ALGEBRA QUALIFYING EXAM, FALL 1998: PART I

Directions: Work each problem in a separate bluebook. Give reasons for your answers, and make clear which facts you are assuming. If you have any questions about notation, terminology the meaning of a problem or the level of detail appropriate, please do not hesitate to ask the proctor.

Notation:

 \mathbb{Z} : Integers

Q: Rational Field

R: Real Field

C: Complex Field

GL(): Full linear group

 \mathbb{F}_q : Finite field with q elements

- 1. Classify groups of order $171 = 9 \cdot 19$.
- 2. Find all groups which can occur as the Galois group of the splitting field over \mathbb{F}_5 of a polynomial of degree 9. (The polynomial is not assumed irreducible.)
- 3. (a) Let p be an odd prime. Explain why $-1 \in \mathbb{Z}/(p)$ is a square if and only if $p \equiv 1 \mod 4$.
- (b) You may assume the fact that the ring $\mathbb{Z}[i]$ of Gaussian integers is a principal ideal domain. Show that an odd prime $p \in \mathbb{Z}$ is irreducible in $\mathbb{Z}[i]$ if and only if $p \equiv 3 \mod 4$. [**Hint**: Use (a).]
- 4. Suppose that V is a finite dimensional complex vector space and suppose that S_1, \dots, S_n are endomorphisms of V such that each S_i is diagonalizable and $S_iS_j = S_jS_i$ for all i, j. Show that there is a basis of V consisting of vectors each of which is an eigenvector for all S_i .
- 5. Let $F \subset K$ be subfields of the complex numbers such that K is a finite algebraic extension of F. Let $\zeta \in \mathbb{C}$.
- (a) If ζ is transcendental over K, prove that $[K(\zeta):F(\zeta)]=[K:F]$.
- (b) Give an example of $F \subset K$ and ζ algebraic over K such that $[K(\zeta) : F(\zeta)]$ does not divide [K : F].

Algebra Qualifying Exam, Fall 1998: Part II

Directions: Work each problem in a separate bluebook. Give reasons for your answers, and make clear which facts you are assuming. If you have any questions about notation, terminology the meaning of a problem or the level of detail appropriate, please do not hesitate to ask the proctor.

Notation:

 \mathbb{Z} : Integers

Q: Rational Field

R: Real Field

C: Complex Field

GL(): Full linear group

 \mathbb{F}_q : Finite field with q elements

1. Let A be an abelian group with generators x, y and z subject to the relations

$$2x + 2y - 16z = 0,$$

$$8x + 4y + 2z = 0$$
,

$$2x + y - 22z = 0.$$

What is the structure of A as a direct sum of cyclic groups?

2. Use linear algebra to prove that if $F \subset E$ is a cyclic Galois field extension then there is an F-vector space basis of E of the form $\{\sigma(x)|\sigma\in \mathrm{Gal}(E/F)\}$, for some $x\in E$.

- 3. (a) Assume that A is a commutative Noetherian integral domain. Show that every nonzero noninvertible element of A can be written as a finite product of irreducible elements. [**Definition**: a noninvertible element $p \neq 0$ of A is irreducible if whenever p = bc with $b, c \in A$ either b or c is invertible in A.]
- (b) Give an example of a Noetherian integral domain which is not a unique factorization domain.
- 4. Let G be the group of order 20 with generators σ and τ and relations $\sigma^4 = \tau^5 = 1$, $\sigma \tau \sigma^{-1} = \tau^2$. Determine the conjugacy classes of G and compute the character table of the irreducible complex representations of G.
- 5. (a) Find the Galois group of $x^5 + 3x^2 + 1$ over the prime fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_5 .

Hint: The only irreducible quadratic over \mathbb{F}_2 is $x^2 + x + 1$.

(b) Find the Galois group of $x^5 + 3x^2 + 1$ over \mathbb{Q} .

Hint: Use part (a).