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Often, the key to solve some intricate algebraic inequality is to simplify it by
employing a trigonometric substitution. When we make a clever trigonometric sub-
stitution the problem may reduce so much that we can see a direct solution imme-
diately. Besides, trigonometric functions have well-known properties that may help
in solving such inequalities. As a result, many algebraic problems can be solved by
using an inspired substitution.

We start by introducing the readers to such substitutions. After that we present
some well-known trigonometric identities and inequalities. Finally, we discuss some
Olympiad problems and leave others for the reader to solve.

Theorem 1. Let α, β, γ be angles in (0, π). Then α, β, γ are the angles of a
triangle if and only if

tan
α

2
tan

β

2
+ tan

β

2
tan

γ

2
+ tan

γ

2
tan

α

2
= 1.

Proof. First of all note that if α = β = γ, then the statement clearly holds.
Assume without loss of generality that α 6= β. Because 0 < α + β < 2π, it follows
that there exists an angle in (−π, π), say γ′, such that α + β + γ′ = π.

Using the addition formulas and the fact that tanx = cot
(

π
2 − x

)
, we have

tan
γ′

2
= cot

α + β

2
=

1− tan
α

2
tan

β

2

tan
α

2
+ tan

β

2

,

yielding

tan
α

2
tan

β

2
+ tan

β

2
tan

γ′

2
+ tan

γ′

2
tan

α

2
= 1. (1)

Now suppose that

tan
α

2
tan

β

2
+ tan

β

2
tan

γ

2
+ tan

γ

2
tan

α

2
= 1, (2)

for some α, β, γ in (0, π).
We will prove that γ = γ′, and this will imply that α, β, γ are the angles of a

triangle. Subtracting (1) from (2) we get tan
γ

2
= tan

γ′

2
. Thus

∣∣∣∣γ − γ′

2

∣∣∣∣ = kπ for

some nonnegative integer k. But
∣∣∣∣γ − γ′

2

∣∣∣∣ ≤ ∣∣∣γ2 ∣∣∣+
∣∣∣∣γ′2
∣∣∣∣ < π, so it follows that k = 0.

That is γ = γ′, as desired. �
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Theorem 2. Let α, β, γ be angles in (0, π). Then α, β, γ are the angles of a
triangle if and only if

sin2 α

2
+ sin2 β

2
+ sin2 γ

2
+ 2 sin

α

2
sin

β

2
sin

γ

2
= 1.

Proof. As 0 < α + β < 2π, there exists an angle in (−π, π), say γ′, such that
α + β + γ′ = π. Using the product-to-sum and the double angle formulas we get

sin2 γ′

2
+ 2 sin

α

2
sin

β

2
sin

γ′

2
= cos

α + β

2

(
cos

α + β

2
+ 2 sin

α

2
sin

β

2

)
= cos

α + β

2
cos

α− β

2

=
cos α + cos β

2

=

(
1− 2 sin2 α

2

)
+
(
1− 2 sin2 β

2

)
2

= 1− sin2 α

2
− sin2 β

2
.

Thus

sin2 α

2
+ sin2 β

2
+ sin2 γ′

2
+ 2 sin

α

2
sin

β

2
sin

γ′

2
= 1. (1)

Now suppose that

sin2 α

2
+ sin2 β

2
+ sin2 γ

2
+ 2 sin

α

2
sin

β

2
sin

γ

2
= 1, (2)

for some α, β, γ in (0, π). Subtracting (1) from (2) we obtain

sin2 γ

2
− sin2 γ′

2
+ 2 sin

α

2
sin

β

2

(
sin

γ

2
− sin

γ′

2

)
= 0,

that is (
sin

γ

2
− sin

γ′

2

)(
sin

γ

2
+ sin

γ′

2
+ 2 sin

α

2
sin

β

2

)
= 0.

The second factor can be written as

sin
γ

2
+ sin

γ′

2
+ cos

α− β

2
− cos

α + β

2
= sin

γ

2
+ cos

α− β

2
,

which is clearly greater than 0. It follows that sin γ
2 = sin γ′

2 , and so γ = γ′, showing
that α, β, γ are the angles of a triangle. �
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Substitutions and Transformations

T1. Let α, β, γ be angles of a triangle. Let

A =
π − α

2
, B =

π − β

2
, C =

π − γ

2
.

Then A+B +C = π, and 0 ≤ A,B, C < π
2 . This transformation allows us to switch

from angles of an arbitrary triangle to angles of an acute triangle. Note that

cyc(sin
α

2
= cos A), cyc(cos

α

2
= sinA), cyc(tan

α

2
= cot A), cyc(cot

α

2
= tan A),

where by cyc we denote a cyclic permutation of angles.

T2. Let x, y, z be positive real numbers. Then there is a triangle with sidelengths
a = x + y, b = y + z, c = z + x. This transformation is sometimes called Dual
Principle. Clearly, s = x+y+z and (x, y, z) = (s−a, s−b, s−c). This transformation
already triangle inequality.

S1. Let a, b, c be positive real numbers such that ab + bc + ca = 1. Using the
function f : (0, π

2 )→ (0,+∞), for f(x) = tanx, we can do the following substitution

a = tan
α

2
, b = tan

β

2
, c = tan

γ

2
,

where α, β, γ are the angles of a triangle ABC.

S2. Let a, b, c be positive real numbers such that ab+ bc+ ca = 1. Applying T1
to S1, we have

a = cot A, b = cot B, c = cot C,

where A,B, C are the angles of an acute triangle.

S3. Let a, b, c be positive real numbers such that a + b + c = abc. Dividing by
abc it follows that 1

bc + 1
ca + 1

ab = 1. Due to S1, we can substitute

1
a

= tan
α

2
,

1
b

= tan
β

2
,

1
c

= tan
γ

2
,

that is
a = cot

α

2
, b = cot

β

2
, c = cot

γ

2
,

where α, β, γ are the angles of a triangle.

S4. Let a, b, c be positive real numbers such that a + b + c = abc. Applying T1
to S3, we have

a = tan A, b = tan B, c = tan C,
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where A,B, C are the angles of an acute triangle.

S5. Let a, b, c be positive real numbers such that a2 + b2 + c2 + 2abc = 1. Note
that since all the numbers are positive it follows that a, b, c < 1. Usign the function
f : (0, π)→ (0, 1), for f(x) = sin x

2 , and recalling Theorem 2, we can substitute

a = sin
α

2
, b = sin

β

2
, c = sin

γ

2
,

where α, β, γ are the angles of a triangle.

S6. Let a, b, c be positive real numbers such that a2+b2+c2+2abc = 1. Applying
T1 to S5, we have

a = cos A, b = cos B, c = cos C,

where A,B, C are the angles of an acute triangle.

S7. Let x, y, z be positive real numbers. Applying T2 to expressions√
yz

(x + y)(x + z)
,

√
zx

(y + z)(y + x)
,

√
xy

(z + x)(z + y)
,

they can be substituted by√
(s− b)(s− c)

bc
,

√
(s− c)(s− a)

ca
,

√
(s− a)(s− b)

ab
,

where a, b, c are the sidelengths of a triangle. Recall the following identities

sin
α

2
=

√
(s− b)(s− c)

bc
, cos

α

2
=

√
s(s− a)

bc
.

Thus our expressions can be substituted by

sin
α

2
, sin

β

2
, sin

γ

2
,

where α, β, γ are the angles of a triangle.

S8. Analogously to S7, the expressions√
x(x + y + z)

(x + y)(x + z)
,

√
y(x + y + z)

(y + z)(y + x)
,

√
z(x + y + z)

(z + x)(z + y)
,

can be substituted by

cos
α

2
, cos

β

2
, cos

γ

2
,

where α, β, γ are the angles of a triangle.
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Further we present a list of inequalities and equalities that can be helpful in
solving many problems or simplify them.

Well-known inequalities

Let α, β, γ be angles of a triangle ABC. Then

1. cos α + cos β + cos γ ≤ sin
α

2
+ sin

β

2
+ sin

γ

2
≤ 3

2

2. sinα + sinβ + sin γ ≤ cos
α

2
+ cos

β

2
+ cos

γ

2
≤ 3

√
3

2

3. cos α cos β cos γ ≤ sin
α

2
sin

β

2
sin

γ

2
≤ 1

8

4. sinα sinβ sin γ ≤ cos
α

2
cos

β

2
cos

γ

2
≤ 3

√
3

8

5. cot
α

2
+ cot

β

2
+ cot

C

2
≥ 3
√

3

6. cos2 α + cos2 β + cos2 γ ≥ sin2 α

2
+ sin2 β

2
+ sin2 C

2
≥ 3

4

7. sin2 α + sin2 β + sin2 γ ≤ cos2
α

2
+ cos2

β

2
+ cos2

γ

2
≤ 9

4

8. cot α + cot β + cot γ ≥ tan
α

2
+ tan

β

2
+ tan

γ

2
≥
√

3

Well-known identities

Let α, β, γ be angles of a triangle ABC. Then

1. cos α + cos β + cos γ = 1 + 4 sin α
2 sin β

2 sin γ
2

2. sinα + sinβ + sin γ = 4 cos α
2 cos β

2 cos γ
2

3. sin 2α + sin 2β + sin 2γ = 4 sin α sinβ sin γ

4. sin2 α + sin2 β + sin2 γ = 2 + 2 cos α cos β cos γ

For arbitrary angles α, β, γ we have

sinα + sinβ + sin γ − sin(α + β + γ) = 4 sin
α + β

2
sin

β + γ

2
sin

γ + α

2
.

cos α + cos β + cos γ + cos(α + β + γ) = 4 cos
α + β

2
cos

β + γ

2
cos

γ + α

2
.
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Applications

1. Let x, y, z be positive real numbers. Prove that

x

x +
√

(x + y)(x + z)
+

y

y +
√

(y + z)(y + x)
+

z

x +
√

(z + x)(z + y)
≤ 1.

(Walther Janous, Crux Mathematicorum)

Solution. The inequality is equivalent to∑ 1

1 +
√

(x+y)(x+z)
x2

≤ 1.

Beceause the inequality is homogeneous, we can assume that xy+yz+zx = 1.
Let us apply substitution S1: cyc(x = tan α

2 ), where α, β, γ are angles of a
triangle. We get

(x + y)(x + z)
x2

=

(
tan

α

2
+ tan

β

2

)(
tan

α

2
+ tan

γ

2

)
tan2 α

2

=
1

sin2 α

2

,

and similar expressions for the other terms. The inequality becomes

sin α
2

1 + sin α
2

+
sin β

2

1 + sin β
2

+
sin γ

2

1 + sin γ
2

≤ 1,

that is
2 ≤ 1

1 + sin α
2

+
1

1 + sin β
2

+
1

1 + sin γ
2

.

On the other hand, using the well-known inequality sin α
2 + sin β

2 + sin γ
2 ≤

3
2

and the Cauchy-Schwarz inequality, we have

2 ≤ 9

(1 + sin α
2 ) + (1 + sin β

2 ) + (1 + sin γ
2 )
≤
∑ 1

1 + sin α
2

,

and we are done. �

2. Let x, y, z be real numbers greater than 1 such that 1
x + 1

y + 1
z = 2. Prove that

√
x− 1 +

√
y − 1 +

√
z − 1 ≤

√
x + y + z.

(Iran, 1997)
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Solution. Let (x, y, z) = (a+1, b+1, c+1), with a, b, c positive real numbers.
Note that the hypothesis is equivalent to ab + bc + ca + 2abc = 1. Then it
suffices to prove that

√
a +

√
b +
√

c ≤
√

a + b + c + 3.

Squaring both sides of the inequality and canceling some terms yields

√
ab +

√
bc +

√
ca ≤ 3

2
.

Using substitution S5 we get (ab, bc, ca) = (sin2 α
2 , sin2 β

2 , sin2 γ
2 ), where ABC

is an arbitrary triangle. The problem reduces to proving that

sin
α

2
+ sin

β

2
+ sin

γ

2
≤ 3

2
,

which is well-known and can be done using Jensen inequality. �

3. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that√
ab

c + ab
+

√
bc

a + bc
+
√

ca

b + ca
≤ 3

2
.

(Open Olympiad of FML No-239, Russia)

Solution. The inequality is equivalent to√
ab

((c + a)(c + b)
+

√
bc

(a + b)(a + c)
+
√

ca

(b + c)(b + a)
≤ 3

2
.

Substitution S7 replaces the three terms in the inequality by sin α
2 , sin β

2 , sin γ
2 .

Thus it suffices to prove sin α
2 + sin β

2 + sin γ
2 ≤

3
2 , which clearly holds. �

4. Let a, b, c be positive real numbers such that (a + b)(b + c)(c + a) = 1. Prove
that

ab + bc + ca ≤ 3
4
.

(Cezar Lupu, Romania, 2005)

Solution. Observe that the inequality is equivalent to(∑
ab
)3
≤
(

3
4

)3

(a + b)2(b + c)2(c + a)2.
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Because the inequality is homogeneous, we can assume that ab + bc + ca = 1.
We use substitution S1: cyc(a = tan α

2 ), where α, β, γ are the angles of a
triangle. Note that

(a + b)(b + c)(c + a) =
∏(

cos γ
2

cos α
2 cos β

2

)
=

1

cos α
2 cos β

2 cos γ
2

.

Thus it suffices to prove that(
4
3

)3

≤ 1

cos2 α
2 cos2 β

2 cos2 γ
2

,

or

4 cos
α

2
cos

β

2
cos

γ

2
≤ 3

√
3

2
.

From the identity 4 cos α
2 cos β

2 cos γ
2 = sinα + sinβ + sin γ, the inequality is

equivalent to

sinα + sinβ + sin γ ≤ 3
√

3
2

.

But f(x) = sinx is a concave function on (0, π) and the conclusion follows
from Jensen’s inequality. �

5. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

a2 + b2 + c2 + 2
√

3abc ≤ 1.

(Poland, 1999)

Solution. Let cyc

(
x =

√
bc
a

)
. It follows that cyc(a = yz). The inequality

becomes
x2y2 + y2z2 + x2z2 + 2

√
3xyz ≤ 1,

where x, y, z are positive real numbers such that xy + yz + zx = 1. Note that
the inequality is equivalent to

(xy + yz + zx)2 + 2
√

3xyz ≤ 1 + 2xyz(x + y + z),

or √
3 ≤ x + y + z.

Applying substitution S1 cyc(x = tan α
2 ), it suffices to prove

tan
α

2
+ tan

β

2
+ tan

γ

2
≥
√

3.

The last inequality clearly holds, as f(x) = tan x
2 is convex function on (0, π),

and the conclusion follows from Jensen’s inequality. �
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6. Let x, y, z be positive real numbers. Prove that

√
x(y + z) +

√
y(z + x) +

√
z(x + y) ≥ 2

√
(x + y)(y + z)(z + x)

x + y + z

(Darij Grinberg)

Solution. Rewrite the inequality as√
x(x + y + z)

(x + y)(x + z)
+

√
y(x + y + z)

(y + z)(y + x)
+

√
z(x + y + z)

(z + x)(z + y)
≥ 2.

Applying substitution S8, it suffices to prove that

cos
α

2
+ cos

β

2
+ cos

γ

2
≥ 2,

where α, β, γ are the angles of a triangle. Using transformation T1 cyc(A =
π−α

2 ),
where A,B, C are angles of an acute triangle, the inequality is equivalent to

sinA + sin B + sinC ≥ 2.

There are many ways to prove this fact. We prefer to use Jordan’s inequality,
that is

2α

π
≤ sinα ≤ α for all α ∈ (0,

π

2
).

The conclusion immediately follows. �

7. Let a, b, c be positive real numbers such that a + b + c + 1 = 4abc. Prove that

1
a

+
1
b

+
1
c
≥ 3 ≥ 1√

ab
+

1√
bc

+
1√
ca

.

(Daniel Campos Salas, Mathematical Reflections, 2007)

Solution. Rewrite the condition as

1
bc

+
1
ca

+
1
ab

+
1

abc
= 4.

Observe that we can use substitution S5 in the following way(
1
bc

,
1
ca

,
1
ab

)
=
(

2 sin2 α

2
, 2 sin2 β

2
, 2 sin2 γ

2

)
,
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where α, β, γ are angles of a triangle. It follows that(
1
a
,
1
b
,
1
c

)
=

(
2 sin β

2 sin γ
2

sin α
2

,
2 sin γ

2 sin α
2

sin β
2

,
2 sin β

2 sin α
2

sin γ
2

)
.

Then it suffices to prove that

sin β
2 sin γ

2

sin α
2

+
sin γ

2 sin α
2

sin β
2

+
sin β

2 sin α
2

sin γ
2

≥ 3
2
≥ sin

α

2
+ sin

β

2
+ sin

γ

2
.

The right-hand side of the inequality is well known. For the left-hand side we
use trasnformation T2 backwards. Denote by x = s− a, y = s− b, z = s− c,
where s is the semiperimeter of the triangle. The left-hand side is equivalent
to

x

y + z
+

y

x + z
+

z

x + y
≥ 3

2
,

which a famous Nesbitt’s inequality, and we are done. �

8. Let a, b, c ∈ (0, 1) be real numbers such that ab + bc + ca = 1. Prove that

a

1− a2
+

b

1− b2
+

c

1− c2
≥ 3

4

(
1− a2

a
+

1− b2

b
+

1− c2

c

)
.

(Calin Popa)

Solution. We apply substitution S1 cyc(a ≡ tan A
2 ), where A,B, C are angles

of a triangle. Because a, b, c ∈ (0, 1), it follows that tan A
2 , tan B

2 , tan C
2 ∈ (0, 1),

that is A,B, C are angles of an acute triangle. Note that

cyc

(
a

1− a2
=

sin A
2 cos A

2

cos A
=

tanA

2

)
.

Thus the inequality is equivalent to

tanA + tanB + tanC ≥ 3
(

1
tanA

+
1

tanB
+

1
tanC

)
.

Now observe that if we apply transformation T1 and the result in Theorem
1, we get

tanA + tanB + tanC = tan A tanB tanC.

Hence our inequality is equivalent to

(tanA + tanB + tanC)2 ≥ 3 (tan A tanB + tanB tanC + tanA tanC) .

This can be written as
1
2
(tanA− tanB)2 + (tanB − tanC)2 + (tanC − tanA)2 ≥ 0,

and we are done. �
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9. Let x, y, z be positive real numbers. Prove that√
y + z

x
+
√

z + x

y
+

√
x + y

z
≥

√
16(x + y + z)3

3(x + y)(y + z)(z + x)
.

(Vo Quoc Ba Can, Mathematical Reflections, 2007)

Solution. Note that the inequality is equivalent to

∑
cyc

(y + z)

√
(x + y)(z + x)
x(x + y + z)

≥ 4(x + y + z)√
3

.

Let use transfromation T2 and substitution S8. We get

cyc

(
(y + z)

√
(x + y)(z + x)
x(x + y + z)

=
a

cos α
2

= 4R sin
α

2

)
,

and
4(x + y + z)√

3
=

4R(sinα + sinβ + sin γ)√
3

,

where α, β, γ are angles of a triangle with circumradius R. Therefore it suffices
to prove that

√
3

2

(
sin

α

2
+ sin

β

2
+ sin

γ

2

)
≥ sin

α

2
cos

α

2
+ sin

β

2
cos

β

2
+ sin

γ

2
cos

γ

2
.

Because f(x) = cos x
2 is a concave function on [0, π], from Jensen’s inequality

we obtain √
3

2
≥ 1

3

(
cos

α

2
+ cos

β

2
+ cos

γ

2

)
.

Finally, we observe that f(x) = sin x
2 is an increasing function on [0, π], while

g(x) = cos x
2 is a decreasing function on [0, π]. Using Chebyschev’s inequality,

we have

1
3

(
sin

α

2
+ sin

β

2
+ sin

γ

2

)(
cos

α

2
+ cos

β

2
+ cos

γ

2

)
≥
∑

sin
α

2
cos

α

2
,

and the conclusion follows. �
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Problems for independent study

1. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

a√
b + c

+
b√

c + a
+

c√
a + b

≥
√

3
2
.

(Romanian Mathematical Olympiad, 2005)

2. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that√
1
a
− 1

√
1
b
− 1 +

√
1
b
− 1

√
1
c
− 1 +

√
1
c
− 1

√
1
a
− 1 ≥ 6

(A. Teplinsky, Ukraine, 2005)

3. Let a, b, c be positive real numbers such that ab + bc + ca = 1. Prove that

1√
a + b

+
1√

b + c
+

1√
c + a

≥ 2 +
1√
2
.

(Le Trung Kien)

4. Prove that for all positive real numbers a, b, c,

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca).

(APMO, 2004)

5. Let x, y, z be positive real numbers such that 1
x + 1

y + 1
z = 1. Prove that

√
x + yz +

√
x + yz +

√
x + yz ≥ √xyz +

√
x +

√
y +

√
z.

(APMO, 2002)

6. Let a, b, c be positive real numbers. Prove that

b + c

a
+

c + a

b
+

a + b

c
≥ 4

(
a

b + c
+

b

c + a
+

c

a + b

)
.

(Mircea Lascu)

7. Let a, b, c be positive real numbers, such that a + b + c =
√

abc. Prove that

ab + bc + ca ≥ 9(a + b + c).

(Belarus, 1996)
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8. Let a, b, c be positive real numbers. Prove that

b + c

a
+

c + a

b
+

a + b

c
+ 2

√
abc

(a + b)(b + c)(c + a)
≥ 2

(Bui Viet Anh)

9. Let a, b, c be positive real numbers such that a + b + c = abc. Prove that

(a− 1)(b− 1)(c− 1) ≤ 6
√

3− 10.

(Gabriel Dospinescu, Marian Tetiva)

10. Let a, b, c be nonnegative real numbers such that a2 + b2 + c2 +abc = 4. Prove
that

0 ≤ ab + bc + ca− abc ≤ 2.

(Titu Andreescu, USAMO, 2001)
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