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1 Introduction

When we are unable to solve some problem in plane geometry, itis recommended to try to do
calculus. There are several techniques for doing calculations instead of geometry. The next text is
devoted to one of them – the application of complex numbers.

The plane will be the complex plane and each point has its corresponding complex number.
Because of that points will be often denoted by lowercase lettersa, b, c, d, . . . , as complex numbers.

The following formulas can be derived easily.

2 Formulas and Theorems

Theorem 1. • ab ‖ cd if and only if
a−b

a −b
=

c−d

c −d
.

• a,b,c are colinear if and only if
a−b

a −b
=

a− c
a − c

.

• ab ⊥ cd if and only if
a−b

a −b
= − c−d

c −d
.

• ϕ = ∠acb (from a to b in positive direction) if and only if
c−b
|c−b| = eiϕ c−a

|c−a| .

Theorem 2. Properties of the unit circle:
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• For a chord ab we have
a−b

a −b
= −ab.

• If c belongs to the chord ab then c =
a + b− c

ab
.

• The intersection of the tangents from a and b is the point
2ab

a + b
.

• The foot of perpendicular from an arbitrary point c to the chord ab is the point p =
1
2

(

a+b+

c−abc
)

.

• The intersection of chords ab and cd is the point
ab(c + d)− cd(a + b)

ab− cd
.

Theorem 3. The points a,b,c,d belong to a circle if and only if

a− c
b− c

:
a−d
b−d

∈ R.

Theorem 4. The triangles abc and pqr are similar and equally oriented if and only if

a− c
b− c

=
p− r
q− r

.

Theorem 5. The area of the triangle abc is

p =
i
4

∣

∣

∣

∣

∣

∣

a a 1
b b 1
c c 1

∣

∣

∣

∣

∣

∣

=
i
4

(

ab + bc + ca −ab−bc− ca.
)

Theorem 6. • The point c divides the segment ab in the ratio λ 6=−1 if and only if c =
a + λ b
1+ λ

.

• The point t is the centroid of the triangle abc if and only if t =
a + b + c

3
.

• For the orthocenter h and the circumcenter o of the triangle abc we have h +2o = a + b + c.

Theorem 7. Suppose that the unit circle is inscribed in a triangle abc and that it touches the sides
bc,ca,ab, respectively at p,q,r.

• It holds a =
2qr

q + r
,b =

2rp
r + p

and c =
2pq
p + q

;

• For the orthocenter h of the triangle abc it holds

h =
2(p2q2 + q2r2 + r2p2 + pqr(p + q + r))

(p + q)(q + r)(r + p)
.

• For the excenter o of the triangle abc it holds o =
2pqr(p + q + r)

(p + q)(q + r)(r + p)
.

Theorem 8. • For each triangle abc inscribed in a unit circle there are numbers u,v,w such
that a = u2,b = v2,c = w2, and −uv,−vw,−wu are the midpoints of the arcs ab,bc,ca (re-
spectively) that don’t contain c,a,b.

• For the above mentioned triangle and its incenter i we have i = −(uv + vw+ wu).
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Theorem 9. Consider the triangle △ whose one vertex is 0, and the remaining two are x and y.

• If h is the orthocenter of △ then h =
(xy + xy)(x− y)

xy − xy
.

• If o is the circumcenter of △, then o =
xy(x − y)

xy− xy
.

3 Complex Numbers and Vectors. Rotation

This section contains the problems that use the main properties of the interpretation of complex
numbers as vectors (Theorem 6) and consequences of the last part of theorem 1. Namely, if the
pointb is obtained by rotation of the pointa aroundc for the angleϕ (in the positive direction), then
b− c = eiϕ(a− c).

1. (Yug MO 1990, 3-4 grade) LetS be the circumcenter andH the orthocenter of△ABC. Let Q be
the point such thatS bisectsHQ and denote byT1, T2, andT3, respectively, the centroids of△BCQ,
△CAQ and△ABQ. Prove that

AT1 = BT2 = CT3 =
4
3

R,

whereR denotes the circumradius of△ABC.

2. (BMO 1984) LetABCD be an inscribed quadrilateral and letHA, HB, HC andHD be the orthocen-
ters of the trianglesBCD, CDA, DAB, andABC respectively. Prove that the quadrilateralsABCD and
HAHBHCHD are congruent.

3. (Yug TST 1992) The squaresBCDE, CAFG, andABHI are constructed outside the triangleABC.
Let GCDQ andEBHP be parallelograms. Prove that△APQ is isosceles and rectangular.

4. (Yug MO 1993, 3-4 grade) The equilateral trianglesBCB1, CDC1, andDAD1 are constructed
outside the triangleABC. If P andQ are respectively the midpoints ofB1C1 andC1D1 and ifR is the
midpoint ofAB, prove that△PQR is isosceles.

5. In the plane of the triangleA1A2A3 the pointP0 is given. Denote withAs = As−3, for every natural
numbers > 3. The sequence of pointsP0, P1, P2, . . . is constructed in such a way that the pointPk+1
is obtained by the rotation of the pointPk for an angle 120o in the clockwise direction around the
pointAk+1. Prove that ifP1986= P0, then the triangleA1A2A3 has to be isosceles.

6. (IMO Shortlist 1992) LetABCD be a convex quadrilateral for whichAC = BD. Equilateral
triangles are constructed on the sides of the quadrilateral. Let O1, O2, O3, andO4 be the centers of
the triangles constructed onAB, BC, CD, andDA respectively. Prove that the linesO1O3 andO2O4

are perpendicular.

4 The Distance. Regular Polygons

In this section we will use the following basic relation for complex numbers:|a|2 = aa . Similarly,
for calculating the sums of distances it is of great advantage if points are colinear or on mutually
parallel lines. Hence it is often very useful to use rotations that will move some points in nice
positions.

Now we will consider the regular polygons. It is well-known that the equationxn = 1 has exactly

n solutions in complex numbers and they are of the formxk = ei 2kπ
n , for 0≤ k ≤ n−1. Now we have

thatx0 = 1 andxk = εk, for 1≤ k ≤ n−1, wherex1 = ε.
Let’s look at the following example for the illustration:

Problem 1. Let A0A1A2A3A4A5A6 be a regular 7-gon. Prove that

1
A0A1

=
1

A0A2
+

1
A0A3

.
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Solution. As mentioned above let’s takeak = εk, for 0≤ k ≤ 6, whereε = ei 2π
7 . Further, by

rotation arounda0 = 1 for the angleε, i.e. ω = ei 2π
14 , the pointsa1 anda2 are mapped toa′1 and

a′2 respectively. These two points are collinear witha3. Now it is enough to prove that
1

a′1−1
=

1
a′2−1

+
1

a3−1
. Sinceε = ω2, a′1 = ε(a1−1)+ 1, anda′2 = ω(a2−1)+ 1 it is enough to prove

that
1

ω2(ω2−1)
=

1
ω(ω4−1)

+
1

ω6−1
.

After rearranging we getω6 + ω4 + ω2 + 1 = ω5 + ω3 + ω . Fromω5 = −ω12, ω3 = −ω10, and
ω =−ω8 (which can be easily seen from the unit circle), the equalityfollows from 0= ω12+ω10+

ω8 + ω6 + ω4+ ω2+1 = ε6 + ε5 + ε4 + ε3+ ε2 + ε +1 =
ε7−1
ε −1

= 0. △

7. Let A0A1 . . .A14 be a regular 15-gon. Prove that

1
A0A1

=
1

A0A2
+

1
A0A4

+
1

A0A7
.

8. Let A0A1 . . .An−1 be a regularn-gon inscribed in a circle with radiusr. Prove that for every point
P of the circle and every natural numberm < n we have

n−1

∑
k=0

PA2m
k =

(

2m
m

)

nr2m.

9. (SMN TST 2003) LetM andN be two different points in the plane of the triangleABC such that

AM : BM : CM = AN : BN : CN.

Prove that the lineMN contains the circumcenter of△ABC.

10. Let P be an arbitrary point on the shorter arcA0An−1 of the circle circumscribed about the regular
polygonA0A1 . . .An−1. Let h1,h2, . . . ,hn be the distances ofP from the lines that contain the edges
A0A1, A1A2, . . ., An−1A0 respectively. Prove that

1
h1

+
1
h2

+ · · ·+ 1
hn−1

=
1
hn

.

5 Polygons Inscribed in Circle

In the problems where the polygon is inscribed in the circle,it is often useful to assume that the unit
circle is the circumcircle of the polygon. In theorem 2 we cansee lot of advantages of the unit circle
(especially the first statement) and in practice we will see that lot of the problems can be solved
using this method. In particular, we know that each triangleis inscribed in the circle and in many
problems from the geometry of triangle we can make use of complex numbers. The only problem in
this task is finding the circumcenter. For that you should take a look in the next two sections.

11. The quadrilateralABCD is inscribed in the circle with diameterAC. The linesAB andCD
intersect atM and the tangets to the circle atB andC interset atN. Prove thatMN ⊥ AC.

12. (IMO Shorlist 1996) LetH be the orthocenter of the triangle△ABC andP an arbitrary point of
its circumcircle. LetE the foot of perpendicularBH and letPAQB andPARC be parallelograms. If
AQ andHR intersect inX prove thatEX‖AP.

13. Given a cyclic quadrilateralABCD, denote byP andQ the points symmetric toC with respect to
AB andAD respectively. Prove that the linePQ passes through the orthocenter of△ABD.
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14. (IMO Shortlist 1998) LetABC be a triangle,H its orthocenter,O its incenter, andR the cir-
cumradius. LetD be the point symmetric toA with respect toBC, E the point symmetric toB with
respect toCA, andF the point symmetric toC with respect toAB. Prove that the pointsD, E, andF
are collinear if and only ifOH = 2R.

15. (Rehearsal Competition in MG 2004) Given a triangleABC, let the tangent atA to the circum-
scribed circle intersect the midsegment parallel toBC at the pointA1. Similarly we define the points
B1 andC1. Prove that the pointsA1,B1,C1 lie on a line which is parallel to the Euler line of△ABC.

16. (MOP 1995) LetAA1 andBB1 be the altitudes of△ABC and letAB 6= AC. If M is the midpoint
of BC, H the orthocenter of△ABC, andD the intersection ofBC andB1C1, prove thatDH ⊥ AM.

17. (IMO Shortlist 1996) LetABC be an acute-angled triangle such thatBC > CA. Let O be the
circumcircle,H the orthocenter, andF the foot of perpendicularCH. If the perpendicular fromF to
OF intersectsCA at P, prove that∠FHP = ∠BAC.

18. (Romania 2005) LetA0A1A2A3A4A5 be a convex hexagon inscribed in a circle. LetA′
0,A

′
2,A

′
4 be

the points on that circle such that

A0A′
0 ‖ A2A4, A2A′

2 ‖ A4A0 A4A′
4 ‖ A2A0.

Suppose that the linesA′
0A3 andA2A4 intersect atA′

3, the linesA′
2A5 andA0A4 intersect atA′

5, and
the linesA′

4A1 andA0A2 intersect atA′
1.

If the lines A0A3, A1A4, andA2A5 are concurrent, prove that the linesA0A′
3,A4A′

1 and A2A′
5 are

concurrent as well.

19. (Simson’s line) If A, B, C are points on a circle, then the feet of perpendiculars from an arbitrary
pointD of that circle to the sides ofABC are collinear.

20. Let A, B, C, D be four points on a circle. Prove that the intersection of theSimsons line
corresponding toA with respect to the triangleBCD and the Simsons line corresponding toB w.r.t.
△ACD belongs to the line passing throughC and the orthocenter of△ABD.

21. Denote byl(S;PQR) the Simsons line corresponding to the pointS with respect to the triangle
PQR. If the pointsA,B,C,D belong to a circle, prove that the linesl(A;BCD), l(B;CDA), l(C,DAB),
andl(D,ABC) are concurrent.

22. (Taiwan 2002) LetA, B, andC be fixed points in the plane, andD the mobile point of the cir-
cumcircle of△ABC. Let IA denote the Simsons line of the pointA with respect to△BCD. Similarly
we defineIB, IC, andID. Find the locus of the points of intersection of the linesIA, IB, IC, andID

whenD moves along the circle.

23. (BMO 2003) Given a triangleABC, assume thatAB 6= AC. Let D be the intersection of the
tangent to the circumcircle of△ABC at A with the line BC. Let E and F be the points on the
bisectors of the segmentsAB andAC respectively such thatBE andCF are perpendicular toBC.
Prove that the pointsD, E, andF lie on a line.

24. (Pascal’s Theorem) If the hexagonABCDEF can be inscribed in a circle, prove that the points
AB∩DE, BC∩EF, andCD∩FA are colinear.

25. (Brokard’s Theorem) Let ABCD be an inscribed quadrilateral. The linesAB andCD intersect
at E, the linesAD andBC intersect inF , and the linesAC andBD intersect inG. Prove thatO is the
orthocenter of the triangleEFG.

26. (Iran 2005) LetABC be an equilateral triangle such thatAB = AC. Let P be the point on the
extention of the sideBC and letX andY be the points onAB andAC such that

PX ‖ AC, PY ‖ AB.

Let T be the midpoint of the arcBC. Prove thatPT ⊥ XY .
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27. Let ABCD be an inscribed quadrilateral and letK, L, M, andN be the midpoints ofAB, BC,
CA, andDA respectively. Prove that the orthocenters of△AKN, △BKL, △CLM, △DMN form a
parallelogram.

6 Polygons Circumscribed Around Circle

Similarly as in the previous chapter, here we will assume that the unit circle is the one inscribed
in the given polygon. Again we will make a use of theorem 2 and especially its third part. In the
case of triangle we use also the formulas from the theorem 7. Notice that in this case we know
both the incenter and circumcenter which was not the case in the previous section. Also, notice that
the formulas from the theorem 7 are quite complicated, so it is highly recommended to have the
circumcircle for as the unit circle whenever possible.

28. The circle with the centerO is inscribed in the triangleABC and it touches the sidesAB, BC, CA
in M, K, E respectively. Denote byP the intersection ofMK andAC. Prove thatOP ⊥ BE.

29. The circle with centerO is inscribed in a quadrilateralABCD and touches the sidesAB, BC, CD,
andDA respectively inK, L, M, andN. The linesKL andMN intersect atS. Prove thatOS ⊥ BD.

30. (BMO 2005) LetABC be an acute-angled triangle which incircle touches the sides AB andAC
in D andE respectively. LetX andY be the intersection points of the bisectors of the angles∠ACB
and∠ABC with the lineDE. Let Z be the midpoint ofBC. Prove that the triangleXYZ is isosceles
if and only if ∠A = 60◦.

31. (Newtons Theorem) Given an circumscribed quadrilateralABCD, let M andN be the midpoints
of the diagonalsAC andBD. If S is the incenter, prove thatM, N, andS are colinear.

32. Let ABCD be a quadrilateral whose incircle touches the sidesAB, BC, CD, andDA at the points
M, N, P, andQ. Prove that the linesAC, BD, MP, andNQ are concurrent.

33. (Iran 1995) The incircle of△ABC touches the sidesBC, CA, andAB respectively inD, E, and
F . X , Y , andZ are the midpoints ofEF, FD, andDE respectively. Prove that the incenter of△ABC
belongs to the line connecting the circumcenters of△XYZ and△ABC.

34. Assume that the circle with centerI touches the sidesBC, CA, andAB of △ABC in the points
D,E,F , respectively. Assume that the linesAI andEF intersect atK, the linesED andKC atL, and
the linesDF andKB at M. Prove thatLM is parallel toBC.

35. (25. Tournament of Towns) Given a triangleABC, denote byH its orthocenter,I the incenter,
O its circumcenter, andK the point of tangency ofBC and the incircle. If the linesIO andBC are
parallel, prove thatAO andHK are parallel.

36. (IMO 2000) LetAH1, BH2, andCH3 be the altitudes of the acute-angled triangleABC. The
incircle of ABC touches the sidesBC, CA, AB respectively inT1, T2, andT3. Let l1, l2, andl3 be the
lines symmetric toH2H3, H3H1, H1H2 with respect toT2T3, T3T1, andT1T2 respectively. Prove that
the linesl1, l2, l3 determine a triagnle whose vertices belong to the incircle of ABC.

7 The Midpoint of Arc

We often encounter problems in which some point is defined to be the midpoint of an arc. One of the
difficulties in using complex numbers is distinguishing thearcs of the cirle. Namely, if we define the
midpoint of an arc to be the intersection of the bisector of the corresponding chord with the circle,
we are getting two solutions. Such problems can be relatively easy solved using the first part of
the theorem 8. Moreover the second part of the theorem 8 givesan alternative way for solving the
problems with incircles and circumcircles. Notice that thecoordinates of the important points are
given with the equations that are much simpler than those in the previous section. However we have
a problem when calculating the pointsd,e, f of tangency of the incircle with the sides (calculate
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them!), so in this case we use the methods of the previous section. In the case of the non-triangular
polygon we also prefer the previous section.

37. (Kvant M769) LetL be the incenter of the triangleABC and let the linesAL, BL, andCL
intersect the circumcircle of△ABC at A1, B1, andC1 respectively. LetR be the circumradius andr
the inradius. Prove that:

(a)
LA1 ·LC1

LB
= R; (b)

LA ·LB
LC1

= 2r; (c)
S(ABC)

S(A1B1C1)
=

2r
R

.

38. (Kvant M860) LetO and R be respectively the center and radius of the circumcircle ofthe
triangleABC and letZ andr be respectively the incenter and inradius of△ABC. Denote byK the
centroid of the triangle formed by the points of tangency of the incircle and the sides. Prove thatZ
belongs to the segmentOK and thatOZ : ZK = 3R/r.

39. Let P be the intersection of the diagonalsAC andBD of the convex quadrilateralABCD for
whichAB = AC = BD. Let O andI be the circumcenter and incenter of the triangleABP. Prove that
if O 6= I thenOI ⊥CD.

40. Let I be the incenter of the triangleABC for which AB 6= AC. Let O1 be the point symmetric to
the circumcenter of△ABC with respect toBC. Prove that the pointsA, I,O1 are colinear if and only
if ∠A = 60◦.

41. Given a triangleABC, let A1, B1, andC1 be the midpoints ofBC, CA, andAB respecctively. Let
P, Q, andR be the points of tangency of the incirclek with the sidesBC, CA, andAB. LetP1, Q1, and
R1 be the midpoints of the arcsQR, RP, andPQ on which the pointsP, Q, andR divide the circle
k, and letP2, Q2, andR2 be the midpoints of arcsQPR, RQP, andPRQ respectively. Prove that the
linesA1P1, B1Q1, andC1R1 are concurrent, as well as the linesA1P1, B1Q2, andC1R2.

8 Important Points. Quadrilaterals

In the last three sections the points that we’ve taken as initial, i.e. those withknown coordinates
have been ”equally improtant” i.e. all of them had the same properties (they’ve been either the
points of the same circle, or intersections of the tangents of the same circle, etc.). However, there
are numerous problems where it is possible to distinguish one point from the others based on its
influence to the other points. That point will be regarded as the origin. This is particularly useful
in the case of quadrilaterals (that can’t be inscribed or circumscribed around the circle) – in that
case the intersection of the diagonals can be a good choice for the origin. We will make use of the
formulas from the theorem 9.

42. The squaresABB′B′′, ACC′C′′, BCXY are consctructed in the exterior of the triangleABC. Let P
be the center of the squareBCXY . Prove that the linesCB′′, BC′′, AP intersect in a point.

43. Let O be the intersection of diagonals of the quadrilateralABCD andM, N the midpoints of the
sideAB andCD respectively. Prove that ifOM ⊥CD andON ⊥ AB then the quadrilateralABCD is
cyclic.

44. Let F be the point on the baseAB of the trapezoidABCD such thatDF = CF . Let E be the
intersection ofAC andBD andO1 andO2 the circumcenters of△ADF and△FBC respectively.
Prove thatFE ⊥ O1O2.

45. (IMO 2005) LetABCD be a convex quadrilateral whose sidesBC andAD are of equal length but
not parallel. LetE andF be interior points of the sidesBC andAD respectively such thatBE = DF .
The linesAC andBD intersect atP, the linesBD andEF intersect atQ, and the linesEF andAC
intersect atR. Consider all such trianglesPQR asE andF vary. Show that the circumcircles of these
triangles have a common point other thanP.

46. Assume that the diagonals ofABCD intersect inO. LetT1 andT2 be the centroids of the triangles
AOD andBOC, andH1 andH2 orthocenters of△AOB and△COD. Prove thatT1T2 ⊥ H1H2.
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9 Non-unique Intersections and Viete’s formulas

The point of intersection of two lines can be determined fromthe system of two equations each of
which corresponds to the condition that a point correspond to a line. However this method can lead
us into some difficulties. As we mentioned before standard methods can lead to non-unique points.
For example, if we want to determine the intersection of two circles we will get a quadratic equations.
That is not surprising at all since the two circles have, in general, two intersection points. Also, in
many of the problems we don’t need both of these points, just the direction of the line determined
by them. Similarly, we may already know one of the points. In both cases it is more convenient to
use Vieta’s formulas and get the sums and products of these points. Thus we can avoid ”taking the
square root of a complex number” which is very suspicious operation by itself, and usually requires
some knowledge of complex analysis.

Let us make a remark: If we need explicitly coordinates of oneof the intersection points of two
circles, and we don’t know the other, the only way to solve this problem using complex numbers is
to set the given point to be one of the initial points.

47. Suppose that the tangents to the circleΓ at A andB intersect atC. The circleΓ1 which passes
throughC and touchesAB at B intersects the circleΓ at the pointM. Prove that the lineAM bisects
the segmentBC.

48. (Republic Competition 2004, 3rd grade) Given a circlek with the diameterAB, let P be an
arbitrary point of the circle different fromA andB. The projections of the pointP to AB is Q. The
circle with the centerP and radiusPQ intersectsk at C andD. Let E be the intersection ofCD
andPQ. Let F be the midpoint ofAQ, andG the foot of perpendicular fromF to CD. Prove that
EP = EQ = EG and thatA, G, andP are colinear.

49. (China 1996) LetH be the orthocenter of the triangleABC. The tangents fromA to the circle
with the diameterBC intersect the circle at the pointsP andQ. Prove that the pointsP, Q, andH are
colinear.

50. Let P be the point on the extension of the diagonalAC of the rectangleABCD over the pointC
such that∠BPD = ∠CBP. Determine the ratioPB : PC.

51. (IMO 2004) In the convex quadrilateralABCD the diagonalBD is not the bisector of any of the
anglesABC andCDA. Let P be the point in the interior ofABCD such that

∠PBC = ∠DBA and∠PDC = ∠BDA.

Prove that the quadrilateralABCD is cyclic if and only ifAP = CP.

10 Different Problems – Different Methods

In this section you will find the problems that are not closelyrelated to some of the previous chapters,
as well as the problems that are related to more than one of thechapters. The useful advice is to
carefully think of possible initial points, the origin, andthe unit circle. As you will see, the main
problem with solving these problems is the time. Thus if you are in competition and you want to
use complex numbers it is very important for you to estimate the time you will spend. Having this
in mind, it is very important to learn complex numbers as early as possible.

You will see several problems that use theorems 3, 4, and 5.

52. Given four circlesk1, k2, k3, k4, assume thatk1∩ k2 = {A1,B1}, k2∩ k3 = {A2,B2}, k3∩ k4 =
{A3,B3}, k4∩ k1 = {A4,B4}. If the pointsA1, A2, A3, A4 lie on a circle or on a line, prove that the
pointsB1, B2, B3, B4 lie on a circle or on a line.

53. Suppose thatABCD is a parallelogram. The similar and equally oliented trianglesCD andCB are
constructed outside this parallelogram. Prove that the triangleFAE is similar and equally oriented
with the first two.
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54. Three trianglesKPQ, QLP, andPQM are constructed on the same side of the segmentPQ in
such a way that∠QPM = ∠PQL = α, ∠PQM = ∠QPK = β , and∠PQK = ∠QPL = γ. If α < β < γ
andα + β + γ = 180◦, prove that the triangleKLM is similar to the first three.

55. ∗(Iran, 2005) Letn be a prime number andH1 a convexn-gon. The polygonsH2, . . . ,Hn are de-
fined recurrently: the vertices of the polygonHk+1 are obtained from the vertices ofHk by symmetry
throughk-th neighbour (in the positive direction). Prove thatH1 andHn are similar.

56. Prove that the area of the triangles whose vertices are feet of perpendiculars from an arbitrary
vertex of the cyclic pentagon to its edges doesn’t depend on the choice of the vertex.

57. The pointsA1, B1, C1 are chosen inside the triangleABC to belong to the altitudes fromA, B, C
respectively. If

S(ABC1)+ S(BCA1)+ S(CAB1) = S(ABC),

prove that the quadrilateralA1B1C1H is cyclic.

58. (IMO Shortlist 1997) The feet of perpendiculars from the verticesA, B, andC of the triangleABC
areD, E, endF respectively. The line throughD parallel toEF intersectsAC andAB respectively in
Q andR. The lineEF intersectsBC in P. Prove that the circumcircle of the trianglePQR contains
the midpoint ofBC.

59. (BMO 2004) LetO be a point in the interior of the acute-angled triangleABC. The circles
throughO whose centers are the midpoints of the edges of△ABC mutually intersect atK, L, and
M, (different fromO). Prove thatO is the incenter of the triangleKLM if and only if O is the
circumcenter of the triangleABC.

60. Two circlesk1 andk2 are given in the plane. LetA be their common point. Two mobile points,
M1 andM2 move along the circles with the constant speeds. They pass throughA always at the same
time. Prove that there is a fixed pointP that is always equidistant from the pointsM1 andM2.

61. (Yug TST 2004) Given the squareABCD, let γ be i circle with diameterAB. Let P be an
arbitrary point onCD, and letM andN be intersections of the linesAP and BP with γ that are
different fromA andB. Let Q be the point of intersection of the linesDM andCN. Prove thatQ ∈ γ
andAQ : QB = DP : PC.

62. (IMO Shortlist 1995) Given the triangleABC, the circle passing throughB andC intersect
the sidesAB andAC again inC′ andB′ respectively. Prove that the linesBB′, CC′, andHH ′ are
concurrent, whereH andH ′ orthocenters of the trianglesABC andA′B′C′ respectively.

63. (IMO Shortlist 1998) LetM andN be interior points of the triangleABC such that∠MAB =
∠NAC and∠MBA = ∠NBC. Prove that

AM ·AN
AB ·AC

+
BM ·BN
BA ·BC

+
CM ·CN
CA ·CB

= 1.

64. (IMO Shortlist 1998) LetABCDEF be a convex hexagon such that∠B +∠D+∠F = 360◦ and
AB ·CD ·EF = BC ·DE ·FA. Prove that

BC ·AE ·FD = CA ·EF ·DB.

65. (IMO Shortlist 1998) LetABC be a triangle such that∠A = 90◦ and∠B < ∠C. The tangent at
A to its circumcircleω intersect the lineBC at D. Let E be the reflection ofA with respect toBC, X
the foot of the perpendicular fromA to BE, andY the midpoint ofAX . If the lineBY intersectsω in
Z, prove that the lineBD tangents the circumcircle of△ADZ.

Hint: Use some inversion first...

66. (Rehearsal Competition in MG 1997, 3-4 grade) Given a triangle ABC, the pointsA1, B1 andC1

are located on its edgesBC, CA, andAB respectively. Suppose that△ABC ∼ △A1B1C1. If either
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the orthocenters or the incenters of△ABC and△A1B1C1 coincide prove that the triangleABC is
equilateral.

67. (Ptolomy’s inequality) Prove that for every convex quadrilateralABCD the following inequality
holds

AB ·CD+ BC ·AD ≥ AC ·BD.

68. (China 1998) Find the locus of all pointsD such that

DA ·DB ·AB + DB ·DC ·BC + DC ·DA ·CA = AB ·BC ·CA.

11 Disadvantages of the Complex Number Method

The bigest difficulties in the use of the method of complex numbers can be encountered when dealing
with the intersection of the lines (as we can see from the fifthpart of the theorem 2, although it dealt
with the chords of the circle). Also, the difficulties may arrise when we have more than one circle in
the problem. Hence you should avoid using the comples numbers in problems when there are lot of
lines in general position without some special circle, or when there are more then two circles. Also,
the things can get very complicated if we have only two circles in general position, and only in the
rare cases you are advised to use complex numbers in such situations. The problems when some of
the conditions is the equlity with sums of distances betweennon-colinear points can be very difficult
and pretty-much unsolvable with this method.

Of course, these are only the obvious situations when you can’t count on help of complex num-
bers. There are numerous innocent-looking problems where the calculation can give us increadible
difficulties.

12 Hints and Solutions

Before the solutions, here are some remarks:

• In all the problems it is assumed that the lower-case lettersdenote complex numbers corre-
sponding to the points denoted by capital letters (sometimes there is an exception when the
unit circle is the incircle of the triangle and its center is denoted byo).

• Some abbreviations are used for addressing the theorems. For example T1.3 denotes the third
part of the theorem 1.

• The solutions are quite useless if you don’t try to solve the problem by yourself.

• Obvious derivations and algebraic manipulations are skipped. All expressions that are some-
how ”equally” related to botha andb are probably divisible bya−b or a + b.

• To make the things simpler, many conjugations are skipped. However, these are very straight-

forward, since most of the numbers are on the unit circle and they satisfya =
1
a

.

• If you still doesn’t believe in the power of complex numbers,you are more than welcome to
try these problems with other methods– but don’t hope to solve all of them. For example,
try the problem 41. Sometimes, complex numbers can give you shorter solution even when
comparing to the elementar solution.

• The author has tried to make these solutions available in relatively short time, hence some
mistakes are possible. For all mistakes you’ve noticed and for other solutions (with complex
numbers), please write to me to the above e-mail address.
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1. Assume that the circumcircle of the triangleabc is the unit circle, i.e.s = 0 and|a|= |b|= |c|= 1.
According to T6.3 we haveh = a+b+c, and according to T6.1 we conclude thath+q = 2s = 0, i.e.

q = −a− b− c. Using T6.2 we gett1 =
b + c + q

3
= −a

3
and similarlyt2 = −b

3
andt3 = − c

3
. We

now have|a− t1|=
∣

∣

∣
a +

a
3

∣

∣

∣
=

∣

∣

∣

∣

4a
3

∣

∣

∣

∣

=
4
3

and similarly|b− t2|= |c− t3| =
4
3

. The proof is complete.

We have assumed thatR = 1, but this is no loss of generality.

2. For the unit circle we will take the circumcircle of the quadrilateralabcd. According to T6.3 we
haveha = b + c + d, hb = c + d + a, hc = d + a + b, andhd = a + b + c. In order to prove thatabcd
andhahbhchd are congruent it is enough to establish|x−y|= |hx−hy|, for all x,y ∈ {a,b,c,d}. This
is easy to verify.

3. Notice that the pointh ca be obtained by the rotation of the pointa aroundb for the angle
π
2

in the

positive direction. Sinceei π
2 = i, using T1.4 we get(a−b)i = a−h, i.e. h = (1− i)a+ ib. Similarly

we getd = (1− i)b+ ic andg = (1− i)c+ ia. SinceBCDE is a square, it is a parallelogram as well,
hence the midpoints ofce andbd coincide, hence by T6.1 we haved +b = e+c, or e = (1+ i)b− ic.
Similarly g = (1+ i)c − ia. The quadrilateralsbeph and cgqd are parallelograms implying that
p + b = e + h andc + q = g + d, or

p = ia + b− ic, q = −ia + ib + c.

In order to finish the proof it is enough to show thatq ca be obtained by the rotation ofp arounda

by an angle
π
2

, which is by T1.4 equivalent to

(p−a)i = p−b.

The last identity is easy to verify.

4. The pointsb1, c1, d1, are obtained by rotation ofb, c, d aroundc, d, anda for the angle
π
3

in the

positive direction. If we denoteeiπ/3 = ε using T1.4 we get

(b− c)ε = b1− c, (c−d)ε = c1−d, (d −a)ε = d1−a.

Sincep is the midpoint ofb1c1 T6.1 gives

p =
b1+ c1

2
=

εb + c +(1− ε)d
2

.

Similarly we getq =
εc + d +(1− ε)a

2
. Using T6.1 again we getr =

a + b
2

. It is enough to prove

thatq can be obtained by the rotation ofp aroundr for the angle
π
3

, in the positive direction. The

last is (by T1.4) equivalent to
(p− r)ε = q− r,

which follows from

p− r =
−a +(ε−1)b + c +(1− ε)

2
, q− r =

−εa−b + εc + d
2

,

andε2− ε +1 = 0 (since 0= ε3 +1 = (ε +1)(ε2− ε +1)).

5. Let ε = ei 2π
3 . According to T1.4 we havepk+1−ak+1 = (pk −ak+1)ε. Hence

pk+1 = ε pk +(1− ε)ak+1 = ε(ε pk−1 +(1− ε)ak)+ (1− ε)ak+1 = . . .

= εk+1p0 +(1− ε)
k+1

∑
i=1

εk+1−iai.
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Now we havep1996= p0+665(1−ε)(ε2a1+εa2+a3), sinceε3 = 1. That meansp1996= p0 if and
only if ε2a1+ εa2+a3 = 0. Using thata1 = 0 we concludea3 = −εa2, and it is clear thata2 can be

obtained by the rotation ofa3 around 0= a1 for the angle
π
3

in the positive direction.

6. Since the pointa is obtained by the rotation ofb aroundo1 for the angle
2π
3

= ε in the positive

direction, T1.4 implies(o1−b)ε = o1−a, i.e. o1 =
a−bε
1− ε

. Analogously

o2 =
b− cε
1− ε

, o3 =
c−dε
1− ε

, o4 =
d −aε
1− ε

.

Sinceo1o3 ⊥ o2o4 is equivalent to
o1−o3

o1 −o3
= − o2−o4

o2 −o4
, it is enouogh to prove that

a− c− (b−d)ε
a− c − (b−d)ε

= − b−d− (c−a)ε
b−d − (c−a)ε

,

i.e. that(a− c)b−d − (b− d)b−d ε + (a− c)a− cε − (b− d)a− cεε = −a− c(b− d) + (b−
d)b−d ε − (a − c)a− cε + (a − c)b−d εε . The last follows fromε =

1
ε

and |a − c|2 = (a −
c)a− c = |b−d|2 = (b−d)b−d .

7. We can assume thatak = εk for 0≤ k ≤ 12, whereε = ei 2π
15 . By rotation of the pointsa1, a2, and

a4 arounda0 = 1 for the anglesω6, ω5, andω3 (hereω = eiπ/15), we get the pointsa′1, a′2, anda′4,
such that takve da sua0,a7,a′1,a

′
2,a

′
4 kolinearne. Sada je dovoljno dokazati da je

1
a′1−1

=
1

a′2−1
+

1
a′4−1

+
1

a7−1
.

From T1.4 we havea′1−a0 = (a1−a0)ω6,a′2−a0 = (a2−a0)ω5 anda′4−a0 = (a4−a0)ω3, as well
asε = ω2 andω30 = 1. We get

1
ω6(ω2−1)

=
1

ω5(ω4−1)
+

1
ω3(ω8−1)

− ω14

ω16−1
.

Taking the common denominator and cancelling withω2−1 we see that it is enough to prove that

ω8 + ω6+ ω4 + ω2+1 = ω(ω12+ ω8+ ω4+1)+ ω3(ω8 +1)−ω20.

Sinceω15 = −1 = −ω30, we have thatω15−k = −ω30−k. The required statement follows from 0=
ω28+ω26+ω24+ω22+ω20+ω18+ω16+ω14+ω12+ω10+ω8+ω6+ω4+ω2+1= ω30−1

ω2−1
= 0.

8. [Obtained from Uroš Rajković] Take the complex plane in which the center of the polygon is the
origin and letz = ei π

k . Now the coordinate ofAk in the complex plane isz2k. Let p (|p| = 1) be the

coordinate ofP. Denote the left-hand side of the equality byS. We need to prove thatS =

(

2m
m

)

·n.

We have that

S =
n−1

∑
k=0

PA2m
k =

n−1

∑
k=0

∣

∣

∣
z2k − p

∣

∣

∣

2m

Notice that the arguments of the complex numbers(z2k − p) · z−k (wherek ∈ {0, 1, 2,. . . ,n}) are
equal to the argument of the complex number(1− p), hence

(z2k − p) · z−k

1− p
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is a positive real number. Since|z−k| = 1 we get:

S =
n−1

∑
k=0

|z2k − p |2m = |1− p |2m ·
n−1

∑
k=0

(

z2k − p
1− p

)2m

= |1− p |2m ·

n−1

∑
k=0

(z2k − p)2m

(1− p)2m .

SinceS is a positive real number we have:

S =

∣

∣

∣

∣

∣

n−1

∑
k=0

(z2k − p)2m

∣

∣

∣

∣

∣

.

Now from the binomial formula we have:

S =

∣

∣

∣

∣

∣

n−1

∑
k=0

[

2m

∑
i=0

(

2m
i

)

· z2ki · (−p)2m−i

]

· z−2mk

∣

∣

∣

∣

∣

.

After some algebra we get:

S =

∣

∣

∣

∣

∣

n−1

∑
k=0

2m

∑
i=0

(

2m
i

)

· z2k(i−m) · (−p)2m−i

∣

∣

∣

∣

∣

,

or, equivalently

S =

∣

∣

∣

∣

∣

2m

∑
i=0

(

2m
i

)

· (−p)2m−i ·
n−1

∑
k=0

z2k(i−m)

∣

∣

∣

∣

∣

.

Since fori 6= m we have:
n−1

∑
k=0

z2k(i−m) =
z2n(i−m) −1

z2(i−m)−1
,

for z2n(i−m)−1 = 0 andz2(i−m)−1 6= 0, we have

n−1

∑
k=0

z2k(i−m) = 0.

For i = m we have:
n−1

∑
k=0

z2k(i−m) =
n−1

∑
k=0

1 = n.

From this we conclude:

S =

∣

∣

∣

∣

(

2m
m

)

· (−p)m ·n
∣

∣

∣

∣

=

(

2m
m

)

·n · |(−p)m| .

Using|p | = 1 we get

S =

(

2m
m

)

·n

and that is what we wanted to prove.

9. Choose the circumcircle of the triangleabc to be the unit circle. Theno = 0 anda =
1
a

. The first

of the given relations can be written as

1 =
|a−m||b−n|
|a−n||b−m| ⇒ 1 =

|a−m|2|b−n|2
|a−n|2|b−m|2 =

(a−m)(a −m)(a−n)(a −n)

(a−n)(a −n)(b−m)(b −m)
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After some simple algebra we get(a−m)(a −m)(b− n)(b − n) = (1− m
a
− am + mm)(1− n

b
−

bn + nn) = 1− m
a
− am + mm − n

b
+

mn
ab

+
amn

b
− mmn

b
− bn +

bmn
a

+ abmn − bmmn + nn −
mnn

a
−amnn +mmnn . The value of the expression(a−n)(a −n)(b−m)(b −m) we can get from

the prevoius one replacing everya with b and vice versa. The initial equality now becomes:

1− m
a
−am + mm − n

b
+

mn
ab

+
amn

b
− mmn

b
−bn +

bmn
a

+ abmn −bmmn + nn − mnn
a

−amnn + mmnn

= 1− m
b
−bm + mm − n

a
+

mn
ab

+
bmn

a
− mmn

a
−an +

amn
b

+

abmn −ammn + nn − mnn
b

−bmnn + mmnn .

Subtracting and takinga−b out gives

m
ab

−m − n
ab

+
(a + b)mn

ab
− mmn

ab
+ n − (a + b)mn

ab
+ mmn +

mnn
ab

−mnn = 0.

SinceAM/CM = AN/CM holds as well we can get the expression analogous to the abovewhen
everyb is exchanged withc. Subtracting this expression from the previous and takingb− c out we
get

− m
abc

+
n

abc
− mn

bc
+

mmn
abc

+
mn
bc

− mnn
abc

= 0.

Writing the same expression withac instead ofbc (this can be obtained from the initial conditions

because of the symmetry), subtracting, and simplifying yieldsmn −nm = 0. Now we have
m−o
m −o

=

n−o
n −o

, and by T1.2 the pointsm,n,o are colinear.

10. [Obtained from Uroš Rajković] First we will prove that forthe pointsp, a, andb of the unit
circle the distance fromp to the lineab is equal to:

1
2
|(a− p)(b− p)|.

Denote byq the foot of perpendicular fromp to ab and use T2.4 to get:

q =
1
2

(

p + a + b− ab
p

)

.

Now the required distance is equal to:

|q− p |= 1
2

∣

∣

∣

∣

−p + a + b− ab
p

∣

∣

∣

∣

.

Since|p | = 1 we can multiply the expression on the right by−p which gives us:
∣

∣

∣

∣

1
2
(p2− (a + b)p + ab)

∣

∣

∣

∣

.

Now it is easy to see that the required distance is indeed equal to:

1
2
|(a− p)(b− p)|.
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If we denotez = ei 2π
2n , the coordinate ofAk is z2k. Now we have:

2 ·hk = |(z2k − p)(z2k−2− p)|.

The vector(z2k − p) · z−k is colinear with 1− p, nece

(z2k − p) · z−k

1− p

is a positive real number. Hence fork ∈ {1,2, · · · ,n−1} it holds:

hk =
(z2k − p) · (z2k−2− p) · z−(2k−1)

2 · (1− p)2 · |1− p|2,

since|z| = 1. We also have:

hn =
(1− p) · (z2n−2− p) · z−(n−1)

2 · (1− p)2 · |1− p|2.

We need to prove that:

n−1

∑
k=1

1

(z2k − p) · (z2k−2− p) · z−(2k−1)

2 · (1− p)2 · |1− p|2
=

1

(1− p) · (z2n−2− p) · z−(n−1)

2 · (1− p)2 · |1− p|2
.

After cancelling and multiplying byz we get:

n−1

∑
k=1

z2k

(z2k − p) · (z2k−2− p)
=

−1
(1− p) · (z2n−2− p)

,

sincezn = −1. Denote byS the left-hand side of the equality. We have:

S− 1
z2 S =

n−1

∑
k=1

(z2k − p)− (z2k−2− p)

(z2k − p) · (z2k−2− p)
.

This implies:

(1− 1
z2 )S =

n−1

∑
k=1

(

1
z2k−2− p

− 1
z2k − p

)

.

After simplifying we get:

(1− 1
z2 )S =

1
1− p

− 1
z2n−2− p

=
(z2n−2− p)− (1− p)

(1− p) · (z2n−2− p)
.

Sincez2n−2 =
1
z2 (from zn = 1) we get:

S =
−1

(1− p) · (z2n−2− p)
,

q.e.d.
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11. Assume that the unit circle is the circumcircle of the quadrilateralabcd. Sinceac is its diameter
we havec = −a. Furthermore by T2.5 we have that

m =
ab(c + d)− cd(a + b)

ab− cd
=

2bd + ad−ab
d + b

.

According to T2.3 we have thatn =
2bd

b + d
, hencem− n =

a(d−b)

b + d
andm − n =

b−d
a(b + d)

. Now

we have
m−n
m −n

= − a− c
a − c

= a2,

hence according to T1.3mn ⊥ ac, q.e.d.

12. Assume that the unit circle is the circumcircle of the triangle abc. Using T6.3 we haveh =

a + b + c, and using T2.4 we havee =
1
2

(

a + b + c − ac
b

)

. Since paqb is a parallelogram the

midpoints ofpq andab coincide, and according to T6.1q = a+b− p and analogouslyr = a+c− p.
Since the pointsx,a,q are colinear, we have (using T1.2)

x−a
x −a

=
a−q
a −q

=
p−b

p −b
= −pb,

or, equivalentlyx =
pb + a2−ax

abp
. Since the pointsh,r,x are colinear as well, using the same theorem

we get
x−h

x −h
=

h− r

h − r
=

b + p

b + p
= bp,

i.e.

x =
x−a−b− c + p+

bp
a

+
bp
c

bp
.

Equating the expressions obtained forx we get

x =
1
2

(

2a + b + c− p− bp
c

)

.

By T1.1 it is sufficient to prove that

e− x
e − x

=
a− p
a − p

= −ap.

The last follows from

e− x =
1
2

(

p +
bp
c

−a− ac
b

)

=
bcp + b2p−abc−ac2

2bc
=

(b + c)(bp−ac)
2bc

,

by conjugation.

13. We will assume that the circumcircle of the quadrilateralabcd is the unit circle. Using T2.4 and
T6.1 we get

p = a + b− ab
c

, q = a + d +
ad
c

(1).

Let H be the orthocenter of the triangleABD. By T6.3 we haveh = a + b + d, hence according to
T1.2 it is enough to prove that

p−h

p −h
=

q−h

q −h
. (2)
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Chaning forp from (1) we get

p−h

p −h
=

a + b− ab
c
−a−b−d

1
a

+
1
b
− c

ab
− 1

a
− 1

b
− 1

d

=
abd

c
,

and since this expression is symmetric with respect tob andd, (2) is clearly satisfied.

14. Assume that the unit circle is the circumcircle of the triangle abc and assume thata′,b′,c′ are
feet of perpendiculars froma,b,c respectively. From T2.4 we have

a′ =
1
2

(

a + b + c− bc
a

)

, b′ =
1
2

(

a + b + c− ca
b

)

, c′ =
1
2

(

a + b + c− ab
c

)

.

Sincea′,b′,c′ are midpoints ofad,be,c f respectively according to T6.1 we have

d = b + c− bc
a

, e = a + c− ac
b

, f = a + b− ab
c

.

By T1.2 the colinearity of the pointsd,e, f is equivalent to

d − e

d − e
=

f − e

f − e
.

Sinced − e = b−a +
ac
b
− bc

a
= (b−a)

ab− c(a + b)

ab
and similarly f − e = (b− c)

bc−a(b + c)
bc

,

by conjugation and some algebra we get

0 = (a2b + a2c−abc)(c−a−b)− (c2a + c2b−abc)(a−b− c)

= (c−a)(abc−a2b−ab2−a2c−ac2−b2c−bc2). (1)

Now we want to get the necessary and sufficient condition for|h| = 2 (the radius of the circle is 1).
After the squaring we get

4 = |h|2 = hh = (a + b + c)
(1

a
+

1
b

+
1
c

)

=
a2b + ab2+ a2c + ac2+ b2c + bc2+3abc

abc
. (2)

Now (1) is equivalent to (2), which finishes the proof.

15. Assume that the unit circle is the circumcircle of the triangle abc. Let a′,b′,c′ be the midpoints
of bc,ca,ab. Sinceaa1 ⊥ ao and sincea1,b′,c′ are colinear, using T1.3 and T1.2, we get

a−a1

a −a1
= − a−o

a −o
= −a2,

b′− c′

b′ − c′
=

b′−a1

b′ −a1
.

From the first equality we havea1 = 2a−a1
a2 , and since from T6.1b′ =

a + c
2

andc′ =
a + b

2
we also

havea1 =
ab + bc + ca−aa1

2abc
. By equating the above expressions we geta1 =

a2(a + b + c)−3abc
a2−2bc

.

Similarly b1 =
b2(a + b + c)−3abc

2(b2−ac)
andc1 =

c2(a + b + c)−3abc
2(c2−2ab)

. Now we have

a1−b1 =
a2(a + b + c)−3abc

2(a2−bc)
− b2(a + b + c)−3abc

2(b2−ac)
= −c(a−b)3(a + b + c)

2(a2−bc)(b2−ac)
,
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and it is easy to verify the condition fora1b1 ⊥ ho, which is according to T1.3:

a1−b1

a1 −b1
= − h−o

h −o
= − (a + b + c)abc

ab + bc + ca
.

Similarly a1c1 ⊥ ho, implying that the pointsa1, a2, anda3 are colinear.

16. Assume that the unit circle is the circumcircle of the triangle abc. By T2.4 we have thatb1 =
1
2

(

a + b + c− ac
b

)

andc1 =
1
2

(

a + b + c− ab
c

)

, according to T6.1m =
b + c

2
, and according to

T6.3h = a + b + c. Now we will determine the pointd. Sinced belongs to the chordbc according

to T2.2d =
b + c−d

bc
. Furthermore, since the pointsb1, c1, andd are colinear, according to T1.2

we have

d −b1

d −b1
=

b1− c1

b1 − c1
=

a
(b

c
− c

b

)

1
a

( c
b
− b

c

)

= −a2.

Now we have thatd =
a2b1 + b1−d

a2 , hence

d =
a2b + a2c + ab2+ ac2−b2c−bc2−2abc

2(a2−bc)
.

In order to prove thatdh ⊥ am (see T1.3) it is enough to prove that
d−h

d −h
=− m−a

m −a
. This however

follows from

d−h =
b2c + bc2+ ab2+ ac2−a2b−a2c−2a3

2(a2−bc)

=
(b + c−2a)(ab + bc+ ca+a2)

2(a2−bc)

andm−a =
b + c−2a

2
by conjugation.

17. Assume that the unit circle is the circumcircle of the triangle abc. By T2.4 we have thatf =
1
2

(

a + b + c− ab
c

)

. Sincea,c, p are colinear andac is a chord of the unit circle, according to T2.2

we havep =
a + c− p

ac
. Since f o ⊥ p f using T1.3 we coclude

f −o

f −o
= − p− f

p − f
.

From the last two relations we have

p = f
2ac f − (a + c)

ac f − f
=

(

a + b + c− ab
c

)

c2

b2 + c2 .

Let ∠ph f = ϕ , then
f −h

f −h
= ei2ϕ p−h

p −h
.

Sincep−h = −b
ab + bc + ca+ c2

b2 + c2 , and by conjugation

p −h = −c(ab + bc + ca +b2)

ab(b2+ c2)
,
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f −h =
ab + bc + ca + c2

2c
, f −h =

ab + bc + ca + c2

2abc
, we see thatei2ϕ =

c
b

. On the other hand we

have
c−a
c −a

= ei2α b−a

b −a
, and using T1.2ei2α =

c
b

. We have proved thatα = π + ϕ or α = ϕ , and

since the first is impossible, the proof is complete.

18. First we will prove the following useful lemma.

Lemma 1. If a, b, c, a′, b′, c′ are the points of the unit circle, then the lines aa′,bb′,cc′ concurrent
or colinear if and only if

(a−b′)(b− c′)(c−a′) = (a− c′)(b−a′)(c−b′).

Proof. Let x be the intersection ofaa′ andbb′, and lety be the intersection of the linesaa′ and
cc′. Using T2.5 we have

x =
aa′(b + b′)−bb′(a + a′)

aa′−bb′
, y =

aa′(c + c′)− cc′(a + a′)
aa′− cc′

.

Here we assumed that these points exist (i.e. that none ofaa′ ‖ bb′ andaa′ ‖ cc′ holds). It is obvious
that the linesaa′, bb′, cc′ are concurrent if and only ifx = y, i.e. if and only if

(aa′(b + b′)−bb′(a + a′))(aa′− cc′) = (aa′(c + c′)− cc′(a + a′))(aa′−bb′).

After simplifying we getaa′b + aa′b′− abb′− a′b′b− bcc′− b′cc′ = aa′c + aa′c′− bc′c− bb′c′ −
acc′ − a′cc′, and since this is equivalent to(a− b′)(b− c′)(c− a′) = (a− c′)(b− a′)(c− b′), the
lemma is proven.2

Now assume that the circumcircle of the hexagon is the unit circle. Using T1.1 we get

a2−a4

a2 −a4
=

a0−a′0
a0 −a′0

,
a4−a0

a4 −a0
=

a2−a′2
a2 −a′2

,
a2−a0

a2 −a0
=

a4−a′4
a4 −a′4

,

hencea′0 =
a2a4

a0
,a′2 =

a0a4

a2
i a′4 =

a0a2

a4
. Similarly, using T2.5 we get

a′3 =
a′0a3(a2 + a3)−a2a3(a′0 + a3)

a′0a3−a2a4
=

a4(a3−a2)+ a3(a2−a0)

a3−a0
.

Analogously,

a′5 =
a0(a5−a4)+ a5(a4−a2)

a5−a2
, a′1 =

a2(a1−a0)+ a1(a0−a4)

a1−a4
.

Assume that the pointsa′′3,a
′′
1,a

′′
5 are the other intersection points of the unit circle with thelines

a0a′3, a4a′1, a2a′5 respectively. According to T1.2

a′3−a0

a′3 −a0
=

a′′3 −a0

a′′3 −a0
= −a′′3a0,

and sincea0−a′3 =
a3(2a0−a2−a4)+ a2a4−a2

0

a3−a0
, we have

a′′3 −a4 =
(a0−a2)

2(a3−a4)

a0a2(a3−a0)(a0 −a′3)
, a′′3 −a2 =

(a0−a4)
2(a3−a2)

a0a4(a3−a0)(a0 −a′3)
.

Analogously we get

a′′1 −a0 = a′′3 −a4 =
(a2−a4)

2(a1−a0)

a2a4(a1−a4)(a4 −a′1)
,
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a′′1 −a2 = a′′3 −a4 =
(a4−a0)

2(a1−a2)

a0a4(a1−a4)(a4 −a′1)
,

a′′5 −a0 = a′′3 −a4 =
(a2−a4)

2(a5−a0)

a2a4(a5−a0)(a2 −a′5)
,

a′′5 −a4 = a′′3 −a4 =
(a0−a2)

2(a5−a4)

a0a2(a5−a4)(a2 −a′5)
.

Using the lemma and the concurrence of the linesa0a3, a1a4, anda2a5 (i.e. (a0−a1)(a2−a3)(a4−
a5) = (a0 − a5)(a2 − a1)(a4 − a3)) we get the concurrence of the linesa0a′′3, a4a′′1, anda2a′′5, i.e.
(a0−a′′1)(a2−a′′3)(a4−a′′5) = (a0−a′′5)(a2−a′′1)(a4−a′′3), since they, obviously, intersect.

19. [Obtained from Uroš Rajković] Assume that the unit circleis the circumcircle of the triangle
abc. If A1, B1, andC1 denote the feet of the perpendiculars, we have from T2.4:

a1 =
1
2

(

b + c + m− bc
m

)

,

b1 =
1
2

(

a + c + m− ac
m

)

, and

c1 =
1
2

(

a + b + m− ab
m

)

.

We further get:

a1− c1

b1− c1
=

c−a +
ab−bc

m

c−b +
ab−ac

m

=
(c−a)(m−b)

(c−b)(m−a)
=

a 1− c1

b 1− c1
,

and, according to T1.2, the pointsA1, B1, andC1 are colinear.

20. The quadrilateralABCD is cyclic, and we assume that it’s circumcircle is the unti circle. Leta1,
a2, anda3 denote the feet of the perpendiculars froma to bc, cd, anddb respectively. Denote byb1,
b2, andb3 the feet of the perpendiculars fromb to ac, cd, andda respectively. According to T2.4 we
have that

a1 =
1
2

(

a + b + c− bc
a

)

, a2 =
1
2

(

a + b + d− bd
a

)

, a3 =
1
2

(

a + c + d− cd
a

)

b1 =
1
2

(

b + a + c− ac
b

)

, b2 =
1
2

(

b + c + d− cd
b

)

, b3 =
1
2

(

b + d + a− da
b

)

The pointx can be obtained from the condition for colinearity. First from the colinearity ofx,a1,a2

and T1.2 we have that

x−a1

x −a1
=

a1−a2

a1 −a2
=

1
2

(

c−d +
bd
a

− bc
a

)

1
2

(1
c
− 1

d
+

a
bd

− a
bc

)

=
bcd

a
,

and after simplifying

x =
x− 1

2

(

a + b + c + d− abc + acd + abd + bcd
a2

)

bcd
a.

Similarly from the colinearity of the pointsx, b1, andb2 we get

x =
x− 1

2

(

a + b + c + d− abc + acd + abd + bcd
b2

)

acd
b,
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and from this we conclude

x =
1
2

(

a + b + c + d
)

.

Let h = a+c+d (by T6) be the orthocenter of the triangleacd. In order to finish the proof, according
to T1.2 it is enough to show that

x− c
x − c

=
h− c

h − c
=

a + b + d− c

a + b + d − c
.

On the other handx− c =
1
2

(

a + b + d− c
)

, from which the equality is obvious.

21. Using the last problem we have that the intersection of the linesl(a;bcd) andl(b;cda) is the

pointx =
1
2

(

a + b + c + d
)

, which is a symmetric expression, hence this point is the intersection of

every two of the given lines.

22. Using the last two problems we get the locus of points is the set of all the points of the form

x =
1
2

(

a + b + c + d
)

, whend moves along the circle. That is in fact the circle with the radius
1
2

and center
a + b + c

2
, which is the midpoint of the segment connecting the center of the given circle

with the orthocenter of the triangleabc.

23. Assume that the unit circle is the circumcircle of the triangle abc. From T1.3 and the condition
ad ⊥ ao we have that

d −a

d −a
= − a−o

a −o
= −a2,

and after simplifyingd =
2a−d

a2 . Since the pointsb,c,d are colinear andbc is the chord of the unit

circle, according to T2.2d =
b + c−d

bc
, and solving the given system we getd =

a2(b + c)−2abc
a2−bc

.

Sincee belongs to the perpendicular bisector ofab we haveoe⊥ ab. According to T1.3 and
e−o
e −o

=

− a−b

a −b
= ab, i.e. e =

e
ab

. From be ⊥ bc, using T1.3 again we get
b− e

b − e
= − b− c

b − c
= bc, or

equivalentlye =
c−b + e

bc
=

e
ab

. Hencee =
a(c−b)

c−a
. Similarly we havef =

a(b− c)
b−a

. Using T1.2

we see that it is enough to prove that
d − f

d − f
=

f − e

f − e
. Notice that

d− f =
a2(b + c)−2abc

a2−bc
− a(b− c)

b−a
=

a2b2 +3a2bc−ab2c−2a3b−abc2

(a2−bc)(b−a)

=
ab(a− c)(b + c−2a)

(a2−bc)(b−a)
,

and similarlyd− e =
ac(a−b)(b + c−2a)

(a2−bc)(c−a)
. After conjugation we see that the required condition is

easy to verify.

24. [Obtained from Uroš Rajković] Assume that the unit circleis the incircle of the hexagon
ABCDEF. After conjugating and using T2.5 we get:

m =
a + b− (d + e)

ab−de
, n =

b + c− (e + f )
bc− e f

, p =
c + d− ( f + a)

cd − f a
,
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hence:

m −n =
(b− e)(bc− cd + de− e f + f a−ab)

(ab−de)(bc− e f )
,

and analogously:

n − p =
(c− f )(cd−de + e f − f a + ab−bc)

(bc− e f )(cd− f a)
.

From here we get:
m −n
n − p

=
(b− e)(cd− f a)

( f − c)(ab−de)
.

Since the numbersa , b , c , d , e , and f are equal to
1
a

,
1
b

,
1
c

,
1
d

,
1
e

, and
1
f
, respectively, we see

that it is easy to verify that the complex number on the left-hand side of the last equality equal to
its complex conjugate, hence it is real. Now according to T1.2 the pointsM, N, andP are colinear,
q.e.d.

25. Assume that the quadrilateralabcd is inscribed in the unit circle. Using T2.5 we get

e =
ab(c + d)− cd(a + b)

ab− cd
,

f =
ad(b + c)−bc(a + d)

ad−bc
mboxand

g =
ac(b + d)−bd(a + c)

ac−bd
. (1)

In order to prove thato = 0 is the orthocenter of the trianglee f g, it is enough to prove thato f ⊥ eg
andog ⊥ e f . Because of the symmetry it is enough to prove one of these tworelateions. Hence, by
T1.3 it is enough to prove that

f −o

f −o
=

e−g
e −g

(2).

From (1) we have that

f −o

f −o
=

ad(b + c)−bc(a + d)

ad−bc
(b + c)− (a + d)

bc−ad

=
ad(b + c)−bc(a + d)

a + d− (b + c)
,(3)

or equivalently

e−g =
(a−d)(ab2d−ac2d)+ (b− c)(bcd2−a2bc)

(ab− cd)(ac−bd)

=
(a−d)(b− c)((b + c)ad− (a + d)bc)

(ab− cd)(ac−bd)
(4)

and by conjugation

e −g =
(a−d)(b− c)(b + c− (a+d))

(ab− cd)(ac−bd)
(5).

Comparing the expressions (3),(4), and (5) we derive the statement.

26. Assume that the unit circle is the circumcircle of the triangle abc and assume thata = 1. Then

c = b andt = −1. Sincep belongs to the chordbc, using T2.2 we get thatp = b +
1
b
− p. Sincex

belongs to the chordab, in the similar way we getx =
1+ b− x

b
. Sincepx ‖ ac by T1.1 we have

p− x
p − x

=
a− c
a − c

= −1
b
,
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i.e. x = pb + p − xb. From this we getx =
b(p +1)

b +1
. Similarly we derivey =

p +1
b +1

. According to

T1.3 it remains to prove that
x− y
x − y

= − p− t
p − t

= − p +1
p +1

. This follows fromx− y =
(p +1)(b−1)

b +1
and by conjugation

x − y =
(p +1)

(1
b
−1

)

1
b

+1
= − (p +1)(b−1)

b +1
.

27. Assume that the unit circle is the circumcircle of the quadrilateralabcd. Using T6.1 we havek =
a + b

2
, l =

b + c
2

, m =
c + a

2
andn =

d + a
2

. We want to determine the coordinate of the orthocenter

of the triangleakn. Let h1 be that point and denote byh2, h3, andh4 the orthocenters ofbkl, clm,
anddmn respectively. Thenkh1 ⊥ an andnh1 ⊥ ak. By T1.3 we get

k−h1

k −h1
= − a−n

a −n
and

n−h1

n −h1
= − a− k

a − k
. (1)

Since
a−n
a −n

=
a−d

a −d
= −ad,

we have that

h1 =
k ad− k + h1

ad
.

Similarly from the second of the equations in (1) we get

h1 =
nab−n + h1

ab
.

Solving this system gives us that

h1 =
2a + b + d

2
.

Symmetricaly

h2 =
2b + c + a

2
, h3 =

2c + d + b
2

, h4 =
2d + a + c

2
,

and sinceh1 +h3 = h2 +h4 using T6.1 the midpoints of the segmentsh1h3 andh2h4 coincide hence
the quadrilateralh1h2h3h4 is a parallelogram.

28. Assume that the unit circle is the circumcircle of the triangle abc. By T2.3 we have thata =
2em

e + m
i b =

2mk
m+ k

. Let’s find the pointp. Since the pointsm, k, andp are colinear andmk is the

chord of the unit circle, by T2.2 we have thatp =
m+ k− p

mk
. Furthermore the pointsp, e, andc are

colinear. However, in this problem it is more convenient to notice thatpe ⊥ oe and now using T1.3
we have

e− p
e − p

= − e−o
e −o

= −e2

and after simplifyingp =
2e− p

e2 . Equating the two expressions forp we get

p = e
(m+ k)e−2mk

e2−mk
.
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In order to finish the proof using T1.3 it is enough to prove that
p−o
p −o

= − e−b

e −b
. This will follow

from

e−b =
e(m+ k)−2mk

m+ k
,

and after conjugatinge −b =
m+ k−2e
(m+ k)e

andp =
m+ k−2e

mk− e2 .

29. Assume that the circle inscribed inabcd is the unit one. From T2.3 we have that

a =
2nk

n + k
, b =

2kl
k + l

, c =
2lm

l + m
, d =

2mn
m+ n

. (1)

Using T2.5 we get

s =
kl(m+ n)−mn(k + l)

kl −mn
. (2)

According to T1.1 it is enough to verify that

s−o
s −o

=
b−d

b −d
.

From (1) we have that

b−d = 2
kl(m+ n)−mn(k + l)

(k + l)(m+ n)
, (3)

and after conjugating

b −d =
m+ n− (k + l)
(k + l)(m+ n)

. (4)

From (2) we have that
s
s

=
kl(m+ n)−mn(k + l)

kl −mn
, (5)

and comparing the expressions (3),(4), and (5) we finish the proof.

30. [Obtained from Uroš Rajković] LetP be the point of tangency of the incircle with the lineBC.
Assume that the incircle is the unit circle. By T2.3 the coordinates ofA, B, andC are respectively

a =
2qr

q + r
, b =

2pr
p + r

i c =
2pq
p + q

.

Furthermore, using T6.1 we getx =
1
2
(b + c) =

pr
p + r

+
pq

p + q
, y = αb = α

2pr
p + r

, andz = β c =

β
2pq
p + q

(α,β ∈ R). The values ofα andβ are easy to compute from the conditionsy ∈ rq and

z ∈ rq:

α =
(p + r)(q + r)

2(p + q)r
i β =

(p + q)(r + q)

2(p + r)q
.

From here we get the coordinates ofy andz usingp, q, andr:

y =
p(q + r)
(p + q)

andz =
p(r + q)

(p + r)
.

We have to prove that:

∠RAQ = 60◦ ⇐⇒ XYZ is equilateral.
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The first condition is equivalent to∠QOR = 60◦ i.e. with

r = q · ei2π/3.

The second condition is equivalent to(z− x) = (y− x) · eiπ/3. Notice that:

y− x =
p(q + r)
(p + q)

−
(

pr
p + r

+
pq

p + q

)

=
pr(r−q)

(p + q)(p + r)
and

z− x =
p(p + q)

(p + r)
−

(

pr
p + r

+
pq

p + q

)

=
pq(q− r)

(p + q)(p + r)
.

Now the second condition is equivalent to:

pq(q− r)
(p + q)(p + r)

=
pr(r−q)

(p + q)(p + r)
eiπ/3,

i.e. with q = −r eiπ/3. It remains to prove the equivalence:

r = q ei2π/3 ⇐⇒ q = −r eiπ/3,

which obviously holds.

31. According to T1.1 it is enough to prove that

m−o
m −o

=
n−o
n −o

.

If p,q,r,s are the points of tangency of the incircle with the sidesab,bc,cd,da respectively using
T2.3 we get

m =
a + c

2
=

ps
p + s

+
qr

q + r
=

pqs+ prs+ pqr + qrs
(p + s)(q + r)

,

and after conjugatingm =
p + q + r + s
(p + s)(q + r)

and

m
m

=
pqr + ps+ prs+ qrs

p + q + r + s
.

Since the last expression is symmetric inp,q,r,s we conclude that
m
m

=
n
n

, as required.

32. Assume that the incircle of the quadrilateralabcd is the unit circle. We will prove that the
intersection of the linesmp andnq belongs tobd. Then we can conlude by symmetry that the point
also belongs toac, which will imply that the linesmp, nq, ac, andbd are concurrent. Using T2.3 we
have that

b =
2mn

m+ n
, d =

2pq
p + q

.

If x is the intersection point ofmp andnq, using T2.5 we get

x =
mp(n + q)−nq(m+ p)

mp−nq
.

We have to prove that the pointsx,b,d are colinear, which is according to T1.2 equivalent to saying
that

b−d

b −d
=

b− x

b − x
.
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This follows fromb−d =
2mn

m+ n
− 2pq

p + q
= 2

mn(p + q)− pq(m+ n)

(m+ n)(p + q)
and

b− x =
2mn

m+ n
− mp(n + q)−nq(m+ p)

mp−nq

=
m2np−mn2q−m2pq + n2pq + m2nq−mn2p

(mp−nq)(m+ n)

=
(m−n)(mn(p + q)− pq(m+n))

(m+ n)(mp−nq)
,

by conjugation.

33. Assume that the unit circle is the incumcircle of the triangle abc. Using T7.3 we have that the
circumecenter has the coordinate

o =
2de f (d + e + f )

(d + e)(e + f )( f + d)
.

Let’s calculate the coordinate of the circumcentero1 of the trianglexyz. First, according to T6.1

we have thatx =
e + f

2
, y =

d + f
2

andz =
d + e

2
. Moreover by T1.3 we have that

o1−
x + y

2

o1 −
x + y

2

=

− x− y
x − y

=
(e−d)/2

(e −d )/2
= −ed, and simplifying

o1 =

− f
2

+
ed
2 f

+ o1

ed
,

and similarlyo1 =
−d

2
+

e f
2d

+ o1

e f
. By equating we geto1 =

e + f + d
2

. Now by T1.2 it is enough to

prove that
o1− i

o1 − i
=

o− i

o − i
, which can be easily obtained by conjugation of the previousexpressions

for o ando1.

34. Assume that the incircle of the triangleabc is the unit circle. Using T7.1 we getb =
2 f d
f + d

and

c =
2ed

e + d
. From some elemetary geometry we conclude thatk is the midpoint of segmente f hence

by T6.1 we havek =
e + f

2
. Let’s calculate the coordinate of the pointm. Sincem belongs to the

chord f d by T2.2 we havem =
f + d−m

f d
. Similarly we have that the pointsb,m,k are colinear and

by T1.2 we get
k−m

k −m
=

b− k

b − k
, i.e. m = m

b − k
b− k

+
k b− kb

b− k
. Now equating the expressions form

one gets

m =
( f + d)(b− k)+ (kb − kb) f d

(b − k ) f d + b− k
.

Sinceb− k =
3 f d −de− f 2− e f

2( f + d)
andkb − kb =

(e + f )(e−d) f d
e( f + d)

we get

m =
4e f 2d + e f d2− e2d2− e2 f 2−2 f 2d2− f 3e
6e f d − e2d− ed2− e f 2− e2 f −d2 f −d f 2
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and symmetrically

n =
4e2 f d + e f d2− f 2d2− e2 f 2−2e2d2− e3 f
6e f d − e2d− ed2− e f 2− e2 f −d2 f −d f 2 .

By T1.3 it is enough to prove that
m−n
m −n

= − i−d

i −d
= −d2. This however follows from

m−n =
(e− f )(4e f d− ed2− f d2− f e2− f 2e)

6e f d− e2d− ed2− e f 2− e2 f −d2 f −d f 2 ,

by conjugation.

35. Assume that the unit circle is the inrcumcircle of the triangle abc. Assume thatk, l, andm are
the points of tangency of the incircle with the sidesbc, ca, andab, respectively. By T7 we have that

o =
2klm(k + l + m)

(k + l)(l + m)(m+ k)
, h =

2(k2l2 + l2m2 + m2k2 + klm(k + l + m))

(k + l)(l + m)(m+ k)
.

Since the segmentsio and bc are parallel we have thatio ⊥ ik, which is by T1.3 equivalent to
o− i

o − i
= − k− i

k − i
= −k2. After conjugating the last expression foro becomes

klm(k + l + m)+ k2(kl + lm+ mk) = 0. (∗)

Let’s prove that under this condition we haveao ‖ hk. According to T1.1 it is enough to prove that
a−o
a −o

=
h− k

h − k
. According to T7.1 we have thata =

2ml
m+ l

, and

a−o =
2ml

m+ l
− 2klm(k + l + m)

(k + l)(l + m)(m+ k)
=

2m2l2

(k + l)(l + m)(m+ k)
.

Now we get that it is enough to prove that

h− k

h − k
=

l2m2

k2 .

Notice that

h− k =
2(k2l2 + l2m2 + m2k2 + klm(k + l + m))

(k + l)(l + m)(m+ k)
− k

=
k2l2 + k2m2 +2l2m2 + k2lm+ kl2m+ klm2− k2l− k3m− k2lm

(k + l)(l + m)(m+ k)

=
klm(k + l + m)− k2(k + l + m)+ k2l2 +2l2m2 + m2l2

(k + l)(l + m)(m+ k)

=
(

according to (*)
)

=
(kl + lm+ mk)2+ l2m2

(k + l)(l + m)(m+ k)

=
(

according to (*)
)

=
(kl + lm+ mk)2((k + l + m)2 + k2)

(k + l + m)2(k + l)(l + m)(m+ k)
.

After conjugating the last expression forh− k we get

h − k =
(k + l + m)2 + k2

(k + l)(l + m)(m+ k)
,
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and using the last expression forh− k we get

h− k

h − k
=

(kl + lm+ mk)2

(k + l + m)2 =
(

by (*)
)

=
l2m2

k2 ,

which completes the proof.

36. Assume that the incircle of the triangleabc is the unit circle. Then using T7.1 we havec =
2t1t2

t1 + t2
.

Our goal is to first determine the pointh3. Fromh3t3 ⊥ it3 by T1.3 we have

h3− t3
h3 − t3

= − t3− i

t3 − i
= −t2

3,

i.e. h3 =
2t3−h3

t2
3

. Furthermore fromch3 ‖ it3 and T1.1 we have
h3− c

h3 − c
=

t3− i

t3 − i
= t2

3. Writing the

similar expression forh3 gives

h3 =
1
2

(

2t3+ c− ct2
3

)

= t3 +
t1t2− t2

3

t1 + t2
.

Similarly we obtainh2 = t2+
t1t3− t2

2

t1 + t3
. In order to determine the line symmetric toh2h3 with repsect

to t2t3 it is enough to determine the points symmetric toh2 andh3 with respect tot2t3. Assume that
p2 andp3 are these two points and leth′2 andh′3 be the feet of perpendiculars fromh2 andh3 to the

line t2t3 respectively. According to T2.4 we haveh′2 =
1
2

(

t2 + t3− t2t3h3

)

hence by T6.1

p2 = 2h′2−h2 =
t1(t2

2 + t2
3)

t2(t1 + t3)

and symmetricallyp3 =
t1(t2

2 + t2
3)

t3(t1 + t2)
. Furthermore

p2− p3 =
t2
1(t2

2 + t2
3)(t3− t2)

t1t3(t1 + t2)(t1 + t3)
,

and if the pointx belongs top2p3 by T1.2 the following must be satisfied:

x− p2

x − p2
=

p2− p3

p2 − p3
= −t2

1.

Specifically ifx belongs to the unit circle we also havex =
1
x

, hence we get the quadratic equation

t2t3x2− t1(t
2
2 + t2

3)x + t2
1t2t3 = 0.

Its solutions arex1 =
t1t2
t3

andx2 =
t1t3
t2

and these are the intersection points of the linep2p3 with the

unit circle. Similarly we gety1 =
t1t2
t3

, y2 =
t2t3
t1

, andz1 =
t3t1
t2

,z2 =
t2t3
t1

, which finishes the proof.

37. Assume that the circumcircle of the triangleabc is the unit circle. Letu,v,w be the complex
numbers described in T8. Using this theorem we get thatl = −(uv + vw + wu). By elementary
geometry we know that the intersection of the lineal and the circumcircle of the triangleabc is
the midpoint of the arcbc which doesn’t contain the pointa. That meansa1 = −vw and similarly
b1 = −uw andc1 = −uv.
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(a) The statement follows from the equality

1 =
|l −a1| · |l− c1|

|l −b| =
|u(v + w)| · |w(u + v)|
|uv + uw+ vw+ v2| =

|v + w| · |u + v|
|(u + v)(v + w)| = 1.

(b) If x is the point of the tangency of the incircle with the sidebc then x is the foot of the

perpendicular from the pointl l to the sidebc and T2.4 impliesx =
1
2

(

b + c + l− bcl
)

and

consequentlyr = |l − x| =
1
2

∣

∣

∣

∣

(u + v)(v + w)(w+ u)

u

∣

∣

∣

∣

=
1
2
|(u + v)(v + w)(w + u)|. Now the

required equality follows from

|l −a| · |l−b|
|l − c1|

=
|(u + v)(u + w)| · |(u + v)(v + w)|

|w(u + v)|
= |(u + v)(v + w)(w+ u)|.

(c) By T5 we have that

S(ABC) =
i
4

∣

∣

∣

∣

∣

∣

u2 1/u2 1
v2 1/v2 1
w2 1/w2 1

∣

∣

∣

∣

∣

∣

i S(A1B1C1) =
i

4uvw

∣

∣

∣

∣

∣

∣

vw u 1
uw v 1
uv w 1

∣

∣

∣

∣

∣

∣

,

hence

S(ABC)

S(A1B1C1)
=

u4w2 + w4v2 + v4u2− v4w2−u4v2−w4u2

uvw(v2w+ uw2+ u2v−uv2−u2w− vw2)

=
(u2− v2)(uw+ vw−uv−w2)(uw+ vw+ uv + w2)

uvw(u− v)(uv + w2−uw− vw)

= − (u + w)(vw+ uw+ uv + w2)

uvw

= − (u + v)(v + w)(w+ u)

uvw
.

Here we consider the oriented surface areas, and substracting the modulus from the last ex-
pression gives us the desired equality.

38. First solution. Assume that the circumcircle of the triangleabc is the unit circle andu,v,w are
the complex numbers described in T8. Letd,e, f be the points of tangency of the incircle with the

sidesbc,ca,ab respectively. By T2.4 we have thatf =
1
2

(

a+b+z−abz
)

=
1
2

(

u2+v2+w2−uv−

vw−wu +
uv(u + v)

2w

)

. By symmetry we get the expressions fore and f and by T6.1 we get

k =
1
3

(

u2 + v2+ w2−uv− vw−wu +
uv(u + v)

2w
+

vw(v + w)

2u
− wu(w+ u)

2v

)

=

=
(uv + vw+ wu)(u2v + uv2+ uw2 + u2w+ v2w+ vw2−4uvw)

6uvw
.

Now it is easy to verify
z−o
z −o

=
k−o

k −o
, which is by T1.2 the condition for colinearity of the points

z,k,o. Similarly we also have

|o− z|
|z− k| =

|uv + vw+ wu|
∣

∣

∣

∣

(uv + vw+ wu)(u2v + uv2+ uw2 + u2w+ v2w+ vw2+2uvw)

6uvw

∣

∣

∣

∣

=
6

|(u + v)(v + w)(w+ u)| =
6R
2r

=
3R
r

,
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which completes the proof.
Second solution. Assume that the incircle of the triangleabc is the unit circle and letd,e, f

denote its points of tangency with the sidesbc,ca,ab respectively. According to T7.3 we have

that o =
2de f (d + e + f )

(d + e)(e + f )( f + d)
and according to T6.1k =

d + e + f
3

. Now it is easy to verify that

o− z
o − z

=
k− z

k − z
which is by T1.2 enough to establish the colinearity of the pointso,z,k. We also have

that

|o− z|
|z− k| =

∣

∣

∣

∣

d + e + f
(d + e)(e + f )( f + d)

∣

∣

∣

∣

∣

∣

∣

∣

d + e + f
3

∣

∣

∣

∣

=
3

|(d + e)(e + f )( f + d)| =
3R
r

.

39. Assume that the circumcircle of the triangleabc is the unit circle and letu,v,w be the complex
numbers described in T8 (herep = w2). According to this theorem we havei = −uv− vw−wu.
Since|a− c|= |a−b| by T1.4 it holds

c−a = ei∠cab(b−a).

By the same theorem we have

−vw−u2

−vw −u2
= ei2

∠pab
2

v2−u2

v2 −u2
,

henceei∠pab = −w
v

. Now we have

c =
u2w+ u2v− v2w

v
,

and symmetricallyd =
v2w+ v2u−u2w

u
. By T1.3 it is enough to prove that

c−d

c −d
= − o− i

o − i
= −uv + vw+ wu

u + v + w
uvw.

This follows fromc−d =
(u2− v2)(uv + vw+ wu)

uv
by conjugation.

40. Assume that the circumcircle of the triangleabc is the unit circle. By T8 there are numbers
u,v,w such thata = u2,b = v2,c = w2 and the incenter isi = −(uv + vw + wu). If o′ denotes the

foot of the perpendicular fromo to bc then by T2.4 we haveo′ =
1
2

(

b+ c
)

, and by T6.1o1 = 2o′ =

b + c = v2 + w2. By T1.2 the pointsa, i,o1 are colinear if and only if

o1−a
o1 −a

=
a− i

a − i
.

Since
o1−a
o1 −a

=
o1−a
o1 −a

=
v2 + w2−u2

u2(v2 + w2)− v2w2 u2v2w2 and

a− i

a − i
=

u(u + v + w)+ vw
vw+ uw+ uv + u2u2vw = u2vw,

we get
v3w+ vw3−u2vw− (u2v2 + u2w2− v2w2) = (vw−u2)(v2 + w2 + vw) = 0.
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This means that eithervw = u2 or v2 + w2 + vw = 0. If vw = u2 then by T6.1 the pointsu2 and
−vw belong to the same radius henceabc is isosceles contrary to the assumption. This means that
v2+w2+vw = 0. We now want to prove that the triangle with the verticeso,−vw,w2 is equilateral. It

is enough to prove that 1= |w2+vw|= |v+w| which is equivalent to 1= (v+w)(v +w) =
(v + w)2

vw
and this tov2 + w2 + vw = 0. Since∠boc = 120◦ we haveα = 60◦.

41. Assume that the incumcircle of the triangleabc is the unit circle. According to T8 there are
complex numbersu,v,w such thatp = u2,q = v2,r = w2 andp1 = −vw,q1 = −wu,r1 = −uv. Then
p2 = vw,q2 = wu,r2 = uv. By T7.1 we gave

a =
2v2w2

v2 + w2 , b =
2w2u2

w2 + u2 i c =
2u2w2

u2 + w2 ,

hence by T6.1

a1 =
w2u2

w2 + u2 +
u2v2

u2 + v2 , b1 =
u2v2

u2 + v2 +
v2w2

v2 + w2 , c2 =
v2w2

v2 + w2 +
w2u2

w2 + u2 .

If the pointn is the intersection of the linesa1p1 andb1q1 then the triplets of points(n,a1, p1) and
(n,b1,q1) are colinear and using T1.2 we get

n−a1

n −a1
=

a1− p1

a1 − p1
,

n−b1

n −b1
=

b1−q1

b1 −q1
.

Solving this system gives us

n =
u4v4 + v4w4 + w4u4

(u2 + v2)(v2 + w2)(w2 + u2)
+

uvw(u3v2 + u2v3 + u3w2 + u2w3 + v3w2 + v2w3)

(u2 + v2)(v2 + w2)(w2 + u2)
+

3u2v2w2(u2 + v2+ w2)

(u2 + v2)(v2 + w2)(w2 + u2)
+

2u2v2w2(uv + vw+ wu)

(u2 + v2)(v2 + w2)(w2 + u2)
.

Since the above expression is symmetric this point belongs to c1r1. The second part of the problem
can be solved similarly.

42. Assume thata is the origin. According to T1.4 we havec′′ − a = eiπ/2(c− a), i.e. c′′ = ic.
Similarly we getb′′ = −ib. Using the same theorem we obtainx− c = eiπ/2(b− c), i.e. x = (1−
i)c+ ib hence by T6.1p =

1+ i
2

b+
1− i

2
c. Denote byq the intersection of the linesbc andap. Then

the pointsa, p,q are colinear as well as the pointsb,c′′,q. Using T1.2 we get

a− p
a − p

=
a−q
a −q

,
b− c′′

b − c′′
=

q−b

q −b
.

From the first equation we conclude thatq = q
(1− i)b +(1+ i)c
(1+ i)b +(1− i)c

, and from the second we get the

formulaq =
q(b + ic)− i(bc + bc)

b− ic
. These two imply

q =
i(bc + bc)((1+ i)b +(1− i)c)

2(ibb −2bc +2bc +2icc)
=

(bc + bc)((1+ i)b +(1− i)c)

(b− ic)(b + ic)
.
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Denote byq′ the intersection ofap andcb′′. Then the pointsa, p,q′ are colinear as well as the points
b′′,c,q′. Hence by T1.2

a− p
a − p

=
a−q′

a −q′
,

b′′− c

b′′ − c
=

q− c
q − c

.

The first equation givesq′ = q′
(1− i)b +(1+ i)c
(1+ i)b +(1− i)c

, and the secondq =
q(c − ib)+ i(bc + bc)

c + ib
. By

the equating we get

q′ =
(bc + bc)((1+ i)b +(1− i)c)

(b− ic)(b + ic)
,

henceq = q′, q.e.d.

43. Assume that the origin is the intersection of the diagonals,i.e. o = 0. From the colinearity of

a,o,c andb,o,d using T1.2 we getac = ac andbd = bd. By T6.1 we getm =
a + b

2
andn =

c + d
2

.

Sinceom ⊥ cd andon ⊥ ab by T1.3

c + d
2

−o

c + d
2

−o

= − a−b

a −b
,

a + b
2

−o

a + b
2

−o

= − c−d

c −d
.

From these two equations we get

c =
da(ab−2bb + ab)

b(ab−2aa + ab)
andc =

da(ab +2bb + ab)

b(ab +2aa + ab)
.

The last two expressions give(ab + ab)(aa − bb) = 0. We need to prove that the last condition is
sufficient to guarantee thata,b,c,d belong to a circle. According to T3 the last is equivalent to

c−d

c −d

b−a

b −a
=

b−d

b −d

c−a
c −a

.

Since the pointsb,d,o are colinear, by T1.2
b−d

b −d
=

b−o

b −o
=

b

b
we get

a− c
a − c

=
a−o
a −o

=
a
a

. If

ab + ab = 0 then

c−d = d
2ab(a −b)

b(ab−2aa + ab)
,

and the last can be obtained by conjugation. Ifaa = bb , then

c−d =
d(a−b)(ab + ab)

b(ab−2aa + ab)
,

and in this case we can get the desired statement by conjugation.

44. Let f be the origin and letd = c (this is possible sinceFC = FD). According to T9.2 we have
that

o1 =
ad(a −d )

ad −ad
, o2 =

bc(b − c)

bc−bc
.

Sincecd ‖ a f according to T1.1
a− f

a − f
=

c−d

c −d
= −1, i.e.a = −a and similarlyb = −b. Now we

have

o1 =
c(a + c)

c + c
, o2 =

c(b + c)

c + c
.
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Let’s denote the pointe. From T1.2 using the colinearity ofa,c,e andb,d,e we get the following
two equations

a− c
a − c

=
e−a
e −a

,
b−d

b −d
=

e−b

e −b
.

From these equations we gete =
a(c + c)− e(a + c)

a− c
ande =

b(c + c)− e(b + c)
b− c

. By equating

these two we get

e =
ac −bc

a + c −b− c
.

Using T1.3 the conditionf e ⊥ o1o2 is equivalent to
o1−o2

o1 −o2
= − f − e

f − e
, which trivially follows

from o1−o2 =
ac − cb

c + c
by conjugation.

45. Assume that the pointp is the origin. Letac be the real axis and let∠cpd = ϕ . Thena = α,b =
β eiϕ ,c = γ,d = δeiϕ , whereα,β ,γ,δ are some real numbers. Leteiϕ = Π. If |a− f | = ε|a− d|,
then|e− c|= ε|b− c| hence by T6.1a− f = ε(a−d) ande− c = ε(b− c). Thus we have

f = α(1− ε)+ εδΠ, e = γ(1− ε)+ εβ Π.

Sinceq belongs topd we have thatq = ρΠ and sinceq also belongs toe f by T1.2 we have that
f −q

f −q
=

e− f

e − f
, hence

α(1− ε)+ (εδ −ρ)Π

α(1− ε)+ (εδ −ρ)
1
Π

=
(1− ε)(α − γ)+ ε(δ −β )Π

(1− ε)(α − γ)+ ε(δ −β )
1
Π

.

After some algebra we get(Π− 1
Π

)(1− ε)
[

(α − γ)(εδ − ρ)− εα(δ − β )
]

= 0. SinceΠ 6= ±1

(because∠CPD < 180◦) and ε 6= 1 we getρ = ε
[

δ − α(δ −β )

α − γ

]

. Similarly we getρ = (1−

ε)
[

α − δ (α − γ)

δ −β

]

, whereρ is the coordinate of the pointr. By T9.2 we have

o1 =
rq(r −q)

r q−q
=

ρρΠ(ρ −ρ
1
Π

)

ρρΠ−ρρ
1
Π

=
ρΠ−ρ
Π2−1

Π

=

(1− ε)
[

α − δ (α − γ)

δ −β

]

Π− ε
[

δ − α(δ −β )

α − γ

]

Π2−1
Π.

For any other position of the pointe on the linead such thatae = εad the corresponding center of
the circle has the coordinate

o2 =

(1− ε)
[

α − δ (α − γ)

δ −β

]

Π− ε
[

δ − α(δ −β )

α − γ

]

Π2−1
Π.

Notice that the direction of the lineo1o2 doesn’t depend onε andε. Namely if we denoteA =

α − δ (α − γ)

δ −β
andB = δ − α(δ −β )

α − γ
we have

o1−o2

o1 −o2
= −AΠ + B

A + BΠ
Π.
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Thus for every three centerso1,o2,o3 it holdso1o2‖o2o3 hence all the centers are colinear. Since all
the circles have a common point, the circles have another common point.
Remark. We have proved more than we’ve been asked. Namely two conditionsAD = BC and
BE = DF are substituted by oneBE/BC = DF/AD.
Another advantage of this solutions is that we didn’t have toguess what is the other intersection
point.

46. Let o be the origin. According to the property T9.1 we have thath1 =
(a−b)(ab + ab)

ab −ab
,

h2 =
(c−d)(cd + cd )

cd − cd
, and according to the theorem 6t1 =

a + c
3

, t2 = b+d
3 . Since the points

a,c, ando are colinear as well as the pointsb,d, ando by T1.2 we havec =
ca
a

, d =
db
b

, hence

h2 =
(c−d)(ab + ab)

ab −ab
. In order to prove thatt1t2 ⊥ h1h2, by T1.3, it is enough to verify

t1− t2
t1 − t2

= − h1−h2

h1 −h2
.

This follows from

h1−h2 =
ab + ab

ab −ab

(

a + c−b−d
)

,

by conjugation.

47. Let Γ be the unit circle. Using T2.3 we getc =
2ab

a + b
. Let o1 be the center ofΓ1. Theno1b ⊥ ab

(becauseab is a tangent) hence by T1.3
o1−b

o1 −b
=− a−b

a −b
= ab. After simplifyingo1 =

o1 + a−b
ab

.

We have also|o1−b| = |o1− c|, and after squaring(o1−b)(o1 −b) = (o1− c)(o1 − c), i.e. o1 =
o1

b2 −
a−b

b(a + b)
. Now we have

o1 =
ab

a + b
+ b.

Since the pointm belongs to the unit circle it satisfiesm =
1
m

and since it belongs to the circle with

the centero1 it satisfies|o1−m|= |o1−b|. Now we have

o1m2−
(o1

b
+ o1b

)

m+ o1 = 0.

This quadratic equation defines bothm andb, and by Vieta’s formulas we haveb+m =
o1

o1 b
+b, i.e.

m = b
2a + b
a +2b

.

It remains to prove that the pointsa, m, and the midpoint of the segmentbc colinear. The midpoint
of bc is equal to(b + c)/2 by T6.1. According to T1.2 it is enough to prove that

a− b + c
2

a − b + c
2

=
a−m
a −m

= −am,

which is easy to verify.
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48. Assume that the circlek is unit and assume thatb = 1. The a = −1 and sincep ∈ k we

havep =
1
p

. According to T2.4 we have thatq =
1
2

(

p +
1
p

)

, and according to T6.1 we have that

f =

(

p +
1
p

)

−1

2
=

(p−1)2

4p
. Furthermore sincec belongs to the circle with the centerp and radius

|p−q| we have|p−q|= |p− c| and after squaring

(p−q)(p −q) = (p− c)(p − c).

Sincec ∈ k we havec =
1
c

. The relationp−q =
1
2

(

p− 1
p

)

implies

4pc2− (p4+6p2+1)c +4p3 = 0.

Notice that what we obtained is the quadratic equation forc. Sinced satisfies the same conditions
we used forc, then the pointd is the second solution of this quadratic equation. Now from Vieta’s
formulas we get

c + d =
p4 +6p2+1

4p3 , cd = p2.

Since the pointg belongs to the chordcd by T2.2 we get

g =
c + d−g

cd
=

p4 +6p2+1−4pg
4p3 .

Fromg f ⊥ cd T1.3 gives
g− f

g − f
= − c−d

c −d
= cd = p2. Solving this system gives us

g =
p3 +3p2− p +1

4p
.

The necessair and sufficient condition for colinearity of the pointsa, p,g is (according to T1.2)
a−g
a −g

=
a− p
a − p

= p. This easily follows froma − g =
p3 +3p3+3p +1

4p
and by conjugating

a − g =
1+3p +3p2+ p3

4p2 . Sincee belongs to the chordcd we have by T2.2e =
c + d−g

cd
=

p4 +6p2+1−4pe
4p3 , and sincepe ⊥ ab T1.3 implies

e− p
e − p

= − a−b

a −b
= −1, or equivalentlye =

p + 1
p − e. It follows that e =

3p2 +1
4p

. Since p − q =
p2−1

2p
= 2

p2−1
4p

= 2
(

e − q
)

, we get

|e− p| = |e− q|. Furthermore sinceg− e =
p2−1

4
from |p| = 1, we also have|e− q| = |g− e|,

which finishes the proof.

49. Assume that the circle with the diameterbc is unit and thatb = −1. Now by T6.1 we have that
b + c = 0, i.e. c = 1, and the origin is the midpoint of the segmentbc. Sincep belongs to the unit

circle we havep =
1
p

, and sincepa ⊥ p0, we have according to T1.3
a− p
a − p

= − p−0

p −0
= −p2.

Simplification yields
a p2−2p + a = 0.

Since this quadratic equation defines bothp andq, according to Vieta’s formulas we have

p + q =
2
a

, pq =
a
a

.
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Let h′ be the intersection of the perpendicular froma to bc with the linepq. Sinceh′ ∈ pq T2.2 gives

h′ =
p + q−h′

pq
=

2−ah
a

. Sinceah ⊥ bc according to T1.3 we have
a−h

a −h
= − b− c

b − c
= −1, i.e.

h = a + a −h. Now we get

h =
aa + a2−2

a−a
.

It is enough to prove thath′ = h, or ch ⊥ ab which is by T1.3 equivalent to
h− c

h − c
= − a−b

a −b
. The

last easily follows from

h−1=
aa + a2−2−a + a

a−a
=

(a +1)(a + a −2)

a−a

anda−b = a +1 by conjugation.

50. Assume that the origin of our coordinate system is the intersection of the diagonals of the
rectangle and that the lineab is parallel to the real axis. We have by T6.1c + a = 0, d + b = 0,

c = b , andd = a . Since the pointsp,a,0 are colinear T1.2 implies
p
p

=
a
a

, i.e. p = −b
a

p. Let

ϕ = ∠d pb = ∠pbc. By T1.4 we have

c− p
c − p

= ei2ϕ b− p

b − p
,

p−b

p −b
= ei2ϕ c−b

c −b
,

and after multiplying these equalities and expressing in terms ofa andb

p + b
bp + a2 =

a(p−b)2

(bp−a2)2 .

In the polynomial form this writes as

(b2−ab)p3+ p2(b3−2a2b−a3+2ab2)+ p(a4−2a2b2−ab3+2a3b)+ a4b−a3b2

= (b−a)(bp3+(a2+3ab + b2)p2−ap(a2+3ab + b2)−a3b) = 0.

Notice thata is one of those pointsp which satisfy the angle condition. Hencea is one of the
zeroes of the polynomial. That means thatp is the root of the polynomial which is obtained from
the previous one after division byp−a i.e. bp2 +(a2+3ab + b2)p + a2b = 0. Let’s now determine
the ratio|p−b| : |p− c|. From the previous equation we havebp2 +a2b = −(a2+3ab+b2), hence

PB2

PC2 =
(p−b)(p −b)

(p− c)(p − c)
=

bp2− (a2+ b2)p + a2b
bp2 +2abp + ab =

−2(a2+ b2+2ab)

−(a2+ b2+2ab)
= 2,

and the required ratio is
√

2 : 1.

51. Assume first that the quadrilateralabcd is cyclic and that its cicrumcircle is the unit circle. If
∠abd = ϕ and∠bda = θ by T1.4 after squaring we have

d−b

d −b
= ei2ϕ a−b

a −b
,

c−b

c −b
= ei2ϕ p−b

p −b
,

c−d

c −d
= ei2θ p−d

p −d
,

b−d

b −d
= ei2θ a−d

a −d
.

From the first of these equalities we getei2ϕ a
d

, and from the fourthei2θ =
b
a

. From the second

equality we getp =
ac + bd− pd

abc
, and from the thirdp =

ac + bd− pb
acd

. Now it follows that

p =
ac + bd
b + d

.
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We have to prove that|a− p |2 = (a− p)(a − p) = |c− p |2 = (c− p)(c − p), which follows from

a− p =
ab + ad−ac−bd

b + d
, a − p =

cd + bc−bd−ac
ac(b + d)

,

c− p =
bc + cd−ac−bd

b + d
, c − p =

ad + ab−bd−ac
ac(b + d)

.

Assume that|a− p |= |c− p |. Assume that the circumcircle of the triangleabc is unit. Squaring the

last equality gives us thatap +
p
a

= cp +
p
c

, i.e. (a− c)(p − p
ac

) = 0. This means thatp =
p

ac
. Let

d belong to the chordd′c. Then according to T2.2d =
c + d′−d

cd′ . By the condition of the problem

we have∠dba = ∠cbp = ϕ and∠adb = ∠pdc = θ , and squaring in T1.4 yields

a−b

a −b
= ei2ϕ d−b

d −b
,

p−b

p −b
= ei2ϕ c−b

c −b
,

b−d

b −d
= ei2θ a−d

a −d
,

c−d

c −d
= ei2θ p−d

p −d
.

Multiplying the first two equalities gives us

a−b

a −b

c−b

c −b
= ab2c =

p−b

p −b

d−b

d −b
.

After some algebra we conclude

p =
ac + bd−b(acd + b)

d −b2d
=

bdd′+ acd′−abd′−abc + abd−b2d′

cd′d −b2d′ + b2d−b2c
.

Since the piontsd,c,d′ are colinear, according to T1.2 we get
d− c

d − c
=

c−d′

c −d′ = −cd′, and mylti-

plying the third and fourth equality gives

(−cd′)(d −a)(d −b)(d − p)− (d −a)(d−b)(d− p) = 0.

Substituting values forp gives us a polynomialf in d. It is of the most fourth degree and observing
the coefficient next tod4 of the left and right summand we get that the polynomial is of the degree
at most 3. It is obvious thata andb are two of its roots. We will now prove that its third root isd′

and that would implyd = d′. Ford = d′ we get

p =
bd′d + acd′−abc−b2d′

c(d′2−b2)
=

ac + bd′

b + d′ , d − p =
d′2−ac
b + d′

d − p = −bd′ d′2−ac
ac(b + d′)

d−a

d −a
= −d′a,

d −b

d −b
= −d′b

and the statement is proved. Thusd = d′ hence the quadrilateralabcd′ is cyclic.

52. Since the rectanglesa1b2a2b1, a2b3a3b2, a3b4a4b3, anda4,b1,a1,b4 are cyclic T3 implies that
the numbers

a1−a2

b2−a2
:

a1−b1

b2−b1
,

a2−a3

b3−a3
:

a2−b2

b3−b2
,

a3−a4

b4−a4
:

a3−b3

b4−b3
,

a4−a1

b1−a1
:

a4−b4

b1−b4
,
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are real. The product of the first and the third divided by the product of the second and the fourth is
equal to

a1−a2

a2−a3
· a3−a4

a4−a1
· b2−b1

b3−b2
· b4−b3

b1−b4
,

and since the pointsa1,a2,a3,a4 lie on a circle according to the theorem 4 the number
a1−a2

a2−a3
·

a3−a4

a4−a1
is real, hence the number

b2−b1

b3−b2
· b4−b3

b1−b4
is real as well. According to T3 the points

b1,b2,b3,b4 are cyclic or colinear.

53. Assume that the origin is the intersection of the diagonals of the parallelogram. Thenc = −a
andd = −b. Since the trianglescde and f bc are similar and equally orientged by T4

c−b
b− f

=
e−d
d − c

,

hencef =
be + c2−bc− cd

e−d
=

be + a2

e + b
. In order for trianglescde and f ae to be similar and equally

oriented (as well as forf bc and f ae), according to T4 it is necessairy and sufficient that the following
relation holds:

c−d
d− e

=
f −a
a− e

.

The last equaliy follows from

f −a =
be + a2− ea−ab

e + b
=

(e−a)(b−a)

e + b
,

andc−d = c + b, d− e = −(b + e), c + b = b−a.

54. Let p = 0 andq = 1. Since∠mpq = α, according to T1.4 we have that
q− p
q − p

= ei2α m− p
m − p

, i.e.

m
m

= ei2α . Since∠pqm = β , the same theorem implies
m−q
m −q

= ei2β p−q
p −q

, i.e. 1= ei2β m−1
m −1

.

Solving this system (with the aid ofei2(α+β+γ) = 1) we getm = ei2(α+γ)−1
ei2γ−1

, and symmetricallyl =

ei2(β+γ)−1
ei2β−1

, k = ei2(α+β)−1
ei2α−1

. According to T4 in order to prove that the trianglesklm andkpq are similar

and equally oriented it is enough to prove thatk−l
l−m = k−p

p−q = −k. The last follows from

k− l
l −m

=

ei(2α+4β )− ei2β − ei(2α+2β ) + ei(2β+2γ) + ei2α −1

(ei2α −1)(ei2β −1)

ei(2β+4γ)− ei2γ − ei(2β+2γ) + ei(2α+2γ) + ei2β −1

(ei2β −1)(ei2γ −1)

=
ei2(α+β )(ei(2β+4γ)− ei2γ − ei(2β+2γ) + ei(2α+2γ) + ei2β −1)

ei(2β+4γ)− ei2γ − ei(2β+2γ) + ei(2α+2γ) + ei2β −1
·

ei2γ −1
ei2α −1

=
1− ei2(α+β )

ei2α −1
= −k.

Since the triangleskpq,qlp, pqm are mutually similar and equally oriented the same holds forall
four of the triangles.
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55. Assume that the coordinates of the vertices of thei-th polygon are denoted bya(i)
1 ,a(i)

2 , . . . ,a(i)
n ,

respectively in positive direction. smeru. According to T6.1 and the given recurrent relation we have
that for eachi andk:

a(k+1)
i = 2a(k)

i+k −a(k)
i ,

where the indices are modulon. Our goal is to determine the value ofa(n)
i , using the values of

a(1)
1 ,a(1)

2 , . . . ,a(1)
n . The following

a(k+1)
i = 2a(k)

i+k −a(i)
k = 4a(k−1)

i+k+k−1−2a(k−1)
i+k −2a(k−1)

i+k−1+ a(k−1)
i

= 4(2a(k−2)
i+k+k−1+k−2−−a(k−2)

i+k+k−1)−2(2a(k−2)
i+k+k−2−a(k−2)

i+k )−
2(2a(k−2)

i+k−1+k−2−a(k−2)
i+k−1)+2a(k−2)

i+k−2−a(k−2)
i

= 8a(k−2)
i+k+k−1+k−2−4(a(k−2)

i+k+k−1+ a(k−2)
i+k+k−2+ a(k−2)

i+k−1+k−2)+

2(a(k−2)
i+k + a(k−2)

i+k−1+ a(k−2)
i+k−2)−a(k−2)

i ,

yields that

a(k)
i = 2k−1s(k)

k (i)−2k−2s(k)
k−1(i)+ . . .+(−1)ks(k)

0 (i),

wheres(k)
j (i) denotes the sum of all the numbers of the formai+sk( j) andsk( j) is one of the numbers

obtained as the sum of exactlyj different natural numbers not greater thann. Here we assume that

s(k)
0 (i) = ai. The last formula is easy to prove by induction. Particularly, the formula holds fork = n

hence

a(n)
i = 2n−1s(n)

n (i)−2n−2s(n)
n−1(i)+ . . .+(−1)ns(n)

0 (i).

Now it is possible to prove thats(n)
l (i) = s(n)

l ( j), for each 1≤ l ≤ n−1 which is not very difficult
problem in the number theory. Sincen is prime we have thatn + n− 1+ . . .+ 1 is divisible byn
hence

a(n)
i −a(n)

j = 2n−1a(1)
i+n+n−1+...+1−2n−1a(1)

j+n+n−1+...+1 +

(−1)na(1)
i − (−1)na(1)

j

= (2n−1+(−1)n)(a(1)
i −a(1)

j ),

which by T4 finishes the proof.

56. Assume that the pentagonabcde is inscribed in the unit circle and thatx,y, andz are feet of
perpendiculars froma to bc,cd, andde respectively. According to T2.4 we have that

x =
1
2

(

a + b + c− bc
a

)

, y =
1
2

(

a + c + d− cd
a

)

, z =
1
2

(

a + d + e− de
a

)

,

and according to T5 we have

S(xyz) =
i
4

∣

∣

∣

∣

∣

∣

x x 1
y y 1
z z 1

∣

∣

∣

∣

∣

∣

=
i
8

∣

∣

∣

∣

∣

∣

∣

∣

a + b + c− bc
a a + b + c − bc

a
1

a + c + d− cd
a a + c + d − cd

a
1

a + d + e− de
a a + d + e − d e

a
1

∣

∣

∣

∣

∣

∣

∣

∣

.
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Since the determinant is unchanged after substracting somecolumns from the others, we can sub-
stract the second column from the third, and the first from thesecond. After that we get

S(xyz) =
i
8

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a + b + c− bc
a a + b + c − bc

a
1

(d−b)(a− c)
a

(d −b)(a− c)
bcd

0

(e− c)(a−d)

a
(e− c)(a−d)

a
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
i(a− c)(d−b)(a−d)(e− c)

8
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

a + b + c− bc
a a + b + c − bc

a
1

1
a

1
bcd

0
1
a

1
a

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and finally

S(xyz) =
i(a− c)(d−b)(a−d)(e− c)

8

( 1
acde

− 1
abcd

)

=
i(a− c)(d−b)(a−d)(e− c)(b− e)

8abcde
.

Since the last expression is symmetric with respet toa,b,c,d, ande the given area doesn’t depend
on the choice of the vertex (in this casea).

57. Assume that the unit circle is the circumcircle of the triangle abc. Since
S(bca1)

S(abc)
= 1−

|a−a1|
|a−a′| = 1− a−a1

a−a′
(wherea′ is the foot of the perpendicular froma to bc), the given equality

becomes

2 =
a−a1

a−a′
+

b−b1

b−b′
+

c− c1

c− c′
.

According to T2.4 we havea′ =
1
2

(

a + b + c− bc
a

)

, hence

a−a′ =
1
2

(

a +
bc
a
−b− c

)

=
(a−b)(a− c)

2a

and after writing the symmetric expressions we get

2 =
2a(a−a1)

(a−b)(a− c)
+

2b(b−b1)

(b−a)(b− c)
+

2c(c− c1)

(c−a)(c−b)

= −2
a(a−a1)(b− c)+ b(b−b1)(c−a)+ c(c− c1)(a−b)

(a−b)(b− c)(c−a)
,

and after simplying

aa1(b− c)+ bb1(c−a)+ cc1(a−b) = 0.

By T4 pointsa1,b1,c1,h lie on a circle if and only if

a1− c1

a1 − c1

b1−h

b1 −h
=

a1−h

a1 −h

b1− c1

b1 − c1
.
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Sinceh is the orthocenter by T6.3 we haveh = a+b+c, and sinceaa1 ⊥ bc T1.3 implies
a1−a
a1 −a

=

− b− c

b − c
, i.e. a1 =

bc + aa1−a2

abc
, and symmetricallyb1 =

ac + bb1−b2

abc
andc1 =

ab + cc1− c2

abc
.

Similarly froma1h ⊥ bc andb1h ⊥ ac

a1−h

a1 −h
= − b− c

b − c
= bc,

b1−h

b1 −h
= − a− c

a − c
= ac.

It is enough to prove that

a(a1− c1)

aa1− cc1+(c−a)(a + b + c)
=

b(b1− c1)

bb1− cc1 +(c−b)(a + b + c)
.

Notice that

a(b− c)a1−a(b− c)c1 = −b1b(c−a)a− cc1(a−b)a−a(b− c)c1 = ab(c−a)(c1−b1),

and the result follows by the conjugation.

58. Assume that the unit circle is the circumcircle of the triangle abc. By T2.4 we have thatd =
1
2

(

a+b+ c− ab
c

)

, e =
1
2

(

a+b+ c− ac
b

)

, and f =
1
2

(

a+b+ c− bc
a

)

. According to T6.1 we get

a1 =
b + c

2
(wherea1 is the midpoint of the sidebc). Sinceq belongs to the chordac T2.2 implies

q =
a + c−q

ac
, and sinceqd ‖ e f T1.1 implies

q−d

q −d
=

e− f

e − f
= −a2. Solving this system gives us

q =
a3 + a2b + abc−b2c

2ab
.

Symmetrically we getr =
a3+ a2c + abc−bc2

2ac
. Since p belongs to the chordbc T2.2 implies

p =
b + c− p

bc
, and from the colinearity of the pointse, f , and p from T1.2 we conclude

p− e
p − e

=

e− f

e − f
= −a2. After solving this system we get

p =
a2b + a2c + ab2+ ac2−b2c−bc2−2abc

2(a2−bc)
=

b + c
2

+
a(b− c)2

2(a2−bc)
.

By T4 it is sufficient to prove that

p−a1

p− r
q− r

q−a1
=

p −a1

p − r
q − r

q −a1
.

Since

q− r =
a(c−b)(a2+ bc)

2abc
, p−a1 =

a(b− c)2

2(a2−bc)
,

p− r =
(a2− c2)(b2c + abc−a3−a2c)

2ac(a2−bc)
, q−a1 =

a3 + a2b−b2c−ab2

2ab

the required statement follows by conjugation.

59. Let O be the circumcenter of the triangleabc. We will prove thatO is the incenter as well.

Assume that the circumcircle of the triangleabc is unit. According to T6.1 we have thatc1 =
a + b

2
,
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b1 =
a + c

2
, anda1 =

b + c
2

. Assume thatk1,k2,k3 are the given circles with the centersa1,b1, and

c1. Let k1 ∩ k2 = {k,o}, k2∩ k3 = {m,o}, andk3∩ k1 = {l,o}. Then we have|a1− k| = |a1− o|,
|b1 − k| = |b1 − o|. After squaring(a1 − k)(a1 − k ) = a1a1 and(b1 − k)(b1 − k ) = b1b1 . After
solving this system we obtain

k =
(a + c)(b + c)

2c
.

Symmetrically we getl =
(b + c)(a + b)

2b
andm =

(a + c)(a + b)

2a
. Let∠mko = ϕ . According to T1.4

we have that
o− k

o − k
= ei2ϕ m− k

m − k
, and sincek−m =

b(a2− c2)

2ac
, after conjugationei2ϕ = −a

b
. If

∠okl = ψ , we have by T1.4
o− k

o − k
= ei2ψ l − k

l − k
, henceeiψ =−a

b
. Now we haveϕ = ψ or ϕ = ψ±π ,

and since the second condition is impossible (why?), we haveϕ = ψ . Now it is clear thato is the
incenter of the triangleklm.
For the second part of the problem assume that the circle is inscribed in the triangleklm is the unit
circle and assume it touches the sideskl,km, lm at u,v,w respectively. According to T7.1 we have
that

k =
2uv

u + v
, l =

2uw
w+ u

, m =
2vw

v + w
.

Let a1 be the circumcenter of the trianglekol. Then according to T9.2 we have

a1 =
kl(k − l )

k l − kl
=

2uvw
k(u + v)(u + w)

and symmetricallyb1 =
2uvw

(u + v)(v + w)
andc1 =

2uvw
(w+ u)(w+ v)

(b1 andc1 are circumcenters of the

triangleskom andmol respectively). Now T6.1 implies

a + b = 2c1, b + c = 2a1, a + c = 2b1,

and after solving this system we geta = b1 + c1−a1, b = a1 + c1−b1, andc = a−1+ b1− c1. In
order to finish the proof it is enough to establishab ⊥ oc1 (the other can be proved symmetrically),

i.e. by T1.3 that
c1−o
c1 −o

= − a−b

a −b
= − b1−a1

b1 −a1
. The last easily follows from

b1−a1 =
2uvw(u− v)

(u + v)(v + w)(w+ u)
,

by conjugation.

60. Let b andc be the centers of the circlesk1 andk2 respectively and assume thatbc is the real axis.
If the pointsm1 andm2 move in the same direction using T1.4 we get thatm1 andm2 satisfy

m1−b = (a−b)eiϕ , m2− c = (a− c)eiϕ .

If ω is the requested point, we must have|ω −m1| = |ω −m2|, and after squaring(ω −m1)(ω −
m1 ) = (ω −m2)(ω −m2). From the last equation we get

ω =
m1m1 −m2m2 −ω(m1 −m2)

m1−m2
.

After simplification (with the usage ofb = b andc = c whereeiϕ = z)

w(1− z) = 2(b + c)−a−a + az+ az − (b + c)(z+ z)− (1− z)ω .
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Sincez =
1
z

, we have

(b + c−a−w)z2− (2(b + c)−a−a−ω −ω )z+ b + c−a −ω ≡ 0.

The last polynomial has to be identical to 0 hence each of its coefficients is 0, i.e.ω = b + c− a .
From the previous relations we conclude that this point satisfies the conditions of the problem.
The problem is almost identical in the case of the oposite orientition.

61. Let γ be the unit circle and leta = −1. Thenb = 1, c = 1+2i, andd = −1+2i. Since the points
n,b, p are colinear we can use T1.2 to get

a− p
a − p

=
a−m
a −m

= −am = m,

and after some algebrap =
p +1−m

m
(1). Since the pointsc,d, p are colinear using the same

argument we get that
c−n
c −n

=
c−d

c −d
= 1,

hencep = p−4i. Comparing this with (1) one getsp = 4i · m
m−1

−1. Furthermore, since the points

b,n, p are colinear we have
p−1

p −1
=

1−n

1−n
= n,

i.e.

n =
m(1−2i)−1

2i+1−m
.

Let q′ be the intersection point of the circleγ and the linedm. If we show that the pointsq′,n,c are
colinear we would haveq = q′ andq ∈ γ, which will finish the first part of the problem. Thus our
goal is to find the coordinate of the pointq′. Sinceq′ belongs to the unit circle we haveq′q′ = 1, and
sinced,m,q′ are colinear, we have using T1.2 that

d −m

d −m
=

q′−m

q′ −m
= −q′m,

and after simplification

q′ = − m+1−2i
m(1+2i)+1

.

In order to prove that the pointsq′,n,c are colinear it suffices to show that
q− c
q − c

=
n−q
n −q

= −nq,

i.e. n =
q−1−2i

(q −1+2i)q
, which is easy to verify. This proves the first part of the problem.

Now we are proving the second part. Notice that the required inequality is equivalent to|q−a| ·
|p− c|= |d− p| · |b−q|. From the previously computed values forp andq, we easily obtain

|q−a|= 2

∣

∣

∣

∣

m+1
m(1+2i)+1

∣

∣

∣

∣

, |p− c|= 2

∣

∣

∣

∣

m(1+ i)+1− i
m(1+2i)+1

∣

∣

∣

∣

,

|d− p | = 2

∣

∣

∣

∣

m+1
m+1

∣

∣

∣

∣

, |b−q|= 2

∣

∣

∣

∣

m(i−1)+1+1
m−1

∣

∣

∣

∣

,

and since−i((i−1)m+1+ i)= m(1+ i)+1− i the required equality obviously holds.
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62. In this problem we have plenty of possibilities for choosingthe unit circle. The most convenient
choice is the circumcircle ofbcb′c′ (try if you don’t believe). According T2.5 we have that the
intersection pointx of bb′ andcc′ satisfy

x =
bb′(c + c′)− cc′(b + b′)

bb′− cc′
.

Sincebh ⊥ cb′ andch ⊥ bc′ T1.3 implies the following two equalities

b−h

b −h
= − b′− c

b′ − c
= b′c,

c−h

c −h
= − b− c′

b − c′
= bc′.

From the first we geth =
bh−b2+ b′c

bb′c
, and from the secondh =

ch− c2+ bc′

bcc′
. After equating the

two relations we get

h =
b′c′(b− c)+ b2c′−b′c2

bc′−b′c
.

Symmetrically we obtainh′ =
bc(b′− c′)+ b′2c−bc′2

b′c−bc′
. It suffices to prove that the pointsh,h′ and

x are colinear, or after applying T1.2 we have to verify

h−h′

h −h′
=

h− x

h − x
.

The last follwos from

h−h′ =
bc(b′− c′)+ b′c′(b− c)+ bc′(b− c′)+ b′c(b′− c)

bc′−b′c

=
(b + b′− c− c′)(bc′ + b′c)

bc′−b′c
,

h− x =
b2b′2c′ + b3b′c′ + b′c2c′2 + b′c3c′

(bc′−b′c)(bb′− cc′)
−

b2b′cc′ + b2b′c′2 + bb′c2c′ + b′2c2c′

(bc′−b′c)(bb′− cc′)

=
b′c′(b2− c2)(b′ + b− c− c′)

(bc′−b′c)(bb′− cc′)

by conjugation.

63. From elementary geometry we know that∠nca =∠mcb (such pointsm andn are called harmonic
conjugates). Let∠mab = α, ∠abm = β , and∠mca = γ. By T1.4 we have that

a−b
|a−b| = eiα a−m

|a−m| ,
a−n
|a−n| = eiα a− c

|a− c| ,

b− c
|b− c| = eiβ b−n

|b−n|,
b−m
|b−m| = eiβ b−a

|b−a|,

c−a
|c−a| = eiγ c−n

|c−n|,
c−m
|c−m| = eiγ c−b

|c−b| ,

hence

AM ·AN
AB ·AC

+
BM ·BN
BA ·BC

+
CM ·CN
CA ·CB

=
(m−a)(n−a)

(a−b)(a− c)
+

(m−b)(n−b)

(b−a)(b− c)
+

(m− c)(n− c)
(c−a)(c−b)

.
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The last expression is always equal to 1 which finishes our proof.

64. Let ∠A = α, ∠B = β , ∠C = γ, ∠D = δ , ∠E = ε, and∠F = ϕ . Applying T1.4 gives us

b− c
|b− c| = eiβ b−a

|b−a| ,
d− e
|d− e| = eiδ d − c

|d − c| ,
f −a
| f −a| = eiϕ f − e

| f − e| .

Multiplying these equalities and using the given conditions (from the conditions of the problem we
readei(β+δ+ϕ) = 1) we get

(b− c)(d− e)( f −a) = (b−a)(d− c)( f − e).

From here we can immediately conclude that

(b− c)(a− e)( f −d) = (c−a)(e− f )(d−b),

and the result follows by placing the modulus in the last expression.

65. We first apply the inversion with repsect to the circleω . The pointsa,b,c,e,z are fixed, and
the pointd is mapped to the intersection of the linesae andbc. Denote that intersection bys. The
circumcircle of the triangleazd is mapped to the circumcircle of the triangleazs, the linebd is
mapped to the linebd, hence it is sufficient to prove thatbd is the tangent to the circle circumscribed
aboutazs. The last is equivalent toaz ⊥ sz.

Let ω be the unit circle and letb = 1. According to T6.1 we havec = −1 ande = a =
1
a

. We also

haves =
a + a

2
=

a2 +1
2a

. Sinceeb ⊥ ax using T1.3 we get

a− x
a − x

= − e−b

e −b
= −1

a
,

and since the pointx belongs to the chordeb by T2.2 it satisfiesx =
1+ a − x

a
. Solving this system

gives sistema dobijamox =
a3 + a2+ a−1

2a2 . Sincey is the midpoint ofax by T6.1

y =
a + x

2
=

3a3 + a2+ a−1
4a2 .

Since the pointsb,y,z are colinear andz belongs to the unit circle according to T1.2 and T2.1 we get

b− y

b − y
=

b− z

b − z
= −z.

After simplifying we getz =
1+3a2

(3+ a2)a
. In order to prove thataz ⊥ zs by T1.3 it is sufficient to prove

that
a− z
a − z

= − s− z
s − z

.

The last follows from

a− z =
a4−1

a(3+ a2)
, s− z =

a4−2a2+1
2a(3+ a2)

,

by conjugation.

66. Assume first that the orthocenters of the given triangles coincide. Assume that the circumcircle
of abc is unit. According to T6.3 we haveh = a + b + c. Consider the rotation with respect toh
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for the angleω in the negative direction. The pointa1 goes to the pointa′1 such thata1, a′1, andh
are colinear. Assume that the same rotation mapsb1 to b′1 andc1 to c′1. Since the trianglesabc and
a1b1c1 are similar and equally oriented we get that the pointsb,b′1,h are clinear as well asc,c′1,h.
Moreovera′1b′1 ‖ ab (and similarly forb′1c′1 andc′1a′1). Now according to T1.4eiω (a′1−h) = (a1−h)
(since the rotation is in the negative direction), and sincethe pointsa,a′1,h are colinear, according to

T1.2 we have
a′1−h
a−h

= λ ∈ R. This means thata1 = h + λ eiω(a−h) and analogously

b1 = h + λ eiω(b−h), c1 = h + λ eiω(c−h).

Since the pointa1 belongs to the chordbc of the unit circle, by T2.2 we geta1 =
b + c−a1

bc
. On the

other hand by conjugation of the previous expression fora1 we geta1 = h +λ
a −h
eiω . Solving forλ

gives

λ =
eiω(a(a + b + c)+ bc)

a(b + c)(eieω +1)
. (1)

Sinceλ has the same role in the formulas forb1 also, we must also have

λ =
eiω(b(a + b + c)+ ac)

b(a + c)(eieω +1)
. (2)

By equating (1) and (2) we get

ab(a + c)(a + b + c)+b2c(a + c)−ab(b + c)(a+b + c)−a2c(b + c)

= (a−b)(ab(a + b + c)−abc−ac2−bc2) = (a2−b2)(ab− c2).

Sincea2 6= b2 we concludeab = c2. Now we will prove that this is necessair condition for triangle
abc to be equilateral, i.e.|a−b|= |a− c|. After squaring the last expression we get that the triangle

is equilateral if and only if 0=
(a− c)2

ac
− (a−b)2

ab
=

(b− c)(a2−bc)
abc

, and sinceb 6= c, this part of

the problem is solved.
Assume now that the incenters of the given triangles coincide. Assume that the incircle of the
triangleabc is unit and letd,e, f be the points of tangency of the incircle with the sidesab,bc,ca
respectively. Similarly to the previous part of the problemwe prove

a1 = i+ λ eiω(a− i), b1 = i+ λ eiω(b− i), c1 = i+ λ eiω(c− i).

Together with the conditioni = 0 T2.3 and conjugation implya1 =
2λ

eiω (e + f )
. Also, since the

pointsa1,b,c are colinear we havea1d ⊥ di hence according to T1.3
a1−d

a1 −d
= − d − i

d − i
= −d2.

Solving this system gives

λ =
d(e + f )

d2 + e f eiω .

Sinceλ has the same roles in the formulas fora1 andb1 we must have

λ =
e(d + f )

e2 + d f eiω ,

and equating gives us

ei2ω =
ed(e + d + f )

f (de + e f + f d)
.
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Symmetry impliesei2ω =
e f (e + d + f )

d(de + e f + f d)
and sincef 2 6= d2 we must havee+d + f = 0. It is easy

to prove that the trianglede f is equilateral in this case as well asabc.

67. Since(a−b)(c−d)+(b−c)(a−d)= (a−c)(b−d) the triangle inequality implies|(a−b)(c−
d)|+ |(b− c)(a− d)| ≥ |(a− c)(b− d)|, which is exactly an expression of the required inequality.
The equality holds if and only if the vectors(a− b)(c− d), (b− c)(a− d), and(a− c)(c− d) are
colinear. The first two of them are colinear if and only if

(a−b)(c−d)

(b− c)(a−d)
∈ R,

which is according to T3 precisely the condition thata,c,b,d belong to a circle. Similarly we prove
that the other two vectors are colinear.

68. Since(d−a)(d−b)(a−b)+(d−b)(d−c)(b−c)+(d−c)(d−a)(c−a)= (a−b)(b−c)(c−a),
we have|(d − a)(d − b)(a− b)|+ |(d− b)(d − c)(b− c)|+ |(d− c)(d − a)(c− a)| ≥ |(a− b)(b−
c)(c− a)| where the equality holds if and only if(d − a)(d− b)(a− b),(d− b)(d− c)(b− c),(d−
c)(d −a)(c−a) and(a−b)(b− c)(c−a) are colinear. The condition for colinearity of the first two
vectors can be expressed as

(d−a)(a−b)

(d− c)(b− c)
=

(d −a)(a −b)

(d − c)(b − c)
.

Assume that the circumcircle ofabc is unit. Now the given expression can be written as

dd a−a2d − da
c

+
a2

c
= dd c− c2d − dc

a
+

c2

a

and after some algebradd (a− c) = (a− c)
(

(a + c)
(

d +
d
ac

− a + c
ac

)

+1
)

or

dd = (a + c)
(

d +
d
ac

− a + c
ac

)

+1.

Similarly, from the colinearity of the first and the third vector we getdd = (b + c)
(

d +
d
bc

−
b + c

bc

)

+1. Substracting the last two expressions yields(a−b)
(

d − d
ab

+
c2−ab

abc

)

= 0, i.e.

d − d
ab

+
c2−ab

abc
= 0.

Similarly d − d
ac

+
b2−ac

abc
= 0 and after substracting and simplifying we getd = a + b + c. It is

easy to verify that ford = a + b + c, i.e. the orthocenter of the triangleabc, all four of the above
mentioned vectors colinear.

13 Problems for Indepent Study

For those who want more, here is the more. Many of the following problems are similar to the
problems that are solved above. There are several quite difficult problems (towards the end of the
list) which require more attention in choosing the known points, and more time. As in the case with
solved problems, I tried to put lot of problems from math competitions from all over the world.

1. (Regional competition 2002, 2nd grade) In the acute-angledtriangleABC, B′ andC′ are feet of
perpendiculars from the verticesB andC respectively. The circle with the diameterAB intersects the
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line CC′ at the pointsM andN, and the circle with the diameterAC intersects the lineBB′ at P and
Q. Prove that the quadrilateralMPNQ is cyclic.

2. (Yug TST 2002) LetABCD be a quadrilateral such that∠A = ∠B = ∠C. Prove that the pointD,
the circumcenter, and the orthocenter of△ABC are colinear.

3. (Republic competition 2005, 4th grade) The haxagonABCDEF is inscribed in the circlek. If
the lengths of the segmentsAB,CD, andEF are equal to the radius of the circlek prove that the
midpoints of the remaining three edges form an equilateral trinagle.

4. (USA 1997) Three isosceles trianglesBCD, CAE, andABF with the basesBC, CA, andAB
respectively are constructed in the exterior of the triangle ABC. Prove that the perpendiculars from
A, B, andC to the linesEF , FD, andDE repsectively are concurrent.

5. Prove that the side length of the regular 9-gon is equal to thedifference of the largest and the
smallest diagonal.

6. If h1,h2, . . . ,h2n denote respectively the distances of an arbitrary pointP of the circlek circum-
scribed about the polygonA1A2 . . .A2n from the lines that contain the edgesA1A2, A2A3, . . ., A2nA1,
prove thath1h3 · · ·h2n−1 = h2h4 · · ·h2n.

7. Let d1,d2, . . . ,dn denote the distances of the verticesA1,A2, . . . ,An of the regularn-gonA1A2 . . .An

from an arbitrary pointP of the smaller arcA1An of the circumcircle. Prove that

1
d1d2

+
1

d2d3
+ . . .+

1
dn−1dn

=
1

d1dn
.

8. Let A0A1 . . .A2n be a regular polygon,P a point of the smaller arcA0A2n of the circumcircle and
m an integer such that 0≤ m < n. Prove that

n

∑
k=0

PA2m+1
2k =

n

∑
k=1

PA2m+1
2k−1 .

9. (USA 2000) LetABCD be a cyclic quadrilateral and letE andF be feet of perpendiculars from
the intersection of the diagonals to the linesAB andCD respectively. Prove thatEF if perpendicular
to the line passing through the midpoints ofAD andBC.

10. Prove that the midpoints of the altitudes of the traingle arecolinear if and only if the triangle is
rectangular.

11. (BMO 1990) The feet of preprendiculars of the acute angled triangleABC areA1, B1, andC1. If
A2, B2, andC2 denote the points of tangency of the incircle of△A1B1C1 prove that the Euler lines
of the trianglesABC andA2B2C2 coincide.

12. (USA 1993) LetABCD be a convex quadrilateral whose diagonalsAC andBD are perpendicular.
Assume thatAC∪BD = E. Prove that the points symmetric toE with respect to the linesAB,BC,CD,
andDA form a cyclic quadrilateral.

13. (India 1998) LetAK,BL,CM be the altitudes of the triangleABC, and letH be its orthocenter.
Let P be the midpoint of the segmentAH. If BH andMK intersect at the pointS, andLP andAM in
the pointT , prove thatTS is perpendicular toBC.

14. (Vietnam 1995) LetAD, BE, andCF be the altitudes of the triangle△ABC. For eachk ∈ R,
k 6= 0, letA1, B1, andC1 be such thatAA1 = kAD, BB1 = kBE, andCC1 = kCF . Find allk such that
for every non-isosceles triangleABC the trianglesABC andA1B1C1 are similar.
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15. (Iran 2005) LetABC be a triangle andD,E,F the points on its edgesBC, CA, AB respectively
such that

BD
DC

=
CE
EA

=
AF
FB

=
1−λ

λ
whereλ is a real number. Find the locus of circumcenters of the trianglesDEF asλ ∈ R.

16. Let H1 andH2 be feet of perpendiculars from the orthocenterH of the triangleABC to the
bisectors of external and internal angles at the vertexC. Prove that the lineH1H2 contains the
midpoint of the sideAB.

17. Given an acute-angled triangleABC and the pointD in its interior, such that∠ADB = ∠ACB +
90◦ andAB ·CD = AD ·BC. Find the ratio

AB ·CD
AC ·BD

.

18. The linesAM andAN are tangent to the circlek, and an arbitrary line throughA intersectsk at
K andL. Let l be an arbitrary line parallel toAM. Assume thatKM andLM intersect the linel at P
andQ, respectively. Prove that the lineMN bisects the segmentPQ.

19. The pointsD, E, andF are chosen on the edgesBC, CA, andAB of the triangleABC in such a
way thatBD = CE = AF. Prove that the trianglesABC andDEF have the common incenter if and
only if ABC is equilateral.

20. Given a cyclic quadrilateralABCD, prove that the incircles of the trianglesABC, BCD, CDA,
DAB form an rectangle.

21. (India 1997) LetI be the incenter of the triangleABC and letD andE be the midpoints of the
segmentsAC andAB respectively. Assume that the linesAB andDI intersect at the pointP, and the
linesAC andEI at the pointQ. Prove thatAP ·AQ = AB ·AC if and only if ∠A = 60◦.

22. Let M be an interior point of the squareABCD. Let A1,B1,C1,D1 be the intersection of the lines
AM,BM,CM,DM with the circle circumscribed about the squareABCD respectively. Prove that

A1B1 ·C1D1 = A1D1 ·B1C1.

23. Let ABCD be a cyclic quadrilateral,F = AC ∩ BD and E = AD ∩BC. If M and N are the
midpoints of the segmentsAB andCD prove that

MN
EF

=
1
2
·
∣

∣

∣

∣

AB
CD

− CD
AB

∣

∣

∣

∣

.

24. (Vietnam 1994) The pointsA′, B′, andC′ are symmetric to the pointsA, B, andC with respect to
the linesBC, CA, andAB respectively. What are the conditions that△ABC has to satisfy in order for
△A′B′C′ to be equilateral?

25. Let O be the circumcenter of the triangleABC and letR be its circumradius. The incircle of the
triangleABC touches the sidesBC,CA,AB, at A1,B1,C1 and its radius isr. Assume that the lines
determined by the midpoints ofAB1 andAC1, BA1 andBC1, CA1 andCB1 intersect at the points
C2, A2, andB2. Prove that the circumcenter of the triangleA2B2C2 coincides withO, and that its

circumradius isR +
r
2

.

26. (India 1994) LetABCD be a nonisosceles trapezoid such thatAB ‖CD andAB > CD. Assume
thatABCD is circumscribed about the circle with the centerI which tangetsCD in E. Let M be the
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midpoint of the segmentAB and assume thatMI andCD intersect atF . Prove thatDE = FC if and
only if AB = 2CD.

27. (USA 1994) Assume that the hexagonABCDEF is inscribed in the circle,AB = CD = EF , and
that the diagonalsAD, BE, andCF are concurrent. IfP is the intersection of the linesAD andCE,

prove that
CP
PE

=
( AC

CE

)2
.

28. (Vietnam 1999) LetABC be a troiangle. The pointsA′, B′, andC′ are the midpoints of the
arcsBC, CA, andAB, which don’t containA, B, andC, respectively. The linesA′B′, B′C′, andC′A′

partition the sides of the triangle into six parts. Prove that the ”middle” parts are equal if and only if
the triangleABC is equilateral.

29. (IMO 1991 shortlist) Assume that in△ABC we have∠A = 60◦ and thatIF is parallel toAC,
whereI is the incenter andF belongs to the lineAB. The pointP of the segmentBC is such that
3BP = BC. Prove that∠BFP = ∠B/2.

30. (IMO 1997 shortlist) The angleA is the smallest in the triangleABC. The pointsB andC divide
the circumcircle into two arcs. LetU be the interior point of the arc betweenB andC which doesn’t
containA. The medians of the segmentsAB andAC intersect the lineAU respectively at the points
V andW . The linesBV andCW intersect atT . Prove thatAU = TB + TC.

31. (Vietnam 1993) LetABCD be a convex quadrilateral such thatAB is not parallel toCD and
AD is not parallel toBC. The pointsP, Q, R, andS are chosen on the edgesAB, BC, CD, andDA,
respectively such thatPQRS is a parallelogram. Find the locus of centroids of all such quadrilaterals
PQRS.

32. The incircle of the triangleABC touchesBC, CA, AB at E,F,G respectively. LetAA1, BB1,
CC1 the angular bisectors of the triangleABC (A1, B1, C1 belong to the corresponding edges). Let
KA,KB,KC respectively be the points of tangency of the other tangentsto the incircle fromA1, B1,
C1. Let P,Q,R be the midpoints of the segmentsBC, CA, AB. Prove that the linesPKA, QKB, RKC

intersect on the incircle of the triangleABC.

33. Assume thatI andIa are the incenter and the excenter corresponding to the edgeBC of the trian-
gle ABC. Let IIa intersect the segmentBC and the circumcircle of△ABC at A1 andM respectively
(M belongs toIa andI) and letN be the midpoint of the arcMBA which containsC. Assume thatS
andT are intersections of the linesNI andNIa with the circumcircle of△ABC. Prove that the points
S, T , andA1 are colinear.

34. (Vietnam 1995) LetAD,BE,CF be the altitudes of the triangleABC, and letA′,B′,C′ be the
points on the altitudes such that

AA′

AD
=

BB′

BE
=

CC′

CF
= k.

Find all values fork such that△A′B′C′ ∼△ABC.

35. Given the triangleABC and the pointT , let P andQ be the feet of perpendiculars fromT to the
linesAB andAC, respectively and letR andS be the feet of perpendiculars fromA to the linesTC
andT B, respectively. Prove that the intersection point of the linesPR andQS belongs to the lineBC.

36. (APMO 1995) LetPQRS be a cyclic quadrilateral such that the linesPQ andRS are not parallel.
Consider the set of all the circles passing throughP andQ and all the circles passing throughR and
S. Determine the set of all pointsA of tangency of the circles from these two sets.

37. (YugMO 2003, 3-4 grade) Given a circlek and the pointP outside of it. The variable lines
which contains pointP intersects the circlek at the pointsA andB. Let M andN be the midpoints of
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the arcs determined by the pointsA andB. If C is the point of the segmentAB such that

PC2 = PA ·PB,

prove that the measure of the angle∠MCN doesn’t depend on the choice ofs.

38. (YugMO 2002, 2nd grade) LetA0,A1,...,A2k, respectevly be the points which divide the circle
into 2k + 1 congruent arcs. The pointA0 is connected by the chords to all other points. Those 2k
chords divide the circle into 2k +1 parts. Those parts are colored alternatively in white and black in
such a way that the number of white parts is by 1 bigger than thenumber of black parts. Prove that
the surface area of teh black part is greater than the surfacearea of the white part.

39. (Vietnam 2003) The circlesk1 andk2 touch each other at the pointM. The radius of the circle
k1 is bigger than the radius of the circlek2. Let A be an arbitrary point ofk2 which doesn’t belong
to the line connecting the centers of the circles. LetB andC be the points ofk1 such thatAB andAC
are its tangents. The linesBM andCM intersectk2 again atE andF respectively. The pointD is the
intersection of the tangent atA with the lineEF . Prove that the locus of pointsD (asA moves along
the circle) is a line.

40. (Vietnam 2004) The circlesk1 andk2 are given in the plane and they intersect at the pointsA
andB. The tangents tok1 at those points intersect atK. Let M be an arbitrary point of the circlek1.
Assume thatMA∪ k2 = {A,P}, MK ∪ k1 = {M,C}, andCA∪ k1 = {A,Q}. Prove that the midpoint
of the segmentPQ belongs to the lineMC and thatPQ passes through a fixed point asM moves
alongk1.

41. (IMO 2004 shortlist) LetA1A2 . . .An be a regularn-gon. Assume that the pointsB1, B2, . . ., Bn−1

are determined in the following way:

• for i = 1 or i = n−1, Bi is the midpoint of the segmentAiAi+1;

• for i 6= 1, i 6= n−1, andS intersection ofA1Ai+1 andAnAi, Bi is the intersection of the bisectors
of the angleAiSi+1 with AiAi+1.

Prove that∠A1B1An +∠A1B2An + . . .+∠A1Bn−1An = 180◦.

69. (Dezargue’s Theorem) The triangles are perspective with respect to a point if andonly if they
are perspective w.r.t to a line.

42. (IMO 1998 shortlist) LetABC be a triangle such that∠ACB = 2∠ABC. Let D be the point of the
segmentBC such thatCD = 2BD. The segmentAD is extended over the pointD to the pointE for
which AD = DE. Prove that

∠ECB +180◦ = 2∠EBC.

43. Given a triangleA1A2A3 the line p passes through the pointP and intersects the segments
A2A3,A3A1,A1A2 at the pointsX1,X2,X3, respectively. LetAiP intersect the circumcircle ofA1A2A3

atRi, for i = 1,2,3. Prove thatX1R1,X2R2,X3R3 intersect at the point that belongs to the circumcircle
of the triangleA1A2A3.

44. The pointsO1 andO2 are the centers of the circlesk1 andk2 that intersect. LetA be one of the
intersection points of these circles. Two common tangents are constructed to these circles.BC are
EF the chords of these circles with endpoints at the points of tangency of the common chords with
the circles (C andF are further fromA). If M andN are the midpoints of the segmentsBC andEF ,
prove that∠O1AO2 = ∠MAN = 2∠CAF.

45. (BMO 2002) Two circles of different radii intersect at points A andB. The common chords of
these circles areMN andST respectively. Prove that the orthocenters of△AMN, △AST , △BMN,
and△BST form a rectangle.
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46. (IMO 2004 shortlist) Given a cyclic quadrilateralABCD, the linesAD andBC intersect atE
whereC is betweenB andE. The diagonalsAC andBD intersect atF. Let M be the midpoint ofCD
and letN 6= M be the point of the circumcircle of the triangleABM such thatAN/BN = AM/BM.
Prove that the pointsE,F,N are colinear.

47. (IMO 1994 shortlist) The diameter of the semicircleΓ belongs to the linel. LetC andD be the
points onΓ. The tangents toΓ atC andD intersect the linel respectively atB andA such that the
center of the semi-circle is betweenA andB. Let E be the intersection of the linesAC andBD, and
F the foot of perpendicular fromE to l. Prove thatEF is the bisector of the angle∠CFD.


