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ABSTRACT. The Equal Variable Method (called alse- 1 Equal Variable Method on the Math-
links Site - Inequalities Forum) can be used to prove some difficult symmetric inequalities in-
volving either three power means or, more general, two power means and an expression of form

f@@1) + fz2) + -+ + fan).

Key words and phrasesSymmetric inequalities, Power means, EV-Theorem.

2000Mathematics Subject Classificat 0@6D10, 26D20.

1. STATEMENT OF RESULTS

In order to state and prove the Equal Variable Theorem (EV-Theorem) we require the follow-
ing lemma and proposition.

Lemma 1.1. Leta, b, ¢ be fixed non-negative real numbers, not all equal and at most one of
them equal to zero, and let< y < z be non-negative real numbers such that

r+y+z=a+b+c, aP+yP+2X=ad"+0+F,

wherep € (—o0,0] U (1,00). For p = 0, the second equation iz = abc > 0. Then, there
exist two non-negative real numbersandz, with z; < x5 such thate € [z, z5]. Moreover,

Q) if z =x;andp <0, thend < z <y = z;

(2) ifz =x,andp > 1,theneithe =z <y <zor0<z<y=z
(3) if z € (x1,x9), thenz < y < z;
(4) if x = x9, thenz =y < 2.

Proposition 1.2. Leta, b, ¢ be fixed non-negative real numbers, not all equal and at most one
of them equal to zero, and let< = < y < z such that

r+y+z=a+b+c, aP+yP+2X=d"+0+,
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wherep € (—o0,0] U (1,00). For p = 0, the second equation igyz = abc > 0. Let f(u) be a
differentiable function ori0, co), such thayy(z) = f’ (xﬁ> is strictly convex or{0, oo), and
let

Q) If p < 0, then F3 is maximal only for0 < =z
O<zr<y=z

y < z, and is minimal only for
(2) If p > 1 and eitherf(u) is continuous at. = 0 or liH(l) f(u)

= —o0, thenF; is maximal
only for0 < x = y < z, and is minimal only for either =0or0 < x <y = 2.
Theorem 1.3(Equal Variable Theorem (EV-Theorem))et a4, as,

,a, (n > 3) be fixed
non-negative real numbers, and K z; < z, < --- < z,, such that
TitTet -t Ty =ar+ax+ A+ ap,

+ab+- otk =dl+ a4+ +ab,

wherep is a real numberp # 1. For p = 0, the second equationisz, - - - x,, = ajas - - - a, >
0. Let f(u) be a differentiable function ofb, co) such that

g@) = 1 (277)
is strictly convex on0, co), and let

Fo(w1, 20, ..., 2,) = f(o1) + f(22) + - + fl2n).

Q) If p <0, thenF,, is maximal for0 < 1 =2z, =--- = z,_1 < x,, and is minimal for
O<z <a9=023="++=1Ty;

(2) If p > 0 and either f(u) is continuous at: = 0 or lin% f(u)
maximal for0 < z; = 25 =

O<y <ax9g=2x3="+--=10,.

—o00, thenF,, is
= 2,1 < z,, and is minimal for either;; = 0 or

Remark 1.4. Let0 < « < . If the function f is differentiable on(«, 5) and the function
g(z) = f'(x7 1) is strictly convex on(a?~!, 371) or (8*~,a”-1), then the EV-Theorem
holds true forzy, xs, ..., 2, € (o, ).

tions.

Ty < --- < x, such that

By Theorenj 1.3, we easily obtain some particular results, which are very useful in applica-
Corollary 1.5. Letay,as,...,a, (n > 3) be fixed non-negative numbers, andet z; <

T+ Lo+ -+ Ty =01+ a2+ -+ ap,

2 2 2 2 2 2
rt+xy+---+x,=a;+ay+---+a,.

Let f be a differentiable function oft), co) such thaty(z) = f'(x) is strictly convex ort0, co)
Moreover, eitherf(x) is continuous at = 0 or lir% f(z) = —o0. Then,

Fo = f(z1) + fwa) + -+ f(n)

is maximal for0

1 — Tg9 =
0<ZL’1§ZE2:ZE3

<

= 2,1 < z,, and is minimal for eitherr; = 0 or
- = I,
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Corollary 1.6. Letay,as,...,a, (n > 3) be fixed positive numbers, and ek z; < 25 <
.- <z, such that

1 1 1 1 1 1
_+_+...+—:——|——+...+—.
xTq To Ty ay a G,

Let f be a differentiable function of0, ) such thatg(z) = f’ (L> is strictly convex on

(0,00). Then, .
Ey = f(21) + f(@2) + - + flzn)

iIsmaximalfol < xy =29 =+ = 2,1 < z,, andisminimalfo) < xy < z9 =23 =--- =
Ty
Corollary 1.7. Letay,as,...,a, (n > 3) be fixed positive numbers, and ek z; < 25 <

.- <z, such that
1+ 2o+ +x,=0a1+a+- - +a,, T1To: Ty = 0101 " Ay,

Let f be a differentiable function oft), co) such thayy(z) = f’ (1) is strictly convex orf0, co).
Then,

o= f(x1) + f(@2) + - + f(2n)

iIsmaximalfor) < xy =29 = - = 2,1 < z,, andisminimalfo) < z; <z =23 =--- =
Ty
Corollary 1.8. Letay,as,...,a, (n > 3) be fixed non-negative numbers, andlet z; <

T9 < --- < 1z, such that
T1t+xo+ - t+xy,=a1tax+ -+ ay,
o +ab 4+ +al =dl +db+ -+ b,

wherep is a real numberp # 0 andp # 1.

(@ Forp <0, P =xx9---x,is minimalwherd < 1y =2y =--- = 2,1 < x,,and is
maximal when) < zy < z9 =23 =--- = x2,,.
(b) Forp > 0, P = zyx9-- - x, iISmaximal whe) < zy =25 =--- =x,_1 < x,,and is
minimal when either;; =00or0 < z; < 29 =23 = --- = x,,.
Corollary 1.9. Letay,as,...,a, (n > 3) be fixed non-negative numbers, le =; < zo <

.- <z, such that
T1t+xo+ - t+x,=a tag+ -+ ay,
i +ab 4+ +al =dl+db+ -+ db,
andletEl = zf + 23 + - - - + 28,

Case 1.p <0 (p=0yieldszzy - -z, = ajay---a, > 0).

(@) Forg € (p,0) U (1,00), E is maximal wher) < x; =29 = --- =z, < z,,, and is
minimal when0 < o1 < zy =23 =--- = x,,.

(b) Forq € (—oo,p) U (0,1), F is minimal when) < z; = 29 = --- = 2,1 < x,, and is
maximal wher) < z; < xy =25 =--- = z,.

Case2.0 <p< 1.
(@) Forqg € (0,p) U (1,00), F is maximal wher) < z; =2y = --- =z, < z,, and is
minimal when eitherr; = 0or0 < oy < 1y =23 = -+ = 1,,.
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(b) Forq € (—o0,0) U (p, 1), Eis minimalwher) < z; =2y =--- = 2,1 < z,,and is

maximal when eithet; = 0or0 < z; < a9 =23 =--- = x,.
Case 3.p > 1.

(@) Forg € (0,1) U (p,o0), Eis maximal wher) < z; = x5 = -+ = 2, 1 < z,,and is
minimal when eitherr; =0or0 < z; < a9 =23 = --- = z,,.

(b) Forq € (—o0,0) U (1,p), Eis minimalwhen) < z; =2y =--- = 2,1 < z,,and is
maximal when eithet; = 0or0 <z < a9 =3 = -+ = 1.

2. PROOFS

Proof of Lemma I]1Leta < b < c. Note that in the excluded cases= b = canda = b = 0,
there is a single tripléx, y, z) which verifies the conditions

r+y+z=a+b+c and 2P+’ + X =a’ + 0" + .
Consider now three casgs= 0, p < 0 andp > 1.

A. Casep = 0 (zyz = abc > 0). LetS = ¢ andP = V/abc, whereS > P > 0 by AM-GM
Inequality. We have

r4+y+2=3S zyz= P>,
and from0 < x <y < zandz < z, it follows that0 < z < P. Now let

f=y+2z—-2/yz.

It is clear thatf > 0, with equality if and only ify = z. Writing f as a function ofr,

flz) =35 —z — 2P\/§,
f@%=§¢§—l>&

and hence the functiofi(z) is strictly increasing. Sinc¢(P) = 3(S — P) > 0, the equation
f(z) = 0 has a unique positive roat, 0 < z; < P. From f(x) > 0, it follows thatz > ;.
Sub-case: = ;. Sincef(z) = f(x;) = 0andf = 0 impliesy = z, we have) < z < y = 2.
Sub-case: > x;. We havef(z) > 0 andy < z. Consider now thag andz depend orx. From
z+y(z) + z(z) = 35 andz - y(z) - 2(x) = P3, we getl +¢ + 2/ =0and’ + yg +Z =0.
Hence,

we have

: ylx—z) 2(y — )

y'(x) pr P 2 (x) =)
Sincey/(z) < 0, the functiony(x) is strictly decreasing. Sincg(z;) > x; (see sub-case
x = 1), there exists, > z; such thaty(zy) = 9, y(z) > x for 1 < x < x9 andy(z) < x
for z > x5. Taking into account thag > z, it follows thatz; < x < z,. On the other hand, we
see that/(z) > 0 for x; < x < x,. Consequently, the function(x) is strictly increasing, and
hencez(z) > z(z1) = y(x1) > y(x). Finally, we conclude that < y < z for z € (z1,x2),
andx =y < z for x = x,.

B. Casep < 0. DenoteS = ¢+< andR = (¥+4=+=)». Taking into account that

r+y+2=3S 2P +y’+ 2 =3RP,
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from0<x§y§zand:c<zwegetx<5and3%R<x<R. Let

p P 771
h:(y+z)(y ‘2“’) _a.
By the AM-GM Inequality, we have

1
h>2/yz—— —2=0,
VYZ

with equality if and only ify = z. Writing now h as a function oft,

hz) = (35 — 2) (%) T,

-3 (327 () (8-

2 2
it follows that h(x) is strictly increasing. Sincé(z) > 0 andh( > = —2, the equation

from

>0

h(z) = 0 has a unique roat; andz > z; > 37 R.

Sub-case: = x;. Sincef(x) = f(x;) = 0,andf = 0 impliesy = z, we have) < z < y = z.
Sub-caser > z;. We haveh(z) > 0 andy < z. Consider now thay and > depend on.
Fromz + y(x) 4+ 2(z) = 35 anda? + y(z)? + z(x)? = 3R?, we getl +¢' + 2’ = 0 and
P~ 4 yP~ly 4 2P~ = 0, and hence
l.pfl _ prl ‘,Epfl _ ypfl

y/(l') = m7 Z/(x) =
Sincey/(x) > 0, the functiony(x) is strictly decreasing. Sincg(z;) > x; (see sub-case
x = x1), there exists, > x; suchthay(zy) = 29, y(z) > zforz; < x < x9, andy(x) < x for
x > x5. The conditiony > z yieldsz; < z < x5. We see now that'(z) > 0 for z; < z < x5.
Consequently, the functior(x) is strictly increasing, and heneéz) > z(z;) = y(x1) > y(x).
Finally, we haver < y < z for x € (x1,25) andz = y < z for z = xs.

yp_1 — Zp—l )

C. Casep > 1. DenotingS = “t2t¢ andR = (M) yields
r+y+z2=35 o +y’+ 22X =3R".
By Jensen’s inequality applied to the convex functign) = «?, we haveR > S, and hence

r<S<R. Let )
2 P P\ p
h= (y+z> ~ 1L
y+z 2

By Jensen’s Inequality, we gét> 0, with equality if only ify = z. From

9 [3RP — P\
h(z) = 1
() 38 —x ( 2 )

and

B (z) =

3 3RP — aP
(35 — x)? ( 2

it follows that the functiorh.(z) is strictly increasing, anél(z) > 0 impliesz > x;. In the case
h(0) > 0 we haver; = 0, and in the casg(0) < 0 we haver; > 0 andh(z;) = 0.

) "R — SarY) > 0,
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Sub-case: = z;. If A(0) > 0, then0 = z; < y(z1) < z(xy). If K(0) < 0, thenh(x;) = 0, and

sinceh = 0 impliesy = z, we haved < z; < y(z1) = z(1).

Sub-caser > x;. Sinceh(x) is strictly increasing, for > z; we haveh(z) > h(xy) > 0,

henceh(z) > 0 andy < z. Fromz + y(z) + z(z) = 3S andz? + y?(x) + 2P(x) = 3R, we get
-1 p-l / ypl — gp1

y'(z) = ol o1 < (z) m

Sincey/(z) < 0, the functiony(z) is strictly decreasing. Taking accountg(fr;) > z; (see
sub-caser = ), there exists, > z; such thaty(xs) = o, y(x) > z for z; < = < 9,
andy(z) < z for x > x5. The conditiony > z impliesz; < x < z,. We see now that
Z'(x) > 0forz; < x < xy. Consequently, the function(x) is strictly increasing, and hence
z(z) > z(x1) > y(z1) > y(z). Finally, we conclude that < y < z for z € (zy,2,), and
r=y<zforx=ux,. O

Proof of Propositioni T2 Consider the function
F(z) = f(x) + f(y(x)) + f(z(z))

defined onz € [z, z5]. We claim thatF'(x) is minimal forz = z; and is maximal forr = .
If this assertion is true, then by Lemina]l.1 it follows that:

(@) F(x) is minimal for0 < = = y < z in the casep < 0, or for eitherz = 0 or
0 <x<y=zinthe case > 1,
(b) F(z)is maximal for0 < x =y < z.
In order to prove the claim, assume that (z;,z,). By Lemmg 1.lL, we have < = < y <
z. From

r+y(zr)+z(x)=a+b+c and
2P +yP(x) + 2P (z) =P + 0P + &,
we get
y/ + Z, — _1’ yp—ly/ + zp_lz' _ _l,p—l’

whence

Pl — pp7l
= - z ="

Yy prl _ ypfl’ ypfl _ prl

It is easy to check that this result is also valid for 0. We have

Fix) = f'(x) +y'['(y) + 2 f'()

and
F'(z)
(zp=t — yp=t) (2Pt — zp71)
_ g(@"") g(y")
(2P~ —ypmt)(apmt = 2p7h) (gt = 2 (ypet —ar )
N g(z>7 1)

R CEET)
Sincey is strictly convex, the right hand side is positive. On the other hand,
(P~ — P (2Pt — 2P > 0.

These results imply’(z) > 0. Consequently, the functiof'(x) is strictly increasing for
x € (1, x2). Excepting the trivial case when> 1, x; =0 andlin% f(u) = —o0, the function
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F(x) is continuous onzy, x5], and hence is minimal only far = z;, and is maximal only for
T = To. O
Proof of Theorerp 1]3wWe will consider two cases.
Casep € (—o0,0]U(1, 00). Excepting the trivial case when> 1,2, = 0 andlin% f(u) = —o0,
the functionF,, (zy, z,, . .., x,) attains its minimum and maximum values, and the conclusion
follows from Propositiof 1]2 above, via contradiction. For example, let us consider the sase
0. In order to prove thak;, is maximal for0 < zy =z, = -+ = x,,_1 < x,,, We assume, for the
sake of contradiction, thdt, attains its maximum &, bs, ..., b,) with by < b, < --- < b,
andb, < b,_,. Letzy, z,,_1, z,, be positive numbers such that+ z,,_; +x, = by +b,_1 + b,
andz} + 2, |+ = b + b, + b%. According to Propositiop 1].2, the expression
F3(x1,Tn-1,20) = f(21) + f(Tn-1) + f(22)
is maximal only forz; = =z, < z,, which contradicts the assumption thig attains its
maximum at(b, by, . .., b,) with by < b,,_;.
1
Casep € (0,1). This case reduces to the case- 1, replacing each of the; by a, each of
1
thex; by z7, and therp by ﬁ Thus, we obtain the sufficient condition thgt:) = x f/ (azflv>
to be strictly convex orf0, co). We claim that this condition is equivalent to the condition that
glx) = f (J:P%l> to be strictly convex or0, co). Actually, for our proof, it suffices to show

that if g(x) is strictly convex on0, co), thenh(x) is strictly convex on0, co). To show this,
we see thay (1) = 1h(z). Sinceg(x) is strictly convex on(0, ), by Jensen’s inequality we

have
ug { — vg ; utv)g|

foranyz,y, u,v > 0 with = # y. This inequality is equivalent to

U v U v u—+v
—h(zx)+—-h(y) > (—-+—-1]h .
mA AT ( y) <§+5>

Substitutingu = ¢tz andv = (1 — t)y, wheret € (0, 1), reduces the inequality to
th(z) + (1 —t)h(y) > h(tz + (1 —t)y),
which shows us thdt(z) is strictly convex on0, o). O

Proof of Corollary{I.8.We will apply Theorenj 1]3 to the functiof{u) = plnu. We see that
lim f(u) = —oo for p > 0, and

u—0

2

! — g == ! ( ﬁ) = ﬁ " = p 21%—:
flluy="=, gla)=f'(z prir,  g"(z) T
Sinceg”(x) > 0 for = > 0, the functiong(x) is strictly convex on0, co), and the conclusion
follows by Theoren 1]3. O

Proof of Corollary[ 1.9.We will apply Theorenh 1]3 to the function

f(u) =q(g—1)(g — p)u’.
Forp > 0, it is easy to check that eithgi(«) is continuous at. = 0 (in the case; > 0) or
lim f(u) = —oo (in the case < 0). We have

fw) =q*(g—1)(q—put’

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 15, 21 pp. http://jipam.vu.edu.au/
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and
g(z) = f’ (wﬁ) =*(q—1)(g—pzrT,
, 200 — 1)2(g — D)2 201
§'(z) = 1 (¢—1) (q2 p)° =l
(p—1)
Sinceg”(z) > 0 for x > 0, the functiong(x) is strictly convex on(0, co), and the conclusion
follows by Theoreny 1]3. O

3. APPLICATIONS

Proposition 3.1. Letz, y, z be non-negative real numbers such thaty+z = 2. If ry < r < 3,
wherer, = —22_ ~ 1.71, then

In3—In2
d(y+2)+y(z+a)+2(x+y) <2
Proof. Rewrite the inequality in the homogeneous form

rT+y+z
2
and apply Corollary 1]9 (cage= r andq = r + 1):
If 0 <z <y < zsuchthat

r+1
xr+1+yr+l+zr+l+2( ) Z (Jf—f—y—f-Z)(l'r—l—’yr—f—ZT),

r +y+ z = constant and
x" +y" + 2" = constant
then the sum™! + ¢! + 27! is minimal when either = 0 or0 < » <y = 2.
Caser = 0. The initial inequality becomes
yz(yr—l 4 Zr—l) S 27
wherey + z = 2. Since0 < r — 1 < 2, by the Power Mean inequality we have

1

yr—1+zr—1 - <y2—|—z2)T5'

2 - 2
Thus, it suffices to show that

r—1

2 2\ 3
yz(y ;Z> <1

Taking account of

we have

16 2
(y —2)*
="—"—2>0.
16
Casel < x < y = z. In the homogeneous inequality we may leave aside the constraint
x+y+z=2,and considey = z = 1,0 < z < 1. The inequality reduces to

r+1
(1+g) T —z—1>0.

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 15, 21 pp. http://jipam.vu.edu.au/
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Since(l + g)r“ is increasing and" is decreasing in respect it suffices to consider = r.
Let

€T ro+1
f(x):(1+§> -z —zx—1
We have
1 T

f(z) = TO; <1 + g) " rox™ !t — 1,

1., rg—i—l( T\ rog—1
— p— 1 _> — .
Tof (l') 4 + 2 x2ro

Sincef”(x) is strictly increasing or0, 1], f”(0,) = —oo and

1 1 "o
—pry =" <§> —ro+1

To 4 2
ro+ 1 3—1p
5 T0+ 9 5

there existse; € (0,1) such thatf”(z,) = 0, f"(z) < 0 for x € (0,z1), and f"(z) > 0 for
x € (x1,1]. Therefore, the functiorf’(x) is strictly decreasing for: € [0, ], and strictly
increasing forr € [z, 1]. Since

f(0) = T02_1 >0 and f'(1)= ro +1 [(é)m —2} =0,

2 2

there existse, € (0,z;) such thatf’(xs) = 0, f'(x) > 0 for z € [0,2,), and f'(x) < 0 for
x € (x4, 1). Thus, the functiorf(z) is strictly increasing for: € [0, 5], and strictly decreasing
for x € [x9,1]. Sincef(0) = f(1) = 0, it follows that f(x) > 0 for 0 < « < 1, establishing the
desired result.

Forxz <y < z, equality occurs whem = 0 andy = z = 1. Moreover, forr = ry, equality
holds again when =y =z = 1. O

Proposition 3.2([12]). Letz, y, z be non-negative real numbers such thgt+ yz + zz = 3.
If 1 <r <2, then
2 (y+2)+y(z+x)+2"(x+y) >6.

Proof. Rewrite the inequality in the homogeneous form

r+1
ry +yz + zx) 2
3 .

For convenience, we may leave aside the constrajintyz + zx = 3. Using now the constraint
x +y+ z = 1, the inequality becomes

xr<y+z>+yr<z+x>+zr<x+y>26(

1— g2 — g2 — 22 =2
G :

To prove it, we will apply Corollary 1]5 to the functiof(u) = —u"(1 — u) for 0 < u < 1. We
havef’(u) = —ru"~' + (r + 1)u" and

:Ur(l—:v)—l—yr(l—y)%—zr(l—z)26(

g@)=fl(x)=—ra" '+ (r+ 12", ¢'(x)=rF—-D2"?(r+Dz+2—1]

Sinceg”(z) > 0 for z > 0, g(z) is strictly convex onl0, co). According to Corollary 1J5,
if 0 <a <y < zsuchthatr +y + 2z = 1 andz? + y? + 22 = constant, then the sum
f(z)+ f(y) + f(z) is maximal for0 < z =y < z.

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 15, 21 pp. http://jipam.vu.edu.au/
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Thus, we have only to prove the original inequality in the case y < 2. This means, to
prove that) < x < 1 < y andz? + 22z = 3 implies

' (r+z) +xz" > 3.

2

Let f(z) = a"(x + z) + x2" — 3, with z = 352,

Differentiating the equation® + 222 = 3 yields 2’ = =22 Then,

fl@)=(r+Da" +ra" e+ 2" + (2" +raz" )7
= (@' =2 Yz +(r—1)z] <0.

The functionf(x) is strictly decreasing ofv, 1], and hencef(z) > f(1) = 0for0 < = < 1.
Equality occursifandonly it =y =z = 1. O
Proposition 3.3([9]). If z1, xs, ..., z, are positive real numbers such that

1 1 1

x1+x2+...—|—xn:—+_+...+_7
T i) Tp

then
1 1 1

e —— >,
1+(n—1)x1+1+(n—1)x2+ +1+(n—1)xn_
Proof. We have to consider two cases.

Casen = 2. The inequality is verified as equality.

Casen > 3. Assume tha < z; <z, < --- < z,,, and then apply Corollafy 1.6 to the function

fu) = m for u > 0. We havef’(u) = % and
(1 —(n—1x
xr) = —— — )
o f(ﬁ> (VE+n—1)
3(n—1)2

VW

Sinceg”(z) > 0, g(x) is strictly convex on(0, co). According to Corollary 1J6, if) < z; <
T9 < --- < x, such that

T+ 29+ -+ 2, = constant and

1 1 1
— + — + .-+ — = constant
T T2 Ty,
then the suny (x1) + f(z2) + - + f(x,) is minimal when) < 21 < zy =23 =+ = x,,.
Thus, we have to prove the inequality
1 n n—1 -1
I+(n—1z 14+Mmnm-1y "~
under the constraints< = < 1 <y and
1 n-1
r+n-—1y=—+ :
Zz )
The last constraint is equivalent to
y(1 —2?)
n—1)(y—1)=>2—"2.
(== =T

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 15, 21 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

EQUAL VARIABLE METHOD 11

Since
1 n—1
1+(n—1)x+1—|—(n—1)y
1 1 n—1 n—1
1+(n—1)x_ﬁ+1+(n—1)y_ n
C-D-1)  (-12y-1)
n[l+(n—1z] n[l+(n—1)y]
(n—1)(1 —x) (n— 1Dy —2?)

n[l+m—Dz] nz(l+y)[1+mn— 1yl

-1

we must show that
r(14+y)1+ (n—1)y] >yl + )1+ (n—1)z],
which reduces to

(y —)[(n — Lay —1] > 0.
Sincey — = > 0, we have still to prove that

(n—1)zy > 1.
Indeed, fromz + (n — 1)y = 1 + "7*1 we getry = fgig’;jgz and hence
-2
r+(n—1y
Forn > 3, one has equality ifand only if; = 25 = --- = x,, = 1. O

Proposition 3.4([10]). Letay, as, ..., a, be positive real numbers such that; - - - a,, = 1. If
m IS a positive integer satisfying. > n — 1, then

m m m 1 1 1
al' +ay +--+a +(m—Ln>m|—+—+-+—].
aq (05} Qp
Proof. Forn = 2 (hencem > 1), the inequality reduces to
al® + a3l +2m — 2 > m(a; + az).

We can prove it by summing the inequaliti€® > 1+m(a; —1) andal* > 1+m(ay—1), which
are straightforward consequences of Bernoulli’s inequality.-For 3, replacinga,, as, . . . , a,

by .-, .-, ..., -, respectively, we have to show that
1 1 1
et = (m=1n > m(r tap+ e+ a)
oty L,

for xyxq - -z, = 1. Assume) < 27 < x5 < --- < z,, and apply Corollary 1]9 (cage= 0 and
q = —m):
If0<ax <y <--- <z, such that

r1 + x9 + - - -+ x, = constant and

T1Tg - Ty = 1,
then the sum— + =% + -+ = is minimal wher) < x; = 1, = = Tpo1 < Tp.
Thus, it suﬁlces to prove the inequality foy = 2o = --- =2, 1 =2 < 1,2z, = y and
2"ty = 1, when it reduces to:
—1 1
n +—+(m—1n>mn-—1)z+my.
$m ym
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By the AM-GM inequality, we have

n—1 m
—+(m-n+1) > ——

X X
Then, we have still to show that

1
— —1>m(n—-1)(z—1).
ym
This inequality is equivalent to

2™ —1—mn—-1)(z—1)>0

= my.

and

(z — D[(™ ™ = 1)+ (@™ ™2 = 1)+ -+ (x — 1)] > 0.
The last inequality is clearly true. Fer = 2 andm = 1, the inequality becomes equality.
Otherwise, equality occurs if and onlydf = a, = --- = a, = 1. O

Proposition 3.5([6]). Letxy, xo, ..., z, be non-negative real numbers such that-x,+- - -+

x, = n. If k is a positive integer satisfyily< k < n + 2, andr = (%)’H — 1, then

ek > (- 2.
Proof. If n = 2, then the inequality reduces 14 + 25 — 2 > (2¥ — 2)z2,. Fork = 2 and
k = 3, this inequality becomes equality, while fbr= 4 it reduces t®hx;x2(1 — z125) > 0,
which is clearly true.

Consider nown > 3 and0 < z; < 2y < --- < x,. Towards proving the inequality,
we will apply Corollary[I.8 (case = k > 0): If 0 < 2y < 2o < --- < z, such that
T+ Ty + - + 12, = nandat + 25 + ... + 2% = constant, then the produgiz, - - - z,, is
minimal when eitherr; = 00r0 < z; < 9 =23 = - = @,,.

Caser; = 0. The inequality reduces to
k

m>

with x5 + - - - + x,, = n, This inequality follows by applying Jensen’s inequality to the convex
function f (u) = u*:

ah 4k >

R A
n—1 '

w4ty > (n—l)(
Case) < 1 < x9 = w3 =--- =z, Denotingr; = r andzy, = 23 = --- = z,, = y, we have
to prove that fol) < x < 1 < yandz + (n — 1)y = n, the inequality holds:

"+ (n — D" +nray™™ —n(r+1) > 0.
Write the inequality ag'(z) > 0, where

n—x

f@) =2+ (n— Dy +nroy™t —n(r+1), with y= T
n_

We see thaf (0) = f(1) = 0. Sincey’ = —%, we have
fl@) = k(@™ =" ) + ey 2 (y — o)
= (y = D)lry™? — k("2 4y e+t
= (y — 2)y"*[nr — kg()),
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where

1 T xh—2

g(x) = = + e 4+ 4 =2
Since the functiony(x) = 2=7 is strictly decreasing, the functigsiz) is strictly increasing for
2<k<n.Fork=n+1,wehave

.1‘2 wn—l
g@)=y+r+— -+ +——
Y Y
(n—2)z+n a? 1
=+ —+ -+ —,
n—1 Y y"
and fork = n + 2, we have
3 x"
g(x):y2+yx+x2+§+---+yn_2
_(n2—3n+3)x2+n(n—3)x+n2+x3+ N "
(=1 g Uy

Therefore, the functiop(x) is strictly increasing fok < k£ < n + 2, and the function
h(z) = nr — kg(x)
is strictly decreasing. Note that

f(x) = (y —x)y" *h(x).

We assert thai(0) > 0 andh(1) < 0. If our claim is true, then there exists € (0, 1) such that
h(xzy) =0, h(x) > 0forz € [0, z,), andh(x) < 0forz € (21, 1]. Consequentlyf(z) is strictly
increasing forz € [0, z4], and strictly decreasing far € [z, 1]. Sincef(0) = f(1) = 0, it
follows thatf(x) > 0 for 0 < z < 1, and the proof is completed.

In order to prove that(0) > 0, we assume thdt(0) < 0. Then,h(z) < 0 for z € (0,1),
f'(x) < 0forz € (0,1), and f(z) is strictly decreasing for € |0, 1], which contradicts
f(0) = f(1). Also, if (1) > 0, thenh(z) > 0 forz € (0,1), f'(x) > 0forz € (0,1), and
f(z) is strictly increasing for: € [0, 1], which also contradictg(0) = f(1).

Forn > 3 andx; < xy < --- < x,, equality occurs whem; = 2, = --- =z, = 1, and also
whenz; = 0andzy = -+ =2, = . O

n—1
Remark 3.6. Fork = 2, k = 3 andk = 4, we get the following nice inequalities:
(n—1D)(z] + a5+ +22) +nwiwy -1, > 02
(n—123 +a5+-+2)) +n2n — Vzyzg -+ 2, >0,
(n—13t+a5+-+22) +nB3n® = 3n+ Dayag- -1, > n'.

Remark 3.7. The inequality fork = n was posted in 2004 on the Mathlinks Site - Inequalities
Forum by Gabriel Dospinescu an@li Popa.

Proposition 3.8([L1]). Letxy, x,, ..., z, be positive real numbers such that- L+ 4L =
n. Then
v+ xy = n < ey (T1my -1, — 1),

n—1

wheree,_; = (1+ )" <e.
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Proof. Replacing each of the; by ai the statement becomes as follows:
If a1, as,...,a, are positive numbers such that+ a; + - - - + a,, = n, then

1 1 1
ajay- Q| —+—+- -+ —-—n+e,—1 | < ey
ay a2 Qp,

It is easy to check that the inequality holds for= 2. Consider nown > 3, assume that
0<a; <ay<---<a,andapply Corollary 1|8 (cage= —1): If 0 < a1 < as <--- < q,
suchthat, +as+---+a, =n andi + i 4.4 i = constant, then the productas - - - a,
is maximal wher) < a; < ays =a3 =--- = a,.

Denotinga; = z anday = a3 = --- = a,, = y, we have to prove thatfdr< = < 1 <y <
—-andz + (n — 1)y = n, the inequality holds:

"t (n— Day™? — (n—ep1)zy™ "t < ent.

Letting
f(l') = yn—l + (77, - 1)xyn—2 - (n - €n71)l’yn_l — €n—_1, with
. n—x
v= n—1’
we must show thaf(z) < 0for0 < = < 1. We see thaf(0) = f(1) = 0. Sincey’ = n——_ll we
have o)
s
yns =y—z)n—2—(n—e\1)yl = (y — x)h(z),
where

n—=x
h(x)—n—Q—(n—en,l)n_l
is a linear increasing function.

Let us show that(0) < 0 andh(1l) > 0. If R(0) > 0, thenh(xz) > 0 for z € (0,1),
hencef’(z) > 0 for x € (0, 1), andf(z) is strictly increasing for: € [0, 1], which contradicts
f(0) = f(1). Also,h(1l) = e,y — 2> 0.

Fromh(0) < 0 andh(1) > 0, it follows that there exists; € (0, 1) such thati(x;) = 0,
h(z) < 0forz € [0,2), andh(z) > 0forx € (24, 1]. Consequentlyf(x) is strictly decreasing
for z € [0, 4], and strictly increasing for € [z, 1]. Sincef(0) = f(1) = 0, it follows that
f(z) <0for0 <z <.

Forn > 3, equality occurs whem; =z, =--- =z, = 1. O

Proposition 3.9([9]). If z, x», ..., x, are positive real numbers, then
oy + i+ -4 an +n(n— Doz x,
1 1 1
>xxy o Tp(rr oo+t T) | —F—+ -+ — .
I ) I
Proof. Forn = 2, one has equality. Assume now that> 3,0 < z; < 2, < --- < z, and
apply Corollaryf I.p (case=0): If 0 < 2y < x5 < --- < z,, such that
1+ x9 + - - -+ x, = constant and
T1xy - - - T, = CcOonstant
then the sumx} + % + - - - + 272 is minimal and the surg- + - + - + -L is maximal when
0<$1§ZL‘2:$3:"':$”.
Thus, it suffices to prove the inequality for< z; < 1 andzy = x5 =--- =z, = 1. The

inequality becomes
4 (n—2)x; > (n— 1)a?,
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and is equivalent to
(v — D@2 =D+ (@2 1)+ + (- 1)] >0,
which is clearly true. Fon > 3, equality occurs ifand only it = 25 = - - - = x,,. O

Proposition 3.10([14]). If z1, z», ..., x, are non-negative real numbers, then

(n—1)(ay + 25+ + ) + nryze - x,
> (w1 +xg oA a) (@ T A a T,

Proof. Forn = 2, one has equality. Fat > 3, assume tha) < z; < 2o < -+ < 1z,
and apply Corollary 1|9 (case = n» andg = n — 1) and Corollary I.B (casg = n): If
0<x <x9 <--- <x,suchthat

Ty + 29+ -+ 2, =constant and

x] + x5 + -+, = constant
then the sum? ! + 25! 4- .- + 2"~ ! is maximal and the produet z, - - - z,, is minimal when
eitherr; =00r0 < ay < a9 =23 ="+ = 2,.

So, it suffices to consider the casgs=0and0 < z; < z9 = 23 = - - - = T,,.

Caser; = 0. The inequality reduces to

(n—1)8 +-+a") > (xa+ - +x,) (@ + - 2,
which immediately follows by Chebyshev’s inequality.
Case) < 1y < w9 =3 = -+ = x,. Settingr, = z3 = --- = x,, = 1, the inequality reduces
to:
(n—2)z} +z1 > (n— 1)}
Rewriting this inequality as
vi(zr = Dy (@ = 1) + 27 @] = 1)+ + (2777 = 1)] 2 0,
we see that it is clearly true. For > 3 andx; < 2, < --- < 1z, equality occurs when
Ty =Xy ==z, andforz; = 0andzy = --- = z,,. O

Proposition 3.11([8]). If 1, zs, ..., z, are positive real numbers, then

1 1 1 1
(x1+x2+-~-+xn—n)(—+——i—---—l———n)+w1x2---xn—|——22.
I T2 Tn T1To " Tn

Proof. Forn = 2, the inequality reduces to
(1 —21)%(1 — x9)?
129
Forn > 3, assume that < »; < 2, < --- < z,. Since the inequality preserves its form
by replacing each number; with l,i we may considetzs - - -z, > 1. So, by the AM-GM
inequality we get

> 0.

T+ x94Ty —n>nYr1x2 -, —n >0,

and we may apply Corollafy 1.9 (cape= 0 andg = —1): If 0 < 23 < 25 < --- < z,, such
that

1+ x9 + - - -+ x, = constant and
T1xy -+ - T, = CcOnstant

thenthesurr;ﬂ1—1+é+---+xiisminimalwher[)<:z:1:x2:---:xn_1gmn.

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 15, 21 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

16 VASILE CIRTOAJE

According to this statement, it suffices to consider= 2z, = --- = z,_; = z andz,, = v,
when the inequality reduces to

-1 1 1
((n—l)x+y—n)(n +——n>+x"‘1y+ — > 2,
x Y Ty
or
—1 1 1 -1 —1)?
(x"1+n——n>y+{ 1+(n—1)x—n]—2n(n )@ )
x - Y x
Since
n—1 n—1 x—1 n—1 n—2
e e (A IR bR VI CEY)
—1)2
:%[I‘n_2+2xn_3+.+(n_l)]
and ,
(x—l) 1 2
xnfl_l—(n_l)x_n: T $n72+xn73+'”+(n_1) ’

it is enough to show that

—_

2
(2" 2+ 22"+ (n— D]y + [$n2+$n3+---+(n—1)] - >n(n—1).

<

This inequality is equivalent to

1 1
(x"2y +— - 2) +2 <x"3y +— - 2)
"2y "3y

1
+--4+(n—-1) <y+§—2> >0,

or
2" 2y — 1) 2(x" 3y —1)2 n—1)(y —1)2
w1 Ay 12
Ty Ty Yy

which is clearly true. Equality occurs if and onlyrif— 1 of the numbers:; are equal to 1. [

Proposition 3.12([15]). If 21, z», ..., z, are non-negative real numbers such that+ =, +
<+, =n, then

1
(2129 -2 Vo1 (22 + 23+ -+ -+ 22) < n.

Proof. For n = 2, the inequality reduces t®(z,z, — 1)* > 0. Forn > 3, assume that
0 <z <z <--- <z,andapply Corollary 1|8 (cage=2): If 0 < 23 <2y < --- <z,
suchthatr; + x5+ - - -+, = nandz?+z3+- - -+ 22 = constant, then the produetz, - - - z,,
ismaximalwherd < zy =29 = = 2,1 < x,.

Consequently, it suffices to show that the inequality holds:fox ©, = --- =z, ; = x and
x, =y, where0 <z <1 <gyand(n— 1)z +y = n. Under the circumstances, the inequality
reduces to

xmy\/%[(n —1)z* +y* < n.

Forx = 0, the inequality is trivial. For: > 0, it is equivalent tof (z) < 0, where

f(x)=vn—1lnz+

1
Iny +In[(n — 1)z* + v*] — Inn,

with y=n—(n—1)z.
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We havey’ = —(n — 1) and
flg) 1 1 2yn—Tz—y) E-2)(Vn-—1lz—y) >0

vni—1 = y (n—=122+y2  ay[(n—1)22 +y?
Therefore, the functiorf () is strictly increasing o0, 1] and hencef(z) < f(1) = 0. Equal-
ity occursifandonly ifty =29 =--- =z, = 1. O

Remark 3.13. Forn = 5, we get the following nice statement:
If a,b,c,d,e are positive real numbers such that+ v + ¢ + d? + ¢ = 5, then

abede(a® + b* + ' + d* + ') < 5.

Proposition 3.14([4]). Letz, y, = be non-negative real numbers such that+ yz + zz = 3,

and let

In9 — In4
p> 2T 1R 0738,
In3

Then,
P +yP + 2P > 3.

Proof. Letr = 28=124 By the Power-Mean inequality, we have

.oz,~19+g/p+z1f’>(:c”ry”rzf)f2
3 - 3
Thus, it suffices to show that
' +y" 4+ 2" >3
Letz <y < z. We consider two cases.

Caser = 0. We have to show that” + =" > 3 for yz = 3. Indeed, by the AM-GM inequality,
we get

y 2 > 2y) =237 =3
Caser > 0. The inequalityr” + 3" + 2" > 3 is equivalent to the homogeneous inequality
5/1 1 1\2
ﬂ+y#¢ha%ﬂEY(—+—+—).
3 rT Yy =z

Settingr = ar,y = br, z = cr (0 < a < b < c), the inequality becomes

-

be\ 2 _ _ _
a+b+623(%;) Qﬁ;+0%+c%>2

Towards proving this inequality, we apply Coroll1.9 (cpse0,g=2):f0<a<b<c
such thatz + b + ¢ = constant andbc = constant, then the sunt= + b+ + ¢+ is maximal
when0 < a <b=c.

So, it suffices to prove the inequality for< a < b = ¢; that is, to prove the homogeneous
inequality inz,y,z for 0 < = < y = z. Without loss of generality, we may leave aside the
constraintry +yz + zx = 3, and considey = z = 1 and0 < = < 1. The inequality reduces to

2x+1>5

xr+223<

Denoting , , X
"+ r T+

f(z) =1In 3 5In——,
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we have to show that(x) > 0 for 0 < = < 1. The derivative

ra ! r r(x— 27" + 1)

/ = — e
) = e "l i w @t

has the same sign g¢z) = = — 221" + 1. Sinceg/(z) = 1 — 227 we see thay/(z) < 0

for z € (0,21), andg'(x) > 0 for z € (zy, 1], wherex; = (2 — 2r)Y/" ~ 0.416. The function
g(x) is strictly decreasing ofD, z1], and strictly increasing ofic;, 1]. Sinceg(0) = 1 and
g(1) = 0, there exists, € (0,1) such thay(xzs) = 0, g(x) > 0 for z € [0,22) andg(z) < 0
for z € (z2,1). Consequently, the functiofi(x) is strictly increasing on0, z,] and strictly
decreasing ofizo, 1]. Sincef(0) = f(1) = 0, we havef(z) > 0 for 0 < x < 1, establishing
the desired result.

Equality occurs forr = y = z = 1. Additionally, forp = 22=1* andz < y < z, equality
holds again for: = 0 andy = z = /3. O

Proposition 3.15([7]). Letx, y, z be non-negative real numbers such that y + z = 3, and

letp > 29-n8 ~ 0.29. Then,

P+ oy + 2P > ay 4+ yz + 2.

Proof. Forp > 1, by Jensen’s inequality we have

p
xp+yp+zp23<x+g+z>

1 2
:3:§(x+y+z) > xy + yz + 2.

m9-In8 andz < y < 2. The inequality is equivalent to the

Assume nowp < 1. Letr = Po=p2

homogeneous inequality

r+y+=z

2—p
5 ) + 22+ P+ 22> (r+y+2)°

2(2P +yP + 2P) (
By Corollary[1.9 (cas® < p < 1 andq = 2), if + < y < z such thatr + y + z = constant
andz? + y? + 2P = constant, then the sun? + y? + 22 is minimal when eithe: = 0 or
O<zx<y==z.
Casexr = 0. Returning to our original inequality, we have to show that}- ¥ > yz for
y + z = 3. Indeed, by the AM-GM inequality, we get

Y+ 2P —yz > 2yz)% — yz

2—p

= (yZ)%P_ — (y2) 7]

()]

(M|

> (yz)

= (y2)* I (;)H

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 15, 21 pp.

S

3

2

-

http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

EQUAL VARIABLE METHOD 19

Case0 < z < y = z. In the homogeneous inequality, we may leave aside the constraint
x+y+2z=3,and considey = z = 1 and0 < x < 1. Thus, the inequality reduces to

(P + 2) <

To prove this inequality, we consider the function
x+2

T+ 2

2-p
) >2x+ 1.

flz)=In(z+2)+(2—p)ln —In(2z + 1).
We have to show thaf(z) > 0for0 < z < 1andr < p < 1. We have

oy patTt o 2-p 2 29(x)
f (l’) - + - _ )
P+ 2 r+2 2x+1 zt=r(ar+2)(2x+1)

where

g(z) =2* + (2p — D +p+2(1 —p)2*? — (p+2)a’ 7,
and

g(x)=20+2p—1+2(1-p)2-pla' "~ (p+2)(1-p)a?,

g'(@) =2+2(1 = p)*(2 = p)z™ +pp +2)(1 - p)a™?".
Sinceg”(z) > 0, the first derivativey’ () is strictly increasing orf0, 1]. Taking into account
thatg'(0+) = —oo andg’(1) = 3(1 — p) + 3p* > 0, there isz; € (0, 1) such thaty'(z;) = 0,
g'(z) < 0forz € (0,z1)andg'(x) > 0 for = € (x1,1]. Therefore, the functiop(z) is strictly
decreasing ofD, ;] and strictly increasing ofxy, 1]. Sinceg(0) = p > 0 andg(1) = 0, there
isxe € (0,21) such thaly(xs) = 0, g(z) > 0 for x € [0,22) andg(z) < 0 for x € (2, 1]. We
have alsof’(z2) =0, f'(x) > 0forz € (0,z,) andf’(z) < 0 for z € (x5, 1]. According to this
result, the functiory (z) is strictly increasing o0, z»] and strictly decreasing dm., 1]. Since

2 2
fO)=M2+@2=p)nz>Mm2+(2-r)z =0

3
andf(1) = 0, we getf(z) = min{f(0), f(1)} = 0.
Equality occurs forr = y = z = 1. Additionally, forp = 22=188 gnds < y < 2, equality

In3—In2
holds again wher = 0 andy = z = 2. O
Proposition 3.16([8]). If x1, za, ..., z, (n > 4) are non-negative numbers such that+ z, +
<o+ x, =n, then
1 1 1

+ + e+ <1
n+1—xox3---x, n+1—x3204-- 17 n+1—xx9 2,1

Proof. Letz; < ap < --- <z, ande,_; = (1 + ﬁ)"‘l. By the AM-GM inequality, we have

n—1 n—1
R (A i ke R (W e s R
n—1 n—1

Hence
n+1—xz3---2,>n+1—e,_1>0,
and all denominators of the inequality are positive.
Caser; = 0. Itis easy to show that the inequality holds.
Caser; > 0. Suppose that;zs - - - x,, = (n + 1)r = constanty > 0. The inequality becomes
T T T

- +o
ry —rT To —T Tp —T

<n+1,
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or
1 1 1
ry —r To — T Ty — T

By the AM-GM inequality, we have

<

i

=1,

(n+1)r:xlx2...$n§ (x1+l’2++xn)

n

hencer < n+r1 Fromz, <z, + 22+ +x, =n <n+1< 1 wegetr, < 1. Therefore,
we haver < z; < 1 for all numbersy;.
We will apply now Corollar to the functiofi(u) = =, u > r. We havef'(u) = 2
and ,
1 T drax + 2
U N R " _ )
o0 =1 (3) = o 9O =
Sinceg”(z) > 0, g(z) is strictly convex on(r, ). According to Corollar?, D <z <
Ty < --- <z, such that forr; + 29 + - - - + z,, = constant and; z, - - - z,, = constant, then the
sumf(zy) + f(x2) + - -+ + f(z,) is minimal whenr; < zy = 23 = --- = z,,. Thus, to prove
the original inequality, it suffices to consider the case= z andzy = 23 = --- =z, = v,
where0 < z < 1 < yandx + (n — 1)y = n. We leave ending the proof to the reader. [

Remark 3.17. The inequality is a particular case of the following more general statement:
Letn > 3, e, = (14 ﬁ)”_l, k, = % and letas, ao, . .., a, be non-negative
numbers such that, + ay + --- + a,, = n.
(@ If £ > k,, then

1 ) 1 o 1 .
k—agay---a, k—asay --a; k—ajay---anq1  k—1
(b) If e,_1 < k < Kk, then
1 . 1 - 1 cn-l, 1
k—asas---a, k—asay --a; k—aay---a,_1 — k k—e, 1

Finally, we mention that many other applications of the EV-Method are given in the book [2].
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