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Preface

From time to time | get to revise this problem seminar. Althboumy chances of addressing the type of students for which
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Chapter

Essential Techniques

1.1 Reductio ad Absurdum

In this section we will see examples of proofs by contradittiThat is, in trying to prove a premise, we assume that ggitien
is true and deduce incompatible statements from this.

. . 1
1 Example Shew, without using a calculator, that6,/35 < 10
_ 1 1 . . . .
Solution: Assume that6 /35> 10 Then 6— 10 > /35 or 59> 10v/35. Squaring both sides we obtain 3488500, which
is clearly nonsense. Thus it must be the case that/85 < 10

2 Example Leta;,ap,...,a, be an arbitrary permutation of the numberg,1..,n, wheren is an odd number. Prove that the
product
(g —1)(az—2)---(an—n)

is even.

Solution: First observe that the sum of an odd number of otijars is odd. It is enough to prove that some differepeek
is even. Assume contrariwise that all the differenmgs k are odd. Clearly

S=(a1—1)+(ag—2)+---+ (an—n) =0,

since thegy's are a reordering of 2, ..., n. Sis an odd number of summands of odd integers adding to theietegyer 0. This
is impossible. Our initial assumption that all thg— k are odd is wrong, so one of these is even and hence the pradectn.

3 Example Prove that/2 is irrational.

Solution: For this proof, we will accept as fact that any gesiinteger greater than 1 can be factorised uniquely apribwuct
of primes (up to the order of the factors).

Assume that/2 = %, with positive integers, b. This yields 3% = a®. Now botha? andb? have an even number of prime

factors. So B? has an odd numbers of primes in its factorisation ahdas an even number of primes in its factorisation. This
is a contradiction.

4 Example Leta,bbe real numbers and assume that for all number9 the following inequality holds:

a<b+e.

1
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Prove that < b.

. o a—b . . . . .
Solution: Assume contrariwise that> b. HenceT > 0. Since the inequalitg < b+ ¢ holds for everye > 0 in particular

it holds fore = a_;b. This implies that
a<b+ a_;b or a<b.

Thus starting with the assumption ttzat- b we reach the incompatible conclusion that b. The original assumption must be
wrong. We therefore conclude thak b.

5 Example (Euclid) Shew that there are infinitely many prime numbers.

Solution: We need to assume for this proof that any integeaitgr than 1 is either a prime or a product of primes. Thevatig
beautiful proof goes back to Euclid. Assume thpt, p2, ..., pn} is a list that exhausts all the primes. Consider the number

N=pipz2---pnt+1.
This is a positive integer, clearly greater than 1. Obsena¢ none of the primes on the li§py, py, ..., pn} dividesN, since
division by any of these primes leaves a remainder of 1. Shhie larger than any of the primes on this list, it is either a

prime or divisible by a prime outside this list. Thus we halrevgn that the assumption that any finite list of primes leadhé
existence of a prime outside this list. This implies thatrthenber of primes is infinite.

6 Example Letn> 1 be a composite integer. Prove thdtas a prime factop < v/n.

Solution: Sincen is compositen can be written as = ab where botha > 1,b > 1 are integers. Now, if bota > \/n and
b > \/nthenn=ab > /n\/n=n, a contradiction. Thus one of these factors mustbgn anda fortiori it must have a prime
factor< /n.

The result in example 6 can be used to test for primality. kaneple, to shew that 101 is prime, we compllité101] = 10.
By the preceding problem, either 101 is prime or it is divisiby 2 3,5, or 7 (the primes smaller than 10). Since neither of
these primes divides 101, we conclude that 101 is prime.

7 Example Prove that a sum of two squares of integers leaves remaindesr® when divided by 4.

Solution: An integer is either even (of the forrk)2r odd (of the form R+ 1). We have

(2k)? = 4(k%),
(2k+1)? = 4(K°+k) +1.

Thus squares leave remainder 0 or 1 when divided by 4 and hieeicsum leave remainder 0, 1, or 2.

8 Example Prove that 2003 is not the sum of two squares by proving tleastim of any two squares cannot leave remainder
3 upon division by 4.

Solution: 2003 leaves remainder 3 upon division by 4. But mexkfrom example 7 that sums of squares do not leave remainder
3 upon division by 4, so it is impossible to write 2003 as the s1i squares.

9 Example If a,b,c are odd integers, prove that® + bx+ c = 0 does not have a rational number solution.
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Solution: Suppos£ is a rational solution to the equation. We may assumeplaatdq have no prime factors in common, so

eitherp andq are both odd, or one is odd and the other even. Now
P>, ,.(P
a(a> +b(a> +¢=0 = ap’ +bpg+cf =0.

If both p and p were odd, themp? + bpg+ cq? is also odd and hencg 0. Similarly if one of them is even and the other odd
then eithemp? + bpgor bpg+ ccf is even andp? 4+ bpg+ cqf is odd. This contradiction proves that the equation canae¢h
a rational root.

Practice

10 Problem  The product of 34 integers is equal to 1. Shew that their sumatebe 0. | 14 Problem In AABC, ZA > /B. Prove thaBC > AC.

11 Problem Letay,ap,...,az000 be Natural numbers such that 15 Problem LetO< a < 1. Prove that/a > a.
11 1,
e + ay ot a0 16 Problem Leta = 0.999... where there are at least 2000 nines. Prove that the deci-

mal expansion of/a also starts with at least 2000 nines.
Prove that at least one of tlag’s is even.

. . 17 Problem Prove that a quadratic equation
(Hint: Clear the denominators.)
a +bx+c=0,a#0

12 Problem  Prove that log3 is irrational. .
has at most two solutions.

13 Problem A palindromeis an integer whose decimal expansion is symmetric, p.g.
1,2,11,121, 15677651 (but not 010110) are palindromes. Prove that there is no pdsicg problem  Prove that ifax? + bx+ ¢ = 0 has real solutions and > 0,b > 0,c > 0
tive palindrome which is divisible by 10 then both solutions must be negative.

1.2 Pigeonhole Principle

The Pigeonhole Principle states thanif 1 pigeons fly tan holes, there must be a pigeonhole containing at least tweppig)
This apparently trivial principle is very powerful. Thusany group of 13 people, there are always two who have thehday
on the same month, and if the average human head has twomtiliios, there are at least three people in NYC with the same
number of hairs on their head.

The Pigeonhole Principle is useful in proviegistenceroblems, that is, we shew that something exists withouwtaaigt
identifying it concretely.

Let us see some more examples.

19 Example (Putnam 1978) Let A be any set of twenty integers chosen from the arithmeticnession 14, ...,100. Prove
that there must be two distinct integersdmwhose sum is 104.

Solution: We partition the thirty four elements of this pregsion into nineteen groups
{1},{52},{4,100},{7,97},{10,94},...,{49,55}.

Since we are choosing twenty integers and we have ninetégrbsethe Pigeonhole Principle there must be two integexts th
belong to one of the pairs, which add to 104.

20 Example Shew that amongst any seven distinct positive integersxuatesling 126, one can find two of them, sagndb,
which satisfy
b<a<?2b.
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Solution: Split the numbergl, 2,3,...,126} into the six sets
{1,2},{3,4,5,6},{7,8,...,13,14},{15,16,...,29,30},
{31,32,...,61,62} and{63,64,...,126}.

By the Pigeonhole Principle, two of the seven numbers mashlone of the six sets, and obviously, any such two will §atis
the stated inequality.

21 Example No matter which fifty five integers may be selected from
{1,2,...,100},

prove that one must select some two that differ by 10.

Solution: First observe that if we choose- 1 integers from any string ofreconsecutive integers, there will always be some
two that differ byn. This is because we can pair the @nsecutive integers

{a+1l,a+2,a+3,...,a+2n}

into then pairs
{a+1,a+n+1},{a+2a+n+2},....,{a+na+2n},

and ifn+ 1 integers are chosen from this, there must be two that betothge same group.
So now group the one hundred integers as follows:

{1,2,...20},{21,22,...,40},

{41,42,...,60}, {61,62,...,80}

and
{81,82,...,100}.

If we select fifty five integers, we must perforce choose eldvem some group. From that group, by the above observation
(letn = 10), there must be two that differ by 10.

22 Example (AHSME 1994) Label one disc1”, two discs 2", three discs 3", . . ., fifty discs“50°. Putthese ¥-2+3+---+
50= 1275 labeled discs in a box. Discs are then drawn from the beecnalom without replacement. What is the minimum
number of discs that must me drawn in order to guarantee depatileast ten discs with the same label?

Solution: If we draw all the #2+---+9=45labelled 1", ..., “9” and any nine from each of the disc%0C’, ..., “50°, we
have drawn 45-9-41= 414 discs. The 415-th disc drawn will assure at least tersdisen a label.

23 Example (IMO 1964) Seventeen people correspond by mail with one another—eaaehvith all the rest. In their letters
only three different topics are discussed. Each pair ofesmondents deals with only one of these topics. Prove tbat tit
least three people who write to each other about the same topi

Solution: Choose a particular person of the group, say @&haike corresponds with sixteen others. By the Pigeonhdaheipte,
Charlie must write to at least six of the people of one topag, opic I. If any pair of these six people corresponds onddpi
then Charlie and this pair do the trick, and we are done. @ifiser these six correspond amongst themselves only onstopic
Il or lll. Choose a particular person from this group of siay<ric. By the Pigeonhole Principle, there must be thredef t
five remaining that correspond with Eric in one of the topsas; topic Il. If amongst these three there is a pair that spoeds
with each other on topic Il, then Eric and this pair correspon topic Il, and we are done. Otherwise, these three peopje o
correspond with one another on topic Ill, and we are donenagai

24 Example Given any set of ten natural numbers between 1 and 99 inelupiwve that there are two disjoint nonempty
subsets of the set with equal sums of their elements.
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Solution: There are®® — 1 = 1023 non-empty subsets that one can form with a given 10exieset. To each of these subsets

we associate the sum of its elements. The maximum valu
Therefore, there must be at least two different subSelstha
also have the same element sum.

e iyatuech sum can achieve is $®1+---+99=945< 1023
t have the same element sum. TB{SNT) andT \ (SNT)

25 Example Given any 9 integers whose prime factors lie in the{87,11} prove that there must be two whose productis a

square.

Solution: For an integer to be a square, all the exponents gkime factorisation must be even. Any integer in the gisen
has a prime factorisation of the forfi@11°. Now each tripleta, b, c) has one of the following 8 parity patterns: (even, even,
even), (even, even, odd), (even, odd, even), (even, odd, @atttl, even, even), (odd, even, odd), (odd, odd, even}i, (odd,
odd). In a group of 9 such integers, there must be two with #meesparity patterns in the exponents. Take these two. Their

product is a square, since the sum of each corresponding

Practice

26 Problem  Prove that among -+ 1 integers, there are always two whose differenc
always divisible byn.

27 Problem (AHSME 1991) A circular table has exactly sixty chairs around it. Thq
areN people seated at this table in such a way that the next perdmn seated must s|
next to someone. What is the smallest possible valié¢?of

28 Problem  Shew that if any five points are all in, or on, a square of sididn some
pair of them will be at most at distanaé2/2.

29 Problem (Hungarian Math Olympiad, 1947)  Prove that amongst six people in
room there are at least three who know one another, or attle@st who do not know
one another.

30 Problem  Shew that in any sum of nonnegative real numbers there iyala@e num-

ber which is at least the average of the numbers and thatithalways one member thdt

it is at most the average of the numbers.

31 Problem We call a set “sum free” if no two elements of the set add up tbiral t
element of the set. What is the maximum size of a sum free sob$g,2,...,2n—1}.

Hint: Observe thatthe s¢h+1,n+2,...,2n—1} of n+1el-
ements is sum free. Shew that any subset with? elementd
is not sum free.

32 Problem (MMPC 1992)
an arbitrary order.

1.

Suppose that the letters of the English alphabet are listg

Prove that there must be four consecutive consonants.

2. Give a list to shew that there need not be five consecutinsamnts.

3. Suppose that all the letters are arranged in a circle.eRtwit there must be fiv

consecutive consonants.

33 Problem (Stanford 1953)  Bob has ten pockets and forty four silver dollars.

wants to put his dollars into his pockets so distributed &wath pocket contains a dit

ferent number of dollars.

1. Canhedo so?
2. Generalise the problem, consideripgockets and dollars. The problem i
most interesting when
po (P=1(P—2)
2

erpwill be even.

P i34 Problem  Let M be a seventeen-digit positive integer andNebe the number ob-
tained fromM by writing the same digits in reversed order. Prove thatagtlene digit
in the decimal representation of the numbe#- N is even.

re
' 35 Problem  No matter which fifty five integers may be selected from

{1,2,...,100},

prove that you must select some two that differ by 9, some hao differ by 10, some
two that differ by 12, and some two that differ by 13, but thatiyneed not have any two
athat differ by 11.

36 Problem Let mn+ 1 different real numbers be given. Prove that there is eiiner
increasing sequence with at least 1 members, or a decreasing sequence with at least
m+ 1 members.

37 Problem  If the points of the plane are coloured with three colourgvsthat there
will always exist two points of the same colour which are oné apart.

38 Problem  Shew that if the points of the plane are coloured with two oo there
will always exist an equilateral triangle with all its vextis of the same colour. There is,
however, a colouring of the points of the plane with two cefofor which no equilateral
triangle of side 1 has all its vertices of the same colour.

39 Problem (USAMO 1979)  Nine mathematicians meet at an international conference

dand discover that amongst any three of them, at least twckspeammon language. If
each of the mathematicians can speak at most three langpages that there are at least
three of the mathematicians who can speak the same language.

40 Problem (USAMO 1982) In a party with 1982 persons, amongst any group of four
there is at least one person who knows each of the other thiet is the minimum
number of people in the party who know everyone else?

He
41 Problem (USAMO 1985) There aren people at a party. Prove that there are two

people such that, of the remainimg— 2 people, there are at legsh/2|| — 1 of them,
each of whom knows both or else knows neither of the two. Asstinat “knowing” is a
symmetrical relationship.

42 Problem (USAMO 1986) During a certain lecture, each of five mathematicians fell
asleep exactly twice. For each pair of these mathematictaese was some moment
when both were sleeping simultaneously. Prove that, at snoment, some three were

Why?

sleeping simultaneously.
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1.3 Parity

43 Example Two diametrically opposite corners of a chess board argettl&Shew that it is impossible to tile the remaining
62 squares with 31 dominoes.

Solution: Each domino covers one red square and one blaekesgjuBut diametrically opposite corners are of the sanmaicol
hence this tiling is impossible.

44 Example All the dominoes in a set are laid out in a chain according éorthes of the game. If one end of the chain is a 6,
what is at the other end?

Solution: At the other end there must be a 6 also. Each nunflsgrats must occur in a pair, so that we may put them end to
end. Since there are eight 6's, this last 6 pairs off with the at the beginning of the chain.

45 Example The numbers 2, ...,10 are written in a row. Shew that no matter what choice of sige put in between them,
the sum will never be 0.

Solution: The sum %2+ ---+10= 55, an odd integer. Since parity is not affected by the choicagf,gor any choice of
sign+1+2+---+ 10 will never be even, in particular it will never be 0.

46 Definition A lattice point(m,n) on the plane is one having integer coordinates.

47 Definition The midpoint of the line joiningx,y) to (X1,y1) is the point

()

48 Example Five lattice points are chosen at random. Prove that one leaysi find two so that the midpoint of the line
joining them is also a lattice point.

Solution: There are four parity patterns: (even, evenkgifeedd), (odd, odd), (odd, even). By the Pigeonhole Prie@mong
five lattice points there must be two having the same paritiepa Choose these two. It is clear that their midpoint is an
integer.
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For the next few examples we will need to know the names ofdhewing tetrominoes.

] b Enan man a5

Figure 1.1: L-tetromino Figure 1.2: T-tetromino Figure 1.3: Straight-tetromino Figure 1.4: Skew-tetromino Figure 1.5: Square-tetromino

49 Example A single copy of each of the tetrominoes shewn above is ta&kaw that no matter how these are arranged, it is
impossible to construct a rectangle.

Solution: If such a rectangle were possible, it would have@fares. Colour the rectangle like a chessboard. Thendhedd
red squares and 10 black squares. The T-tetromino alwagss<an odd number of red squares. The other tetrominoesslway
cover an even number of red squares. This means that the nofieel squares covered is odd, a contradiction.

50 Example Shew that an & 8 chessboard cannot be tiles with 15 straight tetrominog®ag L-tetromino.

Solution: Colour rows 13,5, 7 black and colour rows,2, 6, and 8 red. A straight tetromino will always cover an evembar
of red boxes and the L-tetromino will always cover an odd nendf red squares. If the tiling were possible, then we woeld b
covering an odd number of red squares, a contradiction.

Practice

51 Problem Twenty-five boys and girls are seated at a round table. Shathitth | any two of them and replacing the deleted ones with theiedifice. Will a situation
neighbours of at least one student are girls. arise where all the numbers on the blackboard be 0?

54 Problem Shew that a 1& 10 chessboard cannot be tiled with 25 straight tetromi-

52 Problem A closed path is made of 2001 line segments. Prove that there line, noes

not passing through a vertex of the path, intersecting efttfecsegments of the path.

55 Problem  Shew that an & 8 chess board cannot be tiled with 15 T-tetrominoes and
53 Problem The numbers P, ...,2001 are written on a blackboard. One starts eragirane square tetromino.
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Algebra

2.1 ldentities with Squares

Recall that
(X+y)? = (X+y)(x+Yy) =X +y? 4 2xy (2.1)
If we substitutey by y+ zwe obtain
(X+Y+2)% =x2+y?+ 2+ 2xy+ 2xz+ 2yz (2.2)
If we substitutez by z+ w we obtain
(X+Y+24+W)? = X2 +y? + 2 + WP + 2Xy+ 2XZ+ 2XW-+ 2yZ+ 2yw+ 2Zw (2.3)

56 Example The sum of two numbers is 21 and their produdt. Find (i) the sum of their squares, (ii) the sum of their
reciprocals and (iii) the sum of their fourth powers.

Solution: If the two numbers ar@eandb, we are given thaa+ b =21 andab= —7. Hence
a’+b% = (a+b)?—2ab=212—2(-7) =455

and 1 1 b+ 21
a
_+_:—:

a b ab 7_7:_3

Also
a*+b* = (a?+b?)?— 2a%b® = 455 — 2(—7)? = 357

57 Example Find positive integera andb with

V/5+v24=/a+vh.

Solution: Observe that

5+v24=3+2V2-3+2= (V243>

V/542V6=v2+3.

Therefore

58 Example Compute

\/(1000000(10000011(1000003(1000003 +1

without using a calculator.
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Solution: Letx = 1 000 000= 10°. Then
X(X4 1) (X+2) (x4 3) = x(x+ 3) (x+ 1) (X + 2) = (x® + 3x) (x* + 3x+ 2).
Puty = x?+ 3x. Then

X(X4+1)(x+2)(x+3) +1= (X +3X) (243 +2)+ 1=y(y+2) +1=(y+1)2

Thus
VXXFD)(x+2)(x+3)+1 = y+1
= X*+3x+1
= 10%2+3-10°+1
= 1000003000 001
Another useful identity is the difference of squares:
X —y? = (x—y)(x+Y) (2.4)

59 Example Explain how to compute 123456789 123456790« 123456788 mentally.

Solution: Putx = 123456789. Then

123456788— 123456790« 123456788= x° — (x+ 1)(x—1) = 1.

60 Example Shew that

T+ X 4324 X0 = (1) (14+X3) (14 %) - (14 x55) (1512,

Solution: PutS= 1+ x+x?+--- +x1°23 ThenxS=x+x*+ - -- 4+ x10%4 This gives
S—XS= (1+X+3C+ - +X0%) — (x4 24 4 x1024) — 1 1024

or §(1—x) = 1— x4 from where
1_ 51024

1—x

1-x1024 /11024y 71612 138\ /12
1-x  \ 1-x°12 ] \ 1 x256 1-x2) \ 1-x

= (14X (1459 ... (14x%)(1+x),

1+ x40+ +x08=5=

But

proving the assertion.

61 Example Given that
1 1 1 1

VI vV2 V243 Varva T /et vioo

is an integer, find it.
Solution: As 1=n+1—n=(v/n+1—+/n)(v/n+ 1+ +/n), we have

1
TArverT o vVnriovh
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Therefore 1 s
S
SV
V3+4
veore SRR
and thus

1 1 1 1
VIivz  Vaiva vaiva T eetvioo

Using the difference of squares identity,
P +y = X2y — XY

= ¢y~ (xy)?
= (C—xy+ YY)+ xy+y?).

=+/100—v1=0.

The following factorisation is credited to Sophie Germain.

at+4b* = a*+4a’v®+4ap®— 4%’
= (a®+2b%)?—(2ab)?
= (a®—2ab+ 2b%)(a®+ 2ab+ 2b?)

62 Example Prove than*+ 4 is a prime only whem = 1 forn € N.
Solution: Using Sophie Germain'’s trick,

n*+4 = n*+4n’+4—4n?
= (n®+2)2—(2n)?
= ("*4+2-2n)(n®+2+2n)
= (n—12+1)((n+1)2+1).

Each factor is greater than 1 for> 1, and son® + 4 cannot be a prime ifi > 1.
63 Example Shew that the product of four consecutive integers, nonkeht0, is never a perfect square.

Solution: Letn—1,n,n+ 1,n+ 2 be four consecutive integers. Then their prodRist
P=(n—1)n(n+1)(n+2)= (n"*—n)(n+2) =n*+2n*—n*—2n.
But
(NPP+n—12=n*+2n*—n’—2n+1=P+1>P
As P £ 0 andP is 1 more than a squar@,cannot be a square.

64 Example Find infinitely many pairs of integersn, n) such thaim andn share their prime factors arich— 1,n— 1) share
their prime factors.
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Solution: Takem=2—1 n= (2~ 1)? k=2,3,.... Thenm,n obviously share their prime factors am- 1 = 2(2*"1 - 1)
shares its prime factors with— 1 = 2¢+1(2k-1 1),

65 Example Prove thatifr > s>t then
rP—+t2> (r—s+t)? (2.5)

Solution: We have
(r—s+t)?—t?=(r—s+t—t)(r—s+t+t)=(r—s)(r—s+2t).

Sincet—s<0,r—s+2t=r+s+2(t—s) <r+sand so
(r—s+t)>—t>< (r—s)(r+s) =r>—¢

which gives
(r—s+t)2<r2—+t2

Practice

66 Problem The sum of two numbers is-7 and their product 2. Find (i) the sum ¢f 78 Problem Solve the system
their reciprocals, (ii) the sum of their squares. X+y=09,

X%+ xy+Yy* =61
67 Problem  Write x? as a sum of powers of+ 3.

79 Problem  Solve the system
x—y =10,

68 Problem  Write x> — 3x+ 8 as a sum of powers af— 1.
X2 —axy+y? =52

69 Problem Prove that 3 is the only prime of the form — 1.
80 Problem  Find the sum of the prime divisors of2— 1.

70 Problem  Prove that there are no primes of the fonfn— 1.
81 Problem  Find integersa, b with

71 Problem  Prove than®* + 4" is prime only forn = 1. vV 11+ V72=a+vh.
72 Problem Use Sophie Germain’s trick to obtain 82 Problem  Given that the difference

X3+ 1= (@ +x+1) (@ —x+1), /57— 40v2— \/57+40/2
and then find all the primes of the fomd 4 n? 4- 1. is an integer, find it.

83 Problem  Solve the equation

VX +3—ax—1+4/x+8—6Vx—1=1.

. 2 1 1, @
73 Problem If a,bsatlsfym = a+ B find 7

74 Problem  If cotx+tanx = a, prove that cdtx + tarf x = a® — 2. .
84 Problem Prove thatifa> 0, b> 0,a+b > ¢, thenya+vb > ¢

75 Problem  Prove that ifa, b, c are positive integers, then
85 Problem  Prove that if 1< x < 2, then

(Va+vb+e)(—va+vb+e)

(Va— VB4 V&) (Va+ VB el = 2
-(va—+vb++c)(va+vb—+c =5
\/x+2\/xfl \/x72\/x71 2—x
is an integer.
86 Problem If x> 0, from
76 Problem By direct computation, shew that the product of sums of twaases is 1
itself a sum of two squares: VX1 /X = ——
a VX+ 14 /X
2 2y _ 2 _he)2
(a® +b?) (2 +d?) = (ac+bd)? + (ad— bc) (2.6) prove that
1 1
<VXF1—VX< —.
77 Problem  Divide x}28 — y'28 by 2Vx+ 1 2%
Use this to prove that ifi > 1 is a positive integer, then
(X+Y) ¢ +¥) (¢ +y) (:E+¥P) 11 1
(X164 y18) (532 4 y32) (x4 4 yB4) 2Vn+1-2<1+ ﬁ + ﬁ 4+ % <2yn—1
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87 Problem  Shew that 89 Problem Prove thatifr > s>t >u>vthen

1— x2048 PP—@4t?— P+ > (r—s+t—u+v)? .7)

(14X) (14X3) (1+X) (1+X8) -+ (14 x2024) = T

90 Problem (AIME 1987) Compute

88 Problem  Shew that
(10* +324) (222 + 324) (34" + 324) (46" + 324) (58" + 324)
(44 + 324) (16 + 324) (28* + 324) (40* + 324) (524 +-324)

a? 4+ b? +c?—ab—bc—ca= ((a—b)2+ (b—c)?+ (c—a)z) .

NIl =

91 Problem  Write (a2 +a-+ 1)? as the sum of three squares.

2.2 Squares of Real Numbers

If xis a real number thex? > 0. Thusifa> 0,b > 0 then(,/a— v'b)? > 0 gives, upon expanding the squaae;2vab+b > 0,
or

Vab< a+ b
Sincea—;rb is the arithmetic mean @f, b andv/abis the geometric mean @t b the inequality

Vab< a+ b 2.8)
is known as thé\rithmetic-Mean-Geometric MegAM-GM) Inequality.

92 Example Let up, Uy, Us, Us be non-negative real numbers. By applying the precedingtragice, establish the AM-GM
Inequality for four quantities:

(u1u2u3u4)l/4 < w (29)
Solution: We have/uiu; g and\/u Ug < . Now, applying the AM-GM Inequality twice tQ/uju; and,/uzus
we obtain s et
,/ulu +./u3u 12 2 4 =5
/U1Uz,/U3ly .
1U2+4/U3 >
Simplification yields the desired result.
93 Example Letu,v,wbe non-negative real numbers. By using the preceding restifie four quantities, v, w, andw,
establish the AM-GM Inequality for three quantities:
(uvw) /3 < utvrw (2.10)

3

Solution: By the AM-GM Inequality for four values

U+v+wy\ 4 utvw SR
(o)

Some algebraic manipulation makes this equivalent to

(UVM1/4(U+\;+W)1/4§ u+\£/1+w+ u+i/2+W

or upon adding the fraction on the right

1/4
(UVM1/4(U+\;+W) / < u+\:;+w.
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u+v+wy /4 .
7) we obtain

Multiplying both sides by(

w4 < (w)m

)

from where the desired inequality follows.

94 Example Leta> 0,b > 0. Prove theHarmonic-Mean-Geometric-Mednequality

l+l<f6 (2.11)
a'b
Solution: By the AM-HM Inequality
1,1
11 _3+5
ab—- 27

from where the desired inequality follows.

95 Example Prove that ifa, b,c are non-negative real numbers then

(a+b)(b+c)(c+a) > 8abc
Solution: The result quickly follows upon multiplying theree inequalitiea+b > 2v/ab, b+c > 2vbcandc+a > 2\/ca
96 Example If a,b,c,d, are real numbers such thet+ b? + ¢ + d?> = ab+ bc+ cd+da, prove thata = b = c = d.

Solution: Transposing,
a?—ab+b?—bc+c?—dc+d?—da=0,

or
a2 b2 b2 CZ 2 d2 d2 a2
E—ab+ +— bc+2+ dc+2+— da+?—0.
Factoring,
VUNRC IR PR S PUUNY S DU S
2(a b) +2(b c) +2(c d) +2(d a)c=0.

As the sum of non-negative quantities is zero only when tlamtities themselves are zero, we obfiab,b=c c=d,d =3,
which proves the assertion.
We note in passing that from the identity

((a=b)?+ (b—c)?+(c—a)?) (2.12)

NI =

a+b?+c?—ab—bc—ca=

it follows that
a’+b?4c2>ab+bc+ca (2.13)

97 Example The values of,b,c, andd are 12,3 and 4 but not necessarily in that order. What is the largesgiple value of
ab+bc+cd+da?

Solution:

ab+bc+cd+da (a+c)(b+d)

(a+c+b+d>2

2

(1+2+3+4>2
2

= 25
by AM-GM. Equality occurs whea+ c = b—+d. Thus one may choose, for exammes 1,c=4,b=2,d = 3.

)
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Practice
98 Problem If 0 < a <b, shew that 102 Problem  Prove that of all rectangles with a given perimeter, the sgjimas the
largest area.
1 (b—a)? a+b 1 (b—a)?
. < <z
8 b vab< 8’ a
103 Problem  Prove that if 0< x < 1 thenx — X2 < %
99 Problem  Prove that ifa, b, c are non-negative real numbers then
(& +1)(b*+1)(c*+1) > 8abc 104 Problem Let0< a,b,c,d < 1. Prove that at least one of the products
100 Problem The sum of two positive numbers is 100. Find their maximunsiine a(1—b), b(1—c), c(1—d), d(1—a)
product.
is < L
<7

101 Problem  Prove that ifa,b, ¢ are positive numbers then

o

a +24 €o3 105 Problem  Use the AM-GM Inequality for four non-negative real numberprove
b ¢ a~ " a version of the AM-GM for eight non-negative real numbers.

2.3 ldentities with Cubes
By direct computation we find that
(X+Y)2 = (x+y) ¢+ Y2 +2xy) = X+ y> + 3xy(x+Y) (2.14)

106 Example The sum of two numbers is 2 and their product 5. Find the surhef tubes.

Solution: If the numbers aney thenx® +y® = (x+y)3 — 3xy(x+y) = 22— 3(5)(2) = —22.
Two other useful identities are the sum and difference oesub

X3 +y2 = (X£Y) R Fxy+Y?) (2.15)
107 Example Find all the prime numbers of the forni— 1, n a positive integer.

Solution: Asn®—1= (n—1)(n’4+n+1) and asi® + n+1> 1, it must be the case that— 1 =1, i.e.,n= 2. Therefore, the
only prime of this formis 2—1=7.

108 Example Prove that
1+ X4+ +X0 = 0+ T+ 1) (x40 + 1) X+ + 1) P+ x+ 1).
Solution: PutS=1+x+x?+--- 48 Then
S—XS= (14+X+X2+ - +xX0) — (x+ 32+ + - 480 B = 18,
orS(1—x) = 1—x%L. Hence

x8l_1
T+X+x2+-- +x80 = .
x—1
Therefore
X1 811 x27-1 x¥-1 x*—1
x—1  x7—1 x—1 x3—-1 x—-1°
Thus

14X+ + 430 = 0T+ 1) (B + 1) 6C+ 3+ 1) (P +x+ 1).

109 Example Shew that
a’+b%+c®—3abc= (a+b+c)(a®+b?+c?—ab—bc—ca) (2.16)
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Solution: We use the identity
CHye = (x+y)2 —3Xy(x+y)

twice. Then

a>+b3+c3—3abc = (a+b)®+c®—3abla+b)—3abc
(a+b+c)®—3(a+b)c(a+b+c)—3abla+b+c)

= (a+b+c)((a+b+c)>—3ac—3bc—3ab)
(

a+b+c)(a®+b?+c?—ab—bc—ca)
If a,b, c are non-negative them+ b+ ¢ > 0 and als@? + b?+ ¢> — ab— bc—ca> 0 by (2.13). This gives

3, k3. A3
a’+b’°+c
+ b+ > abe

Lettinga® = x,b® =y, c® = z, for non-negative real numbexsy, z, we obtain the AM-GM Inequality for three quantities.

Practice
110 Problem  If a® —b® =24 a—b =2, find (a+b)2. X% —xy+y? =21
111 Problem Shew that for integen > 2, the expression 116 Problem Evaluate the sum
n+(n+2)3 1 1
ey E— 3 3 =13 3 3
4 Vit V2+ \{Z Va+ 6+ V9
is a composite integer. + Y9+ 12+ ¥16
112 Problem  If tanx -+ cotx = a, prove that tafx+ cofx = a® — 3a. 117 Problem  Finda® 4 a~ given thata? + a2 — 4.

113 Problem (AIME 1986) What is the largest positive integeffor which 118 Problem  Prove that

3
(n+10)|(n"+100)? (a+b+c)%—a — b — = 3(a+b) (b+c)(c+a) 2.17)

114 Problem  Find all the primes of the form® + 1. L
P + 119 Problem (ITT 1994) Leta,b,c,d be complex numbers satisfying

115 Problem  Solve the system atb+rctd=a®+b*+c+d®=0.

X4y =126 Prove that a pair of the,b,c,d must add up to 0.

2.4 Miscellaneous Algebraic Identities

We have seen the identity
Y23 = (y=X)(y+X). (2.18)

We would like to deduce a general identity §0r— X", wheren is a positive integer. A few multiplications confirm that

V233 = (Y= X) (Y2 + yX+ X2), (2.19)
VX = (y=X) (Y + yPX+ YR +x°), (2.20)

and
Y = (y=X) (Y + ¥+ Yy +y +x4). (2.21)

The general result is in fact the following theorem.
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120 Theorem If nis a positive integer, then
Y1 X = (Y= X)) T T,

Proof: We first prove that for & 1.

1-a"
l+atal+---a"t= :
l1-a

For,putS=1+a+a®+---+a" L. ThenaS=a+a’+---+a" 1 +a" ThusS-aS=(1+a+a’+---+a" 1) —
(a+a’+---+a" 1+a") =1-a" and from(1—a)S= S—aS= 1—a" we obtain the result. By making the

o X
substitution a= ;/ we see that

we obtain

or equivalently,

y? yr-1 yn
Multiplying by y' both sides,
X X X2 xn—1 XN
17—) 1<1+—+—+~--+—)_ (17—),
y( y Y y ¥ yn-1 Y y"
which is

Y X = (Y)Y YA R X,
yielding the result]

|:| The second factor has n terms and each term has degree (Weightl.
As an easy corollary we deduce
121 Corollary If X,y are integers # y andn is a positive integer thex— y dividesx” — y".
Thus without any painful calculation we see that 7281996— 1215 divides 1996 1215

122 Example (E 6tvés 1899) Shew that for any positive integarthe expression
2903'—- 803" 464"+ 261"

is always divisible by 1897.

Solution: By the theorem above, 2903803 is divisible by 2903- 803= 2100= 7-300 and 261— 464" is divisible by
—203= (—29) - 7. This means that the given expression is divisible by 7 tHeumore, 2908 464" is divisible by 2903
464=2439=9-271 and—803"+ 261" is divisible by —803+ 261= —542= —2-271. Therefore as the given expression
is divisible by 7 and by 271 and as these two numbers have nonconfiactors, we have that 2903 803" — 464"+ 261" is
divisible by 7-271=1897.

123 Example ((UM)2C*1987 Given that 1002004008016032 has a prime faptor 250000 find it.
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Solution: Ifa=10°,b =2 then

6 16
1002004008016032 a° + a*b + a3b? + a?b® + ab* + b° aa E .
This last expression factorises as

a6_ b6

2 2
Py (a+b)(a®+ab+b?)(a® —ab+ b?)

1002- 1002004 998004
= 4-4.1002 250501 k,

wherek < 250000. Therefore = 250501.
Another useful corollary of Theorem 120 is the following.

124 Corollary If f(x) =ag+aix+---+a.x" is a polynomial with integral coefficients andkifb are integers then— a divides
f(b)— f(a).

125 Example Prove that there is no polynomipliwith integral coefficients withp(2) = 3 andp(7) = 17.

Solution: If the assertion were true then by the precedingltary, 7— 2 = 5 would dividep(7) — p(2) = 17— 3 = 14, which
is patently false.
Theorem 120 also yields the following colloraries.

126 Corollary If nis an odd positive integer
XY = (XA Y) (X=X Py XX YRy ey ) (2.22)

127 Corollary Letx,y be integersx#y and letn be an odd positive number. Ther-y dividesx" +y".

For example 129 27 + 1 divides 21+ 1 and 1001 1000+ 1 = 999+ 2 = - .- = 500+ 501 divides
119974 21997 4 1000997

128 Example Prove the following identity of Catalan:

11+171++1 1 1+1++1
2 3 4 2n—1 2n ntl nt2 2n’

Solution: The quantity on the sinistral side is

(1+1+1+1+ e +1>
2 3 4 2n— 2n
f2(1+1+1+ +1>
2 4 6 2n
= (arieiiley +i>
n 2 3 4 2n—1 2n
_ }<1+}+}+}+ +1‘>
2 2 3 4 n
= <1+1+1+1+ - 1>
B 2 3 4 2n—1 2n
— 1+1+1+1+ +
2 3 4
I S S
n+1 n+2 2n’

as we wanted to shew.
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Practice
129 Problem  Shew that 100 divides 11— 1. 136 Problem Shew that for any natural number there is another natural number
such that each term of the sequence
130 Problem  Shew that 27195 10887 -+ 10152 is divisible by 26460. X+ L+ 1% 1.
is divisible byn.
131 Problem Shew that 7 divides Y
2227555 4 5555222, 137 Problem  Shew that 1492— 1770" — 1863 + 2141 is divisible by 1946 for all
positive integers n.
132 Problem  Shew that ifk is an odd positive integer
138 Problem Decompose ¥ x+x% +x° + --- -+ x¥?4into factors.
42K+
139 Problem Shew that if 2 — 1 is prime, them must be prime. Primes of this form
is divisible by are calledVlersenneprimes.
1+2+4--+n.
140 Problem  Shew that if 2 4 1 is a prime, them must be a power of 2. Primes of this
133 Problem Shew that form are called Fermat primes.
5 5 _ 2
(x+Y)® = —y® = 5xy(x+y) (¢ +xy+y*). 141 Problem  Letn be a positive integer and> y. Prove that
X" —
134 Problem Shew that X_y >ny' L
(x+a)" —x —a’ = Txa(x+a) ¢ +xa+a’)?. By choosing suitable values afandy, further prove than
1 n 1 n+1
135 Problem  Shew that (l+ —) < (l+ —)
n n+1

A X909 | (8888 | (7777 | 111 q

is divisible byB = x° 4+ )& +-x" 4 -+ + X% +x+ 1.

2.5 Logarithms

and

1\n+1 1 n+2
(1+3) > (1+=5)
n n+1

142 Definition Leta> 0,a# 1 be a real number. A numbeis called thdogarithmof a numbeN to the basa if a*=N. In
this case we write = log, N.

We enumerate some useful properties of logarithms. We asthetta > 0,a# 1,M > O,N > 0.

%N =N (2.23)

log;MN = logyM +log, N (2.24)

Ioga% =log,M —logyN (2.25)
log,N® = alog,N, o any real number (2.26)
logs N = %IogaN, B # 0 a real number (2.27)

(logyb)(log,a) =1, b>0,b # 1. (2.28)

143 Example Given that Iog\/é 1024 is a rational number, find it.

Solution: We have

2
logg, 5 1024=l0g,7,2 1024= - log,

20
210 _ =
7
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144 Example Given that
(log,3) - (logz4) - (l0g,5) - - - (109511 512)

is an integer, find it.

Solution: Choosa > 0,a# 1. Then

logs3 loga4 log,5 log,512

106;3)-10054) (105 - 10051;512 = 707 oo (et R

_ log,512
~ log,2
But log,512
00, 9
=log,512=109,2° =9
log, 2 0G, 09, )

so the integer sought is 9.

145 Example Simplify
S=logtanT +logtan? +logtan3 + - -- + logtan 89.

Solution: Observe thdB0—k)° 4+ k® = 90°. Thus adding th&th term to the( 90— k)th term, we obtain

S = log(tanT)(tan89)+log(tan?)(tan88)
+log(tan3)(tan87) +--- +log(tan44)(tan46) + logtan 45.

As tank® = 1/tan(90—k)°, we get
S=logl+logl+---+logl+logtan4s.

Finally, as tan4%5= 1, we gather that
S=logl+logl+---+logl=0.

146 Example Which is greater log7 or logg 3?
Solution: Clearly log7 > 1 > logg 3.

147 Example Solve the system
5 (logcy+log, x) =26
Xy=64
Solution: Clearly we need > 0,y > 0,x # 1,y # 1. The first equation may be written as(E)ng+ %) = 26 which is

log,
1 L .
the same aslog,y —5)(log, x — 5) = 0. Thus the system splits into the two equivalent systemk@l)y = 5,xy = 64 and

(I log,y = 1/5,xy = 64. Using the conditions > 0,y > 0,x # 1,y # 1 we obtain the two sets of solutiors= 2,y = 32 or
Xx=32y=2

148 Example Let ||x|| be the unique integer satisfying- 1 < ||x|] < x. For exampld|2.9| = 2,|—m|| = —4. Find
|[log, 1] + [/ log, 2| + |[log, 3] + - - -+ ||log, 1000Q].
Solution: First observe thaf2= 512< 1000< 1024= 2'°. We decompose the intervidt 1000 into dyadic blocks

[1;2000 = (1,20 J 12221 J 12%2°(J - | 2% 2% 12%1000.
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If x € [2,2"1[ then||log, x|| = k. If a,b are integers, the intervéd; b[ containsh— a integers. Thus

llog, ]|+ |[log, 2|| + [[log, 3] + - - +|[log, 1000 = (2 —2%)0+ (22—2%)1
+(28-2%)2+--.
+(2°—-28)8

+(1000—2%)9
= 0+2-1+4-2+8-3

+16-44-32-5+
+64-6+128-7
+256-8+489-9
= 7987

(the last interval has 1000512+ 1= 489 integers).

Practice

149 Problem Find the exact value of 154 Problem  Solve the equation

1 1 1 V5 V5
log, 1998 ' 10g;1996 ' iog, 1998 l0gy5 (COSH ?) 1013 (COS’(_ ?) =2
T 10g15051998

155 Problem  Solve
log, x+log,y+log,z= 2,
150 Problem  Shew that logy, X > log, 5x only when 0< x < 1. 10g; X+ 10ggy+ logyz = 2
3 o 92 = 4
log,x+log;gy + 109,62 = 2.
151 Problem  Prove that logr+log,, 3 > 2.

156 Problem  Solve the equation

1
= 2
152 Problem Leta > 1. Shew thatIogalx > 1onlywhenl<x<a Xo.5|ogﬂ(x —x) _ 3ogg4.

153 Problem  LetA = logg 16, B = log,,27. Find integers, b,c such tha{ A+a) (B+ | 157 Problem Given thatlog,a = 4, find

b) =c. 3
IOgab%Z'
2.6 Complex Numbers
We use the symbalto denotd = v/—1. Theni? = —1. Clearlyi® = 1,i' = 1,i? = —1,i® = —i,i* = 1,i° =i, etc., and so the

powers ofi repeat themselves cyclically in a cycle of period 4.
158 Example Findit%34

Solution: Observe that 19344(483) + 2 and sd'%*=i2 = —1.
Complex numbers occur naturally in the solution of quadr@gjuations.

159 Example Solve 2%+ 6x+5=0
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Solution: Completing squares,

2 +6x+5 = 2x2+6x+§+%
_ Sl
— (\/—2x+\/§) (1'\@) , .
- (\/—2x+ﬁ—lﬁ)(\/éx+72+lﬁ)-
Thenx:—gii}.

If a,b are real numbers then the object bi is called acomplex numberlf a+ bi,c+ di are complex numbers, then the
sum of them is naturally defined as
(a+bi)+ (c+di)=(a+c)+ (b+d)i (2.29)

The product ok + bi andc+ di is obtained by multiplying the binomials:

(a+bi)(c+di) = ac+adi+ bei+ bdi? = (ac— bd) + (ad+ bo)i (2.30)

160 Definition If a,b are real numbers, then tkenjugatea+ bi of a+ bi is defined by

a+bi=a—bi (2.31)
Thenorm|a+ bi| of a+ bi is defined by
|a+bi| = 1/ (a+ bi)(a+bi) = \/a2+ b2 (2.32)

161 Example Find |7+ 3i|.

Solution: |7+ 3i| = /(74 3i)(7—3i) = /72 + 32 = V/58.
162 Example Express the quotie g+3 in the forma+ bi
p p q %TSI .

Solution: We have . ) . . .
2+3i  2+3i 3+5  -9+19 -9 19

3.5 3.5 315 34 34 34
If 21,2, are complex numbers, then their norms are multiplicative.

|2122| = |71 |22 (2.33)
163 Example Write (22 4 32)(5%+72) as the sum of two squares.
Solution: The idea is to write?2+ 3% = |2+ 3i|2,5? + 7° = |5+ 7i|? and use the multiplicativity of the norm. Now
(22+3%)(5%+7%) = [2+3i[5+7if?
= |(243i)(5+7i)?

= |—11+29?
= 117429

164 Example Find the roots ok —1=0.
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Solution:x® — 1 = (x— 1) (x¥*+x+1). If x # 1, the two solutions ta® +x+ 1 = 0 can be obtained using the quadratic formula,
gettingx = 1/2+iv/3/2. Traditionally one denote® = 1/2+iv/3/2 and hencew? = 1/2—iv/3/2. Clearlyw® =1 and

W+ w+1=0.

165 Example (AHSME 1992) Find the product of the real parts of the rootof- z=5— 5i.

Solution: By the quadratic formula,

1 1 _

:_Zlig 21— 20i
—+=v21-2v/-100
11

gig\/ZSZ\/(Z )(—4)—4
-4z 902

2i2\/('.5 2i)

:_L 5-2i

2 2

The roots are thus-3i and—2-+i. The product of their real parts is theref¢B3(—2) = —6.

|:| Had we chosen to writB1— 20i = (—5+ 2i)2, we would have still gotten the same values of z.
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Practice

166 Problem  Simplify
(l+ i)2004
(1—j)2000°

167 Problem Prove that

1+ 2i+3i% + 4
-+ 199519%4 4 19041995

= —998—998.

168 Problem Let

Find

(14 x+) 1% = a9+ arx+ - + 000"

o +a4+ag+ -+ &o00-
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Arithmetic

3.1 Division Algorithm

169 Definition If a+# 0,b are integers, we say thatdivides hif there is an integec such thatac = b. We write this as|b.

If a does not dividd we writea Jb. It should be clear that #|b andb #£ 0 then 1< |a| < |b|.

170 Theorem The following are properties of divisibility.

¢ If cdividesaandb thenc divides any linear combination efandb. That is, ifa,b,c,m, n are integers witlt|a, c|b, then
c|/(am+nb).

o Division by an integer is transitive. That is Xfy, z are integers wittx|y, y|zthenx|z.

Proof: There are integers, s with sc=a,tc=b. Thus
am+ nb= c(sm+tn),
giving d(am-+ bn). Also, there are integers,u with xu=y,yv=z. Hence xuw= z, giving Xz. O

A very useful property of the integers is the following:

171 Theorem (Division Algorithm)  Leta, b be integershb > 0. There exist unique integegsandr satisfying

a=bg+r, 0<r<b (3.1)

Proof: The set S= {a—bs: s Z,b—as> 0} is non-empty, since-ab(—a?) > 0. Since S is a non-empty set of
non-negative integers, it must contain a least elementy sap — bg. To prove uniqueness, assume-&q+r =

b +r’ with0 < r’ < b. Then lbg—q) =r’ —r. This means that|r’ —r). Since0 < |r’' —r| < b, we must have
r’ =r. But this also implies g ¢. O

For example, 3%=4-9+ 3. The Division Algorithm thus discriminates integers acting to the remainder they leave upon
division bya. For example, ifa = 2, then according to the Division Algorithm, the integersyrbe decomposed into the two
families

Ap={...—4,-2,0,2,4,...},
Ap={...,-5-3,-1,1,35,...}.

Therefore, all integers have one of the fornkso? 2k 4 1. We mention in passing that every integer of the forka2L is

also of the form 2— 1, for 2k+1=2(k+1) — 1, so it suffices to take=k+ 1.

24
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If a=4 we may decompose the integers into the four families
Bo={...,—8,—4,0,4,8,...},
Bi={...,—7,—3,1,59,...},
B=1{...,—6,—2,2,6,10,...},
Bs={...,—5—1,3,7,11,...}.

Therefore any integer will take one of the formg 4k + 1,4k + 2 or 4+ 3. Again, any integer of the formi4- 1 is also of the
form 4t — 3 and any integer of the formk4- 3 is also of the formé— 1.

172 Example Shew that the square of any integer is of the folm#dof the form &+ 1. That is, the square of any integer is
either divisible by 4 or leaves remainder 1 upon division by 4

Solution: Ifnis even, that i1 = 2a, thenn? = (2a)? = 4a®, which is of the form 4. If n is odd, sayn = 2t + 1, then
n? = (2t +1)2 = 4(t>+t) + 1, which is of the form &+ 1.

173 Example Shew that no integer in the sequence
11,111,1112,11111, ...

is a perfect square.

Solution: Clearly 11 is not a square, so assume, that andntéghis sequence has> 2 digits. Ifn > 2,

11...1=11...1100+12—-1=100-11...11+12—1.
—— = S~——

nls n—21s n—21s

Hence any integer in this sequence is of the fokn-4. By the preceding problem, no integer of the forkn-41 can be a
square. This finishes the proof.

174 Example Shew than?+ 23 is divisible by 24 for infinitely many values of

Solution: Observe that? 4+ 23=n?—1+24= (n—1)(n+ 1) + 24. Therefore the families of integers= 24m+1,m =
0,+1,+2,+3,... produce infinitely many values such th&t+ 23 is divisible by 24.

175 Example Shew that the square of any prime greater than 3 leaves rderdirupon division by 12
Solution: If p > 3 is prime, therp is of one of the forms 6+ 1.

Now,
(6k+1)2=12(3k*+ k) +1,

proving the assertion.

176 Example Prove that ifp is a prime, then one off8— 1 and §+ 1 is a prime and the other is composite.

Solution: Ifp=3, 8p—1=23 and $+ 1 =25, then the assertion is true fpi= 3. If p> 3, then eithep =3k+1 orp=3k+2.
If p=3k+1, 8p—1=24k—7 and + 1= 24k— 6, which is divisible by 6 and hence not prime. gf=3k+2, 8p—1=
24k—15is not a prime, .

177 Example Shew that if 3+ 1 is a square, them+ 1 is the sum of three squares.
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Solution: Clearly 8+ 1 is not a multiple of 3, and so3+ 1 = (3k+ 1)2. Therefore

2_
Nl (3"‘*7?1+1=3k212k+1=k2+k2+(k11)2,

as we wanted to shew.
178 Example (AHSME 1976) Letr be the common remainder when 105917 and 2312 are divided lgy> 1. Findd —r.

Solution: By the division algorithm there are integexsdy,gs with 1059= dq; +r,1417=dgp +r and 2312=doz +r.
Subtracting we get 1253 d(gz—0),895=d(g3 — g2) and 358=d (g, —q1). Notice thatd is a common divisor of 125895,
and 358. As 1253-7-179, 895=5-179 and 358=2-179, we see that 179 is the common divisor greater than 1 tfrak
guantities, and sd = 179 Since 1059=179; +r, and 1059=5-179+ 164 we deduce that = 164. Finally,d —r = 15.

179 Example Shew that from any three integers, one can always chooseotwmta’b — ab® is divisible by 10.

Solution: It is clear thaa’b— ab® = ab(a— b)(a+ b) is always even, no matter which integers are substitutednéfof the
three integers is of the formkbthen we are done. If not, we are choosing three integerdi¢hatthe residue classes 51 or

5k + 2. By the Pigeonhole Principle, two of them must lie in onehase two groups, and so there must be two whose sum or

whose difference is divisible by 5. The assertion follows.

Practice
180 Problem  Find all positive integers for which 189 Problem Shew that the product of two integers of the form+41 is again of this
form. Use this fact and an argument by contradiction sintitaEuclid’s to prove that
n+1n?+1. there are infinitely many primes of the form 4 1.
181 Problem  If 7|3x + 2 prove that (15X — 11x— 14.). 190 Problem  Prove that there are infinitely many primes of the form-61.
182 Problem  Shew that the square of any integer is of the folkB3k + 1. 191 Problem  Prove that there are infinitely many primpsuch thatp— 2 is not prime.
183 Problem  Prove that if 3( a® +b?), then 3aand 3b 192 Problem Demonstrate that there are no three consecutive odd istageh that

each is the sum of two squares greater than zero.

184 Problem Shew that if the sides of a right triangle are all integersnt8 divides one]

of the lengths of a side. 193 Problem Let n > 1 be a positive integer. Prove that if one of the numbers

2" —1,2"+ 1 is prime, then the other is composite.

185 Problem  Given that 5 dividegn+ 2), which of the following are divisible by 5

194 Problem  Prove that there are infinitely many integarsuch that 42 + 1 is divisible
n’—4, +8n+7,n*—1 n?—2n? by both 13 and 5.

186 Problem  Prove that there is no prime triplet of the formp + 2, p+ 4, except for| 195 Problem Prove that any integar > 11 is the sum of two positive composite num-
3,5,7. bers.

187 Problem  Find the largest positive integarsuch that 196 Problem Prove that 3 never divide® + 1.

(n+1)(n*+2n) +3(n+57)
197 Problem Shew the existence of infinitely many natural numbeng such that
be divisible byn? + 2. X(x+1)|y(y-+1) but

x fyand(x+1) fy,

188 Problem Demonstrate that if n is a positive integer such that-2L is a square| and also
thenn+ 1 is the sum of two consecutive squares. X f(y+1) and(x+1) f(y+1).




The Decimal Scale 27

3.2 The Decimal Scale

Any natural numben can be written in the form
n=apl0+a10K 1+ 2,102+ +a_ 110+ a
where 1< a9 < 9,0< a; <9, > 1. This is thedecimalrepresentation af. For example

65789=6-10"15-10°+7-10°+8-10+9.
198 Example Find a reduced fraction equivalent to the repeating decridl3= 0.123123123. ..

123 41

Solution: LetN =0.123123123... Then 1000l = 123123123123... Hence 1008l — N = 123 whenceN = 999~ 333

199 Example What are all the two-digit positive integers in which thefeliénce between the integer and the product of its
two digits is 127?

Solution: Let such an integer bed @ b, wherea, b are digits. Solve 18+ b—ab= 12 fora getting

ae 12—b 14 2
- 10—-b 10—b’
Sincea is an integer, 18- b must be a positive integer that divides 2. This gikes8,a=2 orb=9,a= 3. Thus 28 and 39
are the only such integers.

200 Example Find all the integers with initial digit 6 such that if thisifial integer is suppressed, the resulting number/&5L
of the original number.

Solution: Letx be the integer sought. Then=6-10"+y wherey is a positive integer. The given condition stipulates that

1
y—2—5(6-10”+y),

that s, -
y= 17 =25.10"2,

This requires > 2, whencey = 25,250,2500 2500Q etc.. Thereforet = 625 6250 62500625000 etc..

201 Example (IMO 1968) Find all natural numbers such that the product of their digits (in decimal notatioghialsx® —
10x—22.

Solution: Letx have the form

X=ag+a110+apl0?+---+a,10", ax < 9, a, #0.
Let P(x) be the product of the digits of P(x) = x> — 10x— 22. Now P(x) = aga - - - an < 9"a, < 10"a, < x (strict inequality
occurs wherx has more than one digit). This means tRat- 10x— 22 < x which entails thai < 13, whencex has one
digit or x = 10,11 or 12 Sincex? — 10x— 22 = x has no integral solutiong, cannot have one digit. ¥ = 10,P(x) = 0, but
X2 —10x— 22+ 0. If x=11,P(x) = 1, butx?> — 10x— 22+ 1. The only solution is seen to be=12.

202 Example A whole number decreases an integral number of times whéasitsligit is deleted. Find all such numbers.

Solution: Let 0<y <9, and 1&+y = mx wherem,x are natural numbers. This requires—&é =m, an integer. Hencex

must dividey. If y =0, any natural numbex will do, as we obtain multiples of 10. i =1 thenx =1, and we obtain 11
Continuing in this fashion, the sought number are the mlekipf 10, together with the numbers 11, 12, 13, 14, 15, 16187,
19, 22, 24, 26, 28, 33, 36, 39, 44, 55, 77, 88, and 99.
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203 Example Shew that all integers in the sequence

49,4489 4448894444888944...4488...889
S——N
n4s n-18s

are perfect squares.

Solution: Observe that
44...4488...889 = 44...44.10"+88...88-10+9
N ——_——r N—— N——r

n4s n—18s n4's n—18s
= g-(10“*1).1o”+g~(1o“*1f1)-1o+9
4 4 1
= §-102”+§-1o"+5
= %(2- 10"4+1)2
_ <2- 10"+ 1)2
3
We must shew that this last quantity is an integer, that &, 3hdivides 210"+ 1 = 200...001. But the sum of the digits of
n—10s
: T . N 2:10'+1
this last quantity is 3, which makes it divisible by 3. In faetT = w 7
n—16s

204 Example (AIME 1987) An ordered pai{m,n) of non-negative integers is callsimpleif the additionm+ n requires no
carrying. Find the number of simple ordered pairs of nonatigg integers that add to 1492.

Solution: Observe that there adle- 1 solutions tox+y = d, wherex,y are positive integers artlis a digit. These are

(0+d), (1+d—1), (2+d—2),..., (d+0)

Since there is no carrying, we search for the numbers ofisokibf this form tox+y=1, u+v=4,s+t =9, anda+ b= 2.
Since each separate solution may combine with any othetpthlenumber of simple pairs is

(1+1)(4+1)(9+1)(2+1) = 300

205 Example (AIME 1992) For how many pairs of consecutive integers in
{1000 1001,...,2000}

is no carrying required when the two integers are added?

Solution: Other than 2000, a number on this list has the fioem1000+ 100a+ 10b+ ¢, wherea, b, ¢ are digits. If there is no
carrying inn+ n+ 1 thenn has the form

1999 1000+ 1008+ 100+ 9, 1000+ 1008+ 99, 1000+ 1008+ 10b+ ¢

with 0 < a,b,c < 4, i.e., five possible digits. There ard 5 125 integers of the form 1009100a+ 10b+c,0< a,b,c < 4,
52 =25 integers of the form 1008 100a+ 10b+9,0< a,b < 4, and 5 integers of the form 10801002+ 99,0< a< 4. The
total of integers sought is thus 1225+ 5+ 1= 156

206 Example (AIME 1994) Given a positive integen, let p(n) be the product of the non-zero digitsmf (If n has only one
digit, thenp(n) is equal to that digit.) Let
S=p(1)+p(2)+---+ p(999.

FindS.
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Solution: Ifx =0, putm(x) = 1, otherwise puim(x) = x. We use three digits to label all the integers, from 000 to $39h,c
are digits, then clearlp(100a+ 10b+¢) = m(a)m(b)m(c). Thus

p(000) + p(001) + p(002) + - - -+ p(999) m(0)m(0)m(0) + m(0)m(0)m(1)
+m(0)m(0)m(2) + - - - +m(9)m(9)m(9)
= (m(0)+m(1)+---+m(9))?
= (1+1+2+---+9)°
= 46°
= 97336
Hence
S = p(001)+ p(002) +---+ p(999)
= 97336- p(000)
= 97336—m(0)m(0)m(0)
= 97335
207 Example (AIME 1992) Let Sbe the set of all rational numbers0 < r < 1, that have a repeating decimal expansion of

the form
0.abcabcabc.. = 0.abg

where the digits, b, c are not necessarily distinct. To write the elementS a$ fractions in lowest terms, how many different
numerators are required?

Solution: Observe that.@bcabcabc.. = %, and that 999= 3% 37. If abcis neither divisible by 3 nor by 37, the fraction is
already in lowest terms. By Inclusion-Exclusion there are

999 999 999
999 (%3 + 57 ) + 5337648

such fractions. Also, fractions of the for% wheres is divisible by 3 but not by 37 are i8. There are 12 fractions of this

kind (with s =3, 6, 9, 12, ..., 36). We do not consider fractiai the form%,t < 3 with | divisible by 37 but not by 3,

because these fractions arel and hence not i6. The total number of distinct numerators in the set of redufcactions is
thus 640+ 12=660.
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Practice

208 Problem  Find an equivalent fraction for the repeating decimah?2.

209 Problem A two-digit number is divided by the sum of its digits. Whatli® largest
possible remainder?

210 Problem  Shew that the integer

11...11
——

221 ¥s

is a composite number.
211 Problem Letaandb be the integers

a=111..1
——
m1's
b=1000...05.
~——
m—10s

Shew thatab+ 1 is a perfect square.

212 Problem What digits appear on the product

3..3:6...67
N~
666 Is 666 65

213 Problem  Shew that there exist no integers with the following progeiftthe initial
digit is suppressed, the resulting integer i83 of the original number.

214 Problem  Shew that the sum of all the integers of n digits: 3, is

49499..95500...0.
N =~

n-39s n—20s

215 Problem  Shew that for any positive integar

11...1—-22...2
M~ M~~~
n1's n2's

is a perfect square.

216 Problem A whole number is equal to the arithmetic mean of all the nuslob-
tained from the given number with the aid of all possible paation of its digits. Find
all whole numbers with that property.

3.3 Non-decimal Scales

217 Problem The integem is the smallest multiple of 15 such that every digitrois
. n

either 0 or 8. Compute—.
i pu (-;E

218 Problem Shew thatChampernowne’s number
0.12345678910111213141516171819202122
which is the sequence of natural numbers written after tloevei point, is irrational.
219 Problem  Given that
% = 0.02040816326530612244897959183673469387,7551
find the last thousand digits of

1+50+50%+--- +50°%°.

220 Problem Lett be a positive real number. Prove that there is a positiveyarte
such that the decimal expansionnifcontains a 7.

221 Problem (AIME 1989)
base-ten. Fina if

Suppose that is a positive integer and is a single digit in

n
10— 0.d25d25d25d25d25. ..

222 Problem (AIME 1988) Find the smallest positive integer whose cube ends in 888.

223 Problem (AIME 1986) In the parlour game, the “magician” asks one of the partici-
pants to think of a three-digit numbabc, wherea, b, c represent the digits of the number
in the order indicated. The magician asks his victim to fonenumbers

ach bac cab,cba

to add these numbers and to reveal their $inif told the value ofN, the magician can
identify abc. Play the magician and determiabcif N = 319.

224 Problem (AIME 1988)  For any positive integek, let f; (k) denote the square of the
sums of the digits ok. Forn > 2, let (k) = f1(f,_1(Kk)). Find f19gg(11).

225 Problem (IMO 1969) Determine all three-digit numbebs that are divisible by 11
and such thatj’_\l—1 equals the sum of the squares of the digitdlof

226 Problem (IMO 1962) Find the smallest natural number having the last digit 6 &nd i
this 6 is erased and put in from of the other digits, the resylhumber is four times as
large as the original number.

The fact that most people have ten fingers has fixed our scaletafion to the decimal. Given any positive integer 1, we

can, however, express any numkén baser.

If nis a positive integer, and> 1 is an integer, then has the base+epresentation

N=ag+ail +ar’+ - +ark 0<a <r—1, a #0, rk<n<rkt?,

We use the convention that we shall refer to a decimal numhbkout referring to its base, and to a baseamber by using

the subindex.
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227 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213 7°. We thus want to find & ay, ..., as < 6,a4 = 0 such that
5213=as7* + as7® + ap7% + a1 7 + ao.

Dividing by 7¢, we obtain 2 proper fraction= a4+ proper fraction. This means thaj = 2. Thus 5213= 2. 7%+ ag73 +
a7?+a;7+ag0or 411=5213=az7° + ay7° + a1 7+ ap. Dividing by 7 this last equality we obtain{l proper fraction= az+
proper fraction, and saz = 1. Continuing in this way we deduce that 52221125

The method of successive divisions used in the precedinggmrocan be conveniently displayed as

715212| 5
7744 | 2
71106 |1
7|15 1
7|2 2

The central column contains the successive quotients amibtiitmost column contains the corresponding remaindRaading
from the last remainder up, we recover 52121125.

228 Example Write 562 in base-five.

Solution: 562 = 5-7?+6-7+2 = in decimal scale, so the problem reduces to convert 289 te-fias Doing successive
divisions,

5(1289]| 4
5157 |2
5(11 |1
5|2 2

Thus 562 = 289=2124%.
.13, .
229 Example Express the fract|0l1—6 in base-six.

Solution: Write
13 & a a3 &
6 6 & & &

Multiplying by 6, we obtain 4- proper fraction= a;+ proper fraction, sa; = 4. Hence
13 4 7 @& a

T
16 6 48 6 6 6

Multiply by 62 we obtain 5 proper fraction= a,+ proper fraction, and sa, = 5. Continuing in this fashion

13 4 5 1 3
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We may simplify this procedure of successive multiplicatitoy recurring to the following display:

13
61_64
o7 s
6%1
6%3

The third column contains the integral part of the produétbe first column and the second column. Each term of the sbcon
7 1
— 5=

. . . . . 3 7
column from the second on is the fractional part of the prodbtained in the preceding row. Thusl%—4= 3 6- 8 7

etc..
230 Example Prove that 41, is a perfect square in any scale of notation.

Solution:

4 4 1\2
445, =4+ —+ — =(2+=
L Jrr+r2 (+r>

231 Example (AIME 1986) The increasing sequence
1,3,4,9,10,12 13 ...

consists of all those positive integers which are powers af 8ums of distinct powers or 3. Find the hundredth term of the
sequence.
Solution: If the terms of the sequence are written in baseethithey comprise the positive integers which do not cartta
digit 2. Thus the terms of the sequence in ascending order are

13,103,113,1003,1013,1103,1113,...
In thebinary scale these numbers are, of course, the ascending natarbbnsi12 3.4, . ... Therefore to obtain the 100th term
of the sequence we write 100 in binary and then translatértftisernary: 106= 1100100 and 110010§= 3%+ 3%+ 32 =981
232 Example (AHSME 1993) Given 0< xg < 1, let

! 2Xn_1 |f 2Xn_1 < 1,

=

tZXn,]_fl if 2Xp—1>1.

for all integersn > 0. For how many is it true thatxg = x57?

Solution: Writexg in binary,

The algorithm given moves the binary point one unit to théattigFor xg to equalxs we need(0.a;ayaza4asa5a7...)2 =
(O.agayagagapaiiarz. - -)2. This will happen if and only ifxg has a repeating expansion withaazasas as the repeating
block. There are2= 32 such blocks. But if; =a, = --- = as = 1 thenxg = 1, which lies outsidé0, 1. The total number of
values for whichxg = xs is therefore 32-1=31.

Practice
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233 Problem  Express the decimal number 12345 in every scale from birabase-
nine.

236 Problem What is the largest integer that | should be permitted to sh@o that you
may determine my number in twenty “yes” or “no” questions?

234 Problem  Distribute the 27 weights 0f122,3?,...,27 Ibs each into three separafe

piles, each of equal weight. T 237 Problem  Let || x|| denote the greatest integer less than or equal Boes the equa-

tion

235 Problem  Let ¢ denote the class of positive integers which, when writtebase- XU+ [L2x]) + [LAx]) + 18] + [116¢]) + [[32x]| = 12345
three, do not require the digit Prove that no three integers i are in arithmetic pro-|
gression.

have a solution?

3.4 Well-Ordering Principle

The setN = {0,1,2,3,4,...} of natural numbers is endowed with two operations, addaiod multiplication, that satisfy the
following properties for natural numbarb, andc:

1. Closure: a+ b andabare also natural numbers,

2. Commutativity: a+b=Db+aandab=ba

3. Associative Laws:(a+b) +c=a+ (b+c) and(ab)c = a(bc),
4. Distributive Law: a(b+c)=ab+ac

5. Additive Identity: 0+a=a.

6. Multiplicative Identity: la=a.

One further property of the natural numbers is the following

Well-Ordering Axiom: Every non-empty subseft of the natural numbers has a least element.
As an example of the use of the Well-Ordering Axiom let us prthat there is no integer between 0 and 1.

238 Example Prove that there is no integer in the open intefOgl|.

Solution: Assume to the contrary that the sétof integers in0;1[ is non-empty. As a set of positive integers, by
Well-Ordering it must contain a least element, saySince 0< m < 1, we have O0< m? < m < 1. But this last string of
inequalities says that? is an integer if0; 1[ which is smaller tham, the smallest integer i{0; 1[. This contradiction shews
thatm cannot exist.

Recall that anrrational number is one that cannot be represented as the ratio of tegeirs.

239 Example Prove that/2 is irrational.

a

Solution: The proof is by contradiction. Suppose th@ were rational, i.e., thaf2 = 5

implies that the set

for some integera, b,b # 0. This

«/ ={nv2: bothn andnv'2 positive integers

is non-empty since it contairss By Well-Ordering,<# has a smallest element, spy: kv/2. Asv/2—1> 0,
j(vV2—1) = jv2—kv2=/2(j—k), is a positive integer. Since2 2/2 implies 2— /2 < v/2 and alsojv/2 = 2k, we see

that
(j—KV2=k(2-V2) <kv2=].

Thus(j—k)Vv2 is a positive integer in7 which is smaller tharj. This contradicts the choice gfas the smallest integer i
and hence, finishes the proof.

240 Example Leta,b,c be integers such thaf + 2b® = 4c®. Shew thas =b=c=0.
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Solution: Clearly we can restrict ourselves to non-negativmbers. Choose a triplet of non-negative integdvsc satisfying
this equation and with
maxa,b,c) >0

as small as possible. # + 2b% = 4c®, thena must be evera = 2a;. This leads to 38 + b® = 2c°. This implies thab is
even,b = 2b; and so 168 4 320§ = c8. This implies that is evenc = 2c; and soa 4 2b8 = 4c8. But clearly

maxaz, b1,c1) < maxa,b,c). We have produce a triplet of integers with a maximum sméfian the smallest possible
maximum, a contradiction.

2, 12 2 12
L ac+b°. . ac+b
241 Example (IMO 1988) If a,b are positive integers such t% is an integer, then shew thﬁ must be a square.

2, 12
_ a-+b . . o .
Solution: Suppose thaﬁ =k is a counterexample of an integer which is not a perfect sguath maxa, b) as small as

possible. We may assume without loss of generalitydhatb for if a= b then

2a2 2

O<k= =2—
< a?+1 ¥+1<

2

which forcesk =1, a square.

Now, a’+b? —k(ab+ 1) = 0 is a quadratic ifo with sum of rootska and product of roota® — k. Let by, b be its roots, so
by + b =ka,bb; = a®—k.

As a, k are positive integers, supposihg< 0 is incompatible witta® + b? = k(ab; + 1). Ask is not a perfect square,
supposind; = 0 is incompatible witra? + 0> = k(0-a+ 1). Also
a®—k b>—k k

by = 5~ <% :b_5<b'

e _a%4Db? " - .
Thus we have shewln, to be a positive integer wnlij—abi =k smaller tharb. This is a contradiction to the choice lof

2 2 2 1
. ac+b . b .
Such a counterexamplkecannot exist, and 591% must be a perfect square. In fact, it can be shewn :ab is the

square of the greatest common divisoaandb.
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Practice

242 Problem  Find all integers solutions @ + 2b° = 4c®. 244 Problem  Shew that the series of integral squares does not contaifiaite
arithmetic progression.

243 Problem  Prove that the equality + y? + Z2 = 2xyzcan hold for whole numbers
X,y,zonly whenx =y =z=0. 245 Problem  Prove that® +y? = 3(Z +w?) does not have a positive integer solution.

3.5 Mathematical Induction

The Principle of Mathematical Induction is based on theofeihg fairly intuitive observation. Suppose that we are¢ofprm

a task that involves a certain finite number of steps. Supihadehese steps are sequential. Finally, suppose that ew kn

how to perform then-th step provided we have accomplished thel-th step. Thus if we are ever able to start the task (that
is, if we have a base case), then we should be able to finisada(se starting with the base we go to the next case, andithen t
the case following that, etc.).

We formulate the Principle of Mathematical Induction (Pi$)follows:

Principle of Mathematical Induction Suppose we have an assertfm) concerning natural numbers satisfying the
following two properties:

(PMI 1) P(kp) is true for some natural numbky,
(PMLII) If P(n—1) is true therP(n) is true.

Then the assertioR(n) is true for everyn > kg.

246 Example Prove that the expressiod™3  — 26n— 27 is a multiple of 169 for all natural numbets

Let P(n) be the assertion @3 — 26n— 27 is a multiple of 169.” Observe thatd 3 —26(1) — 27= 676= 4(169) soP(1)
is true. Assume the truth &f(n— 1), that is, that there is an integkr such that

=143 _26(n—1)— 27=169M.

This entails
33 _26n—1=169M.

Now
33 _oen—27 = 27-3%"—26n—27

= 27(3%"—26n—1)+676
= 27(169V) 4 169-4n
= 16927M +4n),

and so the truth oP(n— 1) implies the truth oP(n). The assertion then follows for all> 1 by PMI.
247 Example Prove that
(1+V2)2+(1—-V2)™

is an even integer and that

(1+vV2)"— (1-v2)*"=bV2

for some positive integdy, for all integeran > 1.
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Solution: LetP(n) be the assertion: “
(1+V2)2+ (1—V2)

is an even integer and that

(14 V2"~ (1-v2)*"" =bV2
for some positive integds.” We see thaP(1) is true since
(1+v2)2+ (1-v2)2 =8,
and
(1+V2)?2—(1-V2)?=4v2
Assume now thalP(n—1), i.e., assume that

(1++v2)201 4 (1-+/2)21 = 2N

for some integeN and that

(14 V2R (1220 —ayZ

for some positive integea. Consider now the quantity

(1+V2)2 4 (1—V2)

(1+ V22 (14 V2)" 2+ (1- V2)2(1—v2)"2
= (34+2V2)(1+V2)*" 24 (3—-2V2)(1—V2)22
= 12N+4a
= 2(6n+2a),

an even integer. Similarly

(1+V2)"—(1-v2)" (1+V2?(1+ V22— (1-V2)2(1-v2)"?

= (342V2)(1+V2)*2—(3—2V2)(1—/2)2

= 3av2+2v2(2N)
= (3a+4N)V2,
which is of the formbyv/2. This implies thaP(n) is true. The statement of the problem follows by PMI.

248 Example Prove that ifk is odd, then 22 divides )
K> —1

for all natural numberas.

Solution: The statement is evident fioe= 1, ask? — 1 = (k—1)(k+ 1)n is divisible by 8 for any odd natural numblesince
k—1 andk+ 1 are consecutive even integers. Assume that@=k? — 1 for some integea. Then

K 1= (- 1) (K + 1) = 2" 28k 4 1).
Sincek is odd,k?" + 1 is even and sk? + 1 = 2b for some integeb. This gives
K" - 1=2M2a(K" 4 1) = 2" ab,

and so the assertion follows by PMI.
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249 Example Letsbe a positive integer. Prove that every interiga®s| contains a power of 2.

Solution: Ifsis a power of 2, then there is nothing to provesi$ not a power of 2 then it must lie between two consecutive
powers of 2, say2< s< 2" "1, This yields 21 < 2s. Hences < 2" < 2s, which yields the result.

250 Definition TheFibonacci Numbersre given byfo =0, f; =1, fh11 = fn+ fr_1,n > 1, that is every number after the
second one is the sum of the preceding two.

The Fibonacci sequence then goes liké, @,2,3,5,8,13,21,....

251 Example Prove that for integem > 1,
foo1fnpa = F7 4 (1)L

Solution: Ifn=1, then 2= fofy = 12+ (—=1)2 = f2+ (=)L If fo_1fhy1 = f2+ (—1)""1 then using the fact that
fnr2 = fn+ faye,

fafrre = falfa+ fag1)

= fnz+ fn fn+l

fnflfnJrl - (71)n+1+ fn fn+1
= fn+1( fn—l + fn) + (_1)n+2
fla+ (=M

which establishes the assertion by induction.

252 Example Prove that a given square can be decomposedistpuares, not necessarily of the same size, for all
n=46,7,8,....

Solution: A quartering of a subsquare increases the nunflsgpuares by three (four new squares are gained but the akigin
square is lost). Figure 3.1 below shews that 4 is achievable. If were achievable, a quartering would make

Figure 3.1: Example 252. Figure 3.2: Example 252. Figure 3.3: Example 252.

{n,n+3,n+6,n+9,...} also achievable. We will shew now that= 6 andn = 8 are achievable. But this is easily seen from
figures 3.2 and 3.3, and this finishes the proof.

Sometimes it is useful to use the following version of PMlpwm as the Principle of Strong Mathematical Induction (PEMI

Principle of Strong Mathematical Induction Suppose we have an assertfm) concerning natural numbers satisfying the
following two properties:

e (PSMI 1) P(ko) is true for some natural numbley,
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e (PSMI ) If m<nandP(m),P(m+1),...,P(n—1) are true therP(n) is true.
Then the assertioR(n) is true for everyn > kg.

253 Example In the country of SmallPesia coins only come in values of 3mpdsos. Shew that any quantity of pesos
greater than or equal to 8 can be paid using the availables.coin

Solution: We use PSMI. Observe that8+5,9 =3+ 3+ 3,10=5+5, so, we can pay,8, or 10 pesos with the available
coinage. Assume that we are able to pay3,n— 2, andn— 1 pesos, that is, thak3- 5y = k has non-negative solutions for
k=n—3,n—2andn— 1. We will shew that we may also obtain solutions far35y = k for k =n,n+ 1 andn+ 2. Now

3X+5y=n—3= 3(x+1)+5y=n,
X +51=n—2=—=3(x1+1)+5y1=n+1,
o+5=n—1=3(xx+1)+5y,=n+2,
and so if the amounts— 3,n—2,n— 1 can be paid so camn—+ 1,n+ 2. The statement of the problem now follows from

PSMI.

254 Example (USAMO 1978) An integern will be calledgoodif we can write

n=a+a+---+a,
where the integera;, ay, . . . ,a are positive integers (not necessarily distinct) satigfyi

1 1 1

_ - — 4. .— =1

a & ak
Given the information that the integers 33 through 73 aredgpoove that every integer 33 is good.
Solution: We first prove that if is good, then 84 8 and 21+ 9 are also good. For assume that a; +ay+ - - - + a, and

1 1 1
T T
a a ax

Thenh+8=2(a1+ax+---+a) +4+4and

1,1, 111 111

2a;  2a, 2 4 4 2 44 T
Also2n+9=2(a;+ax+---+ax) +3+6and

i+i+ i+}+}—}+}+}—1

2a;  2a, 2 3 6 2 3'6

Therefore
if nis good then 8+ 8 and 21+ 9 are good (*)

We now establish the truth of the assertion of the problenmtydtion om. Let P(n) be the proposition “all the integers
n,n+1,n+2,...,2n4 7" are good. By the statement of the problem, we seeR(@3) is true. But (*) implies the truth of
P(n+ 1) whenevelP(n) is true. The assertion is thus proved by induction.
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Practice

255 Problem  Use Sophie Germain'’s trick to shew that
X+ X2 +1=(x—x+1) (X +x+1). Use this to shew that ii is a positive integer
then

P

has at leasn different prime factors.

256 Problem  Prove than® + (n+1)% + (n+2)2 is divisible by 9.
257 Problem Letn € N. Prove the inequality
I R S

n+1 n+2 3n+1" 7

258 Problem  Prove that for all positive integersand all real numbers,
|sinnx| < n|sinx| (3.2)
259 Problem  Prove that
m
L\/2+\/ 2+ \/2+---+\/E=2cosW
n radical signs

forne N.
260 Problem Leta; = 3,by = 4, anda, = 3*—1, b, = 4°—1 whenn > 1. Prove that

a1000 > bogo.

261 Problem Letne N,n> 1. Prove that

135 (2n-1) 1
246 () Vanrl

262 Problem  Prove that for all natural number> 1,

o (2n)
el Sz

3.6 Congruences

- L1 ’ 1
263 Problem Letk be a positive integer Prove thatdf+ ; is an integer ther® + &
is also an integer.

264 Problem Prove that for all natural numbers> 1,

A N .
12 22 3 n? n’

265 Problem Letn> 2 be an integer. Prove thét+ fo+--- + fp = fi 2 — 1.

266 Problem Letn,m > 0 be integers. Prove that

fn+m =f1fm+fn fm+1 (3-3)

267 Problem  This problem uses the argument of A. Cauchy'’s to prove the @BM-
Inequality. It consists in shewing that AM-GM is true for pbwers of 2 and then
deducing its truth for the numbers between two consecutiveeps of 2. Let
a,a,...,a be non-negative real numbers. IR ) be the assertion the AM-GM
Inequality

aita+-+a
— < > Vajar---
0 Z Ve g

holds for thel given numbers.

1. Prove thaP(2) is true.
2. Prove that the truth d(2—1) implies that ofP(2").

3. Let ! < n< 2* By considering the'2quantities

a =Yy1,8 =VY2,...,8 = Yn,
a“+1:an+1=~»:azk:Lny"’

prove thatP(n) is true.

268 Definition The notatiorm=b modnis due to Gaul, and it means timita—b).

Thusifa=b modnthenaandb leave the same remainder upon divisionrbyor example, since 8 and 13 leave the same

remainder upon division by 5, we have=813 mod 5. Also observe that(B8— 13). As a further example, observe that

—-8=-1=6=13 mod?7.
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Consider all the integers and arrange them in five columnslis\s.

-10 -9 -8 —7 —6

5 —4 -3 -2 -1

The arrangement above shews that any integer comes in orftawbbirs: those leaving remainder 0 upon division by 5, those

leaving remainder 1 upon division by 5, etc..
Sincen|(a— b) implies thatdk € Z such thank=a— b, we deduce thaea=b modnif and only if there is an integecsuch

thata=b+nk
The following theorem is quite useful.

269 Theorem Letn> 2 be aninteger. Ik=y modnandu=v modn then

ax+bu=ay+bv modn.

Proof: As rj(x—y), n|(u—v) then there are integerstswith ns=x—y, nt =u—v. This implies that
a(x—y) +b(u—v)=n(as+bt),

which entails that,
n|(ax+ bu—ay—bv).

This last assertion is equivalent to saying

ax+bu=ay+bv modn.

This finishes the proof.]

270 Corollary Letn> 2 be aninteger. [k=y modnandu=v modnthen

XU=yv modn.

Proof: Leta=u,b=yin Theorem 269

271 Corollary Letn> 1 be an integex =y modn andj a positive integer. Thex' =y! modn.

Proof: Use repeteadly Corollary 270 witha x,v=y. [

272 Corollary Letn> 1 be anintegex =y modn. If f is a polynomial with integral coefficients thdrix) = f(y) modn.

273 Example Find the remainder when'& is divided by 37.
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Solution: & = —1 mod 37. Thus
61987=6.61986=6(6%)92=6(—1)"=—-6=31 mod 37

and the remainder soughtis 31.

274 Example Find the remainder when
12233 455679+ 87653

is divided by 4.

Solution: 12233= 12200+ 32+1=1 mod 4. Similarly, 455679 455600+ 76+ 3= 3, 87653= 87600+ 52+ 1=1
mod 4. Thus
12233 455679+ 87653=1-3+13=4=0 mod4

This means that 1223355679+ 87653 is divisible by 4.

275 Example Prove that 7 divides®*! + 2"*2 for all natural numbers.

Solution: Observe that
3H1=3.9"=3.2" mod7

and
2"2=4.2" mod7

. Hence
Nt oM2=7.2"=0 mod 7

for all natural numbera.
276 Example Prove the following result of Euler: 6422+ 1).

Solution: Observe that 64227 .5+1=2%+5% Hence 2.-5= —1 mod 641 and %= —2* mod 641. Now, 3.5=—1
mod 641 yields
54.228—(5.2")*=(-1)*=1 mod 641

This last congruence and
5= 2% mod641

yield
—24.28=1 mod 641

which means that 641232+ 1).
277 Example Prove that J[2222°%° 5555229,

Solution: 2222=3 mod 7, 5555 4 mod 7 and 3=5 mod 7. Now
222F555 1 555222 35555, 42222 _ (g5)L1Ly (42) 11l 5l111 glIl_ () mod7

278 Example Find the units digit of 7.

Solution: We must find 7 mod 10. Now, 7= —1 mod 10, and so%= 72.7= —7=3 mod 10 and 7= (72)? = 1 mod
10. Also, 7=1 mod 4 and so 7= (7%)3.7=3 mod 4, which means that there is an integguch that 7 = 3+ 4t. Upon
assembling all this,

77 =743 = (74 73=1.3=3 mod 10
Thus the last digit is 3.
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279 Example Find infinitely many integera such that 2+ 27 is divisible by 7.

Solution: Observe that'2=2,22=4,28=1,2=2,25=4,2°=1 mod 7 and so¥ =1 mod 3 for all positive integers
Hence 3+ 27=1+27=0 mod 7 for all positive integells This produces the infinitely many values sought.

280 Example Prove that ®—5,k=0,1,2,... never leaves remainder 1 when divided by 7.

Solution: 2 =2,22=4,22=1 mod 7, and this cycle of three repeats. Thtis 3 can leave only remainders 3, 4, or 6 upon

division by 7.

281 Example (AIME 1994) The increasing sequence

3,15,24,48,.. .,

consists of those positive multiples of 3 that are one less thperfect square. What is the remainder when the 1994rth te

of the sequence is divided by 1000?

Solution: We want {312— 1=(n—1)(n+1). Since 3 is prime, this requires=3k+1orn=3k—1, k=123, .... The
sequenceld+ 1,k=1,2,... produces the terms — 1 = (3k+ 1) — 1 which are the terms at even places of the sequence of
3,15,24,48, .... The sequence3-1,k=1,2,... produces the term% — 1 = (3k— 1)>— 1 which are the terms at odd places
of the sequence,35,24,48,.... We must find the 997th term of the sequenke-3, k= 1,2, .... Finally, the term sought is
(3(997)+1)>— 1= (3(—=3) +1)2—1=8%—1=63 mod 1000The remainder sought is 63.

Practice

(Hint: It is enough to consider’012,22,...,12°. In fact, by

observing that? = (13—r)? modn, you only have to go
half way.)

283 Problem  Prove that there are no integers with— 5y> = 2.

(Hint: Find all the perfect squares mod 5.)

284 Problem  Which digits must we substitute for a and b ineBB03 so that the
resulting integer be divisible by 13?

285 Problem  Find the number of ath,1 < n < 25 such thah? + 15n+ 122 is divisible
by 6.

(Hint: "?415n+122=n’+3n+2= (n+1)(n+2) mod 6.)

286 Problem (AIME 1983)
divided by 49

Leta, = 6" + 8". Determine the remainder whegs is

287 Problem (Polish Mathematical Olympiad) ~ What digits should be put instead of
andy in 30x0y03 in order to give a number divisible by 13?

288 Problem  Prove that if 9(a® 4 b® + %), then 3abg, for integersa, b,c.

289 Problem  Describe all integera such that 1001°+ 1.

3290 Problem  Find the last digit of 3%°.

291 Problem (AHSME 1992) What is the size of the largest subset §f2,...,50}
such that no pair of distinct elements of S has a sum divigiplé?

292 Problem  Prove that there are no integer solutions to the equafien7y = 3.
293 Problem  Prove that if 7a2 + b? then 7a and 7b.

294 Problem  Prove that there are no integers with

800000007= X% 4 y? + 2.

295 Problem  Prove that the sum of the decimal digits of a perfect squanreatebe
equal to 1991.

296 Problem  Prove that N N
7147 +2% +1

for all natural numbers n.
297 Problem  Find the last two digits of $°.

298 Problem (USAMO 1986) What is the smallest integer> 1, for which the
root-mean-square of the firstpositive integers is an integer?

Note. The root mean square ofnumbersa, ay, ..., a, is defined to be

(a%+a§+~-+a@>“2

n
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299 Problem  If 62ab427 is a multiple of 99, find the digiesandb. 302 Problem (AIME 1994) The increasing sequence

3152448,
300 Problem  Shew that an integer is divisible by, 2 = 1,2 3, ... if the number
formed by its lasn digits is divisible by 2. consists of all those multiples of 3 which are one less thajuare. Find the remainder
when the 1994th term is divided by 1000.

301 Problem  Find the last digit of
303 Problem (AIME 1983) Leta, = 6"+ 8". Find the remainder whegs is divided
by 49

2333333334998773 74 1221327+ 12123 99987 Y

304 Problem  Shew that if 9(a® + b® + ¢*), then 3abg, for the integers, b, c.

3.7 Miscellaneous Problems Involving Integers

Recall that x| is the unique integer satisfying
x—1<||x] <x (3.4)

Thus||x|| is x is an integer, or the integer just to the lefbaf x is not an integer. For examp|8.9|| =1,||—3.1] = —4.
Let p be a prime andh a positive integer. In the product=1-2- 3---nthe number of factors contributing a factor offs

[[Epjj the number of factors contributing a factorpffis u%ﬂ, etc.. This proves the following theorem.

305 Theorem (De Polignac-Legendre)  The highest power of a primgdiving n! is given by
2.n
> Ll (3.5)
o1 P

306 Example How many zeroes are there at the end 0f!399-2-3-4...998-999?

Solution: The number of zeroes is determined by the highmsepof 10 dividing 999 As there are fewer multiples of 5
amongst1,2,...,999} that multiples of 2, the number of zeroes is the determinetth&yighest power of 5 dividing 999
But the highest power of 5 dividing 99% given by

999 999
ii il Iz I+ Lz I+ |i54i| 199+ 39+ 7+ 1= 246

Therefore 999! ends in 246 zeroes.

307 Example Letm,nbe non-negative integers. Prove that

(m+n)!
min!

is an integer (3.6)

Solution: Letp be a prime and a positive integer. By the De Polignac-Legendre Theoreruffices to shew that

L0 Lgl + Lz
This inequality in turn will follow from the inequality
Lal+ 18] < la+B] 3.7)

which we will shew valid for all real numbers, 3.

Adding the inequalitie§a || < a, ||[B]] < B, we obtain||a ||+ ||B]] < a+ . Since| o]+ | B] is an integer less than or equal
to a + 3, it must be less than or equal than the integral pact 8, thatis|a ||+ ||B]| < ||a + B]], as we wanted to shew.
Observe thatm+n)! = m!(m+1)(m+2)---(m+n). Thus cancelling a factor afl,

(m+n)!  (m+1)(m+2)---(m+n)
mnl n!
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we see that the product afconsecutive positive integers is divisible bly If all the integers are negative, we may factor out a
(—1)", or if they include 0, their product is 0. This gives the faling theorem.

308 Theorem The product of consecutive integers is divisible loy.

309 Example Prove than®—5n°+4nis always divisible by 120 for all integers

Solution: We have
n°—5n°+4n=n(n?—4)("°—1) = (n—2)(n—1)(n)(n+1)(n+2),

the product of 5 consecutive integers and hence divisible by120.

310 Example Let A be a positive integer and I&f be the resulting integer after a specific permutation of fhisiof A.
Shew that ifA+ A’ = 10'° thenA s divisible by 10.

Solution: ClearlyA andA’ must have 10 digits each. Put
A=a10393g- .. A1
and
A= b10b9b8 R bl,
whereay, b,k =1,2,...,10 are the digits oA andA’ respectively. AA+ A’ = 10000000000, we must have
ap+by=a+by=---=a+b=0and
gi+1+bi+1 =108 12+ bij2="--=aj0+b1p=09,

for some subindek 0 <i < 9. Notice that ifi =9 there are no sung, >+ bj 2,8 3+bj3,... and ifi = 0 there are no sums
ai+by,...,a+b.
Adding,

art+bit+a+by+---+a+bi+a1+bip1+--+a0+bio=10+9(9—1).

If i iseven, 16+9(9—1i) is odd and ifi is odd 10+ 9(9—i) is even. As
ay+axt---+ajg=by1+by+---+byg,
we have
at+bi+ay+be+---+a+b+a1+b1+--+ap+bio=2(as+ax+---+ai),
an even integer. We gather thas odd, which entails that; = b; = 0, that is ,A andA’ are both divisible by 10.

311 Example (Putnam 1956) Prove that every positive integer has a multiple whose dalaiepresentation involves all 10
digits.

Solution: Letn be an arbitrary positive integer withdigits. Letm= 1234567890102, Then all of then consecutive
integers
m+1m-+2,....m+n

begin with 1234567890 and one of them is divisiblerby

312 Example (Putnam 1966) LetO< a; <a < ... < amnr1 bemn+ 1 integers. Prove that you can find eitime# 1 of them
no one of which divides any other, or- 1 of them, each dividing the following.

Solution: Let, for each X k < mn+ 1, ng denote the length of the longest chain, starting \ajtland each dividing the
following one, that can be selected fr@pax 1,--.,amnr1- If NO Nk is greater tham, then the are at least+ 1 ny's that are
the same. However, the integegscorresponding to thesg’s cannot divide each other, becaagég implies thatn, > n; + 1.
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313 Theorem If k|nthen fy|f,.

Proof Lettings=kn,t = n in the identityfs;t = fs_1 fi + fsf; .1 we obtain

firn = funen = fafun+ fafinia

Itis clear that iffy| fy, thenfq|f(i, 1)n. Sincefy|fn1, the assertion follows.

314 Example Prove that ifp is an odd prime and if

a
B:1+1/2+---+1/(p—1),
thenp dividesa.
Solution: Arrange the sum as
1+ ! +}+ ! +- ! + 1
p—1 2 p-2 (p—1)/2  (p+1)/2

After summing consecutive pairs, the numerator of the tempdractions isp. Each term in the denominator4sp. Sincep is
a prime, thep on the numerator will not be thus cancelled out.

315 Example The sum of some positive integers is 1996. What is their marirproduct?

Solution: We are given some positive integeysay, . ..,a, with a; +ax + - - - + an = 1996 To maximiseaja; - - - ay, none of
thea,’s can be 1. Let us shew that to maximise this product, we makeamy possible, = 3 and at most twa; = 2.
Suppose that; > 4. Substitutinga; by the two terms; — 3 and 3 the sum is not changed, but the product increases since
aj < 3(aj —3). Thus thea’s must equal 2, 3 or 4. But22+2=3+3 and 2x 2 x 2 < 3 x 3, thus if there are more than two

2's we may substitute them by 3's. As 1996(665) + 1 = 3(664) + 4, the maximum product sought i§% x 4.
316 Example Find all the positive integers of the form
r+=,

wherer is a rational number.

Solution: We will shew that the expressioa-1/r is a positive integer only if = 1, in which case +1/r = 2. Let

1
r+-= =Kk,
r

k a positive integer. Then
ks vkZ—4
—
Sincek is an integerr will be an integer if and onlk? — 4 is a square of the same paritykasNow, if k > 3,

(k—1)2<k—-4<k
that is,k’> — 4 is strictly between two consecutive squares and so it ddrenitself a square. K= 1, \/k2 —4 is not a real
number. Ifk = 2, k> — 4 = 0. Thereforer + 1/r =2, thatis,r = 1. This finishes the proof.
317 Example For how many integensin {1,2,3,...,100} is the tens digit of odd?

Solution: In the subseftl, 2, ...10} there are only two values @f(4 and 6) for which the digits of the tens of is odd. Now,
the tens digit of n+ 10)? = n? + 20n + 100 has the same parity as the tens digitofThus there are only 2@for which the
prescribed condition is verified.




46

Chapter 3

Practice

318 Problem  Find the sum

5+55+555+---+5...5.
~~

n5's

319 Problem  Shew that for all numbers # 0,a # +iv/3 the following formula of
Reyley (1825) holds.

(a4 812427\ °
- 6a(a2 4 3)2

—a?+30a2—9\°
* ( 6a(a? + 3) )
—6a® + 18\ °
If ais rational this shews that every rational number is exjioésas the sum of the
cubes of three rational numbers.

320 Problem What is the largest power of 7 that divides 1000

321 Problem Demonstrate that for all integer values
n® —6n’ 4 9n° —4n®

is divisible by 8640.
322 Problem  Prove that ifn > 4 is composite, then n dividés — 1)!.

323 Problem  Find all real numbers satisfying the equation

1@ —x—2]) = |Ix]]-
324 Problem  Solve the equation
X X
I 798! = 13550/

325 Problem (Putnam 1948)

LvVA+vVn+1] = van+2]

Letn be a positive integer. Prove that

(Hint: Prove that/4n+ 1< v/n++v/n+1 < v4n+ 3. Argue

that neither 44 2 nor 4+ 3 are perfect squares.)

326 Problem  Prove that §° — n, for all integersn.

327 Problem (Polish Mathematical Olympiad) Prove that if n is an even natural
number, then the number 13- 6 is divisible by 7.

328 Problem  Find, with proof, the unique square which is the product of fo
consecutive odd numbers.

329 Problem (Putnam 1989) How many primes amongst the positive integers, written
as usual in base-ten are such that their digits are altagna® and 0’s, beginning and
ending in 1?

330 Problem Leta,b,c be the lengths of the sides of a triangle. Shew that

3(ab+bc+ca) < (a+b+c)? < 4(ab+bc+ca).

331 Problem Letk > 2 be an integer. Shew thatrifis a positive integer, thenf can be
represented as the sumro$uccessive odd numbers.

332 Problem (IMO 1979) If a,b are natural numbers such that

11111
1318 1319’

prove that 197@&.

333 Problem (Polish Mathematical Olympiad) A triangular numbeiis one of the
form 14+ 2+ ... +n,n € N. Prove that none of the digits£ 7,9 can be the last digit of
a triangular number.

334 Problem Demonstrate that there are infinitely many square triamgulenbers.

335 Problem (Putnam 1975)
numbers,

Supposing that an integaris the sum of two triangular

ne a®+a b?+b
2 2

write 4n+ 1 as the sum of two squares) 4 1 = x% + y? wherex andy are expressed in
terms ofa andb.
Conversely, shew that ifh- 1 = x? + y?, thenn is the sum of two triangular numbers.

336 Problem (Polish Mathematical Olympiad) Prove that
amongst ten successive natural numbers, there are alwhgastbne and at most four
numbers that are not divisible by any of the numbe& 2 7.

337 Problem  Are there five consecutive positive integers such that theddithe first
four, each raised to the fourth power, equals the fifth raisetle fourth power?

338 Problem  Prove that

is always an integer.
339 Problem  Prove that fom € N, (n!)! is divisible byn! ("—1)*

340 Problem (Olimpiada matematica espafiola, 1985)
prove that(n+ 1) (n+2) --- (2n) is divisible by 2'.

If nis a positive integer,
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Sums, Products, and Recursions

4.1 Telescopic cancellation

We could sum the series

yt+atazt+---+an
if we were able to find v} satisfyingay = vk — Vk_1. For
aptaxtag+---+tan=Vi—Vo+Vo—Vi+---+Vh_1—Vn—2+Vh—Vn—1=Vh—Vo.
If such sequence, exists, we say thai; +ax+ - - - 4 an is atelescopic series.

341 Example Simplify
1 1 1 1
(1+3) (1+3) (1+2) (14 55)-

Solution: Adding each fraction:

which simplifies to 1002 = 50.
342 Example Find integers, b so that
(2+1)- (2+1)- (¥ +1) (2P +1)- (22" +1) =22 +b.

47
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Solution: Using the identity? — y* = (x—y)(x+Y) and lettingP be the sought product:

(2—-1P =

whence 100
P=22"_1.

343 Example Find the exact value of the product

4T

P—cos7T 00527T cos
o 7 7 7

Solution: Multiplying both sides by si79T and using sin2= 2 sinxcosx we obtain

sin nP = (sinncosn) coszn cos4n
7 7 7 7 7
= }(sinz—ncosz—n) cos4—7T
N 2 7 7 7
= 1(sin cos4n)
N 4 7 7
= 1sin8n
N 8 7
LT . 8m
As sm7 = —sm7, we deduce that
1
P=—=.
8

344 Example Shew that
1 35 9999 1

2'2°6 10000" 100
Solution: Let
A71 35 9999
2 4 6 10000
and
B_2 4 6 10000
3 5 7 10001

Clearly,x’ — 1 < x? for all real numbers. This implies that

x—1 X

<
X x+1
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whenever these four quantities are positive. Hence

1/2 < 2/3
3/4 < 4/5
5/6 < 6/7

9999/10000 < 1000Q'10001

As all the numbers involved are positive, we multiply bothurons to obtain

135 9999 2 4 6 10000

226 1000035 7 10001

or A< B. This yieldsA? = A-A < A-B. Now

ap_1234567 9999 10000 1
~ 234’567 810000 10001 10001

and consequentip? < A-B=1/10001 We deduce thaA < 1/1/10001< 1/100,
For the next example we recall that(n factorial) means

nN=1.2.3.--n.

For example,1=1,2!1=1.2=2,3!=1.2-3=6,4/=1-2-3-4= 24 Observe thatk+ 1)! = (k+ 1)k!. We make the
convention 0= 1.

345 Example Sum
1.114+2-214+3-3+---4+99-99!.

Solution: From(k+1)! = (k+ 1)kl = k- k! + k! we deducék+ 1)! —k! =k-k!l. Thus

1.1 = 201
2.2 = 3-2
3.3 = 4-3

98-98 = 99 -98
99.-991 = 100 —99

Adding both columns,
1.114+2.-2143-3+---4+99.-99/ =100 — 1! =100 — 1.

Practice
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346 Problem  Find a closed formula for 348 Problem  Simplify
Dn=1-2+3—4+-+(-1)""1n log, (1+ %) +log, (1+ %)
sa7 probiem Simpliy +log, (1+ %) 4 +log, (1+ %23) A
(1— 2—12) . (1— 3—12) . (1— 4—12) (1— %) . 349 Problem  Prove that for all positive integers 22" + 1 divides
PR )
4.2 Arithmetic Sums
An arithmetic progressioiis one of the form
a,a+d,a+2d,a+3d,...,.a+ (n—1)d,...
One important arithmetic sum is
1+2+--+n= n(n2+1).
To obtain a closed form, we utilise Gauss’ trick:
' An=142+3+---+n
then
An=n+(n-1)+---+1
Adding these two quantities,
An = 1 + 2 + + n
Ay = n + (h—1) + + 1
2A, = (n+1) + (n+1) + + (n+1)
= n(n+1),
since there ara summands. This gives, = n(n+1) , that is,
1+2+---+n=”(”2+1). 4.1)
For example,
1+2+434---+100= 7100(2101) = 5050
Applying Gauss's trick to the general arithmetic sum
(a)+(a+d)+(a+2d)+---+(a+(n—1)d)
we obtain
() + (a+ ) + (a+2d) + -+ (a+ (n—1)d) = 222+ (M= 1)) (4.2)

2

350 Example Find the sum of all the integers from 1 to 1000 inclusive, vabace not multiples of 3 or 5.
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Solution: One computes the sum of all integers from 1 to 10@Dveeeds out the sum of the multiples of 3 and the sum of the
multiples of 5, but puts back the multiples of 15, which one baunted twice. Put

An=1+2+3++n,

B=3+6+9+:- +999= 3Agss,
C=5+10+15+---+1000= 5Axq0,
D =15430+445+---4990= 15A¢.
The desired sum is
A1000—B—C+D = As000— 3A333— 5A200+ 15766

500500-3-55611—-5-201004 15- 2211

266332

351 Example Each element of the s¢f.0,11,12,...,19,20} is multiplied by each element of the sg&1,22 23, ...,29,30}.
If all these products are added, what is the resulting sum?

Solution: This is asking for the produ0+11+----420)(21+ 22+ - - -4 30) after all the terms are multiplied. But

(20+10)(11)

10+ 11+---+20= —165

and
(30+21)(10)

> =255

21+22+---+30=
The required total i$165)(255) = 42075.
352 Example The sum of a certain number of consecutive positive inteigek800. Find these integers.
2l 1
n( +2n+ ). As

S=100Q 2000=n(2l + n+ 1). Now 2000= n?+2In 4+ n > n?, whencen < ||[v2000] = 44. Moreovernand 2+n+1
divisors of 2000 and are of opposite parity. Since 26(5°, the odd factors of 2000 are 1, 5, 25, and 125. We then see that
the problem has te following solutions:

Solution: Let the the sum of integers Be= (I +1) + (I +2) + (I +n). Using Gauss’ trick we obtai§=

=1, 1 =999
=5, 1=197,
n=16, | =54,
n=251=27.

353 Example Find the sum of all integers between 1 and 100 that leave reteal upon division by 6.

Solution: We want the sum of the integers of the form-&,r =0,1,...,16. But thisis

(6r+2)=6» r+)» 2= 6—+2(17) 850
Z Z Z 16(17)

Practice
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354 Problem  Shew that 360 Problem  Consider the following table:

2 (2
1+2+3+---+(n2—1)+n2:n(n72+1). 1=1

2+3+4=1+8
355 Problem  Shew that

, 5+6+7+8+9=8+27
14345+ +20—1=n2.

10+ 11412+ 13414+ 15+ 16=27+64

356 Problem (AHSME 1994)  Sum the series Conjecture the law of formation and prove your answer.

20+20é +20§ +---+40.
361 Problem The odd natural numbers are arranged as follows:

357 Problem  Shew that (1)
1.2 3 1%
1996 ' 1996 ' 1996 1996 (3,5)
is an integer. (7,9,11)
(13,15,17,19)

358 Problem (AHSME 1991) LetT, =1+2+3+---+nand
L T3 N T (21,23,25,27,29)

"1 TH-1T-1T,-1

P

Find Pygor. Find the sum of thath row.

359 Problem  Given that

1 1 1 362 Problem  Sum
a+b’b+c’c+a
are consecutive terms in an arithmetic progression, piwte t 100G — 999 + 998 — 997 + ... +-4* — 32 122 11,
b?,a?,c?

363 Problem  The first term of an arithmetic progression is 14 and its 166t is
are also consecutive terms in an arithmetic progression. —16. Find (i) its 30th term and (ii) the sum of all the terms from ffrst to the 100th.

4.3 Geometric Sums

A geometric progressiois one of the form
a,ar,ar’,ars,...

364 Example Find the following geometric sum:

142+4+---4+1024

Solution: Let
S=1+2+4+-.-+1024

Then
25S=2+4+8+---+1024+ 2048

Hence
S=25-S=(2+4+8---+2048 — (1+2+4+---+ 1024 = 2048— 1= 2047

365 Example Find the geometric sum

1 1 1 1
X“3tmEtm Tty
Solution: We have
1 1 1 1 1
F @ Tt e g
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Then
gx = X—z=X
37 3
1 1 1
1 1 1 1
ZrE Tt gt gm0
1 1
~— 37 3100
From which we gather
Xfl, 1
T2 2.399°

The following example presents anithmetic-geometrisum.

366 Example Sum
a=1+2-4+3-42+...+10-4°

Solution: We have
da=4+2.424+3.44...49.494+10-4%
Now, 4a— ayields
3a=—-1-4—4—43—...—4°410-4%
Adding this last geometric series,
ae 10-4107410—1
3 9

367 Example Find the sum
S$i=1+1/2+1/4+---+1/2".

Interpret your result ag — oo,

Solution: We have

S— %31 =(1+1/2+1/4+ - +1/2" — (1/2+1/4+ --+1/2"+1/2" ) =1—-1/2".

Whence
S=2-1/2"
So asn varies, we have:
S =2-1/2° = 1
S =2-1/2 = 15
S =2-1/2°> = 1875
S =2-1/22 = 1875
S =2-1/2* = 19375
S =2-1/2° = 1.96875
Sio =2-1/2° = 1.998046875

Thus the farther we go in the series, the closer we get to 2.
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Let us sum now the geometric series

S=a+tar+ar’+---+ar" L

Plainly, ifr = 1 thenS= na, so we may assume that4 1. We have

rS=ar+ar’+---+ar".

Hence
S—rS=a+ar+ar’+---+a"ml—ar—ar’—...—ar"=a—ar".
From this we deduce that
_a-—ar"
T o1—r’
that is,
a—arn
a+ar+"'+arn71: ﬁ (43)
If r| <1 thenr" — 0 asn— co.
For|r| < 1, we obtain the sum of the infinite geometric series
2 a.
a+ar+ar +"':ﬁ (4.4)

368 Example A fly starts at the origin and goes 1 unit up,2lunit right, /4 unit down, /8 unit left, 1/16 unit up, etc.ad
infinitum. In what coordinates does it end up?

Solution: Itsx coordinate is

111 32
2 832 1715
Itsy coordinate is
1 n 1 1 4
Ty - — — =z
16 - °
2 4
Therefore, the fly ends up (FE, —).
5
Practice
369 Problem The 6th term of a geometric progression is 20 and the 10thQs BRd (i) its 15th term, (ii) the sum of its first 30 terms.

4.4 Fundamental Sums

In this section we compute several sums using telescopimgedation.
We start with the sum of the firstpositive integers, which we have already computed usings&arick.

370 Example Find a closed formula for
An=1+2+---+n.

Solution: Observe that
K2—(k—1)>=2k—1.
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From this
12-0? = 2.1-1
2212 = 2.2-1
3222 = 2.3-1
n—(n-12 = 2.n—1
Adding both columns,
nP—0°=2(142+3+---4+n)—n.
Solving for the sum,
14243+ ---+n=n?/2+4n/2= nm;”.
371 Example Find the sum
12422432+ 412,
Solution: Observe that
kK —(k—1)%=3k?—3k+1.
Hence
13-0° = 3.12-3.1+1
2813 = 3.22-3.2+1
P23 = 3.32-3.3+1
nP—(n—1° = 3.n”°—3.n+1
Adding both columns,
P —0°=3(12+22+324...4+n?) —3(1+243+---+n)+n.
From the preceding examplef2+ 3+ ---4+n=-n?/2+4n/2= nin+1) S0
n3—03:3(12+22+32+---+n2)—g-n(n+1)+n.
Solving for the sum,
12422432+ +n27n—3+} n(n+1)— o
3 2 3
After simplifying we obtain
12+22+32+...+n2:w (4.5)

372 Example Add the series

1,1 1 1
1.2 2-3 34 99.100
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Solution: Observe that

1 1 1
kk+1) Kk k+1'
Thus

1 11

1.2 T 12

1 11

2.3 T 2 3

1 11

3.4 T 3 14
1 1 1

99-100 = 99 100
Adding both columns,

1+1+1++1771799
1.2 23 34 99-100 100 100
373 Example Add
S I S
1.4 4.7 7-10 31-34
Solution: Observe that
1 1 1 1 1
(3n+1)-(3n+4) 3 3n+1 3 3n+4
Thus
1 11
1-4 3 12
1 1 1
4.7 12 21
111
7-10 21 30
1 1 1
10-13 30 39
o 11
34.37 102 111
Summing both columns,
1+1+1++17171712
1-4 4.7 7-10 31-34 3 111 37
374 Example Sum
1 1 1 1

147 2710 710137 T 252831
Solution: Observe that

1 1 1 1

1
(3n+1)-(3n+4)-(3n+7) 6 (3n+1)(3n+4) 6 (3n+4)(3n+7)
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Therefore
e S
1-4.7 - 6-1-4 6-47
1 B 1 1
4.7-10 ~ 6-4-7 6-7-10
1 B 1 1
7-10-13 ~ 6-7-10 6-10-13
1 B 11
25.28-31  6-25-28 6-28-31
Adding each column,
1 1 1 1 1 1 9

147 2710 71013 " "252831 614 62831 217

375 Example Find the sum
1.24+2-3+3-4+---+99-100

Solution: Observe that

1 1
k(k+1):é(k)(k+1)(k+2)—é(k—l)(k)(k+1).
Therefore

1 1
1.2 = 5-1-2-3—5-0-1-2

1 1
2-3 = §~2-3~4—§-1-2~3

1 1
3.4 = 5-3-4-5—5-2-3-4

99-100 = % -99.100- 1017% -98-99.100

Adding each column,

1-2+2-3+3-4+---+99-100:%-99-100- 101—%-0-1-2:333300

Practice

376 Problem  Shew that 378 Problem  Shew that
2

P+224+F+. 40P = (n(n+1)>

5 (4.6)

€SC2+ csC4+csc8+ -+ +csc2 = cotl—cot 2.
377 Problem Letay,ap,...,a, be arbitrary numbers. Shew that

a1+ 2 (1+a1) +as(1+a) (14 a) 379 Problem Let0< x < 1. Shew that

+ag(l+a)(1+ap)(1+ag) +--

53

tan—1(1+a)(1+a)(1+ag) - (1+an—2) E X __*
1_X2n+1 1—Xx

on

=(14a)(1+a)(l+az) - (14+a) —1 n=1
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380 Problem  Shew that Hint: From
n m
tan ;o5 + 2tan— tanx—tany
- - tanx—tany = ——————
+22tanF o+ 2%tan 14 tanxtany
_ n
= COt 575
deduce that
381 Problem Shew that
n ) a—b
Z K _1l _n4n arctara— arctarb = arctan——
K +Kk+1 2 m+n+1l 1+ab
k=1
382 Problem Evaluate for suitablea andb.
( 1.2.442.4.843.6-12+--- )1/3
1.3.9+2:6-1843:9-27+ - 384 Problem  Prove the following result due to Gramm
383 Problem  Shew that
w n-1 2
1 s H ==
Zarctan—:—. n+1 3
1+n+n2 4 s
n=1

4.5 First Order Recursions
We have already seen the Fibonacci numbers, defined by thesieefy =0, f =1 and
forr=fn+ faog, N> 1
Theorder of the recurrence is the difference between the highestranbbtvest subscripts. For example

Uny2—Uny1=2
is of the first order, and
Unya-+9u2 =n°

is of the fourth order.
A recurrence idinear if the subscripted letters appear only to the first power.ex@ample

Uny2—Uny1 =2

is a linear recurrence and
Xe4nx,_1=1 and x,+2%1 =3

are not linear recurrences.
A recursion ishomogeneoui$ all its terms contain the subscripted variable to the sameer. Thus

Xm+3 + 8Xm+2 —%n=0

is homogeneous. The equation
Xm 3+ 8Xmy 2 — OXm = M* — 3

is not homogeneous.

A closed fornof a recurrence is a formula that permits us to findritte term of the recurrence without having to know a
priori the terms preceding it.

We outline a method for solving first order linear recurreratations of the form

Xn=a%_1+ f(n),a#1,

wheref is a polynomial.
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1. First solve the homogeneous recurrerce ax,_1 by “raising the subscripts” in the fornf = ax"~*. This we call the
characteristic equationCancelling this giveg = a. The solution to the homogeneous equatipa- ax,_1 will be of
the formx, = Aa", whereA is a constant to be determined.

2. Test a solution of the form, = Aa" + g(n), whereg is a polynomial of the same degreefas
385 Example Letxg=7 andx, = 2X,_1,n > 1. Find a closed form fox.

Solution: Raising subscripts we have the characteristiaggnx” = 2x"~1. Cancellingx = 2. Thus we try a solution of the

form x, = A2", wereA is a constant. But % xo = A2° and soA = 7. The solution is thug, = 7(2)".

Aliter: We have

o = 7
X1 = 2%
X2 = 2X1
X3 = 2X2
Xn = 2Xn—1

Multiplying both columns,
XoX1 - Xn =7 2™XoX1X2 - - - Xp_1.
Cancelling the common factors on both sides of the equality,

Xn = 7 . 2n.
386 Example Letxg=7 andx, =2X,—1+1,n > 1. Find a closed form foxy.

Solution: By raising the subscripts in the homogeneoustimueve obtaink” = 2x"~* or x = 2. A solution to the

homogeneous equation will be of the forn= A(2)". Now f(n) = 1 is a polynomial of degree 0 (a constant) and so we test a
particular constant solutidB. The general solution will have the fong = A2"+B. Now, 7= xg = A2° 4+ B = A+ B. Also,

X1 = 2%9+ 7 =15 and so 15= x; = 2A+ B. Solving the simultaneous equations

A+B=7,
2A+B =15,

we findA = 8,B=—1. So the solution i, = 8(2") —1=2""3_1.
Aliter: We have:

Xo =7

X1 = 2%+1
X2 = 2x+1
X3 = 2x+1
-1 = 2%-2+1

Xn = 2Xn_l + 1
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Multiply the kth row by 2. We obtain

2% = 2.7
g = 2% +2"
My = 222
23 = 274203
X2 = 2% 3+2°
21 = 2% 2+2
Xn = -1+1

Adding both columns, cancelling, and adding the geometic,s

Xo=T7-2"+ (142+224. .. 420 =7.20 4 "1 "3 _ 1
Aliter: Let Un = Xn+ 1= 2Xn—1+ 2= 2(Xn_1+ 1) — 2Un—1- We solve the recurSiQﬂh — 2un_1 as we did on our first example:
Up = 2" = 2"(Xo+ 1) = 2"-8=2""3_Finally, X, =up—1=2""3—1.

387 Example Letxg=2,%, =9%,_1—56n+ 63. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneoustémjuave obtain the characteristic equatidh=9x""*orx=9. A
solution to the homogeneous equation will be of the fapm: A(9)". Now f(n) = —56n+ 63 is a polynomial of degree 1 and
so we test a particular solution of the foBm+ C. The general solution will have the forxg = A9" +Bn+C. Now

Xo =2,%1 = 9(2) — 56+ 63=25x, = 9(25) —56(2) + 63= 176. We thus solve the system

2=A+C,

25=9A+B+C,
176=81A+2B+C.
We findA = 2,B =7,C = 0. The general solution i%, = 2(9") + 7n.

388 Example Letxg=1,%X3=3Xn_1— 2n? 4 6n— 3. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneoustémuave obtain the characteristic equatidh=3x""*orx=9. A
solution to the homogeneous equation will be of the ferm- A(3)". Now f (n) = —2n?+6n— 3 is a polynomial of degree 2
and so we test a particular solution of the faBm +Cn+D. The general solution will have the form
Xn = A3"+ Br? +Cn+D. Now
Xo=1,%1 =3(1)—2+6—3=4,% = 3(4) —2(2)°+ 6(2) — 3= 13,x3 = 3(13) — 2(3)2+ 6(3) — 3= 36. We thus solve the
system

1=A+D,

4=3A+B+C+D,
13=9A+4B+2C+D,
36=27A+9B+3C+D.
We findA= B =1,C =D = 0. The general solution ig, = 3"+ n?.
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389 Example Find a closed form for, = 2xq,_1 + 3" 1, %0 = 2.

Solution: We test a solution of the forgq = A2"+ B3". Thenxp = 2,x; = 2(2) 4+ 3° = 5. We solve the system
2=A+B,

7=2A+3B.

We findA = 1,B = 1. The general solution ig, = 2"+ 3".
We now tackle the case when= 1. In this case, we simply consider a polynongaif degree 1 higher than the degreefof

390 Example Letxg=7 andx, =Xn_1+n,n> 1. Find a closed formula fox,.

Solution: By raising the subscripts in the homogeneoustémueve obtain the characteristic equatidh=x""*orx=1. A
solution to the homogeneous equation will be of the fagm:= A(1)" = A, a constant. Now (n) = nis a polynomial of degree
1 and so we test a particular solution of the fdBmf +Cn+ D, one more degree than that bf The general solution will have
the formx, = A+ Bré +Cn+ D. SinceA andD are constants, we may combine them to obtgia Br? +Cn-+E. Now,
Xo=7,X1 =7+1=8,xp=8+2=10. So we solve the system

7=E,
8=B+C+E,

10=4B+2C+E.
. 1 o n n
We findB=C = §’E = 7. The general solution ig,= — + - +7.

. 2 2
Aliter: We have

o = 7

X1 = X+1
X2 = X1+2
X3 = Xo+3
Xn = Xp—1+N

Adding both columns,
Xo+Xi+X+ +Xn=7T+X+Xo+ - +X -1+ (1+2+3+---+n).

. H 1
Cancelling and using the fact thatt2+---+n= n(n;r ) '
Xn="7+ n(n; 1)-

Some non-linear first order recursions maybe reduced tearifirst order recursion by a suitable transformation.
391 Example A recursion satisfiegg = 3, uﬁﬂ =up,n > 1. Find a closed form for this recursion.

Vn—1
2

. 1 .
Solution: Letv, = logu,. Thenv, = logu, = log uﬁ/_zl =5 logup_1 = . AS Vp = V_1/2, we havev, = vp/2", that is,

logun = (logug) /2". Thereforep, = 3Y/2".

Practice
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. _1+4 ) ) . L
392 Problem  Find a closed form forg = 3,%, = % Given thatx;g = 94, find the remainder whexy, is divided by 1000
393 Problem  Find a closed form foky = 1,X, = 5%,—1 — 20n+ 25 398 Problem  Find a closed form for
394 Problem  Find a closed form forg = 1,%, = X1+ 12n. Xo = —1; Xy = Xq_1 4+ N%,n > 0.

Probl i = 2% 1) o =5. )
395 Problem  Find a closed form foky = 2x,—1 +9(5""7).%0 =5 399 Problem If up =1/3 andun;1 = Zuﬁ — 1, find a closed form foup,.

396 Problem  Find a closed form for
) 400 Probl Letx; =1 =X;— 1,n> 0. Shew that
a0 =5aj,1=a +2a,] >0 roblem 1= Lnes =X — % 10>

)

397 Problem (AIME, 1994) If n>1, } :i -1

Xa+Xn—1 =12, n1

4.6 Second Order Recursions

All the recursions that we have so far examined are first at®irsions, that is, we find the next term of the sequencagive
the preceding one. Let us now briefly examine how to solve ssenend order recursions.
We now outline a method for solving second order homogenkees recurrence relations of the form

Xn = %1+ bX 2.

1. Find the characteristic equation by “raising the sulpsstiin the formx" = ax"~! 4 bx"~2. Cancelling this gives
x° —ax—b=0. This equation has two rootg andr».

2. Ifthe roots are different, the solution will be of the forn= A(r1)" + B(r2)", whereA, B are constants.
3. Ifthe roots are identical, the solution will be of the form= A(r1)" +Bn(ry)".
401 Example Letxg=1,X1 =—1, Xnt2+ 5Xy41+ 6%, =0.
Solution: The characteristic equations+ 5x+ 6 = (x+ 3)(x+ 2) = 0. Thus we test a solution of the form
Xn = A(—2)"+B(—3)". Since 1= Xy = A+ B,—1= —2A— 3B, we quickly findA = 2, B = —1. Thus the solution is
% =2(—2)"—(=3)".

402 Example Find a closed form for the Fibonacci recursify =0, f; =1, f, = fo_1+ f_».

Solution: The characteristic equationfis— f — 1 = 0, whence a solution will have the form

n n
fo=A < 1+2\/§> +B <12\/§> . The initial conditions give

0=A+B,
(145 1-V5\ 1 V5 VB
1_A< 5 >+B<T>_§(A+B)+7(AB)_7(AB)
This givesA = 1 B= _ 1 We thus have th€auchy-Binet Formula:
ERVCRA ! '
n n
fn:i 1+V5 1 1_—\/5 4.7)
B\ 2 s\ 2

403 Example Solve the recursiory = 1,X1 = 4,%n = 4Xn_1— 4X%n_2 = 0.
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Solution: The characteristic equationds— 4x+4 = (x—2)2 = 0. There is a multiple root and so we must test a solution of
the formx, = A2"+ Bn2". The initial conditions give
1=A

4 =2A+ 2B.
This solves toA = 1,B = 1. The solution is thug, = 2"+ n2".
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Practice
404 Problem  Solve the recursiory = 0,X; = 1, %, = 10%, 1 — 21Xy 2. 406 Problem  Solve the recursiory = 0,x; = 1,Xy = 10%,_1 — 21X, 2+ N.
405 Problem  Solve the recursiory = 0,X; = 1,X, = 10x, 1 — 25X, 2. 407 Problem  Solve the recursiory = 0,X; = 1,X, = 10%_1 — 21X, 2 + 2".

4.7 Applications of Recursions

408 Example Find the recurrence relation for the numbendafigit binary sequences with no pair of consecutive 1's.

Solution: It is quite easy to see that= 2,a, = 3. To forma,,n > 3, we condition on the last digit. If it is 0, the number of
sequences soughtag_1. Ifitis 1, the penultimate digit must be 0, and the numberegfiences sought &, _,. Thus

an=apn 1tap =2 a=3

409 Example Let there be drawn ovals on the plane. If an oval intersects each of the othds@taxactly two points and
no three ovals intersect at the same point, find a recurretatan for the number of regions into which the plane isdid.

Solution: Let this number bay,. Plainlya; = 2. After then — 1th stage, thath oval intersects the previous ovals &h2- 1)
points, i.e. thenth oval is divided into 2n— 1) arcs. This adds(&— 1) regions to thex,_1 previously existing. Thus

an=ap-1+2(n—1), a1 =2

410 Example Find a recurrence relation for the number of regions intoclitihe plane is divided by straight lines if every
pair of lines intersect, but no three lines intersect.

Solution: Leta, be this number. Clearlgy = 2. Thenth line is cut by he previous— 1 lines atn— 1 points, addingn new
regions to the previously existiray,_1. Hence

an=ap-1+tn =2

411 Example (Derangementshn absent-minded secretary is fillimenvelopes withn letters. Find a recursion for the
numberD,, of ways in which she never stuffs the right letter into théntignvelope.

Solution: Number the envelopes2l3,;--- ,n. We condition on the last envelope. Two events might happéhern and

r(1 <r <n-1)trade places or they do not.

In the first case, the two lettersandn are misplaced. Our task is just to misplace the othe? letters,
(4,2,---,r—1,r+1,--- ,n—1)intheslots(1,2,--- ,r—1r+1---,n—1). This can be done iD,_» ways. Since can be
chosen im— 1 ways, the first case can happerin-1)D,_» ways.

In the second case, let us say that lettddl < r < n— 1) moves to ther-th position buth moves not to the-th position. Since
r has been misplaced, we can just ignore it. Siméenot going to the-th position, we may relabel asr. We now haven— 1
numbers to misplace, and this can be donB,in; ways.

Asr can be chosen in— 1 ways, the total number of ways for the second ca$e+is1)Dy,_1. Thus
Dh=(n—1)Dp_2+(n—1)Dp_1.

412 Example There are two urns, one is full of water and the other is entythe first stage, half of the contains of urn | is
passed into urn Il. On the second stage 1/3 of the containsdf is passed into urn I. On stage three, 1/4 of the contdins o
urn | is passed into urn Il. On stage four 1/5 of the containgrofll is passed into urn I, and so on. What fraction of water
remains in urn | after the 1978th stage?
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Solution: Letxn,yn,n =0,1,2,... denote the fraction of water in urns | and Il respectivelytagen. Observe that, +y, =1
and that

X0=1yo=0
WUV S ORI S
1=Xo 2X0_2’yl_yl 2Xo—2
NSV S SRV
2 =X1 3)/1—3,)/2—)/1 3)/1—3
X—X—}X—}' = +}X—}
3 =X2 42—2,)’1—)’1 2= 5
VR NP VRV S
X4 =X3 5y3—5,Y1—Y1 5y3—5
NIV S SV
5 = X4 6X4—2,Y1—Y1 6X4—2
6 =X5 7y5—7,Y1—Y1 7y5—7
NIV S SV I
7= X6 8X6—2,Y1—Y1 8X6—2
VI SRRV W
Xg = X7 9)/7—9,)/1—)/1 9)/7—9
. . . 1
A pattern emerges (which may be proved by induction) thahebh®dd staga we havex, =y, = > and that at each even
. k+1 k . 1978 990
stage we have (if = 2Kk) xo = = . Since—— =989 we haveg7s= ——.
g (=24 %o = 1Y%= v a 2 1978~ 1979
Practice
413 Problem At the Golem Gambling Casino Research Institateexperiment is this one, she earns 15% interest per year. Find a recurrefat®n for the amount of
performed by rolling a die until two odd numbers have appgéaead then the money aftemn years.

experiment stops). The tireless researchers wanted to fixcLiarence relation for the
number of ways to do this. Help them!

415 Problem  Find a recurrence relation for the number of ternaugigit sequences
414 Problem Mrs. Rosenberg has $8 000 000 in one of her five savings actdant | with no consecutive 2's.
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Counting

5.1 Inclusion-Exclusion

In this section we investigate a tool for counting unions\ares. It is known aghe Principle of Inclusion-Exclusioor
Sylvester-Poincaré Principle.
416 Theorem (Two set Inclusion-Exclusion)
card(AUB) = card(A) + card(B) — card(ANB)
Proof: We have
AUB=(A\B)U(B\A)U(ANB),
and this last expression is a union of disjoint sets. Hence
card(AUB) = card(A\ B) +card(B\ A) 4+ card ANB).

But
A\B=A\ (ANB) = card(A\ B) = card(A) —card ANB),

B\A=B\ (ANB) = card(B\ A) = card(B) —card(ANB),
from where we deduce the resdult.

In the Venn diagram 5.1, we mark IR the number of elements which are simultaneously in both(setsin AN B), by R,
the number of elements which areArbut not inB (i.e., inA\ B), and byR; the number of elements which aBeut not inA
(i.e., inB\ A). We haveR; + R, + R3 = card(AU B), which illustrates the theorem.

417 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also knowrithaoth smoke and chew. How many
among the 40 neither smoke nor chew?

Solution: LetA denote the set of smokers aBdhe set of chewers. Then
card(AUB) = card(A) + card(B) —card AnB) =28+ 16— 10= 34,

meaning that there are 34 people that either smoke or cheposibly both). Therefore the number of people that neither
smoke nor chew is 40 34=6.

66
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Figure 5.1: Two-set Inclusion-Exclusion Figure 5.2: Example 417.

Aliter: We fill up the Venn diagram in figure 5.2 as follows. Since ¢&dB) = 10, we put a 10 in the intersection. Then we
put a 28— 10= 18 in the part thaf does not overlap and a 16- 10= 6 in the part o that does not overlap. We have
accounted for 18- 18+ 6 = 34 people that are in at least one of the set. The remainirg3#= 6 are outside these sets.

418 Example How many integers between 1 and 1000 inclusive, do not shemenanon factor with 1000, that is, are
relatively prime to 10007

Solution: Observe that 1008 2°53, and thus from the 1000 integers we must weed out those thiatehfactor of 2 or of 5 in

their prime factorisation. 1A, denotes the set of those integers divisible by 2 in the ialéty100Q then clearly

card(Az) = [[@Jj = 500. Similarly, if As denotes the set of those integers divisible by 5 then (@&r)d= [[%)JJ = 200.

1000 _ : .
Also card A, NAs) = UWJJ =100. This means that there are cgkduU As) = 500+ 200— 100= 600 integers in the

interval [1;1000 sharing at least a factor with 1000, thus there are 20600= 400 integers if1;1004 that do not share a
factor prime factor with 1000.

We now deduce a formula for counting the number of elemenaswfion of three events.

7

Figure 5.3: Three-set Inclusion-Exclusion

419 Theorem (Three set Inclusion-Exclusion) Let A, B,C be events of the same sample sp@c&hen
card AUBUC) = card(A)+card(B)+ cardC)
—card/ANB)—card BNC) —card(CNA)

+card ANBNC)
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Proof: Using the associativity and distributivity of unions ofssaete see that
card AUBUC) = -cardAu(BUC))

= card(A)+cardBUC)—card AN (BUC))

= card(A)+cardBUC)—card((AnB)U(ANC))

= card(A) +card(B) + card(C) —card(BNC)
—card AnB)—card ANC)
+card((ANB)N(ANC))

= card(A) +card(B) + card(C) —card(BNC)
—(card(ANB) +card ANC) —card ANBNC))

= card(A) 4 cardB) 4 card(C)

—card/ANB)—cardBNC)—cardCNA)

+card ANBNC).

This gives the Inclusion-Exclusion Formula for three s8tse also figure 5.3.
O

|:| In the Vlenn diagram in figure 5.3 there &éealisjoint regions: the 7 that form ABUC and the outside
region, devoid of any element belonging to BUC.

420 Example How many integers between 1 and 600 inclusive are not diei&ip neither 3nor 5, nor 7?

Solution: LetAy denote the numbers it; 600 which are divisible byk. Then

card(Az) = H? = 200
cardAs) = H?JJ = 120
card(A7) = [L6—$O = 85
card(Ais) = U%JJJ = 40
card A1) = U% = 28
card(Azs) = H%) = 17
card(Aips) = i—gg = 5

By Inclusion-Exclusion there are 200120+ 85— 40— 28— 17+ 5= 325 integers in1;600 divisible by at least one of 3, 5,
or 7. Those not divisible by these numbers are a total of-6825= 275

421 Example In a group of 30 people, 8 speak English, 12 speak Spanish@sgdebk French. It is known that 5 speak
English and Spanish, 5 Spanish and French, and 7 Englishrendi The number of people speaking all three languages is
3. How many do not speak any of these languages?
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Solution: LetA be the set of all English speakeBsthe set of Spanish speakers @hthe set of French speakers in our group.
We fill-up the Venn diagram in figure 5.4 successively. In titerisection of all three we put 8. In the region commoA &nd

B which is not filled up we put 5-2 = 3. In the region common t& andC which is not already filled up we put-53= 2. In
the region common t8 andC which is not already filled up, we put73 = 4. In the remaining part ofA we put
8—2—3—2=1, inthe remaining part oB we put 12-4—3—2= 3, and in the remaining part & we put

10— 2—3—4=1. Each of the mutually disjoint regions comprise a total ef2+ 3+ 4+ 1+ 2+ 3= 16 persons. Those
outside these three sets are ther-3G = 14.

C Sports

A B Movies Reading

Figure 5.4: Example 421. Figure 5.5: Example 422.

422 Example A survey shews that 90% of high-schoolers in Philadelpkia it least one of the following activities: going to
the movies, playing sports, or reading. It is known that 488 the movies, 48% like sports, and 35% like reading. Alsi, i
known that 12% like both the movies and reading, 20% like diméymovies, and 15% only reading. What percent of
high-schoolers like all three activities?

Solution: We make the Venn diagram in as in figure 5.5. Froneigather the following system of equations

X +y + z + 20 = 45
X + z + t + u = 48
X + vy + t + 15 = 35
X + vy = 12

90

X +y + z 4+t 4+ u+ 15 + 20

The solution of this system is seen todbe 5, y=7,z=13,t =8, u=22. Thus the percent wanted is 5%.

Practice

423 Problem  Consider the set 0 How many are divisible by either 3, 5 or both?
A={2,46,..114). O How many are neither divisible by 3 nor 5?

O How many are divisible by exactly one of 3 or 5?
O How many elements are thereA?

O How many are divisible by 3? 424 Problem  Consider the set of the first 100 positive integers:

O How many are divisible by 5? A={1,2,3,...,100}.

O How many are divisible by 15? O How many are divisible by 2?




70

Chapter 5

How many are divisible by 3?
How many are divisible by 7?
How many are divisible by 67
How many are divisible by 14?
How many are divisible by 217
How many are divisible by 427
How many are relatively prime to 42?
How many are divisible by 2 and 3 but not by 7?
How many are divisible by exactly one of 2, 3 and 7?
425 Problem A survey of a group’s viewing habits over the last year rezddhe
following information:
0 28% watched gymnastics
0 29% watched baseball

19% watched soccer

o 4

14% watched gymnastics and baseball
12% watched baseball and soccer

0 10% watched gymnastics and soccer
0 8% watched all three sports.

Calculate the percentage of the group that watched nonedhtbe sports during the
last year.

426 Problem Out of 40 children, 30 can swim, 27 can play chess, and onlynloa
neither. How many children can swim and play chess?

427 Problem At Medieval Highthere are forty students. Amongst them, fourteen li
Mathematics, sixteen like theology, and eleven like alchdms also known that seven
like Mathematics and theology, eight like theology and atoly and five like
Mathematics and alchemy. All three subjects are favourefdimystudents. How many
students like neither Mathematics, nor theology, nor atgy®

428 Problem How many strictly positive integers less than or equal to0L8
O perfect squares?

perfect cubes?

perfect fifth powers?

o 4

perfect sixth powers?

O

perfect tenth powers?

perfect fifteenth powers?

o 4

perfect thirtieth powers?

neither perfect squares, perfect cubes, perfect fifth pefver

429 Problem An auto insurance company has, Q00 policyholders. Each policy

e young or old,

e male or female, and

e married or single.
Of these policyholders, 3000 are young, 4600 are male, abd & married. The
policyholders can also be classified as 1320 young male$§, 3@tried males, and 1400

young married persons. Finally, 600 of the policyholdersyamung married males. How
many of the company’s policyholders are young, female, amgles?

430 Problem (AHSME 1988) X, Y, andZ are pairwise disjoint sets of people. The
average ages of people in the s¥t¥, Z, XUY, X UY, andY UZ are given below:

Set X |Y Z | XUY | XuZzZ | Yuz

Average Age| 37 | 23 | 41 | 29 395 33

What is the average age of the people in thexsety UZ?

431 Problem Each of the students in the maths class twice attended artohds
known that 2512, and 23 students attended concerts A, B, and C respectively. H
many students are there in the maths class? How many of thetrteveoncerts A and
B,BandC, or Band C?

432 Problem The films A, B, and C were shewn in the cinema for a week. Out of 40
students (each of which saw either all the three films, or drleeon, 13 students saw
film A, 16 students saw film B, and 19 students saw film C. How nsingents saw all
three films?

433 Problem  Would you believe a market investigator that reports thatQff0 people,
816 like candy, 723 like ice cream, 645 cake, while 562 likthlmandy and ice cream,
463 like both candy and cake, 470 both ice cream and cakeg ®h0 like all three?
State your reasons!

434 Problem (AHSME 1991) For a sef§ let card(zs) denote the number of subsets
eof S If A B,C, are sets for which

card(ZA) +card (25) +card (20) = card(zAUBUC)

and
card(A) = card(B) = 100,

then what is the minimum possible value of cefddhBNC)?
435 Problem (Lewis Carrollin A Tangled Tale.) In a very hotly fought battle, at least

70% of the combatants lost an eye, at least 75% an ear, aB@¥san arm, and at least
85% a leg. What can be said about the percentage who lostalifembers?

436 Problem Letx,y be real numbers. Prove that

X-+y = min(x,y) +max(x,y)

437 Problem  Letx,y,zbe real numbers. Prove that

max(x,y,z) X+Yy—+z—min(xy) —min(y,z)

—min(z,x) +min(x,y,z)

holder is classified as

5.2 The Product Rule

438 Rule (Product Rule)
Suppose moreover thif can be done im; different ways, an

Suppose that an experimdhatan be performed ik stagesE; first, E, second, ... Ey last.

d that the number of ways of perfornigs not influenced by
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any predecessoEs, Ey,...,Ei_1. ThenE; and E; and . ..and Ex can occur simultaneously mn; - - - ng ways.

439 Example In a group of 8 men and 9 women we can pick one rmad one woman in 89 = 72 ways. Notice that we are
choosing two persons.

440 Example A red die and a blue die are tossed. In how many ways can thd@ lan

Solution: If we view the outcomes as an ordered [paly) then by the multiplication principle we have the@= 36 possible
outcomes

(1,1) (3,2) (1,3) (3,4 (1,5 (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5 (2,6)
(3,1) (3,2) (3,3) (3,4 (3,5 (3,6
(4,1) (4,2) (43 (44 (45 (4,6
(5,1) (5,2) (5,3) (5,4) (55 (5,6)

(6,1) (62) (6,3) (6,4) (65 (6,6

The red die can land in any of 6 ways,

and also, the blue die may land in any of 6 ways

441 Example A multiple-choice test consists of 20 questions, each otie 4vichoices. There are 4 ways of answering the first
question, 4 ways of answering the second question, etocghtere are? = 1099511627776 ways of answering the exam.
442 Example There are 910- 10= 900 positive 3-digit integers:

100101102 ...,998 999
For, the leftmost integer cannot be 0 and so there are onlpees({1,2 3,4,5,6,7,8,9} for it,

9
There are 10 choices for the second digit
9110 :
and also 10 choices for the last digit
9(10| 10}

443 Example There are 910-5= 450 even positive 3-digit integers:
100,102 104, ...,996,998
For, the leftmost integer cannot be 0 and so there are onlpeet({1,2 3,4,5,6,7,8,9} for it,

9
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There are 10 choices for the second digit

91|10

Since the integer must be even, the last digit must be onee@ tthoiceq0,2,4, 6,8}

9|110|5¢}

444 Definition A palindromic integeor palindromeis a positive integer whose decimal expansion is symmetidicthat is
not divisible by 10. In other words, one reads the same inteaekwards or forwards.

445 Example The following integers are all palindromes:

1,8,11,99,101,131 999 12343219987899

446 Example How many palindromes are there of 5 digits?
Solution: There are 9 ways of choosing the leftmost digit.

9

Once the leftmost digit is chosen, the last digit must betidahto it, so we have

There are 10 choices for the second digit from the left

910 1}

Once this digit is chosen, the second digit from the rightnbesdentical to it, so we have only 1 choice for it,

9|10 11}

Finally, there are 10 choices for the third digit from thehtig

9110101 |1}

which give us 900 palindromes of 5-digits.
447 Example How many palindromes of 5 digits are even?

Solution: A five digit even palindrome has the foABCBA whereA belongs tof2,4,6,8}, andB,C belong to
{0,1,2,3,4,5,6,7,8,9}. Thus there are 4 choices for the first digit, 10 for the secand 10 for the third. Once these digits
are chosen, the palindrome is completely determined. Torerghere are 4 10 x 10= 400 even palindromes of 5 digits.

448 Example How many positive divisors does 300 have?

LA palindrome in common parlance, is a word or phrase thatsréfaelsame backwards to forwards. The Philadelphia stree¢ Bamacis a palindrome.
So are the phrases (if we ignore punctuation) (a) “A man, a,@aanal, Panama!” (b) “Sit on a potato pan!, Otis.” (c) ‘Aklas | ere | saw Elba.” This last
one is attributed to Napoleon, though it is doubtful that hevk enough English to form it.
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Solution: We have 306 3- 252, Thus every factor of 300 is of the form&5°, where 0<a<1,0<b< 2 and 0< c< 2.
Thus there are 2 choices far3 forb and 3 forc. This gives 2 3-3 = 18 positive divisors.

449 Example How many paths consisting of a sequence of horizontal aneftical line segments, each segment connecting
a pair of adjacent letters in figure 5.6 sg8IPOLAR?

B B

B I B B |

B I P I B B I P

B I P OP I B B I P O

B I P OL OP I B B I P O L
B I P OL AL OWP I B B I PO L A
B I POL ARALOZPII B B I POL AR

. Figure 5.7: Problem 449.
Figure 5.6: Problem 449.

Solution: Split the diagram, as in figure 5.7. Since everyiegl path must use tHg we count paths starting froRand
reaching up to 8. Since there are six more rows that we can travel to, and sineach stage we can go either up or left, we

have 2 = 64 paths. The other half of the figure will provide 64 more pasince the middle column is shared by both halves,
we have a total of 64-64— 1= 127 paths.

We now prove that if a se& hasn elements, then it has'Zubsets. To motivate the proof, consider the{seb, c}. To each

element we attach a binary code of length 3. We write 0 if aigalerr element is not in the set and 1 if it is. We then have the
following associations:

& « 000, {a,b} 110,
{a} « 100, {a,c} < 101
{b} < 010, {b,c} < 011
{c} < 001, {a,b,c} — 111

Thus there is a one-to-one correspondence between thasobadinite set of 3 elements and binary sequences of length 3
450 Theorem (Cardinality of the Power Set)  Let A be a finite set with cargh) = n. ThenA has 2 subsets.

Proof: We attach a binary code to each element of the suliskEthe element is in the subset a@df the

element is not in the subset. The total number of subsets tetal number of such binary codes, and there e
in number.d

Homework
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451 Problem A true or false exam has ten questions. How many possiblearigys
are there?

452 Problem  Out of nine different pairs of shoes, in how many ways coulddase a
right shoe and a left shoe, which should not form a pair?

453 Problem  In how many ways can the following prizes be given away to asctf
twenty boys: first and second Classical, first and second éagttical, first Science, an
first French?

454 Problem  Under old hardware, a certain programme accepted passwbifos
form
eell

where
ec {0,2,4,6,8}, I € {a,b,c,d,u,v,w,x,y,z}.

The hardware was changed and now the software accepts pdsfithe form
eeelll

How many more passwords of the latter kind are there thaneofattmer kind?

455 Problem A license plate is to be made according to the following pimn: it has
four characters, the first two characters can be any lettéredEnglish alphabet and thq
last two characters can be any digit. One is allowed to relpéats and digits. How
many different license plates can be made?

456 Problem  In problem 455, how many different license plates can youeniff)
you may repeat letters but not digits?, (ii) you may repegitslbut not letters?, (iii) you
may repeat neither letters nor digits?

457 Problem  An alphabet consists of tHeve consonants {p, v, t, s, k} and thtaree
vowels {a, e, 0}. A license plate is to be made usfagr letters of this alphabet.

O How many letters does this alphabet have?

O Ifalicense plate is of the forr@CVV whereC denotes a consonant avd
denotes a vowel, how many possible license plates are @&saming that you

may repeat both consonants and vowels?

If a license plate is of the forr@CVV whereC denotes a consonant axid
denotes a vowel, how many possible license plates are @&saming that you
may repeat consonants but not vowels?

If a license plate is of the forr@CVV whereC denotes a consonant axid
denotes a vowel, how many possible license plates are @gsaming that you
may repeat vowels but not consonants?

If a license plate is of the foraLLL whereL denotes any letter of the alphabd
how many possible license plates are there, assuming thahgy not repeat
letters?

458 Problem A man lives within reach of three boys’ schools and four gsthools.
In how many ways can he send his three sons and two daughtrkdol?

459 Problem How many distinct four-letter words can be made with theelstof the
set{c,i,k,t}

O if the letters are not to be repeated?

O if the letters can be repeated?

460 Problem How many distinct six-digit numbers that are multiples ofdéh be
formed from the list of digit§1,2,3,4,5,6} if we allow repetition?

461 Problem Telephone numbers inand of the Flying Camelsave 7 digits, and the
only digits available ar¢0,1,2,3,4,5,7,8}. No telephone number may beginin 0, 1 d
5. Find the number of telephone numbers possible that meéollowing criteria:

O You may repeat all digits.
You may not repeat any of the digits.

You may repeat the digits, but the phone number must be even.

O You may not repeat the digits and the phone numbers must be odd

462 Problem How many 5-lettered words can be made out of 26 letters, itimet
allowed, but not consecutive repetitions (that is, a lettay not follow itself in the same
word)?

463 Problem How many positive integers are there havimg 1 digits?

i

464 Problem How manyn-digits integersi > 1) are there which are even?

465 Problem How manyn-digit nonnegative integers do not contain the digit 57

466 Problem How manyn-digit numbers do not have the digit 0?

467 Problem There arandifferent roads from town A to town B. In how many ways
can Dwayne travel from town A to town B and back if (a) he may edrack the way he
went?, (b) he must use a different road of return?

468 Problem How many positive divisors doe$#5° have? What is the sum of these
divisors?

469 Problem How many factors of ¥ are larger than D00,000?

470 Problem How many positive divisors does 360 have? How many are even? H
many are odd? How many are perfect squares?

471 Problem (AHSME 1988) At the end of a professional bowling tournament, the top
5 bowlers have a play-off. First # 5 bowls #4. The loser rezeihe 5th prize and the
winner bowls # 3 in another game. The loser of this game resdhe 4th prize and the
winner bowls # 2. The loser of this game receives the 3rd faukthe winner bowls #

1. The loser of this game receives the 2nd prize and the wiheetst prize. In how

many orders can bowlers #1 through #5 receive the prizes?

472 Problem The password of the anti-theft device of a car is a four diginber,
where one can use any digit in the set

{0,1,2,3,4,5,6,7,8,9}.

0 How many such passwords are possible?
O How many of the passwords have all their digits distinct?

A

B. After an electrical failure, the owner must reintrodulce password in order to
deactivate the anti-theft device. He knows that the fouitsliof the code are
2,0,0,3 but does not recall the order.

—

O How many such passwords are possible using only theseigits

O If the first attempt at the password fails, the owner must et
minutes before a second attempt, if the second attemptiaitaust
wait four minutes before a third attempt, if the third atterals he
must wait eight minutes before a fourth attempt, etc. (tmetiloubles
from one attempt to the next). How many passwords can the owne
attempt in a period of 24 hours?

473 Problem The number 3 can be expressed as a sum of one or more posiégeris
in four ways, namely, as 3,4 2, 2+ 1, and 1+ 1+ 1. Shew that any positive integer
can be so expressed ifi2! ways.

474 Problem  Letn = 2%13'°, How many positive integer divisors aof are less than
but do not dividen?

475 Problem  Letn > 3. Find the number ofi-digit ternary sequences that contain at
least one 0, one 1 and one 2.

476 Problem  In how many ways can one decompose the set
{1,2,3,...,100}

into subset#\, B,C satisfying

O
O
O

You may repeat the digits, but the phone number must be odd.

AUBUC={1,2,3,...,100} and ANBNC =2
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5.3 The Sum Rule

477 Rule (Sum Rule: Disjunctive Form)  LetEj,E, ..., Ey, be pairwise mutually exclusive eventsBfcan occur im;
ways, then eitheE; or E; or, ..., or Eg can occur in

N+ Np+ - Ny

ways.

|:| Notice that the 6r” here is exclusive.

478 Example In a group of 8 men and 9 women we can pick one maane woman in 89 =17 ways. Notice that we are
choosing one person.

479 Example There are five Golden retrievers, six Irish setters, andtéigbdles at the pound. How many ways can two
dogs be chosen if they are not the same kind.

Solution: We choose: a Golden retrieaard an Irish settepr a Golden retrieveand a Poodleor an Irish setteand a Poodle.

One Golden retriever and one Irish setter can be chosenda=30 ways; one Golden retriever and one Poodle can be chosen
in 5-8 =40 ways; one Irish setter and one Poodle can be choser8ir-618 ways. By the sum rule, there are
30+ 40+ 48= 118 combinations.

480 Example To write a book 1890 digits were utilised. How many pages dbedook have?

Solution: A total of
1-9+2-90=189

digits are used to write pages 1 to 99, inclusive. We have 8018189= 1701 digits at our disposition which is enough for
1701/3 =567 extra pages (starting from page 100). The book has®87= 666 pages.

481 Example The sequence of palindromes, starting with 1 is written teading order
1,2,3,4,5,6,7,8,9,11,22 33, ...

Find the 1984-th positive palindrome.

Solution: It is easy to see that there are 9 palindromes d§it8 palindromes with 2-digits, 90 with 3-digits, 90 with
4-digits, 900 with 5-digits and 900 with 6-digits. The lastipdrome with 6 digits, 999999, constitutes the

9+ 9+ 90+ 90+ 900+ 900= 1998th palindrome. Hence, the 1997th palindrome is 9988@91 996th palindrome is 997799,
the 1995th palindrome is 996699, the 1994th is 995599, &ttil,we find the 1984th palindrome to be 985589.

482 Example The integers from 1 to 1000 are written in succession. Fiedstim of all the digits.

Solution: When writing the integers from 000 to 999 (witherdigits), 3x 1000= 3000 digits are used. Each of the 10 digits
is used an equal number of times, so each digit is used 308.tifte the sum of the digits in the interval 000 to 999 is thus

(0+1+2+3+4+5+6+7+8+9)(300 = 13500

Therefore, the sum of the digits when writing the integepsfilO00 to 1000 is 13500 1 = 13501.

483 Example How many 4-digit integers can be formed with the set of di§@tsl, 2, 3,4, 5} such that no digit is repeated and
the resulting integer is a multiple of 3?




76

Chapter 5

Solution: The integers desired have the fdbaD,D3D4 with D; £ 0. Under the stipulated constraints, we must have

D1+ D2+ D3+Dg e {6,9,12}.

We thus consider three cases.

Case I'D1+D,+ D3+ D4 =6. Here we havéD1,D5,D3,D4} ={0,1,2,3,4},D1 # 0. There are then 3 choices 5. After
D1 is chosenpP, can be chosen in 3 wayBg in 2 ways, andq in 1 way. There are thus:833 x 2 x 1= 3-3! = 18 integers

satisfying case I.

Case Il:D1 +Dy+ D3+ D4 =9. Here we havgD4,D,,D3,D4} = {0,2,3,4},D1 £ 0 or
{D1,D2,D3,D4} ={0,1,3,5},D1 # 0. Like before, there are-3! = 18 numbers in each possibility, thus we have 28= 36

numbers in case Il.

Case lll:D; + Dy + D3+ D4 = 12. Here we hav¢D1,D5,D3,D4} = {0,3,4,5},D1 #0 or{D1,D5,D3,D4} = {1,2,4,5}. In
the first possibility there are-3! = 18 numbers, and in the second there dre 24. Thus we have 18 24= 42 numbers in

case lll.

The desired number is finally 1836+ 42= 96.

Homework

484 Problem How many different sums can be thrown with two dice, the farfesach
die being numbered,@,3,7,15,31?

485 Problem How many different sums can be thrown with three dice, thedauf
each die being numbered4113,40,121 364?

486 Problem How many two or three letter initials for people are avakaibiat least
one of the letters must be a D and one allows repetitions?

487 Problem How many strictly positive integers have all their digitstifict?

488 Problem The Morse code consists of points and dashes. How manysletierbe
in the Morse code if no letter contains more than four signsalh must have at least
one?

489 Problem  An nx nx nwooden cube is painted blue and then cut imtd x 1 x 1
cubes. How many cubes (a) are painted on exactly three §iijeme painted in exactly
two sides, (c) are painted in exactly one side, (d) are nottpd?

490 Problem (AIME 1993)
different digits?

How many even integers between 4000 and 7000 have

491 Problem  All the natural numbers, starting with 1, are listed consigely
123456789101112131415161718192021
Which digit occupies the 1002nd place?

492 Problem  All the positive integers are written in succession.
123456789101112131415161718192021222324
Which digit occupies the 206790th place?

493 Problem  All the positive integers with initial digit 2 are written succession:
2,20,21,22,23,24,25,26,27,28,29,200,201 . .. ,
Find the 1978-th digit written.

494 Problem (AHSME 1998) Call a 7-digit telephone numbelsd,d; — dsdsdsdy
memorabléf the prefix sequence; d,d; is exactly the same as either of the sequences
dsdsds or dsdsd7 or possibly both. Assuming that eadhcan be any of the ten decimal
digits 0,1,2,...,9, find the number of different memorable telephone numbers.

495 Problem  Three-digit numbers are made using the digits3,7,8,9}.
O How many of these integers are there?
O How many are even?
O How many are palindromes?
m|

How many are divisible by 3?

496 Problem (AHSME 1989) Five people are sitting at a round table. lfet 0 be the
number of people sitting next to at least one female, anchlet0 be the number of
people sitting next to at least one male. Find the number sdipte ordered pairs
(f,m).

497 Problem How many integers less than 10000 can be made with the eigits di

ur
498 Problem (ARML 1999)  In how many ways can one arrange the numbers
21,31,41,51 61,71, and 81 such that the sum of every four consecutive nunigers
divisible by 3?

499 Problem Let Sbe the set of all natural numbers whose digits are chosentfiem
set{1,3,5,7} such that no digits are repeated. Find the sum of the elernéfts

500 Problem  Find the number of ways to choose a pfrb} of distinct numbers from
the set{1,2,...,50} such that

O |a—b|=5
0O |a—b|<5.

501 Problem (AIME 1994)  Given a positive integen, let p(n) be the product of the
non-zero digits of.. (If n has only one digit, thep(n) is equal to that digit.) Let

S=p(1) +p(2) +---+p(999).
FindS
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5.4 Permutations without Repetitions

502 Definition We define the symbadl(factorial), as follows: 0= 1, and for integen > 1,

n=1.2.3.--n.
n! is readn factorial.
503 Example We have
1 = 1,
2l = 1.2=2,
3l = 1.2.3=6,
4 = 1.2-3-4=24
5l = 1.2.3-4.5=120
504 Example We have
7! 7-6-5-4
al - a2l
n+2)! n+2)(n+1)n!
(2t _ (r2nFnt_ o)),
n! n!
(n—2) (n—2)! B 1
(n+1)!  (n+1)(n)(n—=1)(n—=2)! (n+1)(n)(n—1)

505 Definition LetXxs,Xp, ..., Xy ben distinct objects. Apermutatiornof these objects is simply a rearrangement of them.

506 Example There are 24 permutations of the letterdAT H, namely

MATH MAHT MTAH MTHA MHTA MHAT
AMTH AMHT ATMH ATHM AHTM AHMT
TAMH TAHM TMAH TMHA THMA THAM

HATM HAMT HTAM HTMA HMTA HMAT

507 Theorem Letxy,Xs,...,%, bendistinct objects. Then there anépermutations of them.

Proof: The first position can be chosen in n ways, the second object ihways, the third in r- 2, etc. This
gives
n(n—1)(n—2)---2-1=nl.

O

508 Example The number of permutations of the letters of the wREIT ICULAis 8/ = 40320.
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509 Example A bookshelf contains 5 German books, 7 Spanish books and®Fteooks. Each book is different from one

another.

O How many different arrangements can be done of th
books?

O How many different arrangements can be done of th
books if books of each language must be next to ea

Ch

other?

Solution:

O We are permuting § 7+ 8= 20 objects. Thus the
number of arrangements sought is
20! =2432902008176640000.

“Glue” the books by language, this will assure that
books of the same language are together. We perm
the 3 languages in!3vays. We permute the German
books in 3 ways, the Spanish books ihways and the
French books in Bwvays. Hence the total number of
ways is 35!7!8! = 146313216000.

Putting these §5- 7= 12 books creates 121 =13

spaces (we count the space before the first book, the

spaces between books and the space after the last

book). To assure that all the French books are next ¢
other, we “glue” them together and put them in one ¢
these spaces. Now, the French books can be permd

Align the German books and the Spanish books firs{.

ite

pach
f
ted

in 8! ways and the non-French books can be permuted

Homework

510 Problem How many changes can be rung with a peal of five bells?

511 Problem A bookshelf contains 3 Russian novels, 4 German novels, @ph&ish
novels. In how many ways may we align them if

O there are no constraints as to grouping?

O all the Spanish novels must be together?

O no two Spanish novels are next to one another?

512 Problem How many permutations of the wotMPURE are there? How many

permutations start witR and end inU? How many permutations are there if tRand

the U must always be together in the ord®d? How many permutations are there in
which no two vowels|( U, E) are adjacent?

513 Problem How many arrangements can be made of out of the letters of thet w
DRAUGHT, the vowels never separated?

514 Problem (AIME 1991) Given a rational number, write it as a fraction in lowest
terms and calculate the product of the resulting numeratdid@nominator. For how

legs.
that,

many rational numbers between 0 and 1 will B@ the resulting product?

ese [

517 Problem

ese 0 How many different arrangements can be done of these

books if all the French books must be next to each
other?

How many different arrangements can be done of these
books if no two French books must be next to each
other?

in 12! ways. Thus the total number of permutations is

(13)8!12! = 251073478656000

Align the German books and the Spanish books first.
Putting these § 7= 12 books creates 121 =13
spaces (we count the space before the first book, the
spaces between books and the space after the last
book). To assure that no two French books are next to
each other, we put them into these spaces. The first
French book can be put into any of 13 spaces, the
second into any of 12, etc., the eighth French book can
be put into any 6 spaces. Now, the non-French books
can be permuted in 12%vays. Thus the total number of
permutations is

(13)(12)(11)(10)(9)(8)(7)(6)12,

which is 24856274386944000

515 Problem (AMC12 2001) A spider has one sock and one shoe for each of its eight

In how many different orders can the spider put on itksand shoes, assuming
on each leg, the sock must be put on before the shoe?

516 Problem How many trailing 0’s are there when 1006 multiplied out?

In how many ways can 8 people be seated in a row if

O there are no constraints as to their seating arrangement?

personsX andY must sit next to one another?

there are 4 women and 4 men and no 2 men or 2 women can sit n@dho e
other?

there are 4 married couples and each couple must sit toether

there are 4 men and they must sit next to each other?
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5.5 Permutations with Repetitions
We now consider permutations with repeated objects.
518 Example In how many ways may the letters of the word
MASSACHUSETTS
be permuted?
Solution: We put subscripts on the repeats forming
MA;S . SACHUSET TLS,.

There are now 13 distinguishable objects, which can be pedrin 13 different ways by Theorem 507. For each of thesk 13
permutationsA; A, can be permuted in! 2vays,S$$S3S, can be permuted inl4vays, andl; T, can be permuted inl 2vays.
Thus the over count 13s corrected by the total actual count

13!

a2 = 64864800

A reasoning analogous to the one of example 518, we may prove

519 Theorem Let there bek types of objectsn; of type 1;n;, of type 2; etc. Then the number of ways in which these
Ny + N+ - - -+ ng objects can be rearranged is

(N +na+---+n)!
nlngl---m!

520 Example In how many ways may we permute the letters of the wdASSACHU SETTi8 such a way thatMASSis
always together, in this order?

Solution: The particldMASScan be considered as one block and the 9 lege€&s H, U, S E, T, T,S InA/C,H,U,S E, T,
T, Sthere are fouSs and twoT’s and so the total number of permutations sought is

10!

521 Example In how many ways may we write the number 9 as the sum of threé\ygositeger summands? Here order
counts, so, for example, 47+ 1is to be regarded different from71+ 1.

Solution: We first look for answers with

at+b+c=91<a<b<c<7
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and we find the permutations of each triplet. We have

(a,b,c) | Number of permutations
3!
(1,2,6) | 3! =6
(1,3,5) | 3 =6
3!
(1,4,4) o = 3
3!
(2,3,4) | 31 =6
3!
(3,3,3) 3= 1

Thus the number desired is
3+6+6+3+3+6+1=28

522 Example In how many ways can the letters of the wdMURMUR be arranged without letting two letters which are
alike come together?

Solution: If we started with, sayMU then theR could be arranged as follows:

M|U|R R )
M|U|R R |
M| U R R |

In the first case there are 2 2 of putting the remaininyl andU, in the second there aré 2 2 and in the third there is only
1!. Thus starting the word witMU gives 2+ 2+ 1 =15 possible arrangements. In the general case, we can clmofest
letter of the word in 3 ways, and the second in 2 ways. Thus timeber of ways sought is-2-5= 30.

523 Example In how many ways can the letters of the wgkBFECTION be arranged, keeping the vowels in their natural
order and not letting the twB’s come together?

_ 9! . . .
Solution: There areé—' ways of permuting the letters &FFECTION . The 4 vowels can be permuted ihwlays, and in only

|
one of these will they be in their natural order. Thus theet-:Lz%j ways of permuting the letters @fFFFECTION in which
their vowels keep their natural order. o

Now, put the 7 letters dAFFECTION which are not the twé’s. This creates 8 spaces in between them where we put the

. . 8.7
two F’s. This means that there are B permutations oAFFECTION that keep the twé's together. Hence there aFe4'—
permutations oAFFECTION where the vowels occur in their natural order. '

In conclusion, the number of permutations sought is

9! 8~7!78!(9 1>78~7-6~5-4! 7

9 _S (2 L _5880
241 4 a\2 4 2
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524 Example How many arrangements of five letters can be made of thedaifeahe wordPALLMALL ?

Solution: We consider the following cases:

: . _ 3-5!
O there are fouk’'s and a different letter. The different letter can be chdsehways, so there are4'— =15
permutations in this case. '

5! . o
O there are threk’s and twoA’s. There areﬁ =10 permutations in this case.

O there are threk’s and two different letters. The different letters can besdn in 3 ways ( eithdé? andA; or P andM;
3-5! . s
or A andM), so there ares—' = 60 permutations in this case.

O there are twd.’s, two A’s and a different letter from these two. The different letten be chosen in 2 ways. There are
2.5! . s
S0 = 60 permutations in this case.

. . . 1.5
O there are twd.’s and three different letters. The different letters camhesen in 1 way. There aFeZI— =60
permutations in this case. '

O thereis ond.. This forces having twé\’s and two other different letters. The different letters t& chosen in 1 way.
1.5 . o
There areT = 60 permutations in this case.

The total number of permutations is thus seen to be

15410+ 60460460+ 60= 265

Homework

525 Problem  In how many ways may one permute the letters of the word O How many are there if there are no constraints on the order?
MEPHISTOPHELES ?
O How many are there if the orange flag must always be first?

526 Problem How many arrangements of four letters can be made out of treedeof O How many are there if there must be a white flag at the begirambanother
KAFFEEKANNE without letting the thre&’s come together? white flag at the end?
527 Problem How many numbers can be formed with the digits 529 Problem  In how many ways may we write the number 10 as the sum of three

positive integer summands? Here order counts, so, for elearhyp 8+ 1 is to be

1234321 regarded different from 8 1+ 1.

so that the odd digits occupy the odd places? 530 Problem  Three distinguishable dice are thrown. In how many ways key tand
and give a sum of 9?

528 Problem  In this problem you will determine how many different sigsnaach
consisting of 10 flags hung in a line, can be made from a set dfitevilags, 3 red flags] 531 Problem In how many ways can 15 different recruits be divided int@éhequal
2 blue flags, and 1 orange flag, if flags of the same colour areia. groups? In how many ways can they be drafted into three diffelegiments?

5.6 Combinations without Repetitions

o . n
532 Definition Let n,k be non-negative integers with<0k < n. The symbol(k

> (read 'h choose X is defined and denoted
by

n\ n! ~n-(n=1)-(n—2)---(n—k+1)
<k>_k!(nk)!_ 1.2.3--k
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|:| Observe that in the last fraction, there are k factors in bibth numerator and denominator. Also, observe

the boundary conditions
m_ (M _, m_(n\_,
o) \n/ 7 \1) \n-1)

533 Example We have

(121 = %):55,
(7) - Sasses
(138) ~ 110

110
( ; ) -1
|:| Since n- (n—k) =k, we have for integer, ik, 0 < k < n, the symmetry identity

n\ n! _ n! _ n
(k) ~ K(n—=Kk)!  (n—=K!(n—(n—=Kk))! <n—k> '

This can be interpreted as follows: if there are n differéckets in a hat, choosing k of them out of the hat is the
same as choosing-ak of them to remain in the hat.

11 11
= =55
(s)-(2) ==
12 12
= =792
(5)-(7)
535 Definition Let there ben distinguishable objects. Acombinationis a selection ok, (0 < k < n) objects from then
made without regards to order.

534 Example

536 Example The 2-combinations from the li§X,Y,Z W} are
XY, XZ,XW,Y ZYWW Z

537 Example The 3-combinations from the li§X,Y,Z W} are
XYZXYWXZW.YWZ

538 Theorem Let there ben distinguishable objects, and letO < k < n. Then the numbers &tcombinations of these
n
bjects i .
objects |s<k>

Proof: Pick any of the k objects. They can be ordered(im-A1)(n—2)---(n—k+ 1), since there are n ways of
choosing thdirst, n— 1 ways of choosing theecondetc. This particular choice of k objects can be permuted in
k! ways. Hence the total number of k-combinations is

nin—1)(n—2)---(n—k+1) /n
- (1)
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O

539 Example From a group of 10 people, we may choose a committee of@%) =210 ways.

540 Example In a group of 2 camels, 3 goats, and 10 sheep in how many way®ngghoose 6 animals if

O there are no constraints in species? O there must be at most 2 sheep?

O the two camels must be included?
O Joe Camel, Billy Goat and Samuel Sheep hate each

2
1 the two camels must be excluded? other and they will not work in the same group. How

O there must be at least 3 sheep? many compatible committees are there?
Solution:
O There are 2-3+ 10= 15 animals and we must chooge which simplifies to 4770.
6, wh 15) _ 5005
» whence 6/ O First observe that there cannot be 0 sheep, since that

would mean choosing 6 other animals. Hence, there

0 Since the 2 camels are included, we must choose must be either 1 or 2 sheep, and so 3 or 4 of the other

6—2 =4 more animals from a list of 152=13

13 animals. The total number is thus
animals, s =715
4 10\ /5 10\ /5
+ =235
O Since the 2 camels must be excluded, we must chodse 6 2)\4 1/\5
. . 13
animals from a list of 15-2 =13, SO( 6> =1716 O A compatible group will either exclude all these three

] animals or include exactly one of them. This can be
O If k sheep are chosen from the 10 sheep k@animals done in

must be chosen from the remaining 5 animals, hence <12> (3) <12

= 3300
10\ (5) , (10) (5) , (10) (5)  (10) (5 6 15)
3/\3 4 )\2 5/\1 6/\0/’ ways.
541 Example To count the number of shortest routes frérto B in figure 5.8 observe that any shortest path must consist of 6
horizontal moves and 3 vertical ones for a total af 8= 9 moves. Of these 9 moves once we choose the 6 horizontallomes t

. . 9
3 vertical ones are determined. Thus there(’:\éé = 84 paths.

542 Example To count the number of shortest routes frérto B in figure 5.9 that pass through poidtwe count the number
of paths fromA to O (of which there are(i) = 20) and the number of paths frotto B (of which there are(é) =4). Thus

the desired number of paths@) (g) = (20)(4) = 80.

543 Example Consider the set of 5-digit positive integers written inidea notation.




withouta 9

B B
O
84 14266 Lhapter 5
A A
withouta 7 withoutan 8
Figure 5.8: Example 541. Figure 5.9: Example 542. Figure 5.10: Example 543.
1. How many are there? 7. How many have exactly four 9's?
2. How many do not have a 9 in their decimal 8. How many have exactly five 9's?
representation?
) ) ) 9. How many have neither an 8 nor a 9 in their decimal
3. How many have at least one 9 in their decimal representation?
representation?
4. How many have exactly one 92 10. How many have neither a 7, nor an 8, nor a 9 in their
- how y have exactly ’ decimal representation?
5. How many have exactly two 9's? . . . .
4 y 11. How many have either a 7, an 8, or a 9 in their decimal
6. How many have exactly three 9's? representation?
Solution:

1. There are 9 possible choices for the first digit and 1(
possible choices for the remaining digits. The numb
of choices is thus 910* = 90000.

. There are 8 possible choices for the first digit and 9
possible choices for the remaining digits. The numb
of choices is thus 89* = 52488.

. The difference 90000 52488= 37512

. We condition on the first digit. If the first digitisa 9
then the other four remaining digits must be differen
from 9, giving ¢ = 6561 such numbers. If the first
digitis not a 9, then there are 8 choices for this first

digit. Also, we have(i) =4 ways of choosing were

the 9 will be, and we have®avays of filling the 3
remaining spots. Thus in this case there are
8-4-9° = 23328 such numbers. In total there are
6561+ 23328= 29889 five-digit positive integers with
exactly one 9 in their decimal representation.

. We condition on the first digit. If the first digitisa 9

then one of the remaining four must be a 9, and the
. . 4
choice of place can be accomplishe IT) =4 ways.

The other three remaining digits must be different frq
9, giving 4-9° = 2916 such numbers. If the first digit
not a 9, then there are 8 choices for this first digit. Al

we have(i) = 6 ways of choosing were the two 9's

will be, and we have®ways of filling the two

remaining spots. Thus in this case there are
8.6-9%2 = 3888 such numbers. Altogether there are
2916+ 3888= 6804 five-digit positive integers with
exactly two 9's in their decimal representation.

. Again we condition on the first digit. If the first digit is

a 9 then two of the remaining four must be 9's, and the
: . 4
choice of place can be accomplishe IE =6 ways.

The other two remaining digits must be different from
9, giving 6- 9% = 486 such numbers. If the first digit is
not a 9, then there are 8 choices for this first digit. Also,

we have = 4 ways of choosing were the three 9's

y
will be, and we have 9 ways of filling the remaining
spot. Thus in this case there ared89 = 288 such
numbers. Altogether there are 48@88= 774

five-digit positive integers with exactly three 9's in their
decimal representation.

. If the first digit is a 9 then three of the remaining four

must be 9's, and the choice of place can be

accomplished i =4 ways. The other remaining

digit must be different from 9, giving 0 = 36 such
numbers. If the first digit is not a 9, then there are 8

choices for this first digit. Also, we ha =4

ways of choosing were the four 9’s will be, thus filling
all the spots. Thus in this case there ard 8 8 such
numbers. Altogether there are 3@ = 44 five-digit
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positive integers with exactly three 9's in their decim
representation.

8. There is obviously only 1 such positive integer.

|:| Observe that
37512= 29889+ 6804+ 774+ 44+ 1.

85
2l the remaining 4 digits, giving B* = 28672 such
integers.

10. We have 6 choices for the first digit and 7 choices for
the remaining 4 digits, giving 67* = 14406 such
integers.

11. We use inclusion-exclusion. From figure 5.10, the

numbers inside the circles add up to 85854. Thus the

9. We have 7 choices for the first digit and 8 choices fg

Homework

544 Problem  Verify the following.

O (20) = 1140

3

@ (D)(5) e
(n"2)
0 ()"
© ()6 ()=
= () () ()-2-()

545 Problem A publisher proposes to issue a set of dictionaries to tea@$tom any
one language to any other. If he confines his system to teméaygs, how many
dictionaries must be published?

546 Problem From a group of 12 people—7 of which are men and 5 women—in h Wz’

many ways may choose a committee of 4 with 1 man and 3 women?

547 Problem N friends meet and shake hands with one another. How many
handshakes?

548 Problem How many 4-letter words can be made by taking 4 letters of twelw
RETICULA and permuting them?

549 Problem (AHSME 1989) Mr. and Mrs. Zeta want to name baby Zeta so that its
monogram (first, middle and last initials) will be in alphébal order with no letters
repeated. How many such monograms are possible?

550 Problem  In how many ways cafl,2, 3,4} be written as the union of two
non-empty, disjoint subsets?

551 Problem How many lists of 3 elements taken from the §&12,3,4,5,6} list the
elements in increasing order?

552 Problem How many times is the digit 3 listed in the numbers 1 to 1000?

desired number is 9000085854= 4146

554 Problem How many subsets of the s, b, c,d, e} have an odd number of
elements?

555 Problem (AHSME 1994)  Nine chairs in a row are to be occupied by six students
and Professors Alpha, Beta and Gamma. These three professioe before the six
students and decide to choose their chairs so that eactspoofeill be between two
students. In how many ways can Professors Alpha, Beta andr@arhoose their
chairs?

556 Problem  There areE (different) English novels: (different) French novelss
(different) Spanish novels, anddifferent) Italian novels on a shelf. How many
different permutations are there if

O if there are no restrictions?
O if all books of the same language must be together?

O if all the Spanish novels must be together?

O if no two Spanish novels are adjacent?

O if all the Spanish novels must be together, and all the Engits/els must be
together, but no Spanish novel is next to an English novel?

557 Problem How many committees of seven with a given chairman can beteele
from twenty people?

58 Problem How many committees of seven with a given chairman and a given
secretary can be selected from twenty people? Assume tireneimeand the secretary
are different persons.

559 Problem (AHSME 1990) How many of the numbers
100,101 ...,999

have three different digits in increasing order or in desirggorder?

560 Problem There are twenty students in a class. In how many ways camtey
students take five different tests if four of the students@atake each test?

561 Problem In how many ways can a deck of playing cards be arranged if no tw
hearts are adjacent?

562 Problem Given a positive integen, find the number of quadruplds, b,c,d,)
suchthatdka<b<c<d<n.

563 Problem There areT books on Theology. books on Law andlV books on
Witchcraft on Dr. Faustus’ shelf. In how many ways may oneeottie books

O there are no constraints in their order?

O all books of a subject must be together?

553 Problem How many subsets of the sfd, b, c,d, e} have exactly 3 elements?

O no two books on Witchcraft are juxtaposed?
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O all the books on Witchcraft must be together?

564 Problem  From a group of 20 students, in how many ways may a professmrseh
at least one in order to work on a project?

565 Problem From a group of 20 students, in how many ways may a professmseh
an even number number of them, but at least four in order t& wora project?

566 Problem How many permutations of the word
CHICHICUILOTE
are there
0O if there are no restrictions?
if the word must start in ahand end also in at?
if the word must start in ahand end in &?
if the two H’s are adjacent?

if the two H’s are not adjacent?

o o o o O

if the particleLOTE must appear, with the letters in this order?
567 Problem There areM men andV women in a group. A committee &f people
will be chosen. In how many ways may one do this if

O there are no constraints on the sex of the committee members?

O there must be exactly women?

O A committee must always include George and Barbara?

O A committee must always exclude George and Barbara?
Assume George and Barbara form part of the original set gbleeo
568 Problem There areM men andV women in a group. A committee &f people
will be chosen. In how many ways may one do this if George amb&a are feuding

and will not work together in a committee? Assume George aatb&a form part of
the original set of people.

569 Problem  Out of 30 consecutive integers, in how many ways can threeleeted
so that their sum be even?

570 Problem  In how many ways may we choose three distinct integers from
{1,2,...,100} so that one of them is the average of the other two?

571 Problem How many vectorgas,ap,...,ax) with integral

& €{1,2...,n}

are there satisfying

572 Problem A square chessboard has 16 squares (4 rows and 4 columnspu@né
checkers in such a way that only one checker can be put in aesdDatermine the
number of ways of putting these checkers if

O there must be exactly one checker per row and column.

O there must be exactly one column without a checker.

O there must be at least one column without a checker.
573 Problem A box contains 4 red, 5 white, 6 blue, and 7 magenta balls. immany

of all possible samples of size 5, chosen without replacémetevery colour be
represented?

574 Problem  In how many ways can eight students be divided into four
indistinguishable teams of two each?

575 Problem How many ways can three boys share fifteen different sizedsiethe
youngest gets seven pears and the other two boys get fourtask in which the digit
1 occurs or those in which it does not occur?

576 Problem  Four writers must write a book containing seventeen chapiére first
and third writers must each write five chapters, the secorst mrite four chapters, and
the fourth must write three chapters. How many ways can tlo& be divided between
the authors? What if the first and third had to write ten chaptembined, but it did not
matter which of them wrote how many (i.e. the first could wiée and the third none,
the first could write none and the third one, etc.)?

577 Problem  In how many ways can a woman choose three lovers or more freemse
eligible suitors? may be opened by depressing—in any ortlee-orrect five buttons.
Suppose that these locks are redesigned so that sets of gsmaime buttons or as few
as one button could serve as combinations. How many additemmbinations would
this allow?

O how many straight lines are determined?
O how many straight lines pass through a particular point?
O how many triangles are determined?

O how many triangles have a particular point as a vertex?

578 Problem  In how many ways can you pack twelve books into four parceds&
parcel has one book, another has five books, and another bd®otks, and another has
four books?

579 Problem In how many ways can a person invite three of his six friendarich
every day for twenty days if he has the option of inviting theng or different friends
from previous days?

580 Problem A committee is to be chosen from a set of nine women and five men.
How many ways are there to form the committee if the commiteethree men and
three women?

581 Problem At a dance there afeboys andj girls. In how many ways can they form
c couples consisting of different sexes?

582 Problem  From three Russians, four Americans, and two Spaniards nemy
selections of people can be made, taking at least one of éad® k

583 Problem The positive integer satisfies

1 1 11

€ () o)

Findr.

28 24 )
584 Problem If 11 (Zr) = 225(2r B 4) ,findr.

585 Problem Compute the number of ten-digit numbers which contain dméydigits
1,2, and 3 with the digit 2 appearing in each number exactlygwic

586 Problem ProvePascal’s Identity

()= (=) ()

forintegers I< k < n.
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587 Problem  Give a combinatorial interpretation dfewton’s Identity:

() () - ()=

(5.1)

foro<k<r<n.

588 Problem  Give a combinatorial proof that for integer> 1,

(M-

589 Problem  In each of the 6-digit numbers

333333225522118818707099

each digit in the number appears at least twice. Find the ruwftsuch 6-digit natural
numbers.

590 Problem In each of the 7-digit numbers

1001011555000038383837777777

each digit in the number appears at least thrice. Find thebeuf such 7-digit natural
numbers.

591 Problem (AIME 1983) The numbers 1447005 and 1231 have something in
common: each is a four-digit number beginning with 1 thatésectly two identical
digits. How many such numbers are there?

592 Problem If there are fifteen players on a baseball team, how many wayshe
coach choose nine players for the starting lineup if it dagsmatter which position the
players play (i.e., no distinction is made between playetayipg shortstop, left field,
or any other positions as long as he is on the field)? How marysg aee there if it does
matter which position the players play?

5.7 Combinations with Repetitions

593 Problem (AHSME 1989) A child has a set of 96 distinct blocks. Each block is one
of two materials glastic, wood, three sizesgmall, medium, large four colours blue,
green, red, yelloy and four shape<itcle, hexagon, square, triangleHow many

blocks in the set are different from thplastic medium red circlein exactly two ways?
(The “wood medium red squdrés such a block.)

594 Problem (AHSME 1989) Suppose that boys anch — k girls line up in a row. Let
Shbe the number of places in the row where a boy and a girl arelisigmext to each
other. For example, for the row

GBBGGGBGBGGGBGBGGBGG

with k = 7,n = 20 we haveS= 12. Shew that the average value®is &r:k)

595 Problem There are four different kinds of sweets at a sweets storant ¥ buy
up to four sweets (I'm not sure if | want none, one, two, tharefpur sweets) and |
refuse to buy more than one of any kind of sweet. How many wawpd do this?

596 Problem Suppose five people are in a lift. There are eight floors thelifthstops
at. How many distinct ways can the people exit the lift if eitbne or zero people exit at
each stop?

597 Problem If the natural numbers from 1 to 222222222 are written down in
succession, how many 0's are written?

598 Problem  In how many ways can we distribukedentical balls intan different
boxes so that each box contains at most one ball and no twecuotise boxes are
empty?

599 Problem In a row ofn seats in the doctor’s waiting-rookpatients sit down in a
particular order from left to right. They sit so that no twotbém are in adjacent seats.
In how many ways could a suitable setofeats be chosen?

600 Theorem (De Moivre) Letn be a positive integer. The number of positive integer sohsito

X1 +Xo4--

-+X =n

(770)

n=1+1+---4+1+1,
where there are n 1s and-nl +s. To decompose n in r summands we only need to cheeseluses from the

Proof: Write n as

n— 1, which proves the theorerl

601 Example In how many ways may we write the number 9 as the sum of threiév@ositeger summands? Here order
counts, so, for example, 47+ 1is to be regarded different from71+ 1.

Solution: Notice that this is example 521.

We are seekinggiral solutions to

a+b+c=9, a>0b>0,c>0.

By Theorem 600 this is

(3-1)-

§-=
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602 Example In how many ways can 100 be written as the sum of four posititeger summands?

Solution: We want the number of positive integer solutians t

a+b+c+d=100

<S;9> =156849

which by Theorem 600 is

603 Corollary Letn be a positive integer. The number of non-negative integetisos to

Yit+Y2+--+Yr=n

n+r—1
r—1 )

Proof: Putx —1=Yy;. Then x> 1. The equation
X1—1+X—1+--+%—1=n

is equivalent to
X1+Xo+ -+ X =N+T,

n+r—1
r—1

604 Example Find the number of quadrupléa, b, c,d) of integers satisfying

which from Theorem 600, has

solutions.O

a+b+c+d=100a>30b>21c>1d>1.

Solution: Puta’ + 29=a, b/ + 20= b. Then we want the number of positive integer solutions to
a+29+b+21+c+d=100

or
a+b'+c+d=50.

49
=18424
()

By Theorem 600 this number is

605 Example There are five people in a lift of a building having eight fladrshow many ways can they choose their floor

for exiting the lift?

Solution: Letx; be the number of people that floareceives. We are looking for non-negative solutions of tipga¢ion

X1+X+ - +xg=5.

Puttingy; = x + 1, then

X1+X+--+x=5 = (y1—1+(y2—1)+---+(yg—1)=5

= Y1+Y2+---+Yys=13
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whence the number sought is the number of positive solutmns

yityz2+---+yg=13

which is <172> =792

606 Example Find the number of quadruplés, b,c,d) of non-negative integers which satisfy the inequality

a+b+c+d<2001

Solution: The number of non-negative solutions to
a+b+c+d<2001

equals the number of solutions to
a+b+c+d+ f =2001

wheref is a non-negative integer. This number is the same as theenwhpositive integer solutions to

ai—1+b;—1+c—1+4dy—1+ f;—1=2001

which is easily seen to béZ(ZOS) .

607 Example

How many integral solutions to the equation
a+b+c+d=100

are there given the following constraints:

1<a<10,b>0,c>220<d <30

: , . 80 . .
Solution: We use Inclusion-Exclusion. There {rtg) = 82160 integral solutions to

a+b+c+d=100 a>1b>0,c>2d>20.

Let A be the set of solutions with
a>11b>0,c>2d>20

andB be the set of solutions with
a>1b>0,c>2d>3L

Then cardA) = <730> , card B) = <639> card ANB) = (539> and so
70 69 59
card AUB) = <3> + <3> — <3> =74625

a+b+c+d=100

The total number of solutions to

with
1<a<10,b>0,¢c>220<d<30

(- ()-(5)+ ()

is thus

Homework
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608 Problem How many positive integral solutions are there to

a+b+c=10?

609 Problem Three fair dice, one red, one white, and one blue are throwhow
many ways can they land so that their sum be 10 ?

610 Problem Adena has twenty indistinguishable pieces of sweet-mbatshe wants|
to divide amongst her five stepchildren. How many ways cardshée the sweet-meat:

611 Problem How many integral solutions are there to the equation
Xy +Xo+---+X00="n
subject to the constraints

X1 2> 1% >2,%3 > 3,...,X99 > 99,X100 > 1007

612 Problem (AIME 1998)  Find the number of ordered quadrupl¢gsb,c,d) of

so that each stepchild gets at least two pieces of sweetsmeat

5.8 The Binomial Theorem

We recall that the symbol
n!

(n—Kk)tk!’

n
k

(o

positive odd integers satisfyira-+ b+ c+d = 98.

nkeN,0<k<n,

counts the number of ways of selectikdifferent objects fronm different objects. Observe that we have the following

absorbtion identity:
n

(

;)
<

613 Example ProvePascal’s Identity

()

forintegers I< k <n.

Solution: We have

k

1)+ (

(

n—1
k—1/)"

n—1
k b

n—1 n—-1\ (n—1)! (n—1)!
<k1>+< k) = K DIn—K!  Kn—k—1)!
- (n—1)! 101
= (n—k—l)!(k—l)!(nfkjLE)
B (n—1)! n
= (—k—D!(k—1)! (n—KkKk
n!
~ h—Kk"

614 Example ProveNewton'’s ldentity

forintegersO< j <i<n.

Solution: We have
n'i!

_ ni(n—j)!

)Z in—i

M=

()

which is the same as

)b (n= =i — !

)

n— |
i |
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Using Pascal’s Identity we obtalPascal’s Triangle.

o

§ 0
0 0 0 (
50 0 0 0

When the numerical values are substituted, the triangle Ithaks like this.

7N\
N
N—

(5

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

We see from Pascal’s Triangle that binomial coefficientssgrametric. This symmetry is easily justified by the identity

<E> = (nn k) . We also notice that the binomial coefficients tend to inseaantil they reach the middle, and that they

decrease symmetrically. That is, t6§> satisfy

(8) - (D =S <[n/2r]]_1) - ([n?Z]) g ([n/2?+ 1) g ([n/zq +2> T (nil) g <:)

if nis even, and that

<g> = (D s ([n/2?1> - ([,32]) - ([n/2?+1> g ([n/2?+2> g ([n/zq +3> m (nn1> g <:>

for oddn. We call this property thenimodalityof the binomial coefficients. For example, without finding #xact numerical

values we can see th t200 < 200 and that 200\ _ (200 < 200
17 69 131/ = \ 69 99 /"

We now present some examples on the use of binomial coefficien

615 Example TheCatalan number of order is defined as

1 /2n
Cn= n+1 < n ) '
Prove thatC, is an integer for all natural numbens

Solution: Observe that

the difference of two integers.
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616 Example (Putnam 1972) Shew that no four consecutive binomial coefficients

(o) (7)) (T2 (o)

(n,r positive integers and+ 3 < n) are in arithmetic progression.

Solution: Assume that = n ,at+d= : ,a+2d= : ,a+3d= n . This yields
r r+1 r+2 r+3

2, 1)=(7) +(12)

r<1 n—-r—-1
“hor T T2 ().
This is a quadratic equation m havingr as one of its roots. The condition that the binomial coeffitdeare in arithmetic
progression means thiat- 1 is also a root ofx). Replacing by n—r — 2 we also obtain

or equivalently
2

n—r—1+r+1
r+2 n—r’

which is the same as). This means that—r —3 andn—r — 2 are also roots df«). Since a quadratic equation can only have
two roots, we must have= n—r — 3. The four binomial coefficients must then be

2r+3 2r+3 2r+3 2r+3
rJ7\r+1) \r+2) \r+3)/"
But these cannot be in an arithmetic progression, sincatisaoefficients are unimodal and symmetric.

. . n -
617 Example LetN(a) denote the number of solutions to the equatiea <k> for nonnegative integers k. For example,

N(1) =,N(3) = N(5) =2,N(6) = 3, etc. Prove thaN(a) < 2+ 2log,a.

Solution: Letb be the first time tha(zbb> > a. By the unimodality of the binomial coef‘ficienté,I T J) = <| T J) is

monotonically increasing inandj. Hence

b+i+b+j b+b+ ] 2b
> >
(i) =072 (6)
=aimpliesi < b, or j < b. Also, for each fixed value af(or j), (I Jlr J) =ahas at most one

2(b—1) b1
az( b1 > 227,

it follows thatb < log,a+ 1, and the statement is proven.
We now use Pascal’s Triangle in order to expand the binomial

foralli,j > 0. Hence hjLJ

solution. It follows thaitN(a) < 2b. Since

(a+b)".

TheBinomial Theorenstates that fon € Z,n > 0,
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As a way of proving this, we observe that expanding

(1+x)(1+x)---(14x)

~ v

~-
n factors

consists of adding up all the terms obtained from multiplyéither a 1 or & from the first set of parentheses times either a 1
or anx from the second set of parentheses etc. Todjet must be chosen from exactyof the sets of parentheses. Thus the

. /n
number ofx* terms |s<k> . It follows that

(1+x)"= <8> + <:>x+ <2>x2+---+ <2>x“ = 2 (E)xk.

618 Example Prove that

(-
k=0 K

Solution: This follows from lettingc = 1 in the expansion
619 Example Prove that for integem > 1,

Solution: Recall that by Newton'’s Identity

Thus

But upon re-indexing

n . n—i .
S-S0
A i—o\

by the preceding problem. Thus the assertion follows.
620 Example Prove that

50070

k<n
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Solution: Using Pascal’s Identity
" /k4+m 0+m 1+m 2+m 3+m
> k) = 1) 2 )T 3
k=0
n— 1+m n+m
¥ )

.
<% ); (e
- (79

):

N——

fii‘?n (3
o :
e
- (3

_ <n+l:+1>’

621 Example Find a closed formula for

N———

n
+..
3+
2

which is what we wanted.

Solution: Using Newton’s Identity,

Re-indexing,

by the preceding problem. Thus

622 Example Simplify

Z <100>
0<k<50 2K
Solution: By the Binomial Theorem
100 100 100 100 100
100 _
(1+1) = o )t UL ) S ) T+ ee ) T 100
(1-1)100 _ 100\ (100 n 100 o 100 n 100

0 1 2 99 100/’
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100 100 100
100 _
20 2(1%) 12(%) +..2(%)

Dividing by 2, the required sum is thus%

whence summing both columns

623 Example Simplify

Solution: We know that

and

The desired sum is the difference of these two vald8%-22% — 2%

624 Example Simplify
10
> o2 (11>.
k=1 K

11

11
Solution: By the Binomial Theorem, the complete s@ ( K > 2% =3 The required sum lacks the zeroth term,
k=0

11 11 . . .
< 0 > 20 = 1, and the eleventh tern(,n) 211 from this complete sum. The required sum is thifs-3211 — 1.

625 Example Which coefficient of the expansion of

has the greatest magnitude?

Solution: By the Binomial Theorem,

10

10 10
(102 (-

k=0 k=0

We consider the ratiogkak—, k=1,2,...n. This ratio is seen to be
—1

ac  2(10—k+1)
a1 K '

Thiswillbe< 1ifk<22/3<8 Thusag<a < a < ...<ay. If k> 22/3, the ratio above will be 1. Thus
ay > ag > ag > ajo. The largestterm is that &f= 7, i.e. the eighth term.

626 Example At what positive integral value ofis thex* term in the expansion d2x+ 9)*° greater than the adjacent terms?
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Solution: We want to find integradsuch that

<1°> (20%(9)° > (10) (20%(9)",

4 3
and
() @ater= (g 2xPior
After simplifying the factorials, the two inequalities gght are
x> 18/7
and
15/4 > x.

The only integrak that satisfies this is = 3.

627 Example Prove that for integem > 1,

Solution: Using the absorption identity

we obtain the result once again.

628 Example Find a closed formula for

Solution: Using the absorption identity

n n
1 (n\ 1 n+1\ 1 1
§k+1<k>_n+1§<k+1>_n+1(2 1.

629 Example Prove that if m, n are nonnegative integers then

(mi) =2 ()

k=m
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Solution: Using Pascal’s Identity

630 Example Find a closed form for

>

*

oo+
—~ —

53 S

"

> k(k+1).

k<n
Solution: Let
S=> klk+1).
k<n
Then

S/zzZZM:ZC‘;l).

2!

k<n
By the preceding problem
k<n

We gather tha — 2<”J§Z> — n(n+1)(n+2)/3.
Practice

631 Problem Prove that

Z (2kn+ 1) =2

0<k<n/2

632 Problem Expand

(L4 VR P4 2 (1 VR

NI =

633 Problem  Four writers must write a book containing seventeen chapiére first
and third writers must each write five chapters, the secorst muite four chapters, and
the fourth writer must write three chapters. How many waystba book be written?
What if the first and third writers had to write ten chaptermbined, but it did not
matter which of them wrote how many (e.g., the first could evién and the third none,
the first could write none and the third one, etc.)?

634 Problem Prove that
m in i1
n+m
1= .
>3

in=lijn_1=1 k=1

635 Problem  The expansion ofx + 2y)?° contains two terms with the same

coefficient Kx2y? andKx2*1y?—2, Find a.

636 Problem Prove that fon € N,n > 1 the identity
n
n
—1)*%(, ) =0
> ()
k=1

holds true.

637 Problem If nis an even natural number, shew that

1 1

Tin—1)! ' 3(n—3)!
1 1

Temosn T T oo

638 Problem Find a closed formula for

> (M

0<k<n
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639 Problem What is the exact numerical value of
n—1 n n+1
stk(lio)? k—1/)\k+1 k

e

640 Problem  Find a closed formula for
651 Problem (AIME 1991) In the expansion

n
Zkz— k.
1000
k=1 (1+0.2)1000_ Z (1?(00) (0.2)%,

k=0
641 Problem Find a closed formula for

m—k—1
E >0.
k(n—k—l) m>n>0

0<k<n 652 Problem (Putnam 1971)  Shew that for O< € < 1 the expression

which one of the 1001 terms is the largest?

_ ) (X+Y)"0¢ — (2—£)xy+y?)
642 Problem What is the exact numerical value of

K is a polynomial with positive coefficients for integrabufficiently large. Foe = .002
S (100) ? find the smallest admissible value rof

k+1\ k

k<100

653 Problem  Prove that for integen > 1,

643 Problem  Findn if (140) + (130) = (Z) n n
Zk3 (k) —n?(n+3)2" 3.
k=1

644 Problem  If

1997 1997 1997 1997 654 Problem Expand and simplify
+ + +-+ =22
1 3 5
(/1= 4+1)7—(4/1—x—1)".

1991)
finda.
655 Problem  Simplify

645 Problem  True or False:(zo) = (20)

v D+ Q@2

646 Problem True or False:

40 48 1 49 656 Problem  Simplify
9/ 10/
15_15+15_15+15_15
1 2 3 4 13 14
647 Problem What is the coefficient at?*y?* in the expansion
(23 +3y?)2% 657 Problem What is the exact numerical value of
1994
. - 127 . 1 (1994
648 Problem What is the coefficient o™y’ in the expansion E (—1) K ?
k=0

(x%/2 4 y) 152

658 Problem  True or False:
649 Problem What is the coefficient at*y® in

(xv2-y)*? (j) + (2) ot (129) > (12) + (12) ot (1;’69).

650 Problem  Shew that the binomial coefficients satisfy the followingdgonal 659 Problem (AIME 1992) In which row of Pascal’s triangle (we start with zeroth row,
property: first row ,etc.) do three consecutive entries occur thatratlee ratio 3 4: 57




Multinomial Theorem 99

5.9 Multinomial Theorem

If n,ny, Ny, ..., Nk are nonnegative integers and- ny +ny + - - - N we put

< n > B n!
Ny, No--- N n!ng!---ni!”

Using the De-Polignac Legendre Theorem, it is easy to sedhisequantity is an integer. Proceeding in the same way we
proved the Binomial Theorem, we may establishithdtinomial Theorem:

Nk

ng N
(X1 X+ +x)" = Z X1 X7 X
np+np+--+ne=n
ni,ny,...,nk>0

We give a few examples on the use of the Multinomial Theorem.

660 Example Determine the coefficient ofy*z® in

(x+2y+2)®

Solution: By the Multinomial Theorem

8 8 ny no N3
(x+2y+2°= > <n1’n2’n3 X" (2y)"22%.

np,np,N3>0
ny+na+n3=8

This requiresy, = 2,np = 3,n3 = 3. The coefficient sought is then”é2 g 3> :

661 Example In (1+x°+x%)%3, find the coefficient ok?>.

Solution: By the Multinomial Theorem

Z < 23 >X5n2+9n3_
Ng,N2,N3

ny,np,n3>0
Ny +np+n3=23

. - . 23
Since %, + 9n3 = 23 andng + Nz 4+ N3 = 23, we must hava; = 20,n; = 1, n3 = 2. The coefficient sought is th<s20 1 2) .

662 Example How many different terms are there in the expansion of

(X+y+z+w+s+1)%%

Solution: There as many terms as nonnegative integralisnkiof

Ny +ng+---+ng=20.

But we know that there aré255> of these.

Practice
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663 Problem How many terms are in the expansion+ y + z) 665 Problem  Find the coefficient 0k?y®Z in the expansion of

664 Problem  Find the coefficient ok in the expansion of
(1+3x+2¢)10 (x+y-+2)1%




Chapter

Equations

6.1 Equations in One Variable

Let us start with the following example.
666 Example Solve the equation"? = sinx®.
Solution: Clearlyx = 0 is not a solution. Since’2> 1 fory > 0, the equation does not have a solution.

667 Example Solve the equatiofx— 3| ~8¢15)/(x-2) 1

Solution: We want either the exponent to be zero, or the lmabe .. We cannot have, howeve? a5 this is undefined. So,
|x—3| =1 impliesx =4 orx = 2. We discardk = 2 as the exponent is undefined at this value. For the exporentamt
X2 —8x+15=0 orx =5 orx = 3. We cannot have = 3 since this would give® So the only solutions are= 4 andx = 5.

668 Example What would be the appropriate valuexiff

made sense?

Solution: Since*” =2, we have? =2 (the chain is infinite, so cutting it at one step does not ghdhe value). Since we
want a positive value we must haxe= /2.

669 Example Solve 9+x % =10x"2.

Solution: Observe that
X 410K 2+9=(x2-9)(x 2—1).

1
Thenx = ié andx = 41.

670 Example Solve ¥—3*1_4—0.

Solution: Observe that‘9- 3¥"1 — 4 = (3*—4)(3*+1). As no real numbex satisfies 83+ 1 = 0, we discard this factor. So
3*—4=0yieldsx = log; 4.

101
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671 Example Solve
(Xx—5)(x—7)(x+6)(x+4) =504

Solution: Reorder the factors and multiply in order to obtai
(X—5)(X—7)(X+6)(X+4) = (Xx—5) (X+4) (X— 7) (X+ 6) = (X* —x— 20) (X2 — x— 42).

Puty = x> — x. Then(y— 20) (y— 42) = 504, which is to sayy® — 62y + 336= (y—6)(y—56) = 0. Now,y = 6, 56, implies

X —x=6
and
x° —x = 56.
Solving both quadraticx,=—2,4,—7,8.
672 Example Solve 13* —56x3 4+ 89x% — 56x+ 12=0.
Solution: Reordering
12¢* + 12— 56(x3+ x) + 89> = 0. (6.1)

Dividing by x?,
1 1
12(x* + =) —56(x+ =) +89=0.
(x*+ XZ) (x+ X) +
Putu=x+1/x. Thenu? — 2 = x? + 1/x2. Using this, (6) becomes 1& — 2) — 56u+ 89= 0, whenceu = 5/2, 13/6. From
this

and

Solving both quadratics we conclude tixat 1/2,2,2/3,3/2.

673 Example Find the real solutions to

X2 —BX+21/X2 —5x+3=12.

Solution: Observe that

X2 —5x+3+42y/x2—5x+3—15=0.
Letu=x2—5x+ 3 and sau+ 2u¥?— 15= (u¥? + 5)(u2— 3) = 0. This means that =9 (we discardi’/2+5 = 0, why?).
Thereforex’? —5x+3=9 orx=—1, 6.

674 Example Solve

V32— 4x+34— /32— 4x—11=9. (6.2)

Solution: Notice the trivial identity
(3x? — 4x+34) — (3x° — 4x— 11) = 45 (6.3)

Dividing each member of (8) by the corresponding membergfxe obtain

V32— 4x+ 34+ /3@ — 4x—11=5. (6.4)
Adding (7) and (9)

V3R —Ax+34=1,

from wherex = —2,3.
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675 Example Solve
V144 x+ V14— x=A4.

Solution: Leti = ¥/14+ x,v = ¥/14—x. Then
64 = (U+V)3 = u3+V3+3UV(U+V) =14+ x4+ 14— X+ 12(196—X2)l/3,

whence
3=(196—x%)1/3,

which upon solving yieldg = +13.
676 Example Find the exact value of cosf!5.

Solution: Using the identity
coqu- V) =cosucosvF sinusinv

twice, we obtain
cosP =2cosH—1 (6.5)

and
cos¥ = 4cosS 6 — 3cosh. (6.6)

Letx = cos21/5. As cos61/5= cos4rt/5, thanks to (5) and (6), we see thesatisfies the equation
43— 2% —3x+1=0,

which is to say
(x—1)(4x®4-2x—1) =0.

As x=cos21/5+# 1, and cos /5 > 0, x positive root of the quadratic equatior’4+ 2x— 1 = 0, which is to say

cos2l — Vo1
5 4
677 Example How many real numbenssatisfy «
sinx=—7
™= 100

Solution: Plainlyx = 0 is a solution. Also, ik > 0 is a solution, so is-x < 0. So, we can restrict ourselves to positive
solutions.

If xis a solution themx| = 100 sinx| < 100. So we can further restrieto the interval0;100. Decompos¢0;10Q into
2m-long intervals (the last interval is shorter):

10;100 =]0;271 U |2m4m1 U 146 U --- U |28m3071 U 13075, 100.

From the graphs of = sinx,y = x/100 we that the interva0; 21 contains only one solution. Each interval of the form
12nk; 2(k+1)m,k=1,2,...,14 contains two solutions. As 31< 100, the interval30rr; 100 contains a full wave, hence it
contains two solutions. Consequently, there a#e2t 14+ 2 = 31 positive solutions, and hence, 31 negative solutions.
Therefore, there is a total of 3131+ 1= 63 solutions.

Practice
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678 Problem  Solve forx 688 Problem  Find the value of
2v@;3¢?29+i, /30-31.32.337 L.
a X a b
689 Problem  Solve
79 Probl
679 Problem Solve X+m+x—m798
(x—7)(x—3) (x+5)(x+1) = 1680 X=V¥—1 x+Vx¥-1
680 Problem Solve 690 Problem  Find a real solution to
X433 — 4% +x+1=0.
(@ —9x—1)0 49K = 10 (x* — 1).
681 Problem Solve the equation

25ir12><+5A200§x =7

682 Problem  If the equation\/ x+ \/ X+ 1/x+ v/--- = 2 made sense, what would

be the value ok?

683 Problem How many real solutions are there to

sinx = loge x?

684 Problem Solve the equation

X+ — x| +3x—1| —2[x—2| =x+2.

685 Problem  Find the real roots of

\/X+3_4\/Q+ Jx+s_em=1.

686 Problem Solve the equation

6x* — 25¢ + 12¢ + 25x+ 6 = 0.

687 Problem  Solve the equation

X(2x+ 1) (x—2) (2x—3) = 63,

6.2 Systems of Equations

694 Example Solve the system of equations

X+y+u
y+u+v
u+v+x
V+X+Yy

Solution: Adding all the equations and dividing by 3,

This implies

Hint: Write this equation as
(X% —9x—1)10— 10x°(x> — 9x— 1) + 9x'°= 0.
691 Problem Find the real solutions to

\/x+2\/x+2\/ X+ 424/ X+ 2V3x = x.

n radicals

692 Problem  Solve the equation

where the fraction is repeatedimes.

693 Problem  Solve forx

VX VT4 \/x VX Ti=4.

X+y+u+v=-3

4+v
—54x

O+y
—8+u
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whencex=2,y=—-3,u=5v=—7.

695 Example Solve the system

(x+Yy)(x+2) =30,
(Yy+2)(y+x) =15,
(z+Xx)(z+y) =18

Solution: Putu=y+ 2z v=z+Xx,w=Xx+Y. The system becomes

vw= 30, wu=15 uv=18.

(6.7)

Multiplying all of these equations we obtaiRv?w? = 8100, that ispvw= +90. Dividing each of the equations in (7), we
3,v=6,w=50oru=—-3 v=—6w=—5. This yields

gatheru =

y+z = 3,
Z+X = 6,
x+y = 5

whencex=4,y=1 z=2o0rx=—4,y=-1z=-2..

Practice

696 Problem

697 Problem

698 Problem

699 Problem

700 Problem

6.3 Remainder and Factor Theorems

Let a,b, ¢ be real constanthc # 0. Solve

X —(y—2?%=2%

Y- (2-x)? =1,
Z—(x—y)? =2
Solve
X+ 3Py +y =8,
2¢ — 2%y +xyP = 1.
Solve the system

X+24+y+3+4/(X+2)(y+3) =39,

(X+2)24 (y+3)2+ (x+2)(y+3) =741

Solve the system

Xyt =82
X—y=2
Solve the system
XiXo =1, XoX3 = 2, ..., X100%101 = 100, X101%1 = 101

or y+z = -3,
or z+x = -6,
or x+y = -—5,

701 Problem Solve the system
X —yz=3,

y2 —zx=4,

Z—xy=5.

702 Problem  Solve the system
X+y+z+u=-1
X+2y+z+u=12
X+y+2z+u=>5

X+y+z+2u=-1

703 Problem  Solve the system
X +x+y=8,

Y2+ 2xy+2z= 168

2 +2yz+ 2xz= 12480

TheDivision Algorithmfor polynomials states that if the polynomia(x) is divided bya(x) then there exist polynomials
q(x),r(x) with

p(x) =a(x)q(x) +r(x)
and 0< degree (x) < degreea(x). For example, i + x*+ 1 is divided byx? + 1 we obtain

A+ xX+1= 0+ —x—1)(x°+1)+x+2,

and so the quotient ig(x) = x° + x* —x— 1 and the remainder igx) = X+ 2.

(6.8)
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704 Example Find the remainder whefx+ 3)° + (x+ 2)8 + (5x+ 9)1%%is divided byx+ 2.

Solution: As we are dividing by a polynomial of degree 1, tamainder is a polynomial of degree 0, that is, a constant.
Therefore, there is a polynomiglx) and a constanmtwith

(x4 3)%+ (x+2)8 4 (5x+ 9) 1997 = q(x) (x+ 2) +r
Lettingx = —2 we obtain
(—24-3)°+ (—2+2)8 4 (5(—2) +9)199'=q(—2)(—2+2) +r =T,

As the sinistral side is 0 we deduce that the remaindeD.

705 Example A polynomial leaves remainder2 upon division byx— 1 and remainder4 upon division byx+ 2. Find the
remainder when this polynomial is divided k§+x— 2.

Solution: From the given information, there exist polynafag; (x), gz (x) with p(x) = q1(x)(x—1) —2 and

P(X) = go(X)(X+2) — 4. Thusp(1) = —2 andp(—2) = —4. As X* + x— 2 = (x— 1)(x+ 2) is a polynomial of degree 2 the
remainder (x) upon dividingp(x) by x* +x— 1 is of degree 1 or less, thatiigx) = ax+ b for some constania b which we
must determine. By the Division Algorithm,

p(x) = q(x) (X* +x— 1) +ax+b.

Hence
—2=p(1)=a+b

and
—4=p(—2)=—-2a+h.

From these equations we deduce that2/3,b = —8/3. The remainder sought i$x) = 2x/3—8/3.
706 Example Let f(x) = x*+x°+x?+ x+ 1. Find the remainder whefi(x®) is divided byf (x).

Solution: Observe thatt(x)(x— 1) = x°>— 1 and

f(°) = x4 xP x4 +1=(x0— 1)+ (x*®°— 1)+ (x}°— 1)+ (xX*— 1) +5.
Each of the summands in parentheses is divisible’by1 and, a fortiori, byf (x). The remainder sought is thus 5.
Using the Division Algorithm we may derive the following threm.

707 Theorem Factor Theorem The polynomialp(x) is divisible byx—a if and only if p(a) = 0.

Proof As x—a s a polynomial of degree 1, the remainder after divoig) by x—ais a polynomial of degree 0, es that is, a
constant. Therefore
p(x) =q(x)(x—a)+r.

From this we gather thgi(a) = q(a)(a—a) +r =r, from where the theorem easily follows.
708 Example If p(x) is a cubic polynomial withp(1) = 1, p(2) = 2, p(3) = 3, p(4) =5, find p(6).

Solution: Putg(x) = p(x) —x. Observe thagj(x) is a polynomial of degree 3 and thgitl) = g(2) = g(3) = 0. Thus
g(x) =c(x—1)(x—2)(x— 3) for some constartt that we must determine. Now(4) =c(4—1)(4—2)(4— 3) = 6¢c and
g(4) = p(4) —4 =1, whencec = 1/6. Finally

p(6) =9g(6)+6= (6_1”6;2)(6_3) +6=16.
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709 Example The polynomialp(x) has integral coefficients amux) = 7 for four different values ok. Shew thafp(x) never
equals 14.

Solution: The polynomiad(x) = p(x) — 7 vanishes at the 4 different integer valaeb, c,d. In virtue of the Factor Theorem,

g(x) = (x—a)(x—b)(x—c)(x—d)q(x),

whereq(x) is a polynomial with integral coefficients. Suppose thgi = 14 for some integer. Then
g(t)=p(t)—7=14—7=7. It follows that

7=g(t) = (t—a)(t—b)(t—c)(t—d)q(t),

that is, we have factorised 7 as the product of at least 4rdiftefactors, which is impossible since 7 can be factorised a
7(—1)1, the product of at most 3 distinct integral factors. From tontradiction we deduce that such an intdg#wes not
exist.

Practice
710 Problem If p(x) is a polynomial of degree n such that 711 Problem The polynomialp(x) satisfiesp(—x) = —p(x). Whenp(x) is divided
p(k) =1/k,k=1,2,...,n+1, findp(n+2). by x— 3 the remainder is 6. Find the remainder whEm) is divided byx? — 9.

6.4 Viete's Formulae

Let us consider first the following example.

712 Example Expand the product
(x+1)(x—2)(x+4)(x—5)(x+6).

Solution: The product is a polynomial of degree 5. To obthindoefficient o&® we take arx from each of the five binomials.
Therefore, the coefficient of is 1. To form thex* term, we take an from 4 of the binomials and a constant from the
remaining binomial. Thus the coefficientxffis

1-2+4-546=4

To form the coefficient ok® we take threex from 3 of the binomials and two constants from the remainingimials. Thus
the coefficient of is
(1)(=2) + (1)(4) + (1)(=5) + (1)(6) + (—=2)(4) + (—=2)(—5) + (—2)(6)

+(4)(=5) +(4)(6) + (~5)(6) = —33.
Similarly, the coefficient of? is

and the coefficient of is
(1)(=2)(4)(=5) + (1)(=2)(4)(6) + (1) (—2)(—5)(6) + (1) (4)(—5)(6) + (—2)(4)(—5)(6) = 172
Finally, the constant term id)(—2)(4)(—5)(6) = 240. The product sought is thus
X+ 4x* — 33 — 134 + 172 + 240

From the preceding example, we see that each summand ofghaded product has “weight” 5, because of the five given
binomials we either take theor take the constant.
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If ag #0 and
agX" +apxX" T apX" % -t ag 1x+an

is a polynomial with root®1, as, ..., a then we may write
aoX" + X"+ apx" 24 -+ an_1X+ 8y = 8g(X— 1) (X— 02) (X— A3) -+ (X— Ap—1) (X— Op).

From this we deduce théiéte Formulae:

k=1
a
P DORCILE
1<j<k<n
az
" > ajaan,
1<j<k<I<n
ay
% > ajaaas,

1<j<k<l<s<n

713 Example Find the sum of the roots, the sum of the roots taken two ate, tihe sum of the square of the roots and the
sum of the reciprocals of the roots of
2¢—x+2=0.

Solution: Leta, b, c be the roots of £ —x+ 2= 0. From the Viéte Formulae the sum of the roots is
0
a.+ b+ cC= —é = 0

and the sum of the roots taken two at a time is L
ab+ac+bc= %

To find a2 + b? + ¢? we observe that

a?+b?+c? = (a+b+c)?—2(ab+ac+bc).
Hence
a?+b?+c?=0°—2(—-1/2)=1.
Finally, asabc=—2/2 = —1, we gather that

1 1

1 ab+ac+b -1/2
4 oyo - apractie /
a b c

abc -1

=1/2.

714 Example Leta, B,y be the roots ok’ —x?+ 1 = 0. Find

1 1 1
?—'—ﬁ—l—?.
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Solution: Fromx® —x?+ 1= 0 we deduce that/k* = 1—x. Hence

1 1 1

@tptp =1ty =3—(a+p+y)=3-1=2

Together with the Viéte Formulae we also have Kesvton-Girard Identitiegor the sum of the powers = af + ak+- -+ aX

of the roots:
aps; +a; =0,

apSy + a1 +2a, =0,
a3+ a1 +axs; +3ag =0,
etc..
715 Example If a,b,c are the roots ok — x>+ 2 =0, find
a®+b?+c?
a’+b34c3

and
a*+b*+ct

Solution: First observe that
a?+b%>+c?=(a+b+c)?>—2(ab+ac+bc)=1>—2(0)=1.
As X3 = x?>—2, we gather
B+ +cd=a—2+b?—24+c2-2=a%+b’°+c?-6=1-6=—5.
Finally, fromx® = x? — 2 we obtainx* = x> — 2x, whence
at+btrct=at-2a+b—2b+ct—2c=a+b>+c*—2(a+b+c)=-5-2(1)=—7.
716 Example (USAMO 1973) Find all solutions (real or complex) of the system
X+y+z=3,

X4y + 7 =3,

Xty +2 =3
Solution: Letx,y,z be the roots of

p(t) = (t—X)(t —y)(t—2) =t3— (X+y+2)t>+ (xy+yz+ zX)t — xyz
Now xy-+yz+ zx= (x+y+2)2/2— (% +y?*+Z)/2=9/2—3/2=3 and from
Ay + 22— 3xyz= (X+y+2) %+ y? + Z — xy—yz—2X)

we gather thakyz= 1. Hence
p(t) =t3—3t24+3t—1=(t—1)3.

Thusx =y =z=11is the only solution of the given system.
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Practice

717 Problem  Suppose that

X' +apd x4  fay
= (X+r1)(X+r12) - (X+1n)

wherery,r, ..., rn are real numbers. Shew that

(n—1)a2 > 2na.

718 Problem (USAMO 1984)  The product of the roots of
Xt —18¢% + k¥ + 200x — 1984= 0
is —32. Determinek.

719 Problem  The equation¢ — 16x° + 94x? 4 px+ g = 0 has two double roots. Find
p+aq.

720 Problem If aq,0z,..., 0100 are the roots of

X0 _10x+10=0,

6.5 Lagrange’s Interpolation

find the sum

100 100 100
ai®+ o+ -+ ap.

721 Problem Leta, B,y be the roots of® —x— 1 = 0. Find

11,1
ad By

a®+ B2+
722 Problem The real numbers, 8 satisfy
a®—3a%+50 —17=0,

B°—3B2+58+11=0.

Finda + .

723 Example Find a cubic polynomiap(x) vanishing ax = 1,2, 3 and satisfyingp(4) = 666.

Solution: The polynomial must be of the forpix) = a(x— 1)(x— 2)(x— 3), wherea is a constant. As
666=p(4) =a(4—1)(4—2)(4—3)=6a, a= 111 The desired polynomial is therefopgx) = 111(x— 1)(x— 2)(x—3).

724 Example Find a cubic polynomiap(x) satisfyingp(1) =1, p(2) =2, p(3) =3,p(4) =5.

Solution: We shall use the following method due to Lagrarng.

p(x) = a(x) + 2b(x) + 3c(x) + 5d(x),

wherea(x),b(x),c(x),d(x) are cubic polynomials with the following propertiegl) = 1 anda(x) vanishes when

x=2,3,4;b(2) =1 andb(x) vanishes whem = 1,3,4; ¢(3) = 1 andc(3) = 1 vanishes wher=1,2 4, and finallyd(4) = 1,

d(x) vanishingak=1,2,3.
Using the technique of the preceding example, we find

(x—2)(x—3)(x—4)

6 )

(x—1)(x—3)(x—4)

2 )

(x—1)(x—2)(x—4)

2

(x—1)(x—2)(x—3)

ax) =—
b(x) =
c(x) =—
y
d(x) =
Thus

6

p(x) = ,é - (x=2)(x—3)(x—4) + (x—1)(x—3)(x—4)

72 (x—=1)(x—2)(x—4) + g(xf 1)(x—2)(x—3).

Itis left to the reader to verify that the polynomial satisftee required properties.
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Practice

725 Problem  Find a polynomialp(x) of degree 4 with 726 Problem Find a polynomialp(x) of degree 4 with
p(1) =1,p(2) =2,p(3) =3,p(4) =4,p(5) =5. p(1) =—1,p(2) =2,p(—3) =4,p(4) =5,p(5) =8.




Chapter

Inequalities

7.1 Absolute Value

[ 1 it x<o,
727 Definition (The Signum (Sign) Function)  Letx be a real number. We define sign{xh= { 0 if x=0,
| +1 if x>0.

728 Lemma The signum function is multiplicative, that is, (i,y) € R? then signunfx - y) = signum(x) signum(y).

Proof: Immediate from the definition of signum.
729 Definition (Absolute Value) Letx € R. Theabsolute valuef x is defined and denoted by

|X| = signum(x) x.

730 Theorem Letxe R. Then

—Xx ifx<0,
1. |x|:{ «

if x> 0.
2. |x| >0,
3. x| =max(x,—x),
4. [=x =],
5. — x| <x<x.
6. V2=

7. X% = X% = %2
8. x=signum(x) ||
Proof: These are immediate from the definitiorpdf O

731 Theorem (V(x,y) € R?),
Ixyl = [x[[y].

112
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Proof: We have
xy| = signum(xy) xy = (signum(x) x) (signum(y)y) = || |y| ,

where we have used Lemma 72B.

732 Theorem Lett > 0. Then
IX| <t <= —t<x<t.

Proof: Either|x| =xor x| = —x. If |x| =X,

X <t <= x<t <= —t<0<x<t.

If x| =—X,
X <t «—= —x<t <<= —t<x<0<t.
0
733 Theorem If (x,y) € R2, max(x,y) = %'X_y' and mir{x,y) = 7X+y—2|x—y|.

Proof: Observe thamax(x,y) +min(x,y) = x+Y, since one of these quantities must be the maximum and the
other the minimum, or else, they are both equal.

Now, eitheflx—y| =x—Yy, and so ¥x> y, meaning thamax(x,y) —min(x,y) =x—y, or |[x—y| = —(Xx—y) =y—X,
which means that ¥ x and somax(x,y) —min(x,y) = y—x. In either case we gehaxx,y) —min(x,y) = [x—y]|.
Solving now the system of equations

max(x,y) +min(x,y) = X+Vy
max(x,y) —min(x,y) = [x—yY|,

for max(x,y) andmin(x,y) gives the result]

7.2 Triangle Inequality

734 Theorem (Triangle Inequality)  Let (a,b) € R?. Then

la+b| < [al +|bl. (7.1)

Proof: From 5 in Theorem 730, by addition,
—laf<a<]al

to
—|bf <b<b|

we obtain
—(la]+ b)) <a+b< (Jaj+|b]),

whence the theorem follows by applying Theorem 732.

By induction, we obtain the following generalisationrtberms.

735 Corollary LetXq,Xo,...,X, be real numbers. Then

X1+ X2 + -+ 4 Xn| < [Xa| + [Xe| + -+ - 4 [Xn] -
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Proof: We apply Theorem 734-nltimes

IXp+Xo+ -+ Xn| < Xe| 4 [X2 A+ Xn1 X
< Xl Xe| X3+ X1+ Xnl
< X4 Xl [Xn—1+ Xl
< xa) Xl e X1 |+ Xl -
0
736 Corollary Let (a,b) € R%. Then
lla] —[bl| < [a—b] } (7.2)

Proof: We have
|a =[a—b+b[ < [a—b|+[b],

giving
|a| — |b] < [a—b].
Similarly,
bl =[b—a+al < |b—al+[al =[a—b|+]a],
gives
bl —la] < Ja—b| = —Ja—b| <|a]—[b|.
Thus

—la—b| <[a]—[b| < |a—b],

and we now apply Theorem 732.

7.3 Rearrangement Inequality

737 Definition  Given a set of real numbe{s, Xy, ..., X} denote by

Xp =¥ > > %n
the decreasing rearrangement of xhand denote by
)21 < )A(Z < <K

the increasing rearrangement of the

738 Definition  Given two sequences of real NUMb€xs, Xz, ..., Xn} and{y1,ys,...,yn} of the same length, we say that
they aresimilarly sortedif they are both increasing or both decreasing, difigérently sortedf one is increasing and the other
decreasing..

739 Example The sequences42<--- <nand P<2?<...<nfare similarly sorted, and the sequences

1 1 1 .
2225 and £ < 22 < ... <nd are differently sorted.
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740 Theorem (Rearrangement Inequality) ~ Given sets of real numbefsy,ap, ..., an} and{bs,by,...,b,} we have

Z &by < Z akby < Z aby.
1<k<n 1<k<n 1<k<n
Thus the sumz akby is minimised when the sequences are differently sortedpesmdmised when the sequences are

o 1<k<n
similarly sorted.

|:| Observe that A 5
&by = ayby.

1<k<n 1<k<n

Proof: Let{o(1),0(2),...,0(n)} be areordering of1,2,...,n}. If there are two sub-indicesj, such that the
sequences pull in opposite directions, say-a; and k(i) < bg(j), then consider the sums

S = albo(l) +a2bo(2) +"'+a'ibo'(i) +"'+ajbg(” +---+anbo(m
S = albo(l) +azbg(2) +"'+aibo(j) +"'+ajbo'(i) +"'+anbo(n)
Then
S —S=(a—aj)(by(j) —bg(i)) > 0.
This last inequality shews that the closer the a’s and thelego pulling in the same direction the larger the sum
becomes. This proves the restlt.

7.4 Mean Inequality

741 Theorem (Arithmetic Mean-Geometric Mean Inequality) Letay,...,a, be positive real numbers. Then their geometric
mean is at most their arithmetic mean, that is,

Lat o tan

Vaj---an
! n

with equality if and only ifay = - -- = ay.

We will provide multiple proofs of this important inequalitSome other proofs will be found in latter chapters.

First Proof:  Our first proof uses the Rearrangement Inequality (Theoré@) ih a rather clever way. We may
assume that theyaare strictly positive. Put

i — ai o — a ap __Qd-dn
Y (ma e P (mageean)?™ T T (aage-an)n
and
11 1,
yl_Xj_’ y2_X27 ey Yn—xn—-

Observe that fo2 < k <n,

aiap- - a (alaz...an)(kfl)/n B ay

(aqap---an)¥"  ajap---ay 1 (agap---an) /"

XkYk—1 =

The x and y are differently sorted, so by virtue of the Rearrangemeegjlrality we gather

1+1+-4+1 = Xy1+XY2+ -+ Xn¥n

X1Yn+Xoy1+ -+ XnYn—1
a1 az an

(asaz-an) " (@ --an) " | (adg-an)

IN
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or
< atax+---+an

T (magean)tn
from where we obtain the resulil

Second Proof: This second proof is a clever induction argument due to Cautiproves the inequality first for
powers of2 and then interpolates for numbers between consecutiversai2.
Since the square of a real number is always positive, we Hawppsitive real numbers.&

(vVa— VB2 >0 — vab< 210

proving the inequality for k= 2. Observe that equality happens if and only #d. Assume now that the
inequality is valid for k=2""1 > 2. This means that for any positive real numbersc, ... ,Xon—1 We have

)1/2n71 < Xl+X2+"'+X2nfl

(X1X2 <o Xon—1 < 2n71

(7.3)

Let us prove the inequality fdk = 2". Consider any any positive real numbegsyg, ..., y-n. Notice that there
are2"— 21 =2"12_1)=2"integers in the interva[Z”_l +1 ;2“] . We have

n n—1 n—1
(yoyz-ya) "2 = \/(ylyz Yo )Y (Y1 g oY) Yz .
n—1 n—
< (y1y2-- 'Y2n71)l/2 + (Yor-1g g Yn) e
- 2
YitYat -4 Yon-1 Yon1gq oA Yon
< on—1 + on—1
_ Y1t Ay
=

where the first inequality follows by the Case-r2 and the second by the induction hypothesis (7.3). The theore
is thus proved for powers @f

Assume now th&" ! < k < 2", and consider the k positive real numbeisa, . .. ,ax. The trick is to pad this
collection of real numbers up to the next highest powet, tfie added real numbers being the average of the
existing ones. Hence consider tlereal numbers

Q,ap,...,8k, 81,820

aptax+---t+ag

witha 1=...=an= " . Since we have already proved the theoren2fowe have
N at+ap+---t+ag
132 - - Ak K = on ’
whence
atap+---tag n agtap+---tag
n/ai+as+ -+ 1—k/2" k——————+ (2" K| —————
(alaz...ak)l/z (%ak) < k o ( k )7

which implies
al+a2+"'+ak)1_k/2n - (al+a2+...+ak)

g2
(aap---ay) ( 7 "

aptax+---t+ag

Solving f
olving for "

gives the desired inequalityl




Mean Inequality 117

Third Proof:  As in the second proof, the Case-R is easily established. Put

a;tap+---t+ag

% . Gr=(agap---a) Yk

A =

Observe that
A1 = (K+ 1A 1 — KA.
The inductive hypothesis is that & Gx and we must shew thagA; > Gy, 1. Put

a1+ (K—1)A¢ o\ 1/k
a= Bt e 6o (a4
By the inductive hypothesisAG. Now,
(k+1)Ak+1—kAk+(k—1)Ak+1+Ak
A+A Kk -~
5 = > = A1
Hence At A
Ak+1 = T
> (AAYY?
> (GG)Y2.
v 1/2
= (Gti}A{;&)

We have established that ™
Acr1 2> (GtﬁAﬁb = Axt1 2> Gk,
completing the inductior]
Fourth Proof: We will make a series of substitutions that preserve the sum
aptax+---+an

while strictly increasing the product
aiay---an.

At the end, thejawill all be equal and the arithmetic mean A of the numbers bellequal to their geometric mean

agta+---+an_ nA

G. If the a where all> A then > e A, impossible. Similarly, the @annot be allk A.

n
Hence there must exist two indices say such that a< A < aj. Put d=Ad=a-+ aj —A. Observe that

a+aj=a+ a’j, so replacing the original a’s with the primed a’s does ndeathe arithmetic mean. On the

other hand,
/

aaj = Alai +aj —A) = ajaj + (aj — A) (A—a) > aiay
since g—A>0and A—a > 0.

This change has replaced one of the a’s by a quantity equaktatithmetic mean, has not changed the
arithmetic mean, and made the geometric mean larger. Shere fat most n a’s to be replaced, the procedure
must eventually terminate when all the a’s are equal (tortagthmetic mean). Strict inequality hence holds if
when at least two of the a’s are unequal.

742 Theorem (Cauchy-Bunyakovsky-Schwarz Inequality) Let xx, yk be real numbers, £ k< n. Then
n n /2 / p 1/2

Zxkyk < <Z XE) (Zﬁ) )

k=1 k=1 k=1

(a17a27"'aan) :t(blabZa"'vbn)

with equality if and only if

for some real constant
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First Proof: The inequality follows at once from Lagrange’s Identity

o)) B) 3

1<k<j<n

(Theoren??), since Y (xyj —Xjyk)> > 0. 0

1<k<j<n
n n n
Second Proof: Puta=» X, b=> Xyk andc=>_yi. Consider the quadratic polynomial
k=1 k=1 k=1

at2+bt+c—t22xk—2tZXkyk+ZY2 thk—)’k >0,
k=1

where the inequality follows because a sum of squares ohrgabers is being summed. Thus this quadratic
polynomial is positive for all real t, so it must have compiests. Its discriminant b— 4ac must be non-positive,

from where we gather
n 2 n n
(o) <o(53¢) (34).
k=1 k=1 k=1

For our third proof of the CBS Inequality we need the follogiiemma.

which gives the inequalityl

743 Lemma For(a,b,x,y) € R* with x > 0 andy > 0 the following inequality holds:
2 2 2
a~ b S (a+Db)

X oy X+y

Equality holds if and only if‘;i(l _

<o

Proof: Since the square of a real number is always positive, we have

(ay—bx)?>0 = a?y’—2abxy+b>?>0

= a%y(x+y) +b>X(x+y) > (a+b)’xy
a2 b2 (a+h)?
>

Xy X+y
Equality holds if and only if the first inequality GsC]

|:| Iterating the result on Lemma 743,

2 a2 2 2
ag_ % Jr%>(a1+a2+ +an)7
by b bn = bi+bp4---+by
with equality if and only |fa— cee = %.
by bz bn

Third Proof: By the preceding remark, we have

X X
X%J’_X%J’_—'—sz‘l — lyl+ 2y2+ +Xnyn

yl yz Yn
(X1Y1+XoY2 + -+ + XnYn)?
y1 + yz +eoet Yn ’

and upon rearranging, CBS is once again obtaihéd.
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744 Theorem (Minkowski's Inequality)

n 1/2

>ty

k=1

Proof: We have

=
x~
+
)
N
I

IN

Let xx, yx be any real numbers. Then

< ix&
k=1

1/2 /2

n 1
+ D%k
k=1

n n n
D ORH2) Xkt Y Wk
k=1 k=1 k=1
n n
> K+2( > X
k=1 k=1
n
> %
k=1

127, 172 q

) +3
k=1 k=1

1/2 1/2

2
n
+) vk :
k=1

where the inequality follows from the CBS Inequdlity.

Practice

745 Problem  Letx,y be real numbers. Then

0<x<y <= ¥ <y

746 Problem Lett > 0. Prove that

X[ >t < (x>t) or (x<-—t).

747 Problem  Let (x,y) € R?. Prove that majx,y) = —min(—x, —y).

748 Problem  LetXx,y,z be real numbers. Prove that

max(Xx,y,z) = X+ Y-+ z—min(x,y) —min(y,z) —min(zx) + min(x,y,z).

749 Problem  Let (Xg,%o,...,%,) € R" be such that
X§+X§+~»+Xﬁ:X%+Xg+~»+xﬁ:><§+><§+---+>¢.

Prove that € {0,1}.

750 Problem  Letn > 2 an integer. Letxy,Xp,...,%,) € R" be such that

X245+ -+ X = XaXp + XoXa + - + Xn— 1Xn + XnXa.

Prove that; =X = -+ = Xn.

751 Problem  If b > 0 andB > O prove that

A a _ a+A A

a
b“B b btB B
Further, if p andq are positive integers such that

z
10

p 11
<q 1

what is the least value af?

752 Problem Leta < b. Demonstrate that

a+b
x—al < |x—b| <= x< %

753 Problem  Prove thatiff > s>t then

12— 4+t2> (r—s+1)2

754 Problem  Assume thagy, by, ck,k = 1,...,n, are positive real numbers. Shew that

(Be) +(29) (2¢) (229)-

755 Problem  Prove that for integen > 1,
n|<(n+1>"
! 5 .

756 Problem  Prove that for integen > 2,

n"2 <nl.

757 Problem  Prove thatv(a,b,c) € R3,

a? +b?+c?>ab+bc+ca

758 Problem  Prove that/(a,b,c) € R®, witha > 0,b > 0, ¢ > 0, the following
inequalities hold:

a®+b® + ¢ > max(a?b+ b’c + c?a, a’c + b?a+c?b),
a®+b%+c® > 3abe
S+ +cd>

% (€(b+0) + (e +a) +P(ath)).

759 Problem (Chebyshev’s Inequality) ~ Given sets of real numbefsy, az,...,an}
and{by,by,... by} prove that

1 o 1 1 1 .
= = = <= .
2D abes (5D a) (3D b <7D sk

1<k<n 1<k<n 1<k<n 1<k<n

IN
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760 Problem  If x> 0, from

1
X+1—yX= —=—
VX+ 14X
prove that
1 1
<VX+H1—VX< —.
2Vx+1 VK 2%
Use this to prove that if > 1 is a positive integer, then
2\/n+172<1+i+i+~~+i <2yn—1
V2 V3 v
761 Problem If 0 < a< b, shew that
1 (b—a)®  a+b 1 (b—a)?
Z. - - < Z
8 b - @*8 a
762 Problem  Shew that
135 999 1
2 4 6 10000 " 100

763 Problem  Prove that for alk > 0,

n

Z;<}_L
(x+k)2 X x+n’

k=1

764 Problem Letx € R such thatg |xij =1and E x; = 0. Prove that

i=1 i=1

765 Problem  Letn be a strictly positive integer. Let > 0. Prove that

n

n
H(ka) >14 E .
k=1

k=1

When does equality hold?

766 Problem (Nesbitt's Inequality)  Leta,b,c be strictly positive real numbers. Then

a
b+c

c

— >
+ a+b ™~

+

NIl w

b
c+a
767 Problem Leta,b,c be positive real numbers. Prove that

(a+b)(b+c)(c+a)>8abc

768 Problem (IMO, 1978) Letay be a sequence of pairwise distinct positive integers.
Prove that
n n
ay 1
= > =.
PIE-ED
k=1 k=1

769 Problem (Harmonic Mean-Geometric Mean Inequality) Letx > O for
1<i<n.Then

n
T T < (X x) VT,
X1 X Xn
with equality iffx; =X = -+ = Xn.

770 Problem (Arithmetic Mean-Quadratic Mean Inequality) Letx; > 0 for
1<i<n.Then

1/2
Xutdet o A% _ (X§+x§+~~+xﬁ) /
n - n ’

with equality iffx; =X, = -+ = Xp.

771 Problem  Given a set of real numbefsy, ay,...,an} prove that there is an index
me {0,1,...,n} such that

E a— a| < max|a.
1<k<n

1<k<m m<k<n

If m= 0 the first sum is to be taken as 0 andnf= n the second one will be taken as 0.
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Answers, Hints, and Solutions

10 Since their product is 1 the integers musthb® and there must be an even number-dfs, sayk of them. To make the
sum of the numbers 0 we must have the same number of 1's. Thosnsiehavek(1) +k(—1) = 0, andk+ k= 34, which
means thak = 17, which is not even.

11 Clearing denominators, there are 2000 summands on thé&ralsigle of the formajaz---aj_18i11- - - a2p00 and the dextral
side we simply haveqay---a 1311 --a2000 If all the ax were odd, the right hand side would be odd, and the left hated si
would be even, being the sum of 2000 odd numbers, a conti@alict

a ... . o o . .
12 If loge3 = b’ with integrala, b # 0 then 2 = 3, By uniqueness of factorisation this is impossible ungessb = 0, which
is not an allowed alternative.

13 If the palindrome were divisible by 10 then it would end in Addence, by definition of being a palindrome, it would start
in 0, which is not allowed in the definition.

14 AssumeAC > BC and locate poinD on the line segmemAC such thatAD = BD. Then AADB s isosceles db and we
must have/A = /B, a contradiction.

15 If y/a< a thena < a?, which implies thar (1— a) < 0, an impossible inequality if & a < 1.

1 .
16 We have - 12000 < a < 1. Squaring,
2 1 2

1= T 000 T 7gaoo0 < A
1 1
107000 T 70A000 - g

Since— , we have

1 1 1 1 2
~ 102000 <1- 102000 1020007L 102000 <a-

26 There aren possible different remainders when an integer is divided,lsp among + 1 different integers there must be
two integers in the group leaving the same remainder, anddlfference is divisible byn.

1

27 20
66 (i) —3.5, (i) 45

67 x> = (x+3—-3)?= (x+3)2—6(x+3)+9
89 Substitutet by \/t2—u2+V2, in 2.5.

98 Use the fact thatb—a)? = (vVb— va)2(vVb+ va)2.
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1 . . -
104 Suppose that all these products ar%. Use the preceding problem to obtain a contradiction.

117 52

131 Write
222F%9°4 5555222 = (2225554 4°°%9)

+(5555222 42222)
(45555 42222

136 Considex =2n—1.

139 we have
2" 1=2%—1= (22— 1)((2° 14 (22)° 2+ (2214 1),

Sincea> 1,22 —1 > 1. Sinceb > 1,
(2P 4 (2224 (294D > 22+ 1> 1

We have decomposed a prime number (the left hand side) iatprtiduct of two factors, each greater than 1, a contradictio
Thusn must be a prime.

140 We have ) ) ) . )
2"+ 1=2""41= (22 +1)((22)™ - (229" 24— (22) 40,

Clearly, 2+ 1> 1. Also if m> 3

()1 ()™ 24— (229 41> (222 (22) 41> 1,
and so, we have produced two factors each greater than lefpriie 2 4- 1, which is nonsense.
1491
166 Observe thatl+i)?%%%= ((1+1)%)199?= (2i)1992 etc.
167 Group the summands in groups of four terms and observe that

ki€t 4 (k4 1)ikH24

(k4 2)i%F3 4 (k4 4)ik+4
i (k+ (k+1)i — (k+2) — (k4 3)i)
—2-2i.

168 If kis an integeri + it +ik2 4 ik3 = iK(1+i+i%+i%) = 0.
183 Argue by contradiction. Assumee= 3k+1 orb =3m+ 1.

187 13

195 Think of n—6 if nis even andh— 9 if nis odd.

197 Try x=36k+ 14,y = (12k+5)(18k+ 7).

302 63

322 Consider, separately, the cases whésand is not a perfect square.

50
347 99
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348 9

356 3030

5973
1993

378 Shew first that cso2= cotx — cot 2.

358

379 Observe that
y 1 1

1I-y@2 1-y 1-y

392 x, = 3—1n +2.
393 x, =5"+5n.
394 x, = 6n°+6n+ 1.
395 x, =2"+3(5").
396 aj ;1 =67 — 1.
399 Letu, = cosvy.
413 3p=0, ay=an_1+ (n—1)3".
423 Let Ay C Abe the set of those integers divisible thy
O Notice that the elements are=22(1), 4=2(2), ..., 114=2(57). Thus cardA) = 57.

O There areﬂgﬂ =19 integers iM divisible by 3. They are
{6,12,18,...,114}.
Notice that 114=6(19). Thus cardAz) = 19.
O There are}l%ﬂ =11 integers irA divisible by 5. They are
{10,20,30,...,110}.
Notice that 116=10(11). Thus cardAs) =11

O There are}li—;ﬂ = 3 integers inA divisible by 15. They ard30,60,90}. Notice that 90= 30(3). Thus cardA;s5) = 3,
and observe that by Theore?2 we have carfiA;5) = card(Az N As).

O We want cardAzUAs) =19+ 11=30.

0 We want
cardA\ (AsUAs)) = card(A)—cardAzUAs)
= 57-30

27.

0 We want
card((AsUAs) \ (AsNAs)) = card((A3UAs))
—cardAsNAs)
= 30-3

27.
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424 \We have
O [Ll—OOJJ:5O
2
100
O || =] =33
151
0200y,
7
0 112~ 16
6
100
Ol|=—|=7
100
ad [LHJJ_4
100
O|—]| =2
1551

0 100—50—33— 144154 7+4—2=27
0 16—2=14
0 52

425 52%

426 22

427 Let A be the set of students liking MathematiBghe set of students liking theology, aBe the set of students liking

alchemy. We are given that
card(A) = 14,card(B) = 16,

cardC) =11, card AnB) =7,card BNC) = 8,card ANC) =5,

and
card AnBNC) =4.

By the Principle of Inclusion-Exclusion,

card A°’NB°NC°®) = 40— card(A)— card(B) — card(C)
+card/AnB) +card ANC) + card BNC)
—cardAnBNC).

Substituting the numerical values of these cardinalities
40—-14—-16—-11+7+5+8—-4=15.

428 We have

0 31

0 10

g3

g3

01
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01
01
0 960
429 LetY,F,S M stand for young, female, single, male, respectively, anH Istand for married. We have

cardYNFNS = cardYNF)—cardYNFNH)
= cardY)—cardYNM)
—(cardYNH)—cardYNHNM))
= 3000—1320— (1400600
= 880

430 34
431 30,7;5,18
432 4

433 LetC denote the set of people who like cantthe set of people who like ice cream, akdlenote the set of people who
like cake. We are given that cai@) = 816, cardl) = 723, cardK) = 645, cardCN 1) =562, cardCNK) =463,
card(l NK) =470, and carCN I NK) = 310. By Inclusion-Exclusion we have

cardCUluUK) = card(C)+card(l)+ card(K)
—card(Cnl)—cardCnK)—cardINC)
+card(CnlInK)
816+ 723+ 645—562—463— 470+ 310
999

The investigator miscounted, or probably did not report peieson who may not have liked any of the three things.

434 A set withk elements hasQifferent subsets. We are given
2100 + 2100 + anrdC) _ 2card(AUBuC)_

This forces carC) = 101, as K 2¢4¢)~101is |arger than 1 and a power of 2. Hence dad/BUC) = 102. Using the
Principle Inclusion-Exclusion, since cd) 4 card(B) + card(C) — card AUBUC) = 199,

card ANBNC) = card/AnB)+card ANC)+card BNC)—199
(card(A) + card(B) —card AUB))
+(card(A) + card(C)
—card(AUC)) + card(B) 4 card(C)
—card BUC)—199
= 403—card AUB)—card AUC) —card BUC).

AsAUB,AUC,BUC C AUBUC, the cardinalities of all these sets atel02 Thus

cardANBNC) = 403—card AUB)—cardAuUC)
—card(BUC) > 403—3-102
= 97
By letting
A=1{1,2,...,100},B={3,4,...,102},
and

C=1{1,2,3,4,5,6,...,101,102}
we see that the bound cd®inBNC) = card({4,5,6,...,100}) = 97 is achievable.

10r H for hanged if you prefer.
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435 Let A denote the set of those who lost an eégelenote those who lost an e@rdenote those who lost an arm aldd
denote those losing a leg. Suppose therena@mbatants. Then

n > cardAuUB)
= card(A)+card(B) —card AN B)
.n+.75n—cardANB),

n > cardCuD)
= card(C)+card(D) —cardCnD)
.8n+.85n—cardCnND).

This gives
card(ANB) > .45n,

cardlCND) > .65n.

This means that

S
v

card (AnB)U(CND))
card ANB)+cardCND)—card ANBNCND)
.45n+.65n—cardANBNCND),

Y

whence
cardANBNCND) > .45+ .65n—n=".1n.

This means that at least 10% of the combatants lost all founlnees.

451 21°=1024

452 | can choose a right shoe in any of nine ways, once this hasdm® | can choose a non-matching left shoe in eight
ways, and thus | have 72 choices.

Aliter: 1 can choose any pair in®99 =81 ways. Of these, 9 are matching pairs, so the number of ratohimg pairs is
81-9=72.

453 = (20)(19)(20)(19)(20)(20) = 57760000

454 10°5° — 10°5? = 122500

455 The number of different license plates is the number of déffiefour-tuples (Letter, Letter,, Digit 1, Digit 2). The first
letter can be chosen in 26 ways, and so we have

6] [ [ |

The second letter can be chosen in any of 26 ways:

126]26] | |
The first digit can be chosen in 10 ways:

|26]26]10] |
Finally, the last digit can be chosen in 10 ways:

| 26]26]10] 10]

By the multiplication principle, the number of differentfistuples is 2626-10-10= 67600
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456 (i) In this case we have a grid like

| 26]26]10] 9],
since after a digit has been used for the third position,incdbe used again. Thus this can be done in28610- 9= 60840

ways.
(ii) In this case we have a grid like

| 26]25]10] 10}
since after a letter has been used for the first positionnimogbe used again. Thus this can be done ir2%610- 10= 65000
ways.

(iii) After a similar reasoning, we obtain a grid like

|26]25]10] 9]

Thus this can be done in 285- 10- 9= 58500 ways.

457 [1] 8, [2] 5°3% = 225, [3] ¥ -3-2 =150, [4] 5-4- 3% =180, [5] 8- 7-6- 5= 1680.
458 432

459 Solution:

O The first letter can be one of any 4. After choosing the firsefetve have 3 choices for the second letter, etc.. The total
number of words is thus-8-2-1=24.

O The first letter can be one of any 4. Since we are allowed itapedi the second letter can also be one of any 4, etc.. The
total number of words so formed is thub4 256

460 The last digit must perforce be 5. The other five digits canlteifivith any of the six digits on the list: the total number
is thus 6.

461 We have
0 Thisis 5-8%=1310720.
Thisis 5 7-6-5-4-3.2=25200.
This is 5 8°- 4 = 655360.
This is 5 8°- 4 = 655360.

O 0o o d

We condition on the last digit. If the last digit were 1 or 5nhee would have 5 choices for the first digit, and so we

would have
5.6.5-4.3.2.2=7200

phone numbers. If the last digit were either 3 or 7, then weltvbave 4 choices for the last digit and so we would have
4.6-5-4-3-2-2=5760
phone numbers. Thus the total number of phone numbers is

72004 5760= 12960

462 26-25* = 10156250

463 For the leftmost digit cannot be 0 and so we have only the riloéces
{1,2,3,4,5,6,7,8,9}

for this digit. The othen— 1 digits can be filled out in 10 ways, and so there are

9.10.--10=9-10"1L.
N—_——
n—1 10s
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464 The leftmost digit cannot be 0 and so we have only the ninecelsoi
{1,2,3,4,5,6,7,8,9}

for this digit. If the integer is going to be even, the lastidagn be only one of the fiv€0,2,4,6,8}. The othen— 2 digits can
be filled out in 10 ways, and so there are
9-10---10-5=45-10""2
N—_——
n—2 10s

465 9 1-digit numbers and ®"* n-digit numbera > 2.

466 One can choose the last digit in 9 ways, one can choose thdtipgate digit in 9 ways, etc. and one can choose the
second digit in 9 ways, and finally one can choose the first otigl ways. The total number of ways is thus 9

467 m?, m(m—1)

468 We will assume that the positive integers may be factoriseduinique manner as the product of primes. Expanding the
product

(1+2+42%4-+2%)(14+3+ 32+ +3)(1+5+ 5%

each factor of 2352 appears and only the factors of this number appear. Thetb@meas many factors as terms in this
product. This means that there dfiet- 8)(1+ 9)(1+ 3) = 320 factors.

The sum of the divisors of this number may be obtained by afdmeach geometric series in parentheses. The desired sum is
then
221 301 531

51 3.1 5.1 = 467689684

|:| A similar argument gives the following. Let,py, ..., px be different primes. Then the integer
n= PPy B
has
din)=(a1+1)(az+1)---(ax+1)

positive divisors. Also, ifr(n) denotes the sum of all positive divisors of n, then
_ pit1+l_ 1 . pgz+l_ 1 . pikJrl_ 1

ag(n .. .
(") p1—1 p2—1 p—1

469 The 96 factors of P are 12,22,...,2%. Observe that¥ = 1024 and so % = 1048576. Hence
219 — 524288< 1000000< 1048576= 22°.

The factors greater than@00,000 are thus 2,22, ...2%. This makes for 96- 20= 76 factors.

470 (1+3)(1+2)(1+1) =24, 18; 6; 4.

471 16

472 A. [1] 10000, [2] 5040, B. [1] 12, [2] 10

473 n=1+1+---+1. One either erases or keeps a plus sign.
_/_/
n—1+'s
474 There are 589 such values. The easiest way to see this is¢ovelihat there is a bijection between the divisora®f

which are> n and those< n. For if n’> = ab, with a > n, thenb < n, because otherwis® = ab> n-n=n?, a contradiction.
Also, there is exactly one decompositioh= n- n. Thus the desired number is

2
19 41— =

(63)2(39)JJ +1—(32)(20) =589
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475 The total number of sequences 5 There are 2sequences that contain no 0, 1 or 2. There is only one seqtleatce
contains only 1's, one that contains only 2's, and one thatains only 0’s. Obviously, there is no ternary sequence tha
contains no O’s or 1's or 2's. By the Principle of Inclusioretusion, the number required is

(2" 2"+ 2N+ (1+1+1)=3"—-3.2"+ 3.

476 The conditions of the problem stipulate that both the registside the circles in diagram 5.3 aRgwill be empty. We
are thus left with 6 regions to distribute 100 numbers. TdhedHdthe 100 numbers we may thus assign one of 6 labels. The
number of sets thus required i¥°8

484 21
485 56
486 (26°—25°) + (26°— 25%) = 2002

487
9+9.9

4+9.9-849.9-8.7
4+9.9.8.7-6+9-9-8.7-6-5
4+9.9.8.7-6.5-4+9.9.8-7-6-5-4.3
4+9.9.8.7-6.5-4:3.2
4+9.9-8.7-6-5-4:3.2.1
= 8877690

488 2+4+8+16=30.

489 8;12(n—2); 6(n—2)% (n—2)3
Comment: This proves that = (n—2)%+6(n—2)2+12(n—2) + 8.

490 We condition on the first digit, which can be5} or 6. If the number starts with 4, in order to satisfy theditans of the
problem, we must choose the last digit from the{&e®, 6,8}. Thus we have four choices for the last digit. Once this lagt d
is chosen, we have 8 choices for the penultimate digit anditeh for the antepenultimate digit. There are thus

4 x 8 x 7= 224 even numbers which have their digits distinct and staht av4. Similarly, there are 224 even numbers will all
digits distinct and starting with a 6. When they start with, av& have 5 choices for the last digit, 8 for the penultimaid an
for the antepenultimate. This gives<B x 7 =280 ways. The total number is thus 22224+ 280= 728.

491 When the number 99 is written down, we have used
1.9+2-90=189
digits. If we were able to write 999, we would have used
1-9+2-90+ 3-900= 2889

digits, which is more than 1002 digits. The 1002nd digit mhestmong the three-digit positive integers. We have

- . . 813 _
1002— 189= 813 digits at our disposal, from which we can m@kes—ﬂ = 271 three-digit integers, from 100 to 270. When
the 0 in 270 is written, we have used 183-271= 1002 digits. The 1002nd digit is the 0 in 270.

492 4

493 There is 1 such number with 1 digit, 10 such numbers with 2slidi00 with three digits, 1000 with four digits, etc.

Starting with 2 and finishing with 299 we have used ¥ 2- 10+ 3- 100= 321 digits. We need 1978321= 1657 more

digits from among the 4-digit integers starting with 2. N@\%{i—mﬂ =414, so we look at the 414th 4-digit integer starting

with 2, namely, at 2413. Since the 3 in 2413 constitutes tHet32- 414= 1977-th digit used, the 1978-th digit must be the 2
starting 2414.
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494 19990

495 [1] 125, [2] 25, [3] 25, [4] 5+ 23+ 3 6= 29.
496 8

497 4095

498 144

499 First observe that + 7= 3+ 5= 8. The numbers formed have either one, two, three or foutdifihe sum of the
numbers of 1 digit is clearly + 74+ 3+ 5= 16.

There are 4« 3= 12 numbers formed using 2 digits, and hence 6 pairs addingtoh# units and the tens. The sum of the 2
digits formed is §(8)(10) + 8) = 6 x 88=528.

There are 4 3 x 2= 24 numbers formed using 3 digits, and hence 12 pairs addi@gtohe units, the tens, and the
hundreds. The sum of the 3 digits formed ig8(200) + (8)(10) + 8) = 12 x 888= 10656.

There are 4« 3 x 2-1= 24 numbers formed using 4 digits, and hence 12 pairs addi8gtohe units, the tens the hundreds,
and the thousands. The sum of the 4 digits formed {8MD00) + 8(100) + (8)(10) + 8) = 12 x 8888= 106656.

The desired sum is finally
1645284 106564 106656= 117856

500 Observe that

O We find the pairs
{1,6},{2,7},{3,8},...,{45,50},

so there are 45 in total. (Note: the péa, b} is indistinguishable from the pafb, a}.

O If |]a—b| =1, then we have
{1,2},{2,3},{3,4},...,{49,50},

or 49 pairs. Ifla—b| = 2, then we have

{1,3},{2,4},{3,5},...,{48,50},
or 48 pairs. Ifla—b| = 3, then we have

{1,4},{2,5},{3,6},...,{47,50},
or 47 pairs. Ifla—b| = 4, then we have

{1,5},{2,6},{3,7},...,{46,50},
or 46 pairs. Ifla—b| =5, then we have

{1,6},{2,7},{3,8},...,{45,50},

or 45 pairs.

The total required is thus
49+ 48447+ 46+45=235
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501 If x= 0, putm(x) = 1, otherwise puin(x) = x. We use three digits to label all the integers, from 000 to 929b, c are
digits, then clearlyp(100a+ 10b+ ¢) = m(a)m(b)m(c). Thus

p(000) + - - -+ p(999) = m(0O)M(0)m(0) + - - - +m(9)mM(9)m(9),

which in turn
(M(0)+m(1)+---+m(9))®
= (1+1+2+--+9)°
= 46°
97336

Hence
S = p(001) + p(002) +---+ p(999

= 97336- p(000)
— 97336- m(0)m(0)m(0)
97335

510 120

511 479001600; 4838400; 33868800
512 720; 24; 120; 144

513 1440

514 128

515 81729648000

516 249

517 We have
O Thisis 8.

O PermuteXY in 2! and put them in any of the 7 spaces created by the remaining@edPermute the remaining 6
people. Thisis 2 7-6!.

O In this case, we alternate between sexes. Either we stdrawitan or a woman (giving 2 ways), and then we permute
the men and the women. This is44!.

O Glue the couples into 4 separate blocks. Permute the blacksnays. Then permute each of the 4 blocks inThis is
41(21)%,

O Sitthe women first, creating 5 spaces in between. Glue thetogmther and put them in any of the 5 spaces. Permute
the men in 4ways and the women in 4This is 5-4!4!.

525 1816214400
526 548
527 18

528 We have

O Thisis
10!

41312!
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O Thisis
9!
41312!
O Thisis
8!
21312
529 36
530 25

531 126126; 756756

10
545 <2> =45

7\ /5
546 <1> <3> = (7)(10) =70

“ ()

548 <8> 4! =1680
4
549 <225> =300

; 4
550 Let the subsets b& andB. We have either cald\) = 1 or card A) = 2. If card(A) = 1 then there ar{l> =4 ways of
choosing its elements ar(di) =1 ways of choosing the elementsBfIf card(A) = 2 then there an{é) = 6 ways of

choosing its elements ar(di) =1 ways of choosing the elements&f Altogether there are4 6 = 10 ways.

6
551 <3> =20

552 We count those numbers that have exactly once, twice and tinnes. There is only one number that has it thrice

(namely 333). Suppose the numbgris to have the digit 3 exactly twice. We can choose these tvgitipas in (2) ways.
The third position can be filled with any of the remaining nifigits (the digit 3 has already been used). Thus there é%)g
numbers that the digit 3 exactly twice. Similarly, there && 2) numbers that have 3 exactly once. The total required is

hence31+2-9- @ +92<3> =300,

1
5
553 () =10
<3>

5 5 5
554 <1> + <3> + <5> =5+10+1=16.

555 10x 3! =60

556 We have
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O (E+F+S+1)!
O 4!-EIF!ISI!

0 <E+F1+I+1>S!(E+F+I)!

0 <E+F;|+1>S(E+F+I)!

0 21 (F +;+1>SE!(F+I)!
0 . . .
557 We can choose the seven peopl6<|29> ways. Of the seven, the chairman can be chosen in seven wWagarnBwer is

thus -
7( 7) =542640

Aliter: Choose the chairman first. This can be done in twenty waysoftbe nineteen remaining people, we just have to
choose six, this can be done<r1169> ways. The total number of ways is hence@ﬁ) =542640.

0 .
558 We can choose the seven peopIe(%}) ways. Of these seven people chosen, we can choose the chairseven ways

- . 0
and the secretary in six ways. The answer is thi6| '/27 = 3255840
Aliter: If one chooses the chairman first, then the secretary anid/ftha remaining five people of the committee, this can be
done in 20 19- (158> = 3255840 ways.

559 For a string of three-digit numbers to be decreasing, thigsdigust come fror{0, 1,...,9} and so there arél?’()) =120
three-digit numbers with all its digits in decreasing ordethe string of three-digit numbers is increasing, theitdipave to

come from{1,2,...,9}, thus there are{i) = 84 three-digit numbers with all the digits increasing. Ttiakasked is hence
120+ 84=204

. .. (20 -
560 We can choose the four students who are going to take thecfitsint 4> ways. From the remaining ones, we can
(16 . 1 . (8
choose students |6 4) ways to take the second test. The third test can be takénja ways. The fourth |r< 4> ways and

the fifth in (j) ways. The total number is thus

20\ /16\ /12\ /(8)\ /4

4 4 4)\4)\4)"
561 We align the thirty-nine cards which are not hearts first.r€tage thirty-eight spaces between them and one at the

o . 40 .

beginning and one at the end making a total of forty spacesenthe hearts can go. Thus there €r1e3> ways of choosing
theplaceswhere the hearts can go. Now, since we are interested ingamaents, there are Béifferent configurations of the
non-hearts and 13lifferent configurations of the hearts. The total numbercdregements is thuéii) 39113
562 The equality signs cause us trouble, since allowing themdwemtail allowing repetitions in our choices. To overcome

that we establish a one-to-one correspondence betweerdttms(a,b,c,d),0 <a< b < c<d < nandthe vectors
(a,p',d,d),0<d <b' <d <d <n+3. Let(d,b,d,d') = (a,b+1,c+2,d+3). Now we just have to pick four different

: . 4
numbers from the s€i0,1,2,3,...,n,n+1,n+ 2, n+ 3}. This can be done |/<n1— ) ways.
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563 We have
O (T+L+W)!
O 3!T!ILW! =6T!L!W!

T+L+1
IW!
D( W >(T+L).W.

0 <T+i+1> (T +L)IW!

564 The required number is

20 20 20\ .0 [(20\ _
<1>+<2>+---+<20>_2 <O>_1048576—1_1048575
565 The required number is
20 20 20\ .19 (20 20\ 100
<4>+<6>+---+<20>_2 <0> <2>_52428&1 190= 524097
566 We have
13

11
213 = 3326400

1
21212

l
O <12> ) = 13305600

O

O

|

=4989600

1,313

12\ 11
O < 2> 33 = 73180800

10\ 9
< 1) 332 00400

O

567 We have
M +W
o (")
M W
C—-T/\T

SRS RN !

569 2030
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50
570 2
(2)

n+k—1
571( K )

572 [1] For the first column one can put any of 4 checkers, for thvesd one, any of 3, etc. hence there ar8 £- 1= 24.
[2] If there is a column without a checker then there must belamn with 2 checkers. There are 3 choices for this column. In

this column we can put the two checkers@) = 6 ways. Thus there are&(é) 4.4 =1152 ways of putting the checkers.
[3] The number of ways of filling the board with no restrictgis (146> . The number of ways of of of filling the board so that

. (16
there is one checker per column i 4ence the total |s< 4> — 4% = 1564.

573 7560.

73(2) () )
575 (7) o)

575 There are 6513215600 of former and 3486784400 of the latter.
1 12\ (7\ (3\ (1 14 1,

76 (5) (5) (&) (2):(5) (3)2°
7

577 =
Z<k> 99
k=3

5772 —-1—-1— 5 =1024—2—-252=770
n n n—1

77 (5)m-3:(3): ("2 )

12\ /11\ /6\ /4

1 5)\2/\4

20
2) =104857600000000000000000000

582 (22—1)(2*—1)(2°—1) =315




136 Appendix A

586 We have

n—1 n—-1\ (n—1)! (n—1)!

(k—1>+< k) = D=k T K(—k=1)!
_ (n—1)! ( 1 +}>
T h—k—Di(k—1 \n—k Kk
B (n—1)! n
T (h—k—D(k—1)! (n—KKk

n!

~ h—KKk"

_(n
= )
A combinatorial interpretation can be given as follows. [Soge we have a bag withred balls. The number of ways of

choosingk balls isn. If we now paint one of these balls blue, the number of waysobsingk balls is the number of ways of

choosing balls if we alwaymcludethe blue ball (and this can be done(E

choosingk balls if we alwaysexcludethe blue ball (and this can be done(rr]] K 1) ways).

1)) ways, plus the number of ways of

587 The sinistral side counts the number of ways of seleatialgments from a set af, then selectinds elements from those
r. The dextral side counts how many ways to selecktbkements first, then select the remainingk elements to be chosen
from the remainingh — k elements.

e oo s, 98776
OO0 @O+ ()

Now consider a bag withreballs,n of them red andh of them blue. The above sum is counting the number of ways of
choosing 0 red balls amiblue balls, 1 red ball and— 1 blue balls, 2 red balls and— 2 blue balls, etc.. This is clearly the

588 The dextral side sums

number of ways of choosingballs of either colour from the bag, which (SZnn> .

589 11754
590 2844
591 432

592 <195> ;15! /6!

593 29.

595 24
8
596 5!
5
597 175308642

598 Hint: There arek occupied boxes anal— k empty boxes. Align the balls first{kJr 1) .

599 There aren— k empty seats. Sit the people in between those s{ats ::+ 1) .
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608 36

609 36—9=25
14
610
(3)

612 <530> = 19600

o (5) () (@) G} (3) (¥)°

641 Write k = m— (m—k). Use the absorption identity to evaluate

k=0

643 11
644 a=1990
645 True.

646 True.

647 <280> (28)(31?)

15
648 (g )
649 840

651 The 166-th
100
655
('5)
15 15 15 15
656 0, as<1> = <14>, <2> = (13>,etc.

657 0

658 False. Sinistral side {2(5)0) dextral side :<21070>

659 The 62-nd.
12
663 <2>
10\ _,/ 10
064 6<1, 1, 8) 3 <0,4, 6)'

10
065 (2,3,5>

681 co€x = 1—sir’x

n m—k—1
Sma(t)
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683 logex > 1ifx>e

697 Lety = mxand divide the equations obtained and solvenfior
6.2 Putu=x+2,v=y+ 3. Divide one equation by the other.
699 Letu=x+y,v=Xx—YV.

749 The given equalities entail t
n

> _k—x%)?=0.

k=1
A sum of squares is 0 if and only if every term is 0. This givesitasult.

750 The given equality entails that

1

5 (=) + D= xa) 4+ (X1 Xa) >+ (40 —x1)?) = 0.
A sum of squares is 0 if and only if every term is 0. This givesitbsult.

a a+A

751 SinceaB < Abone hasa(b+B) =ab+aB < ab+Ab= (a+A)bso 5 < b1 B’ Similarly
at+A A

B A) =aB+AB< Ab+AB=A(b+B)and so—— < —.

(a+A)=aB+AB< Ab+ (b+B) an SOb+B<B
We have

10 15 10 25 15 10 " 35 25 15
Sincezs— 5 we haveg < 7. Could it be smaller? Observe t 5b 11 and that4< ! Thus by considering the cases with
A q= 7 ' Bt 15 6 =10 y 9

denominatorg| = 1,2, 3,4,5,6, we see that no such fraction lies in the desired interva¢ §mallest denominator is thus 7.

753 We have
(r—s+t)2—t?=(r—s+t—t)(r—s+t+t)=(r—s)(r—s+2t).
Sincet—s<0,r—s+2t=r+s+2(t—s) <r+sand so
(r—s+t)2—t?<(r—s)(r+s) =r2—¢
which gives
(r—s+t)?> <r?—+t2

n
754 Using the CBS Inequality (Theorem 742) E(akbk)ck once we obtain
k=1

n n 12 , q 1/2
Sanes (L) ()
k=1 k=1 k=1

n 1/2
Using CBS again OV<Z aEbE) we obtain
k=1

AN
N
<

=)
N
e
oy
~N

Q

=~N

n
Z abyCy
k=1

IN
N
x~

|| sl
[N
2
v
-
~
~
7N
x~
||
[N
S
v
tv
~
~
Ny
O
=N
v
-
~
N

which gives the required inequality.
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755 This follows directly from the AM-GM Inequality appliedta2,...,n:

yn_ 142440 _ n—;l’
n

where strict inequality follows since the factors are ureddorn > 1.

niY"(1.2--.n)

756 First observe that forintegér 1 <k <n, k(n—k+1)=k(n—k)+k>1(n—k)+k=n. Thus
n2=(1-n)(2-(n—1))(3-(n—2))---((n—1)-2)(n-1) >n-n-n---n=n".

757 Assume without loss of generality that> b > c. Thena > b > cis similarly sorted as itself, so by the Rearrangement
Inequality
a’+b?+ 2 = aa+bb+cc> ab+bc+ ca

This also follows directly from the identity
2
a®+b%>+c?—ab—bc—ca= <a— b%c> + g (b—c)?.

One can also use the AM-GM Inequality thrice:
a®+b>>2ab b?>+c?>2bg c?+a’>2ca
and add.

758 Assume without loss of generality that> b > c. Thena > b > cis similarly sorted as® > b’ > c?, so by the
Rearrangement Inequality
a®+ b3+ c® = aa’+ bb? + c® > a?b+ b’c+ c?a,

and
a®+ b3+ 3 = aa® + b’ + c® > a’c+ b%a+ c?h.
Upon adding
a®+b*+c® =ad + bt?+ ¢ > S (a(b+c) +b¥(c+a)+cH(atb)).

Again, ifa> b > cthen
ab>ac> bc,

thus
a3+ b3+ => a’b+b’c+ c?a = (ab)a+ (bc)b+ (ac)c > (ab)c+ (bc)a+ (ac)b = 3abe
This last inequality also follows directly from the AM-GMéquality, as
(a%h3c®)¥/8 < ++c t;s+ Cs,
or from the identity
a>+b3+c—3abc= (a+b+c)(a®+b?+c?—ab—bc—ca),

and the inequality of problem 757.

759 We applyn times the Rearrangement Inequality

8161+ &by + - +8bn < ayby+agby+ - +anby < &by + &by + -+ &nby
aiby +agbp+---+anby < agbp+aghs+---+anby < @by +ay+--- +anby
aiby +abo+---+anby < agbzt+aghs+---+anbe < @by +ahy+--- +anby
&1b1 + &by + - +&by < abntadbi - tabn1 < &b+ &byt -+ &by

Adding we obtain the desired inequalities.
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761 Use the fact thatb—a)? = (vVb—va)?(vVb+ va)%.

762 Let
A_135 999
T2 4 6 10000
and
g_2.4.6 10000

Clearly,x* — 1 < x2 for all real numbers. This implies that

x—1 < X
X x+1
whenever these four quantities are positive. Hence
1/2 < 2/3
3/4 < 4/5

5/6 < 6/7

9999/10000 < 10000'10001

As all the numbers involved are positive, we multiply bothucons to obtain
135 9999 2 4 6 10000

2'2°6 1000035 7 10001

or A < B. This yieldsA? = A-A < A-B. Now

AB*1234567 9999 10000 1
23456 7 8 10000 10001 10007

and consequentl$? < A-B = 1/10001 We deduce thah < 1//10001< 1/100,

763 Observe that fok > 1, (x+k)? > (x+k)(x+k—1) and so
1 1 1 1

XTKZ2 S T K(XTKk=1)  xtk—1 x+k
Hence
1 1 1 1 1 1 1 1
crD2 T2 T a3 T T im0z T2 S kD) T rD(x12) | (X 2)((x+3))
o 1 " 1

(X+n—2)(x+n—1)  (x+n—1)(x+n)
1 1 1 1

1

+
! + +

X x+1 1x+1 x+12 X+2 1x+3 1
_|_.

1

X

"+1x+n—27x+n—1+x+n—17x+n

764 For 1<i < n, we have

2 2 P P
- (3—(1+}>) S(l—}> <:>if51<1+—)+—<o i=nli=1)
i n n i n n i2 i2n
Thus ] ]
=3 (- (1+7)
rall By - 1 —
— i 2; i +n Xl
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asti =0. Now
i—1
n

(- (ur2)-

765 Expanding the product

i=1

=}

n n n
H 1+4x) = Xt D> Xt > 14 X
] k1

k=1 1<i<j<n

n
since thex, > 0. Whenn = 1 equality is obvious. When > 1 equality is achieved whenZ XiXj = 0.

1<i<j<n
766 Assumea>b > c. Puts=a+b+c. Then

1 1 1

—a<-b<-c= s—a<s—b<s—-c= > >
s—a~_s—b~s—c
1 1 1
and so the sequencad, c andTa s B s ¢ are similarly sorted. Using the Rearrangement Inequalitye:
a b c @ b c a b c a b c

sfa+sfb+sfc = schrsfajLsfb’ sfa+sfb+sfc = sfb+sfc+sfa'

Adding these two inequalities

2<a b+c>2b+c c+a c+a
s—a Ss—b s—a S—b

whence

( a . b . c >
b+c c+a a+b/ —
from where the result follows.

767 From the AM-GM Inequality,
a+b>2vab b+c>2vbgec+a>2/ca

and the desired inequality follows upon multiplication loése three inequalities.

768 By the Rearrangement inequality

ay ay 1
£ > £ > =
2 = 2 = ’
k=1 k k=1 k k=1 K
asay > k, thea’s being pairwise distinct positive integers.
769 By the AM-GM Inequality,
1 1
X1 X2 Xn - n ’

whence the inequality.
770 By the CBS Inequality,
(Lxa+ 1o+ 1) < (124224 +2%) (G438 +-+xF),

which gives the desired inequality.
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771 Put
1<k<m m<k<n

ClearlyTo = —Tn. Since the sequendg, Ty, ..., T, changes signs, choose an ingesuch thafl,_; andTy, have different
signs. Thus eithef,_1 — Tp = 2|ap| or Tp — Tp_1 = 2|ap|. We claim that

Tp|) =< max |ay|.

min( To_
| p—1 T 1<k<n

)

For, if contrariwise bothT,_1| > max and|(Tp| > max , then 2a,| = |Ty—1 — Tp| > 2 max|ay|, a contradiction.
ﬂ p 1| 1gkgn|ak| | p| 1gkgn|ak| Jap| = [Tp—1—Tp| 1§k§n|<'J‘k|




