Simple trigonometric substitutions with broad results

Vardan Verdiyan, Daniel Campos Salas

Often, the key to solve some intricate algebraic inequality is to simplify it by
employing a trigonometric substitution. When we make a clever trigonometric sub-
stitution the problem may reduce so much that we can see a direct solution imme-
diately. Besides, trigonometric functions have well-known properties that may help
in solving such inequalities. As a result, many algebraic problems can be solved by
using an inspired substitution.

We start by introducing the readers to such substitutions. After that we present

some well-known trigonometric identities and inequalities. Finally, we discuss some
Olympiad problems and leave others for the reader to solve.

Theorem 1. Let «, 3,7y be angles in (0,7). Then «,3,v are the angles of a
triangle if and only if
tangtané —1—tanﬁtamz —F‘czmltamg = 1.
2 2 2 2 2 2
Proof. First of all note that if « = 3 = ~, then the statement clearly holds.
Assume without loss of generality that « # 3. Because 0 < o + 3 < 2, it follows
that there exists an angle in (—m, ), say 7/, such that o + 8 ++' = 7.

Using the addition formulas and the fact that tanz = cot (g — x) , we have

a B
! 1 —tan —tan —
tan%:cota;ﬁz o 2 2,
tan — + tan —
an 5 + tan 5
yielding
/ /
tan%tang+tan§tan%+tan%tan%:1. (1)
Now suppose that
tan%tang—i—tan%tan%—i—tan%tan%:1, (2)

for some «, 3,7 in (0, 7).

We will prove that v = 4/, and this will imply that «, 3,7 are the angles of a
/ /

triangle. Subtracting (1) from (2) we get tan% = tan%. Thus % = kr for
=AY
some nonnegative integer k. But 2‘ < ‘5‘ + ‘2 < m, so it follows that £ = 0.

That is v = 7/, as desired. [
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Theorem 2. Let «, 3,7 be angles in (0,7). Then «, 3,v are the angles of a
triangle if and only if

sinQ%—i—singg+sin2g+25in%sin§sing =1.

Proof. As 0 < a+ 8 < 2m, there exists an angle in (—m, ), say 7/, such that
a+ B+~ = m. Using the product-to-sum and the double angle formulas we get

2 g .y a+ﬂ< a+f a ﬂ)
COS COS

. ., . . .
sin 5+2sm§sm§sm5 = 2 5 +281n§sm§

aJrﬂCOSa—ﬂ
2 2

cosa + cos 3
2

(1-2sin2) + (1 - 25in% )

2
2g—sin2§.
2 2

= COS

= 1—sin

Thus

/ /
sinzg+sin2§+sin2%+28in%sin§sin% =1. (1)

Now suppose that

sinQ% —i—singg —i—sinzg —|—2$in%sin§sin% =1, (2)

for some a, 8, in (0,7). Subtracting (1) from (2) we obtain

/ /
sin’ % — sin? % + 2sin%sin§ (sing — sin 72> =0,

that is , ,
<sing — sin z> <sin;/ + sin% + 2sin % sin /g) =0.

The second factor can be written as

/ _ —
sin%—i—sin%—i—cosazﬁ—cosa—;ﬂ:sin%—i-cosaQﬁ,

which is clearly greater than 0. It follows that sin 3 = sin 2 and so v = 4/, showing

2
that «, 3, are the angles of a triangle. [
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Substitutions and Transformations

T1. Let «, 3,7 be angles of a triangle. Let

A= W_a, B= ﬂ_ﬁ, c=""7,

2 2 2
Then A+B+C =m,and 0 < A, B,C < 3. This transformation allows us to switch
from angles of an arbitrary triangle to angles of an acute triangle. Note that

cyc(sin % =cos A), cyc(cos % =sinA4), cyc(tan % = cot A), cyc(cot % = tan A),
where by cyc we denote a cyclic permutation of angles.

T2. Let z,y, z be positive real numbers. Then there is a triangle with sidelengths
a=x+y, b=y+ 2z c¢=z+ x. This transformation is sometimes called Dual
Principle. Clearly, s = z+y+z and (z,y, z) = (s—a, s—b, s—c). This transformation
already triangle inequality.

S1. Let a,b,c be positive real numbers such that ab + bc 4+ ca = 1. Using the
function f : (0, %) — (0,400), for f(x) = tanz, we can do the following substitution

g c:tanl,

a=tan—, b=tan—,
2 2

[\CY o)

where «, 3, are the angles of a triangle ABC.

S2. Let a, b, ¢ be positive real numbers such that ab+ bc+ca = 1. Applying T1
to S1, we have
a=cotA, b=cotB, c=cotC,

where A, B, C are the angles of an acute triangle.

S3. Let a, b, c be positive real numbers such that a + b + ¢ = abe. Dividing by
abc it follows that é + é + é = 1. Due to S1, we can substitute

1 a 1 6 1 0

—=tan—, - =tan=, - =tan~

o Mgy TRy TR
that is 5

azcot%, b:cotg, c:cot%,

where «, 3, are the angles of a triangle.

S4. Let a,b, c be positive real numbers such that a + b + ¢ = abc. Applying T1
to S3, we have
a=tanA, b=tanB, c=tanC,
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where A, B, C are the angles of an acute triangle.

S5. Let a, b, ¢ be positive real numbers such that a® 4+ b* + ¢? + 2abc = 1. Note
that since all the numbers are positive it follows that a,b,c < 1. Usign the function
f:(0,7) — (0,1), for f(x) = sin 3, and recalling Theorem 2, we can substitute

.« . B .
a=sin—, b=sin—, c¢=sin—,
2 2 2

where «, 3, are the angles of a triangle.

S6. Let a, b, ¢ be positive real numbers such that a?+b%4c?+2abc = 1. Applying
T1 to S5, we have
a=cosA, b=cosB, c=cosC,

where A, B, C' are the angles of an acute triangle.

S7. Let x,y, z be positive real numbers. Applying T2 to expressions

\/(fc + ylﬁw +2)’ \/(y + S?y +a)’ \/(z + wa):?z +y)

they can be substituted by

\/(s—bl))is—c)’ \/(s—ciis—a)7 \/(s—ac)d()s—b)’

where a, b, ¢ are the sidelengths of a triangle. Recall the following identities

sing = —(s—b)(s—c)7 cosg = “73(3—@)‘
2 be 2 be

Thus our expressions can be substituted by

. o . .
sin —, sin—, sin —,
2 2 2

where «, 3, are the angles of a triangle.
S8. Analogously to S7, the expressions
z(r+y+2) y(x +y+ 2) 2(z+y+2)
@+y)z+2) | y+2)y+a) | (z+2)(z+y)

can be substituted by

cos = cosé cos 2
2’ 2’ 2’

where «, 3, are the angles of a triangle.
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Further we present a list of inequalities and equalities that can be helpful in
solving many problems or simplify them.

Well-known inequalities

Let a, 8, be angles of a triangle ABC. Then

3
1. cosa—l—cosﬁ—i—cos'ygsing%—sing%—sinzgf
2 2 2 7 2
3vV3
2 sina—i—sinﬂ—i—sin’ygcos+cos+cos;§\2[
. . .Y 1
3 cosacosﬁcosv§s1n—sm—sm§gg
3v3
4. sinasinﬂsin’yScos%cosgcos% < \8[
C
5. cotg—kcoté—kcot—z?)\/g
2 2 2
C _ 3
6. cos?a + cos? § + cos? v > sin? @ + sin? é +sin? =— > =
2 2 2 4
-2 .2 .2 2 & 2 27 _ 9
7. sin® a + sin® § + sin® vy < cos §+COS §—|—cos §§Z

8. cota—l—cotﬁ—l—cotwZtan%+tan§+tan% >3

Well-known identities

Let a, 8, be angles of a triangle ABC. Then

1. cosa + cos 3+ cosy = 1+4sin%sin§sin%

i i n~y — 2 os B cos 2
2. sina 4+ sin 3 + siny = 4 cos § cos 5 cos 3

3. sin2a + sin 23 4 sin 2y = 4sin asin G sin vy
4. sin? o + sin? B + sin® vy = 2 + 2 cos a cos [ cos ¥

For arbitrary angles «, 3,y we have

a+p . B+y . vt+a
Sin S1n .

2 2
+ﬁ OSﬂ+VCOS’Y+a.

cosa+cosﬁ+cosv+cos(oz+ﬂ+’y):4cosa2 c 5 5

sina +sin 3 + siny — sin(a + 5+ v) = 4sin
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Applications

1. Let x,y, 2 be positive real numbers. Prove that

x z
<1

Yy
x4+ (x+y)(z+2) +y+\/(y—l—z)(y—l—ﬂc) +x+\/(z+:n)(z+y) N

(Walther Janous, Cruz Mathematicorum,)

Solution. The inequality is equivalent to

Z 1 < 1.
14/ Etnts)

2

Beceause the inequality is homogeneous, we can assume that xy+yz+zz = 1.
Let us apply substitution S1: cyc(z = tan §), where a, 3,7 are angles of a
triangle. We get

tan < + tan 2 (t g 7)

an — an — an — an —

(z+y)(z+2) 2 2 2 2/ 1
2 tanzg sin2g7

2
and similar expressions for the other terms. The inequality becomes

e in B in %
sin § sin 5 sin §

<1

i

; + + :
1+sin§ 1—|—sin§ 1+sing

that is
1 1 1
2 <

< : + + - .
1+sin§ 1+sing 1+sin3

On the other hand, using the well-known inequality sin § + sing +sin3 <
and the Cauchy-Schwarz inequality, we have

2= - 3 SZ%
(14sing) + (14sing)+ (1 +sin) 1 +sing

[[oV]

and we are done. W

2. Let x,y, z be real numbers greater than 1 such that % + % + % = 2. Prove that

Ve—1+\y—1+vVz—1<Vzt+y+z

(Iran, 1997)
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Solution. Let (z,y,2) = (a+1,b+1,c+1), with a, b, ¢ positive real numbers.
Note that the hypothesis is equivalent to ab + bc 4 ca + 2abc = 1. Then it
suffices to prove that

Va+Vb+e<Va+bterts.
Squaring both sides of the inequality and canceling some terms yields
3
Vab + Vbe + v/ea < 7

Using substitution S5 we get (ab, be, ca) = (sin? 5 sin? g, sin? 1), where ABC

is an arbitrary triangle. The problem reduces to proving that

sin%—l—sing—i—sin%

3
S 57
which is well-known and can be done using Jensen inequality. W

3. Let a, b, c be positive real numbers such that a + b 4+ ¢ = 1. Prove that

\/ab +\/ be N ca <§
c+ab a+ be b+ca — 2

(Open Olympiad of FML No-239, Russia)

Solution. The inequality is equivalent to

ab i be n ca <§
((c+a)(c+Db) (a+b)(a+c) (b+c)b+a) ~ 2

ol

Substitution S7 replaces the three terms in the inequality by sin , sin g, sin 5.

Thus it suffices to prove sin § + sing +sind < %, which clearly holds. M
4. Let a, b, ¢ be positive real numbers such that
that

a+b)(b+c)(c+a)=1. Prove

=~ w —

ab+ bc+ ca <
(Cezar Lupu, Romania, 2005)

Solution. Observe that the inequality is equivalent to
3 3 2 2 2
(Cw) < ) @00+ e+ a)
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Because the inequality is homogeneous, we can assume that ab + bc+ ca = 1.
We use substitution S1: cyc(a = tan§), where «, 3,7 are the angles of a
triangle. Note that

cos 2 1
m+bxh+@@+a):11<25>: ’

@ 8 a B b
Ccos § cos 5 COS § COS 5 COS 3

Thus it suffices to prove that

(3) < e
o S I
3 cos? § cos? g cos? 3
or
3v3
5
cos T = sina + sin 3 + sin+y, the inequality is

2
3v3

sina + sin 3 4 siny < 5

4cosgcosécosl <
2 2 2

B

From the identity 4 cos § cos §

equivalent to

But f(z) = sinx is a concave function on (0,7) and the conclusion follows
from Jensen’s inequality. W

5. Let a, b, c be positive real numbers such that a + b+ ¢ = 1. Prove that
a? 4+ b+ +2V3abe < 1.

(Poland, 1999)

Solution. Let cyc <m = 1/?). It follows that cyc(a = yz). The inequality

becomes

22y + %22 + 2?22 + 2V3ayz < 1,
where x,y, z are positive real numbers such that xy + yz + zx = 1. Note that
the inequality is equivalent to

(zy + yz + 22)* + 2v3zyz < 14 2zyz(z + y + 2),

or
V3<z+y+z
Applying substitution S1 cyc(z = tan §), it suffices to prove
tan% —|—tan§ —i—tan% > \/§

The last inequality clearly holds, as f(x) = tan § is convex function on (0, ),
and the conclusion follows from Jensen’s inequality. W
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6. Let z,y, z be positive real numbers. Prove that

(z+y)(y+2)(z+7)
rT+y+=z

Vay+2) +Vyz +2) + V@ +y) > 2\/

(Darij Grinberg)

Solution. Rewrite the inequality as

x(x+y+2) ylr+y+ 2) z2(x+y+2)
\/<x+y><x+z> +\/<y+z><y+ac> +\/<z+oc><z+y> =%

Applying substitution S8, it suffices to prove that

cos%+cos§+cos%22,

where «, 3,7 are the angles of a triangle. Using transformation T1 cyc(A =
T—Q

T>’

where A, B, C are angles of an acute triangle, the inequality is equivalent to

sinA+sinB +sinC > 2.

There are many ways to prove this fact. We prefer to use Jordan’s inequality,
that is

2
Y <sina<a forallac (O,g).
7

The conclusion immediately follows. WM

. Let a, b, ¢ be positive real numbers such that a + b+ ¢+ 1 = 4abc. Prove that
1+1+1>3> 1 n 1 n 1

a b ¢ T Vab Vbe Aea

(Daniel Campos Salas, Mathematical Reflections, 2007)

Solution. Rewrite the condition as

Observe that we can use substitution S5 in the following way

1 1 1
(bc’ca’ab) = (231n2 %,QSiHQ g,QsiHQ ;),
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where «a, 3, are angles of a triangle. It follows that

(1 1 1> _ <zsin§sing 25sin 3 sin & 2sin§sin;>

PR .« 9 . ) Y
a b’ c sin § smg sin 3

Then it suffices to prove that

inBsin? inYsin & in 8 sin @
singsing singsing  singsing

3
> 3 Zsing—i—siné—i—sinz.

sin § sin 2 sin 2 2 2 2

2
The right-hand side of the inequality is well known. For the left-hand side we
use trasnformation T2 backwards. Denote by t =s—a,y=s—b, z =5 —¢,
where s is the semiperimeter of the triangle. The left-hand side is equivalent
to
T Y z 3
+ + > -,
y+z zx+z xz4+y 2
which a famous Nesbitt’s inequality, and we are done. W

8. Let a,b,c € (0,1) be real numbers such that ab + bc + ca = 1. Prove that
a b c 3(1—a2 1—b? 1—C2>
+ .

> 2
1—a2+1—b2+1—c2_4

a b c
(Calin Popa)

Solution. We apply substitution S1 cyc(a = tan é), where A, B, C are angles
of a triangle. Because a, b, ¢ € (0, 1), it follows that tan g, tan g, tan % € (0,1),
that is A, B, C are angles of an acute triangle. Note that

a sin % cos g tan A
cyc = = .

1—a2 cos A 2

Thus the inequality is equivalent to

1 1 1
tan A +tan B + tanC' > 3 .
an A tan b tanC = (tanA+tanB+tanC>

Now observe that if we apply transformation T1 and the result in Theorem
1, we get
tan A + tan B + tan C' = tan A tan B tan C.

Hence our inequality is equivalent to
(tan A + tan B + tan C')* > 3 (tan A tan B + tan B tan C + tan A tan C) .

This can be written as
1
§(tanA —tan B)? + (tan B — tan C)? + (tan C' — tan A)? > 0,

and we are done. W
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9. Let z,y, z be positive real numbers. Prove that

e

(Vo Quoc Ba Can, Mathematical Reflections, 2007)

Solution. Note that the inequality is equivalent to

(x+y)(z+x) _4lz+y+2)
S e, g 2

cyc

Let use transfromation T2 and substitution S8. We get

cyc((y+z) (x+y)(z+x): a :4Rsin3),

r(rx+y+2) cos §

and
4dx+y+z) 4R(sina+sinf +siny)

V3o V3 ’

where a, 3,y are angles of a triangle with circumradius R. Therefore it suffices

to prove that

3
\g <sing+sin§+sin;> 2sin%cos%+sin§cos§+sin%cos%.

Because f(x) = cos § is a concave function on [0, 7], from Jensen’s inequality

we obtain /3
3 1
5 2 > § <c @ —i—cosg—i-cos;)

Finally, we observe that f(z) = sin § is an increasing function on [0, 7], while
g(z) = cos § is a decreasing function on [0, 7]. Using Chebyschev’s inequality,
we have

1
3 (sin3+sin§+sing> (cosg—i-cosg—i-cosg) > Zsin%cos%,

and the conclusion follows. W

MATHEMATICAL REFLECTIONS 6 (2007) 11



Problems for independent study
. Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1. Prove that

a N b n c_ < \/g
Vb+c Veta Va+b V2
(Romanian Mathematical Olympiad, 2005)

. Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1. Prove that

1 1 1 1 1 1
\/—1\/—1+\/—1\/—1+\/—1\/—126
a b b c c a

(A. Teplinsky, Ukraine, 2005)

. Let a, b, ¢ be positive real numbers such that ab 4+ bc + ca = 1. Prove that

1 1 1 1
- - >2+4 —.
Va+b Vb+c Veta T V2

(Le Trung Kien)
. Prove that for all positive real numbers a, b, c,
(a® +2)(b* 4 2)(c® +2) > 9(ab + be + ca).
(APMO, 2004)
. Let x,y, z be positive real numbers such that % + % + % = 1. Prove that
V+tyz+Vr+yz+Vr+yz > Jayz+ Ve + Y+ Vz
(APMO, 2002)

. Let a, b, c be positive real numbers. Prove that

b+c c+a a+bd a b c
- + >4 + + :
b+c cH+a a+bd

a b c

(Mircea Lascu)

. Let a, b, c be positive real numbers, such that a + b + ¢ = v abec. Prove that
ab+bc+ca>9(a+b+c).

(Belarus, 1996)
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8. Let a,b, ¢ be positive real numbers. Prove that

b+c c+a a+bd abc
+ + 22
a b (a+b)(b+c)(c+a)
(Bui Viet Anh)
9. Let a,b, c be positive real numbers such that a + b + ¢ = abec. Prove that
(a—1)(b—1)(c—1) < 6v3—10.
(Gabriel Dospinescu, Marian Tetiva)
10. Let a, b, c be nonnegative real numbers such that a? + b? + ¢? + abc = 4. Prove
that

0<ab+ bc+ ca—abc < 2.

(Titu Andreescu, USAMO, 2001)
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