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1 Introduction

When we are unable to solve some problem in plane geometiy,récommended to try to do
calculus. There are several techniques for doing calculatinstead of geometry. The next text is
devoted to one of them — the application of complex numbers.
The plane will be the complex plane and each point has itsesponding complex number.
Because of that points will be often denoted by lowercaserk, b, ¢, d, ..., as complex numbers.
The following formulas can be derived easily.

2 Formulas and Theorems

Theorem1. e ab| cdifandonlyif asb_c-d
a—-b c-d
e a,b,carecolinear if and only if ?;9 _a-c
a-b a-c
e ab L cdif andonlyif 22 — _£=9
a—b c—d
e ¢ = zacb (fromato b in positive direction) if and only if 2:& —¢f ‘z:;.

Theorem 2. Properties of the unit circle:
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For a chord ab we have _a B = —ab.

at+b-c
ab

If c belongsto the chord ab thenc =

. . . .2
e Theintersection of the tangents froma and b is the point a;j-bb'

) ) ) . . 1
Thefoot of perpendicular froman arbitrary point c to the chord ab is the point p = > (a+ b+
c— abE) .
ab(c+d)—cd(a+b)
ab—cd '
Theorem 3. The pointsa, b, c,d belong to a circle if and only if

e Theintersection of chords ab and cd is the point

a—¢c a—d
b ¢ b_d eR.

Theorem 4. Thetriangles abc and pgr are similar and equally oriented if and only if
a-c_p-r
b—c g-r’

Theorem 5. The area of thetriangleabc is

il a a 1 i
p=-|b b 1 :—(a5+b(_:+c§—5b—5c—6a.>
4 - 4
cc 1
. o . . . . a+Ab
Theorem 6. e Thepoint c dividesthe segment abintheratioA # —1if andonlyif c= T
e Thepointt isthe centroid of the triangle abc if and only if t = a+g+c.

o For the orthocenter h and the circumcenter o of the triangle abc we haveh+20=a+b+c.

Theorem 7. Suppose that the unit circleisinscribed in a triangle abc and that it touchesthe sides
bc, ca, ab, respectively at p,q,r.

2qr
q+r’ r4p p+q
e For the orthocenter h of the triangle abc it holds

e |tholdsa=

he 2(p?q? +g?r2+r2p?+ par (p+q-+r))
(p+a)(@+r)(r+p)

2par(p+9+r)
(p+a)(@+r)(r+p)
Theorem 8. e For each triangle abc inscribed in a unit circle there are numbers u, v,w such
that a = u?,b = v2,c = w?, and —uv, —vw, —wu are the midpoints of the arcs ab, bc, ca (re-
spectively) that don't contain ¢, a, b.

e For the excenter o of the triangle abc it holdso =

¢ For the above mentioned triangle and its incenter i we havei = —(uv+ vw+wu).
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Theorem 9. Consider thetriangle A whose one vertex is 0, and the remaining two are x and y.

(Xy+Xy)(X—Y)
Xy — Xy

Xy(X —y)

e If oisthecircumcenter of A, theno= —= =,
Xy — Xy

o |f histhe orthocenter of A thenh=

3 Complex Numbers and Vectors. Rotation

This section contains the problems that use the main piiepest the interpretation of complex
numbers as vectors (Theorem 6) and consequences of thealasifgheorem 1. Namely, if the
pointb is obtained by rotation of the poiataroundc for the anglep (in the positive direction), then
b—c=¢€?@a-c).
1. (Yug MO 1990, 3-4 grade) Le3 be the circumcenter artd the orthocenter ofNABC. LetQ be
the point such thab bisectsHQ and denote by, T», andTs, respectively, the centroids dfBCQ,
ACAQ and AABQ. Prove that

AT =BT, =CTz = gR,
whereR denotes the circumradius 6fABC.

2. (BMO 1984) LetABCD be an inscribed quadrilateral and i¢t, Hg, Hc andHp be the orthocen-
ters of the triangleBCD, CDA, DAB, andABC respectively. Prove that the quadrilater@BCD and
HaHsHcHp are congruent.

3. (Yug TST 1992) The squar&CDE, CAFG, andABHI are constructed outside the triangiBC.
Let GCDQ andEBHP be parallelograms. Prove thatAPQ is isosceles and rectangular.

4. (Yug MO 1993, 3-4 grade) The equilateral triang&sSB;, CDC;, andDAD; are constructed
outside the triangl&BC. If P andQ are respectively the midpoints BiC; andC;D; and if Ris the
midpoint of AB, prove thatAPQRis isosceles.

5. In the plane of the triangld; A2Az the pointRy is given. Denote withs = As_3, for every natural
numbers > 3. The sequence of poinis, P, P», ... is constructed in such a way that the pdit;

is obtained by the rotation of the poiRt for an angle 129in the clockwise direction around the
point A, 1. Prove that ifPiggs= Py, then the trianglé\; A2A3 has to be isosceles.

6. (IMO Shortlist 1992) LetABCD be a convex quadrilateral for whiohC = BD. Equilateral
triangles are constructed on the sides of the quadrilateetlO;, O,, O3, andO4 be the centers of
the triangles constructed &B, BC, CD, andDA respectively. Prove that the lin€@; O3 andO,04
are perpendicular.

4 The Distance. Regular Polygons

In this section we will use the following basic relation famaplex numbersfal? = aa. Similarly,
for calculating the sums of distances it is of great advamthgoints are colinear or on mutually
parallel lines. Hence it is often very useful to use rotagidiat will move some points in nice
positions.

Now we will consider the regular polygons. It is well-knowrat the equatior” = 1 has exactly
n solutions in complex numbers and they are of the fggm € n |, for 0 < k < n— 1. Now we have
thatxp = 1 andx, = €%, for 1< k< n—1, wherex; = €.

Let's look at the following example for the illustration:

Problem 1. Let AgA1A2A3A4AsA be a regular 7-gon. Prove that

1 _ 1,1
AcAr  AcAr  AoAs
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Solution. As mentioned above let's taka = £X, for 0 < k < 6, whereg = é7. Further, by
rotation arounday = 1 for the angleg, i.e. w = ei%r, the pointsa; anda, are mapped ta; and

. . . . . 1
a, respectively. These two points are collinear wagh Now it is enough to prove thaﬂ%ﬁ =
! +
a’2 -1 az3—1
that

. Sincee = w?, & = g(ay — 1) + 1, anda, = w(az — 1) + 1 it is enough to prove
1 1 1
W (-1 ww-1 -1

After rearranging we gei® + w* + w? + 1 = w° + w* + w. Fromw® = —w'?, w® = —w'%, and
w = —w?® (which can be easily seen from the unit circle), the equéditpws from 0= w2+ w'%+

7
e -1
w8+w6+w4+w2+1:s6+£5+£4+£3+82+s+1:ﬁzo.A
7.Let AgA; ... A4 be aregular 15-gon. Prove that
11 1 1

AAL Ahs | AoAa | AoAT

8. Let AgA; ... An_1 be a regulan-gon inscribed in a circle with radius Prove that for every point
P of the circle and every natural numbar< n we have

ZPA&’“ ( m) nr2m,

9. (SMN TST 2003) LeM andN be two different points in the plane of the triang{BC such that
AM :BM:CM = AN : BN :CN.

Prove that the lindN contains the circumcenter dfABC.

10. LetP be an arbitrary point on the shorter @gA,_1 of the circle circumscribed about the regular
polygonApA; ... An_1. Lethy, hy, ... h, be the distances ¢t from the lines that contain the edges
AoA1, A1Ay, ..., An_1Ag respectively. Prove that

_+_+...+—:—‘
hl h2 hn_]_ hn

5 Polygons Inscribed in Circle

In the problems where the polygon is inscribed in the ciritlis,often useful to assume that the unit
circle is the circumcircle of the polygon. In theorem 2 we sag lot of advantages of the unit circle
(especially the first statement) and in practice we will des tot of the problems can be solved
using this method. In particular, we know that each trianigl@scribed in the circle and in many

problems from the geometry of triangle we can make use of texmumbers. The only problem in

this task is finding the circumcenter. For that you shoul@ @kook in the next two sections.

11. The quadrilateraPBCD is inscribed in the circle with diamet&C. The linesAB andCD
intersect aM and the tangets to the circleBtandC interset alN. Prove thaMN 1 AC.

12. (IMO Shorlist 1996) LeH be the orthocenter of the triangteABC andP an arbitrary point of
its circumcircle. LetE the foot of perpendiculadBH and letPAQB andPARC be parallelograms. If
AQ andHRintersect inX prove thatEX | AP.

13. Given a cyclic quadrilateradBCD, denote byP andQ the points symmetric t@ with respect to
AB andAD respectively. Prove that the lif®Q passes through the orthocenterefABD.
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14. (IMO Shortlist 1998) LetABC be a triangleH its orthocenterQ its incenter, andR the cir-
cumradius. LeD be the point symmetric t with respect tBC, E the point symmetric t@® with
respect taCA, andF the point symmetric t€ with respect toAB. Prove that the pointd, E, andF
are collinear if and only iDH = 2R.

15. (Rehearsal Competition in MG 2004) Given a trian§RBC, let the tangent aA to the circum-
scribed circle intersect the midsegment paralld&@at the pointd;. Similarly we define the points
B; andC;. Prove that the point&;,B;,C; lie on a line which is parallel to the Euler line afABC.

16. (MOP 1995) LetAA; andBB; be the altitudes ofAABC and IetAB # AC. If M is the midpoint
of BC, H the orthocenter ofAABC, andD the intersection oBC andB;C,, prove thaDH 1 AM.

17. (IMO Shortlist 1996) LetABC be an acute-angled triangle such tB& > CA. Let O be the
circumcircle H the orthocenter, anl the foot of perpendiculaEH. If the perpendicular frork to
OF intersect<A at P, prove thatzFHP = /BAC.

18. (Romania 2005) LedoA1A2AzA4As be a convex hexagon inscribed in a circle. BgtA,, A, be
the points on that circle such that

Aol || AcAs, Aoy || AsAo AsA || AcAo.

Suppose that the line%,Az andAxA, intersect at;, the linesA,As andApAy intersect atd;, and
the linesAjA; andApA; intersect ai,.

If the lines ApAz, A1A4, and AAs are concurrent, prove that the linBgA;, AsA] and AA; are
concurrent as well.

19.(Simson’s ling If A, B, C are points on a circle, then the feet of perpendiculars fromarhitrary
pointD of that circle to the sides &&BC are collinear.

20. Let A, B, C, D be four points on a circle. Prove that the intersection of $irasons line
corresponding té\ with respect to the trianglBCD and the Simsons line correspondinggev.r.t.
AACD belongs to the line passing througland the orthocenter gk ABD.

21. Denote byl (S;PQR) the Simsons line corresponding to the pdwith respect to the triangle
PQR. If the pointsA, B,C, D belong to a circle, prove that the lin&; BCD), | (B; CDA), | (C,DAB),
andl (D, ABC) are concurrent.

22. (Taiwan 2002) LefA, B, andC be fixed points in the plane, arigithe mobile point of the cir-
cumcircle of AABC. Letla denote the Simsons line of the poAtvith respect toABCD. Similarly
we definelg, Ic, andlp. Find the locus of the points of intersection of the lingslg, Ic, andlp
whenD moves along the circle.

23. (BMO 2003) Given a triangl&BC, assume thafB # AC. Let D be the intersection of the
tangent to the circumcircle cAABC at A with the lineBC. Let E andF be the points on the
bisectors of the segmentd and AC respectively such tha&E andCF are perpendicular t&C.
Prove that the point®, E, andF lie on aline.

24. (Pascal's Theorem If the hexagomPABCDEF can be inscribed in a circle, prove that the points
ABNDE, BCNEF, andCD NFA are colinear.

25. (Brokard’s Theorem) Let ABCD be an inscribed quadrilateral. The lindB andCD intersect
atE, the linesAD andBC intersect inF, and the line$\C andBD intersect inG. Prove thaD is the
orthocenter of the trianglEF G.

26. (Iran 2005) LetABC be an equilateral triangle such thiB = AC. Let P be the point on the
extention of the sid8C and letX andY be the points o\B andAC such that

PX | AC, PY | AB.

Let T be the midpoint of the arBC. Prove thaPT L XY.
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27. Let ABCD be an inscribed quadrilateral and ket L, M, andN be the midpoints oAAB, BC,
CA, andDA respectively. Prove that the orthocenters'oAKN, ABKL, ACLM, ADMN form a
parallelogram.

6 Polygons Circumscribed Around Circle

Similarly as in the previous chapter, here we will assumé tina unit circle is the one inscribed
in the given polygon. Again we will make a use of theorem 2 asykeially its third part. In the
case of triangle we use also the formulas from the theorem atic&that in this case we know
both the incenter and circumcenter which was not the caseiprevious section. Also, notice that
the formulas from the theorem 7 are quite complicated, ss litighly recommended to have the
circumcircle for as the unit circle whenever possible.

28. The circle with the centdD is inscribed in the triangl&BC and it touches the sidésB, BC, CA
in M, K, E respectively. Denote bl the intersection oMK andAC. Prove thaOP | BE.

29. The circle with cente® is inscribed in a quadrilaterABCD and touches the sidés3, BC, CD,
andDA respectively irK, L, M, andN. The linesKL andMN intersect at. Prove thaDS | BD.

30. (BMO 2005) LetABC be an acute-angled triangle which incircle touches thesgheand AC
in D andE respectively. LeX andY be the intersection points of the bisectors of the anglkSB
and ZABC with the lineDE. LetZ be the midpoint oBC. Prove that the triangIXYZ is isosceles
if and only if ZA=60°.

31. (Newtons Theoren) Given an circumscribed quadrilate SBCD, let M andN be the midpoints
of the diagonal#C andBD. If Sis the incenter, prove thal, N, andSare colinear.

32.Let ABCD be a quadrilateral whose incircle touches the sil®8sBC, CD, andDA at the points
M, N, P, andQ. Prove that the line8C, BD, MP, andNQ are concurrent.

33. (Iran 1995) The incircle o\NABC touches the sideBC, CA, andAB respectively irD, E, and
F. X,Y, andZ are the midpoints oEF, FD, andDE respectively. Prove that the incenter&ABC
belongs to the line connecting the circumcenteraafyZ and AABC.

34. Assume that the circle with centetouches the sideBC, CA, andAB of AABC in the points
D,E,F, respectively. Assume that the lin@sandEF intersect aK, the linesED andKC atL, and
the linesDF andKB atM. Prove that M is parallel toBC.

35. (25. Tournament of Towns) Given a triangd8C, denote byH its orthocenter| the incenter,
O its circumcenter, an the point of tangency dBC and the incircle. If the linesO andBC are
parallel, prove thafO andHK are parallel.

36. (IMO 2000) LetAH;, BH,, andCH3 be the altitudes of the acute-angled triangBC. The
incircle of ABC touches the sideRBC, CA, AB respectively inl, T,, andTs. Letlq, I, andlz be the
lines symmetric tdH,H3, H3H1, HiH» with respect tal, Tz, T3Ti, andT; T, respectively. Prove that
the linesly, 15,13 determine a triagnle whose vertices belong to the incirtieBL.

7 The Midpoint of Arc

We often encounter problems in which some point is define@ tihhé midpoint of an arc. One of the
difficulties in using complex numbers is distinguishing #res of the cirle. Namely, if we define the
midpoint of an arc to be the intersection of the bisector efd¢hrresponding chord with the circle,
we are getting two solutions. Such problems can be relgtigaby solved using the first part of
the theorem 8. Moreover the second part of the theorem 8 givedternative way for solving the
problems with incircles and circumcircles. Notice that to@rdinates of the important points are
given with the equations that are much simpler than thodeamptevious section. However we have
a problem when calculating the poirdse, f of tangency of the incircle with the sides (calculate
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them!), so in this case we use the methods of the previoumeeth the case of the non-triangular
polygon we also prefer the previous section.

37. (Kvant M769) LetL be the incenter of the triangldBC and let the linesAL, BL, andCL
intersect the circumcircle oAABC at Ay, B1, andC; respectively. LeR be the circumradius armd
the inradius. Prove that:

LA; -LC, LA-LB

@A =R ) e SABC) &

* O sase) TR

38. (Kvant M860) LetO andR be respectively the center and radius of the circumcircléhef
triangle ABC and letZ andr be respectively the incenter and inradius’oABC. Denote byK the
centroid of the triangle formed by the points of tangencyhef incircle and the sides. Prove tizat
belongs to the segme@K and thatOZ : ZK = 3R/r.

39. Let P be the intersection of the diagona€ and BD of the convex quadrilatersdBCD for
whichAB = AC = BD. Let O andl be the circumcenter and incenter of the triani§®. Prove that
if O+ 1 thenOIl L CD.

40. Let | be the incenter of the trianghBC for which AB #£ AC. Let O; be the point symmetric to
the circumcenter ofAABC with respect tdBC. Prove that the point4, 1,01 are colinear if and only
if ZA=60.

41. Given a triangleABC, let A1, B1, andC; be the midpoints oBC, CA, andAB respecctively. Let
P, Q, andR be the points of tangency of the incirdsvith the sidedBC, CA, andAB. LetP;, Q1, and
R; be the midpoints of the ar@3R, RP, andPQ on which the point#, Q, andR divide the circle
k, and letP,, Q,, andR; be the midpoints of arc@PR, RQP, andPRQ respectively. Prove that the
linesA;P1, B1Q1, andCyR; are concurrent, as well as the linkgP;, B1Q», andCyRy.

8 Important Points. Quadrilaterals

In the last three sections the points that we've taken amlinite. those withknown coordinates
have been "equally improtant” i.e. all of them had the sam@perties (they've been either the
points of the same circle, or intersections of the tangehtseosame circle, etc.). However, there
are numerous problems where it is possible to distinguighpmint from the others based on its
influence to the other points. That point will be regardedhasdrigin. This is particularly useful
in the case of quadrilaterals (that can't be inscribed asurirscribed around the circle) — in that
case the intersection of the diagonals can be a good chaitedmrigin. We will make use of the
formulas from the theorem 9.

42.The squaresBB'B”, ACC'C”, BCXY are consctructed in the exterior of the triangBC. Let P
be the center of the squaBEXY. Prove that the line€B”, BC”, AP intersect in a point.

43. Let O be the intersection of diagonals of the quadrilat&BCD andM, N the midpoints of the
sideAB andCD respectively. Prove that ®M 1 CD andON _L AB then the quadrilatera@dBCD is
cyclic.

44. Let F be the point on the baskB of the trapezoidABCD such thatDF = CF. Let E be the
intersection ofAC andBD and O, and O, the circumcenters ofADF and AFBC respectively.
Prove thaFE L O,0,.

45. (IMO 2005) LetABCD be a convex quadrilateral whose si&andAD are of equal length but
not parallel. Lee andF be interior points of the sideBC andAD respectively such th&E = DF.
The linesAC andBD intersect aP, the linesBD andEF intersect aQ, and the line€F andAC
intersect aR. Consider all such triangld¥QR askE andF vary. Show that the circumcircles of these
triangles have a common point other thHan

46. Assume that the diagonals ABCD intersect inO. LetT; andT, be the centroids of the triangles
AOD andBOC, andH; andH; orthocenters oAAOB and ACOD. Prove thafl1 T, L H1H».
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9 Non-unigue Intersections and Viete’s formulas

The point of intersection of two lines can be determined ftbemsystem of two equations each of
which corresponds to the condition that a point corresporalline. However this method can lead
us into some difficulties. As we mentioned before standarthous can lead to hon-unique points.
For example, if we want to determine the intersection of timdes we will get a quadratic equations.
That is not surprising at all since the two circles have, inggal, two intersection points. Also, in
many of the problems we don’t need both of these points, hestirection of the line determined
by them. Similarly, we may already know one of the points. dthbcases it is more convenient to
use Vieta's formulas and get the sums and products of theéas&spdhus we can avoid "taking the
square root of a complex number” which is very suspiciousatn by itself, and usually requires
some knowledge of complex analysis.

Let us make a remark: If we need explicitly coordinates of of#he intersection points of two
circles, and we don’t know the other, the only way to solve firioblem using complex numbers is
to set the given point to be one of the initial points.

47. Suppose that the tangents to the cifclat A andB intersect aC. The circlel'; which passes
throughC and touche#\B at B intersects the circl€ at the pointM. Prove that the lindM bisects
the segmenBC.

48. (Republic Competition 2004, 3rd grade) Given a cirklaith the diametelAB, let P be an
arbitrary point of the circle different frorA andB. The projections of the poil to ABis Q. The
circle with the centeP and radiusPQ intersectsk at C andD. Let E be the intersection oED

andPQ. LetF be the midpoint ofAQ, andG the foot of perpendicular frork to CD. Prove that
EP = EQ=EG and thatA, G, andP are colinear.

49. (China 1996) LeH be the orthocenter of the trianghd8C. The tangents from to the circle
with the diameteBC intersect the circle at the poinfsandQ. Prove that the point8, Q, andH are
colinear.

50. Let P be the point on the extension of the diagoA@lof the rectanglBCD over the poinC
such tha’BPD = ZCBP. Determine the rati®B : PC.

51. (IMO 2004) In the convex quadrilaterABCD the diagonaBD is not the bisector of any of the
anglesABC andCDA. Let P be the point in the interior oABCD such that

/PBC = Z/DBA and/ZPDC = ZBDA.

Prove that the quadrilaterABCD is cyclic if and only if AP = CP.

10 Different Problems — Different Methods

In this section you will find the problems that are not clogelated to some of the previous chapters,
as well as the problems that are related to more than one afhtigters. The useful advice is to
carefully think of possible initial points, the origin, atlde unit circle. As you will see, the main
problem with solving these problems is the time. Thus if yoelia competition and you want to
use complex numbers it is very important for you to estimheetime you will spend. Having this
in mind, it is very important to learn complex numbers asyeasl possible.

You will see several problems that use theorems 3, 4, and 5.

52. Given four circlesky, ko, k3, ks, assume that; Nky = {A1,B1}, knNks = {A2, Bz}, ksnks =
{A3,B3}, ksNky = {A4,B4}. If the pointsAg, Ay, Az, A4 lie on a circle or on a line, prove that the
pointsB;, By, Bz, B4 lie on a circle or on a line.

53. Suppose thadBCD is a parallelogram. The similar and equally oliented trlaaGD andCB are
constructed outside this parallelogram. Prove that tleglieFAE is similar and equally oriented
with the first two.
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54. Three triangleKPQ, QLP, andPQM are constructed on the same side of the segiRénin
such away that QPM = /PQL = a, /PQM = ZQPK = 3, and/PQK = ZQPL=y. Ifa < B <y
anda + 3+ y= 180, prove that the trianglE&LM is similar to the first three.

55. *(Iran, 2005) Leth be a prime number and; a convexn-gon. The polygonsis, ..., H, are de-
fined recurrently: the vertices of the polygdp, 1 are obtained from the verticesldf by symmetry
throughk-th neighbour (in the positive direction). Prove tihitandH, are similar.

56. Prove that the area of the triangles whose vertices are fgmrpendiculars from an arbitrary
vertex of the cyclic pentagon to its edges doesn’t depenti®cttoice of the vertex.

57. The pointsA, B1, C; are chosen inside the triangdBC to belong to the altitudes fromy, B, C
respectively. If

S(ABC1) + S(BCA1) + S(CAB;) = S(ABC),
prove that the quadrilaterah B;C;H is cyclic.

58. (IMO Shortlist 1997) The feet of perpendiculars from thetioersA, B, andC of the triangleABC
areD, E, endF respectively. The line throudb parallel toEF intersectsAC andAB respectively in
Q andR. The lineEF intersectdBC in P. Prove that the circumcircle of the triandh&R contains
the midpoint ofBC.

59. (BMO 2004) LetO be a point in the interior of the acute-angled triangBC. The circles
throughO whose centers are the midpoints of the edge&ABC mutually intersect aK, L, and
M, (different fromO). Prove thatO is the incenter of the trianglKLM if and only if O is the
circumcenter of the triangl&BC.

60. Two circlesk; andk; are given in the plane. L&t be their common point. Two mobile points,
M; andM, move along the circles with the constant speeds. They pemsghA always at the same
time. Prove that there is a fixed poithat is always equidistant from the poifMls andMs.

61. (Yug TST 2004) Given the squawBCD, let y be i circle with diameteAB. Let P be an
arbitrary point onCD, and letM andN be intersections of the line&P and BP with y that are
different fromA andB. Let Q be the point of intersection of the lin€M andCN. Prove thaQ € y
andAQ: QB =DP: PC.

62. (IMO Shortlist 1995) Given the triangl&BC, the circle passing througB andC intersect
the sidesAB and AC again inC’ and B’ respectively. Prove that the lin®&B’, CC’, andHH’ are
concurrent, wherel andH’ orthocenters of the triangléd8C andA'B'C’ respectively.

63. (IMO Shortlist 1998) LetM andN be interior points of the triangl&BC such thatMAB =
/NAC andZMBA = ZNBC. Prove that

AM'ANJFBM-BNJFCM'CN_
AB-AC  BA-BC CA-CB

1.

64. (IMO Shortlist 1998) LetABCDEF be a convex hexagon such théB + /D + /F = 360° and
AB-CD-EF = BC-DE - FA. Prove that

BC-AE-FD =CA-EF-DB.

65. (IMO Shortlist 1998) LetABC be a triangle such thatA = 90° andZB < ZC. The tangent at
Ato its circumcirclew intersect the lind8C atD. Let E be the reflection of with respect tBC, X
the foot of the perpendicular frolto BE, andY the midpoint ofAX. If the line BY intersectsw in
Z, prove that the lin@&D tangents the circumcircle gkADZ.

Hint: Use some inversion first...

66. (Rehearsal Competition in MG 1997, 3-4 grade) Given a tiaA8C, the pointsA;, B; andC,
are located on its edg®&C, CA, andAB respectively. Suppose thatABC ~ AAB.C;. If either
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the orthocenters or the incenters 4ABC and AA;1B;C; coincide prove that the triangBC is
equilateral.

67. (Ptolomy’s inequality) Prove that for every convex quadrilateA8CD the following inequality
holds
AB-CD-+BC-AD > AC-BD.

68. (China 1998) Find the locus of all poinissuch that

DA-DB-AB+DB-DC-BC+DC-DA-CA=AB-BC-CA.

11 Disadvantages of the Complex Number Method

The bigest difficulties in the use of the method of complex hars can be encountered when dealing
with the intersection of the lines (as we can see from the fiétt of the theorem 2, although it dealt
with the chords of the circle). Also, the difficulties mayiaerwhen we have more than one circle in
the problem. Hence you should avoid using the comples nwrbgroblems when there are lot of
lines in general position without some special circle, oewkhere are more then two circles. Also,
the things can get very complicated if we have only two csdfegeneral position, and only in the
rare cases you are advised to use complex numbers in suahi@itst The problems when some of
the conditions is the equlity with sums of distances betwesmcolinear points can be very difficult
and pretty-much unsolvable with this method.

Of course, these are only the obvious situations when yott caunt on help of complex num-
bers. There are numerous innocent-looking problems wiheredlculation can give us increadible
difficulties.

12 Hints and Solutions

Before the solutions, here are some remarks:

e In all the problems it is assumed that the lower-case lettermte complex numbers corre-
sponding to the points denoted by capital letters (somatittnere is an exception when the
unit circle is the incircle of the triangle and its center @dted byo).

e Some abbreviations are used for addressing the theoremex&mple T1.3 denotes the third
part of the theorem 1.

e The solutions are quite useless if you don't try to solve ttubfem by yourself.

e Obvious derivations and algebraic manipulations are gldpp\ll expressions that are some-
how "equally” related to botla andb are probably divisible bg— b ora+ b.

e To make the things simpler, many conjugations are skippeeieier, these are very straight-
: . -1
forward, since most of the numbers are on the unit circle bay satisfya = .

o If you still doesn’t believe in the power of complex numbersy are more than welcome to
try these problems with other methods— but don’t hope toesallof them. For example,
try the problem 41. Sometimes, complex numbers can give kioter solution even when
comparing to the elementar solution.

e The author has tried to make these solutions available atively short time, hence some
mistakes are possible. For all mistakes you've noticed andther solutions (with complex
numbers), please write to me to the above e-mail address.



Marko Radovanovi¢: Complex Numbers in Geometry 11

1. Assume that the circumcircle of the trianglac is the unit circle, i.es=0and|a| = |b| = |c| = 1.
According to T6.3 we havk = a+ b+ ¢, and according to T6.1 we conclude that g=2s=0, i.e.

g=—-a—b—c. Using T6.2 we get; = b+;:+q = —g and similarlyt, = —g andtz = —%. We
4a

now havea—t;| = ’a+ g’ = 3‘ = g and similarly|b—ty| = |c—t3| = g The proofis complete.

We have assumed thBt= 1, but this is no loss of generality.

2. For the unit circle we will take the circumcircle of the quiaberalabed. According to T6.3 we
haveh; =b+c+d,hy=c+d+a, he =d+a+b, andhg = a+ b—+c. In order to prove thahbcd
andhahphchy are congruentit is enough to establjgh-y| = |hy—hy|, for all x,y € {a,b,c,d}. This
is easy to verify.

3. Notice that the poinh ca be obtained by the rotation of the paardroundb for the angleg in the

positive direction. Since’Z = i, using T1.4 we geta—b)i=a—h,i.e.h=(1—i)a+ib. Similarly
we getd = (1—i)b+icandg= (1—i)c+ia. SinceBCDE is a square, it is a parallelogram as well,
hence the midpoints @k andbd coincide, hence by T6.1 we hade-rb=e+c, ore= (1+i)b—ic.
Similarly g = (1+i)c—ia. The quadrilateral®eph and cgqd are parallelograms implying that
p+b=e+handc+q=g+d,or

p=ia+b—-ic, q=-ia+ib+c
In order to finish the proof it is enough to show tlyata be obtained by the rotation pfarounda
by an angleg, which is by T1.4 equivalent to

(p—a)i=p-b.
The last identity is easy to verify.

4. The pointsh,, ¢1, di, are obtained by rotation dX ¢, d aroundc, d, anda for the angleg in the
positive direction. If we denoté™3 = ¢ using T1.4 we get

(b—c)e=bi—c, (c—d)e=c1—d, (d—a)e=di—a
Sincep is the midpoint ofb;c; T6.1 gives

_ bi+c _ £b+C+(l—£)d
o2 2 '

ec+d+(1-¢)a
2 m
thatg can be obtained by the rotation pfaroundr for the angleg, in the positive direction. The

lastis (by T1.4) equivalent to

. . . b .
Similarly we getq = . Using T6.1 again we get= %. It is enough to prove

(p—r)e=q-r,
which follows from

—a+(e—1)b+c+(1—¢) —ca—b+ec+d
p-—r= 2 ) q_r:fa

ande? —e+1=0(since 0=e3+1= (e +1)(e?2—e+1)).

5 lete=€3. According to T1.4 we havpyx 1 — a1 = (Pk — &1)€. Hence

Pei1 = Epk+(1—&)akrr=€(epr-1+(1—€)a) +(1—€)akr=-..
k+1 )
£k+1p0+ (l— 8) Zkngrlfla{,.
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Now we havepigos= Po -+ 665(1— £)(£2a; + £a, + ag), sincee® = 1. That meani996= po if and
only if £2a; + €ap +az = 0. Using thaly = 0 we concludez = —eay, and it is clear thah, can be

obtained by the rotation @f; around 0= a; for the angle§ in the positive direction.

6. Since the point is obtained by the rotation dif aroundo; for the angleéT = ¢ in the positive

. . . . . a—be
direction, T1.4 impliego; —b)e =0, —a,i.e.01 = 1—s Analogously

o __b—ce o _ c—de o _d-ae
271 ¢ T 1-eg T 1o
03 02— 04
Sinceo,03 L 0004 is equwalentto_ === O_,It is enouogh to prove that
01 — 03 2 — Y4

a—c—(b—dje  b-d—(c—a)e

a—c—(b—d)e b—d—(c—a)e’

i.e. that(a—c)b—d —(b—d)b—de+(a—c)a—ce —(b—d)a—cee = —a—c(b—d)+ (b—
d)b—de — (a—c)a—ce+ (a—c)b—dee. The last follows frome = % andja—c|®> = (a—

c)a—c=|b—d]?=(b—d)b—d.

7. We can assume thaj = € for 0 < k < 12, wheres = e'% By rotation of the pointas, az, and
a4 aroundag = 1 for the anglesv®, w®, andw?® (herew = €7715), we get the pointsy, a,, anda),
such that takve da s, a7, a},a,, &, kolinearne. Sada je dovoljno dokazati da je

1 1 1 1

a1 & 1 & 1 a1

From T1.4 we have] —ap = (a1 — ag) w®, &, —ag = (a2 — ap) w° anda), — ap = (ay — ap) w?>, as well
ase = w? andw® = 1. We get

11 1 w4
PP -1) (-1  P(P-1) w1

Taking the common denominator and cancelling wifh— 1 we see that it is enough to prove that
B+ b+t W+ 1= 0+ WP+ 0+ 1) + 0¥ (WP + 1) - W

Sincew™ = —1 = —w?°, we have thato!®> K = — w3, The required statement follows from=0

028+ w26+ 024+ w022+ 20+ '8+ W8+ M+ W12+ 104 W8+ WP+ Wt + P+ 1 = 05;0:11 —o.

8. [Obtained from.lrgroé Rajkovit] Take the complex plane inieththe center of the polygon is the
origin and letz= €&. Now the coordinate o in the complex plane ig. Let p (Ip| = 1) be the

coordinate of. Denote the left-hand side of the equality®yWe need to prove th&=
We have that

n-1 n-1 2m
5=y PA"= 3 |2 p|
k=0 k=0

Notice that the arguments of the complex numt(e?ks— p) -z X (wherek € {0, 1, 2,...,n}) are
equal to the argument of the complex number p), hence

(Z*—p)-z ¥
1-p
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is a positive real number. Sin¢z ¥| = 1 we get:

n-1
= 2K 2 2 ntZ-p zm 2m K O(ZZK_ p)zm
S= —p[M=|1—p|®™. <—> =|1—ppPm =
k;)l p| 11— p| kZO T p 11— p| A

SinceSis a positive real number we have:

-

Now from the binomial formula we have:

55 () 2o ||

S:

After some algebra we get:

b

nig( )ZZK' W (—p)?m

or, equivalently

Since fori # mwe have:

szl m n| m
z ToR>0-m 1’
for 2M0-M _ 1 = 0 andZ(-™ — 1 £ 0, we have

n-1_

Z ZZk(l—m) -0

K=0
Fori = mwe have:

n—-1 n—

From this we conclude:

Using|p| = 1 we get

and that is what we wanted to prove.

. . . o _ 1 '
9. Choose the circumcircle of the trianglbc to be the unit circle. Thea= 0 anda = " The first
of the given relations can be written as

_ Ja—m|lb—n| 1 la—m2b—n?2 (a—m)(@a—m)(a—n)(a—n)
“Ja—nb-m " [a-nPb-m?  (a—n)@-n)(b_m)b_m)
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After some simple algebra we g&t—m)(@ —m)(b—n)(b —n) = (1 — g — am 4 mm)(1— E -

_ m _ _ n mn amn mmn ,_ bmn —_ .
bn+m)=1-—--am+mm- -+ —+ — — —— —bn+ —— + abmn — bmmn 4 nn —
_ a b ab b b a
mhn . - —
—, —amnn-+mmnn. The value of the expressiga— n)(a —n)(b—m)(b —m) we can get from
the prevoius one replacing eveayvith b and vice versa. The initial equality now becomes:
mn amn mmn | _

1 m am-+ mm n+ + bn +
a b ab b b

bmn __ ——  _ mnn  _ _ _ _
T+abmn—bmmn+nn—7—amnn+mmnn
m ., _ —_ n mn bmn mmn _ amn
= 1-—-bm4+mmM—- -4 —+— - ———an+——+
b a ab a a b

__ —_ _ mnn | _ _
abmn —ammn +nn — o bmnn + mmnn.
Subtracting and taking — b out gives

m _ n (a+tbppn mmn _ (@+bpmn __ mnn _ _

@ M@ @ @ " @ Mt —mm=0
SinceAM/CM = AN/CM holds as well we can get the expression analogous to the atioee
everyb is exchanged witle. Subtracting this expression from the previous and taking out we
get

m n mn mmn mn mn
“abc Tabc be abc | be  abc
Writing the same expression witlt instead ofbc (this can be obtained from the initial conditions
because of the symmetry), subtracting, and simplifyingggiein — nm = 0. Now we haverg%g =

n—o . .
= and by T1.2 the points, n,o are colinear.

10. [Obtained from Uro$ Rajkovi€] First we will prove that ftine pointsp, a, andb of the unit
circle the distance frorp to the lineab is equal to:

2l@—p)b-p)l.

Denote byqg the foot of perpendicular from to ab and use T2.4 to get:

q= %(p+a+b—a—;).
Now the required distance is equal to:

1 ab
la-pl=3 ’—p+a+b—3’-

Since|p| = 1 we can multiply the expression on the right-byp which gives us:

1 -

‘E(p - (a+b)p+ab)‘.
Now it is easy to see that the required distance is indeed &mua

1
Sl@=p)(b=p).
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If we denotez = €1, the coordinate ofy is 2. Now we have:
2-he=|(Z*—p)(Z2-p)l.
The vector(z* — p) -z ¥is colinear with 1- p, nece

(Z—p)-z*
1-p

is a positive real number. Hence foe {1,2,--- ,n—1} it holds:

K_ ). (252 _ ). 7 (2k-1)
he = (22 p) (22 pz) z ‘1_p‘2’
2-(1-p)
since|z] = 1. We also have:
(1-p)-Z"2-p-z™! 2
We need to prove that:
n—1
A F BB
2:(1-p)? e
1
—2 —(n—1
A-p-(@2-p 2D o
2-(1-p)?

After cancelling and multiplying bg we get:

n-1 ZZk -1
2@ @ A @

sincez" = —1. Denote bySthe left-hand side of the equality. We have:

(Z—p)—(F2-p
S__S z (< — ) (szz p))'

This implies:

1 n-1 1 1
(1- Z—Z)S: kzl (szz_ p z&K— p> :

After simplifying we get:

1 1 1 (®?2-p-(1-p

(1-5)s=

Sincez2" 2 = = (fromzn 1) we get:

-1
(1-p)-(Z"2-p)’

S:

g.e.d.

1-p Z"2-p (1-p-@2-p)

15
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11. Assume that the unit circle is the circumcircle of the quiadkeralabcd. Sinceac is its diameter
we havec = —a. Furthermore by T2.5 we have that

M ab(c+d)—cd(a+b) 2bd+ad-—ab

ab—cd N d+b
According to T2.3 we have that= szbdd hencem—n= a(tit_db) andm—-n = %. Now
we have

m-n_ a-c _ 2

m-n a-c '

hence accordingto T118n L ac, g.e.d.

12. Assume that the unit circle is the circumcircle of the trilengbc. Using T6.3 we havé =
. 1 ac . .
a+b+c, and using T2.4 we have= - (a+ b+c— —). Since pagb is a parallelogram the

midpoints ofpg andab coincide, and according to T6gl= a+ b— pand analogously=a+c— p.
Since the pointg, a,q are colinear, we have (using T1.2)

Xxza_a-gq_p-b__,
X—a a—-q p-b
. _  pb+a’-ax . . . .
or, equivalentlyi = —bp Since the pointh, r, x are colinear as well, using the same theorem
we get
x—h h—r b+p .
x-h h-t b+p
ie. b b
x—a—b—c—kar—p-F—p
a_c

i:

bp
Equating the expressions obtainedXfowre get

X= %<2a+b+c—p—b?p).

By T1.1itis sufficient to prove that

The last follows from

1< bp aC) _ bep+ b’p—abc—ac®  (b+c)(bp—ac)

e x=sPte 2 % 2bc = 2oc

by conjugation.

13. We will assume that the circumcircle of the quadrilatedad is the unit circle. Using T2.4 and

T6.1 we get

ab ad
p:a+b—F, q:a+d+F (1).

Let H be the orthocenter of the trianghBD. By T6.3 we havéh = a+ b+ d, hence according to
T1.2itis enough to prove that

>

p—h g-
5 h (2)

=l

Ol
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Chaning forp from (1) we get

ab
p—h: a.‘l‘b—?—a—b—d :a_bd
5-h 1.1 ¢ 1 1 1 ¢’

and since this expression is symmetric with respebtaadd, (2) is clearly satisfied.

14. Assume that the unit circle is the circumcircle of the triengbc and assume that,b/,c’ are
feet of perpendiculars from, b, c respectively. From T2.4 we have

1 bc 1 ca 1 ab
r_ = M /= v« /= _
af2<a+b+c a)’ b 2(a+b+c b)’ o 2(a+b+c c)'
Sinced, by, ¢’ are midpoints ofd, be, cf respectively according to T6.1 we have
d:b+c—b—c, e:a+c—a—c, f:a+b—a—b.
a b c
By T1.2 the colinearity of the pointd, e, f is equivalent to
d—-e f-e
d-e f-e
ac bc ab—c(a+b) bc—a(b+c)

Sinced—e=b—a+ 5 A (b—a) and similarlyf —e= (b—c)

by conjugation and some algebra we get

bc '

0= (a’b+a’c—abc)(c—a—b) — (cCa+c?b—abc)(a—b—c)

= (c—a)(abc— a’h — ab® — a’c— ac® — b’c—bc?). (1)

Now we want to get the necessary and sufficient conditiofHioe 2 (the radius of the circle is 1).
After the squaring we get

_ 1 1 1
— h2—hF L 102
4 = |h?=hh=(a+b+o)(+:+7)
a?b+ ab? + a%c+ ac? + b2c + bc? 4 3abe
- abc - (2

Now (1) is equivalent to (2), which finishes the proof.

15. Assume that the unit circle is the circumcircle of the trirapc. Leta’,b’,c’ be the midpoints
of bc, ca, ab. Sinceaa; L ao and sincea, b, ¢’ are colinear, using T1.3 and T1.2, we get

a-a  a-o0 o2 b—c b-a
a-a a-o0 " b-d P-a

From the first equality we have = % and since from T6.b' = %C andc = a_erb we also

_ 2 _
havea; = ab+ b;;—;: aal. By equating thtca2 above expressions weajet o (a+at2)jgi)c 3abc.
o _ b°(a+b+c)—3abc _ c“(a+b+c)—3abc
Similarly by = 2007 — ac) andc; = 2(C — 2aD) . Now we have
- a’(a+b+c)—3abc b?(a+b+c)—3abc  cla—-b)(a+b+c)
1 — V1= - = -

2(a2—bc) 2(b? —ac) 2(a?2—bc)(b2—ac)’
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and it is easy to verify the condition fagb; L ho, which is according to T1.3:

ai—b1  h-o  (atb+c)abc

a — b1 h—o  ab+bc+tca’

Similarly a;c; L ho, implying that the pointsy, ap, andag are colinear.

16. Assume that the unit circle is the circumcircle of the trieergbc. By T2.4 we have thalh; =

%(a—k b+c— %C) andc; = %<a+ b+c— %)) according to T6.In= b%c and according to
T6.3h=a+ b+ c. Now we will determine the poird. Sinced belongs to the chorlic according

to T2.2d = >+¢—d
we have

. Furthermore, since the poirttg, c1, andd are colinear, according to T1.2

—-b; bi-c a(%)_g)

d 2
d-b; b;-c¢ 1<c b)

=—a.

alb ¢
2h, _
Now we have thatl = w, hence
a?b+ a’c + ab?+ ac® — b?c — bc? — 2abc
d= .
2(a2—bc)
- d—h m-—a .
In order to prove thadh L am(see T1.3) itis enough to prove thgt—H = ———. This however
follows from
b?c+ bc? + ab® + ac® — a’b — a’c — 2a°
d—h =
2(a?—bc)
_ (b+c—2a)(ab+bc+ca+a?)
B 2(a%—bc)
-2
andm—a= w by conjugation.

2
17. Assume that the unit circle is the circumcircle of the trieengbc. By T2.4 we have thaf =
1 ab . . . o .
> <a+ b+c— ?). Sincea, c, p are colinear andc is a chord of the unit circle, according to T2.2

we havep = %’. Sincefo L pf using T1.3 we coclude

From the last two relations we have

_ aby
_ ;2acf —(a+o) _ <a+b+c—?)c
acf — f b2 4 c?

Let Zphf = ¢, then
f —h p—h
ab+ bc+ ca+ c?

Sincep—h=—b
incep R

, and by conjugation

2
5_h :_c(ab+bc+ca+b)

ab(b?+c?) 7
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2
¢ p_ dtbotcate F_podbtbotreate

20 N 2abc
c-a e'2“ E o and using T1.2/20 — g We have proved that = m+ ¢ or a = ¢, and

- c
, We see that'?? = £ On the other hand we

have=

since the first is impossible, the proof is complete.

18. First we will prove the following useful lemma.

Lemmal. Ifa, b, c, &, b/, ¢ are the points of the unit circle, then the lines aa’, b, cc’ concurrent
or colinear if and only if

(a—b)(b-Cc)(c—a)=(a-C)(b-a)(c-b).

Proof. Let x be the intersection ada’ andblb’, and lety be the intersection of the lines’ and
cc’. Using T2.5 we have

_aad(b+b')—bb'(a+d) _ad(c+c)—cc(a+a)
— by Y aa’ —cc/ '

Here we assumed that these points exist (i.e. that noa& ¢ifbb’ andaa’ || cc’ holds). It is obvious
that the linesad, bb/, cc’ are concurrent if and only ¥ =y, i.e. if and only if

(ad'(b+b') —bb'(a+a))(ad —cc') = (ad(c+ ) —cc/(a+a))(aa’ — bb).

After simplifying we getaa’b+ aa'b’ — abb/ — a'b/b — bed’ — bed’ = aac+aa'd — bd'c— bb'c’ —
acc’ —a'cc, and since this is equivalent {@—b')(b—c)(c—a) = (a—c)(b—a)(c—b'), the
lemma is proven

Now assume that the circumcircle of the hexagon is the urgkeciUsing T1.1 we get

-8y q-d -—a B8 - -3

®-a a-a, - p-a X— agz-a,

aay Aody . Ao
hencea, = == .a, = i @ = ——. Similarly, using T2.5 we get
€y o 2T M Yy g g
o _ %03(32+33) — Bag(a+33) _ (g — ) +as(d — &)
%= apag — axay as — ap '
Analogously,
o= o(@s—as) +as(as—a) (81 —a)+a (a0 —a)
as—ay P a—ay '

Assume that the pointa;,a],az are the other intersection points of the unit circle with khes
apay, aydy, ayag respectively. According to T1.2

ag—ay aj—ag

T w B w
. az(2ag—ay — aay — a2
and sincep — aj = 3(280 — 8 — ) + 33 aO,Wehave
a3— Qo
o g (Po—P @2 o (B—aw)(a—a)
P —/7 -

aoaz (a3 — ag) (@ — &) aau(ag — ao)(ap — aj)

Analogously we get
(az—ay)?(a1 — )
" aau(ar—ag) (@ -

—adg = as
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(a4 —a0)?(a1 — &)

aoas(ay —as) (a5 —ay)’

(22— au)?(as — )

agau(as —ao)(az —ag)

(20— a2)*(85 — a)

aodz(as — au) (3 — ag)

Using the lemma and the concurrence of the liags, ajas, andayas (i.e. (ap—a1)(apy —az)(as —

as) = (ap —as)(ay —a1)(as — ag)) we get the concurrence of the linagaj, asay, andayaz, i.e.
(ap—a])(ax—a3)(aa—ag) = (ap — aZ) (ap — a]) (as — &), since they, obviously, intersect.

/! /!
g — =@ —H=

//

a5 —ap=a3—ay =

dg-a=az—as=

19. [Obtained from Uro$ Rajkovit] Assume that the unit ciridethe circumcircle of the triangle
abc. If A1, B;, andC; denote the feet of the perpendiculars, we have from T2.4:

a = 1 b+c+m—b—C
1 = 2 m 5
1 ac

by = > <a+c+m—ﬁ), and

c1 = 1 a+b+m—@

1= 2 m)/)’

We further get:
ab—bc

aj—c @t _(c—a)(m-b) a;—c;
by—c1 ab—ac  (c-b)(m-a) by-Ci’

c—b+
and, according to T1.2, the poimg, B;, andC; are colinear.

20. The quadrilaterafBCD is cyclic, and we assume that it's circumcircle is the untilei. Letay,
ap, andaz denote the feet of the perpendiculars frano bc, cd, anddb respectively. Denote blyy,
b,, andbs the feet of the perpendiculars frdmto ac, cd, andda respectively. According to T2.4 we
have that

a = %<a+b+c—%c), = %<a+b+d—b§), az = %(a+c+d—%)
by = %<b+a+c—%c), by = %(b+c+d—%), b = %(b+d+a— d—ba)

The pointx can be obtained from the condition for colinearity. Firstrfrthe colinearity ok, a;,a;
and T1.2 we have that

1 d bd bc
Xx—a & -—a E(C_ +€‘5) bed

X—an a1—-a 1,1 1 a a
aAT® (dth b))

2
and after simplifying

abc+ acd + abd + bed )

1
x—é(a+b+c+d— 2

bed
Similarly from the colinearity of the points b;, andb, we get

)_(:

a.

x—}(a+b+c+d—

abc+ acd + abd + bed )
2 b

X = b

)

acd
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and from this we conclude L
X = §<a+ b+c+d).

Leth=a+c+d (by T6) be the orthocenter of the triangled. In order to finish the proof, according
to T1.2 it is enough to show that

1
On the other hangd—c= > (a+ b+d-— c), from which the equality is obvious.

21. Using the last problem we have that the intersection of thesli(a; bcd) andl(b;cda) is the

pointx = > <a+ b+c+ d), which is a symmetric expression, hence this point is thergeiction of
every two of the given lines.

22. Using the last two problems we get the locus of points is thefkall the points of the form
1 . _ . . .
X= > (a+ b+c+ d), whend moves along the circle. That is in fact the circle with theuuac%

a+b+c _ . . . .
and center+7+, which is the midpoint of the segment connecting the cerftéreogiven circle

with the orthocenter of the triangébc.

23. Assume that the unit circle is the circumcircle of the triergpc. From T1.3 and the condition
ad | ao we have that

d—a a—o 2
= — = = = —a 5
d—a a—-o
and after simplifyingd = a; . Since the pointb, c,d are colinear antic is the chord of the unit
2
_ _ -2
circle, accordingto T2.2 = W and solving the given system we gkt a(b;rch)bcabc.
Sinceebelongs to the perpendicular bisectoabfwe haveoe 1 ab. Accordingto T1.3 antg;g =
__a;t_) =ab, ie. e= 3. Frombe L bc, using T1.3 again we geib_—f = —P;E = bc, or
a-b o ab o b-e o b-c
equivalentlye = % = %. Her;ceef: %. Similarly we havef = a(b _—ac). Using T1.2
we see that it is enough to prove thd&t__T == _g. Notice that
dof — a’(b+c)—2abc a(b—c) a’b®+ 3a’bc—ab’c—2a’h —abc?

a2—hc b—a (a2—bc)(b—a)
ab(a—c)(b+c—2a)
(@2—hc)(b—a) ’

ac(a—b)(b+c—2a)
(a2—bc)(c—a)

and similarlyd —e= . After conjugation we see that the required condition is

easy to verify.

24. [Obtained from Uro$ Rajkovi€] Assume that the unit cirédethe incircle of the hexagon
ABCDEF. After conjugating and using T2.5 we get:

a+b—(d+e
ab—de

b+c—(e+f)
bc— ef

c+d—(f+a)

m= = P= cd— fa

)
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hence:
L (b—e)(bc—cd+de—ef + fa—ab)
B (ab— de)(bc— ef) ’
and analogously:
AP (c—f)(cd—de+ef — fa+ab—bc)

(bc—ef)(cd— fa)
From here we get:

m-n
n-p (f-c)(ab—de)’

. = = = = - 11 1 _
Since the numbers, b, ¢, d, e, andf are equal toa, b d e and T respectively, we see
that it is easy to verify that the complex number on the Iafirdh side of the last equality equal to
its complex conjugate, hence it is real. Now according t&@The pointdM, N, andP are colinear,
g.e.d.

25. Assume that the quadrilaterabcd is inscribed in the unit circle. Using T2.5 we get
ab(c+d)—cd(a+Db)

¢ = ab—cd )
¢ ad(bJrc)—bc(aer)mboxanol
ad —bc
~ac(b+d)—bd(a+c)
g = ac—hd -

In order to prove thab = 0 is the orthocenter of the triangédg, it is enough to prove thatf | eg
andog L ef. Because of the symmetry it is enough to prove one of thesedlateions. Hence, by
T1.3itis enough to prove that

From (1) we have that
ad(b+c) —bc(a+d)

f—-o ad — bc _ ad(b+c)—bc(a+d) 3)
f-o  (b+c)—(a+d) a+d—(b+c) ’
bc—ad

or equivalently

(a— d)(ab?d — ac?d) + (b — c)(bcd? — a?be)
(ab—cd)(ac—bd)

_ (a=d)(b—c)((b+c)ad— (a+d)bc) (4)

B (ab— cd)(ac— bd)

e—g=

and by conjugation ( i y ( )
- _ (a=d)(b—c)(b+c—(a+d
€-9= (ab— cd)(ac— bd) ®)-

Comparing the expressions (3),(4), and (5) we derive thersint.

26. Assume that the unit circle is the circumcircle of the triergpc and assume that= 1. Then
= . . — 1 .
c=b andt = —1. Sincep belongs to the chorlc, using T2.2 we get thgt = b+ b p. Sincex

belongs to the chorab, in the similar way we get = 1+E_ X. Sincepx || ac by T1.1 we have
p-x_a-c__1
p-x a-c b
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i.e. X = pb+p — xb. From this we gek = b(bpjll). Similarly we derivey = —Ei l. According to
T1.3 it remains to prove that ¥ = P~ E _pri . This follows fromx—y = (p+Hb-1)
X—y p—t p+1 b+1
and by conjugation
541 1 _
g_g_ Pt G-Y ooy
1.4 b+1

27. Assume that the unit circle is the circumcircle of the qulatieralabed. Using T6.1 we havik =
a+b b+c c+a d

, ——,m=——andn= L We want to determine the coordinate of the orthocenter

of the trlangleakn. Let hy be that point and denote lhy, hs, andh, the orthocenters dfkl, clm,
anddmn respectively. Thekh; 1 anandnh; 1 ak. By T1.3 we get

k—h — —h -k
RS S L Y oL S S
k—hy a—n n—h a—k
Since
a-n —?_9 = —ad,
a-n a-d
we have that _
o kad —k+h;
1 ad ’
Similarly from the second of the equations in (1) we get
o nab—n+h;
1 = 7ab .
Solving this system gives us that
he — 2a+b+d
1=
Symmetricaly
2b+c+a 2c+d+b 2d+a+c
hy = 2 hs = 2 hy = 2

and sinceh; + hg = hy + hy using T6.1 the midpoints of the segmehig; andh,h, coincide hence
the quadrilaterah,hyhshy is a parallelogram.

28. Assume that the unit circle is the circumcircle of the triengbc. By T2.3 we have thaa =

2 . 2mk ' . : . . :
sl b= . Let’s find the pointp. Since the pointsn, k, andp are colinear andnk is the
e+m m+k

chord of the unit circle, by T2.2 we have that= %kk—p Furthermore the pointg, e, andc are

colinear. However, in this problem it is more convenientdtice thatpe | oe and now using T1.3
we have

__—__e2
= — = = = =

and after simplifyingp = 2e—p

= Equating the two expressions fprwe get

(m+k)e—2mk
e€-mk



24 Olympiad Training Materials, www.imomath.com

In order to finish the proof using T1.3 it is enough to provatga_—g = —%. This will follow
all 6_
from
o_p_ &mk)—2mk
m+k
and after conjugating—b = % andp = mka_;ZZe.

29. Assume that the circle inscribed abcd is the unit one. From T2.3 we have that

2nk 2kl 2l 2
a= 20 p= S o AN g M)
n+k k41 | +m m-+n

Using T2.5 we get
_ kl(m+n) —mn(k+1)
5= Kl —mn - @)

According to T1.1 it is enough to verify that

From (1) we have that
kl(m+n) —mn(k—+1)

b—d=2 3
(k+h(m+n) ° 3)
and after conjugating
= = m+n—(k+1I)
b-d=—"7-—"2. 4
k+1)(m+n) “)

From (2) we have that
s _ ki(m+n)—mn(k+1) (5)

S kI —mn
and comparing the expressions (3),(4), and (5) we finish thefp

30. [Obtained from Uro$ Rajkovi€] LeP be the point of tangency of the incircle with the liBE.
Assume that the incircle is the unit circle. By T2.3 the caoates ofA, B, andC are respectively

a_ 2qr’ _ 2pr oo 2pq_
q+r pP+r P+q
. 1 pr Pq 2pr
Furthermore, using T6.1 we get= =(b+¢)= — + ——, y=ab=a——, andz= Bc =
9 9 2( +©) p+r+p+q y p+r B

ﬁ% (a,B € R). The values ofo and 3 are easy to compute from the conditions rq and

zerq:
g PENETD ;5 (PHA+a)
2(p+a)r 2(p+r)q
From here we get the coordinatesyadindz usingp, g, andr:
_PE+0) gz PEA)
(p+a) (p+1)

We have to prove that:

/RAQ = 60° < XYZ is equilateral.
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The first condition is equivalent tdQOR = 60 i.e. with
r=q- d?2m/3
The second condition is equivalent(@— x) = (y — x) - €773, Notice that:

., p@+r) ([ pr pg \ _ _pr(r—a
YT bt <p+r+p+q> (p+a)(p+T)

:p(p+q)_( pr_, _Pq ): pa(q—r)
(p+r)  \p+r p+a/ (p+a)(p+r)

Now the second condition is equivalent to:

pa@-r) _ _p(r—9 ms

(p+a)(p+r)  (p+a)(p+r)

)

i.e. withq= —r ™3 It remains to prove the equivalence:
r=qé?"% e q=—re"3,
which obviously holds.

31.According to T1.1 it is enough to prove that

m—-0 n-0

m—o n-—

ol

If p,q,r,sare the points of tangency of the incircle with the sidbgbc, cd, da respectively using

T2.3 we get
me at+c  ps gr  pgs-+ prs+ pgr+ars

2 p+s qg+r  (p+9(a+r)
pP+g-+r+s
(p+s)(q+r)

m _ pgr+ ps+ prs+ars

b

and after conjugatinm = and

m p+g+r+s
. L - m n .
Since the last expression is symmetriqir, r, s we conclude thairﬁ == as required.

32. Assume that the incircle of the quadrilategddcd is the unit circle. We will prove that the
intersection of the linesp andng belongs tdbd. Then we can conlude by symmetry that the point
also belongs tac, which will imply that the linesmp, nq, ac, andbd are concurrent. Using T2.3 we
have that

_2mn de 2pq
- m+n"  p+q
If x is the intersection point afip andnq, using T2.5 we get

«— mp(n+a) —ng(m+ p).

mp—nqg

We have to prove that the pointsh,d are colinear, which is according to T1.2 equivalent to sgyin
that

b—d b-

b-d b-Xx
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2 2pg _ ,m(p+d)— pa(m+n)

This follows fromb —d = = and
m+n  p+q (m+n)(p+a)
b_x — 2 _ mp(n+g)—ng(m+p)
m-n mp—nq

mnp — mn?q — m?pg -+ n?pg + mfng — mn?p
(mp —na)(m-+n)
(m—n)(mn(p+q) — pg(m+n))
(m+n)(mp — nq)

)

by conjugation.

33. Assume that the unit circle is the incumcircle of the triaadc. Using T7.3 we have that the
circumecenter has the coordinate

_ 2def(d+e+f)

~ (d+e)(e+ ) (f+d)

Let’s calculate the coordinate of the circumcerdgrnf the trianglexyz. First, according to T6.1

X+Yy
f d+ f d 01— —5~
we have thak = %, y= % andz= er Moreover by T1.3 we have tha{%
o Ty
Xy (f_g)/z — —ed, and simplifying
X-y  (6-d)/2
LA
5 __ 2 2f !
1 = ed )
d.ef
. T o TogThl f
and similarlyol % By equating we gat; = ertt d. Now by T1.2 it is enough to
prove thaL - 3_ |1 , Which can be easily obtained by conjugation of the preveymsessions
foro andol

I . . _ . 2fd
34. Assume that the incircle of the triangbc is the unit circle. Using T7.1 we gbt= —— and

f+d
c= %. From some elemetary geometry we conclude khiatthe midpoint of segmemf hence
by T6.1 we havk = %. Let’s calculate the coordinate of the pomt Sincem belongs to the
chordfd by T2.2 we haven = *n Similarly we have that the pointsm, k are colinear and
k— -k . _ E k kb—kb : :
by T1.2 we getR =T l.e.m= b— K + bk Now equating the expressions for
one gets o
e (f+d)(b—Kk)+ (kb —kb)fd
B (b—k)fd+b—k '
. 3fd—de— f?—ef — —  (e+f)e—d)fd
—k= kb —kb=—-+~-~——~—
Sinceb 20+ ) andkb — kb S(f1d) we get

 def?d+efd?—e?d?— 22— 2f2d?— f3e
~ 6efd—e2d —ed? —ef2 — e2f — d2f — df2
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and symmetrically
N 4e?fd +efd? — f2d? — €212 — 262d? — €3f
~ 6efd—e?d —ed2—ef2 —e2f —d2f —df2’
- m-—n i—d 2 o
By T1.3itis enough to prove thaﬁ = g = —d*. This however follows from
_ P _

(e— f)(defd —ed? — fd? — f&? — f2e)

M= N = Sefd—2d—ed?—ef?— &2f —d2f —df2’

by conjugation.

35. Assume that the unit circle is the inrcumcircle of the trilergbc. Assume thak, |, andm are
the points of tangency of the incircle with the sidesca, andab, respectively. By T7 we have that

2kim(k+ 1 +m) . 2(K212 +12mP 4 mPk2 + KIm(k + | +m))
(k+D (1 +m)(m+k)’ N (k41 (I +m)(m+ k)

Since the segmeni® andbc are parallel we have thad | ik, which is by T1.3 equivalent to
o—i k—Ii 2 . . .
s = T = —k*. After conjugating the last expression fmbecomes

- —i

Kim(k-+1+m) +k3(kl +1m+mk) =0. (x)

Let's prove that under this condition we haae || hk. According to T1.1 it is enough to prove that
a-o_h-k According to T7.1 we have that= ——, and
a—-o0 h-k m+1

2mi 2Kmk+1+m) 2mPI?

-0

Tmrl kDI Fm(mtk) (kD +m)(m+k)

Now we get that it is enough to prove that

12m?
k2 -

h—k
h-k
Notice that

2(K212 4-12mP + mPk® + KIm(K+ | 4-m))

h—k = —k
(k+ 1) (I +m)(m+k)
K212 4 k2P + 22?4+ k2l m+ kI 2m+ ki m? — K2l — k®m—k2Im
(k+ D) +m)(m+Kk)
Km(k+1 +m) — k2(k+1 +m) + k212 + 212m? 4?12
(k+D)( +m)(m+k)

) N (KT k)2 4 12nmP
= (accordlng to ( ) ~ k+ )T+ m)(m+k)
_ i A _ (K Im+mk)?((k+1+m)> + k%)
= (accordlng to ( ) (kT M2k D (1 +Fmy(mEk)

After conjugating the last expression flor- k we get

2 2
Fopo  (krl+m?+k

k+DH (I +m)(m+k)’
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and using the last expression for- k we get

h—k (K+Im+mk)? |2m2
h—k  (k+I1+m)? _< ()>

which completes the proof.

36. Assume that the incircle of the triangdbc is the unit circle. Then using T7.1 we have: " Jlrf .
1+

Our goal is to first determine the poind. Fromhatz L it3 by T1.3 we have

hs—t3 tg—i 2

e — = — = - — —t3,

hs —13 t3 —1
. — 2t3—hs hs—c t3—i "
i.e.hy = 3t2 . Furthermore fronths || it and T1.1 we hav%_—_ = t3 - =t3. Writing the

3 3 —C 31

similar expression fonz gives

1 _ tyt, —t2
h :—(Zt c—ctz):t =< 3
3=\t 3) =Bt 1

2
Similarly we obtairh, =t; + . In order to determine the line symmetridighs with repsect

3
totots it is enough to determlne the points symmetriditcandhs with respect tdstz. Assume that

p2 and ps are these two points and lg§ andhj be the feet of perpendiculars from andhs to the

1
line tot3 respectively. According to T2.4 we hatg = ~ <t2 +13 —t2t3h3> hence by T6.1

ta(t +15)
o =2h,—hy=—~2—32
P 2 to(ty +13)
. t1(t2 +12
and symmetricallyz = M Furthermore
ta(ty +t2)
Do — Ps — (5 +15) (t—to)

tita(ts +to) (t1 +t3) ’
and if the point belongs top, p3 by T1.2 the following must be satisfied:

—P2  Po—P3 _¢2
= 1-

X—P2 P2—Ps

Specifically ifx belongs to the unit circle we also hax& , hence we get the quadratic equation
totex® — ty (15 +t5)x + tftztg —0.

. tat tit3 . . . . .
Its solutions are; = 1_2 andx; = W and these are the intersection points of the fipps with the
tat tot
andz, — 24 2l3

3
unit circle. Similarly we gey;, = tltz, Yo = fots a = —=,2 = —, which finishes the proof.
13 11 o 12}

37. Assume that the circumcircle of the trianglbc is the unit circle. Letu,v,w be the complex
numbers described in T8. Using this theorem we get that—(uv+ vw+wu). By elementary
geometry we know that the intersection of the laleand the circumcircle of the trianglabc is
the midpoint of the arbc which doesn’t contain the poirst That means; = —vw and similarly
by = —uwandc; = —uv.
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(a) The statement follows from the equality
=&y [l—ci]  Ju(v+w)|-w(u+Vv)|  [v+w - ju+v]

1

I — b o uvtuw w2 (U V) (VW)

(b) If x is the point of the tangency of the incircle with the sibethenx is the foot of the
. . . . . 1 -
perpendicular from the poirntl to the sidebc and T2.4 impliex = > <b+ c+ 1 —bcl ) and

consequently:\l—x\:% (u+v)(v:w)(w+u) 2%\(u+v)(v+w)(w+u)\. Now the
required equality follows from
I—al-lI-b _ [u+V)(u+w)|-|(u+Vv)(v+w)
I —c |w(u+ V)|
= |(u+v)(Vv+w)(w+u)|.
(c) By T5 we have that
RS P S PO I A
S )_szl//vvzl 5(111)—mla\/w1,
hence
S(ABC)  uw2+whZ A — vAw2 — utv2 — whu?
S(A1B:1C1) UVW(V2W + UW2 + U2V — UV2 — U2w — vW2)

(U2 — V2) (UW 4 VW — UV — W2) (UW + VW + UV + W?)
UVW(U — V) (UV + W2 — Uw — VW)
(U4 W) (VW uw - uv + W)
uvw
(U+V)(v+w)(W+u)
uw '

Here we consider the oriented surface areas, and subsgrdloé modulus from the last ex-
pression gives us the desired equality.

38. First solution. Assume that the circumcircle of the trianglec is the unit circle andi, v,w are
the complex numbers described in T8. Ideg, f be the points of tangency of the incircle with the

sidesbc, ca, ab respectively. By T2.4 we have that= % <a+ b+z— abi) _1 (uz +VV W —uv—

2
VW — WU + W) By symmetry we get the expressions &andf and by T6.1 we get
1/, uw(u+v)  wW(V+w)  wu(w-+u)y
kfs(quvz—kvv2 UV — W — WU == o > )7
(UV 4 W+ W) (U 4 UV 4 UW? 4 UPW - V2W -+ VW2 — 4uvw)

6uvw

- . Z—0 k-—o . " . : .
Now it is easy to veri 22 == 5 which is by T1.2 the condition for colinearity of the points

z k,0. Similarly we also have

lo—2z |uv + vw+ wu|
lz—kl | (v v wu) (LA + UV + uw? -+ UAW -+ VPW -+ W2 4 2uvw)
6uvw
6 _6R 3R

b

(U+V)(vEw(w+u)]  2r  r
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which completes the proof.
Second solution. Assume that the incircle of the triangddc is the unit circle and let, e, f
denote its points of tangency with the sidassca, ab respectively. According to T7.3 we have

thato = @ id;f((ed:fi(t‘l)d) and according to T6.k = %. Now it is easy to verify that
g%; = % which is by T1.2 enough to establish the colinearity of thenism, z k. We also have
that
’ d+e+f ’
lo—7 |(d+e)(e+f)(f+d)| 3 3R
lz—K|

d+e+f‘ (d+e)(e+ f)(f+d)|  r~
3

39. Assume that the circumcircle of the trianglec is the unit circle and let, v,w be the complex
numbers described in T8 (hepe= w?). According to this theorem we have= —uv — w — wu.
Since|a—c| = |a—b| by T1.4 it holds

c—a=d4Cp_gq).
By the same theorem we have

—w—u?  ,Zpaby2 2
VW — U el2Pvu

_ - -’
—VW — u? V2 — U2

- w
hences£Pab _ - Now we have

o uAw+ UV — vAw

b

v
2 2 2
. VAW + VAU — U“W o
and symmetrically = % By T1.3itis enough to prove that
c-d o—i uw+w+w
c-d o-1  u+tviw

(U2 —Vv2) (UV+ VW + wWu)
uv

This follows fromc—d =

by conjugation.
40. Assume that the circumcircle of the trianglbc is the unit circle. By T8 there are numbers
u,v,w such thata = u?,b = v?,c = w? and the incenter is= —(uv+w+wu). If o denotes the

. 1
foot of the perpendicular fromto bc then by T2.4 we have' = > <b+ c), and by T6.10, = 20' =
b+c=Vv?+w?. By T1.2 the points,i,0; are colinear if and only if

op—a a-—i
o-a a-i
Since
o—a o01—a Vw2 — U2 2202
= TCT- YT ARY YV e and
0p—a 01—a U(V2+w?)—vaw
a—i _ uu+v+w)+w , 5
— = 5U™VW = U“W,
a—i wwH+uw+uv+u
we get

Vw4 w2 — P — (U + W2 — vPW?) = (vw— U?) (V2 + w2 +w) = 0.
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This means that eithaw = u? or V2 +w? +w = 0. If w = u? then by T6.1 the points? and
—ww belong to the same radius heradg is isosceles contrary to the assumption. This means that
V2 +w? 4+ww= 0. We now want to prove that the triangle with the vertieesvw, w? is equilateral. It
(V+w)?

VW

is enough to prove thatZ |w? +w| = |v+w| which is equivalent to & (V+w)(V +W) =
and this tov® +w? +w = 0. Since/boc = 120° we havea = 60°.
41. Assume that the incumcircle of the trianglbc is the unit circle. According to T8 there are
complex numbers, v,w such thaip = u?,q = Vv, r =w? andp; = —w, 0y = —Wu,r; = —uv. Then
p2 = v, g2 =wWu,r2 = uv. By T7.1 we gave

22w W22 202w

Vw2 T w2 u2 u2 w2’

hence by T6.1
w2u2 uv2 uv2 Yana Yaa w2u?

+ = + C2= + :
W2 @ T 2 v rw? T Ve w w2

a =

If the pointn is the intersection of the lines p; andbyg; then the triplets of pointén,as, p1) and
(n,bs,q;) are colinear and using T1.2 we get

n-a _ a-p h-b b-q

Nn-ay a—-p1 n-—b; b —q

Solving this system gives us

uvA VAW wAu?
(U2 +V2) (V2 +W2) (W2 + u?)
uW(UBV2 4 U2V 4 u3wW2 + 1PwWP + V3w + v2vv3)
(U2 +Vv2) (V2 +wW2) (W2 + U?)
3uPVPWA (U2 + V2 4 W)
(U2 +v2)(v2 +w?) (W2 + u?)
202VPW2 (UV 4 W+ Wu)
(U2 +v2)(V2+w?) (W2 +1?)

Since the above expression is symmetric this point belamgg{. The second part of the problem
can be solved similarly.

42. Assume thag is the origin. According to T1.4 we haw# —a=€™?(c—a), i.e. ¢/ =i
Similarly we geth” = —ib. Using the same theorem we obtain c = €2(b—c¢), i.e. x= (1—

i)c+ibhenceby T6.= ﬂb+ TC Denote byg the intersection of the lindsc andap. Then

the pointsa, p,q are collnear as well as the poirt”, q. Using T1.2 we get
-q b-cd qg-b
-q° b-¢ gq-b
(1-i)b+(1+i)c

(1+i)b+(1-i)c’

. These two imply

a-p a
a-p a

and from the second we get the

From the first equation we conclude thpt g
q(b +ic) —i(bc+bc)
b—ic

_ i(bc+bec)((1+i)b+ (1—i)c) B (bc+be)((L+i)b+ (1—i)c)

2(ibb — 2bc + 2bc + 2ict) (b—ic)(b+ic)

formulag =
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Denote byg' the intersection odp andcb”. Then the pointa, p,d are colinear as well as the points
b”,c,q. Hence by T1.2

a-p a-q b’-c g-c
a-p a-q B -c q-c
, e (1—i)b+(1+i)c q(c —ib) +i(bc+bc)
— —
The first equation giveg = ¢ (T+)bT (1=0)c’ and the second = crib . By

the equating we get
, (bc+be)((1+i)b+ (1—i)c)
B (b—ic)(b+ic)

henceq= ¢, g.e.d.

43. Assume that the origin is the intersection of the diagorias,0 = 0. From the colinearity of
a,0,candb,0,d using T1.2 we geac = ac andbd = bd. By T6.1 we gem= %b andn C;d.

Sinceom L cd andon 1 abby T1.3

c+d a+b

2 -0 a—b 2 _o__C—d
c+d 67 a-b’ a+b_67 c—d’
2 2

From these two equations we get

 da(ab—2bb +ab) andc — da(ab+ 2bb +ab)
~ b(ab—2aa+ab) ~ b(ab+2aa+ab)

The last two expressions givab+ ab)(aa — bb) = 0. We need to prove that the last condition is
sufficient to guarantee thatb, ¢, d belong to a circle. According to T3 the last is equivalent to
c—db—-a b-dc-
c-db-a b-dc—

Since the point®,d, o are colinear, by T1. L — = E we getg = = 3_ If
b-o b a—c a

ab +ab=0then B

2ab(a—b)

c—d=d— ——,
b(ab—2aa+ ab)

and the last can be obtained by conjugatiormaf= bb, then

_ d(a—b)(ab+ab)
~ b(ab—2aa+ab)’

and in this case we can get the desired statement by corgagati

44. Let f be the origin and led = ¢ (this is possible sincEC = FD). According to T9.2 we have
that

ad(a—d) bc(b —¢)
01 = =, 02 = =
ad—ad bc—hbc
Sincecd || af according to T1. L—; = % = —1,i.e.a = —aand similarlyb = —b. Now we
c
have b T
oy = S@+9  _cb+o)

c+c c+c
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Let's denote the poine. From T1.2 using the colinearity @& c,e andb,d, e we get the following
two equations

a-c e-a b-d e-b
a-c e—-a b-d e-b
. _. a(c+c)—ela+c b(c+c)—eb+c _
From these equations we get= (c+ a c( +©) ande = (c+ t)) E( + ). By equating
these two we get
~ac—hc
~a+c—-b-c
. . . : 01—0p f—e . .
Using T1.3 the conditiorfe 1 0107 is equivalent tco_ %~ T 3 which trivially follows
1 — U2 -

fromoy — 0, = a(_:_Cbb conjugation

45. Assume that the poirg is the origin. Letac be the real axis and lefcpd = ¢. Thena=a,b =
Be?.c=y,d= d€?, wherea,,y,d are some real numbers. Léf =T. If |a— f| = gla—d|,
thenle—c| =¢lb—c| hence by T6..a— f = ¢(a—d) ande— c= (b —¢). Thus we have

f=a(l—¢)+¢edMN, e=y(l—¢)+epfMN.
Sinceq belongs topd we have that] = plN and sinceq also belongs tef by T1.2 we have that

i e—; hence

f-q e-—
a(l—e)+(ed—p)

|-I =
a(1—£)+(£5—p)%

After some algebra we géfl — %)(1— €) {(a —y)(ed—p)—e€a(d— [3)} = 0. Sincell # +1

(because/CPD < 18(°) and e # 1 we getp = 3{6 — afi__f)}. Similarly we getp = (1—

g)|la— 6(50_—By) , Wherep is the coordinate of the point By T9.2 we have

— — rl l
o mg_q):pp(p—pﬁ):pn_pn
! rq—q n-— i nz—1
pp PPI_I
d(a—y) a(d—-p)
- (1-e)a- 557 |n-els- ==~ -
N n2—-1 ’

For any other position of the poieton the linead such thatae = €ad the corresponding center of
the circle has the coordinate

&G—W}H_%5 a@—Bq

5-p  a-y

(1—8)[01— Ty

_ M.
© nz—1
Notice that the direction of the line;0, doesn’t depend og ande. Namely if we denotéd =
G—M andeé—Mwe have
o0-p a-—y

01—0p Al +B
01—-0;  A+BM
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Thus for every three centers, 0,03 it holds0,0,||0,03 hence all the centers are colinear. Since all
the circles have a common point, the circles have anothenemmpoint.

Remark. We have proved more than we've been asked. Namely two condiiD = BC and
BE = DF are substituted by orgE /BC = DF /AD.

Another advantage of this solutions is that we didn’t havguess what is the other intersection
point.

46. Let o be the origin. According to the property T9.1 we have that M

ab—ab
hy, = W and according to the theoremt6= a_;rc, th = %. Since the points
a,c, ando are colinear as well as the poirisd, ando by T1.2 we have = %, d= % hence

(c—d)(ab +ab)

hy = ANl
2 ab —ab

. In order to prove thatt, 1 hihy, by T1.3, it is enough to verify

tl—tz_ hi —ho
-t hi—hy

This follows from

by conjugation.

. . 2ab
47.LetT be the unit circle. Using T2.3 we get= a2t b Leto; be the center df ;. Thenoib 1 ab

(becausabis a tangent) hence by le%l_—g = —% = ab. After simplifyingo; = %az_b'
T _
We have alsgo; — b| = |o; — ¢|, and after squaringo; — b)(0; —b) = (0; —¢)(0; —C), i.e. 01 =
O 87D\ we have
B2 batb)
01 = _ab +b
Tarp T

. . L . = 1 . . . .
Since the pointn belongs to the unit circle it satisfies = = and since it belongs to the circle with
the centenp; it satisfiesjo; — m| = |o; — b|. Now we have

oin? — (O—bl +0_1b)m+01:0.

This quadratic equation defines battandb, and by Vieta's formulas we hale+ m= o_o_lb +b,i.e.
1

_ b2a+b
T Ta+2b

It remains to prove that the poinés m, and the midpoint of the segmelnt colinear. The midpoint
of bcis equal tolb+c)/2 by T6.1. According to T1.2 it is enough to prove that

a b+c
- a—-m
2 = — _:—am7
3 b+c a—m
2

which is easy to verify.
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48. Assume that the circl& is unit and assume th&ét= 1. Thea = —1 and sincep € k we
-1 . 1 1 .
havep = o According to T2.4 we have that= > (p+ 5) and according to T6.1 we have that

1
(p+5)‘l (p—1)2 . o .
f= 5 = an Furthermore sincebelongs to the circle with the centpiand radius

|p— g| we havelp—g| = |p—c| and after squaring

(p—a)(p—a)=(p—c)(p—0).
. _ 1 . 1 N, .
Sincec € k we havec = o The relationp—q= > (p— 5) implies

4pc? — (p*+6p?+1)c+4p*=0.

Notice that what we obtained is the quadratic equatiorcfdinced satisfies the same conditions
we used forc, then the poind is the second solution of this quadratic equation. Now fraeta’s
formulas we get

Since the poing belongs to the chorcd by T2.2 we get

c+d—g p*+6p*+1—4pg
cd 4p3 '

g:

Fromgf 1L cd T1.3 givesg_; == 5° cd = p?. Solving this system gives us
PP +3p%-p+1l
B T—

The necessair and sufficient condition for colinearity & ffointsa, p,g is (according to T1.2)
_ _ 3 3

279 _27P _ . This easily follows froma—g = * +3p+3p+il
— a—p 4p

_ _  1+43p+3p°+p°

and by conjugating

|
«Ql

a—-g= . Sincee belongs to the chordd we have by T2.2 = c+d-g =
4p2 cd
e—p a—b

p*+6p2+1—4pe . o _ ~
, and sincepe L ab T1.3 implies — = ——— = —1, or equivalentlye =

208 €p p e p 2.0 q e
3p°+1

4p

2 2
-1 p-1

2p 4p

P+ % —e. It follows thate = . Sincep-q=

p?—1

= 2<e—q>, we get

le— p| = |e—q|. Furthermore sincg—e=
which finishes the proof.

from |p| = 1, we also havée —q| = |g— €],

49. Assume that the circle with the diameteris unit and thab = —1. Now by T6.1 we have that
b+c=0,i.e.c=1, and the origin is the midpoint of the segmént Sincep belongs to the unit
. _ 1 . . - -
circle we havep = o and sincepa 1. p0, we have according to T1.§_—g = —g—g = —p
Simplification yields
ap’—2p+a=0.

Since this quadratic equation defines bptandq, according to Vieta’s formulas we have

g 2
p q_aa
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Leth’ be the intersection of the perpendicular frafo bc with the Imepq Sinceh’ € pq T2.2 gives
p+g-— h’ 2—ah h b—c

n = . Sinceah 1 bc according to T1.3 we have—_ =—=——=-1,ie.
_ pa a a—h b-c
h =a+a—h. Now we get
o da+ a?—2
~ a-a
h—c a— b
It is enough to prove thdt = h, orch L ab which is by T1.3 equivalent teﬁ—c =———.The

last easily follows from

ho1 aa+a’—-2—a+a (at+l)(ata—2)
B a—a B a—a
anda— b= a+ 1 by conjugation.
50. Assume that the origin of our coordinate system is the iptgign of the diagonals of the
rectangle and that the lingb is parallel to the real axis. We have by T&%*a=0,d+b =0,
c=Db, andd = a. Since the pointp,a,0 are colinear T1.2 implie% = g, ie. p= —gp. Let
¢ = Zdpb = Zpbc. By T1.4 we have

c—p eizq)P—P p—E’:eizq)C—E’

c—p b-p p-b c-b’
and after multiplying these equalities and expressingrimseofa andb

p+b _ a(p—b)?

bp+a2  (bp—a?)?’
In the polynomial form this writes as
(b? — ab) p3 + p?(b® — 2ab — a3+ 2ab?) + p(a’ — 2a’h? — ab® + 2a%p) + a'*b — a’v?
= (b—a)(bp>+ (a®+ 3ab+ b?)p? — ap(a? + 3ab+ b?) — a’b) = 0.

Notice thata is one of those pointp which satisfy the angle condition. Heneeis one of the
zeroes of the polynomial. That means tipas the root of the polynomial which is obtained from
the previous one after division hy— ai.e. bp? + (a4 3ab + b?) p+ a’b = 0. Let's now determine
the ratio|p— b : |p— c|. From the previous equation we hawe? + a?b = —(a+ 3ab+ b?), hence

PB> (p—b)(p—b) bp?—(a®+b*)p+a*h —2(a*+b*+2ab)

PC2  (p-c)(p—c)  bp?+2abp+a® = —(a2+b2+2ab)

and the required ratio ig2 : 1.

51. Assume first that the quadrilaterbcd is cyclic and that its cicrumcircle is the unit circle. If
/abd = ¢ andzbda = 6 by T1.4 after squaring we have

d—b:eizq,a—t_) c— b_e,2¢p b

d-b a-b’ c-b p-b’
C—d:eize p—d b-— d_eizea—d
c—d p-d b-d a-d

From the first of these equalities we gﬁ’g, and from the fourthg?® = b From the second
ac+bd— pd ac+bd— pb

. Now it follows that
abc acd

equality we gep = , and from the thirdp =

_ac+hbd
 b+d”
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We have to prove thaa — p|> = (a— p)(@a—p) = |c— p|?= (c— p)(C — p), which follows from

a_ _ ab+ad—ac—hd gl___cd+bc—bd—ac
P= brd P acbra)

. _ bc+cd—ac—bd (_:___ad+ab—bd—ac
P= brd P T achra

Assume thata— p| = |c— p|. Assume that the circumcircle of the trianglec is unit. Squaring the
last equality gives us thaip + = cp+ FE) i.e.(a—c)(p— %) = 0. This means that = - Let

/
d belong to the chord’c. Then according to T2.8 = % By the condition of the problem
we haveZdba = Zcbp = ¢ andZadb = Zpdc= 6, and squaring in T1.4 yields
20 _gudob pob_gpob
—b d-b’” p-b c-b’
b-d _ gpa-d  o-d _ pgp-d
b—d a-d c-d p-d
Multiplying the first two equalities gives us
a-be=b _ e p=bd-b
a—bc—-b p—bd-b

After some algebra we conclude

_ac+bd—b(acd +b) bdd -+ acd’ — abd’ — abc+ abd — b?d’

d—b%d N cd’d — b2d’ +b2d — b%c
. . , . . d—c c—-d , .
Since the piontsl,c,d” are colinear, according to T1.2 we géet—(_: =g —cd’, and mylti-

plying the third and fourth equality gives

(—cd’)(d—a)(d —b)(d —p) - (d —a)(d—b)(d—p) =

Substituting values fop gives us a polynomial in d. It is of the most fourth degree and observing
the coefficient next tal* of the left and right summand we get that the polynomial ishefdegree
at most 3. It is obvious tha andb are two of its roots. We will now prove that its third rootds
and that would implyd = d’. Ford = d’ we get

_ bd'd+acd’ —abc—b*d’  ac+ bd’ o d?—ac

- (dZ—1?) “bra TP by

- _ d2—ac d-a d—b

d—p=—bd =% _ da, ——=-db
P acb+d) d-a d-b

and the statement is proved. Thiis- d’ hence the quadrilaterabed’ is cyclic.

52. Since the rectangles byasby, azbzazhy, asbsasbs, anday, by, a;,bs are cyclic T3 implies that

the numbers
a—a a—by a-az a-b

bp—a; "bp—b;’ b3—az bz3—by’
B—d B—by a-—a a—b
bs—as bs—bs’ bi—a; by—bs’
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are real. The product of the first and the third divided by tradpct of the second and the fourth is
equal to

aj—a az—ay bp—b; bs—bs
ap—ag as—a; bz3—by by—by’

and since the pointa;,ay,as, a4 lie on a circle according to the theorem 4 the numgbr—

a—ag
8~ s real, hence the numb by~ by bs—bs
as —ay . ) 3—by byr—bs
b1,by, b3, by are cyclic or colinear.

is real as well. According to T3 the points

53. Assume that the origin is the intersection of the diagonatbe parallelogram. Theo= —a
andd = —b. Since the trianglesde and fbc are similar and equally orientged by T4

o
[
D
o

— f

i

(o3
o

(9]

be+c?—bc—cd  be+ a?
hencef = i e+b In order for trianglesde and f ae to be similar and equally

oriented (as weII as fofbc andfae), according to T4 it is necessairy and sufficient that thiefahg
relation holds:

c-d f-a
d-e a-e€
The last equaliy follows from

be+a’—ea—ab (e—a)(b—a)

f— = =
a e+b e+b

andc—d=c+b,d—e=—(b+e),c+b=b—a.

54.Let p=0andq= 1. SinceZmpqg = a, according to T1.4 we have thg-t— g2a M B,|e.

m-—p
ﬁ = €29, SinceZpgm = B, the same theorem |mpI|es— g2k g g e 1= e'2/3 m- 1
Solving this system (with the aid &2@+F+Y) = 1) we getm = %, and symmetrlcally =

d2(B+y) _1 K— d2(a+B) _q
g1 ' 201

and equally oriented it is enough to prove tﬁq% —2 = —k. The last follows from

. According to T4 in order to prove that the trianglkém andkpq are similar

ei(2a+4[3 e|2[3 6" (2a+2B) +e| (2B+2y) e|2a

k—I (620 —1)(e2P 1)
| —m g(2B+4y) _ g2y _ g(2B+2y) 4 g(2a+2y) | 2B _ 1

(€2 —1)(e 1)
G20 +B) ((28+4y) _ 2y _ (2B+2y) 4 g(2a+2y) | 2B _ 1)

gi(2B+4y) _ g2y _ d(2B+2y) 4 @(20+2y) { 2B _ 1 '

e —1
g2a 1
1— ei2(a+l3)

g1

Since the trianglekpq, gl p, pgm are mutually similar and equally oriented the same holdsafior
four of the triangles.
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55. Assume that the coordinates of the vertices ofittiepolygon are denoted ba}li),a(zi), . ,a{q),
respectively in positive direction. smeru. According taT&nd the given recurrent relation we have
that for each andk:

(k+1

k
al (K

k
= 231'(+)k -,

where the indices are moduto Our goal is to determine the value qﬁn), using the values of

a(ll), (21),...,a§,1>. The following

k+1 K i k-1 k-1 k-1 k-1
a = 231(+)k - af(') = 4a1'(+k+)k71 - 231(+k - 231(+k7)1 +a Y

k—2 k—2 k—2 k—2
= 4(Zai(+k+)k—1+k—2 - _a1(+k+)k—1) - 2(2""1'(+k+)k—2 - a1(+k )) -

K-2) K-2) k-2 k-2
2(231(+k—1+k—2 - ai(+k—1) + 231(+k—)2 - 31( )
k-2 k-2 k-2 k-2
= 831'(+k+)k— Trk—2 ™~ 4(ai(+k+)kfl + ai(+k+)k72 + ai(+k—)1+k72) +

k—2 k—2 k-2 k—2
2(ai(+k ) + ai(+k—>1 + a1(+k—)2) - ai( )’

yields that

g = 2718(1) - 27289, () + ...+ (-1 (),

Wheresgk) (i) denotes the sum of all the numbers of the famy, ;) ands(j) is one of the numbers
obtained as the sum of exactydifferent natural numbers not greater tharHere we assume that

(k>(i) =g;. The last formula is easy to prove by induction. ParticylaHe formula holds fok = n

S

hence
8" =278 () - 27 290 (0) + -+ (1)1 ).

Now it is possible to prove th#”)(i) = q(”)(j), for each 1< | < n—1 which is not very difficult
problem in the number theory. Sinces prime we have that+n—1+...4 1 is divisible byn
hence

o 2n—1a(1)

n n —
ai( )_a(' ) = 2t j+n+n—1+...+1+

1
| ai(+)n+n—1+...+1
n,(1) n,(1)
(=1)"a™ —(=1)"g;

= @+ YNEY ),
which by T4 finishes the proof.

56. Assume that the pentag@icde is inscribed in the unit circle and thaty, andz are feet of
perpendiculars from to bc, cd, andde respectively. According to T2.4 we have that

1 bc 1 cd 1 de
xfé(a+b+c—g), yf5<a+c+d—g), zfi(a+d+e—g>,
and according to T5 we have
bc =, F_.c=_ bc
| x X 1 i a+b+c—7% a+b+c—z 1
Sz =71y ¥y 1|=g atctd-¢ a+c+d-< 1
zz 1 atd+e—% 5+6+é—“5—e 1
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Since the determinant is unchanged after substracting sotaens from the others, we can sub-
stract the second column from the third, and the first fronmstimond. After that we get

a+b+c—2% at+b+c-2 1
sz — ;_3 (d—b)(a—c) (d—b)c(da—(% 0
(e—c)?a—d) (e—c)(a—d)
a a
i(a—c)(d-b)(a—d)(e—c)
8

a+b+c—% a+b+c-8 1

ORI R
=~
o

and finally

_ i(a-c)(d—-b)(a—d)(e-c)/ 1 1
Svz) - = 8 (acde_abcd)
i(a—c)(d—b)(a—d)(e—c)(b—e)

8abcde ’

Since the last expression is symmetric with respet, tgc,d, ande the given area doesn’t depend
on the choice of the vertex (in this case

o . . . , . bca,
57. Assume that the unit circle is the circumcircle of the triengbc. Since SS((abcl)) =1-
la—ay| a—a . . . :
a—d| =1- P (whered' is the foot of the perpendicular fromto bc), the given equality
becomes

~a-a b-by c-q
2= a—a + b—b + c—c’

. 1 b
According to T2.4 we have = > <a+ b+c— EC) hence

_a—L(a e _p_) - (a=bl@-9g
a a_2<a+a b c)_ o
and after writing the symmetric expressions we get

2ala—a) 2b(b—bs) 2c(c—c1)

2 =

(@—b)a—c)  (b—ayb—c)  (c—a)c—b)
a(a—aj)(b—c)+b(b—by)(c—a)+c(c—cy)(a—Db)

—2 (a—b)(b—c)(c—a) ’

and after simplying
aay(b—c)+bbi(c—a)+cci(a—b) =0.

By T4 pointsay, b1, ¢y, hlie on a circle if and only if

a;—c¢; bi—h . aa—hb—-¢
@-Cib, h a hb o
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Sinceh is the orthocenter by T6.3 we hakie= a+ b+ ¢, and sinceaa; | bc T1.3 implies;1 _g =
1 —
b—c . _ bct+aas—a? .. ac+bby—b? _ ab+4cc—c?
—— e = — INoy = ———— =
s i.e. g abe , and symmetricallyo; abe andc; abe
Similarly fromazh L bcandb;h | ac
—h — — —
il _:—P—S:bc, El b:—gzac.
a;—h b-c b; —h a—c
It is enough to prove that
a(al — Cl) b(bl — Cl)

aa; —ccy+ (c—a)(a+b+c) ~ bbyi—cci+ (c—b)(a+b+c)
Notice that
a(b—c)a; —a(b—c)c; = —bib(c—a)a—cci(a—b)a—a(b—c)cy = ab(c—a)(c1 — by),
and the result follows by the conjugation.

58. Assume that the unit circle is the circumcircle of the trieengbc. By T2.4 we have thad =

1 ab 1 ac 1 bc .

> <a+b+c— ?)’ e= > <a+ b+c— F)’ andf = > (a+ b+c— E) . According to T6.1 we get

a1 = %: (wherea; is the midpoint of the sid&). Sinceq belongs to the chordc T2.2 implies

g=2°"9 and sincagd | ef T1.1 impliesg_g = g;; = —a’. Solving this system gives us
q —_ J—

a+a%b+abc—b%
2ab '

a®+ ac+ abc — bc?

Symmetrically we get = . Since p belongs to the chortic T2.2 implies

2ac
pP= b+t():c_ p, and from the colinearity of the poinesf, andp from T1.2 we concludeg;g =
g;; — —a”. After solving this system we get

_a’b+a’c+ab?+ac’—b’c—bc?—2abc b+c a(b—c)?
p= 2(a% —hbe) 2 2@ —be)

By T4 it is sufficient to prove that

p-ag-r p-a q-r
p-rgq-aa p-rg-a
Since
. a(c—b)(a+ be) Ca a(b—c)?
a-r= 2abc ’ - 2(a2—bc)’
. @-A)(Petabc-a®-a%)  a’ta’h-blc—ab?
p—r= 2ac(a? — bc)  A-&= 2ab

the required statement follows by conjugation.

59. Let O be the circumcenter of the triangébc. We will prove thatO is the incenter as well.

. . : . . . a+b
Assume that the circumcircle of the triangliec is unit. According to T6.1 we have thet = %
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a+c b+c . . .
by = L, anda; = L. Assume thaki, ky, ks are the given circles with the centexg b, and

c1. LetkiNkz = {k,0}, kaNks = {m,0}, andks Nk, = {I,0}. Then we havéa; — k| = [a; — 0],
|by — k| = |by — 0| After squaring(a; —k)(a1 — k) = aja; and(b; —k)(by —k) = bib;. After
solving this system we obtain

K— (a+c)(b+c)
N 2c ’
Symmetrically we gelt= w andm= Mgﬂb). LetZmko= ¢. Accordingto T1.4
_ , _ 2_ 2 .
we have that> l_< _ g2l l_< and since&k — m= M, after conjugatiore?? = _8
o—k m — k 2ac b

iop | — K : a
Zokl =, we have by T1. 4_— ézwﬁ, henced? = — - Nowwe havep = or¢ = Y=+,
and since the second condltlon is impossible (why?), we gaxey. Now it is clear thab is the
incenter of the triangl&lm.
For the second part of the problem assume that the circlesdsibed in the triangl&lm is the unit
circle and assume it touches the sittekm, Im at u,v,w respectively. According to T7.1 we have

that
2uv 2uw 2vwW

u+v' o wHu’ ERVERY
Leta; be the circumcenter of the triandtel. Then according to T9.2 we have

a CKi(k-T) 2uw
TR kutv)(utw)
2uvw 2uvw

and symmetricallyp; = dcy = (b andcy are circumcenters of the

(Uu+Vv)(V+w) (W—+u)(w+v)
triangleskom andmol respectively). Now T6.1 implies

at+b=2c;, b+c=2a, a+c=2b,

and after solving this system we get=b; +¢; —a;, b=a;+c¢c;—bj,andc=a—1+b;—c;. In
order to finish the proof it is enough to establiabu oc; (the other can be proved symmetrically),

ie. by TL.3thatt—2 — — 2= b _ . The last easily follows from
C1—0 a b b]_ — a]_
b —ar — 2uvw(u — V)
T Ut vV w) (wtu)

by conjugation.

60. Let b andc be the centers of the circlés andk, respectively and assume thmatis the real axis.
If the pointsmy andm, move in the same direction using T1.4 we get tinaiandn, satisfy

m—b=(a—h)d?, m—c=(a—c)e’.

If w is the requested point, we must hawe— my| = |w — M|, and after squaringw — M) (w —
my) = (w—np)(w — Mg ). From the last equation we get
MMy — My — (M, — )

m — My '

a):

After simplification (with the usage df = b andc = c whered? = 7)

W(l-2) =2(b+c)—a—a+az+az—(b+c)(z+2) - (1-2)w
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. -1
Sincez = = we have

(b+c—a—-w)Z—(2(b+c)—a—a—w—w)z+b+c—a—w=0.

The last polynomial has to be identical to 0 hence each ofigdficients is 0, i.e.w=b+c—a.
From the previous relations we conclude that this poinsBasi the conditions of the problem.
The problem is almost identical in the case of the opositentition.

61.Let ybe the unitcircle and let= —1. Thenb=1,c= 1+ 2i, andd = —1+ 2i. Since the points
n,b, p are colinear we can use T1.2 to get

a—p a-m

— = =———=—am=m,
a—-p a-m
—  p+1-m . . . .

and after some algeb@m= ———— (1). Since the points,d, p are colinear using the same
argument we get that

c—n c¢—d

= _ = ——— = 1,

c—n c-d

_ . . o .m . .
hencep = p—4i. Comparing this with (1) one gefs= 4i - o1 1. Furthermore, since the points
b,n, p are colinear we have

m(l-2i)-1
"I m
Let g be the intersection point of the circjeand the linedm. If we show that the pointg’,n,c are
colinear we would havg = g andq € y, which will finish the first part of the problem. Thus our
goal is to find the coordinate of the poufit Sinceq’ belongs to the unit circle we haggy = 1, and
sinced, m,q are colinear, we have using T1.2 that

d-m_g-m_ —qm,

d-m d-m
and after simplification

;. M+1-2i
om(l+2)+1
In order to prove that the pointg,n,c are colinear it suffices to show thég{_—(_c: = g_g = -—nq,
. q—1-2i . . . .
i.e.n= —————, which is easy to verify. This proves the first part of the
G-1ra0 y to verify. This p p feoin

Now we are proving the second part. Notice that the requireduality is equivalent tay — a| -
|p—c|=|d— p|-|b—q|. From the previously computed values fpandq, we easily obtain

q-al=2 m+1 p—c|=2 m(1+i)+1—i

a-a= m(1+2i)+1|’ p—cl= m(1+2i)+1 |’
m+1 mi—-1)+1+1
—pl=2—= —gl=2| >~ T=T=
d-pl=2| 2. Ib-g 2|,

and since-i((i—1)m+1+i)=m(1+i)+ 1—ithe required equality obviously holds.
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62. In this problem we have plenty of possibilities for choosihg unit circle. The most convenient
choice is the circumcircle abct/'c’ (try if you don't believe). According T2.5 we have that the
intersection poink of bb/ andcc’ satisfy

(e bb/(c+c') —cc'(b+b)

bt/ — cc’
Sincebh L cb’ andch L bc’ T1.3 implies the following two equalities
J— /_ — —
bo=h_ Doe_y, ozh_ b=c 0
b—h b—c c—nh b-c
. _ h— 2 / _ h— 2 .
From the first we geth = % and from the seconld = % After equating the
two relations we get
he b'd(b—c)+ b?c —b'c?
N bc' —b'c '
/ 2~ 2
Symmetrically we obtaify’ = be(b t():’lc):sc’c be’ . It suffices to prove that the poiniish’ and
x are colinear, or after applying T1.2 we have to verify
h—n h—
h—F h-X

The last follwos from

be(b/ — ¢) +b'd(b—c) +bc/(b—¢) +be(b —¢)
bc —b'c
(b+b —c—c/)(bc +blc)
bc —b'c ’

b2 + b*'c + b'c?c? + b/'c3c

(bc’ — brc) (b —cc) a
b%b'cc’ + b?b'c’? + bb/'c?c’ + b'?cc

(bc’ —b'c)(bby —cc)
b'd(b?—c?) (b +b—c—c)
(bc’ — b/c)(bb’ —cc’)

h—H =

by conjugation.

63. From elementary geometry we know thaica= Zmcb (such pointsnandn are called harmonic
conjugates). Le¥mab = a, Zabm= 8, andZmca = y. By T1.4 we have that

a-b j;a-m a-n ,a-cC
la—b| ~ Ja-m’ J]a-n ~ Ja—c|

b—c iB b—n b-m iB b—a

b—c "~ [o—n fo-m ~ = [o—al’
c—a _dy c—n c—m _dy c—b
lc—a| lc—n|” |c—m| lc—b|’

hence

AM-AN BM-BN CM-CN
AB-AC "BA-BC ' CA.CB
(m—a)(n—a) (m—b)(n—b) (m-c)(n—c)
(a—b)(a—c) (b—a)(b—c) (c—a)(c—b)’
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The last expression is always equal to 1 which finishes owfpro

64.Let/A=a,/B=f,4C=y, /D=9, LZE = ¢, andZF = ¢. Applying T1.4 gives us

b-c _ B b—a d—e _ 6 d—c f—a _ o f—e.
lb—c| lb—al” |d—¢ d—c|” |f—a| |f — €

Multiplying these equalities and using the given condisigitom the conditions of the problem we
reade(B+3+4) — 1) we get

(b—c)(d—e)(f—a)=(b—a)(d—c)(f —e).
From here we can immediately conclude that

(b—c)(a—e)(f—d)=(c—a)(e—f)(d—h),
and the result follows by placing the modulus in the last egpion.

65. We first apply the inversion with repsect to the circbe The pointsa, b, c, e z are fixed, and
the pointd is mapped to the intersection of the linesandbc. Denote that intersection ks The
circumcircle of the trianglezd is mapped to the circumcircle of the triangles, the linebd is
mapped to the lined, hence it is sufficient to prove thid is the tangent to the circle circumscribed
aboutazs. The last is equivalent taz | sz.

Let w be the unit circle and lét = 1. According to T6.1 we have= —1 ande=a = %. We also

a 2
at+a a+1 _. .

haves = % = 2; . Sinceeb 1 axusing T1.3 we get
a=x_e-b_ 1
a-Xx e-b a

i . . .. — l+a-—x . .
and since the point belongs to the choreb by T2.2 it satisfiex = — Solving this system
3 a2
. . .. a’+a‘+a—1 _. . . .
gives sistema dobijamo= %. Sincey is the midpoint ofax by T6.1

_a+x_3a+a’ta-1
2 432 '

Since the pointb,y,z are colinear and belongs to the unit circle according to T1.2 and T2.1 we get

b— —
4 = é =—Z
b-y b-z
o 1+ 3a? . .
After simplifying we getz= Grada In order to prove thadz | zsby T1.3 itis sufficient to prove
that
a-z_ s-z
a-z s-z
The last follows from
a*—1 at—2a%+1

8T a3 VYT 2a3rad)

by conjugation.

66. Assume first that the orthocenters of the given trianglesade. Assume that the circumcircle
of abc is unit. According to T6.3 we have= a+ b+ c. Consider the rotation with respect o
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for the anglew in the negative direction. The poiag goes to the poin&; such thatay, &}, andh
are colinear. Assume that the same rotation nags b} andc; to ¢;. Since the triangleabc and
aibyc; are similar and equally oriented we get that the points , h are clinear as well as,c;, h.
Moreovera,b] || ab (and similarly forb;c; andc)a;). Now according to T1.4“(a; —h) = (a; —h)
(since the rotation is in the negative direction), and stheepointsa, &, h are colinear, according to

/
—h .
T1.2we have{j;ll—h = A € R. This means thad; = h+A€“(a— h) and analogously

bi=h+Ad®b-h), c1=h+Ae®c—h).

b+c—a
_bc

I a—h
other hand by conjugation of the previous expressiomafave geta; =h + A ael.—w. Solving forA
gives

Since the poing; belongs to the chorldc of the unit circle, by T2.2 we get; = . On the

~ €é%a(a+b+c)+hbe) )
~ ab+c)(ew+1)

SinceA has the same role in the formulas faralso, we must also have

€9(b(a+b+c)+ac)

A= b(a+c)(@@+1) - @

By equating (1) and (2) we get

ab(a+c)(a+b+c)+b%(a+c)—ab(b+c)(a+b+c)—a’c(b+c)
= (a—b)(ab(a+b+c)—abc—ac®—bc?) = (a® — b?)(ab—c?).

Sincea? # b? we concludeab = ¢®. Now we will prove that this is necessair condition for tiggen

abc to be equilateral, i.a— b| = |a— c|. After squaring the last expression we get that the triangle
. . . . (a—c? (a—b)? (b—c)(@®—hc) . .

is equnateral_ if and only if G= < & abe , and sincé # c, this part of

the problem is solved.

Assume now that the incenters of the given triangles coecidssume that the incircle of the
triangleabc is unit and letd, e, f be the points of tangency of the incircle with the sidbsbc, ca
respectively. Similarly to the previous part of the problemprove

ag=i+Ae®a—i), by=i+A®b—i), cr=i+Ae?c—1i).

Together with the condition= 0 T2.3 and conjugation implg; = ﬁ. Also, since the
pointsas, b, c are colinear we have;d 1 di hence according to Tl.,'g_l_g = —g _i = —d%
1 — —1

Solving this system gives

_d(e+f)

- d2tefew’
SinceA has the same roles in the formulas égrandb; we must have

3y — e(d+f)
T e4dféw’

and equating gives us
20 _ ed(e+d+f)
f(de+ef + fd)’
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; f f
Symmetry implie®?® = d(ede%% and sincef? # d? we must have+d+ f = 0. Itis easy

to prove that the triangldef is equilateral in this case as well alsc.

67.Since(a—b)(c—d)+ (b—c)(a—d) = (a—c)(b—d) the triangle inequality implie§a—b)(c—
d)|+|(b—c)(a—d)| > |(a—c)(b—d)|, which is exactly an expression of the required inequality.
The equality holds if and only if the vectofa— b)(c—d), (b—c)(a—d), and(a—c)(c—d) are
colinear. The first two of them are colinear if and only if

(a—b)(c—d)

b=ofa=d) <~

which is according to T3 precisely the condition that, b, d belong to a circle. Similarly we prove
that the other two vectors are colinear.

68. Since(d —a)(d—b)(a—b)+ (d—b)(d—c)(b—c)+(d—c)(d—a)(c—a)= (a—b)(b—c)(c—a),
we have|(d —a)(d —b)(a—b)|+ |(d—b)(d—c)(b—c)|+|(d—c)(d—a)(c—a)| > |(a—b)(b—
c)(c—a)| where the equality holds if and only { — a)(d — b)(a—b),(d—b)(d —c¢)(b—c¢),(d —
c)(d—a)(c—a) and(a—b)(b—c)(c—a) are colinear. The condition for colinearity of the first two
vectors can be expressed as

(d—aj(a—b) (d—a)@a-h)

(d=0)b-¢)  (@-c)b-c)
Assume that the circumcircle abc is unit. Now the given expression can be written as

dc 2
_+_
a a

2
dda—a’d — d?a+ % =ddc—c?d —

and after some algebdal (a—c) = (a—c) ((a+ c) (a + ;—C - aa_J;c> + 1) or

Similarly, from the colinearity of the first and the third tec we getdd = (b+c) (H + t()j_c -

b+c . _ _ —d c?-ab .
K) 1. Substracting the last two expressions yi€kls b) (d ~ 5 + 2he ) =0,i.e.
. d c?-ab

d-— % + e 0.

b?—ac

Similarly d — aic + = 0 and after substracting and simplifying we get a+b+c. Itis

easy to verify that fod = a+ b+ c, i.e. the orthocenter of the triangédc, all four of the above
mentioned vectors colinear.

13 Problems for Indepent Study

For those who want more, here is the more. Many of the follgwpnoblems are similar to the
problems that are solved above. There are several quiteudiffiroblems (towards the end of the
list) which require more attention in choosing the knowmpgiand more time. As in the case with
solved problems, | tried to put lot of problems from math cetitppns from all over the world.

1. (Regional competition 2002, 2nd grade) In the acute-angiadgle ABC, B’ andC' are feet of
perpendiculars from the verticBsandC respectively. The circle with the diamet®B intersects the
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line CC’ at the pointsM andN, and the circle with the diamet&C intersects the lin®B’ at P and
Q. Prove that the quadrilatersIPNQ is cyclic.

2. (Yug TST 2002) LetABCD be a quadrilateral such thaiA = /B = ZC. Prove that the poirD,
the circumcenter, and the orthocenter©ABC are colinear.

3. (Republic competition 2005, 4th grade) The haxag®CTDEF is inscribed in the circld. If
the lengths of the segmed®8,CD, andEF are equal to the radius of the cirdteprove that the
midpoints of the remaining three edges form an equilateregle.

4. (USA 1997) Three isosceles triangIBED, CAE, and ABF with the base®BC, CA, and AB
respectively are constructed in the exterior of the triad@C. Prove that the perpendiculars from
A, B, andC to the linesEF, FD, andDE repsectively are concurrent.

5. Prove that the side length of the regular 9-gon is equal talifierence of the largest and the
smallest diagonal.

6. If hy,hy, ... ho, denote respectively the distances of an arbitrary pBiof the circlek circum-
scribed about the polygoi A; . . . Ay, from the lines that contain the edglsA, AAg, ..., AxnAg,
prove thathihs---hy, 1 = hohg-- - hop.

7. Letds,dy,...,dy denote the distances of the vertidgsA,, . . ., A, of the regulan-gonAA; ... An
from an arbitrary poinP of the smaller aré\; A, of the circumcircle. Prove that

1 1 1 1

did; d2d3 dn—ldn didn

8. Let AgA1... Ayy be a regular polygorR a point of the smaller arBoA,, of the circumcircle and
m an integer such that@ m < n. Prove that

Z PA2m+1 Z P, 2m+1

9. (USA 2000) LetABCD be a cyclic quadrilateral and |& andF be feet of perpendiculars from
the intersection of the diagonals to the lifgsandCD respectively. Prove th&F if perpendicular
to the line passing through the midpointsAid andBC.

10. Prove that the midpoints of the altitudes of the trainglecieear if and only if the triangle is
rectangular.

11. (BMO 1990) The feet of preprendiculars of the acute angliedi¢de ABC areAs, B1, andC;. If
Az, Bz, andC; denote the points of tangency of the incircleof;B,C; prove that the Euler lines
of the trianglesABC andA,B,C; coincide.

12. (USA 1993) LetABCD be a convex quadrilateral whose diagorflsandBD are perpendicular.
Assume thaBCUBD = E. Prove that the points symmetricEowith respect to the lineaB, BC,CD,
andDA form a cyclic quadrilateral.

13. (India 1998) LetAK,BL,CM be the altitudes of the triangksBC, and letH be its orthocenter.
Let P be the midpoint of the segmeAH. If BH andMK intersect at the poirs, andLP andAM in
the pointT, prove thafl Sis perpendicular t&C.

14. (Vietham 1995) LetAD, BE, andCF be the altitudes of the triangl@ ABC. For eachk € R,
k #£ 0, letAy, B1, andC; be such thafA; = kAD, BB; = kBE, andCC; = kCF. Find allk such that
for every non-isosceles trianghdBC the trianglesABC andA;B,C; are similar.



Marko Radovanovi¢: Complex Numbers in Geometry 49

15. (Iran 2005) LetABC be a triangle an®, E, F the points on its edgeBC, CA, AB respectively

such that
BD CE AF 1-2

DC EA FB A
whereA is a real number. Find the locus of circumcenters of the gliessDEF asA € R.

16. Let Hy andH, be feet of perpendiculars from the orthocertteof the triangleABC to the
bisectors of external and internal angles at the ve@exProve that the lingH1H, contains the
midpoint of the sideAB.

17. Given an acute-angled triangdBC and the poinD in its interior, such tha¥ ADB = Z/ACB +
90° andAB-CD = AD - BC. Find the ratio

AB-CD
AC-BD’

18. The linesAM andAN are tangent to the circle and an arbitrary line through intersectsk at
K andL. Letl be an arbitrary line parallel tdM. Assume thaKM andLM intersect the liné atP
andQ, respectively. Prove that the liMéN bisects the segmePRQ.

19. The pointsD, E, andF are chosen on the edgB€, CA, andAB of the triangleABC in such a
way thatBD = CE = AF. Prove that the triangle&BC andDEF have the common incenter if and
only if ABC is equilateral.

20. Given a cyclic quadrilaterahBCD, prove that the incircles of the triangl&8C, BCD, CDA,
DAB form an rectangle.

21. (India 1997) Letl be the incenter of the triangkBC and letD andE be the midpoints of the
segment®C andAB respectively. Assume that the lin&B andDI intersect at the poirR, and the
linesAC andEl at the pointQ. Prove thalAP- AQ = AB- AC if and only if ZA = 60°.

22.LetM be an interior point of the squafBCD. Let A;,B;,Cy1,D; be the intersection of the lines
AM, BM,CM, DM with the circle circumscribed about the sQUARCD respectively. Prove that

A1B1-C1D1 = A1D1 - B1C.

23. Let ABCD be a cyclic quadrilateralF = ACNBD andE = ADNBC. If M andN are the
midpoints of the segmen&B andCD prove that

MN 1 |AB CD

EF 2 |CD AB|

24. (Vietnam 1994) The point&/, B/, andC’ are symmetric to the points, B, andC with respect to
the linesBC, CA, andAB respectively. What are the conditions tiafBC has to satisfy in order for
AA'B'C' to be equilateral?

25. Let O be the circumcenter of the triangh8C and letR be its circumradius. The incircle of the
triangle ABC touches the sideBC,CA AB, at A;,B1,C; and its radius ig. Assume that the lines
determined by the midpoints &B; and AC;, BA; andBC;, CA; andCB; intersect at the points
Co, Ay, andB,. Prove that the circumcenter of the trianglgB,C, coincides withO, and that its

] . r
circumradius iR+ >

26. (India 1994) LetABCD be a nonisosceles trapezoid such #gt| CD andAB > CD. Assume
that ABCD is circumscribed about the circle with the centavhich tanget€D in E. LetM be the
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midpoint of the segmerAB and assume th&lll andCD intersect aF. Prove thaDE = FC if and
only if AB = 2CD.

27. (USA 1994) Assume that the hexagABCDEF is inscribed in the circleAB = CD = EF, and

that the diagonaléD, BE, andCF are concurrent. IP is the intersection of the line&D andCE,
rove thatg = <&)2

P PE \CE/ '

28. (Vietnam 1999) LetABC be a troiangle. The pointd’, B’, andC’ are the midpoints of the

arcsBC, CA, andAB, which don’t contaird, B, andC, respectively. The lined’B’, B'C’, andC'A’

partition the sides of the triangle into six parts. Prove tha "'middle” parts are equal if and only if

the triangleABC is equilateral.

29. (IMO 1991 shortlist) Assume that iIBNABC we haveZA = 60° and thatlF is parallel toAC,
wherel is the incenter an# belongs to the lin\B. The pointP of the segmenBC is such that
3BP = BC. Prove thaBFP = /B/2.

30. (IMO 1997 shortlist) The anglé is the smallest in the triangkBC. The pointsB andC divide
the circumcircle into two arcs. L&t be the interior point of the arc betweBrandC which doesn’t
containA. The medians of the segmemB andAC intersect the linedJ respectively at the points
V andW. The linesBV andCW intersect aff . Prove that\u = TB+ TC.

31. (Vietnam 1993) LetABCD be a convex quadrilateral such thisB is not parallel toCD and
AD is not parallel toBC. The pointsP, Q, R, andS are chosen on the edgaB, BC, CD, andDA,

respectively such th&QRSis a parallelogram. Find the locus of centroids of all sucadrilaterals
PQRS.

32. The incircle of the triangleABC touchesBC, CA, AB at E,F,G respectively. LetAA;, BBy,
CC; the angular bisectors of the triangd8C (A1, By, C; belong to the corresponding edges). Let
Ka,Kg, Kc respectively be the points of tangency of the other tangentise incircle fromAq, By,

C;. LetP,Q,R be the midpoints of the segmem€, CA, AB. Prove that the linePKa, QKg, RK¢
intersect on the incircle of the triangh3C.

33. Assume that andl, are the incenter and the excenter corresponding to theR&igéthe trian-
gle ABC. Letll, intersect the segmeBC and the circumcircle oAABC at A; andM respectively
(M belongs td, andl) and letN be the midpoint of the af1BA which contain€C. Assume tha
andT are intersections of the linéd andNI, with the circumcircle ofAABC. Prove that the points
S, T, andA; are colinear.

34. (Vietnam 1995) LetAD, BE,CF be the altitudes of the triangleBC, and letA’,B’,C’ be the
points on the altitudes such that

AN BB _CC

AD BE CF
Find all values fok such thatAA'B'C’ ~ AABC.

35. Given the triangleABC and the poinT, let P andQ be the feet of perpendiculars fromto the
lines AB andAC, respectively and leR andS be the feet of perpendiculars frofto the linesTC
andT B, respectively. Prove that the intersection point of thesiPR andQSbelongs to the lin&C.

36. (APMO 1995) LetPQRSbe a cyclic quadrilateral such that the lifé@ andRSare not parallel.
Consider the set of all the circles passing throB@ndQ and all the circles passing througand
S. Determine the set of all poingsof tangency of the circles from these two sets.

37. (YugMO 2003, 3-4 grade) Given a circleand the poinP outside of it. The variable line
which contains poinP intersects the circlk at the pointA andB. LetM andN be the midpoints of
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the arcs determined by the poitsandB. If C is the point of the segme@B such that
PC2 = PA.- PB,
prove that the measure of the angI®ICN doesn’t depend on the choice®f

38. (YugMO 2002, 2nd grade) Lékg,Aq,... Ao, respectevly be the points which divide the circle
into 2k+ 1 congruent arcs. The poiAy is connected by the chords to all other points. Thdse 2
chords divide the circle intol2+ 1 parts. Those parts are colored alternatively in white daddin
such a way that the number of white parts is by 1 bigger thamtimeber of black parts. Prove that
the surface area of teh black part is greater than the suafaeeof the white part.

39. (Vietnam 2003) The circlek; andk, touch each other at the poilt. The radius of the circle
ks is bigger than the radius of the cirdtg. Let A be an arbitrary point ok, which doesn’t belong
to the line connecting the centers of the circles. BendC be the points ok; such thatAB andAC
are its tangents. The linév andCM interseck, again atE andF respectively. The poirD is the
intersection of the tangent Atwith the lineEF. Prove that the locus of poins (asA moves along
the circle) is a line.

40. (Vietnam 2004) The circlek; andk; are given in the plane and they intersect at the points
andB. The tangents t&; at those points intersect Kt LetM be an arbitrary point of the circlg.
Assume thaMAUk; = {A, P}, MKUK; = {M,C}, andCAUk; = {A,Q}. Prove that the midpoint
of the segmenPQ belongs to the linedMIC and thatPQ passes through a fixed point Bsmoves
alongk;.

41. (IMO 2004 shortlist) LeA1A; . .. An be aregulan-gon. Assume that the poinBs, By, ..., By_1
are determined in the following way:

e fori=1ori =n-1,B;is the midpoint of the segmeAA; , 1;

e fori#£1,i#n—1,andSintersection o\ A1 andAnA;, B; is the intersection of the bisectors
of the angleA S 1 with A/A; ;.

Prove thatZA1B1AL + ZA1Bo AL+ ... + ZA1Br_ 1A, = 180°.

69. (Dezargue’s Theorem The triangles are perspective with respect to a point if@amig if they
are perspective w.r.t to a line.

42.(IMO 1998 shortlist) LetABC be a triangle such thatACB = 2/ABC. LetD be the point of the
segmenBC such thaCD = 2BD. The segmenfD is extended over the poiilt to the pointE for
which AD = DE. Prove that

/ECB+ 180" = 2/EBC.

43. Given a triangleA;A>Az the line p passes through the poiRtand intersects the segments
AxAz, AzA1, A1 Ay at the pointsKy, X, X3, respectively. Lef\ P intersect the circumcircle a5, A2Az
atR;, fori=1,2,3. Prove thaX; Ry, XoRy, X3R3 intersect at the point that belongs to the circumcircle
of the triangleA; A2 As.

44. The pointsO; andO; are the centers of the circlés andk;, that intersect. Lef be one of the
intersection points of these circles. Two common tangergsanstructed to these circleBC are
EF the chords of these circles with endpoints at the pointsrajéacy of the common chords with
the circles C andF are further fromA). If M andN are the midpoints of the segme®€ andEF,
prove that”O; A0, = /MAN = 2/CAF.

45. (BMO 2002) Two circles of different radii intersect at pait andB. The common chords of
these circles ar®IN andST respectively. Prove that the orthocenter'dAMN, AAST, ABMN,
and ABST form a rectangle.
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46. (IMO 2004 shortlist) Given a cyclic quadrilaterABCD, the linesAD andBC intersect ate
whereC is betweerB andE. The diagonal®C andBD intersect aF. LetM be the midpoint o€D
and letN # M be the point of the circumcircle of the triangdBM such thatAN/BN = AM /BM.
Prove that the point&, F,N are colinear.

47. (IMO 1994 shortlist) The diameter of the semicir€ldelongs to the liné. LetC andD be the

points onl". The tangents td atC andD intersect the liné respectively aB andA such that the
center of the semi-circle is betwedrandB. Let E be the intersection of the linésC andBD, and

F the foot of perpendicular frorg to |. Prove thaEF is the bisector of the angleCFD.



