research for permanent involvement
in supporting the Olympiads and the participation of our teams in international
events.

Special thanks are due to SOFTWIN, Volvo Romania, Medicover, and WBS
— sponsors of the Romanian IMO team. Thanks are also due to the “Sigma Foun-
dation” for constant support in the mathematical competitions.

Luminifa Stafi from “The Theta Foundation” has done the important job of
carefully editing the text in this form.

Last, not least, we are grateful to the Board of the Institute of Mathematics
“Simion Stoilow” in Bucharest, for constant technical support in the Mathematical
Olympiads and involvement in the training seminars for students.

Bucharest, July 15, 2008 Radu Gologan, Dan Schwarz
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THE 59" ROMANIAN MATHEMATICAL OLYMPIAD
DISTRICT ROUND

March 5%, 2008

7** GRADE

Problem 1. Show that

11 1 1 1 1
e > e
n(1+2+3+ +n>,(n+l)(2+3+ +n+1)’
for all natural numbersn > 1.

Lucian Dragomir

Problem 2. Consider the square ABC'D and the point E on the side AB. The
diagonal AC intersects the segment DE at point P. The perpendicular from point
P to DE intersects side BC at point F. Prove that EF = AE + FC.

Virginia and Vasile Tic

Problem 3. In a school there are 10 classrooms. Each student in a classroom
knows exactly one student in each of the other 9 classrooms. Prove that the number
of students in each classroom is the same.

(Assume that if student A knows student B, then student B knows student A
t00.)

* ok

Problem 4. Let M = {1,2,4,5,7,8,...} be the set of natural numbers not
divisible by 3. The sum of 2n consecutive elements of set M is 300. Determine
the possible values of n.

Ton Tiotioi
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8" GRADE

Problem 1. If the intersection of a regular tetrahedron and a plane is a rhom-
bus, prove that the rhombus must be a square.

*k K

Problem 2. Determine the irrational numbers z such that both 22 + 2z and
23 — 6z are rational numbers.

Virginia and Vasile Ticd

Problem 3. Consider the cube ABCDA'B'C'D' and the points M, N, P,
such that M is the foot of the perpendicular from A to plane (A'CD), N is the
foot of the perpendicular from B to the diagonal A'C’, and P is the symmetric of
D with respect to C. Show that the points M, N, P are collinear.

Ton Tiotioi

Problem 4. Determine the strictly positive real numbers z,y, z that satisfy
simultaneously the conditions: 23y + 3 < 42,32 + 3 < 4z, and 23z + 3 < 4y.

Dan Nedeianu

9t GRADE

Problem 1. Let (a)n»1 be a sequence of real numbers such that
|@n+1 — an| < 1,foralln € N*, and (bn)n>1 the sequence defined by

ayt+ay+---+an

by = ——m8M8™ .
n

Show that |bp1 — bn| < %, foralln € N*.

Dan Marinescu and Aurel Cornea

Problem 2. Consider the set A = {1,2,...,n}, wheren € N, n > 6. Show
that A is the union of three pairwise disjoint sets, with the same cardinality and the
same sum of their elements, if and only if n is a muitiple of 3.

EEE]

Problem 3. Show thatif n > 4,n € Nand [-2;] is a power of 2, thenn is a
power of 2.

DISTRICT ROUND 9

Radu Gologan

Problem 4. Let ABCD be a quadrilateral that can be inscribed in a circle.
Denote by P the intersection point of lines AD and BC, and by @ the intersec-
tion point of lines AB and CD. Let E be the fourth vertex of the parallelogram
ABCE, and F the intersection of lines CE si PQ. Prove that the points D, E, F,
and @ lie on the same circle.

United Kingdom, shortlist for Romanian Master in Mathematics 2008

10" GRADE

Problem 1. Let a and b be two complex numbers. Prove the inequality

|1+ ab| +|a+b] > v/]a? — 1] - [p? — 1].
Dan Nedeianu

Problem 2. Determine the integers z such that

logg(1+ 2%) = logy(1 + 2).

Lucian Dragomir
Problem 3. Let f : R — R be a function such that

; (¥) _I@+1@)

2 forallz,y € R

a) Prove that the function g : R = R, g(z) = f(z) — f(0) is additive, i.e.
g(z +y) =g(z)+g(y), forallz,y € R
b) Show that f is a constant function.
Dorel Mihet

Problem 4. Let n > 3 be an integer and z = cos 2= + isin 2%. Consider the
sets
A={1,22%...,2""}
and
B={l,1421+z+2% .., 14+z+-+2""}
Determine the set AN B.

Marcel Tena
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11** GRADE

Problem 1. If A € M»(R), show that

3
det(A> + A+ 1) > Z(l — det A)2.

Dan Nedeianu

Problem 2. Consider 4, B € My(R). Show that rank A + rank B < n if
and only if there exists an invertible matrix X € Mn(K), such that AXB = Oy,

EEE

Problem 3. Let (Zn)n31, (¥n)n>1 be two sequences of strictly positive num-

bers, such that

ZTn + z2 +y2
zn+1>"—2y1}'7 yn+12w—“2—'-, foralln € N*.

a) Show that the limits of the sequences (Z + ¥n)n31 and (TnYn)n>1 exist.
b) Show that the limits of the sequences (Zn)nz1, (yn)n>1 exist and are equal.

Dan Marinescu

Problem 4. Determine for what values of a € [0, 00) there exist continuous
functions f : R — R, such that

f(f(z)) = (z—a)?, forallz€R
Dorel Mihe{

12" GRADE
Problem 1. Let f : [0,1] — R be a continuous function such that

fol f(z)dz = fol z f(z)dz. Show that there exists ¢ € (0,1) such that

mwA?mm

Cezar Lupu

Problem 2. Let f : R — R be a continuous, periodic function of period T.If

F is an antiderivative of f, show that:

DISTRICT ROUND 11

a) the function G : R — R given by

T
6@ =F@) -7 [ s

is periodic;
b)

.~ F(k)  Iv2 [T
nllilnookg;n2+k2= T /0 f(z)dz.

Dan Nedeianu
Problem 3. Let A be a commutative unitary ring with an odd number of ele-

ments. If n is the number of solutions to the equation 22 = z, 2 € A, and m is the
number of invertible elerents in A, show that n divides m.
Mihai Piticari

Problem 4. Let K be a finite field. We say that two polynomials f and g in
K[X] are neighbours if they have the same degree and they differ by exactly one
coefficient.

a) Show that all neighbours of the polynomial X2 +1 ¢ Z3[X] can be factored
outin Zz[X].

b) If the number of elements in K is g > 4, show that any polynomial of degree

¢ — 1in K[X] has a neighbour that can be factored out in K[X] and also has a
neighbour with no roots in K.

Marian Andronache

.

£



THE 59" ROMANIAN MATHEMATICAL OLYMPIAD
FINAL ROUND

Timigoara, April 30", 2008

7*h GRADE

Problem 1. The acute triangle ABC has B > C. Consider the altitude AD,
D € BC, and the perpendicular DE to AC, E € AC. Consider the point F on
the segment D E. Prove that the lines AF and BF are perpendicular if and only if

EF-DC =BD-DE.
Vasile Pop

Problem 2. Given that a rectangle can be divided into 200 and into 288 equal

squares, prove that it can also be divided into 392 equal squares.
. Marius Perianu

Problem 3. Let p, g and r be three prime numbers such that 5 <K p<g<r.

Given that 2p? — r% > 49 and 2¢> — r? < 193, find p, g, 7.
Mircea Fianu

Problem 4. Let ABCD be a rectangle of center O. Assume that AB # BC.
The perpendicular line at O on BD intersects the lines AB and BC at points E
and F, respectively. Let M and N be the midpoints of the segments CD and AD,

respectively. Prove that FM LEN.
Dinu Serbdnescu

8" GRADE

Problem 1. The lengths of the edges of a tetrahedron are natural numbers,
such that the product of lengths of any pair of opposite edges is equal to 6. Show

FINAL ROUND 13

that the tetrahedron is a regular triangular pyramid with the property that the angle
between a lateral edge and the plane of the base is larger than or equal to 30°.

Manuela Prajea

Problem 2. A sequence of four even decimal digits, no digit of which occurs
three or four times, is called admissible.

a) Determine the number of admissible sequences.

b) For every natural number n, n > 2, we denote by d,, the number of ways to
complete a table with n rows and 4 columns whose entries are even decimal digits,
such that the following conditions are fulfilled:

i) every row is an admissible sequence;

ii) the admissible sequence 2, 0, 0, 8 occurs on a single row of the table.

dni1

Determine the values of n such that the number =%
-

is an integer.

Nicolae Stdniloiu
Problem 3. Let a, b € [0, 1]. Prove the inequality:

1 a+b+9_b'
1+a+b 2 3’

Lucian Dragomir

Problem 4. Consider the cube ABCDA'B'C'D'. On the edges (A'D’),
(A'B'), and (A’ A) consider the points M1, N1, and Py, respectively. On the edges
(CB), (CD), and (CC") consider the points M3, Na, and Ps, respectively.. De-
note by d; the distance between the lines M; N7 and M, N3, by d» the distance
between the lines N, P; and N, P,, and by d3 the distance between the lines Py M,
and P, M>. Suppose that the distances d, d2, and d3 are pairwise distinct. Show
that the lines My M5, N1 N,, and P, P are concurrent.

Mircea Fianﬁ
9" GRADE

Problem 1. Determine the functions f : N — N such [‘hét f@® + fv) =
zf(z) +y, forallz,y € N. ! :

Lucian Dragomir
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Problem 2. a) Show that 3 + 3 + -+ + o >n,Vn €N
b) Prove that

1

1 1
min{keN, k>2;§+§+-~+E>n}>2",

foralln € N*.
Dan Marinescu and Vasile Cornea

Problem 3. Consider n € N* and the real numbers a;, i=1,2,...,n with
n
la;l < land 3 a; = 0.
i=1

Show that i |z — a;| < n, forall z € R such that |z| < 1.
= Radu Gologan

Problem 4. On the sides of triangle ABC consider the points C1,Cs € (AB),
By, B, € (AC), A1, 4z € (BC) such that triangles A, B1C) and Ay B2C» have

the same centroid.
Show that the sets [A; Bi] N [A2B], [B1C1] N [B2Cal, [C141] N [C2 A, are

nonempty.
Dinu erbédnescu

10" GRADE

Problem 1. Consider the triangle ABC and the points D € (BC),E € (CA),

AB), such that
F € (AB), su B0 _CE_ AP
DC~ EA  FB
Prove that if the circumcenters of triangles DEF and ABC coincide, then the

triangle ABC is equilateral.
Dana Heuberger

Problem 2. Let a, b, ¢ be three complex numbers such that albe| + blcal +

clab| = 0. Prove that

l(a = b)(b— ¢)(c — a)| > 3V3labe|.

Bogdan Enescu

FINAL ROUND 15

Problem 3. Consider the set A = {1,2,3,...,2008}. We say that a set is of
type r, v € {0,1,2}, if that set is a nonempty subset of A, and the sum of its
elements yields the remainder r when divided by 3. Denote by X, r € {0,1,2}
the class of sets of type 7.

Determine which of the classes X, r € {0,1,2}, is the largest.

Mihai Biluni and Vasile Pop

Problem 4. Consider the statement p(n) : (n® + 1)|n!, n € N. Show that
the sets

A={neN|p(n)istrue} and F ={n € N|p(n)is false}

are infinite.

Gheorghe Iurea
11" GRADE

Problem 1. Let f : (0,00) — R be a continuous function, such that for any
z € (0, 00) the sequence (f(nz))nen- is nondecreasing.
Prove that f is a nondecreasing function.

Radu Gologan

Problem 2. Prove that an invertible matrix A € M,,(C) has the property
A~' = A if and only if there exists an invertible matrix B € M, (C) such that

A=B"1.B.

Vasile Pop
Problem 3. Let f : R — R be a twice differentiable function on R such that

there exists ¢ € R with

w #£(0), foralla,beR a#b.

Prove that f"(c) = 0.

Bogdan Enescu

Problem 4. Let A € M,,(R) be an antisymmetric matrix (Vi, , ai; +a;; =
0). Prove that

det(A + z1,) - det(4 + yI,.) > det(4 + /Zyl,)?,
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for all 2,y € [0,00).
! Octavian Ganea
12" GRADE

Problem 1. Let a be a positive real number and let f : [0,00) = [0,a] bea
function which has the intermediate value property on [0, 00) and is continuous on
(0, 00). If £(0) = 0and

zf(z) > /OI f(¢)dt, forallz € (0,00),

prove that f has antiderivatives on [0, 00).
Dorin Andrica

Problem 2. Let f : [0,1] = Rbea differentiable function, whose derivative
f" is continuous on [0, 1]. Prove that if f(1/2) = 0, then

/0 (f@)aas 12 ( /0 ' f(z)da:)z.

Problem 3. Let A be a finite unitary ring with n elements, such that the equa-
tion z™ = 1 has the unique solution z = 1 in A. Prove that:

Cezar Lupu

(a) 0 is the unique nilpotent element of the ring A;
(b) there exists k € N, k > 2, such that the equation z* = z has n solutions
in A.
(z € A is nilpotent if there exists m € N* such that z™ = 0.)
Dan Schwarz
Problem 4. Let G be the set of finite groups with at least two elements.
(a) Show that if G € G, then
[End(G)| < ¥n",
where [End(G)| is the number of endomorphisms of G, n = n(G) is the number

of elements of G, and p = p(G) is the greatest prime divisor n.

(b) Determine the groups in G such that the inequality in (a) holds with equality.
Marian Andronache

SELECTION TESTS FOR THE BALKAN
AND INTERNATIONAL MATHEMATICAL OLYMPIADS

FIRST SELECTION TEST

Problem 1. Determine all families F of n > 1 integers such that no sum of
elements of a non-empty subfamily of F is divisible byn + 1.

(How many such families exist, made of distinct positive integers between 1
and n? + n?) ]

Dan Schwarz
, fProbl?m 2. Letay,as,...,a, and by, by, .. ., b, be real numbers so that a; <
is oral.ll =12,...,n,and by + b2+ +b, < 1+4a; +as+--- +a,. Prove
there exists ¢ € R such that
(@i +k+c)(bi+k+c)>0,
foralli =1,2,...,nand k € Z.
Vasile Pop

Problem 3. A convex hexagon ABCDEF has all sides of length 1. Prove
that one of the radii of the circumscribed circles of the triangles ACE and BDF
is at least 1 long. )

Kvant

Problem 4. Prove that, given any convex polygon P with n sides, there exists
aset S of n—2 points interior to P, such that the interior of any triangle determined
by three of the vertices of P contains exactly one point from S.

American Mathematical Monthly
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Problem 5. Determine the greatest common divisor of the numbers

2561 _ 9 3561 _3 ... 561°%" — 561.

Dorin Andrica and Mihai Piticari

SECOND SELECTION TEST

Problem 6. Let n > 3 be an odd integer. Determine the maximum value of

the cyclic sum, for0 < z; < 1,i=1,2,...,7n,

E =/|z1 — x| + V]z2 — 23| + -+ V]|za1 —zn| + Vlzn — 21

American Mathematical Monthly

Problem 7. Does it exist a sequence of integers 1 < a1 < az <ag <--- st;ch
i i er
that, for any integer n, the set {ax +7n;k = 1,2,3,.. .} contains a finite num|

of primes?
American Mathematical Monthly

Problem 8. Prove that any convex pentagon has a vertex whose distance to the
support line of its opposite side is strictly less than the sum of the distances from
its neighbouring vertices to the same line.

American Mathematical Monthly

Problem 9. Determine the minimum number of edges that a connected graph
with n > 3 vertices may have, if each edge belongs to at least one triangle.

American Mathematical Monthly

THIRD SELECTION TEST

Problem 10. Let triangle ABC have BC < AB, and let points 'D on (AC)
E on (AB) be such that ZDEB = £DCB. ltis given tha‘t point F'lles in
the interior of the quadrilateral BCDE, and the pairs of circumcxrlcles of triangles
BEF,CDF, respectively BCF, DEF, are tangent. Prove that points A,C, E, F,

are concyclic.
Adapted after Cosmin Pohoafd

SELECTION TESTS FOR THE 2008 BMO AND IMO 19

Problem 11. Let ABC be an acute-angled triangle, H its orthocenter and X
any point in the plane. The circle of diameter X meets the second time the line
AH at point A3, and the line AX at point A;. Points By, By and Cy, Cs are
defined in a similar way. Prove that the lines A1 As, By By, C; C, are concurrent.

Kvant

Problem 12. For m and n odd integers larger than 1, prove that 2™ — 1 does
not divide 3" — 1.

American Mathematical Monthly

Problem 13. A group of people is said to be n-balanced if in any subgroup
of 3 people there exists (at least) a pair acquainted with each other, and if in any
subgroup of n people there exists (at least) a pair not acquainted with each other.

i) Prove that the number of people in a n-balanced group has an upper bound.
We may then denote by p,, the maximal possible number of people in a n-balanced
group.

ii) Prove that p,, < ‘"—4)5(”—“2

iii) Compute, with proof, p3, ps and ps.

iv) Prove that ps < 18.

Adapted after Dorel Mihe
FOURTH SELECTION TEST

Problem 14. Consider the convex quadrilateral ABC'D with non-parallel op-
posite sides. Let O be the meeting point of lines AC' and BD, P be the meeting
point of lines AB and CD, and Q be the meeting point of lines AD and BC. Let
R be the foot of the perpendicular from O onto PQ,and M, N, S, respectively T,
the feet of the perpendiculars from R onto CD, BC, DA, respectively AB.

Prove that the points M, N, S and T are concyclic.

Dan Barbilian

Problem 15. Given co-prime positive integers m, n, and integer s, compute
the number of subsets {z;, 25, . .. ,Em} C{L,2,....m+n— 1} having

T1+22+ -+ 2y = s (modn).

American Mathematical Monthly
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Problem 16. For positive integer n > 2, prove that in any selection of at least
27=1 4+ 1 non-empty distinct subsets of {1,2,...,n} there are three such that one
of them is the union of the two other.

M. Cavachi

FIFTH SELECTION TEST

Problem 17. For what positive integers n does there exist a permutation o of
{1,2,...,n} such that the differences |o (k) — k|, 1 < k < n, are all distinct?

American Mathematical Monthly

Problem 18. Let ABC be a triangle, and Ky, K, K. be the circles having its
medians as diameters. Show that if two of these circles are tangent to the incircle
of the triangle, then the third one is also tangent to the incircle.

Dinu Serbinescu

Problem 19. Let f(n) denote the maximum number of disjoint rectangles
that the unit square can be partitioned into, such that any horizontal or vertical line
intersects the interior of at most n rectangles. Show that

3.2"71 -2 f(n) <3 -2

(It is assumed that all the rectangles have sides parallel to the sides of the given
square.)
American Mathematical Monthly

SELECTION TESTS FOR
THE JUNIOR BALKAN MATHEMATICAL OLYMPIAD

FIRST SELECTION TEST

Problem 1. Let p be a prime number, p # 3, and let a, b be integer numbers
sothatp | a+bandp?® | a® + b°. Show that p? | a + bor p° | a® + b3.

¢ koK

Problem 2. Prove that for any positive integer n there exists a multiple of n
whose decimal digits add up to n.
Mihai Biluni

Problem 3. Let ABC be an acute-angled triangle. Consider the equilateral
triangle A'UV, with A’ € (BC), U € (AC), V € (AB) such that UV || BC.
The points B’ € (AC) and C' € (AB) are defined similarly. Show that the lines
AA', BB' and CC' are concurrent.

Vasile Pop

Problem 4. Let ABC be a triangle and D the midpoint of BC. On the sides
AB and AC there are points M, N respectively, other than the midpoints of these
segments, so that AM? + AN? = BM2 + CN2? and ZMDN = Z/BAC. Prove
that A = 90°.

Francisc Bozgan

Problem 5. Letn € N, n > 2 and let a3, as, . . . a, be integer numbers such
that 0 < ap < k,forallk =1,2,...,n.Ifa; +a + - - - + ay is even, prove that

ay*ta£...+a, =0,

for some choice of the signs “+” and “-”.
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SECOND SELECTION TEST

Problem 6. Consider an acute-angled triangle ABC, the height AD and the
point E where the diameter through A of the circumcircle meets the line BC.
Let M, N be the reflected images of D across the lines AC' and AB. Show that
/EMC = Z/BNE.

Dinu Serbénescu

Problem 7. Let a3, as,...,a, be a sequence of integers such that ay, is the
number of multiples of k in the sequence, for all k = 1,2, ..., n. Find all possible
values of n.

Cristian Mangra

Problem 8. Letn € N* and let a3, as, . . ., an be positive real numbers so that

1 1 1
ata+t-tan=—5+—5+ -+ 5.
ay a3 an

Prove that for any m = 1,2...,n, there exist m numbers among a; whose sum is
at least m.

Andrei Ciupan and Flavian Georgescu

Problem 9. Let a, b be real numbers with the property that the integer part of
an + b is an even number, for all n € N. Show that a is an even integer.

Dinu Serbinescu

THIRD SELECTION TEST

Problem 10. Ten numbers are chosen at random from the set 1,2,3,...,37.
Show that one can select four distinct numbers frcm the chosen ones so that the
sum of two of them is equal to the sum of the other two.

Vasile Pop

Problem 11. Let a, b, ¢ be positive real numbers with ab+ bc + ca = 3. Prove

t
tha 1 1 1 1

< =
1+a%(b+c) + 1+b2(c+a) +1+c2(a+b) = abe

Vlad Matei

JUNIOR SELECTION TESTS

Problem 12. Find all primes p, g satisfying the equation 2p? — ¢? = 7.

Francisc Bozgan

Problem 13. Let d be a line and let M, N be two points on d. Circles a, 3,7, §
centered at A, B,C, D are tangent to d in such a manner that circles a, 3 are
externally tangent at M, while circles -y, § are externally tangent at N. Moreover,
points A and C' lies on the same side of line d. Prove that if there exists a circle
tangent to all circles o, 3,7, d, containing all of them in the interior, then lines
AC, BD and d are concurrent or parallel.

Flavian Georgescu

FOURTH SELECTION TEST

Problem 14. Let ABCD be a quadrilateral with no two opposite sides paral-
lel. The parallel from A to BD meets the line C'D at point F and the parallel from
D at AC meet the line AB at point E. Consider the midpoints M, N, P, Q of the
segments AC, BD, AF, DE respectively. Show that lines M N, PQ and AD are
concurrent.

Dinu Serbinescu

Problem 15. Let m,n € N* and A = {1,2,...,n}, B = {1,2,...,m}. A

subset S of the set product A x B has the property that for any pairs (a, b), (z,y) €
S, then (a — z)(b — y) < 0. Show that S has at most i + n — 1 elements.

Dinu Serbinescu

Problem 16. Find all pairs of integers (mn, n), n,m > 1 so that mn —1 divides
n®—1.

Francisc Bozgan

Problem 17. Determine the maximum value of the real number k such that

1 1 1
b — s~ 2 )
e+ +c)<a+b+b+c+a+c k)/k’

for all real numbers a, b, ¢ > 0, not all zero, with a + b + ¢ = ab + bc + ca.

Andrei Ciupan



THE 25" BALKAN MATHEMATICAL OLYMPIAD

Ohrid, Macedonia, May 5 - May 10, 2008

Problem 1. Let ABC be a scalene acute-angled triangle with AC' > BC'. Let
O be its circumcenter, H its orthocenter and F the foot of the altitude from C. Let
P be the point (other than A) on the line AB for which AF = PF, and M the
midpoint of the side AC. PH and BC meet at X, OM and FX meet at Y, and
OF and AC meet at Z. Prove that points F, M,Y and Z are concyclic.

Cyprus
Problem 2. Does it exist a sequence a3, as, ..., Qn,... of positive real num-
bers, which simultaneously satisfies
(i) i a; < n?, forall positive integers n;
I .
(i) i§1 ar < 2008, for all positive integers n?
Bulgaria

Problem 3. Let n be a positive integer. Rectangle ABC D, having the lengths
of its sides AB = 90n + 1 and BC' = 90n + 5, is partitioned in unit squares with
sides parallel with the sides of the rectangle. Let S be the set of all points which
are vertices of these unit squares. Prove that the number of distinct lines passing

through at least two points of S is divisible by 4.
Bulgaria

Problem 4. Let c be a positive integer. The sequence (an)n31 is defined by
a1 = ¢, Gpt1 = a2 + ap, + ¢, for all positive integers n. Determine all values of
c for which there exist integers k > 1,m > 2 such that a? + c® be the power m of
some integer.

Bulgaria

THE FIRST “ROMANIAN MASTER IN MATHEMATICS”
COMPETITION

Bucharest, T. Vianu Highschool, February 2008

Problem 1. Let ABC be an equilateral triangle. P is a variable point internal
to the triangle and its perpendicular distances onto the sides are denoted by a2, b*
and ¢? for positive real numbers a,band c. Find the locus of points P so that a, b
and c can be the sides of a non-degenerate triangle.

United Kingdom

Problem 2. Given positive integer a > 1, prove that any positive integer N
has a multiple in the sequence

aﬂ
(aﬂ)n>17 an = '_—J
n

Romania — Dan Schwarz

Problem 3. Prove that any one-to-one surjective function f : Z — Z can be
written as f = u + v where u,v : Z — Z are one-to-one surjective functions.

Romania - Ion Savu and Sorin Ridulescu
Problem 4. Prove that from among any (n+1)? points inside a square of side-

length positive integer n, one can pick three, such that the triangle determined by
them has area no more than %

Romania - Dan Schwarz



THE FIFTH “IMAR” MATHEMATICAL COMPETITION

Institute of Mathematics “Simion Stoilow”, Bucharest, October 2007

Problem 1. Forreal numbers z; > 1,1 <4 < n,n > 2, such that

2 n
o >S=sz, foralli=1,2,...,n

zi—1 j=1

find, with proof, sup S.
Adapted after Moldova Olympiad

Problem 2. Denote by C the family of all configurations C' of N' > 1 distinct
points on the sphere S2, and by  the family of all closed hemispheres H of S2.

Compute
i min max|HNC
Ao 1zl HeH cecl b

i and minmax|HNC|.
mex pip, 1 N Cl gl pz;|
Dan. Schwarz

Problem 3. Prove that among N > 2n — 2 integers, of absolute value not
higher thann > 2, and of absolute value of their sum S less than n — 1, there exist

some of sum zero. 4
Show that for |\S| = n — 1 this is not anymore true, and neither for NV = 2n —3

(when even for |S| = 1 this is not anymore true).
Adapted after Canada Olympiad

THE “MATH STARS” MATHEMATICAL COMPETITION

Bucharest, ICHB Highschool, December 2007

FIRST DAY

Problem 1. Show that for any positive integer n there exists a positive integer
m such that
1+V2)"=vm+vVm+1

1989 IMO Long List

Problem 2. Determine the positive integers n, z and y for which
2% — ¥t = 41,

Dan Schwarz

Problem 3. Let ABC bea triangle and 4;, By, C; be the feet of the altitudes
from A, B, C. Let Ay, respectively A;, be the orthogonal projection of A; onto
AB, respectively AC’; points By, By and C3, C3 are defined in an analogous way.
The lines By B3 and CoC3 meet at Ay, the lines C2C3 and Az A3 meet at By, while
the lines A» A3 and B, B3 meet at Cy. Show that the lines AA4, BBy and CCy
are concurrent.

Lucian Turea

Problem 4. At a table-tennis tournament, the n, 2 2 participants play, each
against each, exactly one match. Show that exactly one of the following two situ-
ations occurs at the end of the tournament:

(1) the n participants can be labeled with the numbers 1,2,...,n such that 1
beat 2, 2 beat 3, and so0 on, n — 1 beat n and n beat 1;

(2) the n participants can be partitioned in two non-empty sets A, B, such that
every member of A beat each member of B.

1989 IMO Long List
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SECOND DAY

Problem 5. Show there uniquely exists a function f : N* x N* — N* which
simultaneously satisfies the following three conditions:

D) f(z,y) = f(y,z), forall z,y € N*;

2) f(z,z) =z, for all z € N*; and

3) (y—2)f(z,y) =yf(z,y — ), forallz,y e N,y > .

B

Problem 6. Let have n > 3 points in the space, four by four non-coplanar,
any two of them connected by wires.

(1) By cutting the n — 1 wires that connect one point from the others, that point
is disconnected (becomes isolated). Show that cutting less than n — 1 wires does

not disconnect the structure.
(2) Determine the minimum number of wires needed to be cut, in order to

disconnect the structure, with no point becoming isolated.

Adapted after Virginia Tech Contest

Problem 7. Let Ag--- Ap—1 be a regular n-gon. For each index %, consider

a point B; lying on the side A;A;41, such that 4;B; < 1A;A;11, and a point

C; lying on the segment A;B; (indices are reduced modulo n). Show that the

perimeter of the polygon Co - - - Cp—1 is at least as large as the perimeter of the
polygon By - -+ Bp_y.

American Mathematical Monthly

Problem 8. Prove that any set of 27 positive integers, ranging between 1 and
2007, contains three distinct elements a, b, ¢ such that ged(a, b) (the greatest com-
mon divisor of a and b) divides c.

Open Question. Improve this result, by lowering the number 27 necessary to

obtain the stated property.

Dan Schwarz

THE “CLOCK-TOWER SCHOOL”
SENIORS COMPETITION

Rm. Vilcea, January 2008

FIRST DAY

Problem 1. Prove that, foranyn € N, n > 2, the Diophantine equation
T+a] 4422 =y°

has infinitely many positive integer solutions with 1 < z; < -+ < z,.
Adapted after Dorel Mihe

Problem 2. Let ABC be an acute-angled triangle, and w, respectively §2, be
its incircle and circumcircle. Circle wy is tangent (internal) to Q at A, and tangent
(external) to w at A;. Points B; and C, are similarly obtained, starting with B,
respectively C. Prove that lines AA;, BB; and C(Cj are concurrent.

Problem 3. In the Cartesian coordinate plane define the strips
Spi={(z,y); n< Tz <n+1},

for every integer n. Assume each strip is colored either white or black. Prove one
can place any rectangle R, not a square, in the plane, such that its vertices share a
same color.

Radu Gologan and Dan Schwarz
SECOND DAY

Problem 4. Let (a,)n>0 be a real sequence having

Gnt1+an-1 = |ay|, foralln > 1.
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Prove the sequence is periodic.
Adapted after Vasile Pop

Problem 5. A rectangle D is partitioned in (more than one) rectangles having
their sides parallel to those of rectangle D. It is given that any line parallel to one
of the sides of D, and having common points with the interior of D, will also have
common points with the interior of (at least) one of the rectangles in the partition.
Prove that in this partition there is (at leasvt) arectangle that has no common points
with the border of D.

2007 IMO Shortlist — Japan

Problem 6. Given an odd integer n > 3 not divisible by 3, show that there
exist distinct odd, positive integers a, b, and ¢ such that
3 1 1 1
S=s4o+o
n a b ¢
American Mathematical Monthly

THE “CLOCK-TOWER SCHOOL”
JUNIORS COMPETITION

Rm. Vilcea, January 2008

FIRST DAY

Problem 1. Consider a circle of center O and a chord AB of it (not a diam-
eter). Take a point T on the ray OB. The perpendicular at 7' onto OB meets the
chord AB at C and the circle at D and E. Denote by S the orthogonal projection
of T onto the chord AB. Show that AS - BC = TE - TD.

Problem 2. The last digit in the decimal representation of number a2 +ab-+ b2,
with a,b € N*, is 0. Find its second-to-last digit.

Problem 3. Partition a triangle into (smaller) triangles. Show that the sum of
the lengths of the lesser altitudes of the triangles of the partition is at least equal to
the length of the lesser altitude of the given triangle.

Problem 4. Consider any 25 points, three by three non-collinear, in the interior
of a square of side length 3. Show that there exist four among them that form a
quadrilateral perimeter less than 5.

SECOND DAY

Problem 5. A positive integer has, in its decimal representation, 2008 digits
equal to 1, 2008 digits equal to 4, while the rest of its digits are equal to 0. Show
that this number cannot be a perfect square.
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Problem 6. Let P be the set of all points of the plane, and O € P fixed. The
function f : P \ {O} — R has the property:
for any four distinct points A, B,C, D € P \ {0} with AAOB ~ ACOD,

f(A) = f(B) + f(C) = f(D) = 0 occurs.

Prove the function f is constant.
Problem 7. For any real numbers a, b, ¢ > 0, with abc = 8, prove

a—2+b—2 c—2<
a+1l b+1 c+1°7

Problem 8. Let p be a prime, and ¢ an integer, not divisible by p. Prove there
exist infinitely many integers k such that pq divides ¢* + 1 — k.

SHORTLISTED PROBLEMS FOR THE 2008 OLYMPIAD

JUNIORS

1. Consider a triangle ABC and the points D € (AB), E € (BC)and F =
AE N CD. Given that AE is the bisector of ZBAC, 2DB = AB, 3EC = BC,
and 4FC = AB, find the angles of the triangle ABC.

2. Let I, be the common point of the external bisectors of the angles B and
C of a triangle ABC. Denote D the orthogonal projection of I, onto BC and

M = AI, N BC. Prove that:

a) AB-BC _ 1+cosC.
AC-CD ~ T+cosB’

b) (AB + BD)? > AM(2AI, — AM).

3. Atrapezoid ABCD hasm(£DAB) = 90°, its diagonals are perpendicular
and meet at point O. The parallel through O at AB meets BC in P and the
perpendicular from O onto BC intersects AD in R. Prove that PR = AD.

4. Intriangle ABC, (AD is the bisector of ZBAC and I, I, are the incenters
of the triangles ABD and ADC, respectively. Prove that AD, BI, and CI; are

concurrent.

5. Consider the trapezoid ABCD (AB || CD, AB > CD), DM 1 AB,
M € (AB) and let N be the midpoint of the diagonal (BD).
Prove that M N || AC if and only if the trapezoid is isosceles.

6. Given a parallelogram of area S, draw a parallelogram of area % using
only a straightedge.

2008

n
n+p

7. Letp > 2 be a positive prime. Find all n € N such that the number
is a prime integer.
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8. Let ABCD be a quadrilateral inscribed in the circle C of diameter (AD)
and E a point of C. Let M, N, P be the feet of the perpendiculars from E onto
AB, BC and CD respectively. Prove that the triangle M N P is right-angled.

9. If S = {== | abe = 2® +3z+2,z € N}, ccmpute the sum of its elements.

10. Are there positive integer numbers a and b, such that both v a + 2v/band

/b + 2/a be rational?

11. Is it possible to color the vertices of a 2009-gon red or blue, such that
among any six consecutive vertices exactly there are blue or exactly one is red?

12. How many ten digit integers have the surn of their digits equal to their
product?

13. Let ai,az,...,a2001 be a permutation of 1,2,...,2001. Prove that the
largest of the numbers kay,1 < k < n is at least 10012

14. The sum of n > 5 given reals equals 1.

a) Show that, no matter how we arrange them on a circle, the sum of the prod-
ucts of the n pairs of neighbours is at most f

b) Show that it is possible to arrange the numbers on a circle such that the sum
of the products of the n pairs of neighbours is at most %

15. Consider a right parallelepiped ABCDA'3'C'D" and M, N the centers
of the faces A'B'C' D' and ADD'A’, respectively. Prove that, if AM L A'C and
C'N L BD', then the parallelepiped is a cube.

16. Let VABCD be a regular pyramid of apex V, and let E,G, F, H be
points on the lateral edges (V A), (V B), (VC) and (V D) respectively, such that
EFNAC = {P} and GHNBD = {R}. The parailel through E to AC intersects
VC in E; and the parallel through H to BD intersects V B in Hy. The parallel
through G to AB meets V A in G; and the parallel through F' to C'D meets V.D
in F,. Denote O the common point of AC and BD. If HF} = EG; and % =
GHy show that the points E, G, F, H are coplanar.

RO
17. Find all abed, a, ¢ # 0, such that T‘»—“”mj— is rational.

ab+Ved

18. Prove that, if a, b, ¢ are positive reals and abc = 1, then
2+ B+ A+ad

T +b4+c“ +c4+a“ <a+b+e
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SENIORS

19. Show that, for every acute triangle, 3 =25 > 2(a + b+ c).

20. Considern € N, n > 3 and the set A = {1,2,...,n}. Find all positive
integers k for which it is possible to find k distinct functions f; : A — {0,1}.
1 <@ <k, such that the functiong : A - R, g = fi + fo + -+ + f is injective.

21. The altitudes from the vertices A, B and C of a triangle meet again the
circumcircle at points D, E and F, respectively. Prove that AABC is equilateral
in each of the following cases: i) the triangles BDC, CEA, AF B have the same
perimeter; ii) the triangles BDC, CEA, AF B have the same area.

22. In the trapezoid ABCD (AB || CD), M, N € (CD) are the feet of the
perpendiculars from A, respectively B onto C'D. The circles Cy (1) and Cs(3),
inscribed in the triangles AM D, respectively BNC, touch AM in P and BN in
Q. Let t be the second common tangent of these curcles. Show that PQ || ¢ if and
onlyif AD = BC or MN = 2,/r173.

23. Let ABCD be a quadrilateral and k € {0,1). The points M € [BC),
N € [AD], P € (MN) are variable and satisfy 4% + DN — 1 and ME = k.
Find the locus of P.

24. Letn € N,n >2and A = {1,2,.. .,n}, Find the number of functions
n
f: A= Asatisfyingn | 3 f(k).
k=1

25. Find all the reals z which can be written in the form

1 a; a:

_ 2 Qp— Qp—

z= + + R e
@13 ...Qp  G203...Qp Q3Q4...0Qy Qp—1Qn an

wheren > 0,a;,as,...,a, areintegersand 0 < a; < as < -+ < Ap.

26. Let ABCD be a convex quadrilateral and A’ € (AB), B' € (BC),
C' € (CD), D' € (DA) be such that AA' = CC’ and BB' = DD'. Show that
the line through the midpoints of the segments (AC") and (A'C) is perpendicular
to the line through the midpoints of the segments (BD') and (B'D) if and only if
ABCD is cyclic.
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27. If a,b,c > 0 and n € N, show that

1 1

1 o111
a"+1+—bn+1+—-—cn+1);(u"+b’ +) it )

(a'n+l +b11+l+cn+1)(

28. Show that, for every real numbers z,y,z > 0,

T Y z ldzyz
+— 2
y+z+z+z z+y V (z+y)y+2)(z+2)

29. Show thatif a,b,c > 0anda + b+ ¢ = 1, then
1 a b c 9

< < =.
3\a2+a+1+b2+b+1+c2+c+1\13

30. Find all pairs (z,n), with z € C and n € N, such that
Z+ 2242 = a2

31. Let ABC be a right isosceles triangle and let M and N be points on
the legs (AB) and (AC), respectively. Show that there exists a triangle with side
lengths CM, BN, MN.

32. Find all the functions f : (0,00) — (0, 00) satisfying
f(f(z) —z) =6z, Vz € (0,00).

33. Show thatif z € C and |z| = 1, then

Sn-ke D> 3] (o [3) -

34. Letay,as,...,a, € (0,00) be such that a; + az + - -+ + @, = 1. Show
that the function f : [1,00) = R, f(z) = af +a§ + - - -+ aZ is strictly increasing.

35. Show that if z1, s, ...,z, > 0, then

YT122...Tn <

YT+ YT+ T n
36. Show thatif z,y, z € (0, 00), then
zy yz 2z

Y e ) I o ) Y e e R

Y Tg12s . Ty (T +Ts + -+ Tn) cTFTttan
< .

A
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37. An alphabet has a letters. Find the number of the words of length m
having exactly p distinct letters.

38. Isit pbssible to find positive integers n and k such that [ (2+ \/5)2’”'1] =
(4 + V15)k]?

39. Find all the positive integers a for which
My={f:N=N|(fofo--of)n)=n+a, VneN #0.
-~
k times f

40. Prove that, in every triangle,
IR > a® + 0>+ + (a— )2+ (b—¢)® + (c— a)2.
41. Leta > 1. Solve in R* the equation a® + (2a + 1)% = (a + 1)2.

42. Two regular n-gons A1 4> ... A, and By By ... By, are in the same plane
P and have the same center.

a) Show that ]'[;.’:1 BiA; =TI, A;Bi, Vi, j € {1,2,... ,n}.

b) Find I{lneix‘}){MA, “MAs-...-MAp+MB,-MB;-...- MB,}.

43. Solve in R the equation 2% 4 21-% = Ba""_l), where a > 2.

44. The base of a pyramid with apex at O is a cyclic polygon A; As ... A,
n > 5. A plane « intersects the edges OA; at B;, i = 1,...,n. Prove that if the
polygon By B; ... By, is regular, then so is A; Ay ... Ap.

PUTNAM SENIORS

45. The matrix A € M,(Z)is such that det A # 0 and the equation X* = A
has solutions in M, (Z) for every k € N*. Show that A = I,.

46. For a permutation « of the set [n] = {1,2,...,n}, let Inva denote the
set of inversions of . Given the permutations o, 2, . . . , v of [], show that
N i
n(n —1)N
Z |Inv acy| > <_4)—,
k=0

for some permutation a.
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47. If A € M;3(R) is a matrix such that tr(4 — A*)?™ = 0 for some integer
n > 0, show that A = A,
48. If A, B € M3(C) are non-singular matrices such that
A? - (tr A)A+ A" = B> — (trB)B + B*,
show that A* = B*.
49. If the matrices A, B € M3(Z) are singular, show that the number
det(4% + B®) + det(4% - B®)
is the double of a perfect cube.

50. Let a1,as,...,a, and by, bs,...,b, be distinct positive numbers such
thatay +as + -+ + ap = by + bz + - - - + by,. Show that the equation

n
[Tect = [0

has at least one solution in (0, 00).

51. The sequences (Zn)neN, (¥n)nen are given by zo € [0, 1], 2p41 = 2, —
nz;",, Yo € R, ynt1 = 2yn — yf,. Define (zn)nen by 2n = 1?2, + yYn. Find all Yo
such that the sequence (z,)nen is convergent.

52. Let f : (0,00) — (0,00) be bounded function and let p > 0 be a real
number. If li{‘no(f(x) — afP(az)) = 0, for every a > 0, prove that
x

Im flz)=0.

53. Let f : R — R be a function with the following property: for every

n € N* there exists a number x,, such that |f(z) — f(z,)| < '17 forall z > x,.
Show that the f has a limit at infinity.

54. Let a,b € N*. The sequence ()n32 is given by z2 > 0 and
Tpyr = nn%a:,, e - 1, Vn2>2.

Show that the sequence is convergent if and only if a,b > 2.
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55. Let (z,)nen+ be a sequence of real numbers such that li_l)n T, = 00. Is
n—oo
it possible to find a bounded sequence (yn)nen- such that the sequence given by

n
z
Sp=) ——,
t Lz___:l kZn + yn
be bounded?
56. The sequences (@n)nen+ and (bn)nen- satisfy 2 < a; < by and
b, a,
A1 = Qp + a_: =1, bpy1=Dp+ ﬁ -1,
for every n € N*. Show both sequences converge io a;.

57. Leta, b, c,d, e be real numbers such thata > 0, e < 0, b? < %ac and

b c d e

a
5008 2007 * 2006 T 2005 * 2002 ~ -
Show thata +b+c+d+e > 0.
58. Let a = 0,a1a303. .., be the decimal representation of the real number

a€(0,1).

a) Prove that the limit f,(z) = nli_)n;o(alx + a8 + - + a,z") exists and is
finite, for every z € (0, 1).

b) Prove that the function f, : (0,1) — R is rational if and only if a is rational.

59. The function f : R — R is differentiable and
f0)=0, (1+2)f'(2) > 1+ f(2),
forevery z € R. Can f have a finite limit at infinity?

60. Let f : (0,00) — [0,00) be a bounded function. If
tim (1) - 341 (3)) =0 e lmuE-2r70 =0,

show that lim f(z) = 0.
=0

61. Find all the functions f : R — R which have an antiderivative and satisfy
the following condition: there exists k € N* such that (f o fo--- o f)(z) = e~2,
Y

k times f
forallz € R.
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62. Let f : [0, 7] — R be a continuous function such that
"

lim / |f(z) + an cosz + by, cos 2z| = 0,

n—=0 Jo
for two conveniently chosen sequences (an)n, (bn ). Show that

n
/ f(z)dz = 0.
0

63. Let f : [0,1] — R be a continuous concave function with f(0) = 1.
Show that
p+2 [ P

1
5 [ e < /o O !

When does equality hold?

64. Let G1,Ga,...,Gpbegroupsand G = G; X Gy X -+ x G, their direct
product.

a)If f : (Q +) — G is an injective morphism, show that there exist k, 1 <
k < n and an injective morphism gy, : (Q, +) — Gy.

b) Does the above statement still hold if G is the direct product of countably
many groups G, Gs,...,Gp,...?

65. Let f : (0,00) — (0, 1) be a continuous decreasing function and (@n)nz1
be a strictly increasing positive sequence, such that the sequence (2£2) 5 s
strictly decreasing. Consider the sequence (I;,)n31, where

1 [ont
I, = —/ flz)dz, Yn>1.
an Jq,

) Show that the sequence (1)1 is decreasing.

. . . . a
b)Find lim I, in the case lim -2 = 1.
n—oco n—00  Q,

66. Let (G, -) be a commutative group with n elements and a € G. Find the
number of the functions f : G — G satisfying

[i@=a

z€G
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67. Let f, fn,9n : [0,1] = R,n > 1 be functions such that

[7() = fWI< |z —yl, Vz,y€0,1],

1
fi=t, fon@= [ fa@)it, veep), vaew
0
In(z) = ifk(z),VI €[0,1], VneN-.
k=1

Prove that if there exists a € [0, 1] such that the sequence (9n(a))n>1 is conver-
gent, then the sequence (gn(2))n>1 is convergent for every z € [0, 1].
68. Prove that the equation

z2008 12007 $2006 $2 1
2008 " 2007 Ta006 Tt te=p 20

has an unique solution zo and

]1 - ie - 3:0’ <1075,

7
69. Let f : [0,1] — R be an integrable function such that
z41
lim n/ ft)dt=0, Vze€|0,1).
n—o0o z
Prove that
b
/ F(t)dt =0, Vabe (0,1).
a
70. Prove that
. T p2n
nlgxgo/l ﬁ(l =T de =1.

71. Consider the sequence (@n)nen+, where
3 1
an = Elnn—/ In (1% 428 4. +nt) dt.
0

a) Show that the sequence (an)nen- is convergent and evaluate its limit a.
b) Show that 0 < n(a — a,) < 3/2, for every n € N*.
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The problems were submitted by: Dorin Andrica, Mihai Piticari (30, 52,
60), Aurel Barsan (5, 6, 12), Petre Bitranetu (15), Florica Banu (13, 14), Mircea
Becheanu (19, 31), Mihail Bencze (33), Benjamin Bogosel (44), Marius Cavachi
(45, 64), Nelu Chichirim (55), Andrei Ciupan (28), Viorel Cornea, Dan Stefan
Marinescu (2, 23, 27, 42, 63, 67), Lucian Dragomir (1, 21, 59), Bogdan Enescu
(70), Octavian Ganea (26), Paul Georgescu, Gabriel Popa (54), Radu Gologan (10,
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PROBLEMS AND SOLUTIONS

DISTRICT ROUND

7** GRADE
Problem 1. Show that

1.1 1 11 1
= > — _— e ———
n(1+2+3+ +n>,(n+1)(2+3+ +n+1),

for all natural numbers n > 1.

Solution. Putz = +1+---+ 1. Wehaven(1+z) <h+1)(e+F7) &
n<e+1lAsz+1=1+5+1+-+1 <1+14---4+1=n, this concludes
the proof.

Problem 2. Consider the square ABCD and the point E on the side AB. The
diagonal AC intersects the segment DE at point P. The perpendicular from point
P to DE intersects side BC at point F. Prove that EF = AE + FC.

Solution. Extend the segment BC by CQ = AE, such that point C is be-
tween @ and B. Triangles DAE and DCQ are then equal, so DE = DQ and
£QDC = LADE. Thus ZEDQ = 90° and we get ZEDF = /PCF = 45°.
Then ZFDQ = LEDQ — LEDF = 45° and triangles DEF and DFQ are
equal. Finally EF = FQ = FC + CQ = AE + FC, concluding thus the proof.

Problem 3. In a school there are 10 classrooms. Each student in a classroom
knows exactly one student in each of the other 9 classrooms. Prove that the number
of students in each classroom is the same.
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(Assume that if student A knows student B, then student B knows student A

t0o.)

Solution. Fix two arbitrary classes, say X and Y. It is suficient to prove that
X and Y have the same number of students. If not so, suppose that the number of
students in X is larger than thatin Y.

As any student in X knows exactly one student in Y, by the PHP there will be
two students, call them A and B that know the same student C' in Y. But then C'
knows A and B, that is two students in X, contradicting thus the hypothesis.

Problem 4. Let M = {1,2,4,5,7,8,...} be the set of natural numbers not
divisible by 3. The sum of 2n consecutive elements of set M is 300. Determine

the possible values of n.

Solution. The first of the 2n number has the form 3% + 1 or 3k + 2, so we have
two possible cases:

i) The numbers are 3k + 1,3k +2,3k+4,3k+5,...,3k+3n—2,3k+3n—1.
Their sum is (6k + 3) + (6k + 9) + (6k + 15) + - - - + (6k + 6n — 3) = 6kn +
3(1+3+5+ -+ 2n—1) = 6kn + 3n? = 3n(2k + n), so n(2k +n) = 100.
Since both factors have the same parity and the second is larger, either n = 2 or
n = 10.

ii) The numbers are 3k + 2,3k +4,3k+5,...,3k+3n—2,3k+3n— 1,3k +
3n+ 1. Their sum is by 3n larger then in the preceeding case, so 3n(2k+n)+3n =
3(2k + n + 1). We get n(2k + n + 1) =-100. This time the two left factors have
opposite parities, and again the second is larger. The only possibilities are n = 1,

n=4andn =5.

8 GRADE

Problem 1. If the intersection of a regular tetrahedron and a plane is a rhom-

bus, prove that the rhombus must be a square.

Solution. Two opposite edges of the rhombus are parallel. The faces containing
these edges meet on an edge of the tetrahedron; for example AB, which in turn
is parallel to the section plane. In the same way the edge CD is parallel with
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the section plane. As ABLCD we get that two consecutive rhombus edges are

perpendicular. This means that the rhombus is a square.

Problem 2. Determine the irrational numbers z such that both z2 + 2z and

23 — 6z are rational numbers.

Solution. Wehavea = 22 +2z+1 = (z +1)? € Q wherea > 0, thus z =
—1++/a. Then2® — 6z = —1+3\/a—3a+a/a+6F6\a = 5—3a+(a—3)/a.
As z° — 6z and 5 — 3a are rational numbers we deduce that (3 — a)y/a € Q. If
a # 3, then \/a € Q and consequently z € Q, a contradiction. We get ¢ = 3 and
thusz = —1 + /3.

Alternatively, let m = z° + 2z, n = z° — 6z, m,n € Q. We haven =
2% +22% - 22% — 4z — 22 = mz — 2z — 2m = (m — 2)z — 2m, where z ¢ Q.
Wegetn = —2mandm —2=0,s0m = 2,2° + 2z —2=0andz = —1 £ /3.

Problem 3. Consider the cube ABCDA'B'C'D' and the points M, N, P,
such that M is the foot of the perpendicular from A to plane (A'CD), N is the
foot of the perpendicular from B to the diagonal A'C, and P is the symmetric of
D with respect to C'. Show that the points M, N, P are collinear.

Solution. Let a be the length of the cube edge. Point M is the midpoint of
A'D. We have CN = i‘,'”g = a“—\;g = % = A'TC, and points M, N, P belong to
the plane (A'CD).

By Menelaos theorem in triangle A'CD, we need to show that g—g . % .
A — 1. AsBE =2, N =L and 4 =1, the above relation is fulfilled.

Problem 4. Determine the strictly positive real numbers z,y, z that satisfy
simultaneously the conditions: 2y + 3 < 4z, ¥°z + 3 < 4z, and 2%z + 3 < 4y.

Solution. Multiply the three inequalities 23y < 4z — 3, 3%z < 4z — 3 and
2%z < 4y — 3, to get 2yt 2* < (4z — 3)(4y — 3){4z — 3). On the other hand, by
the AM-GM inequality z* + 3 = (z* + 1) + 2 > 222 + 2 = 2(z% + 1) > 4z,
that is z* > 4z — 3, where equality holds iff z = 1. Multiplying z* > 4z — 3,
yt > 4y — 3, 2* > 4z — 3 yields z'y?2* > (42 — 3)(dy — 3)(4z — 3), so
z =y = z = 1, by the equality case.



48 THE 59*" ROMANIAN MATHEMATICAL OLYMPIAD

9** GRADE
Problem 1. Let (a,)n»1 be a sequence of real numbers such that

|ant1 — an| < 1,foralln € N*, and (bn)n31 the sequence defined by

art+ayt-tan
==

Show that |bp11 — bs| < 3, foralln € N*.

Solution. Since |an+1 — an| < 1, the triangle inequality yields |an — am| <
|n — m)|, for all n,m € N*, so

b — bl = @1t 40841 Gt FGn| [nant1 — a1 — -+ = ay|
n+1 n n(n+1)
_lansi—ai 4+ anis —anl o1 —aa] -+ @i —an]
- n(n+1) = n(n +1)
<n+(n—1)+~--+1_____l
= n(n+1) 2’

The conclusion follows.

Problem 2. Consider the set A = {1,2,...,n}, wheren € N, n > 6. Show
that A is the union of three pairwise disjoint sets, with the same cardinality and the

same sum of their elements, if and only if » is a multiple of 3.

Solution. f A= BUCUD,where BNC =CND =DNB = 0 and
|B| = |C| = |D|, then |A| = 3|B|, so 3|n.
For the converse, let n € N, n > 6, n divisible by 3. Two cases may occur:

i) For n = 6p, p € N*, the sets
B={6k+1,6k+6|k=0,1,...,p—1},
C={6k+2,6k+5|k=0,1,...,p—1},
D={6k+3,6k+4|k=0,1,...,p—1},

form a partition of A with the required properties.
ii) For n = 6p + 3, p € N*, we have the following two possibilities:
a)ifp=1letB={1,59},C = {2,6,7},D = {3,4,8};

DISTRICT ROUND — SOLUTIONS 49
b) if p > 2, consider
B ={1,5,9} U {6k + 10,6k + 15 | k = 0,1,...,p—2},

C=1{2,6,7}U {6k +11,6k+14|k=0,1,...,p— 2},
D ={3,4,8}U {6k +12,6k+ 13| k=0,1,...,p—2}.

Problem 3. Show thatif n > 4,n € Nand [2-] is a power of 2, then n is a
power of 2.

Solution. If [2-] = 2*, where k € N, then n2* < 2" < n(2* + 1), so there is
7 €N, 0 <7 <n—1suchthat 2" = n2% + . The following cases can arise:

i) If 2F < n, then 2" < n? 4 n. By easy induction 2* > n2 + n for n > 5.
Clearly n = 4 works.

ii)y Forn > 5 we get 28 > n, or 28 > r. But 2" = n2* + r implies 2¢|r, so
r=0andn = 2"* is a power of 2.

Problem 4. Let ABCD be a quadrilateral that can be inscribed in a circle.
Denote by P the intersection point of lines AD and BC, and by @ the intersec-
tion point of lines AB and C'D. Let E be the fourth vertex of the parallelogram
ABCE, and F the intersection of lines CE si PQ. Prove that the points D, E, F,
and @ lie on the same circle.

Solution. Since ZBAP = ZDCP, triangles BAP and DCP are similar, so
BA_BP )

DC ~ DP’ W

We have ZCDP = ZCBQ (or ZCDP = 18(° — ZCBQ) and ZBCQ (or
ZPCD = 180° — ZBCQ). By the sine theorem in triangles BCQ, DCP we

obtain
CP _CQ

DP " BQ @
Moreover, cF cp

BQ " BP ®
and EC = AB. “
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Consequently,
AB-CP-BQ
BP
by (3) and (4), which in turn equals —D—% by (1). The latter equals DC - CQ
by (2),s0 D, E, F, Q are concyclic.

EC-CF =

10** GRADE
Problem 1. Let a and b be two complex numbers. Prove the inequality
|1+ ab| +|a+b] > /]a® — 1] - 0> — 1].
Solution. By the triangle inequality
[1+ab|+|a+b| >[1+ab+a+1D|

and

|1+ab|l+|a+b] >[1+ab—-a—1D|.
Multiply the last two to get
(11 + ab] + |a +b])* > |(1 + ab)* — (a +b)?|
which is equivalent to |1 + ab| + |a + b] > /[a2 = 1] - [b2 — 1].
Alternative solution. We have
|1+ 2ab + a2b?| + |a® + 2ab + b?| > |a®b® + 1 —a® — b?| = |a® — 1] - [0* = 1]
which is equivalent to
(11 + ab| + |a + b])> > |(1 + ab)* — (a + b)?|.
Problem 2. Determine the integers z such that

logs (1 + 2%) = log,(1 + z).
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Solution. We shall prove that z = 1 or z = 3. Obviously, z is a non-negative
integer. By inspection, 1 and 3 are solutions and {0,2,4,5} are not. Write the
given equation in the equivalent form 1 + 2% = (1 + z)'°823,

For z > 6 we get 1 + 2% > (1 + z)? by induction. Since 2 > log, 3, there are
no other solutions.

Problem 3. Let f : R — R be a function such that

f <%) FOES (O}

) forallz,y € R.

a) Prove that the function g : R — R, g(z) = f(z) — £(0) is additive, i.e.
9(z+y) = g(z) + g(y), forall z,y € R.

b) Show that f is a constant function.

Solution. a) Letz,y € R; the given equality yields:

9(@)+9(y) _ f@)+fl) _
2 2

10=1(32) - 10

_ f(r+y2) - f(0) ~ ) = g(x2+y)’

which means g(z + y) = g(z) + g(y), forany z,3 € R.

b) For z = y we obtain g(2z) = 2g(z), for any z € R. The property of f
also implies g(%ﬁl) = ﬂz)—’;mﬂ so g(3&2) = MZ&M, forany z € R So,
9(2z) = g(z) and consequently g(z) = 0 for any z € R. Thus f(z) = f(0) for
allz € R, so f is a constant function.

Problem 4. Letn > 3 be an integer and z = cos 27” +isin 2;" Consider the

sets
A={l,22%...,2""1}
and
B={L1l+z,1+z+2% ..., 14z+--- 42"}
Determine the set AN B.

Solution. Clearly, 1 € ANB. Letw € AN B, w # 1. As a member of B,
w=1+4+z+-+2F= 1’1‘_:“ forsome k =,1,2,...,n — 1. Sincew € A, we

get|w| =1,and |1 — zF*+| = |1 — 2|.
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s

The latter equality yields sin ik—*;l-ﬂ = sin T, or L*;LQE = m — T, which

. . 1-1
impliesk =n—2,s0w = =% = —%. Because w € A, we must have w™ =1,

which means that n has to be even.
So, the answeris: AN B = {1} foroddn,and AN B = {1, —%} for even n.

11" GRADE

Problem 1. If A € M3(R), show that

det(A2+ A+ L) > %(1 — det A)2.

Solution. If p(X) = det(A — XI) = X? - aX + b is the characteristic

polynomial of A then
det(42 + A+ 1) = det(4 — e)(A - £°I2) = p(e)p(”),

where ¢ is a primitive cube root of unity. It follows that
det(A2+ A+ 1) = (> —ac+b)(e—ac’ + D) =a’ +a(b+1)+b* —b+1.

The minimum value of the quadratic function a® + a(b+ 1) +b> — b+ 1 is attained
ata = —(b+1)/2, and equals £ (1—b)?. Since b = det A, the conclusion follows.

Problem 2. Consider A, B € M,(R). Show that rank A + rank B < n if
and only if there exists an invertible matrix X € M,(R), such that AXB = O.

Solution. Suppose AXB = O, for some invertible matrix X. Applying
Sylvester’s inequality we get
0 = rank (AXB) > rank (AX) +rank B —n
>rank A + rank X + rank B — 2n
=rank A + rank B — n.

Conversely, suppose that rank A = a, rank B = band a + b < n. We can find
invertible matrices P, @, R, S such that

PAQ = I Oq,n—a . RBS= On—bn-b On-tp )
On—,a On-an—a Obn—b Iy .
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1t follows that PAQRBS = O, whence AQRB = O,,. We can now set
X = QR to get the desired conclusion.

Alternative solution. The existence of an invertible matrix X so that AXB =
Oy, is equivalent to the existence of an invertible linear transformation on R”
sending Im B to Ker A. Such a linear transformation exists iff dim(ImB) <
dim(Ker A). Since dim(Im B) = rank B = b and dim(Ker A) = n — rank A =
n — a, the conclusion follows at once.

Problem 3. Let (Zn)n>1, (Yn)n>1 be two sequences of strictly positive num-
bers, such that

ZTn + 2 + 42
Tni1 2 nTyn’ Yn+1 2 4/ "—2—Jﬂ, foralln € N*.

a) Show that the limits of the sequences (zn + Yn)n>1 and (TpYn)n31 exist.
b) Show that the limits of the sequences (Zn)nz1, (¥n)n31 exist and are equal.

Solution. Define the sequences sn,pn by Sp = T + Yn, Pn = Tpyn for all
n 21

For part a) we have zp41 > %sn 2 /Pns Ynt+1 = %sn > /Pn, Whence
Snt1 > Sn, Pnt1 2 Pn. It follows that the sequences (sn)n>1 and (p,)n31 are
nondecreasing and therefore have a limit.

For partb), if s, = 0o, we get, using the above inequalities, that ,, — oo and
Yn — 0O.

If s, — s € R, then the sequence (Pn)n>1 is bounded above by %32, S0 it
converges to some p < ;5% We also have pni1 = Tni1yns1 > 182 whence,
passing to the limit, we obtain the reverse inequality.

Since Tn,yn € {%(s,. + \/.9%—_41),,)}, it follows that

1 I, —
= Iy" - 58,.‘ = El\/‘si —4p,| =0,

1
Tn — Esn
50 Zp, — 3s and yn — 3s.

Problem 4. Determine for what values of a € [0, 00) there exist continuous
functions f : R — R, such that

f(f(x)) = (z—a)?, forallzeR.
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Solution. If a = 0 we can take f(z) = |z|‘/E and we have f(f(z)) = 22, as
desired.

Assume now thata # 0. If f(z) = f(y) forz # y we get (z—a)? = (y—a)?,
whence z — a = a — y. It follows that the restrictions of f to [a, c0) and (—c0, a]
are both one-to-one, hence strictly monotonic. Since f is not monotonic over
the whole real line, and since f is not bounded from above, it follows that f is
decreasing on (—00, a] and increasing on [a, 00).

Therefore, f([a,0)) = f((—o0,a]) = [f(a),c0) and a is the unique global
minimum point of f. We thus have f(a) < f(f(a)) = 0.If f(a) = 0 = f(f(a)),
we get, by uniqueness of a, that a = f(a) = 0. Suppose now that f(a) < 0. By
continuity, we can find b > a such that f(b) < 0. Since b > 0 > f(a), we can
find ¢ € (a,00) such that b = f(c), whence (c — )% = f(f(c)) = f(b) < 0,a

contradiction.

12" GRADE

Problem 1. Let f : [0,1] — R be a continuous function such that
j;ll f(z)dz = fol z f(z)dz. Show that there exists ¢ € (0, 1) such that

C
10 = [ e
Solution. Let F : [0,1] - R, F(z) = foz f(t)dt. We have
1 1 1
F(1) = / f(z)dz = / zf(z)dz = / zF'(z)dz
0 0 0
1 1 1
=xF(x)’o - / F(z)dz = F(1) - / F(z)dz,
0 0
thus fol F(z)dz = 0.
Consider the map g : [0,1] — R, defined by g(z) = e=* foz F(t)dt. We have
9(0) = 0 = g(1), so we can apply Rolle’s theorem to get some b € (0,1) for

which ¢'(b) = 0, or equivalently

F(b) = /0'7 F(z)dz.
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We can now apply Rolle’s theorem to the map G : [0,b] — R, defined by
G(z) = F(z) — [y F(t)dt to deduce the existence of an element ¢ € (0, ) for
which G'(c) = 0, that is

c
1= [ s,
which is what we wanted to prove.

Problem 2. Let f : R — R be a continuous, periodic function of period T'. If
F is an antiderivative of f, show that:
a) the function G : R — R given by

T
G(z) = F(z) - ; /0 F(t)dt

is periodic;
b)

= Fk) _mvZ T
3 e = ], e

Solution. a) Since F' = f, we can write F(r) = f: f(t)dt + ¢ for some
constant ¢ € R. We then have

T
z z+T z T T
=/O f(t)dt+/z f(t)dt+c—i/0 f(t)dt—/o Ft)at
T z T
:/0 f(t)dt+c—T/D F(t)dt

T
=F@) -7 [ 1ot =co),

z+T T
G(1:+T):/+ f(t)dt+c—””+T/ Ft)at
0 0

so G is periodic.
b) G is bounded on R, since it is continuous and periodic. We can therefore
consider M = max{|G(z)| : z € R}. We have

z": G(k) X‘: 1
otk ont R

<M
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whence
. F(k) L G(k) 1 (7 ok
nll{lgo‘;n2+k2—n—)oo P T_/ f(@)da };nl-kk?
k
f(z)dz hm -) —t—
( / "~ Zl 1+ (&)
), o) ([ v)
== T)dz | - - dz
(: [ rom) ([ o5

Inv2 T
= /0 F(z)da.

Problem 3. Let A be a commutative unitary ring with an odd number of ele-
ments. If 7 is the number of solutions to the equation 22 = z, z € A, and m is the

number of invertible elements in A, show that n divides m.

Solution. Consider the set I(A) = {z : z € A, 2* = z}. If z € I(A), then
(22 -1)? =42 — 4z + 1= 1,50 2z — 1 € U(A) (here U(A) denotes the group
of units of the ring A). Since |A| is odd, 2 = 1 + 1 is a unit of 4, and therefore
the map f : I(A) — U(A), defined by f(z) = 2z — 1, is one-to-one. This shows
that |I(A)| = |Im ], so to complete the proof it suffices to show that Im f is a
subgroup of U (A4) and then appeal to Lagrange’s theorem. Since U (A) is finite, it
suffices to prove that uv € Im f whenever u,v € Ira f.

Letu,v € Imf, u = 22 — 1,v = 2y — 1 for some z,y € I(A). If we let
z =27 (uv+1), then uv = 2z — 1, 50 we are done once we prove that z € I(A),

i.e. z2 = z, or equivalently (since 4 is a unit) 422 = 4z. We have
42% = (1 +w)? = 1+ 2uv + v®0® = 2(1 + wv) = 4z,
and the conclusion follows.

REMARK. We can say a little more about the order of I(A): since Im f is
contained in the subgroup of U(A) consisting of elements of order 2, which is a
2-group, it follows that Im f is also a 2-group, hence |I(4)] is a power of 2.

Problem 4. Let K be a finite field. We say that two polynomials f and g in
K[X] are neighbours if they have the same degree and they differ by exactly one

coefficient.
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a) Show that all neighbours of the polynomial X2 +1 ¢ Z3[X] can be factored
outin Zz[X].

b) If the number of elements in K is ¢ > 4, show that any polynomial of degree
¢ — 1 in K[X] has a neighbour that can be factored out in K[X] and also has a
neighbour with no roots in K.

Solution. a) The neighboursof X2+1are: 2X2+1, X2+ X +1, X2+ 2X +1,
X? and X? + 2. They all have roots in Z3, and are therefore reducible in Z3[X].

b) Let f € K[X] having deg f = ¢ — 1. We shall use the same notation for
a polynomial and its corresponding polynomial function. If £(0) = 0, we choose
9= f+ X, otherwise we set g = f — £(0). In both cases g is a neighbour of f
which is clearly reducible since it has 0 as a root.

Recall that
Za’={ 0 if@-1)ts,
e =1 if(g—1){s,s>1

Write f as )17 La;Xi,a; € K. We distinguish two cases:
Case 1: ag = 0. Since

¥ @)= Zzala_za,@ ):—aqdl#o,

aEcK €K i=0 =0 ek
it follows that £ is not onto (otherwise Yaek fla) = Paecx @ =0). Since 0 €
Im f and f is not onto, we can find a nonzero element s ¢ Im f. The polynomial
g = f — s is then a neighbour of f with no roots in K.

Case 2: ao # 0. Ifa; = 0fori ¢ {0,¢— 1}, thenIm f = {a0,a4-1 + ao}.
Since | K| > 4, we can find anonzero s ¢ Im f and g = f — s is again a neighbour
of f without roots in K.

Assume now that a; # 0 for some 5 € {1,2,...,¢ — 2} and consider the
polynomial A = X9~#~1f, Since

Z h(a) = Zaj (Z i ‘> =—a; #0,
a€K aEK

it follows as before that h is not onto, so we can find a nonzero s ¢ Imh. The
polynomial g = f — sX* is then a neighbour of j and we must check that it has
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no roots in K. Clearly, 0 is not a root of g since g(0) = f(0) # 0. Ifa € K*isa
root of g then

s=al"ls =l (sa) = a7 (f(@) — 9(@) = a" 1 f(a) = h(a),

contradicting the fact that s was chosen outside Im .

PROBLEMS AND SOLUTIONS

FINAL ROUND

7" GRADE

Problem 1. The acute triangle ABC has B > C'. Consider the altitude . |/
D € BC, and the perpendicular DE to AC, E € AC. Consider the point £ on
the segment DE. Prove that the lines AF and BF are perpendicular if and only if
EF-DC=BD-DE.

Solution. If AFLBF notice that the quadrilateral ABDF is circular. so
ZABF = LADF and ZBAF = /DAE. Consequently, /BAD = /FAE,

which proves that triangles ABD and AFE are similar, so % =4b.

On the other hand, triangles AADE and DCE are similar, so ﬂ—g = %4 The
last two equalities yields % = %, thatis, EF - DC' = BD - DE.

Conversely, if EF - DC = BD - DE we get % g—g which implies
that triangles ADE and DCE are similar, so %% = iE. In the same way,
%lEZ = % implies that triangles ABD and AFE are similar and, as a con-
sequently, ZAFE = ZABD. Thus the quadrilateral ABDF is circular, so

ZAFB = £ZBDA. This implies that AF | BF.

[0

Problem 2. Given that a rectangle can be divided into 200 and into 288 equal
squares, prove that it can also be divided into 392 equal squares.

Solution. Divide the sides of the rectangle, say of length a (respectively b),
into m, (respectively n;) segments of length u to get 200 squares of side length
u and into my ( respectively ny) segments of length v to get 288 squares of side
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length v. We have min; = 200, many = 288. Moreover, mL. = "‘;‘ = u and
2 2

a _— b _ 2 (a) = ab 2 - () = ab This impli

T ag =V Thus u* = (m:) = 5550 V0 = (mz) = 535 This implies

m} = 20 m3 = 28 50 2m, > my. Similarly, 2ny > ny. Let mg =
2 _ 2

2ms —my and ng = 2ny — ny. We have 2 = 212 — 71 B3 — Z2 — 5l 50

a b i i =a.b_b a_

s = ny- Call z this last quantity. We have miny = § - ¢ = ¢ - § = nimo and

myny - mony = 200 - 288 = 2402, so miny = many = 240.
Finally, m3ns = 4mans+ming —2ming —2meon; = 4-288+200—4-240 =
392. But this means that dividing the sides of the rectangle into mg (respectively

ng), segments of length z, we get 392 squares of side length z.

Problem 3. Let p, ¢ and 7 be three prime numbers such that5 < p < ¢ < 7.
Given that 2p® — 72 > 49 and 2¢> — 72 < 193, find p, ¢, 7.

Solution. From the given relations we have 2¢> — 193 < r? < 2p* — 49,
consequently g2 — p? < 72. On the other hand, from 5 < p < ¢ < r we obtain
7 > 11,50 2p> > 49 + 121 = 170, thatis p > 11. Since (¢ — p)(¢ + p) < 72 and
q—p=2o0rq—p >4, there are two possibilities:

i)g—p=2and g+ p < 36, thatis (p,q) = (11,13) or (17,19);
ii) g — p > 4 and ¢ + p < 18, in contradiction with p > 11.

If (p,q) = (11,13), then 145 < r2 < 193,50 7 = 13 = g, which is to be
rejected. If (p, q) = (17,19), then 529 < r? < 529, so 7 = 23. Consequently, the
required primes are p = 17, ¢ = 19, r = 23.

Problem 4. Let ABC'D be a rectangle of center O. Assume that AB # BC.
The perpendicular line at O on BD intersects the lines AB and BC at points E
and F, respectively. Let M and N be the midpoints of the segments C'D and AD,
respectively. Prove that FM LEN.

Solution. Let P be the midpoint of BC and let @ be the point where the line
DC meets the line EF. Since M P passes through the midpoints of BC and CD
we deduce that MP || BD, so FQLMP. From MCLFP we infer that Q is
the orthocenter of triangle M PF, so PQ_LFM. Triangles POQ and NOE are
equal,so QP || EN. Consequently, FM LEN.
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8" GRADE

Problem 1. The lengths of the edges of a tetrahedron are natural numbers,
such that the product of lengths of any pair of opposite edges is equal to 6. Show
that the tetrahedron is a regular triangular pyramid with the property that the angle
between a lateral edge and the plane of the base is larger than or equal to 30°.

Solution. The possible values of the side length of the tetrahedron are 1, 2,
3 or 6. If one of the edges, say AB, has length 1, then the faces containing AB
have to be equilateral triangles by the triangle inequality, contradicting the hypoth-
esis. Thus all edges have length 2 or 3: three of length 2 and three of length 3.
Consequently, either AB = AC = AD = 2and BC = CD = DB = 3or
AB = AC = AD = 3,BC = CD = DB = 1. In both cases the tetrahedron is a
regular pyramid, the first case providing the smallest angle between a lateral edge
and the base plane. Denoting this angle by u, we getsinu = % (the altitude of the
pyramid is 1 and apothema is 2), so u = 30°.

Problem 2. A sequence of four even decimal digits, no digit of which occurs
three or four times, is called admissible.

a) Determine the number of admissible sequences.

b) For every natural number n, n > 2, we denote by d,, the number of ways to
complete a table with n rows and 4 columns whose entries are even decimal digits,
such that the following conditions are fulfilled:

i) every row is an admissible sequence;

ii) the admissible sequence 2, 0, 0, 8 occurs on a single row of the table.

dni1
dn

Determine the values of n such that the number is an integer.

Solution. a) Let S be the number of admissible sequences. Since the number
of even digits is 5, there are 5* = 625 sequences of 4 even digits. Among these 5
sequences have equal digits, and 5-42 = 80 sequences have exactly 3 equal digits.
So, the required number is S = 625 — 5 — 80 = 540.

b) There are n ways to insert the admissible sequence 2, 0, 0, 8 as a row in
the table. The remaining n — 1 rows can be filled in S — 1 ways. Consequently,
dn=n(S 1)1 =n 539771, so datt = (n41):5%9
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Thus, a necessary and sufficient condition for d;:‘ to be an integer is that
n | 539; thatis, n € {7,11,49, 77, 539}.

Problem 3. Let a,b € [0, 1]. Prove the inequality:

1 a+b4ab
1+a+b > 2 3"

Solution. By brute force 2a*b+2ab?—3a?—3b* ~4ab+3a+3b > 0. Rearrange
terms to get 2a(a —1)(b—1) +2b(a— 1)(b— 1) + a(1 — a) + b(1 - b) > 0, which
holds true since all terms are non-negative by the given conditions.

Problem 4. Consider the cube ABCDA'B'C'D'. On the edges (A'D"),
(A’B'), and (A’ A) consider the points M, Ny, and P, respectively. On the edges
(CB), (CD), and (CC") consider the points My, N5, and P, respectively. Denote
by d; the distance between the lines My Ny and M,N,, by d the distance be-
tween the lines N P; and N2 P, and by dj the distance between the lines Py My
and P M. Suppose that the distances di, do, and d3 are pairwise distinct. Show
that the lines M; M, Ny Ny, and P, P, are concurrent.

Solution. Denote by a the side length of the cube. If M, Ny is not parallel to
M;>N and P1 NV is not parallel to PN, we get d; = dy = a, a contradiction.
So, either My Ny || MyNo or PNy || PoNs. If My N, || MaN, and PN, is
not parallel to PNy, then My Py || MoP;, for otherwise dy = d3 = a. Thus,
either My Ny || M>N and PN, | PNy or My Ny || Mo Ns and My P, || M, P;.
In either case the planes (M; N1 Py) and (M, N, P») are parallel. Consequently,
M1 Ny || MyNy, PNy || PyNo and My Py || Mo Py, Since the lines My Mo, Ny N,
and P, P, are not coplanar and have non-empty mutual intersections, we conclude

that they are concurrent.

9" GRADE
Problem 1. Determine the functions f : N — N such that
f@®+ f®) = f(z) +v,

forallz,y € N.
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Solution. For z = 0 the equality reads f(f(y)) =y forally € N, so f is onto.
Setting z = 1 in the given equation yields f(1+ f(y)) = f(1)+yso f(1+z) =
upon substitution y = f(z); in particular f(0) = 0. By induction, f(n) = nf(1),
for all n € N. Because f is onto we must have f(1) = 1 (if not the image of f is
the set f(1)N = {f(1)n | n € N}), so f is the identity map.

Problem 2. a) Show that § + } + -+ + 53 >n,Vn € N*.
b) Prove that :

. 11 1 n
mm{LGN,k>2,§+§+~ +k>n}>2,
foralln € N*.

Solution. ) 5+ (3 + 1)+ (3 +5+3+3) + -+ 5oty + smrs +
D) >%+%+§+~~~+%’;—l:2n~%=n,forallnEN‘.

b) By part a) {k eN k>2 %+§+ R s % > n} is a non-empty set of
non-negative integers, for all n € N*, so it has a smallest element z,,. We prove
by induction that z,, > 2™ foralln € N*. Forn = 1: %+§ < 1,%+§+% >1,
sozy =4> 2L Ifz, > 2" forsomen > L, then § + 3 + -+ + 2 < n. Since

on

271;1 + avlg, +- 2—,};_—, < zag7 < lforn > 2, the two inequalities add up to
yield § + % + -+ + 53 < n+ 1, showing that 2,41 > 27+,

Problem 3. Consider n € N* and the real numbers a;, i = 1,2,...,n, with
n
lail < land 3 a; = 0.
i=1

n
Show that ) |& — a;| < n, forall z € R such that |z| < 1.
i=1

Solution. We may (and will) assume the following ordering and notations ap =
-1 < a <a <-- < an €1 = apyy. Since |z| < 1, it follows that
ar < T < agyq forsome k € {1,2,...,n}.

n k n
Bz)=Y |lz—a|l=kz— > ai+ Y a;—(n—k)z. For2k < n,use
i=1 i=1 j=k+1
the conditions in the statement to write

k
E(z) = —nz + 2Z(z —a;) < —nz +2k(z + 1) < n.
i=1
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Similarly, for 2k > n:

E(z) = nz+2 Z (aj—z) < —nz+2(n—k)(1-r) < nn—(2k—n)(1-z) < n.
j=k+1

Alternative proof. As a function of « on [—1,1], E is continuous, piecewise
linear and convex (the minimum being assumed at a; where the sum of the a;,
changes sign). Consequently, E achieves its maximum at one of the endpoints,
where E(—1) = E(1) = n.

Problem 4. On the sides of triangle ABC consider the points C1,C> € (AB),
B1,B; € (AC), Ay, A> € (BC) such that triangles A, B; C; and A3 B;C» have
the same centroid.

Show that the sets [A1 B1] N [A2By], [B1C1] N [B2Cy), [C1A1] N [CaAg] are

nonempty.

e
Solution. Since_) triangles A; B, Cy and A3 B>C5 have the same centroid A; Ao+
BB, +C1C>= 0.
Since ﬁAg € (BC’),_I)?l,Bg € (%2 C1,Cy € (AB), it follows that
A1A; = aBC, ByB; = BCA, C1Cy = yAB, for some o, 8,7 € R.
-y “ — —
Then aBC +_€C’A + yAB = 0 which is equivalent to aBC + SCA —
— — — —
Y(BC + CA) = 0 or (a —v)BC = (v — B)CA. Since the vectors BC and CA
are linearly independent we get @ = 8 = «. To make a choice, let C; € (AC5)
and infer that A; € (BA;) and By € (CBj). The conclusion follows.

10™ GRADE

Problem 1. Consider the triangle ABC and the points D € (BC), E € (CA),
F € (AB), such that
BD CE _AF
DC EA FB’
Prove that if the circumcenters of triangles DEF and ABC coincide, then the
triangle ABC is equilateral.
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Solution. Consider complex coordinates, the origin being taken in the circum-
center of the triangle ABC' and denote with small letters the coordinates of the
points. Then, if -ll% =k, thend = % and so on.

The triangles DEF and ABC have the same circumcenter if and only if |d| =
le| = |f|, that is dd = e& = f f.

Since ad = bb = c&, this amounts to ab + ba = a + & = b¢ + cb, which is
equivalent with |a — b|?> = |a — ¢|?> = |b — c|?, whence the conclusion.

Problem 2. Let a, b, ¢ be three complex numbers such that
albel| + blca| + c|ab] = 0.

Prove that
(@ — b)(b— ¢)(c — a)| > 3V/3|abc].

Solution. If one of the numbers is nil, then the conclusion is obvious.

Otherwise, dividing by |abe| and denoting a = ]%T B = ]%[, v = ﬁ[, the
hypothesis becomes a + 8 + v = 0 and |a| = |8] = || = 1. Itis a well-known
fact that, in this case, the differences between the arguments of the numbers a, 3, ¥
are :l:%".

The Cosine Theorem gives now |a — b|? = |a|* + |b|*> + |a| |b] > 3|a] |b| and
two other similar relations. Multiplication of the tree inequalities yields the desired

result.

Problem 3. Consider the set A = {1,2,3,...,2008}. We say that a set is
of type r, v € {0,1,2}, if that set is a nonempty subset of A and the sum of its
elements gives the remainder r when divided by 3. Denote by X, r € {0,1,2}
the class of sets of type 7.

Determine which of the classes X, 7 € {0, 1,2}, is the largest.

Solution. Add to X, the empty set and denote X, , the class of the subsets
of type r of the set {1,2,...,n}. If n € N*, then n + 1,1 + 2,n + 3, are three
numbers a, b, ¢ such thata = 0 mod 3, b = 1 mod 3, ¢ = 2 mod 3. We notice that
Xo,n+3 is made of:

— the sets from X »;
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— the sets in X, along with {a}, {b,c} or {a,b,c};
—the sets in X, along with {c} or {a, c};
— the sets in X ,, along with {b} or {a, b}.

Argue similarly for X; 43 and X5 »43 to get
[Xo.n+s| = 4| Xo,n| + 2| X1,n] + 2| X2,
[X1,n+3] = 2| Xo,n| + 4] X1,n] + 21 X2,nl,
[X2,n13] = 2| Xo,n| + 2| X1,n] + 4| X2n]-

Since | Xo,1| = X1, = 1 and [X5;| = 0, an obvious induction leads now
t0 | Xo,3n+1] = |X1,304+1] > |X2,3n+1]. Then, from 2008 = 3 - 669 + 1 and
| Xo| = |Xo0,2008| — 1 follows | X1| > | Xo| > | Xa|.

Problem 4. Consider the statement p(n) : (n* + 1)|n!, n € N. Show that
the sets

A={neN|p(n)istrue} and F = {n € N]|p(n)is false}
are infinite.

Solution. We notice first that a good chance of getting elements of A is to try
taking n = 2m?. Indeed, in this case n® + 1 = 4m* + 1 = (2m? + 1)2 — 4m? =
(2m? —2m+1)(2m> +2m + 1), the factors (2m? — 2m+1) and (2m> +2m + 1)
are coprime and 2m? — 2m + 1 < 2m?2.

Then, form = 5p+ 1, 2m? + 2m + 1 = 5(10p> + 6p+ 1) and, for p # 0, the
factors 5, 10p? + 6p + 1 are coprime and less than n. Hence, (n? + 1)|n! for each
n of the form 2(5p + 1)2.

An element of F' can be obtained if we find a prime number p and n € N such
that p | n? + 1 and p > n. This goal can be attained if we take a prime p having a
multiple of the form m? + 1 and take 7 as the remainder of m (mod p).

We prove by contradiction that the set of primes of this type is infinite. Indeed,
if the set of these primes were P = {pi,...,pn}, then the prime factors of the
number (p1p2 ... pn)? + 1 would not be elements of P, contradiction.
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Problem 1. Let f : (0,00) — R be a continuous function, such that for any
z € (0, 00) the sequence (f(nz)),en- is nondecreasing.

Prove that f is a nondecreasing function.

m

Solution. Letz,y € Q},z < y. Letm,n,p € N*, m < n, such that z = >
andy = %. By the hypothesis, the sequence (f(k - i))keN- is nondecreasing, so
f(z) = f(m- %) < f(n- ;—)) = f(y), ie. f is nondecreasing on Q7 .

Next, let z,y € R}, z < y, and consider two sequences of positive rational
numbers, (rn)nen+ and (7, )nene, such that z < r, < 7!, < y forevery n € N*,
and lim 7, =2, lim r, = y.

n—00 n—00

By monotonicity of f on @}. and continuity of f,

@) = Jim fra) < lim £(h) = (o),

which shows f is nondecreasing on R} .

Problem 2. Prove that an invertible matrix 4 € M,,(C) has the property
A~! = Aif and only if there exists an invertible matrix B € M,,(C) such that
A=B"'.B.

Solution. Assume first that A = B~ - B for some B. Then
A-A=B"'-B-(BY)-B=B'.B(B)!-B=1,,

so A7 =4

For the converse, suppose that A~! = A and consider a matrix B of the form
a-A+f-1I, fora, B € C. We shall prove that «, 3 can be chosen so that B be
invertible and A = B! - B. We have

A=B1'""B&B-A=B&(a-A+8-1,) - A=a-A+B-1,
Sa-AA+p-A=a-A+B-I,ea - I, +B-A=a-A+5-1I,.

If we set § = @ the last equality is trivially satisfied, so we only need to make
sure that B = a4 + a@l,, is invertible for some a € C.
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For o # 0 we have
det B = det(ad + a@l,,) = o™ det <Z+ gln) .

Since the image of the map a g (a € C*) is the unit circle (an infinite
set), and since the zeros of det(A + z1I,) are the negatives of the eigenvalues of 4

(hence finitely many), some o € C* yields an invertible B, as desired.

Problem 3. Let f : R — R be a twice differentiable function on R such that
there exists ¢ € R with

(b) f(“) #f'(c), foralla,beR a#b.

Prove that f(c) = 0.

Solution. Since L@%ﬂ # f'(c) forevery a,b € R, a # b, it follows that
the map g : R — R defined by g(z) = f(z) — z - f'(c) is injective, hence strictly
monotonic. Therefore, g'(x) = f'(z) — f'(c) has constant sign, and we see that
¢ must be an extremal point of f’. This shows that ”(c) = 0, and concludes the

proof.

Alternative solution (Francisc Bozgan and Gabniel Dospinescu). We first prove

the following

LEMMA. Let I C R be an interval, and let f : I — R be a differentiable

function. Consider the set
J= {f(w f) zyyel‘“éy}_

Then J is an interval and a dense subset of f'(I) (therefore, |f'(I) \ J| < 2)

Proof. By the mean value theorem, it follows that J is a subset of f'(I). It
is clear that the closure of J contains f'(), so J is dense in f'(I). It remains to
prove that J is an interval. Since f'([) is also an interval (f' has the intermediate
value property) it will follow that | f'(I) \ J| < 2

Consider the set C = {(z,y) € I x I : 2 < y} and defineamap g : C — R
by g(z,y) = L(I;:—i(”l Since C' is connected and g is continuous, we get that

J = g(C) is also connected, so J is an interval, as desired.
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Back to our problem, let I = R let J be as in the lemma. Since f'(c) ¢ J, the
lemma implies that f'(c) is one of the endpoints of f'(I), i.e. an extremal point of
f'. Conclude as in the first solution.

Problem 4. Let A € M,,(R) be an antisymmetric matrix (Vi, j, a;j+a;; = 0).

Prove that
det(A + 1) - det(A + yL,) > det(A + \/Z7L,)°,
forall z,y € [0, 0).

Solution. Let P(z) = det(A+zI,) = 2" +ap—1 + -+ -+ ayz + det A. Each
ay; is the sum of all principal minors of order k of the matrix A. Since all principal
minors are nonnegative, being the determinants of some skew-symmetric matrices,
it follows that all a, > 0 for every k = 1, n.

By the Cauchy-Schwarz inequality, P(z) - P(y) > (P(\/a;_y))z for all
z,y > 0.

Alternative solution (Given by several contestarts). Since A is skew-symmetric,
its eigenvalues are purely imaginary. It follows that the nonzero roots of P(X) =
det(A + X1I,,) come in pairs {z;,Z(= —z;)},j = Lk, and r = n — 2k is the
multiplicity of 0 in P, so

k
P(X)= X" [[(X2 + 1.
j=1

Since (22 + |2;]?) - (2 + |251%) > (xy + |2j]?)? forall z,y € Randall j =1, %,
the conclusion follows.

REMARKS. 1) The determinant of any skew-symmetric matrix can be written
as the square of a homogeneous polynomial in the entries, called the Pfuffian of the
matrix. For odd dimensional skew-symmetric matrices, the Pfaffian is always zero.

2) The statement that the eigenvalues of a skew-symmetric matrix being purely
imaginary is equivalent to the statement that all eigenvalues of a Hermitian matrix
are real (a matrix with complex entries is called Hermitian if it is equal to its own
conjugate transpose). The equivalence is a straightward consequence of the fact
that a matrix A is skew-symmetric if and only if 1A is Hermitian.
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To prove the statement about the eigenvalues of a Hermitian matrix, consider
one such matrix A = A* (for every matrix X with complex entries we denote
by X* its conjugate transpose). Let A be an eigenvalue of A and let z be an
eigenvector corresponding to \.

Using the fact that * is an involution ((X*)* = X)), and the identity (XY)* =
Y*X*, we get

(z*Az)* = ¢* A%z = 2" Az.
Since z* Az = - z*z, it follows that A - z*z = X -z*z, but z*z is nonzero, hence

s real.

12" GRADE

Problem 1. Let a be a positive real number and let f : [0,00) — [0,a] be a
function which has the intermediate value property on [0, o) and is continuous on
(0,00). If f(0) = 0and

zf(z) > /Oz f(t)dt, forallz € (0,00),

prove that f has antiderivatives on [0, c0).

Solution. Since f is continuous on (0, c0) and bounded, it follows that f is
integrable on [0, z], for every z > 0. The function F : [0, 0c0) — R, defined by

F@) = [ " e,

is therefore differentiable on (0, ), and F'(z) = f(z) for all 2 > 0. Define a
map g : (0,00) = R by letting g(z) = F(z)/z for z > 0. Since
f(z) = F(z)

x
g'(x) = ) >0,

forall z > 0, g is nondecreasing, so lir% g(z) exists. Let £ denote this limit.
z—
Since f has the intermediate value property, there exists a sequence (a,) of
positive rez! numbers such that a, — 0 and f(a,) — f(0) = 0. By hypothesis,
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f(an) = g(an) > 0, whence li_)m g(a,) = 0,0 ¢ = 0. Since F(0) = 0 and
9(z) = F(z)/z, we get

F'(0) = lim F(z) - F(0)
z—0 z

= lim g(z) =£=0,
z—0

so F'(0) = £(0) and F is an antiderivative of f on [0, 00).

Problem 2. Let f : [0,1] — R be a differentiable function, whose derivative
f'is continuous on [0, 1]. Prove that if f(1/2) = 0, then

/ @ e ( / ' f(z)dz)z.

Solution. By the Cauchy-Schwarz inequality,

(/01/2 zf'(z)dz)2 < (/01/2 zzdz) (/01/20'(@))2@)

1 12

=5, U@re

1 N 1 , 5 .
( [ - z>-dz> ( /1 L@ )

L
2l e

N

1 2
( / L0 z)f'(z)dz)

SO

2

1 /! , ) 1/2 ,A ant , 2
= | @ dm( et (z)dz) #([f a1 (z)dz)

Integration by parts along with f(1/2) = 0 yields

/' 1
/0 P ) = /O Y @) and /1 ;2(1 —2)f'(@)de = /1 J
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Consequently,

The conclusion follows.

Problem 3. Let A be a finite unitary ring with » elements, such that the equa-
tion z™ = 1 has the unique solution z = 1 in A. Prove that:

(a) 0 is the unique nilpotent element of the ring A;

(b) there exists k € N, k > 2, such that the equation z* = z has n solutions
in 4.
(22 € A is nilpotent if there exists m € N* such that z™ = 0.)

Solution. (a) Suppose there is a nonzero nilpotent 2 € A and let m be its order
of nilpotency (the smallest positive integer for which 2™ = 0). Theny = z™~!
has order of nilpotency 2, and we have (1 — )" = 1 — ny = 1. The hypothesis
forces 1 — y to be equal to 1, that is y = 0, a contradiction.

(b) Let 21,23, .., z, denote the elements of A. The set

{(=},2%,...,28) i €N}
is a subset of A™, hence finite. We can thus find 1 £ ! < m such that 2! = 2™ for
allz € A. Foreachz € A, z(z™~" — 1) is then ndpotent, and therefore zero by
part (a). If wetake k =m — [+ 1 we have k > 2 and z* = z forevery z € A, as
desired.

REMARKS. 1) Since z* = z for all = € A, a celebrated commutativity result
of Jacobson implies the commutativity of A. We shall prove that A is a product
of fields. If A contains a nontrivial idempotent e, 4 ~ B x C, where B = Ae.
C = A(1 —e). Clearly, the elements of B and C satisfy the equation X* = X so
we can argue by induction that B and C are producis of fields. It follows that 4 is
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also a product of fields. If A contains no nontrivial idempotents, for each z € A,
z¥~1 is idempotent and therefore equals 0 or 1. Consequently, every z € A is
either zero or an invertible element, so A is a field

2) The same conclusion can be drawn by the Wedderburn-Artin structure the-
orem for semisimple rings: A is artinian and Jacobson semisimple (its Jacobson
radical is zero by part (a) since it consists entirely of nilpotents), therefore it is a
semisimple ring, and by the structure theorem we can write it as a product of ma-
trix algebras over division rings. Since A contains no nilpotents, and finite division
rings are commutative, we conclude that it must be a product of fields.

Problem 4. Let G be the set of finite groups with at least two elements.
(a) Show thatif G € G, then

[End(G)| < ¥/n",

where [End(G)| is the number of endomorphisms of G, n = n(G) is the number
of elements of G, and p = p(G) is the greatest prime divisor n.
(b) Determine the groups in G such that the inequality in (a) holds with equality.

Solution. (a) Let a be an element of G of order plet H = (a) = {e,aq,...,
@'} and let I = {z),z,,... , 21} be a complere set of representatives for the
left cosets of G modulo H, with 2, = a. Clearly, k = n/p. Every endomorphism
of G is uniquely determined by its values on I: if & € 2 H, z = z5at for some ¢,
whence f(z) = f(zs)f(a)! = f(zs)f(z1). Consequently, [End(G)| < |G| =
n/P = Inm.

(b) Equality holds in (a) iff [End(G)| = |G|, that is iff anymap f : I - G
extends to an endomorphism of G. Suppose that G is such that the previous equiv-
alent statements hold. If k = 1, |G| = p, so G = (Zp, +) and |End(Z,, +)| =
P = /pP. Assume now k > 2. Let z be any element of G' and consider the map
f:1—= G givenby f(z;) =z, f(z:) = efori > 1. The map f extends to an
endomorphism of G by assumption, so

a? = f(al) = f(e) = e.

If 25! ¢ 2 H, we can find a map f : I — G, sending z, to e, and 23! to
some other element of G. But such an f does not extend to an endomorphism of
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G, contradicting the assumption. Therefore 5 ! € zoH, or equivalently 23 € H.
If p is odd, it follows that 1 — p is even, so z3 = z; ~P € H, again a contradiction.
Hence we must have p = 2 and G commutative (z? = eforallz € G). If k = 2,
G = K, the Klein four-group, which is easily seen to satisfy the desired equality.
If k > 3, 223 does not belong to any of the cosets z;H, i = 2,3, so we can find
amap f : I — G, with f(z2) = f(z3) = e and f(z2z3) # e. This is again
contradictory, since we cannot extend f to an endomorphism of G.

Summing up, the only groups for which equality holds in (a) are Zp, with p

prime, and the Klein four-group.

PROBLEMS AND SOLUTIONS
BMO AND IMO SELECTION TESTS

Problem 1. Determine all families F of n 2 1 integers such that no sum of
elements of a non-empty subfamily of F is divisible byn + 1.

(How many such families exist, made of distinct positive integers between 1
and n? 4+ n?)

Solution. Denote by ay,as,...,a, the elements of such a family. Consider
the sums s, = Zf=1 a;, k =1,2,...,n. None should be divisible by n + 1, and
no two should be congruent modulo 7 + 1 (otherwise their difference would be a
sum divisible by n + 1), hence they must represent all n nonzero residues modulo
n + 1.! But so are then the sums o = Q2,09 = ay +ay, 0 = s = Zé;l a;,
k =3,...,n, hence we need have 81 = a1 and 0 = ay congruent modulo n + 1.

Since the indexing has been done arbitrarily, it follows that any two elements
of the family must be congruent to the same value a. Now, any subfamily with
1 < k < nelements will have as sum of its elements a value congruent to ka, and
we need this to be a nonzero residue, hence a and 7 + 1 must be co-prime.

Therefore, such a family must be of the form

F={a+ki(n+1); ki€Z,1<ig<n, a€Z, (a,n+1) =1},

and this describes all solutions.

(The number of families made of distinct positive integers between 1 and n?+n
is therefore equal to ¢(n + 1), since 1 +n(n+1)=n?+n+1istoo large (while
n+(n—1)(n+1)=n’+n—1<n2+nis0K))

""This is of course reminiscent of Erdds’ carly and folklore method in showing that such a family
must have a partial sum divisible by n.
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Problem 2. Letay,as,...,a, and by, ba, . . ., by, be real numbers so that a; <
b, foralli =1,2,...,n,and by +ba + -+ +bp < 14+a1+ a2 +---+a,. Prove
there exists ¢ € R such thatforalli = 1,2,...,nandk € Z

(ai +k+c)(bi+k+c)>0.

Solution. The condition is equivalent to no integer —k to be found in any
interval [a; + ¢,b; + ¢], i.e. in the translates by ¢ of [a;, b;]. Moreover, the sum of
the lengths of these intervals is known to be less than 1, since Y., (b — a;) < 1.

We are thus asked to show that the union S of a (finite) set of non-degenerate
intervals, of total length less than 1, may be translated such that it becomes disjunct
of Z. For all k € Z, consider the sets Sy = S N [k,k + 1) and their translates
Sy — k C [0,1). Due to possible overlaps, the total length of the union U{S), —
k;k € Z} is at most equal to the total length of the union U{S;k € Z} = S,
hence less than 1. Therefore, there exists —c € [0,1) \U{Skx — k; k € Z}, whence
(S+e)nzZ =02

Problem 3. A convex hexagon ABCDEF has all sides of length 1. Prove
that one of the radii of the circumscribed circles of the triangles ACE and BDF

is at least 1 long.

Solution. Suppose both radii are shorter than 1. Let O be the circumcenter of
triangle ACE. Then ZAOC > £LABC, LCOE > /CDE, ZEOA > LEFA.
The following possibilities may occur:

a) triangle ACE is not obtuse-angled, hence it contains O, therefore ZAOC +
LCOE + LEOA = 2m;

b) triangle ACE is obtuse-angled,® hence it does not contain O, therefore
LAOC + LCOE + LEOA < 2.

2This is the one-dimensional equivalent of the fact that a family of simple closed curves of total
interior area less than 1 may be positioned in the plane such that it contains no lattice point, with

similar proof. G ization to higher is readily done.

3This case, in fact, can never occur, as a little bit of trigorometry will show, like in (C. Platon)
alternative algebraic solution. Then, of course, one of the radii is at most 1 long, with similar proof.
Moreover, if one of the radii is of length 1, the other one is also with necessity of length 1, and this
happens iff the hexagon has parallel opposite sides.
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In both cases ZABC + ZCDE + ZEFA < 2x. A similar reasoning, for
triangle BDF, yields ZBCD + ZDEF + /FAB < 2. Summing these two
inequalities gives the sum of the angles of the hexagon to be (strictly) less than 4,

contradiction.

Problem 4. Prove that, given any convex polygon P with n sides, there exists
aset S of n—2 points interior to P, such that the interior of any triangle determined

by three of the vertices of P contains exactly one point from S.

Solution. Let0,1,...,n — 1 be a cyclical indexing for the vertices of P, and
* a fixed point interior to the side [n — 1,0]. Foreach i € {1,...,n — 2}, consider
one point each 4’ interior to the segment intercepted by the triangle [ — 1,4,i + 1]
on the segment [, x]. The set of the points i’ satisfies the stated requirement, since
from the convexity of P, for any i, j, k distinct vertices of P, one only of the
segments [i, *], [, %], [k, *] contains a point interior to the triangle [¢, j, k], while

all points £’ with £ # 0,1, j, k,n — 1 are clearly exterior to it.

Alternative solution. This solution allows for choosing the point ¢’ anywhere in
the interior of the intersection of the pair of triangles [ —1,,i+ 1] and [n— 1,4, 0],

and provides a neat proof by induction that the stated requirement is fulfilled.

Alternative solution. This solution allows for choosing the point i’ anywhere
in the interior of the intersection of the pair of triangles [i — 1,4, + 1] and [n —
i,4,m —i— 1], fori # 0 and i # |n/2], but the proof is slightly more arduous.

Problem 5. Determine the greatest common divisor of the numbers
2561 — 2,3%1 —3,...,5615%" — 561.

Solution. More generally, for integer n > 3,* we must find the g.c.d. of the

4The use of 561 is a harmless joke; it hints to the notion cf Carmichael number (odd composite
n such that a®~1 = 1 (mod n) for all integers a with (a,n) = 1), with the smallest example being
561 =3-11-17.

In effect our solution proves Korselt's result of 1899 that n is Carmichael if and only if n is squarefree
and such that p — 1|n — 1 for each prime p that divides n.

1t is known, since the 1990’s (Alford, Granville & Pomerance), that there exist infinitely many
Carmichael numbers.
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numbers

22" = 1),33" 7 —1),...,n(n™t — 1).

Let p be a prime dividing all these numbers.

Ifp > n, thenp|1"~1 — 1, p|2n=1 — 1, ... plr"1 — 1, hence 1,2,... fare
roots for the polynomial z*~! — 1 in Zy[z], therefore z"~ — 1 has n roots in L,
which should imply this is the null polynomial, absurd.

If p < n, then p[1™ — 1, p|2" — 2, ..., p|n™ — n; it follows that pla™~1 — 1,
where @ € {1,2,...,p— 1}, hence 1,3, ... ,p/—\i are roots for the polynomial
@™~ — 1in Zy[z]. But they are also the roots of the polynomial zP—1 — 1, from
Fermat’s Theorem. Therefore 2P~ — 1 divides z"~} — 1, whence p — 1jn -1,
since forn —1 = g(p— 1)+ 7, with0 < 7 < p—1, wehave 2"~ — 1 =
@ (29P=1) — 1) + (27 — 1), 50 2P~ — 1 divides 2" — 1, whence r = 0.

Conversely, for p — 1|n — 1, it follows from Fermat’s Theorem that pla® —a
for all a, hence p divides all the numbers in the statement.

Finally, since p? does not divide p(p"~* — 1), p* cannot divide all numbers
2" —2,3" - 3,...,n" — n, hence the sought after g.c.d. is squarefree.

Based on the above, the sought after g.c.d. is
II »
P prime
p=1ln—1
In particular, the greatest common divisor of the numbers in the problem (n = 561,

hencen—1=560=24~5-7)i52~3-5<11-17'29441-71-113-281.

Problem 6. Letn > 3 be an odd integer. Determine the maximum value of
the cyclic sum

E=|z, =zl + V] — 3|+ + V]zay —zn| + V|20 — 21,
for0<z <1,i=1,2,...,n.

Solution. We will show sup E = n ~ 2+ /2, the bound being attained by
taking, for example, z; = §,2, = 1,23 = 0,...,z,_1 = 1,2, = 0.
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Suppose the above maximum is achieved 5 for the values ai,az,...,a,. Then
either all a; are 0 or 1, or there exists an a; with 0 < a; < 1.

If a; = aj4; for some j then E < n — 1 < n — 2 + /2, worse than the
claimed result. In the first case, a; = a;4, for some j (since n odd), hence the
above applies.

In the second case, a;—1 < a; and a;41 < a; is impossible, since takinga; = 1
would achieve a larger value. Similarly, a;_, > a; and aijy1 > a; is impossible,
since taking a; = 0 would achieve a larger value.

Thus a;—1 > a; > ai41 or vice-versa. In both cases

1
Vl0ai-1 = ail + Vlai — ai1] < 24/ §|a¢—1 —ain| < V2.
Since clearly
> Vl0aj —ajnl<a-2,

JAi—1,i

the claimed result follows.

Problem 7. Does it exist a sequence of integers 1 < a; < a3 < a3 < --- such
that, for any integer n, the set {ax +n;k = 1,2,5,...} contains a finite number

of primes?

Solution. Consider the sequence given by ay, == ((2k)!)! + k!.

For [n| > 2 and k > |n|, we have n|a; + n and ay, +7n > 2|n|, so |n|is a
proper divisor of a;, + n.

Forn = 0 and k > 2, we have k|a; and a, > k, so k is a proper divisor of
ap +n.

Forn=1andk >1,wehave k! +1jax +Llandap +1 > k! + 1,50 k! + 1 is
a proper divisor of ax + n.

Forn=—landk > 3,wehave k! — lla —landaz —1 > k! — 1,s0 k! — 1

is a proper divisor of ax + n.

Alternative solution. Consider ay, = (k!)3.

5The fact that the supremum is achieved is a consequence of Weierstrass’ Theorem, E being con-
tinuous in variables 21,22, . .., Zn, defined in the compact unit n-hypercube.
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The situation is clear for n = 0, while for |n| > 2 and k > |n, |n| is a proper
divisor of a, + n.

Forn=1andk >1,wehavek!+ 1|lay +1andar +1>k!'+1,s0k!+1is
a proper divisor of aj + n.

Forn = —landk > 3, wehave k! — 1jap —landar —1 >kl — 1,s0k! — 1

is a proper divisor of a;, + n.

Problem 8. Prove that any convex pentagon has a vertex whose distance to the
support line of its opposite side is strictly less than the sum of the distances from

its neighbouring vertices to the same line.

Solution. Let0, 1,2, 3,4 be a cyclical indexing for the vertices of the pentagon.
From all peripheral triangles [i — 1,4, i + 1], consider one of minimal area; wlog we
may assume it is [4,0, 1. We will show vertex i is one suitable for the statement.
Denote by A[F] the area of a figure F.

The condition in the statement comes to

Al0,2,3] < A[1,2,3] + A[2,3,4],
equivalent to

A0,1,2,3,4] = A[0,1,2]+ A[0,2,3] +A[0,3,4]
< A0, 1,21+  A[1,2,3] + A[2,3,4] +.A[0,3,4].

Let * be the meeting point of diagonals [1, 3] and [2,4]. Since triangles [1,2, 3]
and [2, 3, 4] partially overlap, we have

A[0,1,2,3,4] < A[%,0,1] + Al*,4,0] + A[1,2,3] + A[2,3,4].

Let us notice that A[x,0, 1] is a convex combination of A[0, 1,2] and 4[4, 0, 1].

Due to the minimality of A[4,0, 1], we have 4[0,1,2] > A[4,0,1], hence
Al*,0,1] < A[0,1,2]. Similarly, A[*,4,0] > A[C, 3, 4]. Together, these few last
inequalities yield the one we identified as needed.

Problem 9. Determine the minimum number of edges that a connected graph
with n > 3 vertices may have, if each edge belongs to at least one triangle.
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Solution. Let us first build some models having the stated properties.®

For odd n = 2k+1, a possible model is made by k triangles articulated around
a common vertex (call this configuration a k-windmill with k wings); the number
ofitsedgesise = 3k = §(n — 1) = 53,

For even n = 2k, a possible model is made by a (k — 1)-windmill plus one
triangle “glued” by one side to the free side of a wing; the number of its edges is
e=3(k—1)+2=8k—1=3n-1="32 =303 4 1

Denote by e, the minimum number of edges sought after; these models show
that e, < [3%737], 50 2e,, < 3n.

On the other hand, consider such an extremal graph G = (V, E), with [V| =
n > 3and |E| = ey, and so 2| E| < 3|V/|. For any vertex v the number of incident
edges is at least 2 (i.e. deg(v) > 2), since if 0 — the vertex would be disconnected,
while if 1 — that edge could not belong to any triangle. But then 3 ., deg(v) =
2e, < 3n, hence there exists (at least) one vertex = with deg(z) = 2. Denote by
¥, z the neighbours of z; then zy, 2z and yz are edges.

If [z, y, z] is the only triangle containing the edge yz, then remove the vertex =
(together with edges 2y and zz) and collapse y and z (thus removing the edge yz),
to obtain a graph G’ = (V', E') with the stated properties, and |V'| = |V| — 2,
|E'| = |E| — 3, while otherwise just remove the vertex z (together with edges zy
and zz) to obtain a graph G’ = (V', E') with the stated properties, and |V'| =
|VI-1,|E'| = |B| -2

In both cases |E| — |E'| > 3([V| - |V']), and 2|E'| < 3|V|. Continue this
procedure until left with one triangle, therefore ¢, > 3 + %(n -3) = %
Putting together the bounds on e, we conclude that e, = [5=2].

Problem 10. Let triangle ABC have BC' < AB, and let points D on (AC),
E on (AB) be such that ZDEB = /DCB. It is given that point F lies in
the interior of the quadrilateral BCDE, and the pairs of circumcircles of triangles
BEF, CDF, respectively BCF, DEF, are tangent. Prove that points 4, C, E, F,

are concyclic.

SThese are not the only ones having the stated properties and that number of edges — any “cactus”,
or tree of triangles, articulated on vertices, will do for odd n, while for even n we cannot avoid having
one pair of triangles adjacent on one side.



82 SOLUTIONS

Solution. We will show that point F lies on the segment BD, such that
ZFEB = /DCF and £DEF = /FCB. Suppose F lies in the interior of tri-
angle BDE and consider the common tangent H for circles BEF,CDF; then
ZBEF = /BFI = LHFG = /FCG < /FCD, since point G (where BF
meets again the circle CDF) lies in the interior of the small arc DF. Similarly,
£ZDEF < ZBCF; by summing inequalities obtained so far we get the contradic-
tion ZBED < ZBCD. Moreover, from the above reasoning, /ZBEF = /DCF
and ZDEF = /BCF, whence ZEFC + LEAC = 180°, so the quadrilateral
ACFE is cyclic.

Problem 11. Let ABC be an acute-angled triangle, H its orthocenter and X
any point in the plane. The circle of diameter HX meets the second time the line
AH at point Ay, and the line AX at point Ay. Points By, B, and Cy, C, are
defined in a similar way. Prove that the lines Ay As, By Bs, C,C, are concurrent.

Solution. Denote by A', B', C" the feet of the altitudes from A, B,C.

We have /B1A;Cy = LB'HC = ZC'HB = /A, and analogues for B and
C, hence triangles ABC and A; B, C, are similar.

Now, £B1A1 Ay = ZB1HAy = LXAC (since HA, LAX and HB, LAC),
and analogues for B and C. Therefore, in the similarity of the two triangles, A, 4,
corresponds to the isogonal of AX, and analogues for B and C.

Since AX, BX, CX are concurrent (at X!), it follows that their isogonals are
also concurrent, hence Ay Ay, By By, CyC, are concurrent.

Problem 12. For m and n odd integers larger than 1, prove that 2™ — 1 does
not divide 3™ — 1.

Solution. Denote M = 2™ — 1. Assume M|3™ — 1, then (3(*+1)/2)2 =
3 (mod M), i.e. 3 is quadratic residue modulo M.

But M = 1 (mod 3) (since m odd), hence (%} = 1. Then, since M odd and
(M, 3) = 1, we can use the quadratic reciprocity law for Jacobi symbols

i.e. 3 is not quadratic residue modulo M. , contradiciion.
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Problem 13. A group of people is said to be n-balanced if in any subgroup
of 3 people there exists (at least) a pair acquainted with each other, and if in any
subgroup of n people there exists (at least) a pair not acquainted with each other.

i) Prove that the number of people in a n-balanced group has an upper bound.
We may then denote by p, the maximal possible number of people in a n-balanced
group.

ii) Prove that p, < 51——1)5@1'31

iii) Compute, with proof, ps, p4 and ps./

iv) Prove that pg < 18.

Solution. (D.Schwarz)” We will formulate the solution using graph-theoretical
terminology, where G is a graph with the people as vertices, and edges between
people acquainted with each other. Denote by 4, respectively A, the minimum,
respectively maximum degree of the vertices of a n-balanced graph G' (thus con-
taining no complete K, subgraph).

i) Then |G| — 8, — 1 < n — 1, since all non-neighbours of a vertex must
be connected with edges. Therefore, |G| < n + 6,. We will use induction on 7.
Clearly, po = 2. On the other hand, one must have A, < pn—1, since the subgraph
made by the neighbours of a vertex will need be (n — 1)-balanced. Together,
the two inequalities yield |G| < n+ 6, < n+ Ap € N+ Py, 50 |G| <
n + pn—1, and therefore p, < n + pp—1 with equality needing, among others,
Op = Ay, ie. G to be (pp—1)-regular.

ii) Induction yields p, < n + Ln_—%(m = 5%”—*'22

iii) Now, p3 < 3 + p2 = 5, and a model for 1t is given by a graph on Zs as
vertices, with edges {{i,7} ;4,5 € Zs,i — j = +1(mod5) }. This is seen as
G = Cs, acycle of length 5.

The inequality above also yields ps < 4 + p3 = 9, only that then G’ would be
S-regular, impossible, since in a graph the number of vertices of odd degree must

"This is actually related to the Ramsey numbers R(p, ), as clearly R(n, 3) = pn + 1. The upper
bound R(n,3) = pn + 1 § EZD@HD) 4y nldl) _ (n41) pag peen established by Erdss,
while the exact values R(3,3) = 6, R(4,3) = 9, R(5,3) = 14 are known for some while. Even
R(6,3) = 18 is known, leading to pe = 17, and last known is R(7, 3) = 23.
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be even. Therefore ps < 8, and a model for it is given by a graph on Zg as vertices,
with edges {{i,j} ;1,5 € Zs,i — j = +1or 2 (mod 8)}.

Finally, ps < 5 + ps = 13, and a model for it is given by a graph on Z;3 as
vertices, with edges {{i,7} ;,j € Z13,i — j = +1,£2,£30or £5 (mod 13)}.

Checking that these model graphs are balanced is straightforward, but the
model for ps = 13 will have to be argued comprehensibly in order to be accepted
as solution.

iv) The inequality above yields now pg < 6+ ps = 19, only that then G would
be 13-regular, impossible, since in a graph the number of vertices of odd degree
must be even. Therefore, pg < 18.

A model to confirm this value however does not exist, as in fact it can be proven
that pg = 17.

Alternative solution. i) and ii) We will use edges between people not ac-
quainted with each other. The conditions translate into G not containing a K3,
and any n vertices having at least an edge between them.

Take any vertex v, with its n; neighbours; then any other vertex v,, with its
ng neighbours (among the remaining vertices after removing the first 1 +n;), and
so on, until vertex v, exhausting all vertices of G. Notice that neighbours of a
common vertex vy, must be unconnected, otherwise a K3 will be created.

Clearly, s < n — 1, otherwise vertices v1,v2, ..,Vn, being unconnected by
edges, will yield a contradiction. Also, we must have ny < n — k, otherwise
n — k + 1 neighbours of vy, together with vy, v2,.. ,vk—-1, being unconnected by
edges, will yield a contradiction. Therefore, the total number of vertices of G is at
most

A+ @=1)+A+E-2)+-+ 1+ =270EFD,
thus proving the assertions.

Problem 14. Consider the convex quadrilaterai ABC'D with non-parallel op-
posite sides. Let O be the meeting point of lines AC' and BD, P be the meeting
point of lines AB and C'D, and @ be the meeting point of lines AD and BC. Let
R be the foot of the perpendicular from O onto PQ, and M, N, S, respectively T,
the feet of the perpendiculars from R onto CD, BC, DA, respectively AB.
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Prove that the points M, N, S and T are concyclic.

Solution. We have ZTSN = £ZTSA+ £ZDSN and ZTMN = ZRMN —
ZRMT. Since quadrilaterals RT'AS and RSNQ are cyclic, and also quadri-
laterals RPMT and RNCM are cyclic, it follows that ZT'SN + ZTMN =
180° + ZPRA — ZQRC.

Let L be the meeting point of AC' and PQ. Since (L, O, A, C) is a harmonic
division, and ZLRO is a right angle, it is known that RO is the angle bisec-
tor of ZARC. Thus ZARO = ZORC, their complements are equal, and so
ZPRA = ZQRC. It follows that ZT'SN + ZT'MN = 180°, hence the quadri-
lateral M N ST is cyclic.

Problem 15. Given co-prime positive integers m, n, and integer s, compute
the number of subsets {z1,Z2,...,2m} C {1,2,. .,m +n — 1} having

T1+ T+ + T, = s(modn).

Solution. We claim the value of s is irrelevant, thus for any s the number of

m+n—1) )

Y
such subsets is ;( m

We may and will assume 1 € o3 < 22 < -++ < T, < m +n — 1, whence
OLyr=ar—k<<n—1foralll <k < m. ThevaluesO < y; <y2 <+ <
ym < n— 1 constitute therefore a non-decreasing multiset of m elements between
Oandn — 1, with Y yk = Y ey Tk — mimtl;

Modulo n, the shift function y, — yx + 1 adds m to Sy, yx (with n = 0),
and since (m,n) = 1, the n' iterate of the shift is the identity (and no lesser iterate
is s0). This is enough to establish a one-to-one correspondence between multisets

with different sums of elements modulo n, which is what we claimed will be.

Alternative solution. We will prove through mduction by k a more general

statement:
Given positive integers k, n, and integer s, the number of subsets

{z1,22,...,2x} C{1,2,...,k+n—1}

having
Ty + Ty + -+ 2z =t (modn)
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is the same for all t = s (mod k).

The statement is trivial for k = 1. For k > 1 there is a one-to-one corre-
spondence between sequences 1 < 71 < T < -+ < T < k+n — 2 with
Zlexi = s(modn), and 2 < 31 < yo < - - < yr < k+n— 1 with
2;;1 Yi = s+ k (mod n), realized by the shift functionz; — z; + 1 = Yi.

Forzpy = k+n—1wehavezp—1 < (k—1)+n—1and Zf;llzi =
s—(k+n-1)=s—(k-1)= s' (mod n), while for y; = 1 we have y» > 2
and Zf:z ¥i =(s+k)—1=s+ (k— 1) (mod n). Use the anti-shift function
Y = yi—1 i-1togetasequencel < 21 < 22 < -+ < 23—y € (k—1)4n—1
with S0 2 = S (i 1) = s+ (k=1) — (k= 1) = s = (s — (k= 1)) +
(k=1)=s"+ (k- 1) (mod n).

We are now within the induction step for k—1, since s'+(k—1) = s’ (mod (k-

1)), hence sequences 1 < #; < 3 < --- <z < k+n — 1 with Ele T; =
s(modn),and1 < 41 < y2 < -+ < yp < k+n — 1 with Zfﬂy,‘ =s+
k (mod n), have same cardinality. Iterative application of this result yields same
cardinality for all sums s + Mk, i.e. forallt = s (mod k).

Now, for k = m, due to the fact that (m,n) = 1, the values s + Mm range
through all residues modulo n, thus establishing the claim.

REMARKS. This problem is reminiscent of a recent IMO Shortlist one:
Given prime p > 2 and integer s, compute the number of subsets
A= {z1,29,...,3,} C{1,2,...,2p}

huving

Zy+ 22+ 4+ p = s (mod p).

A different approach is available here, based on generating functions. Let w be
a primitive p-root of unity, and consider the polynomial

2p
P@) =[(z - w') = (2P — 1) =2 — 207 + 1.
i=1
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On the other hand, the coefficient of z? in P(z) is

p—1 p—1
2]
(-1)? Z wZAGAnz_Eatwt=_2} with Zat — ( P),
A)Al=p =0 =0 p
where oy is the number of subsets A = {z1,22,...,z,} C {1,2,...,2p} having

1+ o+ + Tp =t (mod p).

Due to the fact that 1 +z + - - - + P~ is irreducibie (thus the minimal polynomial
in Z[z] having w as a root), it follows that a; = g — 2, forall1 < ¢t < p—1,
hence

() -2

2p’
+2(p—-1
(p) ¢ ) pp ,forall 1<tg<p—1.

ag = 2———— while a; =
p
Problem 16. For positive integer n > 2, prove that in any selection of at least

27~ + 1 non-empty distinct subsets of {1,2,...,n} there are three such that one

of them is the union of the two other.

Solution. The proof is by induction. For n = 2, there are only 3 = 2>~! + 1
non-empty distinct subsets, and {1} U {2} = {1,2}.

For n > 2 assume we have selected 2" + 1 non-empty distinct subsets of
{1,2,...,n,n+ 1}. If atleast 2" ! + 1 of them do not contain n + 1, then apply
the induction hypothesis. If at least 2"~ + 2 of them do contain n + 1, then, by
removing n + 1, there will remain at least 2"~! + 1 non-empty distinct subsets
(since at most one subset is {n + 1}), then apply the induction hypothesis.

Therefore, the only case left is with exactly 2"~! not containing n + 1, exactly
27~1 containing n + 1 (but not as only element), and {n + 1}. By removingn + 1
we are left with 2" non-empty subsets of {1,2,...,n}, and so two must be equal
to some non-empty subset A. But then B = AU {n + 1} is among our selection,

and we are finished.®

Problem 17. For what positive integers n does there exist a permutation o of
{1,2,...,n} such that the differences |o(k) — k|, | < k < n, are all distinct?

8The issue of the exact value of the mini inality of such ismoot. Forn = 2, 3,4,

the stated bound can actually be achieved, but for larger n we know of no exact formula.
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Solution. We claim such a permutation exists if and only if n = 0 (mod 4) or
n =1 (mod 4).

To see the condition is necessary, notice that those n distinct differences must
be, in some order, the numbers 0,1,...,n — 1, as 0 < lo(k) — k| < n—1,
1< k< n. Since 370 k = (n — 1)n/2 we must have

1 n n
("T)" =3 lo(k) — kI = 3 (k) — k) = 0 (mod 2).

k=1 k=1
Conversely, the permutation o, having [eﬂT"'l as unique fixed point, and otherwise

given by the (n — 1)-cycle, for n = 0 (mod 4)

n 3n n 3n n n n
-:Z,T+1,—+17——1,~--:—*‘1y§+1,5>,

1 -1,..
<,n,2,n 1, 1 1 3

while forn = 1 (mod 4), denotingn/ =n — 1

! 3n' n' 3n' n' n'
IS SRR Ly SO N A
<1,n+1,,n, gty tL R

clearly has the desired property. °

Problem 18. Let ABC be a triangle, and Ko, K, K, be the circles having its
medians as diameters. Show that if two of these circles are tangent to the incircle
of the triangle, then the third one is also tangent to the incircle.

Solution. Let £ be the nine-point circle of the triangle, A; be the midpoint of
the side BC', and A, be the foot of the altitude from A. By Feuerbach’s Theorem,
circle £ is internal tangent to the incircle. On the other hand, circle Ko shares the
chord A; Ay with circle £ (except for the degenerate case when 4; = A,).

Notice that K, = £ if and only if ZA = 90°, since the antipodal of A; in K,
is the midpoint of the segment AH (where H is the orthocenter of the triangle).
On the other hand, A; = A, is equivalent to AB = AC.

We claim that in any situation other than the ones described above, the incircle

is not tangent to X,. Recall that the segment A; A is a common chord for circles

9The differences between consecutive elements in the (n — 1)-cycle decrement by I fromn—110
L, with a gap at ["%‘J recuperated between the last and the first elements in the cycle.
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K. and &; but the incircle lies entirely on one side of the line A; A5. On the same
side, one of the circle segments from the circles K. and £ includes the other, since
the two circles do not coincide. Consequently, the incircle cannot touch the arc of
the outer segment, except when the tangency occurs at Aj or A,. But any of these
implies that the incircle touches the side AB at the midpoint or at the foot of the
altitude, hence ABC is an isosceles triangle — only that we assumed the contrary.

Thus circle K, is tangent to the incircle if and only if AB = AC or ZA =
90°. Likewise, circle Ky is tangent to the incircle if and only if BA = BC or
Z£B = 90°. These two situations can simultaneously occur if and only if triangle
ABC is equilateral, and then the third circle, K, is tangent to the incircle.

Problem 19. Let f(n) denote the maximum number of disjoint rectangles that
the unit square 2 in R? can be partitioned into, such that any horizontal or vertical
line intersects the interior of at most n rectangles. Show that

3-2"1—2< f(n) < 3" —2.
(Itis assumed that all the rectangles have sides parallel to the sides of I2.)

Solution. Call the rectangles in a partition ziles. To obtain the lower bound, we
proceed by induction. Clearly, f(1) = 1. Partition /2 into 4 subsquares. Take the
pattern achieving f(n — 1) and replicate it once into the upper left subsquare, and
once into the lower right one. We now have a pattern that satisfies the condition for
n. The number of its tiles is clearly 2f(n — 1) + 2, hence f(n) 22f(n—1)+2,
a recurrence that simply leads to f(n) > 3.2n1 .- 2,

In order to obtain the upper bound, define f(m, n) to be the maximum number
of tiles in a partition of some rectangle D, such that any horizontal line meets the
interior of at most m tiles, while any vertical line meets the interior of at most
n — call this the “(m, n) condition” (so f(n,n) = f(n)). 1° Clearly, f(k,1) =
f(1,k) = k, for any k. We will show that f(m,n) < 3(m+m)/2 _ 9 with the
above cases easily seen to verify. We will proceed by induction on m + n. The
result follows (easy calculation) from the following

10This is a case of proving a more general in order for induction to work. Obviously, it is

irrelevant that we work with initial squares or rectangles, of any dimensions.
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LEMMA. f(m,n) < 2f(m—1,n—1) +2+max{f(m,n—2), f(m—2,n)}.

Proof. Suppose we have a partition of D realizing f(m, n). Let L be the widest
tile that meets the left edge of D, let R be the widest tile that meets the right edge
of D, and let w(A) denote the width of rectangle A. Clearly, w(L) < w(D)
and w(R) < w(D), since otherwise we can partition L or R with m — 1 vertical
segments, thus increasing f(m,n). We now distinguish two cases.

(a) w(L) + w(R) < w(D). We first cut D along the vertical lines at the right
edge of L and left edge of R to get decompositions of three smaller rectangles.
Call these pieces the left, middle and right pieces; the middle piece may be empty.
Note that in this process, in general, new tiles may be created.

The left piece satisfies the (m — 1,n) condition since no tile touching the right
edge of D comes farther left than R. Now, if we collapse L in the vertical direction,
we obtain a rectangle satisfying the (m — 1,n — 1) condition; hence the left piece
has at most f(m — 1,n — 1) + 1 tiles. Proceed in a similar way for the right piece.
The middle piece satisfies the (m — 2,n) condition since no tile touching the left
or right edge of D extends into it. Hence it contains at most f(m — 2,7) tiles.

Thus we have f(m,n) < 2f(m —1,n — 1) + 2+ f(m — 2,n) in this case.

(b) w(L) + w(R) > w(D). We similarly define the left, middle and right
pieces; this time L and R both extend across the middle piece. As in the previous
case, the number of tiles in the left or right piece is bounded by f(m—1,n—1)+1.
The middle piece satisfies the (m, n) condition; however, if we collapse both the
remnants of L and R, it will satisfy the (m,n — 2) condition. But the 2 collapsed
remnants were already counted as part of L and R, in the left and right pieces.

Hence we have f(m,n) < 2f(m — 1,n — 1) + 2 + f(m,n — 2) in this case.

Thus the Lemma is proved.'! u]

11'The lower bound construction also extends to the general (im,n) condition, yielding f(m,n) >
2f(m — 1,n — 1) + 2, which has the solution f(m,n) > (m —n+3)-2"~1 —2,givenm > n
and f(m, 1) = m. Furthermore, it is easy to prove f(m, 2) = 2m.

PROBLEMS AND SOLUTIONS

JUNIOR BMO SELECTION TESTS

Problem 1. Let p be a prime number, p # 3, and let a, b be integer numbers
sothatp | a+ band p? | a® + b%. Show that p? | a + bor p? | a® + b°.

Solution. Suppose that p? { a + b. It suffices to prove that p? | a3 + b®. Notice
that p? | (a + b)® — 3ab(a + b), we infer that p | 3ab. Since p # 3 is prime, it
follows that p [ a orp | b. Since p | a + b, we get p | @ and p | b. Consequently,
p% | a® and p? | 8%, implying p® | a® + b%.

Problem 2. Prove that for any positive integer n there exists a multiple of n
whose decimal digits add up to n.

Solution. Let n > 1 and let 10¥, k € N. Consider all remainders of the
numbers 10* leave upon division by 7. Since there are only finitely many residues,
thereexistsa = 0, 1,...,n—1so that 10™ = a (mod n) for infinitely many values
ofm € N. Letm; > mg > -+ > m, be a string of such m’s. The number
A =10™ 4 10™2 + -+ + 10™~ has n digits equal to 1, the remaining ones are
all 0, so they add up to n. Moreover, A = na = 0 (mod n), so n | A, which
completes the proof.

Problem 3. Let ABC be an acute-angled triangle. Consider the equilateral
triangle A'UV, with A' € (BC),U € (AC), V € (AB) such that UV || BC.
The points B' € (AC) and C' € (AB) are defined similarly. Show that the lines
AA', BB' and CC' are concurrent.

. Solution. Consider the equilateral triangle BC A, erected outwardly on the
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side BC. The points A, A’, A; are collinear, through the homothety of center A
which maps points U, V to B, C, respectively.
Since the lines AA;, BB;, CC) are concurrent at Fermat-Torricelli point of

the triangle ABC, the conclusion follows.

Problem 4. Let ABC be a triangle and let D be the midpoint of the side
BC. On the sides AB and AC there are points M, N respectively, other than
the midpoints of these segments, so that AM? + AN? = BM2_+ CN? and
ZMDN = ZBAC. Prove that A = 90°.

Solution. Let E and F be the midpoint of the sides AC' and AB and let P be
the reflected image of D across E.
Rewrite AM? + AN? = BM?* + CN? as (£ + FM)? + (§ - NE)? =
£~ FM)? + (L + NE)>, togetc- FM = b- NE. Then ¥ = JE <o
M — B Since ZMFD = /NEP, we get AMFD ~ ANEP, which
implies ZM DF = ZNPE. On the other hand, ZMDN = £ZBAC = ZFDE,
so ZMDF = Z/NDE.
Now, the triangle NPD is isosceles and NE is a median in this triangle, so

NELDP,thatis A = 90°.

Problem 5. Letn € N, n > 2 and let ay, as, . . . a,, be integer numbers such
that 0 < ar < k,forallk =1,2,...,n.Ifa; + a2 + - - + a, is even, prove that
that

aytayt---+ta, =0,

for some choice of the signs “+” and “-”.

Solution. Consider A,—1 = ap —ap—1. Sincean, < nand a,—; > 1, we have
Ap—1 <n—-1

If Apoy = 0, thatis ap—1 = an, thenay + ag + - -+ + ap_2 is even and the
claim reduces to the case of n — 2 numbers.

If Ap—1 > 0,thenay +az + -+ ap—2 + Anp—1 is even and the claim reduces

to the case of n — 1 numbers.

Problem 6. Consider an acute-angled triangle ABC, the height AD and the
point E where the diameter through A of the circumcircle meets the line BC.
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Let M, N be the reflected images of D across the lines AC' and AB. Show that
ZEMC = Z/BNE.

Solution. Notice that AD = AN = AM and ZANB = ZAMC = 90°, due
to the reflections across AB and AC'. The lines AD and AE are isogonal cevians,
that is ZBAD = ZEAC. Then ZNAE = ZNAB + /BAE = /BAD +
LBAE = Z/EAC + £/DAC = LEAC + LCAM = ZEAM and consequently
ANAE = AEAM. 1t follows that ZENA = ZEMA, so ZBNE = 90° —
ZENA=90°—- ZEMA = ZEMC, as desired.

Problem 7. Let ay,as,...,a, be a sequence of integers such that ay, is the
number of multiples of k in the sequence, forall k = 1,2, ..., n. Find all possible
values of n.

Solution. Notice that a; = n, for 1 divides all a;, and that all a; < n.

Consider an n-by-n array whose (i, j)-entry is 1 if 7 divides a;, and 0 other-
wise. We use double counting. For each 7, the sum of the entries of the i-th row is
a;, so the sum of all the array is a; + -+ - + ap.

On the other hand, for each j, the sum of the entries of the j-th column is the
number of divisors of a;, which is smaller than a,, unless the latter is 1 or 2. So,
the sum of all entries of the array is smaller than a; + - - - + ay, unlessn = 1 or
n=2.

Alternative solution. Recall that a; = n and ¢; < n, forall: = 1,2,...,n.
Assume n > 3. Since ap—; > 1, the exists a multipleof n — 1, wheren—1 > 1, in
the given sequence; let ag, k£ > 1 be such a multipie. The condition a; < n shows
that ax = n — 1; in other words there, are n — 1 multiples of k in the sequence.
Since n and n — 1 are coprime, k does not divide a; = n, so k divides az, ..., an.
But k > 2 and k | an, therefore a, > 1. Thus n must occur at least twice in the
sequence, so, beside a; we have a; = n, j > 1. Hence k | n, a contradiction. As
before, n = 1 or n = 2 are the only possible values.

Problem 8. Letn € N* and letay, as, .. ., ap be positive real numbers so that
1 1 1
Gtat o tan= 5+ g+t
ay a3 an
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Prove that for any m = 1,2...,n, there exist m numbers among a; whose sum is
at least m.

Solution. 1t is clear that we need to prove that a; + az + --- + a, > n. Let
us notice that this is enough: letm = 1,2, ...,n and assume that any choice of m
numbers among the a; yields a sum less than m. In particular,

ay+ax+---+a,p <m,

a2 taz+ -+ amp1 <M,

ant+ay+ -+ ap-y <m,

som(ay +az + -+ + a,) < nm, which is a contradiction.
Back to top, let g be the geometric mean of the numbers ay, as, . . ., a, and
suppose that a; +az + - - - + ap < n. By the AM-GM inequality,

ay+ax+---+a
ggtat o tan
n
while
1 1 1
1> atat-ta atat +;§>1
n - n /9_2»

which yields g > 1, a contradiction.

Problem 9. Let a, b be real numbers with the property that the integer part of
an + b is an even number, for all n € N. Show that a is an even integer.

Solution. Let [an + b] = 2z, for all integers n > 0. Then

2z, < an+b< 2z, + 1, @
2Zpt1 S a(n+1) +b < 2waqr + 1. (2)

Subtracting (1) from (2) we get 2(Zn41 — Zn) — 1 < @ < 2(Tp41 — ) + 1, for
alln > 0. Since 2(Tn41 — z5) — 1 is an odd integer, it follows that all numbers
2(Tn+1 — Tn) — 1 must be equal, otherwise a would lie in two open intervals
of length 2 whose left endpoints are at least 2 distance apart, which is impossible.
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Hence 2(zn4+1—2n)—1=25—1,8 € Z,50 Tny1 - Tn = s and then T, = ns+p,
p € Z,Yn > 0.Pluginto (I)to get2p —b < (a—2s)n < 2p— b+ 1,Vn > 0,
s0 a = 2s, for otherwise the set of positive integers would have an upper bound.

Observe that s is an integer, so a is an even integer, as required.

Problem 10. Ten numbers are chosen at random from the set 1,2,3,...,37.
Show that one can select four distinct numbers from the chosen ones so that the

sum of two of them is equal to the sum of the other two.

Solution. Consider all positive differences a — b among all 10 numbers. Since
there are C3, = 45 positive differences and all belong to the set 1,2,3, ..., 36, at
least two of them are equal. Let them be a — b and ¢ — d, with a > c. If a,b,¢,d
are all distinct, we are done; if not, then b = ¢, sc b = ¢ is one of the 8 numbers
which are neither the lowest nor the greatest number from the initial ones.

Now, observe that we have 45 positive differences and 36 possible values for
them, so either 3 positive differences are equal or there are 9 pairs of equal positive
differences.

The first case givesa —b=c—d = e — f, witha > ¢ > e. Since we cannot
have b = ¢, b = e and d = e, we are done.

The second case gives at least one pair of positive differences in which case
b = cis excluded, as only 8 candidates for b = c exist, so we are done.

Problem 11. Let a, b, ¢ be positive real numbers with ab + bc + ca = 3. Prove

that
1 1 1 1

< —.
1+a%(b+c) + 1+b2(c+a) + 1+c2(a+b)  abe

Solution. Using the AM-GM inequality we derive 225¢ee > 3/(abc)?. As
ab + be + ca = 3, then abe < 1. Now

1 1 1
Z1+az(b+c) _Zl+a(ab+ac) _Zl+a(3—bc)
1 1  ab+bc+ca 1
_23a+(1—abc)sz.3_a-_ 3abc  abc’
as required.

Problem 12. Find all primes p, g satisfying the equation 2p? — gP = 7.
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Solution. It is easy to observe that p is odd and p # ¢, in other words p > 3
and (p,q) = 1.

If ¢ = 2, then 2P+! = 7+p2. The only solution is p = 3, as 2"+ > 7+n2, for
alln > 4. For ¢ > 3, by Little Fermat’s Theorem we getp | 2¢ — 7and g | p+ 7.
Setp+7=kq keN.

If2g — 7 < 0, wehave g = 3 and p | -1, false

If2¢—7>0,then2g—7 > p,s02q > p+7 > kg, therefore k = 1 or k = 2.
For k = 1 we obtain p+7 = ¢, so p | 2p+ 7. This implies p = 7 and then ¢ = 14,
false. Hence k = 2 and p + 7 = 2q. Suppose p > ¢; as p,q > 3 we get ¢ > ¢P
and then 7 = 2¢? — p? > ¢ > 3% = 27, a contradiction. Thus ¢ > p and then
P+ 7= 2q > 2p, which yields p = 3 or p = 5. For p = 3 we have ¢ = 5, while
p = 5 gives ¢ | 12, with no solution.

To conclude, the solutions are (p, ¢) = (3,2), (3,5).

Problem 13. Letd be a line and let M, N be two points on d. Circles , 3, v, &
centered at A, B,C, D are tangent to d in such a manner that circles o, 8 are
externally tangent at M, while circles v, § are externally tangent at N. Moreover,
points A and C lies on the same side of line d. Prove that if there exists a circle
tangent to all circles e, 3,7, §, containing all of them in the interior, then lines

AC, BD and d are concurrent or parallel.

Solution. Let a,b, c,d be the radii of the circles a, 8,7, 8. It suffices to prove
that § = %; in other words the ratio ‘;— is constant while point M varies on line d.

Let R and S be the midpoints of the arcs determined by d on the fifth circle X,
the one tangent simultaneously to o, 3,+, 4, and let N be on the same side of d as
A. Denote by A; and By the tangency point of o and 3 to K, respectively. Observe
that points Ay, M, R are collinear — via the homothety which maps circle o onto
circle K — and similarly points By, M, S are collinear. Since RS is a diameter of
K, angles ZRA, S and ZS By R are right. If lines By R and A, S meet as point V/,
then M is the orthocenter of the triangle V RS. Notice that d L RS, hence V € d;
denote by O the intersection point of d and RS.

Lines A1S and B1 R intersect the circles o and 3 at points U and Z respec-
tively. Since ZRA;S = ZSB; R = 90°, the segments UM and ZM are diame-
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ters in circles «, 3, so % = % = %4 The latter ratio is constant, as claimed.

Problem 14. Let ABCD be a quadrilateral with no two opposite sides paral-
lel. The parallel from A to BD meets the line C'D at point F and the parallel from
D at AC meet the line AB at point E. Consider the midpoints M, N, P, Q of the
segments AC, BD, AF, DE respectively. Show that lines M N, PQ and AD are

concurrent.

Solution. Let O be the midpoint of AD, R be the intersection point of lines AC'
and BD and S be the intersection point of lines AF and DE. Since N and Q are
the midpoints of the sides DB and DE of the triangle DBE, we have O € NQ
and similarly O € M P. Moreover, as DRAS is a parallelogram, the diagonal RS
passes through the midpoint O of the other diagonal, AD. Now, apply Desargues
Theorem for triangles N RM and SPQ, given that O lies simultaneously on lines

-NQ, M P, RS and we are done.

Problem 15. Let m,n € N* and A = {1,2,...,n}, B = {1,2,...,m}. A
subset S of the set product A x B has the property that for any pairs (a, b), (z,y) €
S, then (a — z)(b — y) < 0. Show that S has at most m + n — 1 elements.

Solution. Consider a set S which satisfies all requirements. For eachi € A =
{1,2,...,n}, define B; C B the set of all elements j € B for which the pair (i, ;)
belongs to the set S —notice that some subsets B; can be empty. Counting all pairs
in S over all second element in each pair, we have S| = |By|+ |Bs| + - -+ +|By|.

The main idea is to observe the chain of ‘inequalities’
By < B2 << By,

where by X < Y we mean that z < y, forany z € X andy € Y, X,Y being
sets of integers. (This definition allows the empty set to occupy any position in
this chain).

Since By N By N...N B, = B = {1,2,.. ,m} and any two consecutive
subsets B; share in common at most one element, we get — by sieve thorem — that
|S] < m +n — 1, as claimed.
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Problem 16. Find all pairs of integers (m, n), n,m > 1 so that mn—1 divides

n® — 1.

Solution. The solutions are (k, k%) and (k, k), with k > 1.

We have mn — 1 | (n® — 1)m — n*(mn — 1) = n® — m. On the other hand,
mn—1|m(n?-m)— (mn—1)n=n—m?

Ifn > m? thenmn — 1 < n—m2 < n— 1,50 mn < n, false.

If n. = m?, then obviously m® — 1 | m® — 1, s all pairs (m,m2),m > 1 are
solutions.

If n < m?, from mn — 1 < n® — 1 we derive that /7 < m < n2. Then
mn—-1<m?>—n<m?—1s0n <m.Ifn2—m >0, weobtainmn — 1 <
n? —m < n®— 1,50 m < n, a contradiction. Hence n = m2, which holds, since

m3 — 1| m® — 1, s0 all pairs (n?,n),n > 1 are also solutions.

Problem 17. Determine the maximum value of the real number & such that
1 1 1
b —t—+———k) >k
(a+b+c) (a+b+ ot ae ) >
for all real numbers a, b, ¢ > 0 with a + b+ ¢ = ab + bc + ca.

Solution. Observe that the numbers a = b = 2, ¢ = 0 fulfill the condition
ab + bc+ ca = a + b+ c. Plugging into the given inequality, we derive that
4(%+%+%—k) >k, hencek < 1.

‘We claim that the inequality holds for k = 1, proving that the maximum value

of k is 1. To this end, rewrite the inequality as follows

1 1 1
b —_—t—t—=1]2>1
(@ +bc+ca)(a—i—bﬂ.b+z:+a.+c )/ <
Zm;ab_'_bc.*.w_;_l@
a+b

ab ab
> >
E <a+b+c),ab+bc+ca+l<:>2 a+b/1

. b b . . .
Notice that a“—+b 2 3%4s Since a,b,¢ > 0. Summing over a cyclic permuta-

tion of a, b, ¢ we get

ab ab ab+bec+ ca
> —_— =
Za+b/2a+b+c a+b+ec L
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as nedeed.
Alternative solution. The inequality is equivalent to the following:

atb+c 1 1 1
= — ) >k
s a+b+c+1(a+b+b+c+a+c)/k

Using the given condition, we get

1 L +;=a2+b2+02+3(ab+bc+ca)

a+b b4+c a+c (a+b)(b+c)(c+a)

_a®+ b0+ +2ab+betca)+atbte
- (a+ b+ c)(ab+ be + ca) — abe
_(a+db+c)a+b+c+1)

= )

(a+b+c)%—abc

hence
(a+b+0)?

= (a+b+c)? —abc
Itis now clear that S > 1, and equality holds iff abc = 0. Consequently, k = 1

is the maximum value.



PROBLEMS AND SOLUTIONS
BALKAN MATHEMATICAL OLYMPIAD

Problem 1. Let ABC be a scalene acute-angled triangle with AC' > BC. Let
O be its circumcenter, H its orthocenter and F the foot of the altitude from C. Let
P be the point (other than A) on the line AB for which AF = PF, and M the
midpoint of the side AC. PH and BC meet at X, OM and F X meet at Y, and
OF and AC meet at Z. Prove that points F, M,Y and Z are concyclic.

Solution. Since OM LAC, the conclusion is equivalent to OF LFX. This
can be proven in many ways. A first possibility is the analytical approach: take
coordinates F(0,0), A(a, 0), B(0, —b), C(0,¢), a,b,c > O and so P(~a, 0). Then
H(0,h), with & = &, hence h = 2. For the point O (252, 0) we have

a+b\’ 2 a-b\> 2
(T) +0—( 2 ) +(0—¢)?,
2

soo=¢ 2_6"", while the point X is the intersection of the lines

LY L LY
HP:i=—+ =1, BO:—+%=1,

whence X (ﬂ:—fb—__f;z, b—gg‘j—;él). Thus,

_blab—c*)a-b  bela—b)c*—ab _
FO-FX = e 3 tap e =0
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Another possibility is to show that ZOFE = ZCFX (E is the midpoint of
the side AB), by means of trigonometry. We have

wOFE = OE _ OAcosC cosC _ cosC
8 T EF t—acosB sinC-2sindcosB  sin(B - A)’

since sin C' — 2sin A cos B = sin(A + B) — 2sin A cos B = sin(B — A). Then,
from Ceva’s Theorem in trigonometric form applied in triangle PCF’,
sinCFX sinBPX sinPCX _

— — ——=1.
sin BFX sinCPX sinFCX

Now,
/BPX = /BAH =90° — B = LFCX,
ZCPX = ZCAH =90° - C,
/PCX = /PCF - ZFCB =90°—- A- (90° - B) = B — A.

It follows
inCFX inCPX i ° .
thF\X _ sinCFX _ sin CPX _ sin(90° - C) cosC ged.

sinBFX sinPCX sn(B-4)  sin(B - 4)
The official solution replaced trigonometric calculations with computations
based on triangle similitudes.

Problem 2. Does it exist a sequence a3, az, .. ., an, ... Of positive real num-
bers, which simultaneously satisfies

n
(i) 3" a; < n?, for all positive integers n;
i=1

n
(i) Y L < 2008, for all positive integers n?
=1
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Solution. The solution makes use of the AM-HM inequality and a computation
of a lower bound

2k+1 1 S 92k 92k N 92k i
'a_i Z okt > 2 2k+2 4"
=2k 41 a; Z a;
=2k 41 i=1
It thus follows
22" 1, ok? 1
n
Samarr (X 2> ten
i=1 ¢ k=0 \imgry1 %i 1

whence the claim, since this lower bound may be made larger than 2008.
Alternative solution. Use the inequality

n

1
Za, = 2z—]

which, in combination with the fact that the harmonic series is divergent, proves

the claim. The previous inequality is obvious when a; < 2t — 1,forall1 <t < n,
while otherwise, let us consider n fixed and replace step-by-step the terms of the
sequence, such that at every replacement to obtain a sequence (a})1<¢gn Which
satisfies (i), while Y1, 1/a} < Yo, 1/a;. The replacement is made using the
algorithm:

If t exists such that a; > 2t — 1, then take the largest index, r, having this
property, then the largest index, s, s < r, for whicha, < 2s—1 (such an index must
exist, otherwise 3 ;_; a; > r%) and perform the replacement a!, = 2r — 1,0} =
as + ar — (2r — 1), and a); = a; for the rest.

Each such replacement decreases by at least 1 the number of indices ¢ for which
a¢ > 2t — 1, the sums E 1 @i, t < sort >r, keep the same value, while

Za—Za. (@4 ap) K72 = (2r=1) 4+ (2 +1)) = £,

i=1

for s < ¢ < r. Moreover, the following inequality is immediate
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therefore each replacement diminishes the sum 3", . Thus, by at most n loops
in the algorithm, we obtain a sequence by, ba, ..., b, w1th b; < 2i—1,forall and

N |
2z

i=1 ¢ =1

'M=
S‘l*—‘

= 2i-1

Alternative solution. Suppose the sequence (Zn)n>1 = (Y ie; 1/ai)az1 is
bounded; it follows due to monotony that it is convergent, hence a Cauchy se-
quence. This shows that taking, for example, & = L , there exists N € N such that
0< zp—2m < 4, forall n > m > N. Using the Cauchy-Schwartz inequality

we get
2N ;
N? N*
Y oaz = T >N
i=N+1 S L 2N~ TN
i=N+1

a contradiction with
2N

3 oa <Za,\ (2N)? = 4N2.

i=N+1
Problem 3. Let n be a positive integer. Rectangle ABC'D, having the lengths
of its sides AB = 90n + 1 and BC' = 90n + 5, is partitioned in unit squares with
sides parallel with the sides of the rectangle. Let .S be the set of all points which
are vertices of these unit squares. Prove that the number of distinct lines passing

through at least two points of .S is divisible by 4.

Solution. By doubling the dimensions, we may consider to have a system of
coordinates with origin in the center of the rectangle and axes parallel to its sides.
Therefore, S = {(2a + 1,20+ 1) | a,b € Z,|a| < 45n, |b] < 45n + 2}. Now,
we partition the lines into four disjunct categories and show the number of lines
within each category is divisible by 4.

The first category is made of lines parallel to one of the sides of the rectangle;
their number is 90n + 2 + 90n + 6 = 4(45n + 2)

The second category is made of lines not passing through the center of the
rectangle (and not parallel to its sides) (Fig. 1); this class contains disjunct groups
of four lines each dy , da, ds, d4, symmetrical with respect to the center of the rect-

angle or to its symmetry axes.
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D C D____ —C
d, d,
A B A B
Fig. 1 Fig. 2

The third category is made of lines passing through the center of the rectangle
and some point of S situated within the square P of dimensions (180n + 2) x
(180n + 2), with sides parallel to those of the rectangle, same center, and included
in it (Fig. 2), except the diagonals of the square P. This class contains disjunct
groups of four lines each dj, d5, d3, dj, such that dj and d), are symmetrical with
respect to the first diagonal, while dj and dj are the symmetrical of d{ and dj with
respect to the vertical axis.

Lastly, the fourth category is made of the diagonals of P, as well as those lines
passing through the center of the rectangle and some point of S \ P; but no point
of S N P. These lines are characterized by having slopes of the form g, with ‘;3
irreducible fraction, g € {90n+3,90n+5},p odd and —(90n+1) < p < 90n+1.

To count these lines, notice the set of odd integers co-prime with 90n + 3
situated in the interval [-90n — 1, —1] is in a one-to-one correspondence with
the set of even integers co-prime with 90n + 3, situated in the interval [2, 90n + 2]
through the law z < z+90n + 3. Thus, the set of irreducible fractions of the form
50230 P 0dd, |p| < 90n + 1 has the same cardinality with the positive integers
co-prime with 90n + 3, situated in the interval [1,90n + 2], i.e. (90n + 3).
Similarly, the set of irreducible fractions of the form 552+, p odd, [p| < 90n + 3
has ¢(90n + 5) — 2 elements (missing are 90n + 3 and —(90n + 3)). Adding to
the sum the two diagonals of P as well, it follows that the fourth category contains
©(90n + 3) + ¢(90n + 5) lines.

Let’s show numbers ¢(90n + 3) and ¢(90n + 5) are divisible by 4. Since 3
and 30n + 1 are co-prime, ¢(90n + 3) = ¢(3)¢(30n + 1) = 2p(30n + 1) and
©(30n + 1) is even, while ¢(90n + 5) is divisible by (5) = 4, and the proof
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is done.

Problem 4. Let c be a positive integer. The sequence (an)n>1 is defined by
a1 =¢,an41 = a?, + an + ¢, for all positive integers n. Determine all values of
¢ for which there exist integers k > 1, m > 2 such that a2 + c* be the power m of

some integer.

Solution. From the recurrence relation we get a2 +¢® = an41 — @, and then,
foralln > 2

Qny1 — n = a2 — a2_; + an — @n-1 = (an — an-1)(@n + Gn-1 + 1).
+

We will show the factors a, — an—1 and an, + an— + 1 are co-prime. In effect, if
they would share a common prime factor p, thenp | (an—@n—1+an+an_1+1) =
2an +landp | (an + @n-1 + 1 — @n + an_1) = 2a,—1 + 1. From the relation

2(2an +1) = (2an-1 + 1) + (4c® +1)

it now follows p | (4c® + 1), while from the same relation for n — 1 it follows
p| (2an—2 +1)%, hence p | (2an—2 + 1). We deduce that p divides all numbers of
the form 2a; + 1,1 < s < n; in particular, p | 2a; + 1 = 2¢ + 1. But a routine
reasoning shows that (2¢ + 1,4¢® + 1) = 1, hence the assumption was false.

From the above it follows that, if ai +¢® = agy1 — ag, for k > 2, is equal to
the power T, m > 2 of some integer, then also ax — ag—1 = af_; + ¢ is equal
to the power m, m > 2 of some integer.

Therefore, to fulfill the requirement in the problem, it is necessary (and suffi-
cient) that a; + ¢® = c?(c + 1) be equal to the power m, m > 2 of some integer.
Since ¢? and ¢ + 1 are co-prime, while ¢? is a perfect square, the requirement in
the problem is fulfilled if and only if ¢ + 1 is a perfect square.'?

12From the above it also follows that, if a term ay, of the sequence fulfills the requirement, then
a? + c3 is a perfect square. But, for k > 2, a7 < af + c* < (a) + 1)?, hence the only term that
may fulfill the requirement is a1.



PROBLEMS AND SOLUTIONS
ROMANIAN MASTER IN MATHEMATICS COMPETITION

Problem 1. Let ABC be an equilateral triangle. P is a variable point internal
to the triangle and its perpendicular distances onto the sides are denoted by a2, b?
and c? for positive real numbers a, b and c. Find the locus of points P so that a, b
and ¢ can be the sides of a non-degenerate triangle.

Solution. The locus is the interior of the incircle of triangle ABC.

To prove this, embed the equilateral triangle in the Cartesian space Ozyz, as
the set in the plane z + y + z = 1 described by z,y,2 > 0. Let the feet of the
perpendiculars from P onto BC and CA be D and E respectively, and let the
feet of the perpendiculars from P onto the planes OBC and OCA be Q and R
respectively. Then triangles PQD and PRE are similar, so PQ : PR = PD :
PE;ie «:y = a’: b where (z,y,z) are coordinates of P. In the same way
wegety:z=0%:c% sowehave (a?: b2 : ¢?) = (z:y: 2).

Now if a, b and c are the sides of a triangle, the Heron’s formula states that the
square of the area of that triangle is
%(a+b+c)(-—a+b+c)(a —-b+c)(a+b-c).

So, this quantity is positive. The reverse is also true.
Multiplying the expression out, this means that a, b and c are the sides of a

2) 8- at > 0.

Since a2, b2, ¢? are proportional to z, y, z, it follows that a, b and ¢ are the sides of

triangle if and only if

a triangle if and only if

2 +y?+2) < (e +y+2)?=1
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So, the required locus of points is the intersection of the solid sphere 22 +y2+ 22 <
1/2 with the plane z + y + z = 1; that is the interior of the inscribed circle of the
equilateral triangle.

Alternative solution. Using a?,b?, c? as barycentric coordinates for P, in an
equilateral triangle of circumradius 1, one can calculate the distance from P to the
incenter 7, reducing thus the problem to an algebraic one. In fact, one can see the
similarity to the above solution.

Problem 2. Given positive integer a > 1, prove that any positive integer N
has a multiple in the sequence

(@n)nz1, an= [“_T:J

Solution. In what follows, all literals will represent non-negative integers. The
solution makes use of specific values for n, carefully chosen to facilitate the com-
putation of the floor function.

Clearly, there existe > 0, ¢ > 1 and

M=a""%, ged(ga)=1,

such that M is a multiple of N.
Let us consider values n = ap, with pprime, p > M. Then, by Fermat’s
Theorem (p > M > a, so ged(a,p) = 1)

a® - 1= (@ —1=0 (modp), soa™=a%kp+a*,
therefore, as n = a’p > a®M > a®*
n
an = [a—J =a%"¢.
n

On the other hand, kp = @2*(®-1) — 1, Assuming p — 1 = mep(q) we have
a®@ =1 (mod )3, therefore kp = 0 (mod g), s ¢ divides kp. Butp > M > g,
so ged(g, p) = 1, hence q divides k, so M (and a fortiori N) divides a,,.

We are left to prove that we can find such p—1=my(q), thatis, p > M must
belong to the arithmetic sequence of first-term 1 and ratio (g).

B3¢ is the Buler totient function, and ged(g,a) =1
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The existence of such p is guaranteed by Dirichlet’s Theorem' and that should
suffice in an international math competition.

REMARKS. We will however, for self-containment, present a proof for this
particular case of Dirichlet’s Theorem. '3

An arithmetical sequence of first-term 1 and ratio T contains infinitely many
primes (assumer > 2, asr = 1 or r = 2 makes it triviélly true).

We will denote by d, 1 < d < r, any (proper) divisor of . Let us consider the
polynomial X" — 1 € Z(X), factored in irreducible polynomials. Its roots (the
T-roots of unity) are

cosZkT7r +1isin %Tﬂ, with1 <k <,
and, for k = 1, the main primitive r-root of unity ¢ cannot be the root of any
polynomial X¢ — 1. Therefore, { must be root of an irreducible factor f (X) for
\'" — 1, which cannot be a factor for any X¢ — 1.'¢ Now

deg f
for alld, and f(X) = H (X - z),
i=1

T

Xd-1

£(X) divides

with z; among the 7-roots of unity, so |z;| = 1. Therefore, for any n > 2

deg f deg f
lfml = [ In-=l> I] In—lall = (=17 > 1.
i=1 i=1

Assume now there are only finitely many such primes ¢, and take n = 7 ] q.'7 As
|f(n)] > 1, there exists p prime, dividing f(n), and therefore dividing %}j—i for
all d. We then cannot have p dividing n¢ — 1 for any d, because

X% -1=(X - )P(X),P(X) = (X - )Q(X) + R,R=P(1) = 5,

14Djrichlet’s Theorem asserts the existence of infinitely many primes in an arithmetic sequence of

co-prime first-term and ratio.
15This effort is an improvement on a proof by A. Rotkiewicz.
161n fact (not needed here), all primitive roots, for ged(k, ) = 1, are the roots of a same irreducible

factor ®,(X), of degree ¢(r), which is the cyclotomic polynomial of order r. Then X" — 1 =
1 ®4(X), the product of the (irreducibl iC P it
d

Ir
17By definition [] ¢ := 1 if no such primes were to be selected.
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S0 %}:—} = P(n?) = (n? - 1)Q(n%) + %, while clearly n? — 1 and § are co-prime
(as r divides n), therefore p cannot divide 7.

This shows that n” = 1 (modp) and n® # 1 (modp) for any d, so r =
ord,(n). Butn?~! = 1 (mod p) (by Fermat’s Theorem), so we must have r divid-
ing p — 1, that is, p belongs to the stated arithmetical sequence. However, p # ¢
for any g considered in the above, as gcd(p,n) = 1, and thus we have found yet
another such prime, contradiction. [m]

Problem 3. Prove that any one-to-one surjective function f : Z — Z can be
written as f = u + v where u,v : Z — Z are one-to-one surjective functions.

Solution. (D.Schwarz) To find u, v such that f = u+w it is enough to consider
the case f = identity on Z. For that it suffices to write the above relation as
idz = wo f~! + v o f~1. Consider the following well-ordering of the nonzero
integers: Z* = {1,-1,2,~2,...,mn,—-n,... }.

Build the following table

Step A # B
1 1 +1 2
2 -1 -2 -3
3 -2 -3 -5
4 3 +4 7
k ay sign(ax) -k b = ag + #(k)

The inductive rule in completing the table is as follows: at step 1 write 1, the first
in the ordering of Z*, in column A, in column # put the number of the step, that
is 1, with the sign from A, and in column B the sum from A and #. Suppose now
that row of step i has been completed. Write on row ¢ + 1 in column A the first
integer in the ordering of Z* that has not yet been used in A nor B, in column #
the number i + 1 with the sign given by that of the number just written in A, and
in B the sum of A and #.
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Itis easy to see that in this manner we get an infinite array where AU B = Z.*
and AN B = (), while elements in A and B do not repeat.

Define now u(0) = v(0) = 0 and for z € Z

e forz = a; € A (meaning that z is in column A and row 1), take u(z) =
—#(),v(z) = b;;

o forz = b; € B, take u(z) = #(j), v(z) = a,.

Obviously, u and v are both bijections from Z to Z and idz = u + v.18

Problem 4. Prove that from among any (n + 1)? points inside a square of side
length positive integer 7, one can pick three, such that the triangle determined by
them has area no more than 1.

Solution. Although the topic of the problem may somehow appear familiar, the
solution involves a novel and ingenious mix of ideas, centered around estimating
areas of triangles using simple convexity inequalities.

Denote by A = n? the area of the square, by P = 4n the perimeter of the
square, and by N' = (n + 1)2 the number of points. The convex hull of the set of
N points will be a convex k-gon (contained in the given square), 3 < k < N, with
N — k points in its interior (if any three points are collinear, they will determine a
triangle of area 0, thus rendering the result trivially).

We will make use of the following folklore result:

Any triangulation of a (convex) k-gon, using m = N - k interior points, is made
oft=(k-2)+2m=2(N- 1) - k triangles."®

As the area of the convex hull k-gon is at most 4, it follows, using an averaging
argument, that there will exist a triangle A of area at most

A A
T T ANoD<k - f(k).
On the other hand, as the perimeter of the convex hull k-gon is at most P, one can

find a pair of consecutive sides, be them a, b, of lengths a, b, such that %b < %

'8The result follows immediately from Lindenbaum’s Theorem, stating that for any countable infinite
additive group G, every function u : N — G is a sum of three one-to-one surjective functions,
u = u'+u" +u" (but two only are not always enough). Just take u = 0, and then it's simple.

1The total sum of angles for the ¢ triangles is ¢r; but the vertices contribute (k — 2)m, while the
interior points contribute 2m, therefore t = (k — 2) + 2m.
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(this also is an averaging argument). Now, the area of the triangle A, determined

by a, b, is

1 X lra+b\2 P2
Eabsmé(a,b) < E( ) ) < 2 g(k).

Clearly, the bounds for the areas of triangles A, Ay depend on k, but f(k) is
increasing, while g(k) is decreasing, therefore the worst case occurs for the value
calculated in ko where the graphs of f and g meet
A _ P
2N -1)—ky 2k’
50 k§ = 16(n+ 1) — 16 — 8ko, hence ko = 4n. Both formulae £ and g, calculated
in ko, yield the value }, as required.

REMARKS. One can improve on the bound given by g(k); in fact it may be
proven that a triangle A, of area at most %‘;rsinz—k’L can be found. However, the
minimum value offered by f(k) is greater than %(#)2 which converges to }
when n grows large, thus thwarting any attempt to improve on the % bound. The

issue is (oim;m;sznd given by f(k), but it is difficult to find efficient
ways to bound from above the size of a least-area triangle for small k.

The author is far from claiming the result is tight (for large n), although better
estimates appear elusive; however the naive attempt to use the pigeonhole principle
in its simplest form (partition the side-n square into n? unit squares; then for any
2n% + 1 points inside the square there will exist three within a unit square, thus
determining a triangle of area at most %), necessitates almost twice as many points
as those afforded in the problem (except for n = 2, when 2- 22 + 1 = (24 1)2).
On the other hand, for n = 1, the result is best possible!

Moreover, using the %sin%” bound for Ay, one can prove for n = 2 that
there exists a triangle of area at most 3— (the critical point kg is moving from value
8to 7, when the correct answer is given by f(7) = %), a better bound than anything

found in the literature!
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Problem 1. For real numbers z; > 1,1 < ¢ < n,n > 2, such that
z
z;—1

n
;s=2ﬁﬁ foralli =1,2,...,n
i=1

find, with proof, sup S.

Solution. (D. Schwarz) For n = 2, S is unbounded to the right, since for the
pairs (v, ﬁ), where v > 1, we have S = % and then ,lll_’ml u—”_g—l = 0.

For n > 2, we will prove the tight upper bound S < n"—jl with equality iff all
T; = %

Consider the function f : (1,+00) — [4, +00), defined by f(z) = :—_21- Itis
straightforward to prove that f is strictly decreasing on (1, 2]. Let

n
M = maxazi;
=

thenML_ﬂ1 >S>M+(n—1), hence M < 221 < 2,50 z; € (1,2) forall i.

. . 2 2
Now, for m > 1, either z; > m for some %, and then S < z—x;— < %

(according to the monotonicity of f), or ; < m for all 7, and then clearly S’ <

nm. Solving the equation m’"—_i = nm, obtained by equaling the two possible

upper bounds for S, yields as unique solution 7o = %7, therefore, in all cases,
n_ 20

2 PR -
S< m_’;‘.ET =nmo = ;47, with equality iff all z; = ;25

208ince f(x) > S leads to a degree 2 trinomial, the same result may be obtained through the study

[ —
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Problem 2. Denote by C the family of all configurations C' of N > 1 distinct
points on the sphere S2, and by A the family of ail closed hemispheres H of S2.
Compute

max min |H N C|, min max [H N C|,
HeH CeC HeH CeC

max min |[HNC| and minmax|HNC)|.
CeC HeM Cec HeH

Solution. Denote by H := S?\ H.
Clearly,

maxmin|HNC| =0,
He# Cec

since for any H we may use C_ made of N points bunched together on H.
Similarly, clear

min max|HNC|= N,
HeH CeC

since for any H we may use C; made of N points bunched together on H.
It is rather more difficult to show that

N
max min |HNC| = {»—J s
CeC HEH 2

since for any C, considering a great circle I' which passes through no point of
C, by pigeonhole principle we have that for H, one of the two induced closed
hemispheres, |H N C| < |4 ]. On the other hand, for C,, defined as being made
of pairs of antipodal points (plus one more point when N odd), any H contains at
least | ¥ | points of C, as [H| + |H| = N,and |H} < [H| +1,* yield 2|H| + 1 >
N,so |H| = [Z%EJ > [%J
Finally, it is the most difficult to show that
maganol= |52,

For any C, considering a great circle I' which passes through two points of C,
by pigeonhole principle we have that for H, one of the two induced closed hemi-

of the discriminant, and of the positions of z;’s relative to its roots. However, the problem could be
generalized to some more general function f, with specific cha:acteristics.
2lPoints in H are matched by their antipodes in H, with (maybe) one unmatched when N odd.
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spheres, |HNC| > I-Q#J + 2. On the other hand, let us define configuration
Cl for N even.

Consider the tropic-circles on S2, and on each a regular %-gon‘ Now

o for % odd, take the two polygons both with a vertex on the 0 meridian,
making a regular &-prism;

o for —’;1 even, take one polygon with a vertex on the 0 meridian, and the other
with a vertex on the & meridian, making a twisted regular %~prism.

One can check that, for this configuration, any hemisphere H contains at most
¥ +1 = | ¥ points of Cy.22 This is more easily seen if the points lying
on one tropic-circle are projected onto the equatorial plane and colored red, while
the antipodes of the points lying on the other tropic-circle are projected onto the
equatorial plane and colored blue. We can now study the effect of planes through
the center of the sphere, inducing all possible hemispheres.

For N odd, augment Cy_; with any other more point, to obtain Cx. Then,
according to the results above, any hemisphere H contains at most (% + 1) +
1= [ﬂgﬁj points of Cy.

Problem 3. Prove that among N > 2n — 2 ntegers, of absolute value not
higher than n > 2, and of absolute value of their sum S less than n — 1, there exist

some of sum zero.
Show that for | S| = n—1 this is not anymore true, and neither for N = 2n—3

(when even for |\S| = 1 this is not anymore true).

Solution. (D. Schwarz) We may assume that the given integers are nonzero
(since any equal to zero may be selected), and S > 1 (since if negative, we may
multiply all numbers by —1, while if zero, itself may be selected). Let us denote

nL-m=n <M< S <0<pr < <m<pp=M<n

with v > 0, m > 0 (it is clear that from the conditions it follows that not all of the

integers have the same sign). Denote v* = v +1,7* =7+ 1,so0v* +7* = N.

22Notice that configuration C,, is not acceptable here, since a great circle T' passing through two
not opposite points of C' also contains their antipodes, so any cf its two induced closed hemispheres
contains at least 24 4 4 = & 4 2 points of C.

A
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Obviously, we should assume M + m < 2n — 1, since M + m = 2n would lead
to M = m = n, and then ny + po = 0.

The method applied is to consider some interval I of integer numbers, start by
choosing some given integer in 7 (as first sum o), then build sums o by adding
the other given integers one by one ( in some prescribed order), such that all these
sums are contained in I. The idea is to pack these sums as tightly possible in a
conveniently used interval. If the total number of these sums is greater than the
number of integers contained in 7, then, by pigeonhole principle, there will be two
of them equal. Then their difference (in itself a sum of the initially given integers)
will be zero. Call this reasoning principle Lemma.”

For once, in order to compress the solution, we will abdicate from our expos-
itive, self-explanatory method, and present a compact proof; different parts of it
might have been done in a different, simpler way.

Denote § = (2n — 1) — (M +m), so, according to the above, § > 0. Consider
the interval I = [~m + 1, M — 1 + 4], containing 2n — 2 integers, including 0.
Assume there exists a given integer € I. Start with o7 = z, and add p;’s, in any
order, as long as o5 € I or we run out of positives, then add n;s, in any order, as
long as 0, € I or we run out of negatives, then repeat, until this algorithm stops.
Notice that o5 < 0 allows adding a p; (05 + p; < -1+ M), while o, > 0 allows
adding an; (05 + n; > 1 —m). If ever we reach o5 = 0, we found a zero sum.

The outcome is that we end up with all possible N sums in I (since if we run
out of p;’s or n;’s, we continue with the others until we reachoy =S < n—2 <
2n—2—m = M — 1+ J), therefore, either one of them is 0, or else they can take
at most 2n — 3 < N values, and so Lemma applies.

Now, if M +m < 2n—2, whend > 1, we cantake = M € I, and the above
works. Assume then that M +m = 2n—1 (therefore one must be n, while the other
n — 1), when § = 0. It remains to settle the case when all given integers are taking
only the values —m or M, so n*M — v*m = S, with v* + 7* = N > 2n — 2.
Then (2n — 1)v* = (v* + 7*)M —= S > (2n — 2)M — (n — 2), wherefore

23This type of reasoning is known from the Erdds problem, of finding a subsum divisible by n within
any multiset of n integers.
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2n-1)(r*=M+1)2n+1-M >0,s0v* > M. Similarly, (2n — 1)7* =
(v* +7*)Ym+8 > (2n—2)m+1, wherefore (2n— 1) (7" —=m+1) > 2n—m > 0,
soT* > m.

But then we can choose m < 7* values M and M < v* values —m, in order
to realize a zerosumm - M + M - (—m) = 0.

The results are best possible, since for S = n — 1 we can exhibit a counterex-
ample consisting of v* = n— 1 negatives equal to —n+1and 7* = n—1 positives
equal to . No partial sum is zero, since pn — g(n — 1) = O needsn | ¢,s0 ¢ > n,
while only n — 1 such are available.

On the other hand, for N = 2n — 3 we can exhibit a counterexample consisting
of v* = n — 2 negatives equal to —n and 7* = n — 1 positives equal ton — 1,
when S = 1. No partial sum is zero, since p(n — 1) — gn = 0 needs n | p, so
p > n, while only n — 1 such are available.

PROBLEMS AND SOLUTIONS
MATH STARS MATHEMATICAL COMPETITION

Problem 1. Show that for any positive integer n there exists a positive integer
m such that

(1+V2)"=vm+vVm+1.

Solution. Through simple induction it follows that there exist two sequences

(an)n>1, (bn)n>1 Of positive integers such that
(14V2)" = an + baV2.

Using conjugates we have (1 —v/2)" = a,, — b, /2. Multiplying the two relations
yields (—1)™ = a2 — 2b2. Hence the numbers a2 and 2b? are consecutive positive
integers, but
(1+V2)" = Ve + V20,
which concludes the solution.
Problem 2. Determine the positive integers 7,  and y for which

27 — ¥+l = £1.

Solution. In both cases it is obvious n must be odd. Let us show first that
(n,z,y) = (3,3,1) is the only solution for the equation 2° —n¥*+! = —1. Rewrit-
ing the equation as

2 =ptt —1=(n-1)nY+n¥ 4+ +n+1),
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it follows y must be odd — otherwise n¥ +n¥=! + - +n+1 > 1 would be odd,
since n > 1 is odd. Hence

2 =pvt 1= (n(‘”'l)/2 - 1) (n“’“)/z + 1) .

Since (n(v+1)/2 — 1,nvtD/2 4 1) = 2, it follows that n(v+1)/2 _1 = 2, whence
n =3andy = 1, so z = 3. The numbers thus determined satisfy the equation.
Consider now the equation 2° — n¥+! = 1. We will show its solutions are
(n,z,y) = (1,1,y), wherey € N* is arbitrarily chosen. If n = 1, we immediately
obtain the family of solutions in the above. Let thenn > 1, n odd. If y is odd,
then y + 1 is even, hence n¥*t!l = 1 (mod 4), since n is odd. Therefore, 2% =
n¥+t! 41 =2 (mod 4), i.e. z = 1, impossible for n > 1. If a y is even, then

2=n 4l=n+1)(nY-n¥" 4+ —n+1).

Since n is odd and y is even, the number n¥ — n¥~! +--- —n + 1 is odd, so it
must be equal to 1. Therefore, n¥*! +1 = n+ 1, impossible forn > 1 and y > 0.

Problem 3. Let ABC be a triangle and A;, By, C; be the feet of the altitudes
from A, B, C. Let A,, respectively As, be the orthogonal projection of A; onto
AB, respectively AC'; points Bz, B3 and C3, C3 are defined in an analogous way.
The lines By B3 and CyC3 meet at A4, the lines C2C's and Ay A3 meet at By, while
the lines A, A3 and B, B3 meet at Cy. Show that the lines AA4, BB4 and CCy

are concurrent.

Solution. The gist of the problem is points Az, A3, Bz, B3, C2,C3 are con-
cyclic. ’

A first claim is that Ay A3 is anti-parallel to BC', since quadrilateral AA; A, A3
is cyclic, s0 ZAAy Az = LAA; A3 = 90° — LA3A,C = LACB.

The next claim is that B3Cs is parallel to BC'. Since quadrilateral By Cy B3C»
is cyclic, it follows ZAB3;Cy = ZAB;Ch, but ZAB;C; = ZABC since the
quadrilateral BCB; C is cyclic. Hence ZAB3Cy = ZABC. Next we show that
the quadrilateral A, A3 B2Cs is cyclic, since A3 By being parallel to AB, we prove
as above. Hence /B3 A3C = /BAC, and as A; A3 is anti-parallel to BC, it
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follows that ZAA3 Ay = ZABC. Therefore, ZA3A3By = 180° — ZAA3A> —
£ByA3C = 180° — ZABC — Z/BAC = LACB

Thus ZA2A3B; = ZACB, and as A,Cj is parallel to BC (again, similarly
with the above), it follows that ZA,C3 B, = 180° — ZACB, hence ZA3A3Bs> +
£ A3C3 By = 180°, so the quadrilateral A2 A3 B,C3 is cyclic.

Next, we show the quadrilateral CoC3B2 A3 1s cyclic. Since C>Cj3 is anti-
parallel to AB, it follows that ZCC,C3 = ZABC. Since ByAj is parallel to
AB, it follows that ZCBy; A3 = ZABC. Hence £LCC>C3 = ZCByAgz, so the
quadrilateral C,C3 By Aj is cyclic. From all of the above it follows that C, as well
as A, lie on the circumcircle of triangle AC3B3 A3, so points Az, Az, C2,Cs, Bs
are concyclic. Similarly, we show that Bs lies on this circle, so all six points are
concyclic.

Let A’ be the meeting point of lines A; A3 and BC, B’ be the meeting point
of lines By B3 and AC, and C’ be the meeting point of lines C2C3 and AB. We
claim A’, B',C" are collinear. Let us apply Pascal’s Theorem for the six points
A,, A3, Cs,C3, By, Bs. Since Ay A3 N C3By = {A'}, A3C2 N ByB3 = {B'},
C,C3 N B3A; = {C'}, it follows that the claim is valid.

But from the fact that A’, B, C" are collinear it follows that triangles AABC
and AA4B4C, are perspective, since BC' N BysCy = {A'}, AC N A4Cy = {B'},
AB N A4By; = {C'}. Applying Desargues’ Theorem yields the fact that lines
AA4, BBy and CCy are concurrent, closing the proof.

Problem 4. At a table-tennis tournament, the n > 2 participants play, each
against each, exactly one match. Show that exactly one of the following two situ-
ations occurs at the end of the tournament:

(1) the n participants can be labeled with the numbers 1,2, ..., n such that 1
beat 2, 2 beat 3, and so on, n — 1 beat n and n beat 1;

(2) the n participants can be partitioned in two non-empty sets A, B, such that
every member of A beat each member of B.

Solution. (D. Schwarz) In graph-theoretical terrinology, let G be the complete
digraph of the participants, with edges orientated from winners toward losers. If
there exists a player who won no match, i.e. was beaten by all other (vertex of
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out-degree zero), then we can take as B that player (and A the rest of the players),
to fulfill case (2). Otherwise, we can start from an arbitrary vertex an oriented path
which, due to G being finite, must pass again through some vertex, thus creating
a cycle. Let I be a maximal length cycle. If it contains all vertices, the case
(1) occurs, through this Hamiltonian cycle. If not, and z is a vertex exterior to
' = ¢icy ... cmer, consider the orientation of the edge zc;. We must have zc,,,
otherwise we can build the cycle ¢ycs ... cmzer, longer than I'. Similarly, we
must have z¢; for all i = 1,2,...,m. If the orientation of the edge is ¢;z, a
similar reasoning yields ¢;z, for all i = 1,2,...m. Let X be the set of vertices
of the first kind, and Y’ that of the vertices of the second kind; X and ¥’ cannot
be simultaneously empty. If X = (), wecantake A =T, B =Y. IfY = 0, we
‘cantake A = X and B = I. If X and Y are both non-empty, it follows that for
any z € X and y € Y we have the orientation of the edge zy, otherwise we build
the cycle zc¢y ... cpyz, longer than I'. Then we cantake A= X, B=TUY (or
A = XUT, B =Y). Obviously, situations (1) and (2) are mutually exclusive,
since a graph satisfying property (2) cannot contain a Hamiltonian cycle, as no
edge is oriented from B toward A.

Problem 5. Show there uniquely exists a function f : N* x N* — N* which
simultaneously satisfies the following three conditions:

1) f(z,y) = f(y,z), forall z,y € N*;

(2) f(z,z) = z, forall z € N*; and

3) (y—z)f(z,y) =yf(z,y —z), forallz,y € N,y > z.

Solution. The function f(z,y) = lem(z,y) fulfills the conditions from the
statement. To prove its uniqueness, let us assume the existence of two such func-
tions, f and g, f # g. From all pairs (z,y) for which f(z,y) # g9(z,y).
let us choose one (zo,yo) such that the product royo be minimal. Condition
(2) implies =y # yo, while condition (1) allows us to suppose in the sequel
that zo < yo. Since zo(yo — To) < ToYo, the minimality condition implies
f(zo,y0 — 7o) = 9(z0, Yo — To)- Due to (3)

(0 —0) f (20, 0) = Yo f (%o, Yo — o) = Yog(0,%0 —Ta) = (yo —T0)9(Z0,Y0),
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i.e. f(zo,y0) = 9(zo,Yo), contradiction.
Another way would be to notice that, through induction on z + y, the values

of the function f are uniquely determined to be f(z,y) = lem(z,y).

Problem 6. Let have n > 3 points in the space, four by four non-coplanar,
any two of them connected by wires.

(1) By cutting the n — 1 wires that connect one point from the others, that point
is disconnected (becomes isolated). Show that cutting less than n — 1 wires does
not disconnect the structure.

(2) Determine the minimum number of wires needed to be cut, in order to

disconnect the structure, with no point becoming isolated.

Solution. (D. Schwarz) The complete graph K, of order n has (%) edges.
Let N be a number of edges which, by being removed, disconnect K, and let
m be the least of the orders of the connected components thusly obtained. Then
n(n=1)/2=N < m(m—1)/2+ (n—m)(n—m -1)/2,hence N > m(n—m).
Since > 1, it follows that N > n — 1, which solves part (1) of the problem.
If, moreover, m 3> 2, then N > 2n — 4. An example realizing exactly this value
is given by the (n — 2) + (n — 2) edges which connect two of the points with the
other n — 2. This solves part (2) of the problem.?*

Problem 7. Let Ag--- Ap—1 be a regular n-gon. For each index 4, consider
a point B; lying on the side A;A;11, such that AiB; < ;—A,‘A,;H, and a point
C; lying on the segment A;B; (indices are reduced modulo n). Show that the
perimeter of the polygon Co - - - Cp—1 is at least as large as the perimeter of the

polygon By - - - Bp_1.

Solution. The conclusion follows by repeated application of the following

Lemma. Let ABCD be a convex polygonal line (points A and D are situated
on the same side of line BC'), such that AB = CD and ZABC = /BCD.
Let K, M and N be points lying on the segments AB, BC and CD, such that

24A11 follows from the fact that the function m + m(n — m) is non-decreasing for 1 < m <
|n/2], which is exactly the variation interval for m, since there will be at least two connected compo-
neats.



122 SOLUTIONS

AK < L1AB,BM < }BC and CN < }CD. If L lies on the segment BM, then
KL+ LN > KM+ MN.

Proof. To prove the lemma, consider N’, the symmetrical of point N' with
respect to the line BC. The segments BC and KN’ will meet at a point P, such
that CP < 1 BC; the inequality follows from the fact that the similitude ratio of
the triangles BK P and CN'P is larger than 1. Therefore, point M lies in the
interior of the triangle K LN', hence KL+ LN = KL+LN' 2> KM+ MN' =
KM + MN. O

Denote by P(T') the perimeter of a polygon I". A first application of the lemma,
to the polygonal line A, 3 AgA; Az (K = Cp—1, L = Co, M = By, N = C1),
shows that

P(CoCr -+ Cn-1) 2 P(BoCy -+ Cna).

Successive applications of the lemma yield

P(Co-++Cpe1) = P(BoCi---Cnoi)
> P(Bo: - BiCiy1---Cn-y)
>

P(Bo--Bn-1)-

AR\

Problem 8. Prove that any set of 27 positive integers, ranging between 1 and
2007, contains three distinct elements a, b, ¢ such that ged(a, b) (the greatest com-

mon divisor of a and b) divides c.

Solution. It is rather more convenient to consider the converse problem:

Find a universal lower bound f{m) for the largest element max(A) of a set A
of m positive integers, m > 3, with the property that gcd(a,b) does not divide ¢
for any distinct a,b,c € A.

We will call such a set proper. In what follows, all elements denoted by differ-
ent letters are to be considered distinct. Let us denote by M,,, the minimal value

of the largest element max(A) of a proper set A with m elements.” It follows

25The exi of My, is by the ing example: consider p1,p2, ..., pm to be the
m

first n. primes, and take ¢; = [] pj; the set Cm = {ci ; 1 < i < m} will be called canonical, is
J#F

m
obviously proper, and its largest element is c1, hence Mm < [] pj-
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that any set A with m elements, all less than f(mn), will not be proper, hence for
f(m) > 2007 will be eligible.

The key idea to our solution is to consider the set {ged(z,y) ; z,y € A}. A
being proper is then equivalent to the fact that no two such ged’s are dividing one
another; in particular, no two are equal, so we have (';) distinct values. Now, if
we have an upper bound ged(z,y) < N forall z,y € A, then we need have (')
< (N +1)/2, otherwise a famous Erdds result states that there will exist a pair of
gcd’s, one dividing the other.%®

But we cannot have z = ged(z,y), as then, for a third element z, ged(z, 2)
divides z, and thus a fortiori y (and similarly, nor y = gc&(z,y)), therefore
max(z/ged(z,y), y/ged(z,y)) > 3, hence ged(z,y) < max(z,y)/3 < My, /3.
The above result then provides M, > 3(m? —m — 1). For m = 27 this yields
M,y > 2103 > 2007, so the statement of the problem is certainly true for the
value 27.

OPEN QUESTION. Improve this result, by lowering the number 27 necessary
to obtain the stated property.

Partial solution. Refining our reasoning, we will prove that M,, > 15(m? —
m — 1) = f(m) form > 7; then, as f(13) = 2325 > 2007, the statement of
the problem remains true for 13 instead of 27 (but f(12) = 1965 < 2007, so we
cannot lower the value 13 to 12).

For z,y € A, z/ged(z,y) and y/ged(z,y) are co-prime, and none is equal
to 1. If at least one of them is not less than 15 (and this for all z,y € A),
then ged(z, y) < max(z,y)/15 < My, /15, and similar reasoning as above yields
M,, > 15(m® —m — 1) = f(m). If, on the other hand, there is a pair such that
both are less than 15, as at least one (wlog be it y/ged(z,y)) will be odd, it will
be 3,5,7,9 = 32, 11 or 13, thus p® with p odd prime, and y = p°ged(z,y).
But then, for any third element z, we need have p dividing z (else ged(y, z) would
divide ged(z,y)). We thus obtain a proper set B = {t/p;t € A, t # z} of

26A sketchy well-k proof (for self- i ): as there are exactly [ (IV +1)/2] odd positive
integers (not larger than V), any set of more than (N + 1)/2 positive integers (not larger than N) will
contain (PH principle) two that share the same maximal odd factor; therefore, one of them must divide
the other.
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m — 1 elements, and therefore M,;, > pMp—1 2 3M,—1. In conclusion, M,,, >
min(f(m),3Mp—y).

Now, f(m) < 3f(m — 1) for m > 4, so by simple induction: M; >
min(f(4),3M3), and using M}, > min(f(k), 3% 3M;) for 4 < k < m as in-

duction hypothesis, we get

M, > min(f(m), 3Mpm—1) > min(f(m), 3min(f (m — 1), 3™~ D=3013))
= min(f(m), 3f(m — 1),3™~*M3) = min(f(m), 3™ 3 Mj).

As My, > 3(m® —m — 1) (a result obtained in the above), we get, for m = 3,
Mz > 15, but M3 < 15 (for the canonical set C3), hence M3 = 15. Simple
calculations and induction show that f(m) < 3m315 = 3™ 3 M, form > 7,
hence My, > 15(m? —m — 1) = f(m) form > 7.

REMARKS. Reversing the formula for f(m), with elements bounded by M,
we get m > \/m + 1, which under the conditions of the problem yields
m > \/2007/15 + 1, thatis m 3> 13.

As the canonical set Cs has its largest element equal to 1155 < 2007, it follows
Ms < 2007; the author strongly suspects that the true threshold value for the
statement of the problem is 6 (instead of 13), but he is unable to prove it for the
time being. A different approach, by M. Dumitrescu, comes nearer and may even
positively solve this.

However, the conjecture M,, = ﬁ pj» which is definitely true for m = 3 and
quite probably also true for m = 4,J 5 gor 6, is in general false for m > 7, as the
following example shows:

Take a; = m]:[lpj‘f, 1<i<m—1,e = ey = ez = 2 (with the remaining

J#i et
ones equal to 1), and a, = [] pj; this set is proper, and its largest element is
=1

32527+ P < Pop3pa -+ Pm, as 15 < pm form > 7 (pr = 17 > 15).

—

PROBLEMS AND SOLUTIONS
CLOCK-TOWER SCHOOL SENIORS COMPETITION

Problem 1. Prove that, for any n € N, n > 2, the Diophantine equation

1+ai+-+a2=y°

has infinitely many positive integer solutions with 1 <y < -+ < 5.
Solution. Clearly the family
Ty =2k, mpy =2k y=2k*+1, k22 (s0l<uz <z <y),

yields infinitely many such solutions for n = 2. Moreover, y turns to be odd.
But any odd number y = 2t + 1 = (¢ + 1)2 — ¢* is part of a Pythagorean triplet
(yyz=2t(t+1),w=(t+1)2+t2=2(t> +1) + 1)

((t+1)2 =82+ 2t + 1)) = (t+ 1) + %)%,

with w again odd.
With a little bit of induction now, for any family of solutions (for n) having
odd y, one gets a family of solutions (for n + 1) having odd y, through the simple

expedient of taking ,4+1 = zand y = w.

Alternative solution. Clearly one can choose (infinitely often) integers 1 <

x1 < -+ < Tp—1 such that

i+ tal_ =2, k>2,
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then, by taking z, = k£ > v2k > z,_; one gets
14zl + ol +a2 =1+2k+k = (k+1)%
thereby fulfilling the requirement.

Problem 2. Let ABC be an acute-angled triangle, and w, respectively {2, be
its incircle and circumcircle. Circle w4 is tangent (internal) to 2 at A, and tangent
(external) to w at A;. Points By and C; are similarly obtained, starting with B,
respectively C. Prove that lines AA,, BB; and C'('; are concurrent.

Solution. Denote by Hg,, the homothety transforming w into Q (of center X),
by H, . the homothety transforming w into w4 (obviously of center A;), and
by Hgq.,, the homothety transforming w4 into Q (obviously of center A). Since
Hgq, = Hqu, © H, ., it follows X, A and A, are collinear.

Problem 3. In the Cartesian coordinate plane define the strips
Spi={(z,y);n<z<n+1},

for every integer n. Assume each strip is colored either white or black. Prove one
can place any rectangle R, not a square, in the plane, such that its vertices share a
same color.

Solution. For easy reference, label R’s vertices A, B, C, D. If the coloring is
monochromatic, the result is trivial, so assume the contrary. If the rectangle has
(at least) a side of non-integer length s, be it AB, place the rectangle with side
AD lying on a boundary line between white and black strips, and B to the right
of A. Then side BC' will fall into a strip which, if colored the same as AD, yields
the result, while if colored the opposite, allows slightly sliding the rectangle to the
left, again yielding the result.

On the other hand, for a rectangle with integer length side s, the sliding method
described in the above fails, for just those unfit colorings precisely described by
Lemma 1 in the sequel.

When both sides p, g are integer, denote (p,q) = d, p = da, ¢ = db. Since
R is not a square, p,q are distinct, e.g. p > ¢. Lemma 2 shows that the only
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unfit colorings for the sliding method described in the above have periodicity 2d.
Moreover, we need have both a, b odd, so a > 3. Wlog assume AB = p.

Place the rectangle with A on a boundary line between white and black strips,
B on the boundary line situated 2d to the right, and D to the left and down of A.
This is possible, since AB = p = ad > 3d > 2d. Then A, B share the same color,
and C, D also share the same color, since the horizontal distance between them is
also 2d. If A, D share the same color, we are done, so assume the contrary. Denote
X, Y the projections of B, respectively D, onto the boundary line through 4, so
BX = 2d. Triangles AAX B and ADY A are similar,so DY2AB? = AX2AD>.
Then DY?p? = (p* — 4d?)¢?, so DY = 2dv/a? = 4. But Va? — 4 i irrational,
hence DY ¢ Z. Then slightly sliding R to the left yields a monochrome coloring
of its vertices.

Let us present the results of the lemmas in free-monoid terminology. The
alphabet A is the set {w, b} of colors, and the finite words are colorings of finite,
contiguous groups of strips. A coloring of (all) the strips may be construed as
being an infinite word C' on the alphabet, with the (strip) position indexed on Z
(the index O is attributed to strip Sp), and the color of the strip of index i being
given by C(i). For a finite word V, denote by |V| the length of V, and V* the
infinite word of period V.

Let us define the mapping ¢ such that (V') is the word obtained from ‘: by

" replacing each color in it by its opposite (the extension to words of ¢(w) = b,

o(b) = w). Clearly, p? = pop = id.

LEMMA L. The pattern of an unfit coloring C for an integer side s is periodic,
C = (S¢(9))*, with S an arbitrary word with |S| = s.

The sliding method only fails if at any moment the colors of the strips situated
s apart are the opposite; symbolically this is represented by the formula C (i +s) =
©(C(2)) for all ¢ € Z. In turn, this yields the claimed result. Moreover, through
simple induction, one gets that C(i+ks) = ¢*(C(i}), foralli € Zandallk € Z.O

LEMMA 2. Ifthe coloring C is unfit for both integer sides p, q, then its pattern
is periodic, C = (S¢(S))*, with S an arbitrary word with |S| = d = (p,q).

Moreover, both &, % need be odd.
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One has d = up + vg, for some u,v € Z. Now, according to Lemma 1, one
has C(i + kd) = C((i + kup) + kvg) = ©**(C(i + kup)) = PR (C(4)), for
alli € Zandallk € Z.

The coloring being unfit for side p, we have, according to Lemma 1, C(p) =
©(C(0)). On the other hand, C(p) = C(&d) = ¢#(“+*)(C(0)). Then 1 = {(u +
v) (mod 2), hence 5— must be odd. Similarly, 4 must be odd. Also u + v must be
odd, so C(i + kd) = ¢*(C(3)), forall i € Zand all k € Z. O

REMARKS. Clearly, squares of integer side s cannot be always placed, since
for a coloring made of alternating colored groups of s contiguous strips, the square
will always have a white vertex, and always a black vertex as well. Notice that

Lemma 2 also applies for equal integer sides.
Problem 4. Let (a,)n>0 be areal sequence having
Qi1 + Qn-1 = |ag|, foralln > 1.

Prove the sequence is periodic.

Solution. (D. Schwarz) Since ap+1 +an—1 = |an| > 0, the sequence contains
infinitely many non-negative terms. Moreover, among any four consecutive terms,
at least one needs be non-negative, and one non-positive.

Starting with two consecutive terms (among the first 8), the first, —z, non-
positive and the latter, y, non-negative, by following the recurrence relation one
gets periodicity of length 9:

-z,Y,T + Y, T, —Y,y — , (then, fory —z > 0),2y — 2,9y, — Y, —T,Y,..-
or

—z,y,z +Yy,z,—Y,y — T, (then, fory —z < 0),z,2z -y, T—Y,—T,Y,....

Conversely, starting in the opposite direction (among terms of index greater
than 100, let’s say), since the recurrence is symmetrical, one gets to the same
conclusion. Therefore, the mid-part will be periodical of two periods of length 9,

only possible if the periods coincide.

Problem 5. A rectangle D is partitioned in (more than one) rectangles having

their sides parallel to those of rectangle D. It is given that any line parallel to one
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of the sides of D, and having common points with the interior of D, will also have
common points with the interior of (at least) one of the rectangles in the partition.
Prove that in this partition there is (at least) a rectangle that has no common points
with the border of D.

Solution. Any solution must carefully do the ‘analysis situ” of partition rectan-
gles. The proof goes by contradiction — assume all partition rectangles are attached
to side(s) of D.

First, it should be clear that there must then be opposite (i.e. attached to op-
posite sides of D) rectangles having a common point. Now, by studying the (few)
possible cases, one gets that avoiding a splitting line (i.e. crossing D without hav-
ing common points with the interior of any rectangle in the partition, just with

borders), is impossible.

Problem 6. Given an odd integer n > 3 not divisible by 3, show that there
exist distinct odd, positive integers a, b, and ¢ such that

3 1 1 1

n a b ¢
Solution. Since n is odd and is not divisible by 3, either n = 1 (mod 6) or
n =5 (mod 6).
In the first case, n = 6m + 1 for some positive integer m, and the numbers
a=2m+1,b=(2m+ 1)(4m + 1), and ¢ = (4m + 1)(6m + 1) do the job.
In the second case, n = 2 (mod 3), so there exists an integer m > 1 such that

n=2+2-3+---+2-3™"1 +a-3™ (mod 3™*1)

with a € {0,1}.
If @ =0, then (3™ + 1)n = 3m+1lg — 1 for some odd, positive integer a, and
1 1 1

3
E_E+3”'a+3"‘an

- is the desired decomposition.

If a = 1, then 3™ + n + 1 = 3™*1k for some odd, positive integer &, and the
numbers a = 3™k, b = 3™kn, and ¢ = kn do the job.
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Problem 1. Consider a circle of center O and a chord AB of it (not a diam-
eter). Take a point T" on the ray OB. The perpendicular at T" onto OB meets the
chord AB at C and the circle at D and E. Denote by S the orthogonal projection
of T onto the chord AB. Show that AS - BC =TE - TD.

Solution. We have TE = T'D. Then CA - CB = CD - CE (from the power-
of-a-point law, or from the similitude of triangles ACD and BEC). Moreover,
TC? = CS - CB (known result in a right-angled triangle).

But then

AS-BC = (AC +CS)-BC=CD-CE +CT?
=(TD-TC)TD+TC)+TC*=TD*=TE-TD.

Problem 2. The last digit in the decimal representation of number a®+ab+b?,
with a,b € N*, is 0. Find its second-to-last digit.

Solution. Clearly a,b are even, so 4 divides a® + ab + b?. On the other hand,
5 divides a® + ab + b?, so 5 divides a® — b®. Therefore a = b (mod 5), hence
5 | 3a®. Consequently, 5 | a and 25 | a® + ab + b*. Then 100 | a® + ab + b?, i.e.
the second-to-last digit is 0.

Alternative solution. The last digits of cubes of integers make a periodical
sequence of period 10, hence a = b (mod 10), whence 10 divides 3a2.

Problem 3. Partition a triangle into (smaller) triangles. Show that the sum of
the lengths of the lesser altitudes of the triangles of the partition is at least equal to
the length of the lesser altitude of the given triangle.

[
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Solution. Lethy, ..., h, be the lesser altitudes of the triangles of the partition,
and let h be the lesser altitude of the given triangle. Let aj, . . ., an, respectively a,

be the corresponding sides. Then ) a;-h; = a-h. Since a; < a, foralll <i < n,
it follows :
a- Z hi>2a-h,
whence the required result.
Clearly equality is only possible when the partition is made of one triangle

only — the given one!

REMARKS. There is a famous result worth mentioning, from which this prob-
lem flows as an immediate corollary. Call strip of breadth b the closed part of the
plane consisting of all points that lie between two parallel lines at distance b from
each other, and call oval a bounded, closed convex set in the plane. The result is

known as

The Plank Problem. If an oval can be covered by n strips of breadths by, bs,
..., by, then it can also be covered by a single strip of breadth b = by +ba+- - -+by,.

This has been conjectured in 1932 by A. Tarski, and established by T. Bang in
1951 (quote from H. Hadwiger & H. Debrunner — Combinatorial Geometry in the
Plane).

Now, the strips determined by the sides a; (corresponding to the lesser alti-
tudes) and the parallels to them through the opposite vertex of the triangles in the
partition have breadths h;, and clearly cover the given triangle. On the other hand,
the least breadth of one strip that covers the given iriangle must be h.

Problem 4. Consider any 25 points, three by three non-collinear, in the interior
of a square of side length 3. Show that there exist four among them that form a

quadrilateral perimeter less than 5.

Solution. Partition the square into 6 rectangles 1 x 1.5. Applying the pigeon-
hole principle (Dirichlet principle), since 25 = 4-6-+1, at least one of the rectangles
must contain at least five of the given points.

But then four among those must be the vertices of a convex quadrilateral, of
lesser perimeter than that of the 1 x 1.5 rectangle, which amounts to 5. The only
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case when these perimeters are equal is when the four points coincide with the
vertices of the rectangle, but then some three of them, together with the fifth one

determine a convex quadrilateral of lesser perimeter.

REMARKS. Some contestants partitioned the square into 8 rectangles 0.75 x
1.5. Applying the pigeon-hole principle, since 25 = 3 - 8 + 1, at least one of
the rectangles must contain at least four of the given points. They now concluded
that the perimeter of a quadrilateral determined by these points must be at most
that of the 0.75 x 1.5 rectangle, which amounts to 4.5 < 5. Alternatively, since
19 = 36 + 1, this strengthens the problem by showing that 19 points were
sufficient to reach the conclusion.

Of course this is insofar unfounded, as those four points may not be in con-
vex position — and then three concave quadrilaterals have to be considered, while
clearly a non-convex figure contained in a rectangle may have a larger perimeter
than that of the rectangle. However, for quadrilaterals, it may be shown that at
least one of the three concave quadrilaterals that may be considered is necessarily
of a lesser perimeter. The proof is elementary, though extremely elegant, and is
left to the readers to enjoy discovering!

Problem 5. A positive integer has, in its deciraal representation, 2008 di gits
equal to 1, 2008 digits equal to 4, while the rest of its digits are equal to 0. Show
that this number cannot be a perfect square.

Solution. The sum s(n) of the digits of n is of the form M3 + 2. Since 3
divides n — s(n), then n also must be of the form M3 + 2, so cannot be a perfect
square.

Problem 6. Let P be the set of all points of the plane, and O € P fixed. The
function f : P\ {O} — R has the property:

For ﬁnyfaur distinct points A, B,C, D € P\ {O} with AAOB ~ ACOD,
f(A) = f(B) + f(C) = £(D) = 0 occurs.

Prove the function f is constant.
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Solution. Let X,Y € P\ {O} be two arbitrary distinct points. The circle
centered in O and of radius OX meets the line OY at A, such that points 4,0,Y
are collinear in this order, while the circle centered in O and of radius OY meets
the line O.X at B, such that points X, O, B are collinear in this order.

Since triangles AOX and BOY are isosceles of apex O, and ZAOX =
/BOY, we have AAOX ~ ABOY, but also AAOX ~ AY OB, so relations
F(A) = F(X)+ F(B) - F(Y) = 0,and () = f(X) + f(¥) - {(B) = 0 occur.

Summing them yields f(A) = f(X) and f(B) = f(Y). On the other hand,
since triangles AOX and BOY are isosceles, it follows that triangles AOB and
XOY are congruent, so f(4)— f(B)+f(X)—f(Y) = 0, whence f(X) = fY).

Problem 7. For any real numbers a, b, ¢ > 0, with abc = 8, prove

=2 b-2 c-2
-+ —+ <0
aritrritor

Solution.
1
a—2 b-2 c—2 1 .
+—+ §0@3—3§ a+1<0©léza+l

a+1 b+1 c+

1
We can take a = 25, b= 2%, ¢ = 2Z (aknown trick), to have

1 v (z+y+2)° _
Za—ﬁzzzxyw? 7 g +y? + 2% + 2oy + Yz + 22

Problem 8. Let p be a prime, and ¢ an integer, not divisible by p. Prove there
exist infinitely many integers k such that pq divides ¢ +1-k.

Solution. Clearly ¢ must divide 1 — k, so let’s take k = 1 4 gs, with s € N.
Then ¢* + 1 — k = q(¢% — s), so we are left with finding values for s with
plg¥—s.

If s = 1 (mod p), then it comes to (¢?)° = 1 (mod p).

An example for a good s is obtained applying Fermat’s Theorem — simply take
s = (p — 1)", since we have (p,q?) = 1. Any even value for n will satisfy the
requirement s = 1 (mod p).

Therefore, s = (p — 1)%, with arbitrary ¢ € N, will do.
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