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ABSTRACT. The Equal Variable Method (called alson−1 Equal Variable Method on the Math-
links Site - Inequalities Forum) can be used to prove some difficult symmetric inequalities in-
volving either three power means or, more general, two power means and an expression of form
f(x1) + f(x2) + · · ·+ f(xn).
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1. STATEMENT OF RESULTS

In order to state and prove the Equal Variable Theorem (EV-Theorem) we require the follow-
ing lemma and proposition.

Lemma 1.1. Let a, b, c be fixed non-negative real numbers, not all equal and at most one of
them equal to zero, and letx ≤ y ≤ z be non-negative real numbers such that

x + y + z = a + b + c, xp + yp + zp = ap + bp + cp,

wherep ∈ (−∞, 0] ∪ (1,∞). For p = 0, the second equation isxyz = abc > 0. Then, there
exist two non-negative real numbersx1 andx2 with x1 < x2 such thatx ∈ [x1, x2]. Moreover,

(1) if x = x1 andp ≤ 0, then0 < x < y = z;
(2) if x = x1 andp > 1, then either0 = x < y ≤ z or 0 < x < y = z;
(3) if x ∈ (x1, x2), thenx < y < z;
(4) if x = x2, thenx = y < z.

Proposition 1.2. Let a, b, c be fixed non-negative real numbers, not all equal and at most one
of them equal to zero, and let0 ≤ x ≤ y ≤ z such that

x + y + z = a + b + c, xp + yp + zp = ap + bp + cp,
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wherep ∈ (−∞, 0] ∪ (1,∞). For p = 0, the second equation isxyz = abc > 0. Letf(u) be a

differentiable function on(0,∞), such thatg(x) = f ′
(
x

1
p−1

)
is strictly convex on(0,∞), and

let

F3(x, y, z) = f(x) + f(y) + f(z).

(1) If p ≤ 0, thenF3 is maximal only for0 < x = y < z, and is minimal only for
0 < x < y = z;

(2) If p > 1 and eitherf(u) is continuous atu = 0 or lim
u→0

f(u) = −∞, thenF3 is maximal

only for0 < x = y < z, and is minimal only for eitherx = 0 or 0 < x < y = z.

Theorem 1.3 (Equal Variable Theorem (EV-Theorem)). Let a1, a2, . . . , an (n ≥ 3) be fixed
non-negative real numbers, and let0 ≤ x1 ≤ x2 ≤ · · · ≤ xn such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

xp
1 + xp

2 + · · ·+ xp
n = ap

1 + ap
2 + · · ·+ ap

n,

wherep is a real number,p 6= 1. For p = 0, the second equation isx1x2 · · ·xn = a1a2 · · · an >
0. Letf(u) be a differentiable function on(0,∞) such that

g(x) = f ′
(
x

1
p−1

)
is strictly convex on(0,∞), and let

Fn(x1, x2, . . . , xn) = f(x1) + f(x2) + · · ·+ f(xn).

(1) If p ≤ 0, thenFn is maximal for0 < x1 = x2 = · · · = xn−1 ≤ xn, and is minimal for
0 < x1 ≤ x2 = x3 = · · · = xn;

(2) If p > 0 and eitherf(u) is continuous atu = 0 or lim
u→0

f(u) = −∞, thenFn is

maximal for0 ≤ x1 = x2 = · · · = xn−1 ≤ xn, and is minimal for eitherx1 = 0 or
0 < x1 ≤ x2 = x3 = · · · = xn.

Remark 1.4. Let 0 < α < β. If the functionf is differentiable on(α, β) and the function

g(x) = f ′
(
x

1
p−1

)
is strictly convex on(αp−1, βp−1) or (βp−1, αp−1), then the EV-Theorem

holds true forx1, x2, . . . , xn ∈ (α, β).

By Theorem 1.3, we easily obtain some particular results, which are very useful in applica-
tions.

Corollary 1.5. Let a1, a2, . . . , an (n ≥ 3) be fixed non-negative numbers, and let0 ≤ x1 ≤
x2 ≤ · · · ≤ xn such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a2

1 + a2
2 + · · ·+ a2

n.

Letf be a differentiable function on(0,∞) such thatg(x) = f ′(x) is strictly convex on(0,∞).
Moreover, eitherf(x) is continuous atx = 0 or lim

x→0
f(x) = −∞. Then,

Fn = f(x1) + f(x2) + · · ·+ f(xn)

is maximal for0 ≤ x1 = x2 = · · · = xn−1 ≤ xn, and is minimal for eitherx1 = 0 or
0 < x1 ≤ x2 = x3 = · · · = xn.
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Corollary 1.6. Let a1, a2, . . . , an (n ≥ 3) be fixed positive numbers, and let0 < x1 ≤ x2 ≤
· · · ≤ xn such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

1

x1

+
1

x2

+ · · ·+ 1

xn

=
1

a1

+
1

a2

+ · · ·+ 1

an

.

Let f be a differentiable function on(0,∞) such thatg(x) = f ′
(

1√
x

)
is strictly convex on

(0,∞). Then,
Fn = f(x1) + f(x2) + · · ·+ f(xn)

is maximal for0 < x1 = x2 = · · · = xn−1 ≤ xn, and is minimal for0 < x1 ≤ x2 = x3 = · · · =
xn.

Corollary 1.7. Let a1, a2, . . . , an (n ≥ 3) be fixed positive numbers, and let0 < x1 ≤ x2 ≤
· · · ≤ xn such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x1x2 · · ·xn = a1a1 · · · an.

Letf be a differentiable function on(0,∞) such thatg(x) = f ′
(

1
x

)
is strictly convex on(0,∞).

Then,
Fn = f(x1) + f(x2) + · · ·+ f(xn)

is maximal for0 < x1 = x2 = · · · = xn−1 ≤ xn, and is minimal for0 < x1 ≤ x2 = x3 = · · · =
xn.

Corollary 1.8. Let a1, a2, . . . , an (n ≥ 3) be fixed non-negative numbers, and let0 ≤ x1 ≤
x2 ≤ · · · ≤ xn such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

xp
1 + xp

2 + · · ·+ xp
n = ap

1 + ap
2 + · · ·+ ap

n,

wherep is a real number,p 6= 0 andp 6= 1.

(a) For p < 0, P = x1x2 · · ·xn is minimal when0 < x1 = x2 = · · · = xn−1 ≤ xn, and is
maximal when0 < x1 ≤ x2 = x3 = · · · = xn.

(b) For p > 0, P = x1x2 · · ·xn is maximal when0 ≤ x1 = x2 = · · · = xn−1 ≤ xn, and is
minimal when eitherx1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Corollary 1.9. Let a1, a2, . . . , an (n ≥ 3) be fixed non-negative numbers, let0 ≤ x1 ≤ x2 ≤
· · · ≤ xn such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

xp
1 + xp

2 + · · ·+ xp
n = ap

1 + ap
2 + · · ·+ ap

n,

and letE = xq
1 + xq

2 + · · ·+ xq
n.

Case 1.p ≤ 0 (p = 0 yieldsx1x2 · · ·xn = a1a2 · · · an > 0).

(a) For q ∈ (p, 0) ∪ (1,∞), E is maximal when0 < x1 = x2 = · · · = xn−1 ≤ xn, and is
minimal when0 < x1 ≤ x2 = x3 = · · · = xn.

(b) For q ∈ (−∞, p) ∪ (0, 1), E is minimal when0 < x1 = x2 = · · · = xn−1 ≤ xn, and is
maximal when0 < x1 ≤ x2 = x3 = · · · = xn.

Case 2.0 < p < 1.

(a) For q ∈ (0, p) ∪ (1,∞), E is maximal when0 ≤ x1 = x2 = · · · = xn−1 ≤ xn, and is
minimal when eitherx1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.
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(b) For q ∈ (−∞, 0) ∪ (p, 1), E is minimal when0 ≤ x1 = x2 = · · · = xn−1 ≤ xn, and is
maximal when eitherx1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Case 3.p > 1.

(a) For q ∈ (0, 1) ∪ (p,∞), E is maximal when0 ≤ x1 = x2 = · · · = xn−1 ≤ xn, and is
minimal when eitherx1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

(b) For q ∈ (−∞, 0) ∪ (1, p), E is minimal when0 ≤ x1 = x2 = · · · = xn−1 ≤ xn, and is
maximal when eitherx1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

2. PROOFS

Proof of Lemma 1.1.Let a ≤ b ≤ c. Note that in the excluded casesa = b = c anda = b = 0,
there is a single triple(x, y, z) which verifies the conditions

x + y + z = a + b + c and xp + yp + zp = ap + bp + cp.

Consider now three cases:p = 0, p < 0 andp > 1.

A. Casep = 0 (xyz = abc > 0). LetS = a+b+c
3

andP = 3
√

abc, whereS > P > 0 by AM-GM
Inequality. We have

x + y + z = 3S, xyz = P 3,

and from0 < x ≤ y ≤ z andx < z, it follows that0 < x < P . Now let

f = y + z − 2
√

yz.

It is clear thatf ≥ 0, with equality if and only ify = z. Writing f as a function ofx,

f(x) = 3S − x− 2P

√
P

x
,

we have

f ′(x) =
P

x

√
P

x
− 1 > 0,

and hence the functionf(x) is strictly increasing. Sincef(P ) = 3(S − P ) > 0, the equation
f(x) = 0 has a unique positive rootx1, 0 < x1 < P . Fromf(x) ≥ 0, it follows thatx ≥ x1.

Sub-casex = x1. Sincef(x) = f(x1) = 0 andf = 0 impliesy = z, we have0 < x < y = z.

Sub-casex > x1. We havef(x) > 0 andy < z. Consider now thaty andz depend onx. From
x + y(x) + z(x) = 3S andx · y(x) · z(x) = P 3, we get1 + y′ + z′ = 0 and 1

x
+ y′

y
+ z′

z
= 0.

Hence,

y′(x) =
y(x− z)

x(z − y)
, z′(x) =

z(y − x)

x(z − y)
.

Sincey′(x) < 0, the functiony(x) is strictly decreasing. Sincey(x1) > x1 (see sub-case
x = x1), there existsx2 > x1 such thaty(x2) = x2, y(x) > x for x1 < x < x2 andy(x) < x
for x > x2. Taking into account thaty ≥ x, it follows thatx1 < x ≤ x2. On the other hand, we
see thatz′(x) > 0 for x1 < x < x2. Consequently, the functionz(x) is strictly increasing, and
hencez(x) > z(x1) = y(x1) > y(x). Finally, we conclude thatx < y < z for x ∈ (x1, x2),
andx = y < z for x = x2.

B. Casep < 0. DenoteS = a+b+c
3

andR =
(

ap+bp+cp

3

) 1
p . Taking into account that

x + y + z = 3S, xp + yp + zp = 3Rp,
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from 0 < x ≤ y ≤ z andx < z we getx < S and3
1
p R < x < R. Let

h = (y + z)

(
yp + zp

2

)−1
p

− 2.

By the AM-GM Inequality, we have

h ≥ 2
√

yz
1
√

yz
− 2 = 0,

with equality if and only ify = z. Writing nowh as a function ofx,

h(x) = (3S − x)

(
3Rp − xp

2

)−1
p

− 2,

from

h′(x) =
3Rp

2

(
3Rp − xp

2

)−1−p
p

[(
S

x

)(
R

x

)−p

− 1

]
> 0

it follows that h(x) is strictly increasing. Sinceh(x) ≥ 0 andh
(
3

1
p R
)

= −2, the equation

h(x) = 0 has a unique rootx1 andx ≥ x1 > 3
1
p R.

Sub-casex = x1. Sincef(x) = f(x1) = 0, andf = 0 impliesy = z, we have0 < x < y = z.

Sub-casex > x1. We haveh(x) > 0 andy < z. Consider now thaty andz depend onx.
From x + y(x) + z(x) = 3S andxp + y(x)p + z(x)p = 3Rp, we get1 + y′ + z′ = 0 and
xp−1 + yp−1y′ + zp−1z′ = 0, and hence

y′(x) =
xp−1 − zp−1

zp−1 − yp−1
, z′(x) =

xp−1 − yp−1

yp−1 − zp−1
.

Sincey′(x) > 0, the functiony(x) is strictly decreasing. Sincey(x1) > x1 (see sub-case
x = x1), there existsx2 > x1 such thaty(x2) = x2, y(x) > x for x1 < x < x2, andy(x) < x for
x > x2. The conditiony ≥ x yieldsx1 < x ≤ x2. We see now thatz′(x) > 0 for x1 < x < x2.
Consequently, the functionz(x) is strictly increasing, and hencez(x) > z(x1) = y(x1) > y(x).
Finally, we havex < y < z for x ∈ (x1, x2) andx = y < z for x = x2.

C. Casep > 1. DenotingS = a+b+c
3

andR =
(

ap+bp+cp

3

) 1
p yields

x + y + z = 3S, xp + yp + zp = 3Rp.

By Jensen’s inequality applied to the convex functiong(u) = up, we haveR > S, and hence
x < S < R. Let

h =
2

y + z

(
yp + zp

2

) 1
p

− 1.

By Jensen’s Inequality, we geth ≥ 0, with equality if only if y = z. From

h(x) =
2

3S − x

(
3Rp − xp

2

) 1
p

− 1

and

h′(x) =
3

(3S − x)2

(
3Rp − xp

2

) 1−p
p

(Rp − Sxp−1) > 0,

it follows that the functionh(x) is strictly increasing, andh(x) ≥ 0 impliesx ≥ x1. In the case
h(0) ≥ 0 we havex1 = 0, and in the caseh(0) < 0 we havex1 > 0 andh(x1) = 0.
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Sub-casex = x1. If h(0) ≥ 0, then0 = x1 < y(x1) ≤ z(x1). If h(0) < 0, thenh(x1) = 0, and
sinceh = 0 impliesy = z, we have0 < x1 < y(x1) = z(x1).

Sub-casex > x1. Sinceh(x) is strictly increasing, forx > x1 we haveh(x) > h(x1) ≥ 0,
henceh(x) > 0 andy < z. Fromx + y(x) + z(x) = 3S andxp + yp(x) + zp(x) = 3Rp, we get

y′(x) =
xp−1 − zp−1

zp−1 − yp−1
, z′(x) =

yp−1 − xp−1

zp−1 − yp−1
.

Sincey′(x) < 0, the functiony(x) is strictly decreasing. Taking account ofy(x1) > x1 (see
sub-casex = x1), there existsx2 > x1 such thaty(x2) = x2, y(x) > x for x1 < x < x2,
andy(x) < x for x > x2. The conditiony ≥ x implies x1 < x ≤ x2. We see now that
z′(x) > 0 for x1 < x < x2. Consequently, the functionz(x) is strictly increasing, and hence
z(x) > z(x1) ≥ y(x1) > y(x). Finally, we conclude thatx < y < z for x ∈ (x1, x2), and
x = y < z for x = x2. �

Proof of Proposition 1.2.Consider the function

F (x) = f(x) + f(y(x)) + f(z(x))

defined onx ∈ [x1, x2]. We claim thatF (x) is minimal forx = x1 and is maximal forx = x2.
If this assertion is true, then by Lemma 1.1 it follows that:

(a) F (x) is minimal for 0 < x = y < z in the casep ≤ 0, or for eitherx = 0 or
0 < x < y = z in the casep > 1;

(b) F (x) is maximal for0 < x = y < z.

In order to prove the claim, assume thatx ∈ (x1, x2). By Lemma 1.1, we have0 < x < y <
z. From

x + y(x) + z(x) = a + b + c and

xp + yp(x) + zp(x) = ap + bp + cp,

we get
y′ + z′ = −1, yp−1y′ + zp−1z′ = −xp−1,

whence

y′ =
xp−1 − zp−1

zp−1 − yp−1
, z′ =

xp−1 − yp−1

yp−1 − zp−1
.

It is easy to check that this result is also valid forp = 0. We have

F ′(x) = f ′(x) + y′f ′(y) + z′f ′(z)

and

F ′(x)

(xp−1 − yp−1)(xp−1 − zp−1)

=
g(xp−1)

(xp−1 − yp−1)(xp−1 − zp−1)
+

g(yp−1)

(yp−1 − zp−1)(yp−1 − xp−1)

+
g(zp−1)

(zp−1 − xp−1)(zp−1 − yp−1)
.

Sinceg is strictly convex, the right hand side is positive. On the other hand,

(xp−1 − yp−1)(xp−1 − zp−1) > 0.

These results implyF ′(x) > 0. Consequently, the functionF (x) is strictly increasing for
x ∈ (x1, x2). Excepting the trivial case whenp > 1, x1 = 0 and lim

u→0
f(u) = −∞, the function
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F (x) is continuous on[x1, x2], and hence is minimal only forx = x1, and is maximal only for
x = x2. �

Proof of Theorem 1.3.We will consider two cases.

Casep ∈ (−∞, 0]∪(1,∞). Excepting the trivial case whenp > 1, x1 = 0 andlim
u→0

f(u) = −∞,

the functionFn(x1, x2, . . . , xn) attains its minimum and maximum values, and the conclusion
follows from Proposition 1.2 above, via contradiction. For example, let us consider the casep ≤
0. In order to prove thatFn is maximal for0 < x1 = x2 = · · · = xn−1 ≤ xn, we assume, for the
sake of contradiction, thatFn attains its maximum at(b1, b2, . . . , bn) with b1 ≤ b2 ≤ · · · ≤ bn

andb1 < bn−1. Letx1, xn−1, xn be positive numbers such thatx1 + xn−1 + xn = b1 + bn−1 + bn

andxp
1 + xp

n−1 + xp
n = bp

1 + bp
n−1 + bp

n. According to Proposition 1.2, the expression

F3(x1, xn−1, xn) = f(x1) + f(xn−1) + f(xn)

is maximal only forx1 = xn−1 < xn, which contradicts the assumption thatFn attains its
maximum at(b1, b2, . . . , bn) with b1 < bn−1.

Casep ∈ (0, 1). This case reduces to the casep > 1, replacing each of theai by a
1
p

i , each of

thexi by x
1
p

i , and thenp by 1
p
. Thus, we obtain the sufficient condition thath(x) = xf ′

(
x

1
1−p

)
to be strictly convex on(0,∞). We claim that this condition is equivalent to the condition that

g(x) = f ′
(
x

1
p−1

)
to be strictly convex on(0,∞). Actually, for our proof, it suffices to show

that if g(x) is strictly convex on(0,∞), thenh(x) is strictly convex on(0,∞). To show this,
we see thatg

(
1
x

)
= 1

x
h(x). Sinceg(x) is strictly convex on(0,∞), by Jensen’s inequality we

have

ug

(
1

x

)
+ vg

(
1

y

)
> (u + v)g

( u
x

+ v
y

u + v

)
for anyx, y, u, v > 0 with x 6= y. This inequality is equivalent to

u

x
h(x) +

v

y
h(y) >

(
u

x
+

v

y

)
h

(
u + v
u
x

+ v
y

)
.

Substitutingu = tx andv = (1− t)y, wheret ∈ (0, 1), reduces the inequality to

th(x) + (1− t)h(y) > h(tx + (1− t)y),

which shows us thath(x) is strictly convex on(0,∞). �

Proof of Corollary 1.8.We will apply Theorem 1.3 to the functionf(u) = p ln u. We see that
lim
u→0

f(u) = −∞ for p > 0, and

f ′(u) =
p

u
, g(x) = f ′

(
x

1
p−1

)
= px

1
1−p , g′′(x) =

p2

(1− p)2
x

2p−1
1−p .

Sinceg′′(x) > 0 for x > 0, the functiong(x) is strictly convex on(0,∞), and the conclusion
follows by Theorem 1.3. �

Proof of Corollary 1.9.We will apply Theorem 1.3 to the function

f(u) = q(q − 1)(q − p)uq.

For p > 0, it is easy to check that eitherf(u) is continuous atu = 0 (in the caseq > 0) or
lim
u→0

f(u) = −∞ (in the caseq < 0). We have

f ′(u) = q2(q − 1)(q − p)uq−1
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and

g(x) = f ′
(
x

1
p−1

)
= q2(q − 1)(q − p)x

q−1
p−1 ,

g′′(x) =
q2(q − 1)2(q − p)2

(p− 1)2
x

2p−1
1−p .

Sinceg′′(x) > 0 for x > 0, the functiong(x) is strictly convex on(0,∞), and the conclusion
follows by Theorem 1.3. �

3. APPLICATIONS

Proposition 3.1.Letx, y, z be non-negative real numbers such thatx+y+z = 2. If r0 ≤ r ≤ 3,
wherer0 = ln 2

ln 3−ln 2
≈ 1.71, then

xr(y + z) + yr(z + x) + zr(x + y) ≤ 2.

Proof. Rewrite the inequality in the homogeneous form

xr+1 + yr+1 + zr+1 + 2

(
x + y + z

2

)r+1

≥ (x + y + z)(xr + yr + zr),

and apply Corollary 1.9 (casep = r andq = r + 1):
If 0 ≤ x ≤ y ≤ z such that

x + y + z = constant and

xr + yr + zr = constant,

then the sumxr+1 + yr+1 + zr+1 is minimal when eitherx = 0 or 0 < x ≤ y = z.
Casex = 0. The initial inequality becomes

yz(yr−1 + zr−1) ≤ 2,

wherey + z = 2. Since0 < r − 1 ≤ 2, by the Power Mean inequality we have

yr−1 + zr−1

2
≤
(

y2 + z2

2

) r−1
2

.

Thus, it suffices to show that

yz

(
y2 + z2

2

) r−1
2

≤ 1.

Taking account of
y2 + z2

2
=

2(y2 + z2)

(y + z)2
≥ 1 and

r − 1

2
≤ 1,

we have

1− yz

(
y2 + z2

2

) r−1
2

≥ 1− yz

(
y2 + z2

2

)
=

(y + z)4

16
− yz(y2 + z2)

2

=
(y − z)4

16
≥ 0.

Case0 < x ≤ y = z. In the homogeneous inequality we may leave aside the constraint
x + y + z = 2, and considery = z = 1, 0 < x ≤ 1. The inequality reduces to(

1 +
x

2

)r+1

− xr − x− 1 ≥ 0.
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Since
(
1 + x

2

)r+1
is increasing andxr is decreasing in respect tor, it suffices to considerr = r0.

Let

f(x) =
(
1 +

x

2

)r0+1

− xr0 − x− 1.

We have

f ′(x) =
r0 + 1

2

(
1 +

x

2

)r0

− r0x
r0−1 − 1,

1

r0

f ′′(x) =
r0 + 1

4

(
1 +

x

2

)r0

− r0 − 1

x2−r0
.

Sincef ′′(x) is strictly increasing on(0, 1], f ′′(0+) = −∞ and

1

r0

f ′′(1) =
r0 + 1

4

(
3

2

)r0

− r0 + 1

=
r0 + 1

2
− r0 + 1 =

3− r0

2
> 0,

there existsx1 ∈ (0, 1) such thatf ′′(x1) = 0, f ′′(x) < 0 for x ∈ (0, x1), andf ′′(x) > 0 for
x ∈ (x1, 1]. Therefore, the functionf ′(x) is strictly decreasing forx ∈ [0, x1], and strictly
increasing forx ∈ [x1, 1]. Since

f ′(0) =
r0 − 1

2
> 0 and f ′(1) =

r0 + 1

2

[(
3

2

)r0

− 2

]
= 0,

there existsx2 ∈ (0, x1) such thatf ′(x2) = 0, f ′(x) > 0 for x ∈ [0, x2), andf ′(x) < 0 for
x ∈ (x2, 1). Thus, the functionf(x) is strictly increasing forx ∈ [0, x2], and strictly decreasing
for x ∈ [x2, 1]. Sincef(0) = f(1) = 0, it follows thatf(x) ≥ 0 for 0 < x ≤ 1, establishing the
desired result.

For x ≤ y ≤ z, equality occurs whenx = 0 andy = z = 1. Moreover, forr = r0, equality
holds again whenx = y = z = 1. �

Proposition 3.2([12]). Let x, y, z be non-negative real numbers such thatxy + yz + zx = 3.
If 1 < r ≤ 2, then

xr(y + z) + yr(z + x) + zr(x + y) ≥ 6.

Proof. Rewrite the inequality in the homogeneous form

xr(y + z) + yr(z + x) + zr(x + y) ≥ 6

(
xy + yz + zx

3

) r+1
2

.

For convenience, we may leave aside the constraintxy+yz+zx = 3. Using now the constraint
x + y + z = 1, the inequality becomes

xr(1− x) + yr(1− y) + zr(1− z) ≥ 6

(
1− x2 − y2 − z2

6

) r+1
2

.

To prove it, we will apply Corollary 1.5 to the functionf(u) = −ur(1− u) for 0 ≤ u ≤ 1. We
havef ′(u) = −rur−1 + (r + 1)ur and

g(x) = f ′(x) = −rxr−1 + (r + 1)xr, g′′(x) = r(r − 1)xr−3[(r + 1)x + 2− r].

Sinceg′′(x) > 0 for x > 0, g(x) is strictly convex on[0,∞). According to Corollary 1.5,
if 0 ≤ x ≤ y ≤ z such thatx + y + z = 1 andx2 + y2 + z2 = constant, then the sum
f(x) + f(y) + f(z) is maximal for0 ≤ x = y ≤ z.
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Thus, we have only to prove the original inequality in the casex = y ≤ z. This means, to
prove that0 < x ≤ 1 ≤ y andx2 + 2xz = 3 implies

xr(x + z) + xzr ≥ 3.

Let f(x) = xr(x + z) + xzr − 3, with z = 3−x2

2x
.

Differentiating the equationx2 + 2xz = 3 yieldsz′ = −(x+z)
x

. Then,

f ′(x) = (r + 1)xr + rxr−1z + zr + (xr + rxzr−1)z′

= (xr−1 − zr−1)[rx + (r − 1)z] ≤ 0.

The functionf(x) is strictly decreasing on[0, 1], and hencef(x) ≥ f(1) = 0 for 0 < x ≤ 1.
Equality occurs if and only ifx = y = z = 1. �

Proposition 3.3([5]). If x1, x2, . . . , xn are positive real numbers such that

x1 + x2 + · · ·+ xn =
1

x1

+
1

x2

+ · · ·+ 1

xn

,

then
1

1 + (n− 1)x1

+
1

1 + (n− 1)x2

+ · · ·+ 1

1 + (n− 1)xn

≥ 1.

Proof. We have to consider two cases.

Casen = 2. The inequality is verified as equality.

Casen ≥ 3. Assume that0 < x1 ≤ x2 ≤ · · · ≤ xn, and then apply Corollary 1.6 to the function
f(u) = 1

1+(n−1)u
for u > 0. We havef ′(u) = −(n−1)

[1+(n−1)u]2
and

g(x) = f ′
(

1√
x

)
=

−(n− 1)x

(
√

x + n− 1)
2 ,

g′′(x) =
3(n− 1)2

2
√

x (
√

x + n− 1)
4 .

Sinceg′′(x) > 0, g(x) is strictly convex on(0,∞). According to Corollary 1.6, if0 < x1 ≤
x2 ≤ · · · ≤ xn such that

x1 + x2 + · · ·+ xn = constant and

1

x1

+
1

x2

+ · · ·+ 1

xn

= constant,

then the sumf(x1) + f(x2) + · · ·+ f(xn) is minimal when0 < x1 ≤ x2 = x3 = · · · = xn.
Thus, we have to prove the inequality

1

1 + (n− 1)x
+

n− 1

1 + (n− 1)y
≥ 1,

under the constraints0 < x ≤ 1 ≤ y and

x + (n− 1)y =
1

x
+

n− 1

y
.

The last constraint is equivalent to

(n− 1)(y − 1) =
y(1− x2)

x(1 + y)
.
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Since
1

1 + (n− 1)x
+

n− 1

1 + (n− 1)y
− 1

=
1

1 + (n− 1)x
− 1

n
+

n− 1

1 + (n− 1)y
− n− 1

n

=
(n− 1)(1− x)

n[1 + (n− 1)x]
− (n− 1)2(y − 1)

n[1 + (n− 1)y]

=
(n− 1)(1− x)

n[1 + (n− 1)x]
− (n− 1)y(1− x2)

nx(1 + y)[1 + (n− 1)y]
,

we must show that

x(1 + y)[1 + (n− 1)y] ≥ y(1 + x)[1 + (n− 1)x],

which reduces to
(y − x)[(n− 1)xy − 1] ≥ 0.

Sincey − x ≥ 0, we have still to prove that

(n− 1)xy ≥ 1.

Indeed, fromx + (n− 1)y = 1
x

+ n−1
y

we getxy = y+(n−1)x
x+(n−1)y

, and hence

(n− 1)xy − 1 =
n(n− 2)x

x + (n− 1)y
> 0.

Forn ≥ 3, one has equality if and only ifx1 = x2 = · · · = xn = 1. �

Proposition 3.4([10]). Leta1, a2, . . . , an be positive real numbers such thata1a2 · · · an = 1. If
m is a positive integer satisfyingm ≥ n− 1, then

am
1 + am

2 + · · ·+ am
n + (m− 1)n ≥ m

(
1

a1

+
1

a2

+ · · ·+ 1

an

)
.

Proof. Forn = 2 (hencem ≥ 1), the inequality reduces to

am
1 + am

2 + 2m− 2 ≥ m(a1 + a2).

We can prove it by summing the inequalitiesam
1 ≥ 1+m(a1−1) andam

2 ≥ 1+m(a2−1), which
are straightforward consequences of Bernoulli’s inequality. Forn ≥ 3, replacinga1, a2, . . . , an

by 1
x1

, 1
x2

, . . . , 1
xn

, respectively, we have to show that

1

xm
1

+
1

xm
2

+ · · ·+ 1

xm
n

+ (m− 1)n ≥ m(x1 + x2 + · · ·+ xn)

for x1x2 · · ·xn = 1. Assume0 < x1 ≤ x2 ≤ · · · ≤ xn and apply Corollary 1.9 (casep = 0 and
q = −m):

If 0 < x1 ≤ x2 ≤ · · · ≤ xn such that

x1 + x2 + · · ·+ xn = constant and

x1x2 · · ·xn = 1,

then the sum1
xm
1

+ 1
xm
2

+ · · ·+ 1
xm

n
is minimal when0 < x1 = x2 = · · · = xn−1 ≤ xn.

Thus, it suffices to prove the inequality forx1 = x2 = · · · = xn−1 = x ≤ 1, xn = y and
xn−1y = 1, when it reduces to:

n− 1

xm
+

1

ym
+ (m− 1)n ≥ m(n− 1)x + my.
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By the AM-GM inequality, we have

n− 1

xm
+ (m− n + 1) ≥ m

xn−1
= my.

Then, we have still to show that

1

ym
− 1 ≥ m(n− 1)(x− 1).

This inequality is equivalent to

xmn−m − 1−m(n− 1)(x− 1) ≥ 0

and
(x− 1)[(xmn−m−1 − 1) + (xmn−m−2 − 1) + · · ·+ (x− 1)] ≥ 0.

The last inequality is clearly true. Forn = 2 andm = 1, the inequality becomes equality.
Otherwise, equality occurs if and only ifa1 = a2 = · · · = an = 1. �

Proposition 3.5([6]). Letx1, x2, . . . , xn be non-negative real numbers such thatx1+x2+ · · ·+
xn = n. If k is a positive integer satisfying2 ≤ k ≤ n + 2, andr =

(
n

n−1

)k−1 − 1, then

xk
1 + xk

2 + · · ·+ xk
n − n ≥ nr(1− x1x2 · · ·xn).

Proof. If n = 2, then the inequality reduces toxk
1 + xk

2 − 2 ≥ (2k − 2)x1x2. For k = 2 and
k = 3, this inequality becomes equality, while fork = 4 it reduces to6x1x2(1 − x1x2) ≥ 0,
which is clearly true.

Consider nown ≥ 3 and 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. Towards proving the inequality,
we will apply Corollary 1.8 (casep = k > 0): If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn such that
x1 + x2 + · · · + xn = n andxk

1 + xk
2 + · · · + xk

n = constant, then the productx1x2 · · ·xn is
minimal when eitherx1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.

Casex1 = 0. The inequality reduces to

xk
2 + · · ·+ xk

n ≥
nk

(n− 1)k−1
,

with x2 + · · · + xn = n, This inequality follows by applying Jensen’s inequality to the convex
functionf(u) = uk:

xk
2 + · · ·+ xk

n ≥ (n− 1)

(
x2 + · · ·+ xn

n− 1

)k

.

Case0 < x1 ≤ x2 = x3 = · · · = xn. Denotingx1 = x andx2 = x3 = · · · = xn = y, we have
to prove that for0 < x ≤ 1 ≤ y andx + (n− 1)y = n, the inequality holds:

xk + (n− 1)yk + nrxyn−1 − n(r + 1) ≥ 0.

Write the inequality asf(x) ≥ 0, where

f(x) = xk + (n− 1)yk + nrxyn−1 − n(r + 1), with y =
n− x

n− 1
.

We see thatf(0) = f(1) = 0. Sincey′ = −1
n−1

, we have

f ′(x) = k(xk−1 − yk−1) + nryn−2(y − x)

= (y − x)[nryn−2 − k(yk−2 + yk−3x + · · ·+ xk−2)]

= (y − x)yn−2[nr − kg(x)],
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where

g(x) =
1

yn−k
+

x

yn−k+1
+ · · ·+ xk−2

yn−2
.

Since the functiony(x) = n−x
n−1

is strictly decreasing, the functiong(x) is strictly increasing for
2 ≤ k ≤ n. Fork = n + 1, we have

g(x) = y + x +
x2

y
+ · · ·+ xn−1

yn−2

=
(n− 2)x + n

n− 1
+

x2

y
+ · · ·+ xn−1

yn−2
,

and fork = n + 2, we have

g(x) = y2 + yx + x2 +
x3

y
+ · · ·+ xn

yn−2

=
(n2 − 3n + 3)x2 + n(n− 3)x + n2

(n− 1)2
+

x3

y
+ · · ·+ xn

yn−2
.

Therefore, the functiong(x) is strictly increasing for2 ≤ k ≤ n + 2, and the function

h(x) = nr − kg(x)

is strictly decreasing. Note that

f ′(x) = (y − x)yn−2h(x).

We assert thath(0) > 0 andh(1) < 0. If our claim is true, then there existsx1 ∈ (0, 1) such that
h(x1) = 0, h(x) > 0 for x ∈ [0, x1), andh(x) < 0 for x ∈ (x1, 1]. Consequently,f(x) is strictly
increasing forx ∈ [0, x1], and strictly decreasing forx ∈ [x1, 1]. Sincef(0) = f(1) = 0, it
follows thatf(x) ≥ 0 for 0 < x ≤ 1, and the proof is completed.

In order to prove thath(0) > 0, we assume thath(0) ≤ 0. Then,h(x) < 0 for x ∈ (0, 1),
f ′(x) < 0 for x ∈ (0, 1), andf(x) is strictly decreasing forx ∈ [0, 1], which contradicts
f(0) = f(1). Also, if h(1) ≥ 0, thenh(x) > 0 for x ∈ (0, 1), f ′(x) > 0 for x ∈ (0, 1), and
f(x) is strictly increasing forx ∈ [0, 1], which also contradictsf(0) = f(1).

Forn ≥ 3 andx1 ≤ x2 ≤ · · · ≤ xn, equality occurs whenx1 = x2 = · · · = xn = 1, and also
whenx1 = 0 andx2 = · · · = xn = n

n−1
. �

Remark 3.6. Fork = 2, k = 3 andk = 4, we get the following nice inequalities:

(n− 1)(x2
1 + x2

2 + · · ·+ x2
n) + nx1x2 · · ·xn ≥ n2,

(n− 1)2(x3
1 + x3

2 + · · ·+ x3
n) + n(2n− 1)x1x2 · · ·xn ≥ n3,

(n− 1)3(x4
1 + x4

2 + · · ·+ x4
n) + n(3n2 − 3n + 1)x1x2 · · ·xn ≥ n4.

Remark 3.7. The inequality fork = n was posted in 2004 on the Mathlinks Site - Inequalities
Forum by Gabriel Dospinescu and Călin Popa.

Proposition 3.8([11]). Letx1, x2, . . . , xn be positive real numbers such that1
x1

+ 1
x2

+· · ·+ 1
xn

=
n. Then

x1 + x2 + · · ·+ xn − n ≤ en−1(x1x2 · · ·xn − 1),

whereen−1 =
(
1 + 1

n−1

)n−1
< e.
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Proof. Replacing each of thexi by 1
ai

, the statement becomes as follows:
If a1, a2, . . . , an are positive numbers such thata1 + a2 + · · ·+ an = n, then

a1a2 · · · an

(
1

a1

+
1

a2

+ · · ·+ 1

an

− n + en−1

)
≤ en−1.

It is easy to check that the inequality holds forn = 2. Consider nown ≥ 3, assume that
0 < a1 ≤ a2 ≤ · · · ≤ an and apply Corollary 1.8 (casep = −1): If 0 < a1 ≤ a2 ≤ · · · ≤ an

such thata1 +a2 + · · ·+an = n and 1
a1

+ 1
a2

+ · · ·+ 1
an

= constant, then the producta1a2 · · · an

is maximal when0 < a1 ≤ a2 = a3 = · · · = an.
Denotinga1 = x anda2 = a3 = · · · = an = y, we have to prove that for0 < x ≤ 1 ≤ y <

n
n−1

andx + (n− 1)y = n, the inequality holds:

yn−1 + (n− 1)xyn−2 − (n− en−1)xyn−1 ≤ en−1.

Letting

f(x) = yn−1 + (n− 1)xyn−2 − (n− en−1)xyn−1 − en−1, with

y =
n− x

n− 1
,

we must show thatf(x) ≤ 0 for 0 < x ≤ 1. We see thatf(0) = f(1) = 0. Sincey′ = −1
n−1

, we
have

f ′(x)

yn−3
= (y − x)[n− 2− (n− en−1)y] = (y − x)h(x),

where
h(x) = n− 2− (n− en−1)

n− x

n− 1
is a linear increasing function.

Let us show thath(0) < 0 andh(1) > 0. If h(0) ≥ 0, thenh(x) > 0 for x ∈ (0, 1),
hencef ′(x) > 0 for x ∈ (0, 1), andf(x) is strictly increasing forx ∈ [0, 1], which contradicts
f(0) = f(1). Also,h(1) = en−1 − 2 > 0.

Fromh(0) < 0 andh(1) > 0, it follows that there existsx1 ∈ (0, 1) such thath(x1) = 0,
h(x) < 0 for x ∈ [0, x1), andh(x) > 0 for x ∈ (x1, 1]. Consequently,f(x) is strictly decreasing
for x ∈ [0, x1], and strictly increasing forx ∈ [x1, 1]. Sincef(0) = f(1) = 0, it follows that
f(x) ≤ 0 for 0 ≤ x ≤ 1.

Forn ≥ 3, equality occurs whenx1 = x2 = · · · = xn = 1. �

Proposition 3.9([9]). If x1, x2, . . . , xn are positive real numbers, then

xn
1 + xn

2 + · · ·+ xn
n + n(n− 1)x1x2 · · ·xn

≥ x1x2 · · ·xn(x1 + x2 + · · ·+ xn)

(
1

x1

+
1

x2

+ · · ·+ 1

xn

)
.

Proof. For n = 2, one has equality. Assume now thatn ≥ 3, 0 < x1 ≤ x2 ≤ · · · ≤ xn and
apply Corollary 1.9 (casep = 0): If 0 < x1 ≤ x2 ≤ · · · ≤ xn such that

x1 + x2 + · · ·+ xn = constant and

x1x2 · · ·xn = constant,

then the sumxn
1 + xn

2 + · · ·+ xn
n is minimal and the sum1

x1
+ 1

x2
+ · · ·+ 1

xn
is maximal when

0 < x1 ≤ x2 = x3 = · · · = xn.
Thus, it suffices to prove the inequality for0 < x1 ≤ 1 andx2 = x3 = · · · = xn = 1. The

inequality becomes
xn

1 + (n− 2)x1 ≥ (n− 1)x2
1,
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and is equivalent to

x1(x1 − 1)[(xn−2
1 − 1) + (xn−3

1 − 1) + · · ·+ (x1 − 1)] ≥ 0,

which is clearly true. Forn ≥ 3, equality occurs if and only ifx1 = x2 = · · · = xn. �

Proposition 3.10([14]). If x1, x2, . . . , xn are non-negative real numbers, then

(n− 1)(xn
1 + xn

2 + · · ·+ xn
n) + nx1x2 · · ·xn

≥ (x1 + x2 + · · ·+ xn)(xn−1
1 + xn−1

2 + · · ·+ xn−1
n ).

Proof. For n = 2, one has equality. Forn ≥ 3, assume that0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

and apply Corollary 1.9 (casep = n and q = n − 1) and Corollary 1.8 (casep = n): If
0 ≤ x1 ≤ x2 ≤ · · · ≤ xn such that

x1 + x2 + · · ·+ xn = constant and

xn
1 + xn

2 + · · ·+ xn
n = constant,

then the sumxn−1
1 +xn−1

2 + · · ·+xn−1
n is maximal and the productx1x2 · · ·xn is minimal when

eitherx1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn.
So, it suffices to consider the casesx1 = 0 and0 < x1 ≤ x2 = x3 = · · · = xn.

Casex1 = 0. The inequality reduces to

(n− 1)(xn
2 + · · ·+ xn

n) ≥ (x2 + · · ·+ xn)(xn−1
2 + · · ·+ xn−1

n ),

which immediately follows by Chebyshev’s inequality.
Case0 < x1 ≤ x2 = x3 = · · · = xn. Settingx2 = x3 = · · · = xn = 1, the inequality reduces
to:

(n− 2)xn
1 + x1 ≥ (n− 1)xn−1

1 .

Rewriting this inequality as

x1(x1 − 1)[xn−3
1 (x1 − 1) + xn−4

1 (x2
1 − 1) + · · ·+ (xn−2

1 − 1)] ≥ 0,

we see that it is clearly true. Forn ≥ 3 andx1 ≤ x2 ≤ · · · ≤ xn equality occurs when
x1 = x2 = · · · = xn, and forx1 = 0 andx2 = · · · = xn. �

Proposition 3.11([8]). If x1, x2, . . . , xn are positive real numbers, then

(x1 + x2 + · · ·+ xn − n)

(
1

x1

+
1

x2

+ · · ·+ 1

xn

− n

)
+ x1x2 · · ·xn +

1

x1x2 · · ·xn

≥ 2.

Proof. Forn = 2, the inequality reduces to

(1− x1)
2(1− x2)

2

x1x2

≥ 0.

For n ≥ 3, assume that0 < x1 ≤ x2 ≤ · · · ≤ xn. Since the inequality preserves its form
by replacing each numberxi with 1

xi
, we may considerx1x2 · · ·xn ≥ 1. So, by the AM-GM

inequality we get

x1 + x2 + · · ·+ xn − n ≥ n n
√

x1x2 · · ·xn − n ≥ 0,

and we may apply Corollary 1.9 (casep = 0 andq = −1): If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn such
that

x1 + x2 + · · ·+ xn = constant and

x1x2 · · ·xn = constant,

then the sum1
x1

+ 1
x2

+ · · ·+ 1
xn

is minimal when0 < x1 = x2 = · · · = xn−1 ≤ xn.
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According to this statement, it suffices to considerx1 = x2 = · · · = xn−1 = x andxn = y,
when the inequality reduces to

((n− 1)x + y − n)

(
n− 1

x
+

1

y
− n

)
+ xn−1y +

1

xn−1y
≥ 2,

or (
xn−1 +

n− 1

x
− n

)
y +

[
1

xn−1
+ (n− 1)x− n

]
1

y
≥ n(n− 1)(x− 1)2

x
.

Since

xn−1 +
n− 1

x
− n =

x− 1

x
[(xn−1 − 1) + (xn−2 − 1) + · · ·+ (x− 1)]

=
(x− 1)2

x
[xn−2 + 2xn−3 + · · ·+ (n− 1)]

and
1

xn−1
+ (n− 1)x− n =

(x− 1)2

x

[
1

xn−2
+

2

xn−3
+ · · ·+ (n− 1)

]
,

it is enough to show that

[xn−2 + 2xn−3 + · · ·+ (n− 1)]y +

[
1

xn−2
+

2

xn−3
+ · · ·+ (n− 1)

]
1

y
≥ n(n− 1).

This inequality is equivalent to(
xn−2y +

1

xn−2y
− 2

)
+ 2

(
xn−3y +

1

xn−3y
− 2

)
+ · · ·+ (n− 1)

(
y +

1

y
− 2

)
≥ 0,

or
(xn−2y − 1)2

xn−2y
+

2(xn−3y − 1)2

xn−3y
+ · · ·+ (n− 1)(y − 1)2

y
≥ 0,

which is clearly true. Equality occurs if and only ifn− 1 of the numbersxi are equal to 1. �

Proposition 3.12([15]). If x1, x2, . . . , xn are non-negative real numbers such thatx1 + x2 +
· · ·+ xn = n, then

(x1x2 · · ·xn)
1√

n−1 (x2
1 + x2

2 + · · ·+ x2
n) ≤ n.

Proof. For n = 2, the inequality reduces to2(x1x2 − 1)2 ≥ 0. For n ≥ 3, assume that
0 ≤ x1 ≤ x2 ≤ · · · ≤ xn and apply Corollary 1.8 (casep = 2): If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

such thatx1 +x2 + · · ·+xn = n andx2
1 +x2

2 + · · ·+x2
n = constant, then the productx1x2 · · ·xn

is maximal when0 ≤ x1 = x2 = · · · = xn−1 ≤ xn.
Consequently, it suffices to show that the inequality holds forx1 = x2 = · · · = xn−1 = x and

xn = y, where0 ≤ x ≤ 1 ≤ y and(n− 1)x + y = n. Under the circumstances, the inequality
reduces to

x
√

n−1y
1√

n−1 [(n− 1)x2 + y2] ≤ n.

Forx = 0, the inequality is trivial. Forx > 0, it is equivalent tof(x) ≤ 0, where

f(x) =
√

n− 1 ln x +
1√

n− 1
ln y + ln[(n− 1)x2 + y2]− ln n,

with y = n− (n− 1)x.
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We havey′ = −(n− 1) and

f ′(x)√
n− 1

=
1

x
− 1

y
+

2
√

n− 1(x− y)

(n− 1)x2 + y2
=

(y − x)(
√

n− 1x− y)2

xy[(n− 1)x2 + y2]
≥ 0.

Therefore, the functionf(x) is strictly increasing on(0, 1] and hencef(x) ≤ f(1) = 0. Equal-
ity occurs if and only ifx1 = x2 = · · · = xn = 1. �

Remark 3.13. Forn = 5, we get the following nice statement:
If a, b, c, d, e are positive real numbers such thata2 + b2 + c2 + d2 + e2 = 5, then

abcde(a4 + b4 + c4 + d4 + e4) ≤ 5.

Proposition 3.14([4]). Let x, y, z be non-negative real numbers such thatxy + yz + zx = 3,
and let

p ≥ ln 9− ln 4

ln 3
≈ 0.738.

Then,
xp + yp + zp ≥ 3.

Proof. Let r = ln 9−ln 4
ln 3

. By the Power-Mean inequality, we have

xp + yp + zp

3
≥
(

xr + yr + zr

3

) p
r

.

Thus, it suffices to show that
xr + yr + zr ≥ 3.

Let x ≤ y ≤ z. We consider two cases.

Casex = 0. We have to show thatyr + zr ≥ 3 for yz = 3. Indeed, by the AM-GM inequality,
we get

yr + zr ≥ 2(yz)r/2 = 2 · 3r/2 = 3.

Casex > 0. The inequalityxr + yr + zr ≥ 3 is equivalent to the homogeneous inequality

xr + yr + zr ≥ 3
(xyz

3

) r
2

(
1

x
+

1

y
+

1

z

) r
2

.

Settingx = a
1
r , y = b

1
r , z = c

1
r (0 < a ≤ b ≤ c), the inequality becomes

a + b + c ≥ 3

(
abc

3

) 1
2 (

a
−1
r + b

−1
r + c

−1
r

) r
2
.

Towards proving this inequality, we apply Corollary 1.9 (casep = 0, q = −1
r

): If 0 < a ≤ b ≤ c

such thata + b + c = constant andabc = constant, then the suma
−1
r + b

−1
r + c

−1
r is maximal

when0 < a ≤ b = c.
So, it suffices to prove the inequality for0 < a ≤ b = c; that is, to prove the homogeneous

inequality inx, y, z for 0 < x ≤ y = z. Without loss of generality, we may leave aside the
constraintxy + yz + zx = 3, and considery = z = 1 and0 < x ≤ 1. The inequality reduces to

xr + 2 ≥ 3

(
2x + 1

3

) r
2

.

Denoting

f(x) = ln
xr + 2

3
− r

2
ln

2x + 1

3
,
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we have to show thatf(x) ≥ 0 for 0 < x ≤ 1. The derivative

f ′(x) =
rxr−1

xr + 2
− r

2x + 1
=

r(x− 2x1−r + 1)

x1−r(xr + 2)(2x + 1)

has the same sign asg(x) = x − 2x1−r + 1. Sinceg′(x) = 1 − 2(1−r)
xr , we see thatg′(x) < 0

for x ∈ (0, x1), andg′(x) > 0 for x ∈ (x1, 1], wherex1 = (2 − 2r)1/r ≈ 0.416. The function
g(x) is strictly decreasing on[0, x1], and strictly increasing on[x1, 1]. Sinceg(0) = 1 and
g(1) = 0, there existsx2 ∈ (0, 1) such thatg(x2) = 0, g(x) > 0 for x ∈ [0, x2) andg(x) < 0
for x ∈ (x2, 1). Consequently, the functionf(x) is strictly increasing on[0, x2] and strictly
decreasing on[x2, 1]. Sincef(0) = f(1) = 0, we havef(x) ≥ 0 for 0 < x ≤ 1, establishing
the desired result.

Equality occurs forx = y = z = 1. Additionally, for p = ln 9−ln 4
ln 3

andx ≤ y ≤ z, equality
holds again forx = 0 andy = z =

√
3. �

Proposition 3.15([7]). Letx, y, z be non-negative real numbers such thatx + y + z = 3, and
let p ≥ ln 9−ln 8

ln 3−ln 2
≈ 0.29. Then,

xp + yp + zp ≥ xy + yz + zx.

Proof. Forp ≥ 1, by Jensen’s inequality we have

xp + yp + zp ≥ 3

(
x + y + z

3

)p

= 3 =
1

3
(x + y + z)2 ≥ xy + yz + zx.

Assume nowp < 1. Let r = ln 9−ln 8
ln 3−ln 2

andx ≤ y ≤ z. The inequality is equivalent to the
homogeneous inequality

2(xp + yp + zp)

(
x + y + z

3

)2−p

+ x2 + y2 + z2 ≥ (x + y + z)2.

By Corollary 1.9 (case0 < p < 1 andq = 2), if x ≤ y ≤ z such thatx + y + z = constant
andxp + yp + zp = constant, then the sumx2 + y2 + z2 is minimal when eitherx = 0 or
0 < x ≤ y = z.

Casex = 0. Returning to our original inequality, we have to show thatyp + zp ≥ yz for
y + z = 3. Indeed, by the AM-GM inequality, we get

yp + zp − yz ≥ 2(yz)
p
2 − yz

= (yz)
p
2 [2− (yz)

2−p
2 ]

≥ (yz)
p
2

[
2−

(
y + z

2

)2−p
]

= (yz)
p
2

[
2−

(
3

2

)2−p
]

≥ (yz)
p
2

[
2−

(
3

2

)2−r
]

= 0.
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Case0 < x ≤ y = z. In the homogeneous inequality, we may leave aside the constraint
x + y + z = 3, and considery = z = 1 and0 < x ≤ 1. Thus, the inequality reduces to

(xp + 2)

(
x + 2

3

)2−p

≥ 2x + 1.

To prove this inequality, we consider the function

f(x) = ln(xp + 2) + (2− p) ln
x + 2

3
− ln(2x + 1).

We have to show thatf(x) ≥ 0 for 0 < x ≤ 1 andr ≤ p < 1. We have

f ′(x) =
pxp−1

xp + 2
+

2− p

x + 2
− 2

2x + 1
=

2g(x)

x1−p(xp + 2)(2x + 1)
,

where
g(x) = x2 + (2p− 1)x + p + 2(1− p)x2−p − (p + 2)x1−p,

and
g′(x) = 2x + 2p− 1 + 2(1− p)(2− p)x1−p − (p + 2)(1− p)x−p,

g′′(x) = 2 + 2(1− p)2(2− p)x−p + p(p + 2)(1− p)x−p−1.

Sinceg′′(x) > 0, the first derivativeg′(x) is strictly increasing on(0, 1]. Taking into account
thatg′(0+) = −∞ andg′(1) = 3(1 − p) + 3p2 > 0, there isx1 ∈ (0, 1) such thatg′(x1) = 0,
g′(x) < 0 for x ∈ (0, x1)andg′(x) > 0 for x ∈ (x1, 1]. Therefore, the functiong(x) is strictly
decreasing on[0, x1] and strictly increasing on[x1, 1]. Sinceg(0) = p > 0 andg(1) = 0, there
is x2 ∈ (0, x1) such thatg(x2) = 0, g(x) > 0 for x ∈ [0, x2) andg(x) < 0 for x ∈ (x2, 1]. We
have alsof ′(x2) = 0, f ′(x) > 0 for x ∈ (0, x2) andf ′(x) < 0 for x ∈ (x2, 1]. According to this
result, the functionf(x) is strictly increasing on[0, x2] and strictly decreasing on[x2, 1]. Since

f(0) = ln 2 + (2− p) ln
2

3
≥ ln 2 + (2− r) ln

2

3
= 0

andf(1) = 0, we getf(x) ≥ min{f(0), f(1)} = 0.
Equality occurs forx = y = z = 1. Additionally, for p = ln 9−ln 8

ln 3−ln 2
andx ≤ y ≤ z, equality

holds again whenx = 0 andy = z = 3
2
. �

Proposition 3.16([8]). If x1, x2, . . . , xn (n ≥ 4) are non-negative numbers such thatx1 +x2 +
· · ·+ xn = n, then

1

n + 1− x2x3 · · ·xn

+
1

n + 1− x3x4 · · ·x1

+ · · ·+ 1

n + 1− x1x2 · · ·xn−1

≤ 1.

Proof. Let x1 ≤ x2 ≤ · · · ≤ xn anden−1 =
(
1 + 1

n−1

)n−1
. By the AM-GM inequality, we have

x2 · · ·xn ≤
(

x2 + · · ·+ xn

n− 1

)n−1

≤
(

x1 + x2 + · · ·+ xn

n− 1

)n−1

= en−1.

Hence
n + 1− x2x3 · · ·xn ≥ n + 1− en−1 > 0,

and all denominators of the inequality are positive.

Casex1 = 0. It is easy to show that the inequality holds.

Casex1 > 0. Suppose thatx1x2 · · ·xn = (n + 1)r = constant,r > 0. The inequality becomes
x1

x1 − r
+

x2

x2 − r
+ · · ·+ xn

xn − r
≤ n + 1,
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or
1

x1 − r
+

1

x2 − r
+ · · ·+ 1

xn − r
≤ 1

r
.

By the AM-GM inequality, we have

(n + 1)r = x1x2 · · ·xn ≤
(

x1 + x2 + · · ·+ xn

n

)n

= 1,

hencer ≤ 1
n+1

. Fromxn < x1 + x2 + · · · + xn = n < n + 1 ≤ 1
r
, we getxn < 1

r
. Therefore,

we haver < xi < 1
r

for all numbersxi.
We will apply now Corollary 1.7 to the functionf(u) = −1

u−r
, u > r. We havef ′(u) = 1

(u−r)2

and

g(x) = f ′
(

1

x

)
=

x2

(1− rx)2
, g′′(x) =

4rx + 2

(1− rx)4
.

Sinceg′′(x) > 0, g(x) is strictly convex on
(
r, 1

r

)
. According to Corollary 1.7, if0 ≤ x1 ≤

x2 ≤ · · · ≤ xn such that forx1 + x2 + · · ·+ xn = constant andx1x2 · · ·xn = constant, then the
sumf(x1) + f(x2) + · · · + f(xn) is minimal whenx1 ≤ x2 = x3 = · · · = xn. Thus, to prove
the original inequality, it suffices to consider the casex1 = x andx2 = x3 = · · · = xn = y,
where0 < x ≤ 1 ≤ y andx + (n− 1)y = n. We leave ending the proof to the reader. �

Remark 3.17. The inequality is a particular case of the following more general statement:
Let n ≥ 3, en−1 =

(
1 + 1

n−1

)n−1
, kn = (n−1)en−1

n−en−1
and leta1, a2, . . . , an be non-negative

numbers such thata1 + a2 + · · ·+ an = n.
(a) If k ≥ kn, then

1

k − a2a2 · · · an

+
1

k − a3a4 · · · a1

+ · · ·+ 1

k − a1a2 · · · an−1

≤ n

k − 1
;

(b) If en−1 < k < kn, then
1

k − a2a3 · · · an

+
1

k − a3a4 · · · a1

+ · · ·+ 1

k − a1a2 · · · an−1

≤ n− 1

k
+

1

k − en−1

.

Finally, we mention that many other applications of the EV-Method are given in the book [2].
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