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Preface

In 1977the Mathematics Department at the University of California, Berke-
ley, instituted a written examination as one of the first major requirements
toward the Ph.D. degree in Mathematics. This examination replaced a
system of standardized Qualifying Exams. Its purpose was to determine
whether first-year students in the Ph.D. program had mastered basic math-
ematics well enough to continue in the program with a reasonable chance
of success.

Historically, any one examination is passed by approximately half of the
students taking it and students are allowed three attempts. Since its incep-
tion, the exam has become a major hurdle to overcome in the pursuit of
the degree and, therefore, a measure of the minimum requirements to suc-
cessful completion of the program at Berkeley. Even though students are
allowed three attempts, most would agree that the ideal time to complete
the requirement is during the first month of the program rather than in the
middle or end of the first year. This book was conceived on this premise,
and its intent is to publicize the material and aid in the preparation for the
examination during the undergraduate years, when one is deeply involved
with the material that it covers.

The examination is now offered twice a year in the second week of each
semester, and consists of 6 hours of written work given over a 2-day period
with 9 problems each (10 before 1988).Students select 6 of the 9 problems
(7 of 10 before 1988). Most of the examination covers material, mainly in
analysis and algebra, that should be a part of a well-prepared mathematics
student’s undergraduate training. This book is a compilation of the almost
1000 problems which have appeared on the Prelims during the last 20
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years and currently make up a collection which is a delightful field to plow
through, and solutioiis to most of them.

When Berkeley was on the Quarter system, cxams were given three times
a year: Spring, Summer, and Fall. Since 1986, the exams have been given
twice a year, in January and September.

From the first examination through Fall 1981, the policy was: two at-
tempts allowed; each examination 6 hours; total 14/20 problems. From
Winter 1982 through Spring 1988, the policy was: two attempts allowed;
each examination 8 hours; total 14/20 problems. Starting Fall 1988, the
policy was: three attempts allowed; each examination 6 hours; total 12/18
problems. In all cases, the examination must be passed within 13 months
of entering the Ph.D. program.

The problems are organized by subject and ordered in increasing level
of difficulty, within clusters. Each one is tagged with the academic term
of the exam in which it appeared using abbreviations of the type Fa87
to designate the exam given in the Fall semester of 1987. Problems that
have appeared more than once have been merged arid show multiple tags
for each exam. Sometimes the merge required slight modifications in the
text (a few to make the problem correct!), but the original text has been
preserved in an electronic version of the exams (see Appendix A). Other
itemms in the Appendices include the syllabus, passing scores for the exams
and a Bibliography used throughout the solutions.

Classifying a collection of problems as vast as this one by subjects is
not an easy task. Some of the problems are interdisciplinary and some
have solutions as varied as Analysis and Number Theory (1.1.15 comes
to mind!), and the choices are invariably hard. In most of these cases, we
provide the reader with an alternative classification or pointers to similar
problems elsewhere.

We would like to hear about other solutions to the problems herc and
comments on the existing ones. They can be sent by e-mail to the authors.

This project started many years ago, when one of us (PNdS) came to
Berkeley and had to go through the lack of information and uncertainties
of the exam and got involved with a problem solving group. First thanks
go to the group’s members: Dino Lorenzini, Hung The Dinh, Kin Yin Li,
and Jorge Zubelli, and then to the many Prelim Workshop leaders, many
of whose names escape us now but the list includes, besides ourselves,
Matthew Wiener, Dmitry Gokhman, Keith Kearnes, Geon Ho Choe, Mike
May, Eliza Sachs, Ben Lotto, Ted Jones, David Cruz-Uribe, and Jonathan
Walden. Many thanks to Debbie Craig for swift typesetting of many of the
problems and to Janet Yonan for her help with the archeological work of
finding many of the old and lost problem sets, and finally to Nefeli’s for
the best coffee west of Rome, we would not have survived without it!

We thank also the Department of Mathematics and the Portuguese Stud-
ies Program of UC Berkeley, University of Lisbon, CMAF, JNICT, PRAXIS
XXI, FEDER and project PRAXIS/2/2.1/MAT/125/94, which supported
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one of the authors on the Summers of 96 and 97, and CNPq grant 20.1553/82-
MA that supported the other during the initial phase of this project.

This is a project that could not have been accomplished in any type-
setting system other than TEX. The problems and solutions are part of
a two-pronged database that is called by sourcing programs that gener-
ate several versions (working, final paper version, per-exams list, and the
on-line HTML and PDF versions) from a single source. Silvio Levy’s TEX
support and counseling was a major resource backing our efforts and many
thanks also to Noam Shomron for help with non-standard typesseting.

Berkeley, April 10, 1998 Paulo Ney de Souza
desouza@math_berkeley._edu

Jorge-Nuno Silva

jnsilva@math.berkeley.edu
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1
Real Analysis

1.1 Elementary Calculus

Problem 1.1.1 (Fa87) Prove that (cos8)? < cos(pf) for 0 < 0 < /2
and 0 <p<1.

Problem 1.1.2 (Fa77) Let f : [0,1] — R be continuously differentiable,
with f(0) = 0. Prove that

1/2

s 1)< ([ (@) @)

0<z<1

Problem 1.1.3 (Sp81) Let f(z) be a real valued function defined for all
z > 1, satisfying f(1) =1 and
1
! L
f (.’L‘) - 1‘2+f(.’l,‘)2

Prove that
lim f(z)

T—00

exists and is less than 1 + -

Problem 1.1.4 (Sp95) Let f, ¢:{0,1] — [0,00) be continuous functions
satisfying

sup f(z) = sup g¢(z).
0<z<1 0<z<1

Prove that there exists t € [0, 1] with f(t)% + 3f(t) = g(t)? + 3g(¢).



4 1. Recal Analysis

Problem 1.1.5 (Fa86) For [ a real valued function on the real line, de-
fine the function Af by Af(z) = f(z +1) — f(z). For n > 2, define A" f
recursively by A" f = AN(A"71f). Prove that A" f = 0 if and only if f has
the form f(x) = ao(x) +a1(z)x + - -+ an_1(x)z" " where ag,ay,...,an-1
are periodic functions of period 1.

Problem 1.1.6 (Fa81) Fither prove or disprove (by a counterezample)
each of the following statements:

1. Let f:R - R, g:R — R be such that
limg(t) =b and 1inll)f(t) =c

t—a

Then
lim f (g(t)) = c.

t—a

2. If f: R — R is continuous and U is an open set in R, then f(U) is
an open set in R.

3. Let f be of class C*™ on the interval —1 < x < 1. Suppose that
|f")(z)| <1 for alln > 1 and all T in the interval. Then f is rcal an-
alytic; that is, it has a convergent power series expansion in a neigh-
borhood of each point of the interval.

Problem 1.1.7 (Su81) Let
2

1+1-42

y(h) = 1—2sin®(27h),  f(y) =
Justify the statement
fw(h) =2 —4V2r + O(K?)
where

. O(hz)
lim su
h—0 P h2

< .

Problem 1.1.8 (Fa82) 1. Prove that there is no continuous map from
the closed interval [0, 1] onto the open interval (0,1).

2. Find a continuous surjective map from the open interval (0,1) onto
the closed interval (0, 1].

3. Prove that no map in Part 2 can be bijective.

Problem 1.1.9 (Fa94, Sp98) Find the marimum area of all triangles
that can be inscribed in an ellipse with semiazes a and b, and describe
the triangles that have mazimum area.

Hint: Represent the ellipse by means of the parametric equations
z=acost, y=bsint, 0 <t < 2.
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Problem 1.1.10 (Fa93) Let f be a continuous real valued function on
[0,00). Let A be the set of real numbers a that can be expressed as
a = lim,_ f(z,) for some sequence (z,) in [0,00) such that
lim, o T, = co. Prove that if A contains the two numbers a and b, then
it contains the entire interval with endpoints a and b.

Problem 1.1.11 (Su81) Show that the equation

1
a:(l—i—log(m)):l, z>0, >0,

has, for each sufficiently small e > 0, exactly two solutions. Let () be the
smaller one. Show that

1. z(e) = 0 as € = 0+;
yet for any s > 0,
2. e *z(e) = 00 as € — 0+.

Problem 1.1.12 (Sp82) Suppose that f(z) is a polynomial with real co-
efficients and a is a real number with f(a) # 0. Show that there ezists a
real polynomial g(x) such that if we define p by p(z) = f(z)g(x), we have
p(a) =1, p/(a) = 0, and p"(a) = 0.

Problem 1.1.13 (Su84) Let p(2) be a nonconstant polynomial with real
coefficients such that for some real number a, p(a) # 0 but p’(a) = p(a) =
0. Prove that the equation p(z) =0 has a nonreal root.

Problem 1.1.14 (Fa84) Let f be a C? function on the real line. Assume
f is bounded with bounded second derivative. Let

A= sup |f(z)], B=sup|f’(z)|
J;GR ;r,ER

Prove that
sup | f'(z)| < 2VAB.

eR

Problem 1.1.15 (Fa90) Find all pairs of integers a and b satisfying
0<a<banda® =0

Problem 1.1.16 (Sp92) For which positive numbers a and b, witha > 1,
does the equation log, x = z° have a positive solution for x ?

Problem 1.1.17 (Sp84) Which number is larger, n3 or 3™ ?

Problem 1.1.18 (Sp94) For which numbers a in (1,00) is it true that
z* < a® for all x in (1,00)?
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Problem 1.1.19 (Sp96) Show that a positive constant t can satisfy
e >zt forall >0

if and only if t < e.

Problem 1.1.20 (Su77) Suppose that f(z) is defined on [—1,1], and that
7 (x) is continuous. Show that the series

> (n(f(1/n) - f(=1/n)) —2£'(0))

n=1

converges.

Problem 1.1.21 (Fa96) If f is a C? function on an open interval, prove

that Y 5
i €W 2@ IR _ g

Problem 1.1.22 (Fa97) Prove that for all z > 0, sinz > z — 23/6.

Problem 1.1.23 (Su85) 1. For 0 <6< 7, show that
2
sinf > —0.
i3

2. By using Part 1, or by any other method, show that if A < 1, then

lim B> / e Rsind gg .
0

R—oo

Problem 1.1.24 (Su78) Let f : R — R be continuous. Suppose that R
contains a countably infinite subset S such that

/qf(z)dzzO

if p and q are not in S. Prove that f is identically 0.

Problem 1.1.25 (Fa89) Let the function f from [0,1] to [0,1] have the
following properties:

o f is of class C';
e f(0)=/(1)=0;
o [’ is nonincreasing (i.e., f is concave).

Prove that the arclength of the graph of f does not exceed 3.
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Problem 1.1.26 (Sp93) Let f be a real valued C* function on [0, 00) such
that the improper integral floo | f'(z)|dx converges. Prove that the infinite
series Y -, f(n) converges if and only if the integral floo f(z)dz converges.

Problem 1.1.27 (Su82) Let E be the set of all continuous real valued
Junctions u : [0,1] — R satisfying

lu(z) —u(m)l <z —yl, 0<zy<1, u(0)=0.

Let ¢ : E — R be defined by

o(u) = /0 (u(z)? — u(z)) dz.

Show that ¢ achieves its arimum value at some element of E.

Problem 1.1.28 (Fa87) Let S be the set of all real C' functions f on
[0, 1] such that f(0) =0 and

/01 f(a)de < 1.
Define .
1= [ fa)da.

Show that the function J is bounded on S, and compute its supremum. Is
there a function fo € S ot which J attains its marimum velue? If so, what
18 fg ?

Problem 1.1.29 (Fa82, Fa96) Let f be a real valued continuous nonneg-
ative function on [0,1] such that

fyP <1+ 2/0 f(s)ds

fort € [0,1]. Show that f(t) <1+t fort e [0,1].
Hint: You might consider

u(t) = 1+2/0tf(s)ds.

Problem 1.1.30 (Sp96) Suppose ¢ is a C' function on R such that
p(r) —a and ¢'(z)—b as z — co.

Prove or give a counterezample: b must be zero.
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Problem 1.1.31 (Su77) Show that

7r/2 d.’E
F(k) :/ —_—
0 V1 —kcos?zx
0 < k < 1, is an increasing function of k.
Problem 1.1.32 (Fa79) Given that
/ e~ dr = 7,
find f'(t) explicitly, where
ft) = / e dz, t>0.
Problem 1.1.33 (Fa80) Define
)= [ e

Compute F'(0).

Problem 1.1.34 (Fa95) Let f : R — R be a nonzero C* function such
that f(x)f(y) = f (\/x2+y2) for all x and y such that f(x) — 0 as

|z] — oo.
1. Prove that f is an even function and that f(0) is 1.

2. Prove that f satisfies the differential equation f'(z) = f"(0)xf(z),
and find the most general function satisfying the given conditions.

1.2 Limits and Continuity

Problem 1.2.1 (Fa90) Suppose that f maps the compact interval I into
itself and that

[f(z) = f(y)l < |z -yl

forallx,y € I, x #y. Can one conclude that there is some constant M < 1
such that, for all z,y € I,

|f(z) — f()] < M|z —y|?

Problem 1.2.2 (Sp90) Let the real valued function f on [0,1] have the
following two properties:
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e If [a,b] C [0,1], then f([a,b]) contains the interval with endpoints
f(a) and f(b) (i.e., f has the Intermediate Value Property).

e For each ¢ € R, the set f~1(c) is closed.
Prove that f is continuous.

Problem 1.2.3 (Sp83) Suppose that [ is a continuous function on R
which is periodic with period 1, i.e., f(x + 1) = f(x). Show:

1. The function f is bounded above and below and achieves its mazimum
and minimum.

2. The function f is uniformly continuous on R.

3. There exists a real number o such that
f(xo + ) = f(z0)-

Problem 1.2.4 (Sp77) Let h: [0,1) — R be a map defined on the half-
open interval [0,1). Prove that if h is uniformly continuous, there exists
a unique continuous map g : [0,1] — R such that g(z) = h(x) for all
x €[0,1).

Problem 1.2.5 (Sp84) Prove or supply a counterexample: If the function
f from R to R has both a left limit and a right limit ot each point of R,
then the set of discontinuities of f is, at most, countable.

Problem 1.2.6 (Fa78) Let f : R — R satisfy f(z) < f(y) forz < y.
Prove that the set where f is not continuous is finite or countably infinitc.

Problem 1.2.7 (Su85, Fa96) A function f : [0,1] — R is said to be
upper semicontinuous if given x € [0, 1] and € > 0, there exists a & > 0 such
that if ly—x| < 8, then f(y) < f(z)+e. Prove that an upper semicontinuous
function f on [0, 1] is bounded above and attains its mazimum value at some
point p € [0, 1].

Problem 1.2.8 (Su83) Prove that a continuous function from R to R
which maps open sels to open sets must be monotonic.

Problem 1.2.9 (Fa91) Let f be a continuous function from R to R such
that | f(z) — f(y)] = |z —y| for all z and y. Prove that the range of f is all
of R.

Note: See also Problem 2.1.8.

Problem 1.2.10 (Fa81) Let f be a continuous function on [0,1]. Evalu-
ate the following limits.
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1
lim n/ z" f(x)de.

n=-—000 0
Problem 1.2.11 (Fa88, Sp97) Let f be a function from [0, 1] into itself

whose graph
Gs=A{(=z, f(=) |z €0,1]}

s a closed subset of the unit square. Prove that f is continuous.
Note: See also Problem 2.1.2.

Problem 1.2.12 (Sp89) Let f be a continuous real valued function on
[0,1] x [0, 1]. Let the function g on [0,1] be defined by

9(z) = max {f(z,y) | y € [0,1]}.

Prove that g is continuous.

1.3 Sequences, Series, and Products
Problem 1.3.1 (Su85) Let A, > Ay > --- > Ay > 0. Evaluate

Jim (A7 + A7+t AR

Note: See also Problem 5.1.10.
Problem 1.3.2 (Sp96) Compute

n" 1/n
L= lim (—) .
n—oo \ n!

Problem 1.3.3 (Sp92) Let zo =1 and

3 + 2113"_1

rn —
" 3 + ZTn_1
forn=1,2,.... Prove that

Too = lim z,

n-—00

exists, and find its value.
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Problem 1.3.4 (Fa97) Define a sequence of real numbers (z,,) by

1
2+,

z9 =1, Tpy1 = for n>0.

Show that (x,) converges, and evaluate its limit.

Problem 1.3.5 (Fa89, Sp94) Let o be a number in (0,1). Prove that any
sequence () of real numbers satisfying the recurrence relation

Tp41 = 0Zp + (1 — @)Tpn_y
has a limit, and find an expression for the limit in terms of «a, xg and x;.

Problem 1.3.6 (Fa92) Let k be a positive integer. Determine those real
numbers ¢ for which every sequence (z,) of real numbers satisfying the
recurrence Telation

1
3 (Tnt1 + Tne1) = €T

has period k (i.e., Ty =z, for all n).

Problem 1.3.7 (Sp84) Let a be a positive real number. Define a sequence
(xn) by

To=0, Tnty1=a+z2, n>0.
Find a necessary and sufficient condition on a in order that a finite limit
limy, 00 Tn should exist.

Problem 1.3.8 (¥a95) Let z1 be a real number, 0 < z; < 1, and define
a sequence by Tp41 = Tn — 211 Show that liminf, oo T, > 0.

Problem 1.3.9 (Fa80) Let f(z) = i +x — 22, For any real number z,
define a sequence () by v = = and x,,+1 = f(x,). If the sequence con-
verges, let To, denote the limit.

1. For z =0, show that the sequence is bounded and nondecreasing and
find o = A

2. Find all y € R such that yoo = A.

Problem 1.3.10 (Fa81) The Fibonacci numbers f1, fa,. .. are defined re-
cursively by f1 =1, fo =2, and foy1 = fn + fn-1 for n > 2. Show that

hm fn+1

n—od n

erists, and evaluate the limit.
Note: See also Problem 7.5.14.
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Problem 1.3.11 (Fa79) Prove that

1 1 1
li —— 4+ —— 4+ — ] =log2.
nl—vngo<n+1+n+2+ +2n) o8
Problem 1.3.12 (Sp90) Suppose x,,x2,T3,... is a sequence of nonneg-

ative real numbers satisfying

1
Tp+1 S Ty + )
n
for alln > 1. Prove that lim,, o, x,, exists.

Problem 1.3.13 (Sp93) Let (a,) and (e,) be sequences of positive num-
bers. Assume that lim,_.o £, = 0 and that there is a number k in (0,1)
such that apyy < kay, + €, for every n. Prove that lim, o a, = 0.

Problem 1.3.14 (Fa83) Prove or disprove (by giving a counterezample),
the following assertion: Every infinite sequence 1,23, ... of real numbers
has either a nondecreasing subsequence or a nonincreasing subsequence.

Problem 1.3.15 (Su83) Let by, bo, ... be positive real numbers with

lim b, = oco and lim (b,/by41) = 1.

Assume also that by < by < by < ---. Show that the set of quotients
{(bm/bn)1<n<m is dense in (1, 00).

Problem 1.3.16 (Sp81) Which of the following series converges?
1.

>\ (2n)!(3n)!

> 1

>

n=1
Problem 1.3.17 (Fa91) Let a),az,as,... be positive numbers.

1. Prove that Y a, < co implies Y \/Gnany1 < 00.

2. Prove that the converse of the above statement is false.
Problem 1.3.18 (Su80, Sp97) For each (a,b,c) € R®, consider the se-

ri€s
o0 n

3 - .
b c
4 n’(logn)

Determine the values of (a, b, c) for which the series
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1. converges absolutely;
2. converges but not absolutely;
3. diverges.
Problem 1.3.19 (Sp91) For which real numbers x does the infinite series
Vn+i-n
Y
n=l1
converge?

Problem 1.3.20 (Fa94) For which values of the real number a does the

series
[ 8] (1 . l)a
S (L sl
—\n n

converge?

Problem 1.3.21 (Sp91) Let A be the set of positive integers that do not
contain the digit 9 in their decimal expansions. Prove that

1
DL
a€A a
that is, A defines a convergent subseries of the harmonic series.

Problem 1.3.22 (Sp89) Let ay,as,... be positive numbers such that

oo
E a, < 00.
n=1

Prove that there are positive numbers ¢y, cz, ... such that
oo
lim ¢, =00 and E Cna, < 00.
nN—00 1
n=

Problem 1.3.23 (Fa90) Ewvaluate the limit

. T T
lim cos — cos — -+ - cos —-
T OO 22 23 gn

1.4 Differential Calculus

Problem 1.4.1 (Su83) Outline a proof, starting from basic properties of
the real numbers, of the following theorem: Let f : [a,b] —» R be a conlinu-
ous function such that f'(z} =0 for all z € (a,b). Then f(b) = f(a).
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Problem 1.4.2 (Sp84) Let f(z) =zlog(1+z7'), 0 < z < co.
1. Show that f is strictly monotonically increasing.

2. Compute lim f(z) as x — 0 and z — oo.

Problem 1.4.3 (Sp85) Let f(x), 0 < z < 00, be continuous and differ-
entiable and suppose that f(0) = 0 and that f'(x) is an increasing function
of ¢ for x > 0. Prove that

| f@)/z, >0
g@*‘{ﬂmx z=0

is an increasing function of x. Interpret the result pictorially.

Problem 1.4.4 (Sp90) Let y : R — R be a C™ function that satisfies
the differential equation

y'+y —y=0

for © € [0,L], where L is a positive real number. Suppose that
y(0) = y(L) = 0. Prove that y =0 on [0, L].

Problem 1.4.5 (Su85) Let u(z), 0 <z <1, be a real valued C? function
which satisfies the differential equation

u'(z) = e"u(x).

1. Show that if 0 < x¢ < 1, then u cannot have a positive local mazimum
at xg. Similarly, show that u cannot have a negative local minimum
at Tg.

2. Now suppose that ©(0) = u(l) = 0. Prove that u(z) =0,0 <z < 1.

Problem 1.4.6 (Sp98) Let K be a real constant. Suppose that y(t) is a
positive differentiable function satisfying y'(t) < Ky(t) for t > 0. Prove
that y(t) < eXty(0) for t > 0.

Problem 1.4.7 (Sp90, Fa91) Let f be an infinitely differentiable func-
tion from R to R. Suppose that, for some positive integer n,

FQ1) = £(0) = £/(0) = f(0) = - .- = f)(0) = 0.
Prove that f(**+1)(z) = 0 for some x in (0,1).

Problem 1.4.8 (Fa97) Let f : R — R be twice differentiable, and sup-
pose that for all x € R, [f(z)] < 1 and |f'(z)] < 1. Prove that
|f'(z)] <2 forallz € R.
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Problem 1.4.9 (Sp86) Let f be a positive differentiable function on (0, 00).

Prove that 1
. f(z + 6x)
§%< 7@) )

exists (finitely) and is nonzero for each z.

Problem 1.4.10 (Sp88) Suppose that f(z), —00 < z < 00, is a continu-
ous real valued function, that f'(z) exists for z # 0, and that limg_,o f'(x)
exists. Prove that f'(0) exists.

Problem 1.4.11 (Sp88) For each real value of the parameter t, deter-
mine the number of real roots, counting multiplicities, of the cubic polyno-
mial p(z) = (1 + 2)z3 — 3t3z + t*.

Problem 1.4.12 (Sp91) Let the real valued function f be defined in an
open interval about the point a on the real line and be differentiable at
a. Prove that if (z,) is an increasing sequence and (y,) is a decreasing
sequence in the domain of f, and both sequences converge to a, then

o F) = £(2)

n—00 yn — Iy

- '@).

Problem 1.4.13 (Fa86) Let f be a continuous real valued function on
[0, 1] such that, for each zo € [0,1),

lim sup M > 0.
I—’I(T T —Zo

Prove that f is nondecreasing.

Problem 1.4.14 (Sp84) Let I be an open interval in R containing zero.
Assume that f' exists on a neighborhood of zero and f"”(0) exists. Show
that

1
flz) = f(0) + f(0)sinz + §f"(0) sin® z + o(z?)
(o(z?) denotes a quantity such that o(z?)/z* — 0 asz — 0).

Problem 1.4.15 (Sp84) Prove that the Taylor coefficients at the origin

of the function
z

£2) = 2

are rational numbers,

Problem 1.4.16 (Sp79) Give an example of a function f : R — R having
all three of the following properties:

o f(£) =0 forz <0 and z > 2,
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b f’(l) = 1)
o f has derivatives of all orders.

Hint: If the third property is too hard, change it to: f has n continuous
derivatives, where n is as large as you can make it.

Problem 1.4.17 (SuB3) Let f : R — R be continuously differentiable,
periodic of period 1, and nonnegative. Show that

d ( f(z)

e —__—1+cf(x)) —0 (asc— o00)

uniformly in x.
Problem 1.4.18 (Fa83, Fa84) Prove or supply a counterezample: If f
and g are C! real valued functions on (0, 1), if

lim f(z) = lirrg)g(m) =0,

z—0

if g and ¢’ never vanish, and if

f(@)
oz)

i
,’L‘—#O

then ,
im —f—(—Q =c.
20 g'(z)
Problem 1.4.19 (Sp77, Su82) Suppose f is a differentiable function from

the reals into the reals. Suppose f'(z) > f(z) for allz € R, and f(zp) = 0.
Prove that f(z) >0 for all x > xy.

Problem 1.4.20 (Sp87) Show that the equation ae® = 1-+z+x2 /2, where
a is a positive constant, has exactly one real root.

Problem 1.4.21 (Sp85) Let v, and vo be two real valued continuous func-
tions on R such that vi(z) < vo(x) for all x € R. Let ¢i(t) and pa(t) be,
respectively, solutions of the differential equations

for a < t < b. If pi(to) = wa(to) for some ty € (a,b), show that
@1(t) < 2(t) for allt € (to, b).

Problem 1.4.22 (Su78, Fa89) Suppose f : [0,1] — R is continuous with
f(0) =0, and for 0 < x < 1 fis differentiable and 0 < f'(x) < 2f(x). Prove
that f is identically 0.
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Problem 1.4.23 (Su79, Fa97) 1. Give an example of a differentiable
map [ : R — R whose derivative f' is not continuous.

2. Let f be as in Part 1. If f'(0) <2 < f'(1), prove that f'(z) =2 for
some z € [0,1].

Problem 1.4.24 (Su81) Let A C R be the open interval from 0 to 1.
Let f: A— C be C! (i.e., the real and imaginary parts are continuously
differentiable). Suppose that f(t) — 0, f'(t) - C # 0 as t — 0+. Show
that the function g(t) = |f(t)| is C1 for sufficiently small t > 0 and that
lim; o4 ¢'(t) exists, and evaluate the limit.

Problem 1.4.25 (Sp84) Let f : [0,1] — R be continuous, with f(0) =
f(1) = 0. Assume that f" exists on 0 < z < 1, with f"+2f" + f > 0. Show
that f(z) <0 forall0 <z < 1.

Problem 1.4.26 (Fa93) Let f: R — R be a C*° function. Assume that
f(z) has a local minimum at x = 0. Prove there is a disc centered on the
y azis which lies above the graph of f and touches the graph at (0, f(0)).

1.5 Integral Calculus

Problem 1.5.1 (Sp98) Using the properties of the Riemann integral, show
that if f is a non-negative continuous function on [0,1}, and

fol f(z)dz =0, then f(z) =0 for all z € [0,1].

Problem 1.5.2 (Fa90) Suppose f is a continuous real valued function.
Show that

1
[ s@sdz =35
0
for some £ € [0, 1].

Problem 1.5.3 (Sp77) Suppose that f is a real valued function of one
real variable such that

lim f(x)

r—c

exists for all ¢ € [a,b). Show that f is Riemann integrable on [a,b].

Problem 1.5.4 (Sp78) Let f : [0,1] — R be Riemann integrable over
[b,1] for all b such that 0 < b < 1.

1. If f is bounded, prove that f is Riemann integrable over [0, 1].

2. What if f is not bounded?
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Problem 1.5.5 (Su81) Let f : R — R be continuous, with
o0
/ |f(z)|dz < o0.
—0Q

Show that there is a sequence (z,) such that x, — 0o, Tpf(Tn) — 0, and
Tnf(—zn) — 0 as n — oo.

Problem 1.5.6 (Su85) Let
2 o0 2
flz) =¢€" /2/ et 24t
xr

forz > 0.

1. Show that 0 < f(z) < L.

Hint: In the integral, make the change of variable t = z + s.
2. Show that f(z) is strictly decreasing as x increases, x > 0.

Problem 1.5.7 (Su84) Let ¢(s) be a C? function on [1,2] with ¢ and ¢’
vanishing at s = 1,2. Prove that there is a constant C > 0 such that for
any A >1,

<

2
iAT
e T)dzx —
]1 #(@) — A2

Problem 1.5.8 (Fa85) Let 0 < a < 1 be given. Determine all nonnega-
tive continuous functions f on [0, 1] which satisfy the following three con-

ditions: )
/ flz)dz =1,
0

/lzf(z)dz:a,
0

/1 2 f(z) dz = a*.
0

Problem 1.5.9 (Fa85, Sp90) Let f be a differentiable function on [0, 1]
and let

sup |f(z)| = M < cc.
0<zr<1

Let n be a positive integer. Prove that

n—-1 . 1
f(G/n) M
D - [ roras < 50
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Problem 1.5.10 (Fa83) Let f : {0,00) — R be a uniformly continuous
Sfunction with the property that

lim /Ob f(x)dx

b—o0
ezists (as a finite limit). Show that

lim f(x)=0.

£—0Q

Problem 1.5.11 (Fa86) Let f be a real valued continuous function on
[0,00) such that (

lim (f(x)+ / £) dt)

r—0o0 0

Jirg, J{w) = 0.

Problem 1.5.12 (Sp83) Let f : Ry — R, be a monotone decreasing
function, defined on the positive real numbers with

exists. Prove that

/ flz)dr < oo.
0
Show that

lim zf(xz) = 0.

Problem 1.5.13 (Fa90, Sp97) Let f be a continuous real valued func-
tion satisfying f(x) > 0, for all z, and

/ f(z)dz < oc.
0
Prove that L
—/ zf(z)dz — 0
n Jo
asn — oo.

Problem 1.5.14 (Sp87) Ewaluate the integral

1/2 .
I:/ sm:z:dw
o z

to an accuracy of two decimal places; that is, find a number I* such that
I —I*| < 0.005.

Problem 1.5.15 (Fa87) Show that the following limil exists and is finite:

i / R
m —————— .
t—0* \Jo (z%+ t4)1/4 &




20 1. Real Analysis

Problem 1.5.16 (Fa95) Let f and f' be continuous on [0,00) and
f(z) =0 for z > 10'°. Show that

oo i 2 o0 o0 ,
/0 f(z) deQ\//O z2f(z)3dz \//0 f(z)%dr .

Problem 1.5.17 (Fa88) Let f be a continuous, strictly increasing func-
tion from [0,00) onto [0,00) and let g = f~'. Prove that

a b
[ s@ds+ [ atwyay > a
0 0

for all positive numbers a and b, and determine the condition for equality.

Problem 1.5.18 (Sp94) Let f be a continuous real valued function on R
such that the improper Riemann integral ffooo [f(z)| dx converges. Define
the function g on R by

9(y) = /jo f(z)cos(zy) dz .

Prove that g is continuous.

Problem 1.5.19 (Sp88) Prove that the integrals

/ cos(z®)dz  and / sin(z?) dx
0 0

converge.

Problem 1.5.20 (Fa85) Let f(x), 0 < z < 1, be a real valued continuous
function. Show that

n—oo

lim (n + 1)/0 z" f(z)dz = f(1).

Problem 1.5.21 (Su83, Sp84, Fa89) Compute

< logzx
o I“+a
where a > 0 is a constant.

Hint: It might be helpful to write the integral as
Ll
0 a
Problem 1.5.22 (Sp85) Show that
I :/ log(sin ) dz
0

converges as an improper Riemann integral. Fvaluate I.
Hint: The identity sin 2z = 2sinz cosz may be useful.



1.6 Sequences of Functions 21

1.6  Sequences of Functions

Problem 1.6.1 (Fa84) Prove or supply a counterexample: If f is a non-
decreasing real valued function on [0, 1], then there is a sequence of contin-
uous functions on [0, 1], {f.}, such that for each z € [0,1],

lim f(z) = f(z).

n—oo

Problem 1.6.2 (Fa77, Sp80) Let f, : R — R be differentiable for each
n=12,...with|f,(z)| <1 for all n and z. Assume

lim fn(z) = g(z)

n—00
for all z. Prove that g: R — R is continuous.

Problem 1.6.3 (Sp81) 1. Give an example of a sequence of C* func-
tions
fo:{0,00)— R, k£=0,1,2,...

such that fi(0) =0 for all k, and fi(z) — fo(x) for all x as k — oo,
but fi(xz) does not converge to fo(z) for all x as k — oc.

2. State an extra condition which would imply that fi.(z) — fo(z) for
all z as k — oo.

Problem 1.6.4 (Fa79, Fa80) Let {P,} be a sequence of real polynomi-
als of degree < D, a fized integer. Suppose that P,(xz) — 0 pointwise for
0 < z < 1. Prove that P, — 0 uniformly on [0, 1].

Problem 1.6.5 (Fa84) Show that if f is a homeomorphism of [0, 1} onto
itself, then there is a sequence {p,}, n = 1,2,3,... of polynomials such
that p, — f uniformly on [0,1] and each p,, is a homeomorphism of [0,1]
onto itself.

Hint: First assume that f is C'.

Problem 1.6.6 (Sp95) Letl f,,:[0,1] — [0,00) be a continuous function,
forn=1,2,.... Suppose that one has

(*)  fi(z) > f2(z) > fa(z) > -+ for allz €[0,1].
Let f(z) = lim, o fn(z) and M = supg<,<; f()-
1. Prove that there erists t € [0,1] with f(t) = M.

2. Show by example that the conclusion of Part 1 need not hold if instead
of (x) we merely know that for each x € [0,1] there exists n, such
that for all n > ny one has f,(z) 2 fn1(2).
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Problem 1.6.7 (Fa82) Let fi, fo, ... be continuous functions on [0, 1] sat-
isfying fi > fo > -+ and such that lim, .o fo(z) =0 for each x. Must the
sequence {fn} converge to 0 uniformly on [0,1]?

Problem 1.6.8 (Sp78) Let k > 0 be an integer and define a sequence of
maps

zk

fn:R_'R7 fn(z):.’l,‘2+n’

n=12....

For which values of k does the sequence converge uniformly on R? On every
bounded subset of R?

Problem 1.6.9 (Fa87) Suppose that {f.} is a sequence of nondecreasing
functions which map the unit interval into itself. Suppose that

nlgfolo In(z) = f(z)

pointwise and that f is a continuous function. Prove that f,(zx) — f(z)
uniformly as n - 00, 0 < z < 1. Note that the functions f, are not
necessarily continuous.

Problem 1.6.10 (Fa85) Let f and f,, n=1,2,..., be functions from R
to R. Assume that f.(z,) — f(z) as n — oo whenever x, — x. Show that
f is continuous. Note: The functions f,, are not assumed to be continuous.

Problem 1.6.11 (Sp81) Let f : [0,1] — R be continuous. Prove that
there is a real polynomial P(z) of degree < 10 which minimizes (for all
such polynomials)

sup |f(z) — P(z)].

0<z<1

Problem 1.6.12 (Su85) Let f be a real valued continuous function on a
compact interval [a,b]. Given € > 0, show that there is a polynomial p such
that p(a) = f(a), '(a) =0, and |p(z) — f(z)| <€ for z € [a, b].

Problem 1.6.13 (Sp95) For each positive integer n, define f, : R - R
by fo(z) = cos(nz). Prove that the sequence of functions {f.} has no
uniformly convergent subsequence.

Problem 1.6.14 (Fa86) The Arzela—Ascoli Theorem asserts that the se-
quence {fn} of continuous real valued functions on a metric space §} is
precompact (i.e., has a uniformly convergent subsequence) if

(i) Q2 is compact,
(1) sup || fll < oo (where || fu]| = sup{{fn(z)| | z € 2}),

(ii1) the sequence is equicontinuous.
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Give examples of sequences which are not precompact such that: (i) and (ii)
hold but (43) fails; (i) and (i3) hold but (ii) fails; (ii) and (Wi) hold but (i)
fails. Take §2 to be a subset of the real line. Sketch the graph of a typical
member of the sequence in each case.

Problem 1.6.15 (Fa92) Let {f,} be a sequence of real valued C! func-
tions on [0, 1] such that, for all n,

1
/ fulz) dz = 0.
9
Prove that the sequence has a subsequence that converges uniformly on [0, 1].

Problem 1.6.16 (Fa96) Let M be the set of real valued continuous func-
tions f on [0,1] such that f' is continuous on [0, 1], with the norm

Ifil = sup |f(z)[+ sup |f'(z)].
0<z<1 0<z<1

Which subsets of M are compact?

Problem 1.6.17 (Su80) Let (a,) be a sequence of nonzero real numbers.
Prove that the sequence of functions f, : R — R

folz) = ai sin(a,z) + cos(z + a,)

has a subsequence converging to a continuous function.

Problem 1.6.18 (Sp82, Sp93) Let {g,} be a sequence of twice differen-
tiable functions on [0,1] such that ¢,,(0) = g;,(0) = 0 for all n. Suppose also
that |gli(x)| < 1 for all n and all x € [0, 1]. Prove that there is a subsequence
of {gn} which converges uniformly on [0,1].

Problem 1.6.19 (Sp82) Let {f.} be a sequence of continuous functions
from {0,1] to R. Suppose that f.(z) — 0 as n — co for each z € [0,1] and
also that, for some constant K, we have

/01 fulz) dx

1
lim falx)de =07
0

<K <

for all n. Does

n—00
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Problem 1.6.20 (Fa93) Let K be a continuous real valued function on
[0,1] x [0,1]. Let F' be the family of functions f on [0,1] of the form

flz)= /0 9(y)K(z,y)dy

with g a real valued continuous function on [0, 1] satisfying |g| < 1 every-
where. Prove that the family F is equicontinuous.

Problem 1.6.21 (Fa78) Let {g.} be a sequence of Riemann integrable
functions from [0,1] into R such that |g.(z)] <1 for all n,z. Define

Colz) = /0 " on(t)dt.

Prove that a subsequence of {G,} converges uniformly.

Problem 1.6.22 (Su79) Let {f.} be a sequence of continuous maps
[0,1] = R such that

/0 (fu()? dy < 5

for all n. Define g,, : [0,1] - R by

gn(z) = /0 Vv +yfaly) dy.

1. Find a constant K > 0 such that [g,(z)| < K for all n.
2. Prove that a subsequence of the sequence {gn} converges uniformly.

Problem 1.6.23 (Su81) Let {f.} be a sequence of continuous maps
(0,1} = R such that

/O (fa(z) — fm(z))® dz — 0 as n,m — oco.

Let K :[0,1] x [0,1] = R be continuous. Define g, : [0,1] - R by

gn(x) = /0 K(z,y)fn(y) dy.

Prove that the sequence {g,} converges uniformly.

Problem 1.6.24 (Fa82) Let ¢1,¢2,...,%n,... be nonnegative continu-
ous functions on [0,1] such that the limit

1
lim zho,(z) dx

n—00 0
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ezists for every k =0,1,.... Show that the limit

1
lim A f(@2)on(z)dz

7n-—00
exists for every continuous function f on [0, 1].

Problem 1.6.25 (Sp83) Let A1, Az, ..., An, ... be real numbers. Show that

the infinite series
o0 ei/\nz

n2
n=1

converges uniformly over R to a continuous limit function f : R —» C.
Show, further, that the limit

1 /T
A, 57 /_T f(z)dz
exists.

Problem 1.6.26 (Sp85) Define the function ¢ by

Prove that ((z) is defined and has continuous derivatives of all orders in
the interval 1 < z < 0o.

Problem 1.6.27 (Sp85) Let f be continuous on R, and let

Prove that f,(z) converges uniformly to o limit on every finite interval

[a,b].

Problem 1.6.28 (Sp87) Let f be a continuous real valued function on R
satisfying
[f(@) < C/(1+2?),

where C is a positive constant. Define the function F on R by

F(z) = i flz+n).

n=—0oo

1. Prove that F' is continuous and periodic with period 1.
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2. Prove that if G is continuous and periodic with period 1, then
1 e}
/ F(z)G(z)dz = / f(z)G(z)dx .
0 —o0

Problem 1.6.29 (Sp79) Show that for any continuous function
f:[0,1] = R and € > 0, there is a function of the form

g(z) = Z Crzt
k=0

Jor some n € Z, where Cyp,...,C, € Q and |g(z) — f(z)| < & for all z in
[0,1].

1.7 Fourier Series

Problem 1.7.1 (Sp80) Let f : R — R be the unique function such that
f(@)=zif n<z<7and f(z +2nm) = f(z) for alln € Z.

1. Prove that the Fourier series of [ is
i (—1)”+123innx‘
n=1 n
2. Prove that the series does not converge uniformly.

3. For each x € R, find the sum of the series.

Problem 1.7.2 (Su81) Let f : R — R be the function of period 21 such
that f(z) = 2° for —-m <z <.

1. Prove that the Fourier series for f has the form Z‘lx’ b,sinnz and
write an integral formula for b,, (do not evaluate it).

2. Prove that the Fourier series converges for all z.

3. Prove

> 2m
2 _ _

Z b, = 7

n=1

Problem 1.7.3 (Su82) Let f: [0,7] = R be continuous and such that
/ J(x)sin(nz)dz =0
0

for all integers n > 1. Is f(x) is identically 0%
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Problem 1.7.4 (Sp86) Let f be a continuous real valued function on R
such that

flzy=flz+1)= (z+\/_)
for all . Prove that f is constant.

Problem 1.7.5 (Sp88) Does there erist a continuous real valued function
f(z), 0 <z <1, such that

1 1
/ zf(z)dz=1 and / " f(z)dz =0
0 0

forn=10,2,3,4,...2 Give an example or a proof that no such f ezists.
Problem 1.7.6 (Fa80) Let g be continuous and periodic on [—m, 7] and

have Fourier series

oo
ao .
—2— E a, cosne + b, sinne).

Let f be periodic on [—7,w| and satisfy the differential equation

f'(x) + kf(z) = g(x)

where k # n?,n=1,2,3,.... Find the Fourier series of f and prove that it
converges everywhere.

Problem 1.7.7 (Su83) Let f be a twice differentiable real valued function
on [0,2n], with fo z)dz =0 = f(2r) — f(0). Show that

2m 9 27 9
/ mﬂ)MS/ (@) da.
0 0

Problem 1.7.8 (Fa81) Let f and g be continuous functions on R such
that f(z + 1) = f(z), g(z + 1) = g(z), for all x € R. Prove that

1 1 1
lim f() nz)dz:/O f(x)dz/o. g(x)dx.

n—od

1.8 Convex Functions

Problem 1.8.1 (Sp81) Let f : [0,1] = R be continuous with f(0) = 0.
Show there is a continuous concave function g : [0,1] — R such that g(0) =
0 and g(z) > f(x) for all z € [0, 1].
Note: A function g : I — R is concave if

g(tx + (1 —t)y) > tg(z) + (1 - t)g(y)

forallz andy inl and 0 <t < 1.
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Problem 1.8.2 (Sp82) Let f : I — R (where I is an interval of R) be
such that f(x) > 0, ¢ € I. Suppose that e*® f(z) is convez in I for every
real number ¢. Show that log f(x) is convez in I.

Note: A function g : I —» R is convex if

gtz + (1 —t)y) < tg(z) + (1 —t)g(y)
forallz andy in I and\O <t<1.

Problem 1.8.3 (Sp86) Let f be a real valued continuous function on R
satisfying the mean value inequality below:

z+h

1
f(z) < ).

fwdy, zeR, h>0.
Prove:

1. The mazimum of f on any closed interval is assumed at one of the
endpoints.

2. f is conver.

Hint: If f is linear, the inequality above and the convexity one hold and
are, in fact, equalities.
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Multivariable Calculus

2.1 Limits and Continuity

Problem 2.1.1 (Fa94) Let the function f : R® — R™ satisfy the following
two conditions:

(i) f(K) is compact whenever K is a compact subset of R™,

(1t) If {K,} is a decreasing sequence of compact subsets of R™, then
1 1

Prove that f is continuous.

Problem 2.1.2 (Sp78) Prove that a map g : R™ — R™ is continuous only
if its graph is closed in R™ x R™. Is the converse true?
Note: See also Problem 1.2.11.

Problem 2.1.3 (Su79) Let U C R"™ be an open sel. Suppose that the
map h : U — R™ is a homeomorphism from U onto R™, which is uniformly
continuous. Prove U = R™.

Problem 2.1.4 (Sp89) Let f be a real valued function on R? with the
following properties:

1. For each yo in R, the function x — f(z,y0) is continuous.
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2. For each xqg in R, the function y — f(xg,y) is continuous.
3. f(K) is compact whenever K is a compact subset of R2.

Prove that [ is continuous.

Problem 2.1.5 (Sp91) Let f be a continuous function from
B, = {z € R" | ||z|| < 1} into itself. (Here, || - || denotes the Fuclidean
norm.) Assume || f(z)|| < ||z|| for all nonzero x € B,. Let xo be a nonzero
point of By, and define the sequence (x) by setting xy = f(xzx—1). Prove
that limzx; = 0.

Problem 2.1.6 (Su78) Let N be a norm on the vector space R™; that is,
N :R" — R satisfies

N(z) > 0 and N(z)=0 only if =0,
N(z +y) < N(z) + N(y),
N(Az) = AIN(z)

forallz,y e R™ and A € R.
1. Prove that N is bounded on the unit sphere.
2. Prove that N is continuous.

8. Prove that there exist constants A > 0 and B > 0, such that for all
z € R", Alz| < N(z) < Bl|z|.

Problem 2.1.7 (Fa97) A map f:R™ — R" is proper if it is continuous
and f~Y(B) is compact for each compact subset B of R™; f is closed if it
is continuous and f(A) is closed for each closed subset A of R™.

1. Prove that every proper map f : R™ — R"™ is closed.
2. Prove that every one-to-one closed map f: R™ — R™ is proper.

Problem 2.1.8 (Sp83) Suppose that F : R — R" is continuous and
satisfies
|F(z) — F(ll = Mz -yl

for all z,y € R™ and some A > 0. Prove that F is one-to-one, onto, and
has a continuous inverse.
Note: See also Problem 1.2.9.

2.2 Differential Calculus

Problem 2.2.1 (Sp93) Prove that 12—1“3/3 <e*tv2 forz >0, y>0.
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Problem 2.2.2 (Fa86) Let f : R? - R be defined by:

f(z,y) :{ gzz/ssin(y/az:) ZJ{ iig

Determine all points at which f is differentiable and all points at which f
s not differentiable.

Problem 2.2.3 (Sp80, Fa92) Let f : R® — R"™ be continuously differ-
entiable. Assume the Jacobian matriz (0f;/0x;) has rank n everywhere.
Suppose f is proper; that is, f~!(K) is compact whenever K is compact.
Prove f(R™) = R".

Problem 2.2.4 (Sp89) Suppose f is a continuously differentiable function
of R? into R%. Assume that f has only finitely many singular points, and
that for each positive number M, the set {z € R? | | f(2)] < M} is bounded.
Prove that f maps R? onto R2.

Problem 2.2.5 (Fa81) Let f be a real valued function on R™ of class C2.
A point x € R”™ is a critical point of f if all the partial derivatives of f vanish
at r; a critical point is nondegenerate if the n x n matriz

T
811- Ba:j
s nonsingular.

Let z be a nondegenerate critical point of f. Prove that there is an open
neighborhood of T which contains no other critical points (i.e., the nonde-
generate critical points are isolated).

Problem 2.2.6 (SuB0) Let f : R* — R be a function whose partial
derivatives of order < 2 are everywhere defined and continuous.

1. Let a € R™ be a critical point of f (i.e., -%%(a) =0,i1=1,...,n).
Prove that a is a local minimum provided the Hessian matriz

0% f )
(axiaxj

2. Assume the Hessian matriz is positive definite at all z. Prove that f
has, at most, one critical point.

is positive definite at = = a.

Problem 2.2.7 (Fa88) Prove that a real valued C® function f on R?
whose Laplacian,

&Pf | Pf

922 T B2

1s everywhere positive cannot have a local mazimum.
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Problem 2.2.8 (Su82) Let f : R® — R? and assume that 0 is a regular
value of f (i.e., the differential of f has rank 2 at each point of f~1(0)).
Prove that R3\ f~1(0) is arcwise connected.

- Problem 2.2.9 (Sp87) Let the transformation T from the subset
U = {(u,v) | u > v} of R? into R? be defined by T(u,v) = (u+v,u? +v?).

1. Prove that T is locally one-to-one.
2. Determine the range of T, and show that T is globally one-to-one.

Problem 2.2.10 (Fa91) Let f be a C' function from the interval (—1,1)
into R? such that f(0) = 0 and f'(0) # 0. Prove that there is a number ¢
in (0,1) such that || f(¢)|| is an increasing function of t on (0,¢).

Problem 2.2.11 (Fa80) For a real 2x2 matriz

(T ¥
(1)
let | X|| = 22 + y? + 22 + 2, and define a metric by d(X,Y) = | X - Y.
Let ¥ = {X | det(X) = 0}. Let

(4 2)

Find the minimum distance from A to ¥ and ezhibit an S € ¥ that achieves
this minimum.

Problem 2.2.12 (Su80) Let S C R3 denote the ellipsoidal surface de-
fined by
202 + (y = 1)* + (2 —10)* = 1.

Let T C R® denote the surface defined by
1
2= .
2 +y2 +1

Prove that there exist points inp € S, q € T, such that the line pq is
perpendicular to S at p and to T at q.

Problem 2.2.13 (Sp80) Let P» denote the set of real polynomials of de-
gree < 2. Define the map J : P, — R by

J(f) = /O f(2)? de.

Let Q ={f € P, | f(1) =1}. Show that J attains a minimum value on Q
and determine where the minimum occurs.
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Problem 2.2.14 (Fa78) Let W C R" be an open connected set and f a
real valued function on W such that all partial derivatives of f are 0. Prove
that f is constant.

Problem 2.2.15 (Sp77) In R?, consider the region A defined by
22 + 9% > 1. Find differentiable real valued functions f and g on A such
that ‘%ﬁ = g—% but there is no real valued function h on A such that f = %;i
and g = Z&.

Hint: Why would Green’s Theorem fail to apply?

Problem 2.2.16 (Sp77) Suppose that u(z,t) is a continuous function of
the real variables x and t with continuous second partial derivatives. Suppose
that u and its first partial dertvatives are periodic in x with period 1, and
that

Pu  8%u

dz2 82

18w\ | [ou)’
is a constant independent of t.

Problem 2.2.17 (Su77) Let f(z,t) be a C* function such that 4L = 2L
Suppose that f(x,0) > 0 for all x. Prove that f(z,t) > 0 for all z and t.

Prove that

Problem 2.2.18 (Fa77) Let f:R" — R have continuous partial deriva-
tives and satisfy

of

Oz,

(z)
forallz = (z1,...,2,), 5= 1,.. Jn Prove that
(@) ~ fy)l < VaKl|z -yl
(where |[ul| = /v + -+ u2 ).

Problem 2.2.19 (Fa83, Sp87) Let f : R"\ {0} — R be a function which
is continuously differentiable and whose partial derivatives are uniformly
bounded:

of

8_.’1,‘2'(:1:17 .. .,iL‘n)

<K

<M

forall (zy,...,z,) # (0,...,0). Show that if n > 2, then f can be extended
to a continuous function defined on all of R™. Show that this is false if
n =1 by giving a counterezample.

Problem 2.2.20 (Sp79) Let f: R™\ {0} — R be differentiable. Suppose

2% 5a, )
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exists for each j =1,... n.
1. Can f be extended to a continuous map from R™ to R?
2. Assuming continuity at the origin, is [ differentiable from R™ to R?

Problem 2.2.21 (Sp82) Let f: R? — R have directional derivatives in
all directions at the origin. Is f differentiable at the origin? Prove or give
a counterexample.

Problem 2.2.22 (Fa78) Let f : R™ — R have the following properties: f
is differentiable on R™\ {0}, f is continuous at 0, and

fori=1,...,n. Prove that [ is differentiable at 0.

Problem 2.2.23 (Su78) Let U < R"™ be a conver open set and
f U = R™ a differentiable function whose partial derivatives are uni-
formly bounded but not necessarily continuous. Prove that f has a unique
continuous extension to the closure of U.

Problem 2.2.24 (Fa78) 1. Show that if u,v : R? — R are continu-

ously differentiable and g;—; = %, then v = gﬁ, v = %5 for some
f:RZ R,

2. Prove there is no f : R?\ {0} — R such that

g__*—y and ?i-————m
dr x4+ y? Oy  x2+q?

Problem 2.2.25 (Su79) Let f : R3 — R be such that
J7H0) = {z e R?| |lz| = 1}.

Suppose f has continuous partial derivatives of orders < 2. Is there ay € R3
with [lyll < 1 such that

62f 82 82f
a—ﬁ(y) + axg(y) T 52

() 20 ?

Problem 2.2.26 (Sp92) Let f be a differentiable function from R™ to R™.
Assume that there is a differentiable function g from R™ to R having no
critical points such that g o f vanishes identically. Prove that the Jacobian
determinant of f vanishes identically.

Problem 2.2.27 (Fa83) Let f,g : R — R be smooth functions with
f(0) =0 and f'(0) # 0. Consider the equation f(z) = tg(z), t € R.
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1. Show that in a suitably small interval |t| < 6, there is a unique con-
tinuous function z(t) which solves the equation and satisfies £(0) = 0.

2. Derive the first order Taylor expansion of x(t) about t = 0.
Problem 2.2.28 (Sp78) Consider the system of equations

3x+y—z+ut=0
r—y+22+u=0
20 +2y —32+2u=0

1. Prove that for some € > 0, the sysiem can be solved for (z,y,u) as
o function of z € [—¢,¢], with (0) = y(0) = w(0) = 0. Are such
functions z(2), y(z) and u(z) continuous? Differentiable? Unique?

2. Show that the system cannot be solved for (z,y,z) as a function of
u € [6,8], for all § > 0.

Problem 2.2.29 (Sp81) Describe the two regions in (a, b)-space for which
the function

fap(z,y) = ay® + b
restricted to the circle x?+y? = 1, has exactly two, and exactly four critical
points, respectively.

Problem 2.2.30 (Fa87) Let u and v be two real valued C! functions on
R? such that the gradient Vu is never 0, and such that, at each point, Vv
and Vu are linearly dependent vectors. Given py = (g, yo) € R?, show that
there is a C! function F of one variable such that v(z,y) = F (u(x,y)) in
some neighborhood of po.

Problem 2.2.31 (Fa94) Let f be a continuously differentiable function
from R? into R. Prove that there is a continuous one-to-one function g
from [0, 1] into R? such that the composite function f o g is constant.

Problem 2.2.32 (Su84) Let f : R — R be C! and let
u= f(z)
v=—y+zf(z).

If f'(xo) # 0, show that this transformation is locally invertible near (zq, yo)
and the inverse has the form

z = g(u)
y = —v + ug(w).

Problem 2.2.33 (Su79) Let X be the space of orthogonal real n x n ma-
trices. Let vg € R™. Locate and describe the elements of X, where the map

f X — R, f(A) = <’U(),A’U0)

takes its mazimum and minimum values.
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Problem 2.2.34 (Su78) Let M, ., denote the vector space of real nxn
matrices. Define a map f : Myxn — Mpxn by f(A) = A2, Find the deriva-
tive of f at B € Mpx,.

Problem 2.2.35 (Su82) Let Mayo be the four-dimensional vector space
of all 2x 2 real matrices and define f : Moxa — Mays by f(X) = X2.

1. Show that f has a local inverse near the point

- (11)

2. Show that f does not have a local inverse near the point

1 0
(3 %)
Problem 2.2.36 (Fa80) Show that there is an € > 0 such that if A is any
real 2x 2 matriz satisfying |a;;| < e for all entries a;; of A, then there is a

real 2x 2 matriz X such that X2 + X' = A, where X' is the transpose of
X. Is X unique?

Problem 2.2.37 (Sp96) Let Myyo be the space of 2x 2 matrices over R,
identified in the usual way with R*. Let the function F from Mays into
My o be defined by

F(X)=X+ X2
Prove that the range of F' contains a neighborhood of the origin.

Problem 2.2.38 (Fa78) Let M, ., denote the vector space of n x n real
matrices (identified with R™ ). Prove that there are neighborhoods U and
V in M,xn Of the identity matriz such that for every A in U, there is a
unique X in'V such that X* = A.

Problem 2.2.39 (Sp79, Fa93) Let M, ., denote the vector space of n x
n real matrices for n > 2. Let det : M, x, — R be the determinant map.

1. Show that det is C°.

2. Show that the derivative of det at A € My wn 1s zero if and only if A
has rank <n — 2.

Problem 2.2.40 (Fa81) Let A = (a;;) be an n X n matriz whose entries
a;; are real valued differentiable functions defined on R. Assume that the
determinant det(A) of A is everywhere positive. Let B = (b;;) be the inverse
matriz of A. Prove the formula

d “\ daij

=1
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2.3 Integral Calculus

Problem 2.3.1 (Sp78) What is the volume enclosed by the ellipsoid

Problem 2.3.2 (Sp78) Ewaluate

/ e Y’ dzdy,
A

where A = {(z,y) € R? |22 +y% < 1}.

Problem 2.3.3 (Sp98) Given the fact that / e % dr = V7, evaluate

—0Q

I= /oo /00 e~ (=" Hu=al 1) gy dy .

Problem 2.3.4 (Sp80) Let S = {(z,y,2) € R® | 22 +9? +2% = 1} denote
the unit sphere in R3. Evaluate the surface integral over S:

the integral

/(12+y+z)dA.
S

Problem 2.3.5 (Sp81) Let 7, 7, and k be the usual unit vectors in R3.
Let F denote the vector field

(2 + y — AT + 3zy7+ (222 + 22k,
1. Compute V x F (the curl of F).

2. Compute the integral of V x F over the surface =2 + y2 + 22 = 16,
z>0.

Problem 2.3.6 (Fa86) Ewvaluate

// (3 — 32y?) dady,
R

R={(y)eR|(z+1)?+42<9, (-1 +4*>>1}.

where

Problem 2.3.7 (Sp91) Let the vector field F in R3 have the form

F(T) = g(HTH)T (T # (0707 0))7
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where g is a real valued smooth function on (0,00) and || - | denotes the
FEuclidean norm. (F' is undefined at (0,0,0).) Prove that

/F-ds=0
c

for any smooth closed path C in R3 that does not pass through the origin.

Problem 2.3.8 (Fa91) Let B denote the wunit ball of R3,
B={reR||rl| <1}. Let J = (J1,J2, J3) be a smooth vector ﬁeld
on R3 that vanishes outside of B and satisfies V-J=0.

1. For f a smooth, scalar-valued function defined on a neighborhood of

B, prove that
/ (ﬁf) . fdxdydz =0.
B

2. Prove that
/ Jidzdydz = 0.
B

Problem 2.3.9 (Fa94) Let D denote the open unit disc in R?. Let u be
an eigenfunction for the Laplacian in D; that is, a real valued function of
class C? defined in D, zero on the boundary of D but not identically zero,
and salisfying the differential equation

Pu 0%

W‘Fa—?ﬁ:)\u,

where X\ is a constant. Prove that

(%) / |grad u|* dedy + )\// u?dzdy =0,
D D

and hence that A < 0.

Problem 2.3.10 (Sp92) Let f be a one-to-one C' map of R? into R3,
and let J denote its Jacobian determinant. Prove that if xg is any point of
R® and Q,(xq) denotes the cube with center xo, side length v, and edges
parallel to the coordinate azes, then

(o)l = lim r~*vol (f(Qr(@0)) < lim sup W

Here, | - || is the Euclidean norm in R3.



3

Differential Equations

3.1 First Order Equations

Problem 3.1.1 (Fa93) Let n be an integer larger than 1. Is there a dif-
ferentiable function on [0,00) whose derivative equals its n'" power and
whose value at the origin is positive?

Problem 3.1.2 (Fa77) Show that the differential equation =’ = 3z? has
no solution such that z(0) = 1 and z(t) is defined for all real numbers t.

Problem 3.1.3 (Sp78) Consider the differential equation

d
d_atc =2 +t*, z(0)=1.

1. Prove that for some b > 0, there is a solution defined for t € (0,b].
2. Find an explicit value of b having the property in Part 1.
3. Find a ¢ > 0 such that there is no solution on [0, c].

Problem 3.1.4 (Sp78) 1. For which real numbers a > 0 does the dif-
ferential equation

d
(%) d_atc =z% z(0)=0,

have a solution on some interval [0,b], b > 07
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2. For which values of a are there intervals on which two solutions of
(%) are defined?

Problem 3.1.5 (Su78) Solve the differential equation ¢’ = 2g, ¢(0) = a,
where a is a real constant.

Problem 3.1.6 (Fa78) Solve the differential equation

d

Eg =%y —-32%, y0)=1.

Problem 3.1.7 (Sp79) Find all differentiable solutions to the differeniial
equalion

¥ =vy  y0)=0.
Problem 3.1.8 (Sp80) Consider the differential equation
o = -z
14e®

1. Find all its constant solutions.
2. Discuss lim;_.o 2(t), where x(t) is the solution such that x(0) = 3-

Problem 3.1.9 (Su77, Su80, Sp82, Sp83) Prove that the initial value

problem

%?— =3z +85cosx, x(0)=77,

has a solution z(t) defined for all t € R.

Problem 3.1.10 (Fa82) Let f: R — R be a continuous nowhere vanish-
ing function, and consider the differential equation

dy
0 Z=iw
1. For each real number ¢, show that (*x) has a unique, continuously
differentiable solution y = y(z) on a neighborhood of 0 which satisfies
the initial condition y(0) = c.

2. Deduce the conditions on f under which the solution y exists for all
z € R, for every initial value c.

Problem 3.1.11 (Fa82) Find all pairs of C*° functions x(t) and y(t) on
R satisfying
o' (t) = 2z(t) — y(2), Y (t) = z(t).

Problem 3.1.12 (Sp83) Find all solutionsy : R — R to

dy

= =wy-2)", yO)=0.
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Problem 3.1.13 (Su83) Find all real valued C* solutions u of the differ-
ential equation

x@+u:x (-l<z<1).
dx

Problem 3.1.14 (Fa83) 1. Let u(t) be a real valued differentiable func-
tion of a real variable t which satisfies an inequality of the form

w'(t) <au(t), t>0, wu(0)<h,

where a and b are positive constants. Starting from first principles,
derive an upper bound for u(t) for t > 0.

2. Let z(t) = (x1(t), z2(t), ..., 2, (t)) be a differentiable function from
R to R™ which satisfies a differential equation of the form

where [ : R™ — R"™ is a continuous function. Assuming that f satis-
fies the condition

(F@), vy <llli?, yeR"

(where (-,-) and || - || denote the Euclidean inner product and norm),
derive an inequality showing that the norm |z(t)|| grows, at most,
exponentially.

Problem 3.1.15 (Sp84) Consider the equation

@ =y —sin

dr ) Y.
Show that there is an € > 0 such that if |yo| < €, then the solution y = f(x)
with f(0) = yo satisfies

lim f(z)=0.

r——00

Problem 3.1.16 (Fa84) Consider the differential equation

dy y
dr T T
Prove
1. For each n = 1,2,..., there is a unique solution y = fn(x) defined

for 0 <z <1 such that f,(0) = 1/n.

2. lim, o0 fn(1) = 0.
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Problem 3.1.17 (Fa85) Let y(t) be a real valued solution, defined for
0 <t < oo of the differential equation

&y

_ oY —3y —5y
=e 7 —e +e .
dt

Show that y(t) — +oo ast — 400.

Problem 3.1.18 (Fa86) Prove the following theorem, or find a coun-
terexample: If p and q are continuous real valued functions on R such that
lg(z)| < |p(z)| for all z, and if every solution f of the differential equation

f'+af=0

satisfies limg o f(z) = 0, then every solution f of the differential equa-
tion
f'+pf=0

satisfies lim,_, .o f(z) = 0.

Problem 3.1.19 (Fa86) Discuss the solvability of the differential equa-
tion

(e” siny)(y ) + (¢” cosy)y + €Y tanz = 0

with the initial condition y(0) = 0. Does a solution erist in some interval
about 07 If so, is it unique?

Problem 3.1.20 (Fa92) Let f and g be positive continuous functions on
R, with g < f everywhere. Assume the initial value problem

dx
= 1@, =(0)=0,

has a solution defined on all of R. Prove that the initial value problem

d

= =9(@, a(0)=0,

also has a solution defined on all of R.

Problem 3.1.21 (Sp93) Prove that every solution z(t) (¢ > 0) of the

differential equation

dzr 2 6
— =z’ -z
dt

with 2(0) > 0 satisfies lim;_o z(t) = 1.

Problem 3.1.22 (Sp95) Let f : R — R be a bounded continuously differ-
entiable function. Show that every solution of y'(z) = f (y(z)) is monotone.
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Problem 3.1.23 (Fa87) Find a curve C in R?, passing through the point
(3,2), with the following property: Let L(xo,yo) be the segment of the tan-
gent line to C at (xg,yo) which lies in the first quadrant. Then each point
(zo, %) of C is the midpoint of L(xo,yo)-

3.2 Second Order Equations

Problem 3.2.1 (Sp97) Suppose that f'(x) = (z* — 1) f(z) for allx € R,
and that f(0) =1, f'(0) = 0. Show that f(z) — 0 as x — oo.

Problem 3.2.2 (Sp77) Find the solution of the differential equation
y' =2 +y=0,
subject to the conditions
y(0)=1, y(0)=1
Problem 3.2.3 (Fa77) Find all solutions of the differential equation

d*z 2d:z:+ _ sint
iz g rrTsn

subject to the condition z(0) =1 and z'(0) = 0.
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Problem 3.2.4 (Su79) Let z : R — R be a solution to the differentia
equation
52" +10z' + 6z = 0.

Prove that the map f : R - R,

z(t)?

f(t):m

attains a maximum value.

Problem 3.2.5 (Su84) Letx(t) be the solution of the differential equation
z"(t) + 8z'(t) + 25z(t) = 2cost

with initial conditions £(0) = 0 and z'(0) = 0. Show that for suitable
constants a and 6,

lim (z(t) — acos(t —6)) = 0.

t—o0

Problem 3.2.6 (Fa79, Su81, Fa92) Let y = y(z) be a solution of the
differential equation y' = —|y| with —00 < z < 00, y(0) = 1 and y/(0) = 0.

1. Show that y is an even function.
2. Show that y has exactly one zero on the positive real axis.

Problem 3.2.7 (Fa80) Consider the differential equation 2" +z'+1z° = 0
and the function f(z,z') = (x + z')? + (z')? + 4.

1. Show that f decreases along trajectories of the differential equation.

2. Show that if z(t) is any solution, then (z(t),z'(t)) tends to (0,0) as
t — oco.

Problem 3.2.8 (Fa95) Determine all real numbers L > 1 so that the
boundary value problem

2y (z) + y(z) =0, 1<z<L

has a nonzero solution.

Problem 3.2.9 (Fa83) For which real values of p does the differential
equation
y' +2py +y=3

admit solutions y = f(z) with infinitely many critical points?
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Problem 3.2.10 (Sp87) Let p, q and r be continuous real valued func-
tions on R, with p > 0. Prove that the differential equation

p(t)z"(t) + q(t)x'(t) + r(t)z(t) =0

is equivalent to (i.e., has ezactly the same solutions as) a differential equa-
tion of the form

(a(t)a'(t))" + b(t)z(t) = 0,
where a is continuously differentiable and b is continuous.

Problem 3.2.11 (Fa93) Let the function x(t) (—oo < t < ) be a solu-
tion of the differential equation
d’*z dz
— —2b— =0
@ Ca e
such that £(0) = z(1) = 0. (Here, b and c are real constants.) Prove that
z(n) = 0 for every integer n.

Problem 3.2.12 (Sp93) Let k be a positive integer. For which values of
the real number ¢ does the differential equation
d’*z dz

W—2Cd—t+$=0

have a solution satisfying x(0) = xz(2wk) =09

Problem 3.2.13 (Sp85) Let h > 0 be given. Consider the linear differ-
ence equation

y((n+2)h) —2y((n+ k) +y(nh) _

(+) 12 —y(nh), n=01,2,....

(Note the analogy with the differential equation y" = —y.)

1. Find the general solution of (x) by trying suitable exponential substi-
tutions.

2. Find the solution with y(0) = 0 and y(h) = h. Denote it by
Sh(nh), n= 1,2, e

3. Let x be fixed and h = z/n. Show that

lim S;/,(nz/n) = sin(z).
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3.3 Higher Order Equations

Problem 3.3.1 (Su78) Let E be the set of maps f : R — R which are
solutions to the differential equation f"' + ' —2f = 0.

1. Prove that E is a vector space and find its dimension.

2. Let Ey C E be the subspace of solutions g such that lim;_,o, g(t) = 0.
Find g € Eqy such that g(0) =0 and ¢'(0) = 2.

Problem 3.3.2 (Sp87) Let V be a finite-dimensional linear subspace of
C>=(R) (the space of complezx valued, infinitely differentiable functions).
Assume that V is closed under D, the operator of differentiation (i.e.,
f eV = Df € V). Prove that there is a constant coefficient differen-

tial operator
k13
L= Z aka
k=0

such that V consists of all solutions of the differential equation Lf = 0.

Problem 3.3.3 (Fa94) 1. Find a basis for the space of real solutions
of the differential equation

2. Find a basis for the subspace of real solutions of () that satisfy

t_l}1+noo:c(t) =0.
Problem 3.3.4 (Sp94) 1. Suppose the functions sint and sin2t are
both solutions of the differential equation

- d*z
> ogE =0,

k=0

where cg, ...,c, are real constants. What is the smallest possible
order of the equation? Ezplain. Write doum an equation of minimum
order having the given functions as solutions.

2. Will the answers to Part 1 be different if the constants cy, ..., c, are
allowed to be complex? Explain.

Problem 3.3.5 (Sp95) Let y : R — R be a three times differentiable
function satisfying the differential equation y"' — y = 0. Suppose that
lim, oo ¥(z) = 0. Find real numbers a, b, ¢, and d, not all zero, such

that ay(0) + y'(0) + cy”’(0) =d.
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3.4 Systems of Differential Equations

Problem 3.4.1 (Sp79) Consider the system of differential equations:

dz_ +tz
at Y

d
d—?::z—}—t?z
dz Coté
dt_z .

Prove there exists a solution defined for all t € [0, 1], such that

1 23 z(0) 0
45 6 y© | =1 o
7 8 9 2(0) 0

and also .
/0 (z(8)* +y(t)? + 2(t)*) dt = 1.

Problem 3.4.2 (Su79) Find real valued functions of a real variable, x(t),
y(t), and z(t), such that

/ ! !

r =Y, y =2z z =Yy

and
z(0) =1, y(0) = 2, 2(0) = 3.

Problem 3.4.3 (Fa79, Su85) Solve the differential equations
dx

@ -3z + 10y,
dy

—= = -3z + 8y.
dt 3z Y

Problem 3.4.4 (Su80) Consider the differential equation

_ dy _

dt dt
Let z(t) and y(t) be a solution defined for all t > 0 with z(0) > 0 and
y(0) > 0. Prove that z(t) and y(t) are bounded.

-z +y, log(20 + z) — .

Problem 3.4.5 (Sp81) Consider the system of differential equations

d
d—j=y+w(1—12~y2)

d
d—lt/:—~z+y(1~m2—y2).
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1. Show that for any z¢ and yo, there is a unique solution (x(t),y(t))
defined for allt € R such that £(0) = zo, y(0) = yo.

2. Show that if xg # 0 and yo # 0, the solution referred to in Part 1
approaches the circle 2 + 3% =1 as t — oo.

Problem 3.4.6 (Fa81) Consider an autonomous system of differential

equations
dx i

dt
where F = (Fy,..., F,) : R" — R" is a C! vector field.

= Fl‘(.’L'l, .. .,11,'"),

1. Let U and V be two solutions on a < t < b. Assuming that
(DF(x)z,2) <0

for all z, 2 in R™, show that |U(t) — V(t)|* is a decreasing function
of t.

2. Let W(t) be a solution defined fort > 0. Assuming that
(DF(z)z,2) < —|2|%,
show that there exists C € R™ such that
rl—lglo W(t) =C.
Problem 3.4.7 (Fa81) Let V : R® — R be a C! function and consider
the system of second order differential equations

z/(t) = fi(z(t)), 1<i<nm,

where oV
Let z(t) = (z1(t), ..., x.(t)) be a solution of this system on a finite interval
a<t<hb.
1. Show that the function
1
H(t) = 5(@'(8), @' (t) + V(=2(1))

s constant fora <t < b.

2. Assuming that V(z) > M > —oo for all x € R", show that z(t),
z'(t), and =" (t) are bounded on a <t < b, and then prove all three
limits

limz(t), limz'(t), limz"(¢)

t—b t—b t—b

exist.
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Problem 3.4.8 (Sp84) Show that the system of differential equations

al 010 T
a——y:200 Yy
t 00 3 z

has a solution which tends to oo as t — —oo and tends to the origin as
t — 4o00.

Problem 3.4.9 (Sp91) Let z(t) be a nontrivial solution to the system

dr
@ _ 4
dt -
where
1 6 1
A=| -4 4 11
-3 -9 8
Prove that ||z(t)| is an increasing function of t. (Here, || - || denotes the

Euclidean norm.)

Problem 3.4.10 (Su84) Consider the solution curve (x(t),y(t)) to the
equations

ds 1

a% =1+ izzsiny
Y _ 3 g2

dt

with initial conditions £(0) = 0 and y(0) = 0. Prove that the solution must
cross the line x = 1 in the zy plane by the time t = 2.

Problem 3.4.11 (Fa84) Consider the differential equation

d
d_:::y, %:—ay——zsmzs, where a > Q.

1. Show that

6

2 4

Ly, r .z
F(z,y) = T T T TG
decreases along solutions.

2. Show that for any € > 0, there is a 6§ > 0 such that whenever
I (z(0), y(0)) || < 6, there is a unique solution (x(t), y(t)) of the given
equations with the initial condition (z(0),y(0)) which is defined for
all t > 0 and satisfies || (z(t),y(t)) || < e.



50 3. Diflerential Equations

Problem 3.4.12 (Sp86) For A a real number, find all solutions of the
integral equations

plz) ="+ )\/ e p(y)dy, 0<z<l1,
0

1
Y(z) =" + )\/ e(z‘y)w(y) dy, 0<z<]1.
0

Problem 3.4.13 (Sp86) Let V be a finite-dimensional vector space (over
C ) of C* complex valued functions on R (the linear operations being de-
fined pointwise). Prove that if V is closed under differentiation (i.e., if f'(z)
belongs to V whenever f(z) does), then V is closed under translations (i.e.,
f(z + a) belongs to V whenever f(z) does, for all real numbers a).

Problem 3.4.14 (Fa88) Let the real valued functions fi,..., foy1 on R
satisfy the system of differential equations

fllc+1 +fllc = (k+1)fk+l - kfk7 k= 17"')”
f7lx+1 = _(n + l)fn+1-
Prove that for each k,
Jim fi.(2) = 0.
Problem 3.4.15 (Fa91) Consider the vector differential equation
dz(t)
dt

= A(t)z(t)

where A is a smooth n x n function on R. Assume A has the property that
(A(t)y,y) < cllyll? for all y in R™ and all t, where c is a fired real number.
Prove that any solution z(t) of the equation satisfies (|z(t)|| < e||z(0){| for
allt > 0.

Hint: Consider first the case n = 1.

Problem 3.4.16 (Sp94) Let W be a real 3x 3 antisymmetric matrix (i.e.,
Wt = —W). Let the function

1‘1(t)
X(t) = :L‘g(t)
z3(t)

be a real solution of the vector differential equation dX /dt = WX.
1. Prove that || X(t)||, the Euclidean norm of X(t), is independent of t.

2. Prove that if v is a vector in the null space of W, then X(t) - v is
independent of t.
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3. Prove that the values X(t) all lie on a fized circle in R3.

Problem 3.4.17 (Sp80) For each t € R, let P(t) be a symmetric real
n X n matriz whose entries are continuous functions of t. Suppose for all ¢
that the eigenvalues of P(t) are all < —1. Let z(t) = (z1(t), ..., Zn(t)) be
a solution of the vector differential equation

dz

Prove
lim z(t) = 0.
t—o0

Hint: First prove that if u(t) > 0 and v'(t) < —u(t) for all t, then u(t) — 0
as t — oo.

Problem 3.4.18 (Sp89) Let

00

SO~ O
oo oo
ococCc o
SO O
SO~ O
o= oo

00
10
01

Find the general solution of the matriz differential equation dX/dt = AXB
for the unknown {x4 matriz function X(t).
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Metric Spaces

4.1 Topology of R"

Problem 4.1.1 (Sp86, Sp94, Sp96) Let K be a compact subset of R™
and {B;} a sequence of open balls that covers K. Prove that there is a
positive number € such that each e-ball centered at a point of K is contained
in one of the balls B;.

Problem 4.1.2 (Su81) Prove or disprove: The set Q of rational numbers
is the intersection of a countable family of open subsets of R.

Problem 4.1.3 (Fa77) Let X C R be a nonempty connected set of real
numbers. If every element of X is rational, prove X has only one element.

Problem 4.1.4 (SuB0) Give an example of a subset of R having uncount-
ably many connected components. Can such a subset be open? Closed?

Problem 4.1.5 (Sp83) Show that the interval [0, 1] cannot be written as
a countably infinite disjoint union of closed subintervals of [0, 1].

Problem 4.1.6 (Su78) Let X and Y be nonempty subsets of R™. Define
dX,Y)=inf{|lz—y| |z € X,y €Y}
1. Suppose X contains only one point x, and Y is closed. Prove
d(X,Y) = [z~

for some y €Y.
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2. Suppose X is compact and Y is closed. Prove
forsomere X, yeV.

3. Show by erxample that the conclusion of Part 2 can be false if X and
Y are closed but not compact.

Problem 4.1.7 (Sp82) Let S C R™ be a subset which is uncountable.
Prove that there is a sequence of distinct points in S converging to a point
of S.

Problem 4.1.8 (Fa89) Let X C R™ be a closed set and r a fized positive
real number. Let Y = {y e R"||x —y| =r for some x € X}. Show that Y
is closed.

Problem 4.1.9 (Sp92) Let A be a closed infinite subset of R™. Prove that
there is a countable set whose closure is A.

Problem 4.1.10 (Fa86) Let {U1,Us,...} be a cover of R™ by open sets.
Prove that there is a cover {V1,Va,...} such that

1. V; C Uj for each j;
2. each compact subset of R™ is disjoint from all but finitely many of the

V.

Problem 4.1.11 (Sp87) A standard theorem states that a continuous real
valued function on a compact set is bounded. Prove the converse: If K is a
subset of R™ and if every continuous real valued function on K is bounded,
then K is compact.

Problem 4.1.12 (Su77) Let A C R™ be compact, z € A; let (z;) be a
sequence in A such that every convergent subsequence of (x;) converges to
x.

1. Prove that the entire sequence (r;) converges.

2. Give an example to show that if A is not compact, the result in Part 1
is not necessarily true.

Problem 4.1.13 (Fa89) Let X C R" be compact and let f : X — R be
continuous. Given ¢ > 0, show there is an M such that for all z,y € X,

1f(z) — f)| < Mz —y| +e.

Problem 4.1.14 (Su78) Let {S,} be a family of connected subsets of R?
all containing the origin. Prove that |, S, is connected.
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Problem 4.1.15 (Fa79) Consider the following properties of a map
fR* - R

1. f is continuous.
2. The graph of f is connected in R™ x R.
Prove or disprove the implications 1 = 2, 2 = 1.

Problem 4.1.16 (SpB2) Prowve or give a counterezample: Every connected,
locally pathwise connected set in R™ is pathwise connected.

Problem 4.1.17 (Sp81) The set of real Ix3 symmelric matrices is a
real, finite-dimensional vector space isomorphic to RS. Show that the sub-
set of such matrices of signature (2,1) is an open connected subspace in the
usual topology on RS,

Problem 4.1.18 (Fa78) Let M, «, be the vector space of real n x n ma-

trices, identified with R . Let X C M, x. be a compact set. Let S C C
be the set of all numbers that are eigenvalues of at least one element of X.
Prove that S is compact.

Problem 4.1.19 (Su81) Let SO(3) denote the group of orthogonal trans-
formations of R® of determinant 1. Let Q C SQO(3) be the subset of sym-
metric transformations # I. Let P? denote the space of lines through the
origin in R3.

1. Show that P? and SO(3) are compact metric spaces (in their usual
topologies).

2. Show that P? and @ are homeomorphic.

Problem 4.1.20 (Fa83) Let m and n be positive integers, with m < n.
Let M, xn be the space of linear transformations of R™ into R™ (considered
as n x m matrices) and let L be the set of transformations in My, x, which
have rank m.

1. Show that L is an open subset of M,,x,.

2. Show that there is a continuous function T : L — M,,«x, such that
T(A)A = I,, for all A, where I, is the identity on R™.

Problem 4.1.21 (Fa91) Let M, x. be the space of real nxn matrices.
Regard it as a metric space with the distance function

d(A,B) =Y lai; — by (A = (ai;), B = (bij)) -

i,j=1

Prove that the set of nilpotent matrices in My, «,, s a closed set.
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4.2 General Theory

Problem 4.2.1 (Fa93) Let X be a metric space and (z,) a convergent
sequence in X with limit xo. Prove that the set C = {z9,21,%2,...} is
compact.

Problem 4.2.2 (Sp79) Prove that every compact metric space has a count-
able dense subset.

Problem 4.2.3 (Fa80) Let X be a compact metric space and f: X — X
an isometry. Show that f(X) = X.

Problem 4.2.4 (Sp97) Let M be a metric space with metric d. Let C be
a nonempty closed subset of M. Define f: M — R by
f(z) = inf{d(z,y) |y € C}.

Show that f is continuous, and that f(z) =0 if and only if z € C.
Problem 4.2.5 (Su84) Let C'/3 be the set of real valued functions f on
the closed interval [0, 1] such that

1. f(0) = 0;

2. || fll is finite, where by definition

151 =sup { HO T o

Verify that ||-|| is a norm for the space C*/3, and prove that C'/3 is complete
with respect to this norm.

Problem 4.2.6 (Sp87) Let F be a uniformly bounded, equicontinuous
family of real valued functions on the metric space (X,d). Prove that the
function

g(z) =sup{f(z) | f € F}

18 continuous.

Problem 4.2.7 (Fa91) Let X and Y be metric spaces and f a continuous
map of X into Y. Let Ky, K5, ... be nonempty compact subsets of X such
that K, 11 C K, for alln, and let K = (| Ky. Prove that f(K) ={) f(Ky).

Problem 4.2.8 (Fa92) Let (X,,d1) and (X2,d2) be metric spaces and
f: X1 — X3 a continuous surjective map such thatd;(p,q) < do(f(p), f(q))
for every pair of points p,q in X;.
1. If X, is complete, must Xo be complete? Give a proof or a counterez-
ample.

2. If X5 is complete, must X; be complete? Give a proof or a counterez-
ample.
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4.3 Fixed Point Theorem

Problem 4.3.1 (Fa79) An accurate map of California is spread out flat
on a table in Fvans Hall, in Berkeley. Prove that there is exactly one point

on the map lying directly over the point it represents.

Problem 4.3.2 (FaB87) Define a sequence of positive numbers as follows.
Let 79 > 0 be any positive number, and let 41 = (1+ zn) L. Prove that

this sequence converges, and find its limit.

Problem 4.3.3 (Su80) Let f: R — R be monotonically increasing (per-
haps discontinuous). Suppose 0 < f(0) and f(100) < 100. Prove f(z) =z

for some x.
Problem 4.3.4 (Su82, Sp95) Let K be a nonempty compact set in a
metric space with distance function d. Suppose that o: K — K satisfies

d(p(x), ¢(y)) < d(z,y)
SJor all x # y in K. Show there exists precisely one point © € K such that
z = p(z).
Problem 4.3.5 (Fa82) Let K be a continuous function on the unit square

0 < z,y <1 satisfying |K(z,y)| <1 for aell z and y. Show that there is a
continuous function f(z) on [0, 1] such that we have

f(z) + /0 K(z,9)f(y)dy = €.

Can there be more than one such function f?

Problem 4.3.6 (Fa88) Let g be a continuous real valued function on [0, 1].
Prove that there exists a continuous real valued function f on [0, 1] satis-

fying the equation
T
1@ - [ 1= dt=g(a).
0
Problem 4.3.7 (Su84) Show that there is a unique continuous function

f:10,1 = R such that
' fy)

f(z) =sinz + | T

Problem 4.3.8 (Fa85, Sp98) Let (M, d) be a nonempty complete metric
space. Let S map M into M, and write S% for S o S; that is, S%(z) =
S (S(x)). Suppose that S? is astrict contraction; that is, there is a constant
A < 1 such that for all points z,y € M,d (5*(z), S*(y)) < Ad(z,y). Show
that S has a unique fized point in M.
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Complex Analysis

5.1 Complex Numbers

Problem 5.1.1 (Fa77) If a and b are complex numbers and a # 0, the
set ab consists of those complex numbers ¢ having a logarithm of the form
ba, for some logarithm a of a. (That is, €™ = c and e* = a for some
complex number a.) Describe set a® whena=1 and b=1/3 +i.

Problem 5.1.2 (Su77) Write all values of i* in the form a + bi.

Problem 5.1.3 (Sp85) Show that a necessary and sufficient condition for
three points a, b, and ¢ in the complex plane to form an equilateral triangle
1s that
232, .2 _
a®+b°+c° =bc+ca+ ad.

Problem 5.1.4 (Fa86) Let the points a, b, and ¢ lie on the unit circle of
the complex plane and satisfy a+b+c = 0. Prove that a, b, and ¢ form the
vertices of an equilateral triangle.

Problem 5.1.5 (Sp77) 1. Evaluate P,,_1(1), where P,,_(x) is the poly-

nomial
" -1

rz—1

Pn‘l(.’l,‘) =

2. Consider a circle of radius 1, and let Q1,Q2, ..., Q@ be the vertices
of a regular n-gon inscribed in the circle. Join Q1 to Q2,Qs,...,Qx
by segments of a straight line. You obtain (n— 1) segments of lengths
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Az, Agy -« -, Ap. Show that

ﬁ/\i = n.
=2

Problem 5.1.6 (Sp90) Let 2y, 22, . - ., 2z, be complex numbers. Prove that
there exists a subset J C {1,2,...,n} such that

sz > ﬁzml

Problem 5.1.7 (Sp94) Leta,,az,...,a, be complex numbers. Prove that
there is a point z in [0, 1] such that

n

1 _ § ake2ﬂ'ik$
k=1

Problem 5.1.8 (Fa82) Let a and b be complex numbers whose real parts
are negative or 0. Prove the inequality |e® — %] < |a — b].

> 1.

Problem 5.1.9 (Fa95) Let A be a finite subset of the unit disc in the
plane, and let N(A,r) be the set of points at distance < r from A, where
0 < 1 < 1. Show that the length of the boundary N(A,r) is, at most, C/r
for some constant C independent of A.
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Problem 5.1.10 (Su82) For complex numbers a1, ag, ..., ak, prove
k 1/n
lim sup Za}-l = sup|ayl.
n =1 j

Note: See also Problem 1.5.1.

5.2 Series and Sequences of Functions
Problem 5.2.1 (Fa95) Skow that
(1424224 - 42O 142 042204 2901421004 5200 . _+2900)___:i

for |zl < 1.
Problem 5.2.2 (Fa94) Suppose the coefficients of the power series

0
E an2"
n=0

are given by the recurrence relation

ag = 1, ay = —1, da, +4an_1 — Qp_2 = 0, n = 2,3,. cen
Find the radius of convergence of the series and the function fto which it
converges in its disc of convergence.

Problem 5.2.3 (Fa93) Describe the region in the complex plane where

the infinite series
o0
> (s
n2 P z—2

n:l
converges. Draw a sketch of the region.

Problem 5.2.4 (Su77) Let f be an analytic function such that
f(2) = 1+22+32%2 + .- for |z| < 1. Define a sequence of real numbers

ag, a1, az,. . by

f(R) =3 an(z +2)".
n=0

What is the radius of convergence of the series

o o]
g an2™7
n=0

61
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Problem 5.2.5 (Sp77) Let the sequence ay, a1, . . . be defined by the equa-
tion

1—z2+z4—m6+...zzan(z—3)" 0<z<).

n=0
Find
. 1
lim sup (Iaan) .
00

Problem 5.2.6 (Su78) Suppose the power series

oo

converges for |z| <R where z and the a, are compler numbers. If b, € C
are such that |b,| < n|a,| for all n, prove that

o0
E bp2"
n=>0

converges for |z| <R.

Problem 5.2.7 (Sp79) For which z € C does

converge?

Problem 5.2.8 (Su79) Show that
Yo
= (1+22)"
converges for all complex numbers z exterior to the lemniscate

+ 2% = 1.
1 2

Problem 5.2.9 (Su82) Determine the complex numbers z for which the
POwWer series

oo

>
nlogn

n=1

and its term by term derivatives of all orders converge absolutely.
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Problem 5.2.10 (Su84) Suppose

has radius of convergence R > 0. Show that

o0

=25

n=0

is entire and that for 0 < r < R, there is a constant M such that
[h(z)| < Mel#!/™,

Problem 5.2.11 (Sp85) Let R > 1 and let f be analytic on |2| < R
except at z = 1, where f has a simple pole. If

f2) = an® (2l <1)

s the Maclaurin series for f, show that lim,_, @, ezists.

Problem 5.2.12 (Fa95) Find the radius of convergence R of the Taylor
series about z = 1 of the function f(z) = 1/(1+ 2% + 2% + 26 + 28 + 219).
Express your answer in terms of real numbers and square roots only.

Problem 5.2.13 (Sp78) Prove that the uniform limit of a sequence of
complezx analytic functions is complex analytic. Is the analogous theorem

true for real analytic functions?
Problem 5.2.14 (Su79) Let g,(z) be an entire function having only real
zeros, n=1,2,.... Suppose

lim g,(z) = g(2)

n—oo
uniformly on compact sets in C, with g not identically zero. Prove that
g(2) has only real zeros.

Problem 5.2.15 (Sp86) Let f, g1, g2,... be entire functions. Assume
that

1. lgr(lk)(())l < |f®N0)| for all n and k;

2. lim,_,o0 g%(0) exists for all k.

Prove that the sequence {g,} converges uniformly on compact sets and that
its limit is an entire function.
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5.3 Conformal Mappings

Problem 5.3.1 (Fa77) Consider the following four types of transforma-
tions:
zvrz+b, 2+ 1/2, zrrkz (wherek #0),
az+b
Z
cz+d
Here, z is a variable complexr number and the other letters denote constant

complex numbers. Show that each transformation takes circles to either
circles or straight lines.

(where ad — be # 0).

Problem 5.3.2 (Fa78) Give examples of conformal maps as follows:
1. from {z | |z| < 1} onto {2 | Rz < 0},
2. from {z | |z| < 1} onto itself, with f(0) =0 and f(1/2) = /2,
3. from {z|z#0,0<argz< 3} onto {z|z+#0,0<argz < L}.

Problem 5.3.3 (Sp83) A fractional linear transformation maps the an-
nulus v < |z| < 1 (where T > 0) onto the domain bounded by the two circles
|z~ | =1 and |z| = 1. Find r.

Problem 5.3.4 (Sp80) Does there exist an analytic function mapping the
annulus
A={z]|1<|z| <4}

onto the annulus
B={z|1<|s <2}

and taking C; — C1,Cy — Ca, where C, is the circle of radius r?
Hint: Consider g(z) = f(2)?/z.

Problem 5.3.5 (Su80) Ezhibit a conformal map from the set
{zeC ||z <1,Rz2>0} onto D= {z€C ||z < 1}.

Problem 5.3.6 (Sp90) Find a one-to-one conformal map of the semidisc
{z€C|82>0,|2—-1/2| <1/2}
onto the upper half-plane.

Problem 5.3.7 (Fa97) Conformally map the region inside the disc
{z€C ||z—1| < 1} and outside the disc {z € C ||z — 3| < 1} onto the
upper half-plane.

Problem 5.3.8 (Sp95) Prove that there is no one-to-one conformal map
of the punctured disc G = {z € C | 0 < |2| < 1} onto the annulus
A={zeC|1< |2 <2}
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5.4 Integral Representation of Analytic Functions

Problem 5.4.1 (Sp96) Let f = u + iv be analytic in a connected open
set D, where u and v are real valued. Suppose there are real constants a, b
and ¢ such that a® +b% # 0 and

av+bv=c
in D. Show that f is constant in D.

Problem 5.4.2 (Fa93) Let f be a continuous real valued function on
[0,1], and let the function h in the complex plane be defined by

1
h(z) :/ f(t) cos(zt) dt.
0
1. Prove that h is analytic in the entire plane.

2. Prove that h is the zero function only if f is the zero function.

Problem 5.4.3 (Su79, Sp82, Sp91, Sp96) Let f be a continuous com-
plez valued function on [0,1], and define the function g by

1
g(2) :/ f(t)e'* dt (zeC).
0
Prove that g is analytic in the entire complex plane.

Problem 5.4.4 (Fa84, Fa95) Let f and g be analytic functions in the
open unit disc, and let C, denote the circle with center 0 and radius r,
oriented counterclockwise.

1. Prove that the integral

o [t (Z) du

27i Jo, w

is independent of v as long as |z| < r < 1 and that it defines an
analytic function h(z), |z| < 1.

2. Prove or supply a counterexample: If f #0 and g #0, then h #Z0.
Problem 5.4.5 (Sp84) Let F be a continuous compler valued function

on the interval [0,1]. Let
1
F(t)
= g
16)= [
for z a complex number not in [0, 1].

1. Prove that f 1s an analytic function.

2. Ezpress the coefficients of the Laurent series of f about oo in terms
of F. Use your result to show that F is uniquely determined by f.
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5.5 Functions on the Unit Disc

Problem 5.5.1 (Fa82) Let a and b be nonzero complex numbers and
f(z) = az + bz~l. Determine the image under f of the umit circle

{z]|z[ =1}.

Problem 5.5.2 (Su83, Fa96) Let f be analytic on and inside the unit
circle C = {z | |z| = 1}. Let L be the length of the image of C under f.
Show that L > 2=|f'(0)].

Problem 5.5.3 (Sp80) Let

f(Z) = Z cn 2"
n=0

be analytic in the disc D = {z € C | {z] < 1}. Assume f mapsD one-to-one
onto a domain G having area A. Prove

A= ﬂ'i nlen|?
n=1

Problem 5.5.4 (Su83) Compute the area of the image of the unit disc
{z | |2| < 1} under the map f(z) = z + 2%/2.

Problem 5.5.5 (Sp80) Let

f(2) =3 anz"
n=0

be an analytic function in the open unit disc D. Assume that

o0

Zn[an[ <lai| with a1 #0.

n=2
Prove that f is injective or constant.

Problem 5.5.6 (Su85) For each k > 0, let Xy be the set of analytic
functions f(z) on the open unit disc D such that

sup {(1 — |21)* |f(2)}
ZGD

is finite. Show that f € X if and only if f' € Xy 1.

Problem 5.5.7 (Sp88) Let the function f be analytic in the open wunit
disc of the complex plane and real valued on the radii [0,1) and [0, e“"/ﬁ).
Prove that f is constant.
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Problem 5.5.8 (Fa91) Let the function f be analytic in the disc |z| < 1
of the complex plane. Assume that there is a positive constant M such that

27
[Tireenasy, @<r<.
0
Prove that
/ |f(z)] dz < 0.
[0,1)

Problem 5.5.9 (Fa78) Suppose h(z) is analytic in the whole plane,
h(0) = 3 +4i, and |h(2)| < 5 if |2] < 1. What is h'(0)?

Problem 5.5.10 (Fa79, Fa80) Suppose that f is analytic on the open
upper half-plane and satisfies | f(2)| < 1 for all 2z, f(i) = 0. How large can
| f(28)| be under these conditions?

Problem 5.5.11 (Fa85) Let f(z) be analytic on the right half-plane
H = {2 | Rz > 0} and suppose |f(2)| < 1 for z € H. Suppose also that
f(1) = 0. What is the largest possible value of | f'(1)|?

Problem 5.5.12 (SuB2) Let f(2) be analytic on the open wunit disc
D = {z | |2] < 1}. Prove that there is a sequence (z,) in D such that
|zn| = 1 and (f(2,)) is bounded.

Problem 5.5.13 (Sp93) Let f be an analytic function in the unit disc,
l2| < 1.

1. Prove that there is a sequence (z,) in the wunit disc with
limy, oo |20 = 1 and limy oo f(2,) exists (finitely).

2. Assume f nonconstant. Prove that there are two sequences (z,) and
(wy) in the disc such that limy, oo |2,| = limy oo |wy| = 1, and such
that both limits lim, o0 f(2n) and lim, o f(wy) exist (finitely) and
are not equal.

Problem 5.5.14 (Fa81, Sp89, Fa97) Let f be a holomorphic map of the
unit disc D = {z | |2| < 1} into itself, which is not the identity map
f(2) = z. Show that f can have, at most, one fized point.

Problem 5.5.15 (Sp85) Let f(z) be an analytic function that maps the
open disc |z| < 1 into itself. Show that |f'(2)] < (1 —|2|?)~L.

Problem 5.5.16 (Sp87, Fa89) Let f be an analytic function in the open
unit disc of the complex plane such that | f(z)| < C/(1—|z2|) for all z in the
disc, where C 1is a positive constant. Prove that |f'(2)| < 4C/(1 — |2|)2.
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Problem 5.5.17 (Fa87) If f(z) is analytic in the open disc |z| < 1, and
[f(2)] < 1/(1—z]), show that

lan] = |F™0)/nl] < (n+ 1)1 + 1/n)" < e(n +1).

Problem 5.5.18 (Sp88) 1. Let f be an analytic function that maps
the open unit disc, D, into itself and vanishes at the origin. Prove
that |f(2) + f(—2)| < 2|2|? in D.

2. Prove that the inequality in Part 1 is strict, except at the origin,
unless f has the form f(z) = Az* with A a constant of absolute value
one.

Problem 5.5.19 (Sp91) Let the function f be analytic in the unit disc,
with |f(2)] < 1 and f(0) = 0. Assume that there is a number r in (0,1)
such that f(r) = f(—r) = 0. Prove that

2 ,,,2

[f(2)] <zl |4

T2l

56 Growth Conditions

Problem 5.6.1 (Fa90) Let the function f be analytic in the entire com-
plex plane, and suppose that f(z)/z — 0 as |z| — oo. Prove that f is
constant.

Problem 5.6.2 (Fa97) Let f be an entire analytic function such that, for
all z, | f(2)| = | sin z|. Prove that there is a constant C of modulus 1 such
that f(z) = Csinz.

Problem 5.6.3 (Fa79, SuB1) Suppose f and g are entire functions with
[F(2)| < |g(2)| for all 2. Prove that f(2) = cg(z) for some constant c.

Problem 5.6.4 (Sp97) Let f and g be two entire functions such that, for
all z € C, Rf(2) < kRg(z) for some real constant k (independent of z).
Show that there are constants a, b such that

f(z) = ag(2) +b.

Problem 5.6.5 (Su78) Let f : C — C be an entire function and let
a >0 and b >0 be constants.

1. If 1f(2)) < ay/lz| + b for all z, prove that f is a constant.
2. What can you prove about f if
] < ala/ +b

for all 22
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Problem 5.6.6 (Fa90) Let the function f be analytic in the entire com-
plex plane and satisfy

2
/ If(,,,eiO)l de < ,,,17/3
0

for all r > 0. Prove that f is the zero function.

Problem 5.6.7 (Fa96) Does there ezist a function f, analytic in the punc-
tured plane C \ {0}, such that

1/ (z)] 2

V2|
for all nonzero z?¢
Problem 5.6.8 (Fa91) Let the function f be analytic in the entire com-

plex plane and satisfy the inequality |f(2)| < |Rz|=Y/2 off the imaginary
azis. Prove that f is constant.

5.7 Analytic and Meromorphic Functions

Problem 5.7.1 (Sp88) True or false: A function f(z) analytic on
|z — a] < r and continuous on |z — a| < r extends, for some § > 0, to
a function analytic on |z — a| < r + 87 Give a proof or a counterexample.

Problem 5.7.2 (Fa80) Do there exist functions f(z) and g(z) that are
analytic at z = 0 and that satisfy

1. f(/n) = f(=1/n)=1/n%, n=1,2,...,
2. g1/n)=g(-1/n)=1/n% n=1,2,...7

Problem 5.7.3 (Su78) 1. Suppose f is analytic on a connected open
set U C C and f takes only real values. Prove that f is constant.

2. Suppose W C C is open, g is analytic on W, and g'(z) # 0 for all
z € C. Show that

{Rg(2)+Sg(2) | ze W} CR
is an open subset of R.

Problem 5.7.4 (Sp78) Let f: C — C be a nonconstant entire function.
Prove that f(C) is dense in C .
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Problem 5.7.5 (Su82) Let s(y) and t(y) be real differentiable functions
of y, —00 < y < 00, such that the complex function

fla +iy) = e” (s(y) +it(y))
is complex analytic with s(0) = 1 and t(0) = 0. Determine s(y) and t(y).

Problem 5.7.6 (Sp83) Determine all the complex analytic functions f
defined on the unit disc D which satisfy

ZORIOR

Problem 5.7.7 (Su83) Let Q be an open subset of R?, and let
f: Q — R? be a smooth map. Assume that f preserves orientation and
maps any pair of orthogonal curves to a pair of orthogonal curves. Show
that f is holomorphic.

Note: Here we identify R? with C .

forn=23,4,...

Problem 5.7.8 (Fa84) Prove or supply a counterezample: If f is a con-
tinuous complex valued function defined on a connected open subset of the
complez plane and if f? is analytic, then f is analytic.

Problem 5.7.9 (Sp87) Let f be a complex valued function in the open
unit disc, D, of the complex plane such that the functions g = f? and
h = f3 are both analytic. Prove that f is analytic in D.

Problem 5.7.10 (Sp88) 1. Let G be an open connected subset of the
complezx plane, f an analytic function in G, not identically 0, and n
a positive integer. Assume that f has an analytic n*" root in G; that
is, there is an analytic function g in G such that g" = f. Prove that
f has ezactly n analytic n'"* roots in G.

2. Give an ezample of a continuous real valued function on {0,1] that
has more than two continuous square roots on [0,1].

Problem 5.7.11 (Fa92) Let the function f be analytic in the region
|z| > 1 of the complex plane. Prove that if f is real valued on the interval
(1,00) of the real axis, then f is also real valued on the interval (—oo, —1).

Problem 5.7.12 (Fa94) Let the function f be analytic in the complex
plane, real on the real axis, O at the origin, and not identically 0. Prove
that if f maps the imaginary axis into a straight line, then that straight
line must be either the real azis or the imaginary azis.

Problem 5.7.13 (Fa87) Let f(z) be analytic for z # 0, and suppose that
f(1/z) = f(2). Suppose also that f(z) is real for all z on the unit circle
|z| = 1. Prove that f(z) is real for all real z # 0.
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Problem 5.7.14 (Fa91) Letp be a nonconstant complex polynomzal whose
zeros are all in the half-plane Sz > 0.

1. Prove that (p'/p) > 0 on the real azis.
2. Find a relation between degp and
o0 /
/ AW
—o0  P(Z)
Problem 5.7.15 (Sp92) Let f be an analytic function in the connected
open subset G of the complex plane. Assume that for each point z in G,

there is a positive integer n such that the n'" derivative of f vanishes at z.
Prove that f is a polynomial.

Problem 5.7.16 (Sp92) Find a Laurent series that converges in the an-
nulus 1 < |z| < 2 to a branch of the function log ("(2 Z)).

Problem 5.7.17 (Sp92) Let the function f be analytic in the entire com-
plex plane, real valued on the real axis, and of positive imaginary part in
the upper half-plane. Prove f'(z) > 0 for x real.

Problem 5.7.18 (Sp93) Prove that for any fived complex number (,

1 27 ” 0 i Cn 2
— e“5 %Yl = (———)
27 Jy = n!

Problem 5.7.19 (Sp94) 1. Let U and V be open connected subsets of
the complex plane, and let f be an analytic function in U such that
f(U) c V. Assume f~'(K) is compact whenever K is a compact
subset of V. Prove that f(U) = V.

2. Prove that the last equality can fail if analytic is replaced by contin-
uous in the preceding statement.

Problem 5.7.20 (Sp94) Let f = u + v and g = p + iq be analytic func-
tions defined in a neighborhood of the origin in the complex plane. Assume
19'(0)] < |f'(0)|. Prove that there is a neighborhood of the origin in which
the function h = f +§ is one-to-one.

Problem 5.7.21 (Sp87) Prove or disprove: If the function f is analytic
in the entire complex plane, and if f maps every unbounded sequence to an
unbounded sequence, then f is a polynomial.

Problem 5.7.22 (Fa88, Sp97) Determine the group Aut(C) of all one-
to-one analytic maps of C onto C.
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Problem 5.7.23 (Sp77) Let f(z) be a nonconstant meromorphic func-
tion. A compler number w is called a period of f if f(z+ w) = f(2) for all
z.

1. Show that if wy and ws are periods, so are njwy+nswq for all integers
ny and ngy.

2. Show that there are, at most, a finite number of periods of f in any
bounded region of the complez plane.

Problem 5.7.24 (Sp91) Let the function f be analytic in the punctured
disc 0 < |z| < ro, with Laurent series

o0

f(z) = chz".

— 00

Assume there is a positive number M such that
2 )
r4/ | f(re®)[2do < M, 0<r <.
0

Prove that ¢, = 0 forn < —2.
Problem 5.7.25 (Sp98) Let a > 0. Show that the complex function

1+ 2+ az?
Hz) = 1—z+az?

satisfies |f(2)| < 1 for all z in the open left half plane Rz < 0.

5.8 Cauchy’s Theorem

Problem 5.8.1 (Fa85) Fuvaluate

2r _
/ e do.
0

Problem 5.8.2 (Su78) Euvaluate

2n )
/ =19 gg.
0

Problem 5.8.3 (Sp98) Let a be a complex number with |a| < 1. Evaluate

the integral
/ |dz]
j2l=1 |2 — af?
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Problem 5.8.4 (Sp77, Sp82) Prove the Fundamental Theorem of Alge-
bra: Every nonconstant polynomial with complex coefficients has a complex
ro0t.

Problem 5.8.5 (Su77) Let f be continuous on C and analytic on
{z | Sz # 0}. Prove that f must be analytic on C.

Problem 5.8.6 (Fa78, Su79) Let f(z) = ap + a1z + -+ a,z" be a
complex polynomial of degree n > 0. Prove

1

— 2" U f(2)|? dz = apan R*".
2mi |z|=R

Problem 5.8.7 (Fa95) Let f(z) = u(z)+iv(z) be holomorphic in |z| < 1,
u and v real. Show that

2 2
/ u(re®®)2do = / v(re'?)2do
0 0

for0<r <1 if u(0)?=10v(0)2.
Problem 5.8.8 (Su83) Let f:C -» C be an analytic function such that

—1d™f

is bounded for some k and m. Prove that d™f/dz™ is identically zero for
sufficiently large n. How large must n be, in terms of k and m?

Problem 5.8.9 (Su83) Suppose 2 is a bounded domain in C with a bound-
ary consisting of a smooth Jordan curve . Let f be holomorphic in a
neighborhood of the closure of §, and suppose that f(z) # 0 for z € . Let
21,..., 2 be the zeros of f in (1, and let n; be the order of the zero of f at
zj (forj=1,...,k).

1. Use Cauchy’s integral formula to show that
1 [ f(2) :
Sl ISP PO N
omi /7 fz) j;"]

2. Suppose that f has only one zero 2z, in Q with multiplicity n; = 1.
Find a boundary integral involving f whose value is the point z;.

Problem 5.8.10 (Fa88) Let f be an analytic function on a disc D whose
center is the point zg. Assume that |f'(2) — f'(20)| < |f'(20)| on D. Prove
that f is one-to-one on D.
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Problem 5.8.11 (Fa89) Let f(z) be analytic in the annulus
Q = {1 < |2| < 2}. Assume that f has no zeros in 2. Show that there
exists an integer n and an analytic function g in Q0 such that, for all z € Q,
f(z) = z"e9(2),

Problem 5.8.12 (Sp90) Let the function f be analytic and bounded in
the complex half-plane Rz > 0. Prove that for any positive real number c,
the function f is uniformly continuous in the half-plane Rz > c.

5.9 Zeros and Singularities

Problem 5.9.1 (Fa77, Fa96) Let C3 denote the set of ordered triples of
complex numbers. Define a map F : C3 — C3 by

F(u,v,w) = (u + v + w,uv + vw + wu, uvw).
Prove that F' is onto but not one-to-one.
Problem 5.9.2 (Fa79, Fa89) Prove that the polynomial
p(z) = 2% — 2B £ 221 25 1 422 11
has at least one root in the disc |z| < 1.

Problem 5.9.3 (Fa80) Suppose that f is analytic inside and on the unit
circle |z| = 1 and satisfies |f(2)| < 1 for |2| = 1. Show that the equation
f(z) = 2% has ezactly three solutions (counting multiplicities) inside the
unit circle.

Problem 5.9.4 (Fa81) 1. How many zeros does the function
f(z) = 3219 — e have inside the unit circle (counting multiplici-
ties)?

2. Are the zeros distinct?

Problem 5.9.5 (Fa92) 1. How many roots does the polynomial
p(z) = 225 + 422 +- 1 have in the disc |2 <17

2. How many roots does the same polynomial have on the real azis?

Problem 5.9.6 (Su80) How many zeros does the complex polynomial
32° + 825+ 25+ 223+ 1

have in the annulus 1 < |2| < 29
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Problem 5.9.7 (Fa83) Consider the polynomial
p(z) =25+ 22 + 522 + 2.

How many zeros (counting multiplicities) does p have in the annular region
1<z <27

Problem 5.9.8 (Sp84, Fa87, Fa96) Find the number of roots of
2T 428 —11=0
which lie between the two circles |2| =1 and |2| = 2.

Problem 5.9.9 (Sp96) Letr < 1 < R. Show that for all sufficiently small
g > 0, the polynomial
p(2) =€z’ + 22 +1

has ezactly five roots (counted with their multiplicities) inside the annulus
re /% < |2| < Re™1/5,

Problem 5.9.10 (Sp86) Let the 9x 3 matriz function A be defined on the
complezx plane by

422 1 -1
Az)=| -1 222 0
3 0 1

How many distinct values of z are there such that |z| < 1 and A(2) is not
invertible?

Problem 5.9.11 (Fa85) How many roots has the polynomial
2 4+ 322 + z + 1 in the right half z-plane?

Problem 5.9.12 (Sp87) Prove that if the nonconstant polynomial p(2),
with complex coefficients, has all of its roots in the half-plane Rz > 0, then
all of the roots of its derivative are in the same half-plane.

Problem 5.9.13 (Sp92) Let p be a nonconstant polynomial with real co-
efficients and only real roots. Prove that for each real number r, the poly-
nomial p — rp’ has only real roots.

Problem 5.9.14 (Sp79, Su85, Sp89) Prove that if 1 < A < oo, the
function
MGE)=z+A-¢

has only one zero in the half-plane Rz < 0, and this zero is on the real axis.

Problem 5.9.15 (Fa85) Prove that for every A > 1, the equation
2e*™% = 1 has ezactly one root in the disc |z| < 1 and that this root is
real.
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Problem 5.9.16 (Sp85) Prove that for any a € C and any integer
n > 2, the equation 1 + z 4+ az™ = 0 has at least one root in the disc |z| < 2.

Problem 5.9.17 (Sp98) Prove that the polynomial z*+23+1 has ezactly
one root in the quadrant {z =z +iy|z,y > 0}.

Problem 5.9.18 (Sp98) Let f be analytic in an open set containing the
closed unit disc. Suppose that | f(z)] > m for |z| = 1 and | f(0)| < m. Prove
that f(z) has at least one zero in the open unit disc |z| < 1.

Problem 5.9.19 (Su82) Let 0 < a9 < a; < --- < a,. Prove that the
equation
apz" +a1z" '+ +a, =0

has no roots in the disc |z| < 1.

Problem 5.9.20 (Fa86) Show that the polynomial p(z) = 2° — 62z +3 has
five distinct complex roots, of which ezxactly three (and not five) are real.

Problem 5.9.21 (Sp90) Let cg,cy,-..,Cn—1 be complex numbers. Prove
that all the zeros of the polynomial

24 en 12 M aztco

lie in the open disc with center 0 and radius

V1tlen 12+ -+ el +[eol?.

Problem 5.9.22 (Sp95) Let P(x) be a polynomial with real coefficients
and with leading coefficient 1. Suppose that P(0) = —1 and that P(z) has
no complex zeros inside the unit circle. Prove that P(1) = 0.

Problem 5.9.23 (Su81) Prove that the number of roots of the equation
22" + o222 1 4 B2 = 0 (n a natural number, o and B real, nonzero) that
have positive real part is

1. n if n is even, and
2. n—11fn is odd

Problem 5.9.24 (Su84) Let p > 0. Show that for n large enough, all the
zeros of

1 1
() =14+ =+ —s 4
In(2) + z + 2122 o nlzn
lie in the circle |z| < p.
Problem 5.9.25 (Fa88) Do the functions f(2) = € + z and

9(2) = ze* 4 1 have the same number of zeros in the strip -5 < Sz < § ?
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Problem 5.9.26 (Sp93) Let a be a complex number and € a positive num-
ber. Prove that the function f(z) = sinz + ﬁ has infinitely many zeros
in the strip |3z| < €.

Problem 5.9.27 (Su77, Sp81) Let &g + @12 + - -+ + a,2" be a polyno-
mial having Z as a simple root. Show that there is a continuous function
r: U — C, where U is a neighborhood of (ao, .. .,a,) in C™*1, such that
r(ag,...,a,) is always a root of ag+a12+- - -+a, z", and r(ay, . . .,a,) = 2.

Problem 5.9.28 (Su85) Let

f(z) = Z a,z"
n=0

where all the a, are nonnegative reals, and the series has radius of con-
vergence 1. Prove that f(z) cannot be analytically continued to a function
analytic in a neighborhood of z = 1.

Problem 5.9.29 (Su80) Let f be a meromorphic function on C which is
analytic in a neighborhood of 0. Let its Taylor series at O be

0o
E akzk
k=0

with all ar > 0. Suppose there is a pole of norm r > 0 and no pole has
norm < r. Prove there is a pole at z = r.

Problem 5.9.30 (Sp82) 1. Decide, without too much computation, whether
a finite limit
. -2 _ -2
;1_1% ((tanz) z7?%)

erists, where z is a compler variable.
2. If yes, compute the limit.

Problem 5.9.31 (Sp89) Let f and g be analytic functions in the entire
complez plane with the property that the function h(z) = f(g(z)) is a
nonconstant polynomial. Prove that f and g are polynomials.

5.10 Harmonic Functions

Problem 5.10.1 (Fa77, Fa81) Letu:R? — R be the function defined by
u(z,y) = 23 — 3zy?. Show that u is harmonic and find v : R? —» R such
that the function f : C — C defined by

f(z +iy) = u(z,y) + iv(z,y)

is analytic.
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Problem 5.10.2 (Fa80) Let f(z) be an analytic function defined for
|z| <1 and let

u(z,y) = Rf(z), z=z+iy.
Prove that

where C is the unit circle, z° + y* = 1.

Problem 5.10.3 (Fa83) 1. Let f be a complex function which is an-
alytic on an open set containing the disc |z| < 1, and which is real
valued on the unit circle. Prove that f is constant.

2. Find a nonconstant function which is analytic at every point of the
complex plane except for a single point on the unit circle |z| = 1, and
which is real valued at every other point of the unit circle.

Problem 5.10.4 (Fa92) Let s be a real number, and let the function u be
defined in C\(—o0,0] by

u(re’®) = r° cos s (r>0, —mw<@<m).
Prove that u is a harmonic function.

Problem 5.10.5 (Fa87) Let u be a positive harmonic function on R?;
that s,
O o
oz?  Oy? )
Show that u is constant.

Problem 5.10.6 (Sp94) Let u be a real valued harmonic function in the
complez plane such that

u(2) < allog|z|| + b

for all z, where a and b are positive constants. Prove that u is constant.

5.11 Residue Theory

Problem 5.11.1 (Fa83) Let ry,ra,...,7y be distinct complex numbers.
Show that a rational function of the form

CbgFbiz4 by 22" b, 2!
(z—r1)(z—712) - (2—1n)

f(2)
can be written as a sum
f(z) =

for suitable constants Ai, ..., A,.

A A A,
L

Z—T1 2 —T2 Z—=Tn
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Problem 5.11.2 (Fa82) Let

o0
cot(mz) = Z an2”
n=—o00
be the Laurent expansion for cot(wz) on the annulus 1 < |z| < 2. Compute
the a, forn < 0.

Hint: Recall that cot(nz) has simple poles at all integers z, with residues

771, and no other singularities.

Problem 5.11.3 (Sp78) Show thal there is a complex analytic function
defined on the set U = {z € C | |2| > 4} whose derivative is

z

(z-1)(z—2)(z—3)

Is there a complex analytic function on U whose derivative is

22

?
(z = 1)(z = 2)(z - 3)

Problem 5.11.4 (Fa88) Let n be a positive integer. Prove that the poly-
nomial

n I 2 "
- —_— == 1 —_— DR IT— ——
f(z) 2:;2' to et
in R[z] has n distinct complex zeros, z1, 22, . . -, zn, and that they satisfy

n

Y z7=0 for 2<j<n.

=1

Problem 5.11.5 (Sp79, Sp83) Let P and () be complex polynomials with
the degree of Q) at least two more than the degree of P. Prove there is an
r > 0 such that if C is a closed curve outside |z} =7, then

P(z) ,
./cQ(Z) dz = 0.

Problem 5.11.6 (Sp80) Let a > 0 be a constant # 2. Let C, denote the
circle of radius a cenlered at the origin. Evaluate

22 4 e?
ZTC 4z
/ca 2z-2)"

Problem 5.11.7 (Su80) Let C denote the circle |z| = 2, z € C . Evaluate

the integral
/ V22— 1dz
C

where the branch of the square root is chosen so that /22 -1 > 0.
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Problem 5.11.8 (Su81) Compute

1 dz

—_— -—

2w C sin P
where C is the circle |z| = 1/5, positively oriented.

Problem 5.11.9 (Su84) 1. Show that there is a unique analytic branch
outside the unit circle of the function f(z) = /2% + z + 1 such that
f(t) is positive when t > 1.

2. Using the branch determined in Part 1, calculate the integral

1 dz
2mi ./C'T V224 z+1
where C, is the circle |z| =7 and r > 1.

Problem 5.11.10 (Sp86) Let C be a stmple closed contour enclosing the
points 0,1,2,...,k in the complex plane. Fvaluate the integrals

dz
= k: 1...
Ik _/CZ(Z—I)(Z—]C), 0’ ’ ’

Jk:/ (z=1)-(z=k) k=0,1,....
C

z

Problem 5.11.11 (Sp86) Ewvaluate

/ (627rz T 1);2 dz
Jz]=1

where the integral is taken in counterclockwise direction.

Problem 5.11.12 (Fa86) FEwvaluate

1 211
— / dz
2mi J|z)=1 12212 — 429 + 220 — 423 + 1
where the direction of integration is counterclockwise.

Problem 5.11.13 (Sp89) Ewvaluate

/ (2z — 1)e*/ "V dz
C

where C is the circle |z| = 2 with counterclockwise orientation.
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Problem 5.11.14 (Fa90) Fuvaluate the integral

I 1 / dz
Comi Jo (2 — 2)(1 + 22)2(1 - 32)3
where C s the circle |z] = 1 with counterclockwise orientation.

Problem 5.11.15 (Fa91) FEuvaluate the integral

1 zn—~1

= —
2mi C3z"~ldz’

where n is a positive integer, and C is the circle |z| = 1, with counterclock-
wise orientation.

Problem 5.11.16 (Fa92) FEuvaluate

/__ﬁl_dz
c 2224127

where C s the unit circle with counterclockwise orientation.

Problem 5.11.17 (Fa93) Evaluate 5 f f(z) dz for the function
f(z) =272(1- z%)~1e* and the curve vy depicted by.

Problem 5.11.18 (Sp81) Ewvaluate

e —1
.Lﬂu—n“

where C is the closed curve shown below:
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Problem 5.11.19 (Sp95) Let n be a positive integer and 0 < 6 < 7.
Prove that

/ 2" sin(nf)
. =

276 Jy,j=2 1 — 22 cos 6 + 22 sin §
where the circle |z| = 2 is oriented counterclockwise.

Problem 5.11.20 (Su77, Fa84, Sp94, Sp96) Use the Residue Theorem
to evaluate the integral
2n
I(a) = / _ 4
o a+cosd
where a 1s real and a > 1. Ezxplain why the formula obtained for I(a) is also

valid for certain compler (nonreal) values of a.

Problem 5.11.21 (Fa78) FEvaluate

/27T de
o 1—2rcosf+r?

Problem 5.11.22 (Sp87) Ewvaluate

T cos40
I= ——df.
/0 1+ cos26 d

Problem 5.11.23 (Fa87) FEuvaluate the integral

2n 2
cos* 30
I“/0 5—400529(10'

Problem 5.11.24 (Sp93) Let n be a positive integer. Compute

2n
1—
/ cos(nb) &0
0 1—cosd

where 1% # 1.
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Problem 5.11.25 (Fa94) Evaluate the integrals

/ sl e n=12,....

. )
_p sin8

Problem 5.11.26 (Sp88) For a > 1 and n = 0,1,2,..., evaluate the
integrals

Cn(a):/” <os(m6) 4 Sn(a):/ﬂ sin(nd) o

, .
—p @ —cosf _ga—cosf

5.12 Integrals Along the Real Axis

Problem 5.12.1 (Sp86) Let the complex valued functions fn, n € Z, be
defined on R by

fal@) = 77 2(@ — i)™ (z + D).
Prove that these functions are orthonormal; that is,
o0 — 1 if m=n
Jm(Z) fulz) dz = { .
/_ o 0 if m#n.

Problem 5.12.2 (Fa85) FEwvaluate the integral
o0
1—
/ coZS(am) iz
0 x
for a e R.

Problem 5.12.3 (Sp78, Sp83, Sp97) FEuvaluate

* gin?z
: dz .
oo L

Problem 5.12.4 (Fa82, Sp92) Ewvaluate

00 o193
sSin-x
I:/ 3 dz .
o T

Problem 5.12.5 (Sp93) Ewvaluate

/°° z3sinz i
oo (M + 222

Problem 5.12.6 (Sp81) Evaluate

/°° xsinx
———dz.
oo (1+22)2
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Problem 5.12.7 (Sp90, Fa92) Let a be a positive real number. Evaluate
the improper integral
/ > sinz o
o z(x2+a?)

Problem 5.12.8 (Sp91) Prove that

R sing

dr

lim -
R—oo -R 4 it 31

exists and find its value.

Problem 5.12.9 (Sp83) FEualuate

*  sinz
[mm
Problem 5.12.10 (Fa97) Ewvaluate the integral
*  coskx
/_oo 1+z+a2 do
where k > 0.

Problem 5.12.11 (Fa82) Ewvaluate

* cos(nz)
/—OO 127 1 dz .

Problem 5.12.12 (Sp77, Fa81, Sp82) Fualuate

/°° COS T iz
o T T

Problem 5.12.13 (Sp79) Evaluate

oo .2 1
/ :1:4+ dx.
o Tt+1

Problem 5.12.14 (Su84) Fualuate

/°° rsing iz
oo T2 +4T +20

Problem 5.12.15 (Fa84) Evaluate

®r—sinx
~——3—dz.
0 T
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Problem 5.12.16 (Fa84) Ewvaluate

/°° dz
oo (1 + 2z +22)?

Problem 5.12.17 (Fa79, Fa80, Sp85, Su85) Prove that

00 za—l T
/ de = — :
o l1+=z sin(ma)

What restrictions must be placed on o?

Problem 5.12.18 (Fa96) FEwvaluate the integral

I = \/52 dz .
o 1+z

Problem 5.12.19 (Fa77, Su82, Fa97) FEuvaluate

*  dr
oo L+ 2%

where n 18 a positive integer.

Problem 5.12.20 (Fa88) Prove that

o0 2
T T
—_—dr = —-

0o e*—e % 8

Problem 5.12.21 (Fa93) Euvaluate

oo e-iz
—— dx.
/_oo 22 -2z 44

Problem 5.12.22 (Fa86) Fuvaluate

/ oo logz dar
o (@2+1)(=2+4)
Problem 5.12.23 (Fa94) Evaluate
o0 2
/ (og2)” 4o
0

x2+1
Problem 5.12.24 (Fa83) Fuvaluate

/ (sech z)? cos Az dz
0

where )\ is a real constant and
2

sechyr = ———
[ A

85
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Problem 5.12.25 (Sp85) Prove that

o0 e 1 _p2?
e " cos(2bz) dz = 5\/7?6 .
0
What restrictions, if any, need be placed on b?

Problem 5.12.26 (Sp97) Prove that

o0 g—(t—in)?/2
— o VT

is independent of the real parameter ~.

dt



6
Algebra

6.1 Examples of Groups and General Theory

Problem 6.1.1 (Sp77) Let G be the collection of 2x 2 real matrices with
nonzero determinant. Define the product of two elements in G as the usual
matriz product. group,center

1. Show that G is a group.

2. Find the center Z of G; that is, the set of all elements z of G such
that az = za for alla € G.

3. Show that the set O of real orthogonal matrices is a subgroup of G (a
matriz is orthogonal if AA® = I, where A' denotes the transpose of
A). Show by example that O is not a normal subgroup.

4. Find a nontrivial homomorphism from G onto an abelian group.

Problem 6.1.2 (Fa77) Let G be the set of 3x 8 real matrices with zeros
below the diagonal and ones on the diagonal.

1. Prove G is a group under matriz multiplication.
2. Determine the center of G.

Problem 6.1.3 (Su78) For each of the following either give an example
or else prove that no such example is possible.

1. A nonabelian group.



88 6. Algebra

A finite abelian group that is not cyclic.
An infinite group with a subgroup of indez 5.
Two finite groups that have the same order but are not isomorphic.

A group G with a subgroup H that is not normal.

AT A T o T

A nonabelian group with no normal subgroups except the whole group
and the unit element.

7. A group G with a normal subgroup H such that the factor group G/H
is not isomorphic to any subgroup of G.

8. A group G with a subgroup H which has indezx 2 but is not normal.

Problem 6.1.4 (Fa80) Let R be a ring with multiplicative identity 1. Call
x € R a unit if zy = 1 for some y € R. Let G(R) denote the set of units.

1. Prove G(R) is a multiplicative group.

2. Let R be the ring of complex numbers a + bi, where a and b are inte-
gers. Prove G(R) is isomorphic to Z4 (the additive group of integers
modulo 4).

Problem 6.1.5 (Sp83) In the triangular network in R? which is depicted
below, the points Py, Py, Pe, and P; are respectively (0,0), (1,0), (0,1), and
(1,1). Describe the structure of the group of all Buclidean transformations
of R? which leave this network invariant.

Py /

A P,
Py /

S &)

Problem 6.1.6 (Fa90) Does the set G = {a € R | a > 0,a # 1} form a
group with the operation a x b = a'°8°?
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Problem 6.1.7 (Sp81) Let G be a finite group. A conjugacy class is a
set of the form
C(a) = {bab™' | b € G}

for some a € G.

1. Prove that the number of elements in a conjugacy class divides the
order of G.

2. Do all conjugacy classes have the same number of elements?
3. If G has only two conjugacy classes, prove G has order 2.

Problem 6.1.8 (Sp91) Let G be a finite nontrivial group with the prop-
erty that for any two elements a and b in G different from the identity,
there is an element ¢ in G such that b = ¢ 'ac. Prove that G has order 2.

Problem 6.1.9 (Sp84) For a p-group of order p*, assume the center of
G has order p*. Determine the number of conjugacy classes of G.

Problem 6.1.10 (Sp83) In a commutative group G, let the element a
have order r, let b have order s (r,s < c0), and assume that the greatest
common divisor of r and s is 1. Show that ab has order rs.

Problem 6.1.11 (Fa85) Let G be a group. For any subset X of G, define
its centralizer C(X) to be {y € G| zy = yz,Yz € X}. Prove the following:

L. IfXCY, then CY) C C(X).
2. X CcC(C(X)).
3. C(X) =C (C(C(X))).

Problem 6.1.12 (Sp88) Let D be a group of order 2n, where n is odd,
with a subgroup H of order n satisfying thx=! = h~! for all h in H and all
z in D\ H. Prove that H is commutative and that every element of D\ H
is of order 2.

6.2 Homomorphisms and Subgroups

Problem 6.2.1 (Fa78) How many homomorphisms are there from the
group Zio X Zy to the symmetric group on three letters?

Problem 6.2.2 (Sp90) Let C* be the multiplicative group of nonzero com-
plex numbers. Suppose that H is a subgroup of finite index of C*. Prove
that H =C*.

Problem 6.2.3 (Su80) Let G be a finite group and H C G a subgroup.
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1. Show that the number of subgroups of G of the form zHxz ™! for some
z€ G is < theindex of H in G.

2. Prove that some element of G is not in any subgroup of the form
zHx ', z€@G.

Problem 6.2.4 (Su79) Prove that the group of automorphisms of a cyclic
group of prime order p is cyclic and find its order.

Problem 6.2.5 (Su81) Let G be a finite group, and let ¢ be an automor-
phism of G which leaves fized only the identity element of G.

1. Show that every element of G may be written in the form g~ '¢(g).

2. If ¢ has order 2 (i.e., - = id) show that ¢ is given by the formula
g+ g~ ! and that G is an abelian group whose order is odd.

Problem 6.2.6 (Fa79, Sp88, Fa91) Prove that every finite group of or-
der > 2 has a nontrivial automorphism.

Problem 6.2.7 (Su81) Let G be an additive group, and u,v : G — G
homomorphisms. Show that the map f : G — G, f(z) = z — v (u(x)) is
surjective if the map h: G — G, h(z) = z — u (v(x)) is surjective.

Problem 6.2.8 (Sp83) Let H be the group of integers modp, under ad-
dition, where p is a prime number. Suppose that n is an integer satisfying
1<n<p, and let G be the group H x H x --- x H (n factors). Show that
G has no automorphism of order p*.

Problem 6.2.9 (Fa84) Let G be a group and H a subgroup of index
n < 00. Prove or disprove the following statements:

1. Ifa € G, thena™ € H.
2. Ifa € G, then for some k, 0 < k < n, we have a* € H.

Problem 6.2.10 (Fa78) Find all automorphisms of the additive group of
rational numbers.

Problem 6.2.11 (Fa87, Fa93) Let A be the group of rational numbers
under addition, and let M be the group of positive rational numbers under
multiplication. Determine all homomorphisms ¢ : A — M.

Problem 6.2.12 (Fa90) Let A be an additively written abelian group, and
f,9: A— A two group homomorphisms. Define the group homomorphisms
,j: A— A by

i{a) =a—g(f(a)), Jjla)=a—f(9(a)) (acA).

Prove that the kernel of ¢ is isomorphic to the kernel of j.
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Problem 6.2.13 (Fa92) Let G be a group and H and K subgroups such
that H has a finite index in G. Prove that K N H has a finite indez in K.

Problem 6.2.14 (Fa94) Suppose the group G has a nontrivial subgroup
H which is contained in every nontrivial subgroup of G. Prove that H is
contained in the center of G.

Problem 6.2.15 (Fa95) Let G be a group generated by n elements. Find
an upper bound N(n, k) for the number of subgroups H of G with the index
[G:H|=k.

6.3 Cyclic Groups

Problem 6.3.1 (Su77, Sp92) 1. Prove that every finitely generated
subgroup of Q, the additive group of rational numbers, is cyclic.

2. Does the same conclusion hold for finitely generated subgroups of
Q /Z, where Z is the group of integers?
Note: See also Problems 6.6.2 and 6.7.2.

Problem 6.3.2 (Sp98) Let G be the group Q /Z. Show that for every
positive integer t, G has a unique cyclic subgroup of ordert.

Problem 6.3.3 (Su85) 1. Let G be a cyclic group, and let a,b € G be
elements which are not squares. Prove that ab is a square.

2. Give an example to show that this result is false if the group is not
cyclic.

Problem 6.3.4 (Sp82) Prove that any group of order 77 is cyclic.

Problem 6.3.5 (Fa91) Let G be a group of order 2p, where p is an odd
prime. Assume that G has a normal subgroup of order 2. Prove that G is
cyclic.

Problem 6.3.6 (Fa97) A finite abelian group G has the property that for
each positive integer n the set {zx € G|z" = 1} has at most n elements.
Prove that G 1is cyclic, and deduce that every finite field has cyclic multi-
plicative group.

6.4 Normality, Quotients, and Homomorphisms

Problem 6.4.1 (Fa78) Let H be a subgroup of a finite group G.

1. Show that H has the same number of left cosets as right cosets.



92 6. Algebra

2. Let G be the group of symmetries of the square. Find a subgroup H
such that zH # Hz for some z.

Problem 6.4.2 (Fa80) Let G be the group of orthogonal transformations
of R3 to R® with determinant 1. Let v € R3, |v| =1, and let H, = {T €
G| Tv=v}.

1. Show that H, is a subgroup of G.

2. Let S, = {T € G |T is a rotation through 180° about a line orthogo-
nal to v}. Show that S, is a coset of H, in G.

Problem 6.4.3 (Su84) Show that if a subgroup H of a group G has just
one left coset different from itself, then it is a normal subgroup of G.

Problem 6.4.4 (Su85) Let G be a group of order 120, let H be a subgroup
of order 24, and assume that there is at least one left coset of H (other than
H itself) which is equal to some right coset of H. Prove that H is a normal
subgroup of G.

Problem 6.4.5 (Sp89) For G a group and H a subgroup, let C(G, H)
denote the collection of left cosets of H in G. Prove that if H and K are
two subgroups of G of infinite indez, then G is not a finite union of cosets

from C(G,H)UC(G, K).
Problem 6.4.6 (Fa82, Fa92) Let

G:{(g a’il) |a,beR,a>0}
N={(é ’1’) IbeR}.

1. Show that N is a normal subgroup of G and prove that G/N is iso-
morphic to R.

2. Find a normal subgroup N’ of G satisfying N C N' C G (where the
inclusions are proper), or prove that there is no such subgroup.

Problem 6.4.7 (Sp86) Let Z? be the group of lattice points in the plane
(ordered pairs of integers, with coordinatewise addition as the group oper-
ation). Let Hy be the subgroup generated by the two elements (1,2) and
(4,1), and H; the subgroup generated by the two elements (3,2) and (1,3).
Are the quotient groups G, = Z?/H, and Gy = Z2/H, isomorphic?

Problem 6.4.8 (Sp78, Fa81) Let G be a group of order 10 which has a
normal subgroup of order 2. Prove that G is abelian.

Problem 6.4.9 (Sp79, Fa81) Let G be a group with three normal sub-
groups N1, Na, and N3. Suppose N;N\N; = {e} and N;N; = G for all (i, )
with ¢ # j. Show that G is abelian and N; is isomorphic to N; for all 4, j.
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Problem 6.4.10 (Fa97) Suppose H; is a normal subgroup of a group G
for 1 <i <k, such that H;N H; = {1} for i # j. Prove that G contains a
subgroup isomorphic to Hy x Hy X - -+ x Hy if k = 2, but not necessarily if
k> 3.

Problem 6.4.11 (Sp80) G is a group of order n, H a proper subgroup of
order m, and (n/m)! < 2n. Prove G has a proper normal subgroup different
from the identity.

Problem 6.4.12 (Sp82, Sp93) Prove that if G is a group containing no
subgroup of index 2, then any subgroup of index 3 in G is a normal subgroup.

Problem 6.4.13 (Sp89) Let G be a group whose order is twice en odd
number. For g in G, let \; denote the permutation of G given by Ag(x) = gz
forzeq.

1. Let g be in G. Prove that the permutation A, is even if and only if
the order of g is odd.

2. Let N = {g € G | order(g) isodd}. Prove that N is a normal subgroup
of G of indez 2.

Problem 6.4.14 (Fa89) Let G be a group, G' its commutator subgroup,
and N a normal subgroup of G. Suppose that N is cyclic. Prove that
gn =ng forall g € G' and alln € N.

Problem 6.4.15 (Fa90) Let G be a group and N be a normal subgroup
of G with N # G. Suppose that there does not exist a subgroup H of G
satisfying N C H C G and N # H # G. Prove that the index of N in G is
finite and equal to a prime number.

Problem 6.4.16 (Sp94) Let G be a group having a subgroup A of finite
index. Prove that there is a normal subgroup N of G contained in A such
that N is of finite index in G.

Problem 6.4.17 (Sp97) Let H be the quotient of an abelian group G by
a subgroup K. Prove or disprove each of the following statements:

1. If H is finite cyclic then G 1is isomorphic to the direct product of H
and K.

2. If H 13 a direct product of infinite cyclic groups then G is isomorphic
to the direct product of H and K.

6.5 S, A, D, ..

Problem 6.5.1 (Fa80) Let F; = {0,1} be the field with two elements.
Let G be the group of invertible 2x 2 matrices with entries in Fa. Show that
G is isomorphic to Ss, the group of permutations of three objects.
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Problem 6.5.2 (Su84) Let S,, denote the group of permutations of n let-
ters. Find four different subgroups of S4 isomorphic to S3 and nine iso-
morphic to Ss.

Problem 6.5.3 (Fa86) Let G be a subgroup of Ss, the group of all per-
mutations on the set {1,2,3,4,5}. Prove that if G contains a 5-cycle and
a 2-cycle, then G = Ss.

Hint: Recall that if (i1 12 -+ - i) s a cycle and o is any permutation, then

0'(7:1 ig v Z.n)O'#l = (U(il)a(ig) s O'(Zn)) .

Problem 6.5.4 (Fa85) Let G be a subgroup of the symmetric group on
siz letters, Sg. Assume that G has an element of order 6. Prove that G has
a normal subgroup H of index 2.

Problem 6.5.5 (Sp79) Let S; be the group of permutations of a set of
seven elements. Find all n such that some element of S7 has order n.

Problem 6.5.6 (Sp80) Sy is the group of permutations of the set of in-
tegers from 1 to 9.

1. Ezhibit an element of Sy of order 20.
2. Prove that no element of Sg has order 18.

Problem 6.5.7 (Sp88) Let Sy denote the group of permutations of
{1,2,...,9} and let Ag be the subgroup consisting of all even permuta-
tions. Denote by 1 € Sy the identity permutation. Determine the minimum
of all positive integers m such that every o € Sy satisfies o™ = 1. Deter-
mine also the minimum of all positive integers m such that every o € Ag
satisfies o™ = 1.

Problem 6.5.8 (Sp92) Let Sggg denote the group of all permutations of
{1,...,999}, and let G C Sggg be an abelian subgroup of order 1111. Prove
that there erists i € {1,...,999} such that for all o € G, one has o(i) = i.

Problem 6.5.9 (Fa81, Sp95) Let S, be the group of all permutations of
n objects and let G be a subgroup of S,, of order p*, where p is a prime not
dividing n. Show that G has a fixed point; that is, one of the objects is left
fized by every element of G.

Problem 6.5.10 (Sp80) Let G be a group of permutations of a set S of
n elements. Assume G is transitive; that is, for any z and y in S, there is
some o € G with o(x) = y.

1. Prove that n divides the order of G.

2. Suppose n = 4. For which integers k > 1 can such a G have order 4k ?
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Problem 6.5.11 (Su83) Let G be a transitive subgroup of the group S,
of permutations of the set {1,...,n}. Suppose that G is a simple group and
that ~ is an equivalence relation on {1,...,n} such that i ~ j implies that
a(i) ~ a(j) forallo € G. What can you conclude about the relationship ~?¢

Problem 6.5.12 (Sp89) Let D,, be the dihedral group, the group of rigid
motions of a regular n-gon (n > 3). (It is a noncommutative group of
order 2n.) Determine its center C = {c € D,, | cx = zc for all x € D, }.

Problem 6.5.13 (Fa92) How many Sylow 2-subgroups does the dihedral
group D, of order 2n have, when n is odd?

6.6 Direct Products

Problem 6.6.1 (Fa83) Let G be a finite group and G, = G x G. Suppose
that G1 has exactly four normal subgroups. Show that G is simple and
nonabelian.

Problem 6.6.2 (Sp91) Prove that Q, the additive group of rational num-
bers, cannot be written as the direct sum of two nontrivial subgroups.
Note: See also Problems 6.3.1 and 6.7.2.

Problem 6.6.3 (Su79, Fa93) Let A, B, and C be finite abelian groups
such that AxB and Ax C are isomorphic. Prove that B and C are isomor-
phic.

Problem 6.6.4 (Su83) Let G,, G2, and G3 be finite groups, each of which
is generated by its commutators (elements of the form xyz—ly='). Let A
be a subgroup of G1 x G2 X G3, which maps surjectively, by the natural
projection map, to the partial products G; X G2, G1 X G3 and G2 x G3.
Show that A is equal to G1 X G5 X (G3.

Problem 6.6.5 (Fa82) Let A be a subgroup of an abelian group B. As-
sume that A is a direct summand of B, i.e., there exists a subgroup X of
B such that AN X = 0 and such that B = X + A. Suppose that C is a
subgroup of B satisfying A C C C B. Is A necessarily a direct summand
of C?

Problem 6.6.6 (Fa87, Sp96) Let G and H be finite groups of relatively
prime order. Show that Aut(G x H), the group of automorphisms of Gx H,
is isomorphic to the direct product of Aut(G) and Aut(H).
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6.7 Free Groups, Products, Generators, and
Relations

Problem 6.7.1 (Sp77) Let Q . be the multiplicative group of positive ra-
tional numbers.

1. Is Q , torsion free?
2. IsQ . free?

Problem 6.7.2 (Sp86) Prove that the additive group of Q , the rational
number field, is not finitely generated.
Note: See also Problems 6.3.1 and 6.6.2.

Problem 6.7.3 (Fa79, Fa82) Let G be the abelian group defined by gen-
erators ¢, y, and z, and relations

15z +3y =0
3z+Ty+42=0
18z + 14y +- 82 = 0.

1. Express G as a direct product of two cyclic groups.
2. Ezpress G as a direct product of cyclic groups of prime power order.

3. How many elements of G have order 2%

Problem 6.7.4 (Sp82, Sp93) Suppose that the group G is generated by
elements x and y that satisfy z5y® = z8y® = 1. Is G the trivial group?

Problem 6.7.5 (Su82) Let G be a group with generators a and b satisfy-
ing
a”'b% = b3, b~ ta? = a3

Is G trivial?

Problem 6.7.6 (Fa88, Fa97) Let the group G be generated by two ele-
ments, a and b, both of order 2. Prove that G has a subgroup of index 2.

Problem 6.7.7 (Fa89) Let G,, be the free group on n generators. Show
that G4 and G3 are not isomorphic.

Problem 6.7.8 (Sp83) Let G be an abelian group which is generated by,
at most, n elements. Show that each subgroup of G is again generated by,
at most, n elements.

Problem 6.7.9 (Sp84) Determine all finitely generated abelian groups G
which have only finitely many automorphisms.
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Problem 6.7.10 (Fa89) Let A be a finite abelian group, and m the maax-
imum of the orders of the elements of A. Put S = {a € A | |a] = m}. Prove
that A is generated by S.

6.8 Finite Groups

Problem 6.8.1 (Sp91) List, to within isomorphism, all the finite groups
whose orders do not exceed 5. Explain why your list is complete and why
no two groups on the list are isomorphic.

Problem 6.8.2 (Fa84) Show that all groups of order < 5 are commuta-
tive. Give an example of a noncommutative group of order 6.

Problem 6.8.3 (Fa80) Prove that any group of order 6 is isomorphic to
either Zg or Sy (the group of permutations of three objects).

Problem 6.8.4 (Sp87) 1. Show that, to within isomorphism, there is
Just one noncyclic group G of order 4.

2. Show that the group of automorphisms of G is isomorphic to the
permutation group Ss.

Problem 6.8.5 (Fa88) Find all abelian groups of order 8, up to isomor-
phism. Then identify which type occurs in each of

- (Zs),
. (Zl7)* /(il)y

.

2

3. the roots of 22 — 1 in C,
4. Fg,

5. (Z1g)".

Fg is the field of eight elements, and Fy is its underlying additive group;
R* is the group of invertible elements in the ring R, under multiplication.

Problem 6.8.6 (Sp90, Fa93, Sp94) Show that there are at least two non-
isomorphic nonabelian groups of order 24, of order 30 and order 40.

Problem 6.8.7 (Fa97) Prove that if p is prime then every group of order
p? is abelian.

Problem 6.8.8 (Sp93) Classify up to isomorphism all groups of order 45.

Problem 6.8.9 (Sp97) Classify abelian groups of order 80 up to isomor-
phism.
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Problem 6.8.10 (Sp79) Let S be a collection of abelian groups, each of
order 720, no two of which are isomorphic. What is the mazimum cardi-
nality S can have?

Problem 6.8.11 (Fa88) Find (up to isomorphism) all groups of order 2p,
where p is a prime (p > 2).

Problem 6.8.12 (Sp87) Prove that any finite group of order n is isomor-
phic to a subgroup of O(n), the group of n x n orthogonal real matrices.

Problem 6.8.13 (Su80, Fa96) Prove that every finite group is isomor-
phic to

1. A group of permutations;

2. A group of even permutations.

6.9 Rings and Their Homomorphisms

Problem 6.9.1 (Fa80) Let M be the ring of real 2x2 matrices and
S C M the subring of matrices of the form

(5 2)

1. Ezhibit (without proof) an isomorphism between S and C .

=(41)

lies in a subring isomorphic to S.

2. Prove that

3. Prove that there is an X € M such that X* + 13X = A.

Problem 6.9.2 (Sp86) Prove that there erists only one automorphism of
the field of real numbers; namely the identity automorphism.

Problem 6.9.3 (Sp86) Suppose addition and multiplication are defined
on C™, complex n-space, coordinatewise, making C" into a ring. Find all
ring homomorphisms of C™ onto C.

Problem 6.9.4 (Fa88) Let R be a finite ring. Prove that there are positive
integers m and n with m > n such that ™ = z™ for every x in R.

Problem 6.9.5 (Sp89) Let R be a ring with at least two elements. Sup-
pose that for each nonzero a in R there is a unique b in R (depending on
a) with aba = a. Show that R is a division ring.

Hint: Show first that R has no zero divisors, then find a multiplicative
indentity in R, then prove the ezistence of inverses.
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Problem 6.9.6 (Sp91) Let p be a prime number and R a ring with iden-
tity containing p* elements. Prove that R is commutative.

Problem 6.9.7 (Fa93) Let R be a commutative ring with identity. Let G
be a finite subgroup of R*, the group of units of R. Prove that if R is an
integral domain, then G is cyclic.

Problem 6.9.8 (Fa94) Let R be a ring with en identity, and let u be an
element of R with a right inverse. Prove that the following conditions on u
are equivalent:

1. u has more than one right inverse;
2. u ts a zero divisor;
3. u s not a unit.

Problem 6.9.9 (Su81, Sp93) Show that no commutative ring with iden-
tity has additive group isomorphic to Q /Z.

Problem 6.9.10 (Sp81) Let D be an ordered integral domain and a € D.
Prove that
a®—a+1>0.

Problem 6.9.11 (Fa95) Prove that Q [z,y]/(z% + y? — 1) is an integral
domain and that its field of fractions is isomorphic to the field of rational

functions Q (t).

6.10 Ideals

Problem 6.10.1 (Sp98) Let A be the ring of real 2x2 matrices of the
form (g z) What are the 2-sided ideals in A? Justify your answer.

Problem 6.10.2 (Fa79, Fa87) Let M, x,(F) be the ring of n x n mairi-
ces over a field F. Prove that it has no 2-sided ideals except Mypxn(F) and

{0}.

Problem 6.10.3 (Fa83, Su85) Let M, x.(F) denote the ring of nxn ma-
trices over a field F. For n > 1 does there exist a ring homomorphism from
M(n+1)x(n+1)(F) onto Mnxn(F) ?

Problem 6.10.4 (Sp84) Let ¥ be a field and let X be a finite set. Let
R(X,F) be the ring of all functions from X to F, endowed with the point-
wise operations. What are the marimal ideals of R(X,F)?

Problem 6.10.5 (Sp88) Let R be a commutative ring with unit element
and a € R. Let n and m be positive integers, and write d = ged{n, m}.
Prove that the ideal of R generated by a” — 1 and a™ — 1 is the same as
the ideal generated by a® — 1.
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Problem 6.10.6 (Sp89) 1. Let R be a commutative ring with 1 con-
taining an element a with a® = a + 1. Further, let J be an ideal of R
of index < 5 in R. Prove that 3 = R.

2. Show that there exists a commutative ring with 1 that has an element
a with a® = a + 1 and that contains an ideal of indez 5.
Note: The term index is used here exactly as in group theory; namely the
index of J in R means the order of R/J.

Problem 6.10.7 (Sp90) Let R be a commutative ring with 1, and R* be
its group of units. Suppose that the additive group of R is generated by
{u? | w € R*}. Prove that R has, at most, one ideal J for which R/J has
cardinality 3.

Problem 6.10.8 (Fa90) Let R be a ring with 1, and let J be the left ideal
of R generated by {ab—ba | a,b € R}. Prove thatJ is a two-sided ideal.

Problem 6.10.9 (Sp95) Suppose that R is a subring of a commutative
ring S and that R is of finite index n in S. Let m be an integer that is
relatively prime to n. Prove that the natural map R/mR — S/mS is a ring
isomorphism.

Problem 6.10.10 (Sp81) Let M be one of the following fields: R, C, Q,
and Fg (the field with nine elements). Let 3 C M|z] be the ideal generated
by z* + 2z — 2. For which choices of M is the ring M[z]/J a field?

Problem 6.10.11 (Sp84) Let R be a principal ideal domain and let I and
J be nonzero ideals in R. Show that 33 =TINJ ifand only if T+ J = R.

6.11 Polynomials

Problem 6.11.1 (Su85) By the Fundamental Theorem of Algebra, the
polynomial x> + 222 + Tz + 1 has three complex roots, oy, g, and as.
Compute o + a3 + o3.

Problem 6.11.2 (Fa77) Suppose the compler number a is a root of a
polynomial of degree n with rational coefficients. Prove that 1/« is also a
root of a polynomial of degree n with rational coefficients.

Problem 6.11.3 (Sp85) Let ¢ = e** be a primitive 7" root of unity.
Find a cubic polynomial with integer coefficients having a = (+ (¢ Y as a
To0t.

Problem 6.11.4 (Sp92, Su77, Fa81) 1. Prove that a = V5 + V7 is
algebraic over Q, by explicitly finding a polynomial f(z) in Q[z] of
degree 4 having « as a root.
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2. Prove that f(z) is irreducible over Q .
Problem 6.11.5 (Fa90) Prove that /2 + /3 is irrational.

Problem 6.11.6 (Su85) Let P(z) be a polynomial of degree < k with
complez coefficients. Let wy,...,wy be the k** roots of unity in C. Prove

that
1 k
;Z (wi) =P

Problem 6.11.7 (Fa95) Let f(z) € Q] be a polynomial with rational
coefficients. Show that there is a g(x) € Qlz], ¢ # 0, such that
f(@)g(x) = az2zx? + a3z + a5x® + - - - + a,2? is a polynomial in which only
prime ezponents appear.

Problem 6.11.8 (Fa91) Let J be the ideal in the ring Z{z] generated by
x — 7 and 15. Prove that the quotient ring Z[z]/3 is isomorphic to Z15.

Problem 6.11.9 (Fa92) Let 3 denote the ideal in Z[z], the ring of poly-
nomials with coefficients in Z, generated by x3+ 1 +1 and 5. Is 3 a prime
1deal?

Problem 6.11.10 (Su77) In the ring Z|x] of polynomials in one variable
over the integers, show that the ideal J generated by 5 and z%2 + 2 is a
maximal ideal.

Problem 6.11.11 (Sp78) let Z, denote the ring of integers modulo n.
Let Z,,[z] be the ring of polynomials with coefficients in Z,,. Let J denote
the ideal in Z,|z] generated by % +z + 1.

1. For which values of n, 1 < n < 10, is the quotient ring Z,[z]/7 a
field?

2. Give the multiplication table for Zo/7J.

Problem 6.11.12 (Sp86) Let Z be the ring of integers, p a prime, and
F, = Z/pZ the field of p elements. Let z be an indeterminate, and set
Ry = Fy[z]/(z? - 2), Ry = F,[x]/{z? — 3). Determine whether the rings
R, and Ry are isomorphic in each of the cases p = 2,5,11.

Problem 6.11.13 (Fa79, Su80, Fa82) Consider the polynomial ring Z(z]
and the ideal J generated by 7 and x — 3.

1. Show that for each r € Z[z], there is an integer a satisfying0 < a < 6
such thatr —a € 7.

2. Find o in the special case r = 220 4 15211 + 22 4+ 5.
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Problem 6.11.14 (Fa96) Let Z[z| be the ring of polynomials in the inde-
terminate T with coefficients in the ring Z of integers. Let J C Z[x] be the
ideal generated by 13 and x — 4. Find an integer m such that 0 < m < 12
and

(¥ +z+ 1) -—me7T.

Problem 6.11.15 (Sp77) 1. In Rix]|, consider the set of polynomials
f(z) for which f(2) = f'(2) = f"(2) = 0. Prove that this set forms
an ideal and find its monic generator.

2. Do the polynomials such that f(2) = 0 and f'(3) = 0 form an ideal?

Problem 6.11.16 (Sp94) Find all automorphisms of Z[z], the ring of
polynomials over Z.

Problem 6.11.17 (Su78) Let R denote the ring of polynomials over a
field F. Let py,...,p, be elements of R. Prove that the greatest common
divisor of p1,...,pn 15 1 if and only if there is an n X n matrix over R of
determinant 1 whose first row is (p1,...,pn).

Problem 6.11.18 (Sp79) Let f(z) be a polynomial over Z,, the field of
integers mod p. Let g(x) = zP — x. Show that the greatest common divisor
of f(z) and g(x) is the product of the distinct linear factors of f(z).

Problem 6.11.19 (Su79) Let F be a subfield of a field K. Let p and q
be polynomials over F. Prove that their ged (greatest common divisor) in
the ring of polynomials over F is the same as their ged in the ring of
polynomials over K.

Problem 6.11.20 (Su81, Su82) Show that 2%+ 2%+ 28 +.--+z+1 s
irreducible over Q . How about z'' + 20+ -+ 2 + 17

Problem 6.11.21 (Su84) Let Z be the ring of integers and Z(zx| the poly-
nomial ring over Z. Show that

2% +5392° — 511z - 847
is trreducible in Z{x].

Problem 6.11.22 (Sp82) Prove that the polynomial z* + z + 1 is irre-
ducible over Q.

Problem 6.11.23 (Fa83, Fa86) Prove that if p is a prime number, then
the polynomial
fl)=aP 4P 24... 41

is irreducible in Q[z].

Problem 6.11.24 (Sp96) Prove that f(z) = z*+ 23 + 2?2 + 6+ 1 is
irreducible over Q.
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Problem 6.11.25 (Su84) Let Zg3 be the field of integers mod 3 and Z3|z]
the corresponding polynomial ring. Decompose x> + = + 2 into irreducible
factors in Z3[z].

Problem 6.11.26 (Sp85) Factor % + 23 + x + 3 completely in Zs[z].

Problem 6.11.27 (Fa85) 1. How many different monic irreducible poly-
nomials of degree 2 are there over the field Zs ?

2. How many different monic irreducible polynomials of degree 3 are
there over the field Zs ?

Problem 6.11.28 (Sp78) Is x*+1 irreducible over the field of real num-
bers? The field of rational numbers? A field with 16 elements?

Problem 6.11.29 (Sp81) Decompose x* — 4 and x°® — 2 into irreducibles
over R, over Z, and over Z3 (the integers modulo 3).

Problem 6.11.30 (Fa84) Let a be an element in a field F and let p be a
prime. Assume a is not a p** power. Show that the polynomial zP — a is
irreducible in F[z].

Problem 6.11.31 (Sp92) Let p be a prime integer, p=3 (mod 4), and
let Fp = Z/pZ. If z* + 1 factors into a product g(z)h(z) of two quadratic
polynomials in ¥y [z], prove that g(z) and h(z) are both irreducible over F,.

Problem 6.11.32 (Fa88) Let n be a positive integer and let f be a poly-
nomial in Rz] of degree n. Prove that there are real numbers ap, a1, . . ., an,
not all equal to zero, such that the polynomial

n .

T

E CL,,;.’L'2
i=0

is divisible by f.

Problem 6.11.33 (Fa89) Let F be a field, F[z] the polynomial ring in one
variable over F, and R a subring of F[z] with F C R. Prove that there exists
a finite set {fi,fa,...,fn} of elements of Flz] such that
R =F[f1, f2,.., fn]

Problem 6.11.34 (Sp87) Let F be a finite field with q elements and let
z be an indeterminate. For f a polynomial in F(z], let s denote the cor-
responding function of F into F, defined by ¢s(a) = f(a), (a € F). Prove
that if ¢ is any function of F into F, then there is an f in F[z]| such that
@ = @y5. Prove that f is uniquely determined by ¢ to within addition of a
multiple of 9 — x.
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6.12 Fields and Their Extensions
Problem 6.12.1 (Su78, Fa87, Sp93) Let R be the set of 2x2 matrices
of the form
a b
b a

where a, b are elements of a given field F. Show that with the usual ma-
triz operations, R is a commutative ring with identity. For which of the
following fields ¥ is R a field: F=Q,C,Zs5, Z7 ?

Problem 6.12.2 (Fa83) Prove that every finite integral domain is a field.

Problem 6.12.3 (Sp77, Sp78) Let F C K be fields, and a and b ele-
ments of K which are algebraic over F. Show that a + b is algebraic over
F.

Problem 6.12.4 (Fa78, Fa85) Prove that every finite multiplicative group
of complex numbers is cyclic.

Problem 6.12.5 (Sp87, Fa95) Let F be a field. Prove that every finite
subgroup of the multiplicative group of nonzero elements of F is cyclic.

Problem 6.12.6 (Sp85) Let F = {a + b2 +cV4 | a,b,c € Q}. Prove
that F is a field and each element in F has a unique representation as

a+ b2+ ¢4 witha,b,c € Q. Find (1—\3/§)_1 in F.

Problem 6.12.7 (Sp85) Let F be a finite field. Give a complete proof of
the fact that the number of elements of ¥ is of the form p”, wherep > 2 is
a prime number and r is an integer > 1.

Problem 6.12.8 (Su85) Let F be a field of characteristicp > 0, p # 3.
If a is a zero of the polynomial f(z) = zP —  + 3 in an extension field of
F, show that f(x) has p distinct zeros in the field F(a).

Problem 6.12.9 (Fa85) Let f(z) = 2% — 823 + 9z — 3 and
g(z) = x4 — 52% — 6z + 3. Prove that there is an integer d such that the
polynomials f(z) and g(x) have a common root in the field Q (v/d). What
is d?

Problem 6.12.10 (Fa86) Let F be a field containing Q such that
[F: Q] = 2. Prove that there exists a unique integer m such that m has no
multiple prime factors and F is isomorphic to Q (y/m).

Problem 6.12.11 (Sp96) Ezhibit infinitely many pairwise nonisomorphic
quadratic extensions of Q and show they are pairwise nonisomorphic.

Problem 6.12.12 (Fa94) Let Q be the field of rational numbers. For 6
a real number, let Fg = Q(sinf) and Ey = Q (sin %) Show that Eg is an
extension field of Fg, and determine all possibilities for dimg, Ey.
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Problem 6.12.13 (Sp95) Let F be a finite field of cardinality p™, with p
prime and n > 0, and let G be the group of invertible 2x 2 matrices with
coefficients in F.

1. Prove that G has order (p*™ — 1)(p* — p").

2. Show that any p-Sylow subgroup of G is isomorphic to the additive
group of F.

Problem 6.12.14 (Fa94) Let p be an odd prime and F, the field of p
elements. How many elements of F;, have square roots in F,? How many
have cube roots in F,?

Problem 6.12.15 (Sp94) Let F be a finite field with g elements. Say
that a function f : F — F i3 a polynomial function if there are elements
ag,a1,...,an, of F such that f(z) = ag + a1z + -+ - -+ a,z™ for allz € F.
How many polynomial functions are there?

Problem 6.12.16 (Sp95) Let F be a finite field, and suppose that the
subfield of F generated by {x® | x € F} is different from F. Show that F
has cardinality 4.

Problem 6.12.17 (Sp97) Suppose that A is a commutative algebra with
identity over C (i.e., A is a commutative ring containing C as a subring
with identity). Suppose further that a® # 0 for all nonzero elements a € A.
Show that if the dimension of A as a vector space over C is finite and at
least two, then the equations a®> = a is satisfied by at least three distinct
elements a € A.

6.13 Elementary Number Theory

Problem 6.13.1 (Fa86) Prove that if six people are riding together in an
Evans Hall elevator, there is either a three-person subset of mutual friends
(each knows the other two) or a three-person subset of mutual strangers
(each knows neither of the other two).

Problem 6.13.2 (Sp98) Let m > 0 be an integer. Let ay,as,...,a, be

integers and let
m

fw) =) T

i=1

Show that if d > 0 is an integer then f(z)?/d! can be expressed in the form
md bil'i
2%

=0

where the b; are integers.
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Problem 6.13.3 (Sp77) Let p be an odd prime. Let Q{p) be the set of
integers a, 0 < a < p— 1, for which the congruence

2> =a (mod p)
has a solution. Show that Q(p) has cardinality (p + 1)/2.

Problem 6.13.4 (Su77) Let p be an odd prime. If the congruence
z?2 = -1 (mod p) has a solution, show thatp=1 (mod 4).

Problem 6.13.5 (Sp80) Let n > 2 be an integer such that 2" + n? is
prime. Prove that
n=3 (mod 6).

Problem 6.13.6 (Fa77) 1. Show that the set of all units in a ring
form a group under multiplication. (A umit is an element having a
multiplicative inverse.)

2. In the ring Z,, of integers modn, show that k is a unit if and only if
k and n are relatively prime.

3. Suppose n = pq, where p and q are primes. Prove that the number of
units in Z,, is (p — 1)(g— 1).

Problem 6.13.7 (Su79) Which rational numbers t are such that
3¢ + 10t - 3¢
is an integer?

Problem 6.13.8 (Fa96) Show the denominator of (17/3) 18 a power of

2 for all integers n.
Problem 6.13.9 (Su82) Let n be a positive integer.

1. Show that the binomial coefficient
o = (2n>
T\ n

2. Prove that ¢, is divisible by 4 if and only if n is not a power of 2.

is even.

Problem 6.13.10 (Sp83) Suppose that n > 1 is an integer. Prove that
the sum

1 1
144+ -=
2 n

s not an integer.
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Problem 6.13.11 (Fa84, Fa96) Let gcd abbreviate greatest common di-
visor and lem abbreviate least common multiple. For three nonzero integers
a, b, ¢, show that

ged {a,lem{b, c}} = lem {ged{a, b}, ged{a, c} } .

Problem 6.13.12 (Sp92) Let aj,az,...,a10 be integers with 1 < a; <
25, for 1 < i < 10. Prove that there exist integers ni,na,...,N1g, not all
zero, such that

10

Ty
H a’ =1,
=1

Problem 6.13.13 (Su83) The number 21982145917308330487013369 is
the thirteenth power of a positive integer. Which positive integer?

Problem 6.13.14 (Sp96) Determine the rightmost decimal digit of
A=17""",

Problem 6.13.15 (Sp88) Determine the last digit of

2323
323

in the decimal system.

Problem 6.13.16 (Sp88) Show that you can represent the set of non-
negative integers, Z, as the union of two disjoint subsets Ny and Na
(Nt NNy =0, Ny UNy = Z,) such that neither N1 nor Nz contains
an infinite arithmetic progression.

Problem 6.13.17 (Fa89) Let ¢ be Euler’s totient function; so if n is a
positive integer, then p(n) is the number of integers m for which1 < m <n
and ged{n,m} = 1. Let a and k be two integers, witha > 1, k > 0. Prove
that k divides p(a* — 1).

Problem 6.13.18 (Sp90) Determine the greatest common divisor of the
elements of the set {n!3 —n | n € Z}.

Problem 6.13.19 (Sp91) For n a positive integer, let d(n) denote the
number of positive integers that divide n. Prove that d(n) is odd if and only
if n is a perfect square.
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7.1 Vector Spaces

Problem 7.1.1 (Su79, Sp82, Sp83, Su84, Fad9l) LetF be a finite field
with q elements and let V be an n-dimensional vector space over F.

1. Determine the number of elements in V.

2. Let GL,(F) denote the group of all n x n nonsingular matrices over
F. Determine the order of GL,(F).

3. Let SL,(F) denote the subgroup of GL,(F) consisting of matrices
with determinant one. Find the order of SL,(F).

Problem 7.1.2 (Sp97) Let GLx(Z,,) denote the multiplicative group of
invertible 2 x 2 matrices over the ring of integers modulo m. Find the order
of GLa(Zp») for each prime p and positive integer n.

Problem 7.1.3 (Sp96) Let G be the group of 2x2 matrices with deter-
minant 1 over the four-element field F. Let S be the set of lines through
the origin in F2. Show that G acts faithfully on S. (The action is faithful
if the only element of G which fizes every element of S is the identity.)

Problem 7.1.4 (Su77) Prove the following statements about the polyno-
mial ring Flz|, where F is any field.

1. F[z] is a vector space over F.
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2. The subset F,,[z] of polynomials of degree < n is a subspace of di-
mension n + 1 in F(z].

3. The polynomials 1,z — a,...,(x — a)" form a basis of F,[z] for any
acF.

Problem 7.1.5 (Su84) Suppose V is an n-dimensional vector space over
the field F. Let W C V be a subspace of dimension r < n. Show that

W= ﬂ {U |Uisan(n — 1) — dimensional subspace of Vand W C U}.

Problem 7.1.6 (Sp80, Fa89) Show that a vector space over an infinite
field cannot be the union of a finite number of proper subspaces.

Problem 7.1.7 (Fa88) Let A be a complex n x n matriz, and let C(A)
be the commutant of A; that is, the set of complex n x n matrices B such
that AB = BA. (It is obviously a subspace of M,,x.., the vector space of all
complez n x n matrices.) Prove that dim C(4) > n.

Problem 7.1.8 (Sp89, Fa97) Let S be the subspace of My, xn (the vector
space of all real n x n matrices) generated by all matrices of the form
AB — BA with A and B in M, x,. Prove that dim(S) = n? — 1.

Problem 7.1.9 (Sp90) Let A and B be subspaces of a finite-dimensional
vector space V such that A+ B =V. Writen = dimV, a = dim A, and
b = dimB. Let S be the set of those endomorphisms f of V for which
f(A) C A and f(B) C B. Prove that S is a subspace of the set of all endo-
morphisms of V, and express the dimension of S' in terms of n, a, and b.

Problem 7.1.10 (Sp81) Let T be a linear transformation of a vector
space V into itself. Suppose © € V is such that Tz = 0, T™ 1z £ 0
for some positive integer m. Show that =, Tx,...,T™ 'z are linearly in-
dependent.

Problem 7.1.11 (Fa97) Leta,as,...,a, be distinct real numbers. Show
that the n exponential functions e*'t,e*2t ... "' gre linearly independent
over the real numbers.

Problem 7.1.12 (Su83) Let V be a real vector space of dimension n with
a positive definite inner product. We say that two bases (a;) and (b;) have
the same orientation if the matriz of the change of basis from (a;) to (b;)
has a positive determinant. Suppose now that (a;) and (b;) are orthonormal
bases with the same orientation. Show that (a; + 2b;) is again a basis of V
with the same orientation as (a;).
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7.2 Rank and Determinants

Problem 7.2.1 (Sp78, Fa82, Fa86) Let M be a matriz with entries in
a field F. The row rank of M over F is the mazimal number of rows which
are linearly independent (as vectors) over F. The column rank is similarly
defined using columns instead of rows.

1. Prove row rank = column rank.

2. Find a mazimal linearly independent set of columns of

10 3 -2
21 2 0
01 -4 4
1 1 1 2
1 0 1 2

taking F = R.

3. If F is a subfield of K, and M has entries in F, how is the row rank
of M over F related to the row rank of M over K?

Problem 7.2.2 (Su85, Fa89) Let A be an n x n real matriz and A! its
transpose. Show that A*A and A have the same range.

Problem 7.2.3 (Sp97) Suppose that P and Q are n x n matrices such
that P2 = P, Q% = Q, and 1 — (P + Q) is invertible. Show that P and Q
have the same rank.

Problem 7.2.4 (Sp91) Let T be a real, symmetric, n X n, tridiagonal
matriz:

ez bb 0 0 --. 0 0
b1 az bz 0 te 0 0
0 b2 as b3 e 0 0
T= e ) .
0 0 0 0 cee Qp-—1 bn——l
0 0 0 0 - by an

(All entries not on the main diagonal or the diagonals just above and below
the main one are zero.) Assume b; # 0 for all j.
Prove:

1. rankT >n —1.
2. T has n distinct eigenvalues.

Problem 7.2.5 (Sp83) Let A = (a;;) be an nxn real matriz satisfying
the conditions:
a; >0 (ISZSTL),



112 7. Linear Algebra

a;; <0 (i#4,1<4,j<n),

Zaij>0 (1<7<n).
i=1
Show that det(A) > 0.

Problem 7.2.6 (Sp91) Let A = (a;5)} ;_; be a square matriz with integer
entries.

1. Prove that if an integer n is an eigenvalue of A, then n is a divisor
of det A, the determinant of A.

2. Suppose that n is an integer and that each row of A has sum n:

T
Zaijzn, ].SZS’I‘
j=1

Prove that n is a divisor of det A.

Problem 7.2.7 (Fa84) Let R[zy,...,z,] be the polynomial ring over the

real field R in the n variables xy,...,xz,. Let the matriz A be the n x n
matriz whose it row is (1,z;,x%,...,277 1), i = 1,...,n. Show that
det A = H(xi —z;).
i>j

Problem 7.2.8 (Sp77) A matriz of the form

1 ap a2 ... af
1 a a% ... ap
1 ap a2 ... a?

where the a; are complex numbers, is called a Vandermonde matriz.

1. Prove that the Vandermonde matriz is invertible if ag, ay,...,a, are
all different.

2. If ap, a1, ...,a, are all different, and by, by, ..., b, are compler num-
bers, prove that there is a unique polynomial f of degree n with com-
plex coefficients such that f(ao) = bo, f(a1) =b1,..., flan) = bn.

Problem 7.2.9 (Sp90) Give an ezxample of a continuous function
v : R — R3 with the property that v(t1), v(tz), and v(t3) form a basis
for R3 whenever t,, to, and t3 are distinct points of R.



7.2 Rank and Determinants 113

Problem 7.2.10 (Fa95) Let fi, f2,..., fn be continuous real valued func-
tions on [a,b]. Show that the set {fi,..., fn} is linearly dependent on |a, b]

if and only if
b
det (/ fi(:v)fj(:v)dx) =0.

Problem 7.2.11 (Fa81) Let My be the vector space of all real 2x 2 ma-

trices. Let
1 2 2 1
a=(hg) s=(04)

and define a linear transformation L : Myyo — Mays by L(X) = AXB.
Compute the trace and the determinant of L.

Problem 7.2.12 (Su82) Let V' be the vector space of all real 8% 3 matri-
ces and let A be the diagonal matriz

1 00
0 2 0
0 01

Calculate the determinant of the linear transformation T on V defined by
TX) = %(AX + XA).

Problem 7.2.13 (Sp80) Let Ms3x3 denote the vector space of real 3x3
matrices. For any matric A € Majys, define the linear operator
L, : Msys — Msyxs, La(B) = AB. Suppose that the determinant of A
is 32 and the minimal polynomial is (t —4)(t —2). What is the trace of L ?

Problem 7.2.14 (Su81) Let S denote the vector space of real n xn skew-
symmetric matrices. For a nonsingular matriz A, compute the determinant
of the linear map Tq : S — S, Ta(X) = AXA™L.

Hint: First consider the special cases where (i) A is orthogonal and (ii) A
18 symmeltric.

Problem 7.2.15 (Fa94) Let M;«7 denote the vector space of real Tx7
matrices. Let A be a diagonel matriz in M7 47 that has +1 in four diagonal
positions and —1 in three diagonal positions. Define the linear transforma-
tion T on M7x7 by T(X) = AX — X A. What is the dimension of the range
of T?

Problem 7.2.16 (Fa93) Let F be a field. For m and n positive integers,
let M, xn be the vector space of m x n matrices over F. Fiz m and n, and
fiz matrices A and B in My, xn. Define the linear transformation T from
Moxm to My yn by

T(X) = AXB.

Prove that if m # n, then T is not invertible.
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7.3 Systems of Equations

Problem 7.3.1 (Su77) Determine all solutions to the following infinite
system of linear equations in the infinitely many unknowns z1,x2, .. .:

1 + x3 + x5 = 0
zg + x4 + x6 = 0
= 0

r3 + s + x7

How many free parameters are required?

Problem 7.3.2 (Fa77, Su78) 1. Using only the azioms for a field F,
prove that a system of m homogeneous linear equations in n unknowns
with m < n and coefficients in F has a nonzero solution.

2. Use Part 1 to show that if V is a vector space over F which is spanned
by a finite number of elements, then every mazximal linearly indepen-
dent subset of V has the same number of elements.

Problem 7.3.3 (Sp88, Sp96) If o finite homogeneous system of linear
equations with rational coefficients has a nontrivial complex solution, need
it have a nontrivial rational solution? Give a proof or a counterexample.

Problem 7.3.4 (Sp84, Sp8T) Let A be a real m x n matriz with ratio-
nal entries and let b be an m-tuple of rational numbers. Assume that the
system of equations Az = b has a solution x in complex n-space C™. Show
that the equation has a solution vector with rational components, or give a
counterezample.

7.4 Linear Transformations

Problem 7.4.1 (Fa77) Let E and F be vector spaces (not assumed to be
finite-dimensional). Let S : E — F be a linear transformation.

1. Prove S(E) is a vector space.
2. Show S has a kernel {0} if and only if S is injective (i.e., one-to-one).
3. Assume S is injective; prove S7' : S(E) — E is linear.

Problem 7.4.2 (Sp82) Let T : V — W be a linear transformation be-
tween finite-dimensional vector spaces. Prove that

dim(ker T') + dim(rangeT) = dim V.
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Problem 7.4.3 (Sp95) Suppose that W C V are finite-dimensional vec-
tor spaces over a field, and let L: V — V be a linear transformation with
L(V) < W. Denote the restriction of L to W by Lw. Prove that
det(1 — tL) = det{1l — tLw).

Problem 7.4.4 (Sp95) Let V be a finite-dimensional vector space over a
field F, and let L : V — V be a linear transformation. Suppose that the
characteristic polynomial x of L is written as x = x1x2, where x1 and
X2 are two relatively prime polynomials with coefficients in F. Show that
V' can be written as the direct sum of two subspaces V1 and Vo with the
property that x;(LYV; =0 (fori=1 and 2).

Problem 7.4.5 (Su79) Let E be a three-dimensional vector space over
Q. Suppose T : E — E is a linear transformation and Tx =y, Ty = z,
Tz = z +y, for certain z,y,z € E, © # 0. Prove that =, y, and z are
linearly independent.

Problem 7.4.6 (Su80) Let T : V — V be an invertible linear transfor-
mation of a vector space V. Denote by G the group of all maps fr o :V =V
where k€ Z,a€V, and forz eV,

fra@)=TFz+a (zeV).
Prove that the commutator subgroup G’ of G is isomorphic to the additive
group of the vector space (T — )V, the image of T — 1. (G’ is generated by
all ghg='h~t, g and h in G.)

Problem 7.4.7 (Sp86) Let V be a finite-dimensional vector space and A
and B two linear transformations of V into itself such that A2 = B2 =0
and AB+ BA =1.

1. Prove that if N4 and Np are the respective null spaces of A and B,
then Ny = AN, Ng = BN4, and V = N4 ® Np.

2. Prove that the dimension of V is even.

3. Prove that if the dimension of V is 2, then V has a basis with respect
to which A and B are represented by the matrices

01 nd 0 0

0oo0o) ¢ 10/
Problem 7.4.8 (Su84) Let f : R™ — R, n > 2, be a linear transfor-
mation of rank n — 1. Let f(v) = (fi(v), fo(v),..., fu(v)) for v € R™.
Show that a necessary and sufficient condition for the system of inequal-

ities fi(v) > 0, 1 = 1,...,n, to have no solution is that there exist real
numbers A; > 0, not all zero, such that

2": Aifi = 0.
=1
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Problem 7.4.9 (Sp95) Let n be a positive integer, and let S C R™ a
finite subset with 0 € S. Suppose that ¢ : S — S is ¢ map satisfying

©(0) =0,
d(p(s), p(t)) = d(s,t) forall s,tebf,

where d( , ) denotes Euclidean distance. Prove that there is a linear map
f:R™ — R™ whose restriction to S is ¢.

Problem 7.4.10 (Sp86) Consider R? be equipped with the Euclidean met-
ric d(z,y) = ||z — y||. Let T be an isometry of R? into itself. Prove that T
can be represented as T(z) = a + U(z), where a is a vector in R? and U is
an orthogonal linear transformation.

Problem 7.4.11 (Sp88) Let X be a set and V a real vector space of real
valued functions on X of dimension n, 0 < n < oco. Prove that there are
n points Ty,T2,...,Ln W X such that the map f — (f(z1),..., f(zn)) of
V to R™ is an isomorphism (i.e., one-to-one and onto). (The operations
of addition and scalar multiplication in V are assumed to be the natural
ones.)

Problem 7.4.12 (Sp97) Suppose that X is a topological space and V is
a finite-dimensional subspace of the vector space of continuous real valued
functions on X. Prove that there ezist a basis (f1, ..., fn) for V and points
T1,... L in X such that fi(z;) = &;.

Problem 7.4.13 (Fa90) Let n be a positive integer and let Pa, 4y be the
vector space of real polynomials whose degrees are, at most, 2n + 1. Prove
that there erist unique Teal numbers ¢y, ..., c, such that

/ p(e)dz = 20(0)+ 3 p(k) + p(—H) — 20(0)

- k=1
fO’I‘ allp € P2n+1.

Problem 7.4.14 (Sp94) Let T : R® — R" be a diagonalizable linear
transformation. Prove that there is an orthonormal basis for R™ with respect
to which T has an upper-triangular matriz.

Problem 7.4.15 (Fa77) Let P be a linear operator on a finite-dimensional
vector space over a finite field. Show that if P is invertible, then P™ = I
for some positive integer n.

Problem 7.4.16 (Fa82) Let A be an n x n compler matriz, and let B
be the Hermitian transpose of A (i.e., b;; = @j;). Suppose that A and B
commute with each other. Consider the linear transformations o and B8 on
C™ defined by A and B. Prove that o and 3 have the same image and the
same kernel.
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Problem 7.4.17 (Su79, Fa96) Prove that a linear transformation
T:R?®— R3 has

1. a one-dimensional invariant subspace, and
2. a two-dimensional invariant subspace.

Problem 7.4.18 (Fa83) Let A be a linear transformation on R3 whose
matriz (relative to the usual basis for R3) is both symmetric and orthogonal.
Prove that A is either plus or minus the identity, or a rotation by 180° about

some azis in R3, or a reflection about some two-dimensional subspace of
R3.

Problem 7.4.19 (Fa84) Let 0 and ¢ be fized, 0 < 8 < 27,0 < ¢ < 27
and let R be the linear transformatz’on from R® to R3 whose matriz in the
standard basis 7, 7, and k is

1 0 0
0 cosf siné
0 —sin@ cosé@

Let S be the linear transformation of R3 to R® whose matriz in the basis

1 =~ 1 -
—=(@+k), 5, —=@-k
\/5( ) J \/ﬁ( )
18
cose sing O
—singp cosyp 0
0 0 1

Prove that T = Ro S leaves a line invariant.

Problem 7.4.20 (Sp86) Let e = (a,b,c) be a unit vector in R3 and let
T be the linear transformation on R of rotation by 180° about e. Find the
matriz for T with respect to the standard basis ey = (1,0,0), e3 = (0,1,0),
and eg = (0,0,1).

Problem 7.4.21 (Su80) Ezhibit a real 3x3 matriz having minimal poly-
nomial (t241)(t—10), which, as a linear linear transformation of R3, leaves
invariant the line L through (0,0,0) and (1,1,1) and the plane through
(0,0,0) perpendicular to L.

Problem 7.4.22 (Su77) Show that every rotation of R? has an axis; that
is, given a 3x 3 real matriz A such that A® = A™! and det A > 0, prove
that there is a nonzero vector v such that Av = v.

Problem 7.4.23 (Sp93) Let P be the vector space of polynomials over R.
Let the linear transformation E : P — P be defined by Ef = f + f', where
f' is the derivative of f. Prove that E is invertible.
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Problem 7.4.24 (Fa84) Let P, be the vector space of all real polynomi-
als with degrees at most n. Let D : P, — P, be given by differentiation:
D(p) =p'. Let = be a real polynomial. What is the minimal polynomial of
the transformation 7(D)?

Problem 7.4.25 (Su77) Let V be the vector space of all polynomials of
degree < 10, and let D be the differentiation operator on V

(i.e., Dp(z) = p'(z)).
1. Show that tr D = 0.

2. Find all eigenvectors of D and eP.

7.5 Eigenvalues and Eigenvectors

Problem 7.5.1 (Fa77) Let M be a real 3x3 matriz such that M3 = I,
M#I

1. What are the eigenvalues of M ?
2. Give an example of such a matrix.

Problem 7.5.2 (Fa79) Let N be a linear operator on an n-dimensional
vector space, n > 1, such that N® = 0, N*=! # 0. Prove there is no
operator X with X?> = N.

Problem 7.5.3 (Sp89) Let F be a field, n and m positive integers, and
A an n x n matrix with entries in F such that A™ = 0. Prove that A™ = 0.

Problem 7.5.4 (Su81, Su82) Let V be a finite-dimensional vector space
over the rationals Q and let M be an automorphism of V such that M fizes
no nonzero vector in V. Suppose that MP is the identity map on V, where
.p is a prime number. Show that the dimension of V is divisible by p — 1.

Problem 7.5.5 (Fa92) Let F be a field, V a finite-dimensional vector
space over ¥, and T' a linear transformation of V into V whose minimum
polynomial, p, is irreducible over F.

1. Let v be a nonzero vector in V and let V1 be the subspace spanned by v
and its images under the positive powers of T. Prove that
dim Vi = deg .

2. Prove that deg p divides dim V.
Problem 7.5.6 (Su79, Fa93) Prove that the matriz

0510
5 05 0
1 505
0050
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has two positive and two negative eigenvalues (counting multiplicities).

Problem 7.5.7 (Fa94) Prove that the matriz

1 1.00001 1
1.00001 1 1.00001
1 1.00001 1

has one positive eigenvalue and one negative eigenvalue.

Problem 7.5.8 (Sp85) For arbitrary elements a, b, and ¢ in a field F,
compute the minimal polynomial of the matriz

0 0 a
1 0 b
0 1 ¢

Problem 7.5.9 (Fa85, Sp97) Suppose that A and B are endomorphisms
of a finite-dimensional vector space V over a field F. Prove or disprove the
following statements:

1. Every eigenvector of AB is also an eigenvector of BA.
2. Every eigenvalue of AB is also an eigenvalue of BA.

Problem 7.5.10 (Sp78, Sp98) Let A and B denote real nxn symmet-
ric matrices such that AB = BA. Prove that A and B have a common
etgenvector in R™.

Problem 7.5.11 (Sp86) Let S be a nonempty commuting set of n X n
complex matrices (n > 1). Prove that the members of S have a common
etgenvector.

Problem 7.5.12 (Sp84) Let A and B be complex n x n matrices such
that AB = BA?, and assume A has no eigenvalues of absolute value 1.
Prove that A and B have a common (nonzero) eigenvector.

Problem 7.5.13 (Su78) Let V be a finite-dimensional vector space over
an algebraically closed field. A linear operator T : V — V is called com-
pletely reducible if whenever a linear subspace E C V is invariant under
T (i.e., T(E) C E), there is a linear subspace F C V which is invariant
under T and such that V = E & F. Prove that T is completely reducible if
and only if V has a basis of eigenvectors.

Problem 7.5.14 (Fa79, Su81) Let V be the vector space of sequences
(an) of complex numbers. The shift operator S:V — V is defined by

S((al, az, as, . . )) = ((12,(13,(14, .. )

1. Find the eigenvectors of S.
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2. Show that the subspace W consisting of the sequences (x,) with
Tni2 = Tny1 + T, 18 a two-dimensional, S-invariant subspace of V
and ezhibit an explicit basis for W.

3. Find an explicit formula for the n'* Fibonacci number f,, where
fo=fi=1, foy2 = fag1+ fn forn > 1.
Note: See also Problem 1.3.10.

Problem 7.5.15 (Fa82) Let T be a linear transformation on a finite-
dimensional C -vector space V, and let f be a polynomial with coefficients
in C. If X is an eigenvalue of T, show that f(\) is an eigenvalue of f(T).
Is every eigenvalue of f(T') necessarily obtained in this way?

Problem 7.5.16 (Fa83, Sp96) Let A be the n xn matriz which has zeros
on the main diagonal and ones everywhere else. Find the eigenvalues and
eigenspaces of A and compute det(A).

Problem 7.5.17 (Sp85) Let A and B be two n X n self-adjoint (i.e., Her-
mitian) matrices over C and assume A is positive definite. Prove that all
eigenvalues of AB are real.

Problem 7.5.18 (Fa84) Let a, b, ¢, and d be real numbers, not all zero.
Find the eigenvalues of the following 4x 4 matriz and describe the eigenspace
decomposition of R?*:

aa ab ac ad

ba bb bec bd
ca cb cc cd
da db dc dd

Problem 7.5.19 (Sp81) Show that the following three conditions are all
equivalent for a real 8x 3 symmetric matriz A, whose eigenvalues are a, b,
and c:

1. trA is not an eigenvalue of A.
2. (a+b)(b+c)a+c)#£0.

8. The map L : S — S is an isomorphism, where S is the space of 3x 3
real skew-symmetric matrices and L(W) = AW + W A.

Problem 7.5.20 (Su84) Let

(24)

be a real matriz with a,b,c,d > 0. Show that A has an eigenvector

(1)er

with z,y > 0.
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Problem 7.5.21 (Sp90) Letn be a positive integer, and let A = (a;)7 ;1

be the nxn matriz with a; = 2, a;341 = —1, and a;; = 0 otherwise; that
18,
2 -1 0 0 0 0 0
-1 2 -1 0 0 0 0
0 -1 2 -1 0 0 0
0 0 -1 2 0 0 0
A=
0 0 0 o -~ 2 -1 0
0 0 0 o -+ -1 2 -1
K 0 0 0 o --- 0 -1 2

Prove that every eigenvalue of A is a positive real number.

Problem 7.5.22 (Sp92) Let A be a real symmetric n X n matriz with
nonnegative entries. Prove that A has an eigenvector with nonnegative en-
tries.

Problem 7.5.23 (Fa91) Let A = (ai;)7;=; be a real n x n matriz with
nonnegative entries such that

n
> a=1 (1<i<mn).
j=1

Prove that no eigenvalue of A has an absolute value greater than 1.

Problem 7.5.24 (Sp85, Fa88) Let A and B be two n x n self-adjoint
(i.e., Hermitian) matrices over C such that all eigenvalues of A lie in
[a,a’] and all eigenvalues of B lie in [b,b’]. Show that all eigenvalues of
A+ B liein [a+b,a’ +V].

Problem 7.5.25 (Fa85) Let k be real, n an integer > 2, and let A = (ai;)
be the n x n matriz such that all diagonal entries a;; = k, all entries a; ;41
immediately above or below the diagonal equal 1, and all other entries equal
0. For example, if n = 5,

k1 000
1 £ 1 00
A=]1 01 k 1 0
0 01 k1
0 0 0 1 k

Let Apin and Anaz denote the smallest and largest eigenvalues of A, re-
spectively. Show that Apin < k—1 and Aoz > k+ 1.

Problem 7.5.26 (Fa87) Let A and B be real nxn symmetric matrices
with B positive definite. Consider the function defined for x # 0 by
(Az, )

Glz) = (Bz,z)
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1. Show that G attains its maximum value.

2. Show that any mazimum point U for G is an eigenvector for a certain
matriz related to A and B and show which matriz.

Problem 7.5.27 (Fa90) Let A be a real symmetric n x n matriz that is
positive definite. Let y € R™, y # 0. Prove that the limit

i ytAm+1y
mm T A
m—oo Y Amy

exists and is an eigenvalue of A.

7.6 Canonical Forms

Problem 7.6.1 (Sp90, Fa93) Let A be a complexr n x n matriz that has
finite order; that is, A* = I for some positive integer k. Prove that A is
diagonalizable.

Problem 7.6.2 (Sp84) Prove, or supply a counterezample: If A is an
tnvertible n x n complex matriz and some power of A is diagonal, then A
can be diagonalized.

Problem 7.6.3 (Fa96) Let

2 -1 0
A=} -1 2 -1
0 -1 2

Show that every real matriz B such that AB = BA has the form
B = al + bA + cA®

for some real numbers a, b, and c.

Problem 7.6.4 (Fa78) Let

(1)

Ezpress A~! as a polynomial in A with real coefficients.

Problem 7.6.5 (Sp81) Forx € R, let

z 1 1 1
1 = 1 1
Az = 11 z 1
11 1 =z
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1. Prove that det(A;) = (z — 1)3(z + 3).
2. Prove that if t #1,-3, then A;' = —(z = 1)" Yz + 3) 1 A_,_o.
Problem 7.6.6 (Sp88) Compute A'° for the matriz

3 1 1
A= 2 4 2
-1 -1 1

Problem 7.6.7 (Fa87) Calculate A and A7, where
A 32 12
-1/2 1/2
Problem 7.6.8 (Sp96) Prove or disprove: For any 2x2 matriz A over

C, there is a 2x2 matriz B such that A = B2,

Problem 7.6.9 (Su85) 1. Show that a real 2x2 matriz A satisfies
A? = —T if and only if

A:<iﬂ)¢?—j ¢x/z:)§t_1)

where p and q are real numbers such that pg > 1 and both upper or
both lower signs should be chosen in the double signs.

2. Show that there is no real 2x2 matriz A such that
-1 0
2 _
AT = ( 0 -1-¢ )
Problem 7.6.10 (Fa96) Is there a real 2x2 matriz A such that

w_ (-1 0 )
A _( 0 —1—5)'

Ezhibit such an A or prove there is none.

with e > 0.

Problem 7.6.11 (Sp88) For which positive integers n is there a 2x 2 ma-

trix ;
a
a=(¢a)

with integer entries and order n; that is, A =T but A* # I for0 <k <n?

See also Problem 7.7.9.
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Problem 7.6.12 (Sp92) Find a square root of the matrix
1 3 -3
0 4 5
00 9
How many square roots does this matriz have?
Problem 7.6.13 (Sp92) Let A denote the matriz

0 01
000
000
000

(=R e R e B ]

For which positive integers n is there a complex 4x 4 matriz X such that
X" =A?

Problem 7.6.14 (Sp88) Prove or disprove: There is a real n x n matriz
A such that
A2 4+ 2A+51=0

if and only if n is even.

Problem 7.6.15 (Su83) Let A be an n x n Hermitian matriz satisfying

the condition
AS+ A3+ A=3I

Show that A =1.

Problem 7.6.16 (Su80) Which of the following matriz equations have a
real matriz solution X? (It is not necessary to exhibit solutions.)

1.

X3 =

—
o
o
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34 0
X*=103 0
0 0 -3

Problem 7.6.17 (Sp80) Find a real matriz B such that

2 0 0

B'=(0 2 o0

0 -1 1
Problem 7.6.18 (Fa87) Let V be a finite-dimensional vector space and
T:V — V a diagonalizable linear transformation. Let W C V be a linear

subspace which is mapped into itself by T. Show that the restriction of T to
W is diagonalizable.

Problem 7.6.19 (Fa89) Let A and B be diagonalizable linear transfor-
mations of R™ into itself such that AB = BA. Let E be an eigenspace of
A. Prove that the restriction of B to E is diagonalizable.

Problem 7.6.20 (Fa83, Sp87) LetV be a finite-dimensional complez vec-
tor space and let A and B be linear operators on V such that AB = BA.
Prove that if A and B can each be diagonalized, then there is a basis for V
which simultaneously diagonalizes A and B.

Problem 7.6.21 (Sp80) Let A and B be n x n complex matrices. Prove
or disprove each of the following statements:

1. If A and B are diagonalizable, so is A+ B.

2. If A and B are diagonalizable, so is AB.

3. If A’ = A, then A is diagonalizable.

4. If A is invertible and A? is diagonalizable, then A is diagonalizable.

Problem 7.6.22 (Fa77) Let

7 15
(7, 5).

Find a real matriz B such that B~1AB is diagonal.

Problem 7.6.23 (Su77) Let A : R® — RS be a linear transformation
such that A%6 = I. Show that RS =V, ® Vo © Vi, where Vy, Vo, and V3 are
two-dimensional invariant subspaces for A.
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Problem 7.6.24 (Sp78, Sp82, Su82, Fa90) Determine the Jordan Canon-
ical Form of the matriz

A=

OO =
O N
[N ]

Problem 7.6.25 (Su83) Find the eigenvalues, eigenvectors, and the Jor-
dan Canonical Form of

2
A= 1
1

= DN =

1

L,

2
considered as a matriz with entries in Fs = Z/3Z.

Problem 7.6.26 (Su83) Let A be an nxn complex matriz, and let x and
p be the characteristic and minimal polynomials of A. Suppose that

x(z) = w=)(z — ),
w(@)? = x(z)(z® +1).
Determine the Jordan Canonical Form of A.

Problem 7.6.27 (Fa78, Fa84) Let M be the n xn matriz over a field F,
all of whose entries are equal to 1.

1. Find the characteristic polynomial of M.
2. Is M diagonalizable?

3. Find the Jordan Canonical Form of M and discuss the extent to which
the Jordan form depends on the characteristic of the field F.

Problem 7.6.28 (Fa86) Let Msx> denote the vector space of complex

2x 2 matrices. Let
01
4=(00)

and let the linear transformation T : Myyxa — Maxo be defined by
T(X)=XA—- AX. Find the Jordan Canonical Form for T.

Problem 7.6.29 (Fa88) Find the Jordan Canonical Form of the matriz

100 000
110000
101000
100100
100010
111111
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Problem 7.6.30 (Fa89) Let A be a real, upper-triangular, n x n matriz
that commutes with its transpose. Prove that A is diagonal.

Problem 7.6.31 (Su78) 1. Prove that a linear operator T : C™ — C™
is diagonalizable if for all X € C, ker(T — AI)"™ = ker(T — AI), where
I is the n x n identity matriz.

2. Show that T is diagonalizable if T commutes with its conjugate trans-
pose T (z'.e., (T*)jk = Tk:j)

Problem 7.6.32 (Fa79) Let A be an n x n complex matriz. Prove there
is a unitary matriz U such that B =UAU ' is upper triangular: Bj; = 0
for i > k.

Problem 7.6.33 (Sp81) Let b be a real nonzero n x 1 matriz (a column
vector). Set M = bb* (an n x n matriz) where b* denotes the transpose of b.

1. Prove that there is an orthogonal matriz Q such that QMQ~' = D
is diagonal, and find D.

2. Describe geometrically the linear transformation M : R™ — R™.

Problem 7.6.34 (Sp83) Let M be an invertible real n x n matriz. Show
that there is a decomposition M = UT in which U is an nxn real orthogonal
matriz and T is upper triangular with positive diagonal entries. Is this
decomposition unique?

Problem 7.6.35 (Su85) Let A be a nonsingular real n X n matriz. Prove
that there exists a unique orthogonal matriz Q and a unique positive definite
symmetric matriz B such that A = QB.

Problem 7.6.36 (Sp95) Let A be the 3% 38 matriz

1 -1 0

-1 2 -1

0 -1 1
Determine all real numbers a for which the limit lim, _,o, a™ A™ ezists and
is nonzero (as a matriz).

Problem 7.6.37 (Fa96) Suppose p is a prime. Show that every element
of GLz(F,) has order dividing either p> — 1 or p(p — 1).

7.7 Similarity

Problem 7.7.1 (Fa80, Fa92) Let

1
A=| -1
-1

S =o
= o
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Is A similar to

11
B=101
00

N OO
-~

Problem 7.7.2 (Fa78) Which pairs of the following matrices are similar?
1 0 0 1 1 0 0 —1
0 1)’ 1 0 )° 1 1)° 1 0 ’
1 0 1 5 1 5
1 -1 ) 0o -1 )’ 0 1)/°

Problem 7.7.3 (Sp79) Which of the following matrices are similar as
mairices over R %

1 00 00 1 100
@] 0 1 , o 10, @11 0],
00 1 1 00 00 1
1 00 1 0 01 1
@1 10]),@lo10],pH[o0 10
011 00 1 1 00

Problem 7.7.4 (Sp79) Let M be an n x n complex matriz. Let G be
the set of complex numbers A such that the matriz AM is similar to M.

1. What is G if

M=

o OO

0 4
0 0|7
0 0

2. Assume M is not nilpotent. Prove Gy is finite.

Problem 7.7.5 (Su80, Fa96) Let A and B be real 2x2 matrices with
A? = B? = I, AB + BA = 0. Prove there exists a real nonsingular matriz

T with
(1 0 . {01
TAT —<0 _1> TBT —(1 0 )

Problem 7.7.6 (Su79, Fa82) Let A and B be n xn matrices over a field
F such that A? = A and B? = B. Suppose that A and B have the same
rank. Prove that A and B are similar.

Problem 7.7.7 (Fa97) Prove that if A is a 2x 2 matriz over the integers
such that A™ = I for some strictly positive integer n, then A% = 1.

Problem 7.7.8 (Fa80) Ezhibit a set of 2x 2 real matrices with the follow-
ing property: A matriz A is similar to exactly one matriz in S provided A
is a 2x 2 invertible matriz of integers with all the roots of its characteristic
polynomial on the unit circle.
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Problem 7.7.9 (Su78) Let G be a finite multiplicative group of 2x2 in-
teger matrices.

1. Let A € G. What can you prove about
(i) det A?

(i) the (real or complex) eigenvalues of A?
(iii) the Jordan or Rational Canonical Form of A?

(iv) the order of A?
2. Find all such groups up to isomorphism.
See also Problem 7.6.11.

Problem 7.7.10 (Fa81, Su81, Sp84, Fa87, Fa95) Let A and B be two
real n x n matrices. Suppose there is a complex invertible n x n matriz U
such that A = UBU™'. Show that there is a real invertible n x n matriz
V such that A = VBV 1. (In other words, if two real matrices are similar
over C, then they are similar over R.)

Problem 7.7.11 (Sp91) Let A be a linear transformation on an n-di-
mensional vector space over C such that det(zf — A) = (z — 1)™. Prove
that A is similar to A™1.

Problem 7.7.12 (Sp94) Prove or disprove: A square complex matriz, A,
is similar to its transpose, At.

Problem 7.7.13 (Sp79) Let M be a real nonsingular 3x 8 matriz. Prove
there are real matrices S and U such that M = SU = US, all the eigen-
values of U equal 1, and S is diagonalizable over C .

Problem 7.7.14 (Sp77, Sp93, Fa94) Find a list of real matrices, as long
as possible, such that

e the characteristic polynomial of each matriz is (z — 1)°(z + 1),
e the minimal polynomial of each matriz is (x — 1)%(z + 1),
e no two matrices in the list are similar to each other.

Problem 7.7.15 (Fa95) Let A and B be nonsimilar n x n complez ma-
trices with the same minimal and the same characteristic polynomsial. Show
that n > 4 and the minimal polynomial is not equal to the characteristic
polynomial.

Problem 7.7.16 (Sp98) Let A be an n X n complez matric with
trace(A) = 0. Show that A is similar to a matriz with all 0’s along the
main diagonal.
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7.8 Bilinear, Quadratic Forms, and Inner Product
Spaces

Problem 7.8.1 (Sp98) Let A, B, ..., F be real coefficients. Show that the
quadratic form

Az? + 2Bxy + Cy? + 2Dzz + 2Eyz + F2?
18 positive definite if and only if
A B D
A >0, ‘g g‘>0, B C E |[>0.
D E F

Problem 7.8.2 (Fa90) Let R® be 3-space with the usual inner product,
and (a,b,c) € R3 a vector of length 1. Let W be the plane defined by
azx + by + cz = 0. Find, in the standard basis, the matriz representing the
orthogonal projection of R® onto W.

Problem 7.8.3 (Fa93) Let w be a positive continuous function on [0,1],
n a positive integer, and P, the vector space of real polynomials whose
degrees are at most n, equipped with the inner product

(p,q) = /0 p(t)q(t)w(t) dt.

1. Prove that P, has an orthonormal basis po,P1;---,Pn
(i.e., (pj,pi) =1 for j =k and 0 for j # k) such that degpy = k for
each k.

2. Prove that (px, p}) = 0 for each k.

Problem 7.8.4 (Sp98) For continuous real valued functions f,qg on the
interval [—1, 1] define the inner product (f,g) = f_ll f(z)g(z)dz. Find that
polynomial of the form p(z) = a + bx? — z* which is orthogonal on [—1,1]
to all lower order polynomials.

Problem 7.8.5 (Su80, Fa92) Let E be a finite-dimensional vector space
over a field ¥. Suppose B : ExXE— F is a bilinear map (not necessarily
symmetric). Define subspaces

E,={z € E|B(z,y) =0 for all y ¢ E},
E;={y€E | B(z,y) =0 for all x € E}
Prove that dim F; = dim E,.

Problem 7.8.6 (Su82) Let A be a real n xn matriz such that (Az,z) > 0
for every real n-vector x. Show that Au = 0 if and only if A'u = 0.
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Problem 7.8.7 (Fa85) An nxn real matriz T is positive definite if T is
symmetric and (T'z,z) > 0 for all nonzero vectors x € R", where (u,v) is
the standard inner product. Suppose that A and B are two positive definite
real matrices.

1. Show that there is a basis {vy,vs,...,vn} of R™ and real numbers
A1, A2, ..., Ap such that, for 1 <i,j < n:

(Avi,v;5) = { (1) z;;
and o
oo ={ 5 153
2. Deduce from Part 1 that there is an invertible real matric U such that
Ut AU 1is the identity matriz and U'BU 1is diagonal.

Problem 7.8.8 (Sp83) Let V be a real vector space of dimension n, and
let S:V xV — R be a nondegenerate bilinear form. Suppose that W is a
linear subspace of V' such that the restriction of S to W x W is identically
0. Show that we have dimW < n/2.

Problem 7.8.9 (Fa85) Let A be the symmetric matric

1 13 -5 -2
-1 -5 13 -2
-2 -2 10

Let x denote the column vector

T
T2
3

z; € R, and let z* denote its transpose (x|, T2, x3). Let |z| denote the length
of the vector x. As x ranges over the set of vectors for which ztAz = 1,
show that |z| is bounded, and determine its least upper bound.

Problem 7.8.10 (Fa97) Define the index of a real symmetric matriz A
to be the number of strictly positive eigenvalues of A minus the number of
strictly negative eigenvalues. Suppose A, and B are real symmetric n x n
matrices such that x*Ax < z'Bzx for all n x 1 matrices x. Prove the the
index of A is less than or equal to the index of B.

Problem 7.8.11 (Fa78) Forz,y € C", let (x,y) be the Hermitian inner
product Zj z;Y;. Let T be a linear operator on C™ such that (T'z,Ty) =0
if (x,y) = 0. Prove that T = kS for some scalar k and some operator S
which is unitary: (Sz, Sy) = (z,y) for all z and y.
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Problem 7.8.12 (Sp79) Let E denote a finite-dimensional complex vec-
tor space with a Hermitian inner product (z,y).

1. Prove that E has an orthonormal basis.

2. Let f : E — C be such that f(z,y) is linear in x and conjugate linear
in y. Show there is a linear map A : E — FE such that
f(z,y) = (Az,y).

Problem 7.8.13 (Fa86) Leta and b be real numbers. Prove that there are
mutually orthogonal unit vectors u and v in R3 such that u = (u1,us,a)
and v = (v1,v2, b) if and only if a® + b% < 1.

7.9 General Theory of Matrices

Problem 7.9.1 (FaB1) Prove the following three statements about real
n X 1 matrices.

1. If A is an orthogonal matriz whose eigenvalues are all different from
—1, then I, + A is nonsingular and S = (I, — A)(I, + A)~! is skew-
symmetric.

2. If S is a skew-symmetric matriz, then A = (I,, — SY(I, + S)~! is an
orthogonal matriz with no eigenvalue equal to —-1.

3. The correspondence A — S from Parts 1 and 2 is one-to-one.

Problem 7.9.2 (Fa79) Let B denote the matriz

[ RN en i <

00
b 0
0 c

where a, b, and ¢ are real and |a|, |b|, and |c| are distinct. Show that there
are ezactly four symmetric matrices of the form BQ, where Q is a real
orthogonal matriz of determinant 1.

Problem 7.9.3 (Sp79) Let P be a 9x9 real matriz such that
zt Py = y' Pz for all column vectors x,y in R®. Prove that P is singu-
lar.

Problem 7.9.4 (Fa79) Let A be a real skew-symmetric matric
(Aij = —Aj;). Prove that A has even rank.

Problem 7.9.5 (FaB0, Sp96) Suppose that A and B are real matrices
such that A = A,
viAv >0
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for allv e R™ and
AB+ BA=0.

Show that AB = BA = 0 and give an example where neither A nor B is
zero.

Problem 7.9.6 (Sp78) Suppose A is a real n X n matriz.
1. Is it true that A must commute with its transpose?

2. Suppose the columns of A (considered as vectors) form an orthonor-
mal set; is it true that the rows of A must also form an orthonormal
set?

Problem 7.9.7 (Sp98) Let My = (32), My = (5, 7)), Mz = (5,%9).

For which (if any) i, 1 <i <3, is the sequence (M*) bounded away from
00 ? For which i is the sequence bounded away from 07

Problem 7.9.8 (Su83) Let A be an nxn complex matriz, all of whose
eigenvalues are equal to 1. Suppose that the set {A" | n = 1,2,...} is
bounded. Show that A is the identity matriz.

Problem 7.9.9 (Fa81) Consider the complex 3x 8 matriz

where ao,a1,a3 € C.

1. Show that A = aolz + a1 E + a2 E?, where
01 0
F = 0 0 1
1 0 0

2. Use Part 1 to find the complex eigenvalues of A.
3. Generalize Parts 1 and 2 to nxn matrices.
Problem 7.9.10 (Su78) Let A be a n x n real matriz.

1. If the sum of each column element of A is 1 prove that there is a
nonzero column vector x such that Az = x.

2. Suppose that n = 2 and all entries in A are positive. Prove there is a
nonzero column vector y and a number A > 0 such that Ay = Ay.
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Problem 7.9.11 (Sp89) Let the real 2n x 2n matriz X have the form

A B

C D
where A, B, C, and D are n x n matrices that commute with one another.
Prove that X 1is invertible if and only if AD — BC is invertible.

Problem 7.9.12 (Sp89) Let B = (b;;)?%_, be a real 20 x 20 matriz such
that
b,‘,i=0 fOT‘ 1SZS20,

Prove that B is nonsingular.

Problem 7.9.13 (Sp80) Let

1 2
A= ( L2 ) .
Show that every real matriz B such that AB = BA has the form sI +tA,
where s,t € R.

Problem 7.9.14 (Su84) Let A be a 2x2 matriz over C which is not a
scalar multiple of the identity matrix I. Show that any 2x 2 matriz X over
C commuting with A has the form X = ol + BA, where a, € C.

Problem 7.9.15 (Sp77, Su82) A square-matriz A is nilpotent if A* =0
for some positive integer k.

1. If A and B are nilpotent, is A + B nilpotent?

2. Prove: If A and B are nilpotent matrices and AB = BA, then A+ B
1s nilpotent.

3. Prove: If A is nilpotent then I + A and I — A are invertible.

Problem 7.9.16 (Sp77) Consider the family of square matrices A(0) de-

fined by the solution of the matriz differential equation
dA(6)
0 = BA(9)

with the initial condition A(0) = I, where B is a constant square matriz.

1. Find a property of B which is necessary and sufficient for A(9) to be
orthogonal for all 0; that is, A0 = A(0)~!, where
A(6)" = transpose of A(6).

Hint: What is & A~1(0)?
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2. Find the matrices A(0) corresponding to

(%)

and give a geometric interpretation.

Problem 7.9.17 (Su77) Let A be an r x r matriz of real numbers. Prove
that the infinite sum

A? A"
A =T+A+
2 n!

of matrices converges (i.e., for each i,j, the sum of (i,7)" entries con-

verges), and hence that et is a well-defined matriz.

Problem 7.9.18 (Sp97) Show that
det(exp(M)) = etr(M)

for any complex n x n matriz M, where exp(M) is defined as in Prob-
lem 7.9.17.

Problem 7.9.19 (Fa77) Let T be an n x n complex matriz. Show that

lim T% =0

k—o00
if and only if all the eigenvalues of T have absolute value less than 1.

Problem 7.9.20 (Sp82) Let A and B be nxn complez matrices. Prove
that

|tr(AB*)|? < tr(AA*)tr(BB*).

Problem 7.9.21 (Fa83) Let F(t) = (fi;(t)) be an nxn matriz of contin-
uously differentiable functions fi; : R — R, and let

u(t) = tr (F(£)*).
Show that v is differentiable and
w'(t) = 3tr (F(2)°F'(t)) .

Problem 7.9.22 (Fa84) Let A and B be nxn real matrices, and k a pos-
itive integer. Find
1.
o1 k k
hmz ((A+tB)* — A%).

t—0
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2.

d
—tr (A + tB)*

t=0

Problem 7.9.23 (Fa91) 1. Prove that any real nxn matriz M can be
written as M = A+S+cl, where A is antisymmetric, S is symmetric,
¢ is a scalar, I is the identity matriz, and tr S = 0.

2. Prove that with the above notation,

tr(M?) = tr(A?) + tr(S?) + %(tr M)?.

Problem 7.9.24 (Sp98) Let N be a nilpotent complex matriz. Let r be a
positive integer. Show that there is a n X n complex matriz A with

A" =T+ N.

Problem 7.9.25 (Fa94) Let A = (aij):.bj=1 be a real n x n matriz such
that a;; > 1 for alli, and
Z a?j <1

ity
Prove that A is invertible.

Problem 7.9.26 (Fa95) Show that an n x n matriz of complexr numbers
A satisfying
lasil > ) las|
J#i
for 1 < i <n must be invertible.

Problem 7.9.27 (Sp93) Let A = (a;;) be an n x n matriz such that
3 i=1 laijl <1 for each i. Prove that I — A is invertible.

Problem 7.9.28 (Sp94) Let A be a real n x n matriz. Let M denote the
mazimum of the absolute values of the eigenvalues of A.

1. Prove that if A is symmetric, then ||Az|| < M|z| for all z in R™.
(Here, || - || denotes the Euclidean norm.)

2. Prove that the preceding inequality can fail if A is not symmetric.

Problem 7.9.29 (Sp97) Let R be the ring of n x n matrices over a field.
Suppose S is a ring and h : R — S is a homomorphism. Show that h is
either injective or zero.



Part 11

Solutions



1
Real Analysis

1.1 Elementary Calculus

Solution to 1.1.1: Let f(8) = cosp — (cos8)?. We have f(0) = 0 and,
for0 <8< m/2,

f'(8) = —psinpf + pcosP~ ! fsin
< ) sin )
=p|—sinpd + ———

cosi-r@
>0

since sin is an increasing function on [0, 7/2] and cos! =78 € (0, 1). We con-

clude that f(8) > 0 for 0 < 8 < «/2, which is equivalent to the inequality
we wanted to establish.

Solution to 1.1.2: Let z € [0, 1]. Using the fact that f(0) = 0 and the
Cauchy-Schwarz Inequality [MH93, pag. 69] we have,

sei=| [ f'(t)dt|

([ |f'<t>|2dt)1/2 ([ ﬂit)m
<([ If’(t)lzdt)l/z
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and the conclusion follows.

Solution to 1.1.3: As f’ is positive, f is an increasing function, so we
have, for £ > 1, f(t) > f(1) = 1. Therefore, for ¢t > 1,

1 1
f(t)_t2+f2(t) SEr

SO
flz)=1 +/1 f'(t)dt
|
< 1+/1 t2+1dt

1
<1 dt
+/1 t2+1

hence, lim,_,, f(z) exists and is, at most, 1 +
holds because

1R

- The strict inequality

li =1 "(t)dt < 1 t=1+—
Jim @) =1+ [ pOde<tr [T =]

Solution to 1.1.4: Denote the common supremum of f and g by M. Since

f and g are continuous and [0, 1] is compact, there exist a, 8 € [0, 1] with

f(a) = g(B) = M. The function h defined by h(z) = f(z) — g(z) satisfies

hla) =M — g(a) > 0, h(B) = f(B) — M < 0. Since h is continuous, it has
~a zero t € [, §]. We have f(t) = g(t), so f(t)2 + 3f(t) = g(t)? + 3g(¢).

Solution to 1.1.5: Call a function of the desired form a periodic polyno-
mial, and call its degree the largest k such that z* occurs with a nonzero
coeflicient.

If a is l-periodic, then A(af) = aAf for any function f, so, by the
Induction Principle [MH93, pag. 7], A™(af) = aA™f for all n.

We will use Complete Induction [MH93, pag. 32]. For n = 1, the result
holds: A f = 0if and only if f is 1-periodic. Assume it is true for 1,...,n—1.
If

f=a+az+ - +a,12"!

is a periodic polynomial of degree, at most, n — 1, then
A" f =a Az 4t G D2

and the induction hypothesis implies that all the terms vanish except,
maybe, the last. We have A™(z""!) = A" !A(z"~!), a polynomial of
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degree n — 2 by the Binomial Theorem [BML97, pag. 15]. So the induction
hypothesis also implies A?(z”~!) = 0 and the first half of the statement
is established.

For the other half, assume A™f = 0. By the induction hypothesis, A f
is a periodic polynomial of degree, at most, n — 2. Suppose we can find
a periodic polynomial g, of degree, at most, n — 1, such that Ag = Af.
Then, as A(f — g) = 0, the function f —g will be 1-periodic, implying that
f is a periodic polynomial of degree, at most, n — 1, as desired. Thus, it is
enough to prove the following claim: If h is a periodic polynomial of degree
n(n=0,1,...), then there is a periodic polynomial g of degree n+ 1 such
that Ag=h

If n = 0, we can take g = hx. Assume h has degree n > 0 and, as an
induction hypothesis, that the claim is true for lower degrees than n. We
can then, without loss of generality, assume A = ax™, where a is 1-periodic.
By the Binomial Theorem,

n+1
YN
n+1
is a periodic polynomial of degree n — 1, so it equals Ag;, for some periodic
polynomial g, of degree n, and we have h = Ag, where

az'”‘H

g = +m

n+1
as desired.

Solution to 1.1.6:
1. For
0 for t#£0

f(t)zg(t)z{ 1 for (=0

we have lim;_g g(t) = lim;_¢ f(t) = 0 but lim;_,o f (g(t)) = 1.

2. f(t) = t2 maps the open interval (—1,1) onto [0, 1), which is not open.
3. Let z,z9 € (—1,1). By Taylor’s Theorem [Rud87, pag. 110], there is
¢ €(—1,1) such that

n—1 (k) (n)
f(z) = Z f—k(,xi)(:v —x0)* + ! n|(£) (x —z9)" (n € N).

k=0 . :

We have .
fe | ‘(s) (@ zo)| < tim lfv_—'w_d -0,
n—o0 n! n—oo n!

SO f(k) zo k

Z ~ o)
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for any z¢ € (—1,1) and f is real analytic.

Solution to 1.1.8: 1. Suppose f : [0,1] — (0, 1) is a continuous surjection.
Consider the sequence (z,,) such that z,, € ! ((0,1/n)). By the Bolzano-—-
Weierstrass Theorem [Rud87, pag. 40|, [MH93, pag. 153], we may assume
that (x,) converges, to x € [0, 1], say. By continuity, we have f(z) = 0,
which is absurd. Therefore, no such a function can exist.

2. |sin2rz|.

3. Suppose g : (0,1) — [0,1] is a continuous bijection. Let zo = g~*(0)
and z; = ¢~ '(1). Without loss of gencrality, assume zo < z; (otherwise
consider 1 — g). By the Intermediate Value Theorem [Rud87, pag. 93],
we have g([zg, z1]) = [0,1]. As zg,z; € (0,1), g is not an injection, which
contradicts our assumption.

Solution to 1.1.9: Using the parameterization
T = acost, y = bsint,
a triple of points on the ellipse is given by
(acost;, bsint;), i =1,2,3.

So the area of an inscribed triangle is given by

1 acost; bsint, 1 cost; sint;
—1 1 acosty bsinty | =—| 1 costy sinty
1 acost; bsinty 1 costs sints

which is ab times the area of a triangle inscribed in the unit circle. Hence,
the area is maximal when

b=t + 28 and ty =ty + o
= —- an = —
e=lit3 e
that is, when the corresponding triangle inscribed in the unit circle is reg-
ular.

Solution to 1.1.10: Assume that a and b arc in A and that a < b. Suppose
a < ¢ < b. Let (z,,) and (y,,) be sequences in [0, 00) tending to +oco such that
a = lim, o0 f(zn) and b = lim,_,o f(yn). Deleting finitely many terms
from each sequence, if necessary, we can assume f(z,) < cand f(y,) > c
for every m. Then, by the Intermediate Value Theorem [Rud87, pag. 93],
there is for each n a point 2z, between x,, and y, such that f(z,) = c¢. Since
obviously lim,,_,, 2, = +00, it follows that ¢ is in A, as desired.

Solution to 1.1.12: Let g be a polynomial,

g(z) = ap + a1(x — a) +az(z —a)* + -+ ap(z —a)".
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If we take
1 _ f'(a)g(a) _ _f"(a)g(a) + f'(a)g'(a)

Q=1 m=-pt,  ap= @ ,

fla)’ f(a)

a calculation shows that the requirements on g are met.

Solution to 1.1.13: Suppose that all the roots of p are real and let
degp = n. We have p(z) = (z — r1)™ (2 — ro)"?--- (2 — &)™, where
r1 < re < --- < 1, and Y. n; = n. By differentiating this expression,
we sce that the r;’s are roots of p’ of order n; — 1 when n; > 1. Sum-
ming these orders, we see that we have accounted for n — k of the possible
n — 1 roots of p’. Now by Rolle’s Theorem [MH93, pag. 200], for each 1,
1 <4 < k—1, there is a point 8;, r; < 8 < ri1, such that p'(s;) = 0.
Thus, we have found the remaining k — 1 roots of p/, and they are distinct.
Now we know that a is a root of p’ but not of p, so a # r; for all i. But a is
a root of p”, so a is a multiple root of p’; hence, a # s; for all i. Therefore,
a is not a root of p’, a contradiction.

Solution to 1.1.14: Let z € R and h > 0. By the Taylor's Formula
[Rud87, pag. 110], there is a w € (z,z + 2h) such that

flz +2h) = f(z) +2hf (z) + 20 f" (w),

or rewriting
f'(z) = (f(z + h) — f(z)) /2h — hf" (w).

Taking absolute values and applying our hypotheses, we get
A
@) < 5 +hB.

Using elementary calculus, we see that the right-hand side is, at most,

2VAB.

Solution to 1.1.15: Consider the function f(z) = logz/x. We have
a® = b iff f(a) = f(b). Now f'(z) = (1 — logz)/x?%, so f is increasing
for x < e and decreasing for x > e. For the above equality to hold, we must
have 0 < a < e, so a is either 1 or 2, and b > e. For a = 1, clearly there
are no solutions, and for ¢ = 2 and b = 4 works; since f is decreasing, this
is the only solution.

Solution 2. Clearly, a and b have the same prime factors. As b > a, we
must have b = ka, with k > 1. Now b* = (ka)® = a” implies that k is a
power of a, so b= a™ for some m > 1. Now b* = a™* = a®" exactly when
ma = a', which can easily be seen to have the unique solution a = m = 2.
Soa=2and b=2%=4.

Solution 3. Let b = a(1 +t), for some positive t. Then the equation a® = b*
is equivalent to any of the following

aa(1+t) — (a(l + t))a
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(aa)l-f-t _ aa(l + t)a
(a®)' = (1 +1)°
at =1+t

We have, by the power serics expansion of the exponential function, that
e! > 1 4t for positive ¢, so a < e. As a = 1 is impossible, we conclude
a = 2. The original equation now becomes

2" =p?
which, considering the prime decomposition of b, clearly implies b = 4.
Solution to 1.1.16: The equation can be rewritten as o = x, or

logx
b

=loga.

There is thus a solution for z if and only if loga is in the range of
z + (logz)/z°. Using elementary calculus, we get that the range of this
function is (—oo, 1/be]. We conclude then that the original equation has a
positive solution for z if and only if loga < 1/be, that is, if and only if
1<a<el/te,

Solution to 1.1.17: Let f(z) = 3%z 3 for z > 0. We have

3*(xlog3 —3) 3
f’(m):———zT———>0 for m>@-

As 3/log3 < 3 < 7, we have f(3) =1 < f(n) = 37 /=3, that is, #3 < 3™.

Solution to 1.1.18: Fix a in (1,00), and consider the function
f(x) = a®z7* on (1,00), which we try to minimize. Since log f(z) =
zloga — alogx, we have

1@
fle) B¢ g

showing that f'(z) is negative on (1, ;%) and positive on (paa »)-

Hence, f attains its minimum on (1, co) at the point z, = , and

T
loga

1
log f(z.) = a — alog (I(%) =alog (e (;ga) .

The number a thus has the required property if and only if el—‘;g—“ > 1.
To see which numbers a in (1, 00) satisfy this condition, we consider the
function g(y) = 135-3 on (1,00). We have

1—logy
gy = T

)
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from which we conclude that g attains its maximum on (1, co) at y = e, the
maximum value being g(e) = 2- Since g(y) < 1 on (1,00)\{e}, we conclude

that e—l%gﬁ < 1 for a in (1, 00), except for a = e. The number a = e is thus
the only number in (1, 00) with the required property.

Solution to 1.1.19: Let g(z) = €*/z* for z > 0. Since g(z) — oo as
 — 0 and as £ — oo, there must be a minimum value in between. At the
minimuim,

g'(x)=e"z™ (1~ t/z) =0,

so the minimum must occur at x = ¢, where

g(z) = g(t) = €'/t = (e/t)".

z Te\t
2 (%)
t

and the right-hand side is strictly larger than zt if and only if £ < e.

Thus,

Solution to 1.1.20: f can be written as its second degree Maclaurin
polynomial [PMJ85, pag. 127] on this interval:

(0 (3)
where £ is between 0 and z. Letting £ = 4:1/n in this formula and combin-

ing the results, we get, for n > 1,

2f(0) f® ®)(3, ,
(M0 L% | 1O
F®(an) + F(Bn)

B 6n?

n(f(1/n) — f(=1/n)) —2f'(0) =

for some ay,, B, € [—1,1]. As f"” is continuous, there is some M > 0 such
that |f"”'(z)] < M for all z € [—1, 1]. Hence,

Zn (1/n) — f(~1/n)) — 2f(0

n=1

M1
I PIAL

Solution to 1.1.21: Using Taylor’s Theorem [Rud87, pag. 110],
f”( )h2

for some 2 € (z,z+h)

fl@+h)~ f(z) = fz)h+
and similarly
flz—h)— f(z) = —f'(z)h +

for some w € (z —h,x).

()
2h2
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The result follows by adding the two expressions, dividing by k%, and taking
the limit when h — 0.

Solution to 1.1.23: 1. The geometric construction

/2
shows that

sin0 > 20 for 0<0<
T 2

An analytic proof can be written down from the fact that the sin function
is concave down (second derivative negative) in the interval 0 <8 < 5

It can also be seen from the following geometric construction due to Feng
Yuefeng [Yue96]: -

Q

OB =OM + MP > OA = PBQ > PAQ
= 7wsind > 20

20
== sinf > —.
T
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2. The integral inequality

/2

J= e O R dp

w/2

e 2M/TRdf

IA

J
)

/2
— _7Te~2R0/7r

0
<m

is called Jordan’s Lemma [MH87, pag. 301]. Qur limit is then

xf2 . /2 .
lim R} / e 540 = lim R / e R dp
R—o0 0 R—o0 0
< lim Rz =0.

R—o0

Solution 2. We have

ks
2

s

£

IZ/\/2 6~RSin9d6: R,\/3 e_RSin0d0+R)\/ B_RSinodO.
0 0

147

As cosf > 1/2 for 0 < 6 < 7/3, and sinf is an increasing function on

[0,7/2], we have

z
2

R)\ /2 e—Rsiang < 21%)\/3 e—Rsin()COSOde_’_R/\/ e—Rsin(w/3) dé
0 0

fd

3
. R r . .
- A—1 _ p—Rsin(n/3) — R sin(7/3)
2R (1 e )+——6 e
=o(l) (R— o)

Solution to 1.1.24: Let T = R\ S, T is dense in R because each nonempty

interval contains uncountably many numbers.
Fix p € T and define F': R — R by

Fz) = / " fyt.

F vanishes on T, so, as it is continuous, F' vanishes on R. Therefore, we

have F/ = f =0.

Solution to 1.1.25: f'(c) = 0 for some ¢ € (0,1), by Rolle’s Theorem
(MH93, pag. 200]. The concavity of f shows that f is increasing on (0,¢)
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and decreasing on (¢, 1). The arc length of the graph of f on [0, ¢] is
C n—1
Loo = [ VIFFP@Rda= lim €Y T7 /&P

where &, € (ke/n, (k+ 1)c/n). By the Mean Value Theorem [Rud87, pag.
108] we can assume the £’s satisfy

Sk + D)e/n) — fke/n)

c/n

fiér) =

We get

Lo = Jim S yf(e/n)? + (7 (k + Defm) — fke/m)?

n—1

< lim " (c/n) + (f ((k + )e/n) — f(ke/n))

k=0

=c+ f(¢)

since f is increasing. A similar reasoning shows that L. ;) < 1—c+ f(c).
So L[O,l] < C+f(C) +1—c+ f(C) <3.

Solution to 1.1.26: The convergence of [, |f'(z)|dz implies the conver-
gence of floo f/(z)dz, which implies that limg o f(z) exists. If that limit
is not 0, then ) > | f(n) and fl z)dz both diverge. We may therefore,
assume that lim,_,o f(z) = 0. Then fm (z)dz — 0 as 7 — oo (where
|7 is the greatest integer < ), implying that floo f(z)dz converges if and
only if lim,—.o f;* f(z)dz cxists (where n here tends to co through integer
values). In other words, the convergence of [, f(z)dz is equivalent to the

convergence of Yoo [ mH g (z)dz. Tt will therefore, suffice to prove that
Yot lf:H f(z)dz — f(n)| < co. We have

n+l
| @) = sis

/ ™ / F(t)dtdz| <

- / P ®)lde
fn+1 f(z)dz ~ f(n)~ < floo |f/(t)|ldt < oo, as desired.

/ " @)z - fm)

/nH/ | () dtdz

Hence, Z

Solution to 1.1.27: We have
lu(z)| = |u(z) — w(0)} < |z|
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and
[u*(2) - u(@)| = |u(@)||u(z) — 1] < |=|(lz] + 1)

80

el < [ lufe) ~ @i < [ ate+ 1o =5

Equality can be achieved if {u(z)| = = and |u(z) — 1| =  + 1. This is the
case for u(z) = —z which is in E.

Solution to 1.1.29: Let

u(t) =1+2/0tf(s)ds.

We have
() =1+ 2f(t) < 24/u(t),
S0
B ~ t u’(s) t L
Vvult) —1= A __———2\/11—(3_)(18 S/O ds = t;
therefore,

F() < Vult) <1+t.

Solution to 1.1.30: We will show b must be zero. By subtracting and
multiplying by constants, we can assume a = 0 < b. Given ¢ > 0, choose
R > 1 such that

lp(z)| <€

and
¢'(z)>b/2>0

for all z > R. By the Fundamental Theorem of Calculus [MH93, pag. 209],

o(@) = p(R) + /R "/ (@)ds,

S0
x

% > o) — p(R) > / gda: — (z— R)b/2.
R
For z = 5R, we get
b<e/R<e.

Since € > 0 was arbitrary, we must have b = Q.
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Solution to 1.1.31: Let 0 < k; < k3 < 1, then for all z € (0,7/2),

—k1c0s2w > —ky cos® x
V1—kycos?z > \/1—kpcos?x
1 1
V1~kicos?g < V1 —kgcos?x

1 /2 1
/ ——————dx</ SR S
o V1—kicos?z o V1 —kacos?z

Solution to 1.1.32: With the change of variables y = 2/, we have

0= [ [t B [t

7_
f(8) = —£ .

SO

Solution to 1.1.33: Let
u 2
G(u,v, ) =/ e Tt

Then F(z) = G(cosz,sinz, x), so

9Gdu  9Gdy oG
udz | Bvor oz

u
2, . . 2
= e* % (_gsing) — eV cos z -+ / tet Tt
v

Fl(z) =

and

1
1
P0) = —1 +/ tedt = 5(e )
0

Solution to 1.1.34: 1. Let f(z) # 0. Then
J@)f(z) = £ (Va2 +22) = f(-=)f(2),

so f(z) = f(—z) and f is even.

Also, f(0)f(2) = f(2), so f(0) =1.
2. We will show now that f(y/nz) = (f(z))" for real z and natural n,
using the Induction Principle [MH93, pag. 7]. The result is clear for n = 1.
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Assume it holds for n = k. We have

f(\/k-flx) :f( ( k:c)2+a:2)

If p,q € N, then ,
fp)=f(@*-1) = (f())F

D) - ()
(f (§>> — (f)”

o If f(1) > 0, we have

and
Fe) = f (\/p‘

from which follows

LAY
1(2) =uan®,
so, by continuity on R,

fl@) = (Fa)" .

e If f(1) =0, then f vanishes on a dense set, so it vanishes everywhere,
contradicting the hypothesis.

e To see that f(1) < 0 caunot happen, consider p even and q odd. We
get f(p/q) > 0, so f is positive on a dcnse set, and f(1) > 0.

Note that we used only the continuity of f and its functional equation.
Differentiating, we casily check that f satisfies the differential equation.
The most general function satisfying all the conditions is then

,L,Z

&
with 0 <c < 1.

Solution 2. 1. Let £ = y = 0. Then f(0)*> = f(0), so f(0) = 0 or 1. If
f(0) =0, then 0 = f(v/z2) for any z, so, in fact, f(z) = 0 for all z > 0.
If f(y) # 0 for any y, then f(z)f(y) = O implies f(z) = 0 for all z, so
f(z) = 0 for all z if f(0) = 0. Since we assume f is nonzero, we must have
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f(0) = 1. Then evaluating at y = 0 gives f(z) = f(Vz?) = f(~z), so [ is
an even function.
2. Differentiate with respect to y to get

f@)f'(y) = f(r)ry

where r = y/z? + y? and r,, denotes the partial derivative of r with respect
to y. Differentiate again to get

f(z)f"(y) = f"("")rz + fl(r)ryy :
Since r, = y/r and 1y, = z?/73, we get
f'(z)=1"(0)zf(z)
for y = 0. The solution of this differential equation is
f(z) = el ©/2

and since f vanishes at infinity, we must have f”(0)/2 = —v < 0. Thus,
f(z) = e~7%" for some positive constant +.

1.2 Limits and Continuity

Solution to 1.2.1: Consider f(z) = sinz. The Mean Value Theorem
[Rud87, pag. 108] implies that

f(@) = f(y) = f'(€)(@ —y) = (cos§)(z —y) forsome§ € (0,1),
and since |cosé| < 1, this implies
|f(z) — f(y)| <|z—y|  wheneverz #y.
However, if M < 1 were such that
If(z) = f(y)| < Mlz—~y| forallz,ye€l,

then, putting z = 0 and letting y — 0, we would get |f/(0)] < M < 1,
which contradicts the fact that f/(0) = 1.

Solution to 1.2.2: Suppose f is not continuous at £ € [0, 1]. Then, for
some € > 0, there is a sequence (z,) converging to £ with | f(z,)— f(£)| > ¢
for all n. By the first condition, there is a sequence (y,) such that y, lies
between £ and z,, and |f(y,) — f(€)| = ¢. Then

Yn € STHSE) +USTH(SE) ) E¢ ST +e)Uf T (f(E) — ),
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which contradicts the second condition.

Solution to 1.2.3: 1. Let fi be the restriction of f to [0,2]. The ranges of
f and f, are the same, by periodicity, so f attains its extrema.

2. Let 6 > 0. f) is uniformly continuous, being a continuous function defined
on a compact set, so there is € > 0 such that

|fi(a) = fL(B)| <& for a,be0,2],la—b] <e.

Let z,y € R with |z — y| < &. Then, there are z;, £2 = =1 + 1, y1,

y2 = y1 + 1 € [0,2] with f(z1) = f(22) = f(2), f(y1) = f(y2) = f(y), and
|z; — y;| < e for some choice of ,j € {1,2}, and the conclusion follows.
3. Let f attain its maximum and minimum at £; and &3, respectively. Then

fa+m—f(&)<0 and  f(&+m) - f(&)20;

as f is continuous, the conclusion follows from the Intermediate Value The-
orem [Rud87, pag. 93].

Solution to 1.2.4: Let (x,) be a sequence of numbers in [0, 1) converging
to zero. As h is uniformly continuous, given é > 0 we can find € > 0 such
that [h(z) — h(y)| < § if |r — y| < &; therefore, we have

|h(zn) — h(zm)] <6

for n and m large enough. (f(z,)) is a Cauchy sequence then, so it con-
verges, to &, say. If (y,) is another sequence with limit zero, a similar ar-
gument applied to f(z1), f(y1), ... shows that lim f(y») = £. The function
g:[0,1] » R given by

g(z) = { h(g) igi ii[g’l)

is clearly the unique extension of h to [0, 1].

Solution to 1.2.5: Let E be the set of discontinuities of f. We have
E = FE,UE;UE3U E4, where

E\={z€ E|f(z—) = fla+) < f(z)}, E2={z€E|f(z-)> flz)}

E3={c € E|f(z—) = f(z+) > f(x)}, EBa={zeE|f(z-)<flz+)}
For x € E1, let a, € Q be such that f(z—) < a, < f(z+). Now take
b.,c; € Q in such a way that b, < x < ¢, and

by <t<cy,x#t implies f(t) <ay-

This map ¢ : E; — Q3 given by z — (as,bz,c.) is injective since
(@x, bz, ) = (ay, by, cy) implies f(y) < a; < f(y) for x # y. So E| is,
at most, countable.
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For z € E,, take a; € Q with f(z—) > a; > f(x+) and choose b;,c,; €
@Q such that b, < x < ¢, and

b, <t<z implies f(t)> a,
and
t <c, implies f(t) < ay;

this map is an injection E; — Q3, so Ez is, at most, countable.
Similar methods lead to analogous results for E3 and E,. As the union
of countable sets is countable, the result follows.

Solution 2. Define the function o0 : R — R by

o(z) = max{|f(z) — f(z+)],|f(z) - fz=)I};

observe that o(z) > 0 if and only if x is a discontinuity of f.
For each n € N, let the set D, be given by

D, = {z €R|o(z) > 1/n}.

It is clear that the set of discontinuities of f is D = (J_, D,,. We shall prove
that each D, has no accumulation points, so, it is countable. If a € D,,,
using the fact that f(a+) = lim,_,. f(z), we can find § > 0 such that, for
all z, a < x < a + §, we have

flat) = 5= < f(@) < Jlat) + 1)

that is, for every point in this interval, o(z) < 1/2n. In the same fashion,
we can find an open set a — § < & < a such that no point is in D,,, showing
that D,, is made up of isolated points so it is countable, and so is D.

Solution to 1.2.6: By Problem 1.2.5, it is enough to show that f has
lateral limits at all points. We have, for any xz € R,

—00 < Zsllig{f(y)} = f(z—) < f(z+) = ;gﬁ{f(y)} <00

since f is an increasing function.

Solution to 1.2.7: Fix ¢ > 0. For each z € [0,1], let §, be as in the
hypothesis and I, = (z — §;,x + ;). The open intervals {I,} cover [0, 1]
s0, by compactness and the Heine-Borel Theorem [Rud87, pag. 30}, we can
choose a finite subcover

0,1]|Cc I, Ul;,U---Ul, .

Let M = max{f(x;) +¢}. If z € [0,1] then f(z) < M and f is bounded
from above.
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Let N be the least upper bound of f on [0, 1]. Then there is a sequence
of points (z,) such that (f(z,)) tends to N from below. Since [0,1] is
compact, by the Bolzano-Weierstrass Theorem [Rud87, pag. 40], [MH93,
pag. 153|, (z,.) has a convergent subsequence, so (by passing to a subse-
quence) we may assume that (r,) converges to some p € [0,1]. By the
upper semicontinuity of f and the convergence of (f(z,)), we have, for n
sufficiently large, f(z,) < f(p) +€ and N < f(z,) + £. Combining these,
we get f(p) < N < f(p) + 2e. Since this holds for all ¢ > 0, f(p) = N.

Solution to 1.2.8: Suppose f : R — R is continuous, maps open sets to
open sets but is not monotonic. Without loss of generality assume there are
three real numbers a < b < ¢ such that f(a) < f(b) > f(c). By Weierstrass
Theorem [MH93, pag. 189], f has a maximum, M, in [a, ¢|, which cannot
occur at a or b. Then f((a,c)) cannot be open, since it contains M but
does not contain M + ¢ for any positive £. We conclude then that f must
be monotonic.

Solution to 1.2.9: The inequality given implies that f is one-to-one, so f
is strictly monotone and maps open intervals onto open intervals, so f(R)
is open.

Let 2, = f(x,) be a sequence in f(R) converging to 2 € R. Then z,
is Cauchy, and, by the stated inequality, so is z,. Let £ = limz,. By
continuity we have f(z) = f(limz,) = lim f(z,) = 2z so f(R) is also
closed. Thus, f(R) =R.

Solution to 1.2.10: 1. For £ > 0 let
€
_ 1 ' {— 1}.
L Irg[%ﬁ](]f(z)|+ ) and 0< 6 < min 5L

We have
1 1 .
n < n < < -
‘/1—633 f(x)dz) < /1—5z |f(z)|dx < L < 5
and
1-5 1-6
| el < [ a- ol < o,
0 0
S0

1
lim z" f(x)dx = 0.

2. We will show that

n—0o0

lim n/ol (f@) — F(1))dz = 0.

For € > 0 let § be such that |f(z) — f(1)| <e/2if z € [1 — §,1]. We have
1

1
Sn/ z”lf(a:)~f(1)|dx_<_n/ z"gdzg E,
1-5 1-6 2 2

-6

n / féznmz) = f(1))da
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and, letting L = sup,¢p 1) 1f(z) — f(1)],

1-§)n+!

n/olﬁéz"(f(m)'f(l))dx SnAl_sandzzn( —

and the result follows.
Now it suffices to notice that

n/ola:"f(a:)da: = n/o1 z™(f(z) — f(1))dz —i—n/ol1 f()z"dz.

Solution to 1.2.11: Suppose that f is not continuous. Then there exist £ >
0, z € [0,1], and a sequence (z,) tending to z such that
[f(z)— f(zn)| > € for all n. Consider the sequence ((z,, f(z,))) in Gy. Since
the unit square is compact, by Bolzano-Weierstrass Theorem [Rud87, pag.
40], [MH93, pag. 153], this sequence has a convergent subsequence; using
this subsequence, we may assume that ((z,, f(z,))) converges to some
point (y, z). Then we must have the sequence (z,) converging to y; so, by
the uniqueness of limits, z = y. Since G is closed, we must have z = f(z).
Hence, (f(z,)) converges to f(z), contradicting our assumption.

Solution to 1.2.12: For each y € [0,1], consider the function
gy(z) = f(z,y). Then g(x) = supgy(z). The family {g,} is equicontin-
uous because f is uniformly continuous. It suffices then to show that the
pointwise supremum of an equicontinuous family of functions is continuous.
Let € > 0, xg € [0, 1]. There is yp such that

Fyo (Z0) < g(T0) < gyo(20) + €.

Let 6 be such that if |r — s| < 6, then |gy(r) — gy(s)| < € for all y, and
|zo — z1| < 8. For some y;, we have that

gy, (21) £ g(z1) < gy, (1) + €.

Further, by equicontinuity of {g,}, we have the two inequalities
[9y0(Z0) — gyo(z1)] < € and |gy, (za) — gy, (z1)| < €. By combining them
we get

9yo(T0) < gyo(z1) +€ < g(z1) +€ < gy, (1) + 2¢
and

Gy, (.’1:1) < 9y, (‘1"0) +e< g(mﬂ) +e< gyo(mﬂ) + 2e.

These two inequalities imply |gy, (1) — gy, (z0)| < 2¢. This, combined with
the first two inequalities, shows that |g(zo) — g(z1)| < 3e. Since this holds
for all € and zo and all ; close to xo, g is continuous.
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Solution to 1.3.1: A} < A} + .-+ A} < kAY, so we have

Ay = lim (AD)Y" < lim (A} + -+ ADY" < lim (RAT)V™ = A,

n—0Q n-—=00 =—0Q
showing that the limit equals A,.
Solution to 1.3.2: Let p1 = 1, p» = (2/1)%, ps = (3/2)3, ...,
o = (n/(n—1))". Then

Pp2--pPn M
n n!

and since p, — e, we have lim(n™/n!)!/» = e as well (using the fact that
limn!/™ = 1).

Solution 2. As the exponential is a continuous function, L = exp(limy, ~o Ly)
where

1
L, =logn— =~(logl+log2+---+logn).
n

Since
logl +log2+---+log(n —1) S/ logzdx =nlogn —n+1,
1

we have
L,>(1-1/n)logn—logn+1—1/n=1—(1+logn)/n > 1 as n— oco.

On the other hand,

log 1 +10g2+---+10gn2/ logzdx = nlogn —n+1,
1

50
L, <logn—(nlogn—n+1)/n=1-1/n.
Hence,
1-(1+4logn)/n<L,<1-1/n,
so L, = 1and L = exp(l) =e.

Solution to 1.3.3: Obviously, z,, > 1 for all n; so, if the limit exists, it is

> 1, and we can pass to the limit in the recurrence relation to get

_ 3+2moo.

Loo = 5
3+ Too

in other words, zgo + Zoo — 3 = 0. So z, is the positive solution of this
quadratic equation, that is, T, = %(-1 +4/13).
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To prove that the limit exists, we use the recurrence relation to get

m oy _3+2r, 342w,
nH o 3+mn 3+$nv—1
3(In~f13n_1)

T B+2)B+zar1)
Hence, |z,41 — 25| < %[mn — Zp,—1|. Iteration gives
1
3n-4

The series Y o, (Znt1 — Tn), Of positive terms, is dominated by the con-
vergent scries 1 Y ..; 37" and so converges. We have }" | (z41 — Tn) =
lim,_,o n, — 1 and we are done.

|Znt1 — Zn| £ 3721~ 20| =

Solution 2. To prove the existence of the limit it is enough to notice that
if g is defined by

o(z) = 3+ 2z
3+¢z
we have
I’ (z)| < % <1 for z>1

and apply the Fixed Point Theorem [Rud87, pag. 220].

Solution to 1.3.5: By the given rclation z,, — z,_1 = (a — 1)(2,, — ZTp_1)-
Therefore, by the Induction Principle [MH93, pag. 7], we have z,, —z,_1 =
(¢ —1)""Y(z1 — z0). Hence,

n

n
mn—mo=§ (zk — Tk—1) = (21 — Z0) E (e - 1)*
k=1

k=1

Taking limits, we get

1_
lim 7, = G- %0 +a
n—00 2—q

Solution 2. The recurrence relation can be expressed in matrix form as
Intl ) _ 4 In , where A= a l-a .
Ty Tpn—1 1 0
Tp+1 — An Ty
Tn T /-

A calculation shows that the eigenvalues of A are 1 and o — 1, with corre-

sponding eigenvectors v; = (1, 1) and v = (a—1, 1)%. A further calculation
shows that

I _ (1-(1).’13()4’.’131 vy + TIg— X1 v
To ) 2—-a ! 2—a ) 2

Thus

’
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Hence,
Tne1 N\ 4l Z1 )\ _ (I—0)ro+x) %o
( Tn >_A (zo)_ 2-a vt (e—1) 7 _a 2
Since |a — 1| < 1 we have lim,, (e — 1) = 0, and we can conclude that
lim z, = -t T
n—0o00 2-a«a

Solution to 1.3.6: The given relation can be written in matrix form as
(Fm1) = A("z'), where A = (**3")- The required periodicity holds
if and only if A¥ = (;9). The characteristic polynomial of 4 is AZ —
2)X + 1, so the cigenvalues of A are ¢+ /¢ - 1. A nceessary condition for
AF = ((1) (1)) is that the eigenvahics of A be k” roots of unity, which implies
that ¢ = cos (%), j = 0,1,...,|&|. If ¢ has the preceding form and
0<j< % (i.e., =1 < ¢ < 1), then the eigenvalues of A are distinct (i.e., A
is diagonalizable), and the equality A* = ((1) [1)) holds. If ¢ = 1 or —1, then
the eigenvalues of A are not distinct, and A has the Jordan Canonical Form

[HK61, pag. 247] (1) or (' 1), respectively, in which case 4 # (7).

Hence, the desired periodicity holds if and only if ¢ = cos (21,:1), where j is
an integer, and 0 < j < k/2.

Solution to 1.3.7: If limz,, = £ € R, we have z = a + z%; so

v 1:4+/1—4a

B 2
and we must have a < 1/4.

Conversely, assume 0 < a < 1/4. Aszp,y1— T, = a:3L~:ch_1, we conclude,
by the Induction Principle [MH93, pag. 7], that the given sequence is
nondecreasing. Also,

1
4 4 2
if z,, < 1/2, which shows that the sequence is bounded. It follows that the
sequence converges when 0 < a < 1/4.

2 l
Tntr=a+zx, < -+

Solution to 1.3.8: Clearly, 0 < z,,11 = z,(1 —2) <z, < --- < z; for
all n. Thus,
Tntl = Tn(l ~ z::) > xn(l - :E?) y

and therefore

In > I H(l —z¥) =z exp (Z log(1 ~ as'f)) .
1

k=1
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Since log(1 — «¥) = O(z%) as k — oo, the sum converges to a finite value
L as n — oo and we get

liminfx, > x;exp(L) > 0.

n—00

Solution to 1.3.9: 1. We have

ﬂ@=§—(z—§f

S0 z, is bounded by 1/2 and, by the Induction Principle [MH93, pag. 7],
nondecreasing. Let A be its limit. Then

1 1\”
A‘a‘(A‘a)
and, as the sequence takes only positive values,
1
A= 3
2. It is clear, from the expression for f above, that
fz)<z for < —%

and . 3
< —= fi > -
f(z) < 5 for z2g

therefore, the sequence diverges for such initial values.
On the other hand, if |z — 1/2| < 1, we get

1 1
— = < _— =
) 3| <[e- 3]
so, for these initial values, we get
n
Zn+1—§( < .’13—5 :0(1).

Solution to 1.3.10: Suppose that lim f,11/fn = a < 00. a > 1 since the
the sequence f, is increasing. We have

forr o1
A S

Taking the limit as n tends to infinity, we get (since a # 0)
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or
a?—a-1=0.

This quadratic equation has one positive root,

1+5
p=—0

We show now that the sequence (f,,+1/fn) is a Cauchy sequence. Apply-
ing the definition of the f,’s, we get

fn+1 fn

fn fn—l

Since f, is an increasing sequence,

fno1(fno1— fa-2) 20

1%—1 - fnfn*2 .
721—1 +fn—1fn—2

or
721—1 + fn—lfn72 > 2fn—1fn—2'

By substituting this in and simplifying, we get

fn+1 _ fn . l fn _ fn—l .
fn fn-l -2 fn—l fn—2
By the Induction Principle [MH93, pag. 7], we get
fn-l-l _ fn 1 é _ & .
fo  faa| T 202 |fe h
Therefore, by the Triangle Inequality [MH87, pag. 20}, for all m > n,
m—1
fm+1 . fn+1 < ﬁ _ é Z %
fm fn f2 fl ken 2k-

Since the series ) 27" converges, the right-hand side tends to 0 as m and
n tend to infinity. Hence, the sequence (fn4+1/f») is a Cauchy sequence,
and we are done.

Solution to 1.3.11: We have

n

1 1 1 1
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which is a Riemann sum for fol(l + z)~!dz corresponding to the partition
of the interval [0, 1] in n subintervals of equal length. Therefore, we get

lim 1 4+t 1) / g dx =log?2
n—oo \ 1+ 1 2n)  Jo 14z g
Solution 2. Using the inequalities

1\* 1 \*
_ —_ >
(1+k> <e<(1+k_1) (k> 2),

log ( )
k= n+1 k-1
2n 1 k 1 2n k+1
plog{ =) =8 Tk
n+1 k=n-+1

we get

log2 = log (

—n—i—l

>Z—>Z

k=n+1 k=
1o 2n+1Y
— 08 n+1l)/’

therefore, we have

2n 1
log2 > T}Lngo Z P > log2
k=n+1
and the result follows.
Solution 3. We have
CIONRE S I S S I
n+1 m 2 2n 2 n
1 1 1 1
:1 _— — — ) —
ot 2( + +2n)
o 2 Mm-—1 2n

and the result now follows from the Maclaurin expansion [PMJ85, pag.
127] of log(1 + ).

Solution to 1.3.12: Let n > 0. For m > n, we have

m—1

1
xmgxn'{'ZﬁanJf'gn
k=n
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where

Taking the lim sup, with respect to m, we have

T, > limsupz,, — é-n
m—00

The series Y k=2 converges, so lim, o, &, = 0. Considering the lim inf
with respect to n, we get

liminfz, > limsupz,, — liminf&, > limsupz,,.
o0

n—0 m—00 n— m—00
The reverse inequality also holds, so lim z,, exists.

Solution to 1.3.13: Fix é > 0, and choose np such that e, < § for all
n > ng. Then

Qng+1 .<_ kano + Eng < kano + 6
Angt2 < K2ang + k8 + engr1 < k2an, + (L + k)6
Ao+ < KPang + (K + k)8 + eng 2 < kKPan, + (1 + k + k%)6

and, by the Induction Principle [MH93, pag. 7],

6

Ungim < kMan, + (L +k+--+ k™16 < k™ay, + 1-k

Letting m — oo, we find that

limsupa, < —--
n—voop = 1-— k
Since § is arbitrary, we have limsup,,_,,, a, £ 0, and thus (since a, > 0
for all n) lim, . an, = 0.

Solution to 1.3.14: If (z,,) is unbounded, then, without loss of generality,
it has no finite upper bound. Take z,,, = z, and, for each k € N, z,,, such
that z,, > max{k, z,, ,}. This is clearly an increasing subsequence of z,,.

If z,, is bounded, it has a convergent subsequence: limy,, = &, say. y,
contains a subsequence converging to £+ or one converging to £ —. Suppose
(2,,) is a subsequence of (y,,) converging to {+. Let z,,, = 2; and, for k > 1,
let £ < zn, < z,_,- This is a monotone subsequence of ().

Solution to 1.3.15: Supposc that there are z > 1, ¢ > ( such that
lbm/bn, —z| > € for all 1 < n < m. Since lim(b,,/b,4+1) = 1, for all &
sufficiently large there exists an integer ng > k such that b, /by < z if
m < ny and b,, /by, > z if m > ny. In particular, for each k,
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Oupt1 _ Oy > 2
by b —
or
" 2e
LTSS 1>2eb—’°>—>0
b, nx T

As ny tends to infinity as k does, the left hand side should tend to 0 as k
tends to infinity, a contradiction.
Solution to 1.3.16: 1. Using the Ratio Test [Rud87, pag. 66], we have

!271,!!!311.!!

1(an)] _ nl(4n)!(2n + 2)(2n + 1)(2n)!(3n + 3)(3n + 2)(3n + 1)(3n)!

@nt'GnA3) T (20)](3n)!(n + 1)n!(4n + 4)(4n + 3)(4n + 2)(4n + 1)(4n)!

(nF ) (4nTa)!
_ (2n+2)2n+1)(3n+3)(3n+2)(3n + 1)
 (n+1D)(@n+4)4n+3)(4n +2)(d4n + 1)
— 2—7 <1
64
so the series converges.
2. Comparing with the series Y 1/(nlogn), which can be seen to diverge
using the Integral Test [Rud87, pag. 139],

1/n1+1/n e logn _

l/nlogn — T

we conclude that the given series diverges.

Solution to 1.3.17: 1. Assume that 3 a, < co. As (\/@rt1 — ,/an)2 =
Gnt1+ Gy — 2,/0rGr11, We have

;mﬁ%}; ay *‘an+1 :%al+zan<oo-

n=2

2.Since Y (an + any1) =25 \/AGnGri1+. (,/an+1 — an )2, we require a
sequence a, = b2, b, > 0, such that 3 b,b,1 < 0o but 3 (bpt1 — bn)2 =
0o. One such example is

L if n isodd
bn:{ Jf

if n isecven.

Solution to 1.3.18: As
a™tl n®(logn)°
(n+1)®(logn+ 1) a®

lim = |a|

the series converges absolutely for |a| < 1 and diverges for |a| > 1.
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e a=1.

(i) b > 1. Let b =1+ 2¢; we have

1 (1
n't2% (logn) O\ pi+e (n — o)

and, as the series > n~(1+€) converges, the given series converges
absolutely for b > 1.

(ii) b = 1. The series converges (absolutely) only if ¢ > 1 and di-
verges if ¢ < 1, by the Integral Test [Rud87, pag. 139].

(iii) b < 1. Comparing with the harmonic series, we conclude that
the series diverges.

e a = —1. By Leibniz Criterion [Rud87, pag. 71], the series converges

exactly when

1
lim——— =0
1m nb(logn)¢

which is equivalent tob>0orb=0,¢c > 0.

Solution to 1.3.19: Note that

vn+1—+/n 1

n ne+1/2 (n = c0)
that is,
lim YR L= VR/nt
n—oo ]/’nz'i‘l/2

so the given series and
o]

Y =
z+1/2
n=1 n /

converge or diverge together. They converge when z > 1/2.

Solution to 1.3.20: If ¢ < 0, the general term does not go to zero, so the
series diverges. If a > 0, we have, using the Maclaurin series [PMJ85, pag.
127] for sinz,

1 1 1 _3

;—sm;;=W+o(n ) (n — o0)
and, therefore,

1 1\* 1
——sin— ) = —=— 4 o(n"%%) (n — o0).
n n 6en3e

Thus, the series converges if and only if 3a > 1, that is, a > 1/3.
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Solution to 1.3.21: For n = 1, 2, ... the number of terms in A that are
less than 10™ is 9™ — 1, so we have

Zl Z Z .

a a

acA n>1 jon-l<a<ion
a€A

<D o

n>1

9 n
(i)
n>1 10
< 0.

Solution to 1.3.22: Let S be the sum of the given series. Let Ny = 0. By
convergence, for each k > 0 therc exists an Ny > Ny _; such that

0o
S
j{: an S ZE'

Ne+1

For N +1 <n < Ny let ¢, = 2%. We have lime,, = 0o. As the terms are
all positive, we may rearrange the sum and get

Solution 2. The convergence of the given series shows that there is an
increasing sequence of positive integers (Ni) with -0 - a, < 1/k72 for

ecach k. Let
. _{ 1 if n<MN;

Then ¢,, — oo, and
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oo oo k
D mtd 3

nool O:o 1
Szan Z—Q_
<o

Solution to 1.3.23: Using the formula sin2z = 2sinzcosz and the
Induction Principle [MH93, pag. 7], starting with sin § = 1, we see that

T T s 1
COS —= COS ~—— + + +COS — = ———————.
22 23 2n 2n~lgin o
So we have .
1 2 3w 2 ( )
= — ~ — n —
2n~!sin - " wsin 5= T

since sinz ~ z (z — 0).

1.4 Differential Calculus

Solution to 1.4.1: Lemma 1: If (z,,) is an infinite sequence in the finite
interval [a,b], then it has a convergent subsequence.

Consider the sequence y; = sup{z, |n > k}. By the least upper bound
property, we know that yj exists and is in [a, b) for all k. By the definition of
supremum, it is clear that the y;’s form a nonincreasing sequence. Let y be
the infimum of this sequence. From the definition of infimum, we know that
the yx's converge to y. Again, by the definition of supremum, we know that
we can find x,,’s arbitrarily close to each yx, so we can choose a subsequence
of the original sequence which converges to y.

Lemma 2: A continuous function f on [a,b] is bounded.

Suppose f is not bounded. Then, for each n, there is a point z,, € [a, b]
such that |f(z,)] > n. By passing to a subsequence, we may assume that
the x,,’s converge to a point « € [a, b]. (This is possible by Lemma 1.) Then,
by the continuity of f at z, we must have that |f(x) — f(z,)| < 1 for n
sufficiently large, or |f(zn)| < |f(z)| + 1, contradicting our choice of the
Ty’S.

Lemma 3: A continuous function f on [a,b] achieves its extrema.

It will suffice to show that f attains its maximum, the other case is
proved in exactly the samec way. Let M = sup f and suppose f never
attains this value. Define g(z) = M — f(z). Then g(z) > 0 on [a,b], so 1/g
is continuous. Therefore, by Lemma 2, 1/g is bounded by, say, N. Hence,
M — f(z) > 1/N, or f(z) < M — 1/N, contradicting the definition of M.
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Lemma 4: If a differentiable function f on (a,b) has a relative extremum
at a point ¢ € (a,b), then f'(c) =0.
Define the function g by

fx)—f(c
g(@) = { = for z#¢c

0 for z=c¢

and supposc g(c) > 0. By continuity, we can find an interval J around
¢ such that g(z) > 0 if ¢ € J. Therefore, f(z) — f(c¢) and z — ¢ always
have the same sign in J, so f(z) < cif z < ¢ and f(z) > f(c) if z > c.
This contradicts the fact that f has a relative extremum at ¢. A similar
argument shows that the assumption that g(¢) < 0 yields a contradiction,
so we must have that g(c) = 0.

Lemma 5 (Rolle’s Theorem [MH93, pag. 200]): Let f be continuous
on la,b] and differentiable on (a,b) with f(a) = f(b). There is a point
c € (a,b) such that f'(c) = 0.

Suppose f'(c) # 0 for all ¢ € (a,b). By Lemma 3, f attains its extrema
on [a, b], but by Lemma 4 it cannot do so in the interior since otherwise the
derivative at that point would be zero. Hence, it attains its maximum and
minimum at the endpoints. Since f(a) = f(b), it follows that f is constant,
and so f'(c) =0 for all ¢ € (a,b), a contradiction.

Lemma 6 (Mean Value Theorem [Rud87, pag. 108]): If f is a
continuous function on [a, b], differentiable on (a,b), then there is ¢ € (a,b)
such that f(b) — f(a) = f'(c)(b— a).

Define the function h(z) = f(z)(b— a) —~ z(f(b) — f(a)). h is continuous
on [a,b], differentiable on (a,b), and h(a) = h(b). By Lemma 5, there is
¢ € (a,b) such that h'(c) = 0. Differentiating the expression for h yields
the desired result.

There is a point ¢ such that f(b)—f(a) = f’(c)(b—a), but, by assumption,
the right-hand side is 0 for all c¢. Hence, f(#) = f(a).

Solution to 1.4.2: 1. We have exp(f(z)) = (1 + 1/z)", which is an in-
creasing function. As the cxponential is also increasing, so is f.
2. We have

=0.

. . log(z+1)~logz .. 1/(z+1)—-1/z
=1 =1 S AL A—
lim fl@) = lim =7 i S

On the other hand,
X
lim <1 + 1) =e
200 T

Solution to 1.4.4: Suppose y assumes a positive maximum at £. Then
y(€) > 0, ¥'(£) = 0, and y”(€) < 0, contradicting the differential equa-
tion. Hence, the maximum of y is 0. Similarly, ¥ cannot assume a negative
minimum, so y is identically 0.

so lim, o f(z) = 1.
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Solution to 1.4.5: 1. Suppose u has a local maximum at zo with u(zo) > 0.
Then u”(zo) <0, but u”(zy) = e*u(xo) > 0 and we have a contradiction.
So u cannot have a positive local maximum. Similarly, if © has a local
minimum at zg, then u”(zg) > 0, so we must have u(zg) > 0 and » cannot
have a negative local minimum.

2. Suppose u(0) = u(1) = 0. If u(zg) # 0 for some zy € (0,1), then, as
u is continuous, u attains a positive local maximum or a negative local
minimum, which contradicts Part 1.

Solution to 1.4.7: By Rolle’s Theorem [MH93, pag. 200}, f'(z1) = 0 for
some 1 € (0,1). Then, since f'(0) = 0, f”(z2) = 0 for some z3 € (0,z1).
Repeated applications of Rolle’s Theorem give f(*) (z,) = 0 for some z,, €
(0,z,_1), and therefore, f(**t1)(z) =0 for some z € (0,x,) C (0,1).

Solution to 1.4.9: Let z > 0 and 6 > 0. Since f is positive and log is
continuous,

1/6 1/6
log lim <ﬂﬂ§(_(*#>) — 1im log (M)

f(=z)
~ Jiy 1082+ b2) ~ log /()
50 5
~ im & (log f(z + 6z) — log f(x))
6—0 bx
~ 2 (log f(z))
_af'()
f(z)

and the result follows, by exponentiating both sides.

Solution to 1.4.10: It is enough to show that

O N (S )
h—0+ h h—0~ h

both exist and are equal. By L’Hépital’s Rule [Rud87, pag. 109]

lim f(h) = fO) _ lim Fih) = lim f'(h).

h—0+ h | h—0
The other lateral limit can be treated similarly.
Solution to 1.4.11: We have

pe(z) = (1+H)zd 33z + ¢4
P, (x) 3(1 +t2)z? - 383
p/(z) 6(1+t%)z

fl

Il
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e t < 0. In this case, p; > 0 and p;(z) < 0 for z sufficiently negative, and
p:(z) > 0 for z sufficiently positive. Hence, by the Intermediate Value
Theorem [Rud87, pag. 93], p; has exactly one root, of multiplicity 1,
since the derivative is positive.

e t =0. Now p;(z) = 23, which has a single zero of multiplicity 3.

t3
po |4/ ——= ] =0
¢ 1+¢t2

and p}(z) < 0 for negative z; p{(z) > 0 for positive z. So

t3
PV e

3
PV 15

We will study the values of p; at these critical points. As p;(0) > 0
and p}(0) < 0, the relative maximum must be positive.

We have
£ . t
=t*{1—4/—— | =4
pt( 1+t2> ( \/1+t2> ¢

(i) 0 < t < 2—+/3. In this case, we have A; > 0, so p; has one single
root.

(i) 2— V3 <t<2++/3. Now A; < 0 and p: has three roots.
(iii) t > 24 /3. We have 4; > 0 and p; has one root.

e t > 0. We have

is a local minimum, and

is a local maximum of p;,.

say. We get

Solution to 1.4.12: Let

so that lim,_,, h(z) =0 and f(z) = f(a) + (f'(a) + h(z)) (x — a). Then

fyn) = f(@n) _ F(@)(yn — Z0) + Mz)(yn — a) — h(zn)(zn — a)

Yn — Tn Yn — Tn
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) (2222 )+ ) (=2 )

l (yn)l + [R(z)]

so that

Yn — Tn

I/\

Solution to 1.4.13: By changing variables, it is enough to show that
f(1) > f(0). Without loss of generality assume f(0) = 0. Consider the
function g defined by

9(z) = f(z) - f(1)=.
As g is continuous, it attains a maximum at some point £ € [0, 1]. We can
assume £ < 1, because g(1) = g(0) = 0. As g(§) > g(z) for § <z < 1, we

have
0> lmap =88 _ ) HELSO),

z—é+ z—¢
As the rightmost term is nonnegative, we have f(1) > 0, as desired.

Solution to 1.4.15: We have
e* — 1 2 z 22
1=f(2)< 2 )=(50+§1Z+€22 +"‘)<1+5+§+“‘>'
Multiplying this out, we get £, = 1 and
- €n—k
E = 0.
!
= (k+ 1)

From this, it can easily be seen by the Induction Principle [MH93, pag. 7]
that all the &;’s are rational.

Solution to 1.4.16: The function f given by

f(z) = ( 1/3)e3-1/2+2/(22=3) for 0 <z < 3/2
for z<0Oorz > 3/2

is such a function.

1 3/2
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This is based on the example of a nonconstant function having derivatives
of all orders, vanishing for negative z:

eV for £>0
0 for z <0.

Solution to 1.4.18: Let f(z) = z3/2sin(1/2) and g(z) = z. Then we have
lim, o f(z) = limz_,0 g(z) = 0 and

f(z)

lim 2@ = 3}_{1(1) z'/%sin(1/z) = 0.

As ¢’(z) =1 and f'(z) = (3/2)z!/?sin(1/z) — /2 cos(1/z), we have
f'(z)

. — 1 1/2 i 172
;% 7 (@) 9}132)(3/2)1' sin(1/z) 111_1{(1):5 cos(1/z)

and the right-hand side has no limit when z goes to zero.

Solution to 1.4.19: Without loss of generality assume zg = 0. As f is
continuous and f(0) = 0, we have f'(z) > f(z) > 0 in some interval
[0,€). Suppose that f(z) is not positive for all positive values of z. Let
¢ = inf{z > 0| f(z) < 0}. Since f is continuous and positive in a neigh-
borhood of the origin, we have ¢ > 0 and f(c) = 0. By Rolle’s Theorem,
[MH93, pag. 200] there is a point d with 0 < d < c and f'(d) = 0. However,
by the definition of ¢, we have f'(d) > f(d) > 0, a contradiction.

Solution 2. Let g(z) = e~ f(z). Then ¢'(z) = e *(f'(z) — f(z)) >0. As g
is an increasing function, we have g(z) = e~ ® f(z) > g(zo) = 0 for z > xo,
and the conclusion follows.

Solution to 1.4.20: Let f : R — R be defined by f(z) = ae®—1-z—2%/2.
We have
lim f(z)=-oc0 and lim f(z) =00
T——00

Tr—0o0

so f has at least one real root, xq, say. We have
fl@)=ae®* —1-z>ac* —1-z—-2*/2=f(z) VzecR;
therefore, by Problem 1.4.19, f has no other root.

Solution to 1.4.21: As ¢, and ¢, satisfy the given differential equations,
we have ¢} (t) = v1 (p1(t)) and @5(t) = v2 (p2(t))- Since @1(to) = p2(to),
it follows from our hypotheses that ¢}(to) < wh(to). Hence, there exists a
point s¢ > to such that 1(¢) < a(t) for to < t < sg. Suppose there existed
a point sy <t < b such that ¢;(t) > pa(t). Let t; > sp be the infimum of
all such points ¢. By continuity, we must have that ¢;(t1) = @2(t,). Hence,
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repeating the above argument, we see that there must be a point s, > #;
such that ¢1(t) < @a(t) if t1 < t < 31, contradicting our definition of ¢;.

Solution to 1.4.22: Let ¢ : [0,1] — R be defined by g(x) = e~ M= f(z).
We have

§'(z)=eM(f(z) - Mf(z)) <0
s0 g is a decreasing function. As g(0) = 0 and g is nonnegative, we get
g = 0, so the same is true for f.

Solution to 1.4.23: 1. The function f(z) given by

1
f(z) = z?sin ~

T

has a derivative that is not continuous at zero:

YR R |
f’(.’L‘)::{meln‘” cos . for z#0

0 for =0

2. Consider the function g given by g(z) = f(z) — 2z. We then have
g'(0) < 0 < ¢g'(1). Therefore, g(z) < g(0) for z close to 0, and g(z) < g(1)
for z close to 1. Then the minimum of ¢ in [0, 1] occurs at an interior point
¢ € (0,1), at which we must have ¢'(c) = 0, which gives f'(¢) = 2.

Solution to 1.4.24: We claim there is an € > 0 such that f(¢) # 0 for all
t € (0,¢). Suppose, on the contrary, that there is a sequence z,, — 0 such
that f(z,) = 0. Considering the real function Rf(z), to cach subinterval
[Zn+1, €5}, we find a sequence ¢, — 0,t, € [Tn41,2Zx], such that Rf'(¢,) =0
for all n, but since lim; o4 f'(t) = C, this would imply ® C = 0. In the
same fashion, using the imaginary part of f(z), we see that & C' = 0, which
is a contradiction.

Since f(t) is non-zero on a small interval starting at 0, the composition
with the C'*°—function absolute value

| 1:C\{0} = Ry
will give a Cl-function g(t) = | ()|, on a small neighborhood of zero.

Solution to 1.4.25: Consider the function ¢ defined on [0,1] by
g(z) = e* f(z). We have
9" (z) =e" (f"(z) +2f'(z) + f

(
s0 g is concave upward, that is, the point (z, g(z)) must lie below the chord
joining (0, g(0)) and (1,¢(1)) = (1,0) for € (0,1). Then g{z) < 0 and the
conclusion follows.

z)) >0

Solution to 1.4.26: By Taylor’s Theorem [Rud87, pag. 110], there is a
constant C' such that

[f(x) = f(0) - f(0)] < Ca?
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when |z| < 1. Since f'(0) = 0, we actually have | f(z) — £(0) — f'(0)| < Cz?
and, consequently, by the triangle inequality, f(z) < f(0) + Cz? when
|z|] < 1. We conclude:

If (x,y) lies on or below the graph of f and |z| < 1, then
y < £(0) + Ca?.

Now consider the disc D centered at (0, f(0) + b) with radius b, where
0 < b < 1 will be chosen at the end. Clearly, (0, f(0)) is on the boundary
of D. On the other hand, if (z,y) € D, then |z| < b < 1 and

z? + (y - £(0) —b)* < b°
ly = f(0) —b] < V% — 2?

y> f0)+b—Vvb2 — 22 = f(0)+b—b\/1— x2/b2 > f(0)+b—b(1—22%/2b°)
since v1 —z <1 —z/2 when 0 < z < 1. Thus,

y > f(0) +xz2/2b.

If 1/2b > ¢, then it follows that (z,y) must be above the graph of f. So we
are done if we take b = min{1/2,1/2¢}.

1.5 Integral Calculus

Solution to 1.5.2: Since f is continuous, it attains its minimum and
maximum at zg and yp, respectively, in [0, 1]. So we have

1 1 1
f(zo)/ xdeS/ z?f(z) dx Sf(yo)/ 22 dx
0 0 0
or )
fa) <3 [ 2 f(@)do < f).

0
Therefore, by the Intermediate Value Theorem [Rud87, pag. 93], there is a
point £ € [0, 1] with

7€) = /0 2 f(z)dz.

Solution to 1.5.3: Since the discontinuities are only of the first type
(the limit exists), they do not have any accumulation point (for a detailed
proof of this, see the Solution to Problem 1.2.5), and form a finite set. Let
dy < dp < --- < dy be the set of discontinuities of f. Then f is continuous
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in every interval [z,y] with d, < ¢ < y < dn41; using the Solution to
Problem 1.5.4 (on both endpoints of the interval), f is integrable on each
interval of the type [d,, dn+1], 50 f is integrable on [a, b].

Solution to 1.5.4: 1. Let | f(z)| < M for z € [0,1]. If (by,) is a decreasing
vanishing sequence, then fbln | fl < M is a bounded, increasing sequence, so
it must converge. We conclude that |f| is Riemann integrable over [0, 1],
and so is f.

2. The function f(z) = 1/z is integrable over any interval [b, 1] for positive
b, but is not integrable over [0, 1].

Solution to 1.5.6: 1. Letting t = = + s, we get
[ ¢] o0
flz) = 6”52/2-/ e~ (@+s)?/2 gg / e 555" /2 gg.
0 0

Since s > 0, e'/% < 1, so e=57=5"/2 < g% for all positive x; then
oQ
0< f(z) < / e Fds=1/x.
0

2. Let 0 < 71 < T9. For § > 0, e~ 5%175°/2 5 g332=5%/2 g,

o 2 o0 2
/ e~ ST1—S /2 ds > / e 5%2—s /2 dS,
0 0

and f(z1) > f(z2).

Solution to 1.5.7: Integrating by parts and noting that ¢ vanishes at 1
and 2, we get

AT

2 e
_[a“wmw= (o)

o2 1
_ AT, ) dr = — Az, / dz,
3 le o' (z)dx WA ey (z) dr

applying integration by parts a second time and using the fact that ¢’ also
vanishes at the endpoints, we get

2 1 [2 .
/lez’\zq:(w)da:=~x§ . ey (z) da.

Taking absolute values gives

2 ) 1 2 N
/wwwmsﬁfwmwm
1 1

Since ¢ € C?, the integral on the right-hand side is finite, and we are done.
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Solution to 1.5.8: Suppose that f is such a function. Cauchy—Schwarz
Inequality [MH93, pag. 69| gives

a———/olmf(w)dm

< (/Olme(m)dx /Olf(m)dw)l/2

<a.

So we must have a chain of equalitics. For equality to hold in the Cauchy-

Schwarz Inequality [MH93, pag. 69], we must have z+/ f(z) = k+/ f(z) for
some constant k so v/ f(z) = 0, which contradicts

/01 f(z)dz = 1.

Thus, no such function f can exist.

Solution 2. Multiplying the given identitics by o, —2a, and 1, respectively,
we get

/ f(z)(a - z)*dz =0
0

but the integral above is clearly positive for every positive continuous func-
tion, so no such function can cxist.

Solution to 1.5.9: Dividing the integral in n pieces, we have

el " 1 n—1 i Im, G+1)/n
S0 [ 0y - Z(LQ#‘/. f(w)dx)

=0 /n
nol (1) /n

<Y [ 1 - f@)ds,
j=0 J/n

For every x € (j/n,(j + 1)/n), applying thc Mean Value Theorem [Rud87,
pag. 108], there is ¢ € (j/n, z) with

_ f@) ~ fG/n)

fl(c) a:—]/n

As the derivative of f is uniformly bounded by M, this gives us the in-
equality

|f(z) = f(G/n)| < M(z —j/n).



1.5 Integral Calculus 177

Therefore,

-

nol gl 1 L orGH)/n
> LU - [ o) ae| < // M(z — j/n)da
j=0 ov3/m

3=

:M"“((j+1)2 j2) j

2n2 2n? n2

Solution to 1.5.10: Suppose not. Then, for some 6 > 0, there is a sequence
of real numbers, (z,), such that z, — oo and |f(z,)| > 6. Without loss of
generality, we can assume f(z,) > 6.

Let € > 0 verify

7@ - Wl <3 for o=l <c,

then

Z/zﬁ-g f(z)dz > 22&"% = 00

n>1VEr—¢ n>1

contradicting the convergence of fﬂm f(z)dz.

Solution to 1.5.11: Let

g@)sz)+Azﬂww.

The result follows from the following claims.
Claim : liminf, . f(z) <0.
If not, there are g, zg > 0 such that f(z) > ¢ for £ > xo. Then, we have

o@) = 1@+ [ e+ [ o
0 Zo
xg
> e+/ ft)dt + e(xz — xo).
0
This is a contradiction since the right side tends to oo with x.
Claim 2: limsup,_,., f(z) > 0.

This follows from Claim 1 applied to —f.
Claim 3: limsup,_,, f(z) <0.
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Assume not. Then, for some £ > 0 there is a sequence z,, s, ... tending
to oo such that f(x,) > ¢ for all n. By Claim 1, the function f assumes
values < /2 for arbitrarily large values of its argument. Thus, after possibly
deleting finitely many of the x,’s, we can find another sequence y1,¥2,. ..
tending to oo such that y, < z,, for all n and f(y,) < ¢/2 for all n. Let 2,
be the largest number in [y, z,] where f takes the value £/2 (it exists by
the Intermediate Value Theorem [Rud87, pag. 93]). Then

oea) o) = Iea) = S + [ Sle)i

€ *nog
>6—§+/z Edt

2

[ =T

which contradicts the existence of lim;_,o, g(x).
Claim 4: liminf,_,, f(z) > 0.
Apply Claim 3 to —f.

Solution to 1.5.12: Suppose that for some ¢ > 0, there is a sequence
x, — oo with z,f(x,) > €. Then, as f is monotone decreasing, we
have f (z) > e/z for x large enough, which contradicts the convergence
of [ f(x)dz, and the result follows.

Solution to 1.5.13: Let 0 < e < 1. As
o0
/ flz)dz < o0,
0

there is an N > 0 such that for n > N,

/noo flz)dz <e.

Therefore, for n large enough, that is, such that ne > N, we have

/(x/n d:c_./ (z/n)f(x)dz + n(:l:/n)f(av)d:c

<g/ f(z) d:r+/ f(x)d

<€ f()d:c+e
0

<e</[;oof(x)dx+1>-

Since this inequality holds for all € > 0 and for all n sufficiently large, it

follows that L
lim —/ zf(x)dx =
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Solution to 1.5.14: Using the Maclaurin expansion [PMJ85, pag. 127] of

sin x, we get
0 r2n

smz
; 2n + 1)

The series above is alternating for every value of z, so we have

2n+1 $2k+2

< .
~ (2k + 3)!
Taking k = 2, we have

1/2 2 1/2 4
I— / (1 _ ?—) dz| < / z—'dac
A 3! , 5

which gives an approximate value of 71/144 with an error bounded by
0.00013.

sinz (=1)" T
T - @n+1)!

Solution to 1.5.15: Let

& dz
It :/ 4 logt.
“=1, (zt + )"/

It suffices to show that for ¢ > 0, the function I(¢) is bounded below and
monotonically increasing. For z,¢ > 0, we have (z -+ t)* > z4 + 4, so

1 14t

dzx du
10> [ 22 flogt = Y L 1ogt =log(l +t) > 0.
(t)_/0 —— +log / — +log ¢ = log(1 + ) 2 0

t

We now show that I'(¢) > 0 for ¢ > 0. We have
d dz

1 :/0 t((z/t)* +1)* +./t t((z/t)t+ 1)/
letting y = x /¢, we get

1 1/t
I(t):/ W 1/4+/ Ay 1/4+logt,
o (y*+1) 1 (¥ +1)

+logt,

50
-1

T

1
-2>0.
+t_

Solution to 1.5.16: Integrate by parts to get

/ooo Flz)dz = /00o (% m) f(z)*de = - /ooox @ @)
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The boundary terms vanish because zf(z)2 = 0 at z = 0 and oco. By the

Cauchy—Schwarz Inequality [MH93, pag. 69|,

I " o f (@) f (@)dz

Solution to 1.5.17: Consider the figure

< \//ODQ z2 f(z)%dx \//000 f(z)3dz .

The left side of the desired inequality is the sum of the areas of the two
shaded regions. Those regions together contain a rectangle of sides a, and
b, from which the inequality follows. The condition for equality is b = f(a),

the condition that the two regions fill the rectangle.

Solution 2. Without loss of generality, assume f(a) < b. We have

ab = /0 f(z)dz +/Oa (b~ f(z)) da.

The second integral is

For0<k<n-1,

E:(k_+_1)_a_k_a:gof((k+1)a)_gof(
n n

n n n
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Substituting in the limit above,

i 3 (o= (552)) (o (5) 01 ().

Multiplying out each term in the sum and rearranging them, and noting
that f(0) = g(0) = 0, we get

S50 () (1 (42) s (3)) v

Since g is continuous, this equals

f(a)
/0 o(w) dy +a (b - f(a)).

As g(y) > a for y € (f(a),b), we have

b
a(b— f(a) < /f L

This gives the desired inequality. Also, we see that equality holds iff f(a) = b.

Solution to 1.5.18: Given € > 0, choose R so that fIII>R |f(z)|de < /4.
Then flz(ZR | f(z) cos(zy)|dz < /4 for all y. So

19(2) — 9()] = / £(z) (cos(zz) ~ cos(zy)) da
{z|>R
T Tz) — T dz
+ /|z|2Rf( ) (cos(z2) ~ cos(zy))
<eg/f2 +/ | f(z)]] cos(zz) — cos(zy)|dz .
jz|> R

The latter integral approaches 0 as z — y by uniform convergence of
cos(zz) to cos(zy) on the compact interval —R < z < R. Hence, for |z —y|
sufficiently small,

l9(z) —9(y)l <e/2+e/2=¢

and g is continuous.
Solution to 1.5.19: We will do the proof of the sine integral only. For

n >0, let
v (n+1)w
S.= [
NGl

sin(z?) dz.
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We show that the series DS, converges and use this to show that the
integral converges.

By the choice of the domains of integration, the S,’s alternate in sign.
Also, setting u = z2, we get

(n+1)7 s
2|Sn|:/ sinw

Finally, the S,,’s tend to 0:

2|18, = <

/("“)” sinu 1
du
nmw \/—ﬂ v nTr

and the right-hand side gets arbitrarily small as n tends to infinity. Therc-

fore, by Leibniz Criterion [Rud87, pag. 71], the series >_ S, converges. Let
a > 0 and n be such that /a7 < a < y/(n+ 1)x. Then

a 0o vV (n+1)m
/ sin(z?) dz — Z Sk = /
0 k=0 a

The second term tends to zero as n tends to infinity. By estimates almost
identical to those above,

/\/ (’Il+1)7|'

sin(z?)dz — Y S

k=n+1

(n+1)7 — a?| < _T

2a = 2y/nx’

so the first term does as well. Therefore, we have

/ sin(z?) dz =) S, < 0.
0 n=0

< |

sin(z?) dz

Solution to 1.5.20: Let p(z) = Y& a;a? be a polynomial. We have

k

1
lim (n + 1)/0 z"p(z)dxr = nan;oZ

T =00

n+1

TS g =p(l).
n+j+1aJ p(1)

Jj=0
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So the result holds for polynomials. Now let f be a continuous function

and ¢ > 0. By the Stone-Weierstrass Approximation Theorem [MH93,
pag. 284], there is a polynomial p with || f — p||cc < €. So

n—l—l)/ f(z)dz — f( 1)] <n+1)/01m"|f(m)—p(m)|dm)

e | p(@) da - f(l)[

<e+

) | (@) da f(l)‘

— e+ |p(1) - f(1)]
< 2e.

Since ¢ is arbitrary, the desired limit holds.
Solution to 1.5.21: logz is integrable near zero, and near infinity it is

dominated by /T, so the given integral exists finitely. Making the change
of variables z = a/¢, it becomes

> logx 1 ©dt 1 [ logt
/ 20gar2 dx = oga/ { _ﬂ_/ logt dt
o T?4a e Jo 1¥8 afy, 1+

loga o
= —— arctant| —J
a 0
_ mloga
" 2a
If we treat J in a similar way, we get J = —J, so J = 0 and the given
integral equals
mloga
2a

Solution 2. We split the integral in two and use the substitution z = a?/y.

> ] e >
/ ———ZngZd:vz / 08T dz + / —~———20g$ dz
0o Z2+a o I%2+a? . T?2+a?

/ logz /0 log(a?/y) ( a®\
w2+a . a?+ (a?/y)? y? y
logx % 2loga — logy
2 2 2 2 dy

z? +a? 0 a“ +y
/ 210ga
a2+y
loga y|*
=2 arctan =
ey
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mloga

2a

Solution to 1.5.22: As sinz < 1, to show that I converges, it is enough
to show that I > —oo. By the symmetry of sinz around /2, we have

/2 ™
I:/ log(sinm)dm+/ log(sinz) dz
0 /2

/2
2 / log(sinz) dz
0

/2

> 2/ log(2z /) dx
0

> —0Q.

The first inequality holds since on [0, /2], sinz > 2x/7; see Problem 1.1.23.
Letting = = 2u, we get

/2
I= 2/ log(sin 2u) du
0

™/2 w/2 /2
=2 / log2du+/ log(sinu)du+/ log(cosu) du | .
0 0 0

The first integral equals (w/2)log2. As cosu = sin(n/2 — u), the last
integral is

ko

/2 /2
/ log (sin(n/2 — u)) du = / log(sinu) du = / log(sin u) du.
0 0 /2

The above equation becomes | = mlog2 + 21, so I = —wlog2.

1.6 Sequences of Functions

Solution to 1.6.1: Let B be the set of function that are the pointwise
limit of continuous functions defined on [0, 1]. The characteristic functions
of intervals, x, are in B. Notice also that as f is monotone, the inverse
image of an interval is an interval, and that linear combinations of elements
of B are in B. Without loss of generality, assume f(0) = 0 and f(1) = 1.
For n € N, let the functions g, be defined by

2k n—1

n

Xp (2 (@)

no?
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We have

S

max [9.(2) - £(2)] <

We now use the following result:

Lemma: Let {h,} C B with maxzep,1]|hn(z)| < An and 3,7 An <
0o. Then Y oo | h, € B.

As

|gor+1 — gor| < [gorsr — fl +{gax — f| <

and Y2 27%"! < 00, we get
[o, ]

(gor+r — gax) = f —g2€ B
k=1

80 f—g2+g92=f€B.
Proof of the Lemma: For each n let h,, be the pointwise limit of {¢}} C B

such that |h,(z)| < A, on [0,1]. Consider the functions & = Y.°_ 0.
Given ¢ > 0, take m such that 77 ., A, < &/3. Then the sum

Zn—m-(-l lh’ (x)l < 6/3 a'nd Zn =m-+1 I(pk (x)l < 6/3
For z € [0, 1], take K so that
|hn(z) — PR (2)] < 3—675 for n=1,...,m.

For k > K we then have

Zh (@) — 2u(2)| <3 hnl@) —@p @)+ Y Ihal@)l+ D lek(@)l <
n=1 k=1 n=m1l n=m+1

so y o  hn € B.

Solution to 1.6.2: Let a < b be real numbers and £ > 0. Take n large
enough so

[fn(a) —g(a)] <e and |fn(b) —g(b)| <e
Then, using the Mean Value Theorem [Rud87, pag. 108],
9(a)~g(d)] < |g(a)~fu(a)l+|fn(a) = fn(B) |+ fn(0)—g(b)] < 2e+|f,(£)][b—al

where a < £ < b. As the inequality holds for any € > 0,
lg(a) — g(®)| < [b ~ af

and the continuity of g follows.

Solution 2. Let N > 0. We will show that g is continuous in {—V, N]. We
have, for any n € N, by the Mean Value Theorem,

|fn(@) = fuW)] = (€)@ —y)| 2N forz,y € [-N, N].
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So the sequence {f,} is bounded. The relation

/() = fa (@) = /()@ — )] < |z — 9]

shows that it is also equicontinuous. By the Arzela—Ascoli Theorem [MH93,
pag. 273] we may assume that {f,} converges uniformly on [N, N]. The
function g, being the uniform limit of continuous functions, is continuous
as well. As N is arbitrary, we are done.

Solation to 1.6.3: 1. For k¥ € N, eonsider the continuous functions g
given by
" 4k - 16k%z - k| if =z € [, ¢
gr(x) =
0 it =, 4]
Define fy = 0, and, for k > 0, fi(x) = ch gr(t)dt. We have fr € C*(R.),
Jx(0) =0, and fi(z) = gi(z) — 0 = fy(z) for all z € R,.. However,

lim fi(z) = lfi]n / g (t)dt = / gr(t)dt =1 # fo(x)
T -— X U

11—+ 00
2. filz) — fo(x) uniformly on R.

Solution to 1.6.4: Let ayp,...,ap be D+ 1 distinct points in [0, 1]. The
polynomials f,,, defined by

D
Fm(x) = ]ﬂ -E-:-—fﬁ’—:- for m=0,...,D

satisfy fi(a;) = 0 for i £ m, fm(amy) = 1. Any polynomial of degree, at
most, D can be written

D
P(x) = }_:: Plan)fm(z)
m==0
since the right-hand side is a polynomial of degree, at most, D which agrees
with P in D 4 1 points.
Let M be an upper bound of |f,,(z)| for z & ['0 1],m=0,...,D. Given

¢ > 0let N € N be such that |P,(an)| < TﬁTFW for n > N. Then we
have
D
Pa@)] € 3 1Pa(am)| [fm(@)] <&
m==0

therefore the convergence is uniform.

Solution to 1.6.5: As f is a homeomorphism of [0,1] onto itself, we may
assume without loss of generality (by replacing f by 1— f) that f is strictly
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increasing, with f(0) = 0 and f(1) = 1. We first treat the case where f' is
a continuous function. By the Stone-Weierstrass Approximation Theorem
[MH9S, pag. 284}, there is a sequence of polynomials {7, } which converge
to f uniformly. Since f’ > 0, we may assume (by adding a small constant)
that each of the P, is positive. Further, since the P,’s converge uniformly,

1
/ P, (t) dt — / e de = £(1) = 1.

Defining a,, by
rl

-1 _ / 4
a, = Po(t)dt
" Jo

we can replace each P, by a,P,, so we may assume that
rl
/ P,(t)dt = 1.
0

Now consider the polynomials

On(z) = / Po(t) dt.
JO

Qn(0) =0, Q,(1) =1, and Q) (z) = P,(z) > 0 for all x and n. Hence,
each @), is a hlomeomorpln( m of the unit interval onto itself, and by their
definition, the @),,’s converge to f uniformly.

It is enough now to show that any increasing homneomorphism of the unit
interval onto itself can be uniformly approximated by C! homeomorphisms.

Let » > 0 and ‘ _
f~(’L‘) _ { el™* for 0<

< 1
0 for T

S A

A calculation shows that f,. is C! on [0,1], f-(1) = 1, f.(0) = 0, and
(1) =r. Forr,s > 0, let

NG for z€][0,1]
grs(z) = { —fs(—z) for x€[-1,0).

Each g¢,, is a C'-function such that g.,(0) = 0, g.s(1) = 1,
grs(—1) = —1, g/ (1) = s, and ¢/ ,(1) = r. By scaling and translat-
ing, we can find a C*' function on any interval such that its values and
the values of its derivative at both endpoints are any given positive values
desired.

We can now approximate any continuous homeomorphism f as follows:
Given £ > 0, choose n > 0 such that if |z - y| < 1/n, for these values
If(z) - fly)] < e. (This is possible since [0,1] is compact, so f is uni-
formly continuous there.) Partition [0,1] into 2n intervals of equal length.
On the intervals [2k/2n, (2k + 1)/2n], 0 < k < n — 1, approximate f by
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the line segraent joining f(2k/2n) and f((2k 4+ 1)/2n). On the other in-
tervals, join the line segroents by suitable functions as defined above to
make the approximating function C!. Since f is an increasing function,
this approximating functior will always lie within ¢ of it.

Solution to 1.6.6: 1. For ¢ > 0, let S. = {z € [0,1]|f(z) > M -
g}. fz) > M — ¢ if and only 1f fc»r each n, fn () > M — ¢, s0 S,
N1 it ([M —~€,00)). So each S is closed. By definition of suprermum,
each set or is nonempty. Also, if &; are finitely many positive numbers,
N; 8z = Smine; # (). As [0,1] is compact, the intersection of all sets S is
nonerapty. Let ¢ belong to this intersection. Then M > f(t) > M — ¢ for
arbitrary € > 0, so f(t) = M.

2. Take f,(z) == min{nz, 1 - z}.

Solution to 1.6.9: Let € > 0. By uniform continuity, for some § > 0 we

ave |f(x) — f(y)] < € for |x — y| < 6. Take N satisfying 1/N < §. For

< k < N, lct & = k/N, and divide [0, 1] into the intervals [¢x_1,&x],

1 < k < N. Since f, tends to f pointwise, by taking the maximum over

the finite set {£x} we know that there exists M > 0 such that if n > M,

then | fr () — f(&x)] < € for 0 < k < N. Each of the f,.’s is nondecreasing,
so we have, for x € [€x—1, &),

Fl€k—1) — € < fa(z) < f(€k_1) + 2€,

| fn( z) — fk——l)l < 2.

Therefore,

Fal@) = F@)] < 1fnl@) = F&e-1)] + f(Eeor) = £(2)] < 3e.
Since this bound does not depend on x, the conwvergence is uniform.
Solution to 1.6.13: Suppose that f,, — f uniformly. Then f is contin-

uous, and f(0) = lim;j_,o cos0 == 1. So there is ¢ > 0 with f(x) > ﬁ for
lz| < e. If j is large enough, we have, by uniform C‘Onvergenxcef,

1 ‘
[f(z) = fo; (2)] < 5 forallz,  — <&

For one such j, and = 5=, we get

T . L, 1
L < @) U@~ fuy @)+ g (@)] < %+ fy(2) = = + | cos(n/2)| =
2 2 2

a contradiction.

Solution to 1.6.14: Let f, : [0,1] - R be defined by f,(z) = 2. [0, 1] is
compact, ||f.|| = 1, but the sequence f,, is not equicontinuous.
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Let € = [0,1], and f,(x) = n. This sequence is clearly equicontinuous,
Q is compact, but no subsequence of f,, can converge.
I 1 D
Consider now f, : (0, Jl,) — R, fo(z) = ™. We have ||f,]| < % and
frn = 0 uniformly. However, (0, 1) is not compact.

2 b
|
L /?f L
/) I
S/ / /
/. y
@y yay
[ , e -
! 1 1/2
(a) fu(z) = =" (b) fa(z)=mn (c) fu(z) = 2™

Solution to 1.6.15: By the Arzeld-Ascoli Theorem [MF93, pag. 273], it
will suffice to prove that the sequence {f,} is equicontinuous and uniforrly
bounded.

FEguicontinuity. For 0 < z <y <1 and any n,

VA

ry -
[fuly) = ful@)] = / R dE = 2./ — 27 .
Jx

T

Y
/f f”tﬁfﬁit*:

The function F(z) = 2,/ is continuous on [0, 1], hence uniformly contin-
uous. Thereflore, given € > 0, there is a § > 0 such that |F(y) — F(z)| <«
whenever x and y are in |0, 1] and |y — x| < 8. By the inequality above, we
then have |fy,(y) — fa(z)| < € for all n when |y — x| < 8, establishing the
equicontinuity of the sequence.

o, . 1 .

Uniform boundedness. Since f; fu(z)dx = 0, the function f, cannot be
always positive or always negative, so there is a point x,, on [0, 1] such that
fulxy) = 0. Then, by the estimate found above,

|fa(@)| < 2|vE = /T, <2
for all x.
Solution to 1.6.16: We claim that a subset A of M is compact iff A is
closed, bounded and {f’ | f € A} is equicontinuous. If A satisfies all condi-

tions and {f,} is a subsequence in A then {f,} and {f’} are bounded and
equicontinuous and by the Theorem of Arzela-Ascoli [MH93, pag. 273],
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!
'nj

ic a subsequel { e o [ o .
there is a subsequence {f,,} such that {fn;} and ﬁ b are uniformly
convergent and therefore, sequences of Cauchy. Since M is complete and A
is closed, { I ,,.} converges to f € A in M, and A is compact.

On the other hand, if A is compact, consider the spaces:
M={(f,f)|feM} A={{f)feA}

A is compact in M, and so are each of the projections, and, by Arzela—
Ascoli Theorem, {f'| f € A} is equicontinuous.

Solution to 1.6.18: We have

gn(z) = 9(0) -+ g, (0)z +

(e g
.'gn' (A{,) 1;2 - !7‘n§§) 1:2 fOrI' some E: (E (l[]7 ]L)

2
80
§ 1
|gvn(\$)| < }2 for = [ [0, 1]
Also,
|9.(2)] = |gn(z) — g (0)] < |gn(€)(z —0)| <1 for =z €[0,1].
Therefore,

lgn(z) — gn(v)| < |z -yl for z,y €[0,1].

The sequence {g,,} is then equicontinuous and uniformly bounded; so, by
the Arzeld—Ascoli’s Theorem [MH93, pag. 273], it has a uniformly conver-
gent subsequernce.

Solution to 1.6.19: The answer i3 no. Consider the sequence of funections
fn 1 10,1] — R whose graphs are given by the straight lines through the
points (0,0), (1/2n,n), (1/n,0) to (1,0).
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3

f3

f2
/ \ fi
e

AN

/
// \ \
/
/ l \ \\

1/3 1/2 1

The sequence approximates the zero-function pointwise, but jﬁ,l fa(z)dz =
1/2 for all n.

Solution to 1.6.20: Fix & > 0. Since K is continuous on the unit square, a
compact set, it is uniformly continuous there. Hence, there is a 6 > 0 such
that |K(z1,y1) — K(z2,y2)| < € whenever ’V/ (z1 — x2)2 + (y1 — y2)? < 6.
Let f and ¢ be as above, and suppose &; and 2 are in [0,1] and satisfy
|a:1 - :L'-;g| < §. Then

|f(z1) — flz2)] =

ol
J/ 9(y) (K(z1,y) — K(22,y)) dy
()]

© A
{/\

1
' / lg(y)| | K(x1,y) — K(x2,u)| dy
JO

1
/ l-edy=c¢.
0

As the estimatce holds for all f in F', the family F is equicontinuous.

IA

Solution to 1.6.23: We will first show that {g,,} is a Cauchy sequence in
sup-norm. Using the Cauchy-Schwarz Inequality [MH93, pag. 69], we have

1
192(2) - gm()] < / K (@, )| (fn(y) — fm(¥))dy

JO
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1/2

M 1 / 2 1 N /
(\ J/ 1 nly) = fon (w)I* dy)
C /

(/; K (2, ) dy)

hence,

172

s prl 1/2 1
sup lan@) (el < sup ( [@oPay) ([ 1)~ )P
JO J

z€[0,1] x€f0,1] \Jo

Since K is continuous, it is integrable, and taking M = sup,, y¢i0,1) | K (2, Y)l,
we have

. 1/2

/7 pl
”.gn, ('T) — Qm (T/) || <M _/ ij (y) — fm (1/)|‘Zdy ) — 0
WO /

showing that the sequence {g,} is a Cauchy sequence in the sup-norm; as
C[0,1] is complete on this norm, the sequence converges uniformly.

Solution to 1.6.25: As

E,i Ani 1 ‘EE\ ]
1< — and ) — <oo
né 74 et
n=1

by Weierstrass M-test [Rud87, pag. 148|, the given series converges uni-
formly on R to a continuous function f. We have, since the convergence is
uniform,

T i o 0 T idox
1 /"1 ‘SC'E)‘ 611’\”“5 ] 1 ‘; /‘I 12“""1’ d v —\ sin )\ T
——— —_—— gy == —— Yy J ——_— L = Yy ———————
r:’[' e n2 JP L ~ 2 Ld 2 T
2 pie n 2 mJer - A1
As i ,
sin A, T 1
e (D
n=1
converges uniforroly in T'. Therefore, we gef;
T 0o . . ;
I / f(z)d ] R sin A\, T N hal I sin A, T VS—« 1
im — z)dx = lim —_—- = im ——e =)
T—oco 2T j__ —300 4"“[ A\, T 4—-" T oo T2 X,, T L-d p?
=] ==

Solution to 1.6.26: Let o > 1. It suffices to show that () is defined and
has continuous derivatives for £ > o. The series Y, n~% converges for such
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Asn™* < n77, it follows from the Weicrstrass M-test [Rud87, pag. 148]
that the series converges uniformly, so ¢ is a continuous function. To see
that it has continuous derivatives of all orders, we formally differentiate the
series k times, getting

o (—logn)k
La pr
n=:2

It is enough to show that this series converges uniformly on k. Since

(logn)*
ym(f

)

| (—logm)®
TP’J‘:

by the Weierstrass M-test, it will suffice to show that the series

o~ (logn)*
=

converges. But

log n)* (10 )
(logn) __0(\ — ) (n — co),
noe

for any positive e. As

converges for o — ¢ > 1, we are done.

Solution to 1.6.27: Fix an interval [a,b] and € > 0. Since f is continuous,
it is uniformly continuous on the mtt,erval [a,b + 1], then there exists an
N > O such that if n > N and |z |f(z)— f(y)| <e. We
will show that f,(z) converges umiformly to

rc+1
/ fly)d
Ja

for all z in the given interval. Fix ¢ and n > N. We have

rEt1 :-:_1 z+(k+1)/n
‘ / Fy)dy — fal@)| = > F@)dy — fa(z)|.
Jac — Ttk /n
k=0

By the Mean Value Theorem for Integrals [MH93, pag. 457], for each k
there is ax € (z + k/n,z + (k +1)/n) such that

("-’L'-I-(k+ 1)/n

J f(y) dy = flax)/n.
Jz+k/n
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Substituting this in the above, expanding using the definition of f,,, and
using uniform continuity, we get

rrt1 1 n-
/ ﬁ@@~ﬁ@h-j MM%Jumwn

. n <
x e

4/6

Since this holds for any «, we are done.

Solution to 1.6.28: Let o > 0. For |n| > 4a, the bound on f gives, for
T € [~a,q,

|flz +n)| < [_r'_’ﬁﬁ! = M,.
As the series
fele]
A .
2...4 ]W"
—00

converges, by the Weierstrass M-test [Rud87, pag. 148|, the series
‘_-‘ . '/‘ .
Q. flz+n)
|n|>da

converges uniformly. So the series for F(z) converges uniforrnly on [-a, ]
and F is continuous there. As « is arbitrary, F' is continuous on R.
We have

Fz+1)-F(z) = lim § {f(z+14+n)—~ f(x +n))

=00 4
-
= lim (fz+1+a)— flz —a))
=00
== 0

the last equality holding by our assumption on f.
If G is continuous and periodic with period 1, then, since the series for
F converges uniformly,

fl =0
/ F(z)G(z)dz = } / flz 4+ n)G(z)dz.
Jo T Jo

In each integral on the right-hand side, let ¥y = x + n, and get, since

G(y —n) = G(y),

‘gg‘ rn«H Jo's) .
b / fW)Gy) dy = }( fW)Gy) dy

—-o0 * /=00
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Solution to 1.6.29: Given f and ¢, let h : [0,1] — R bec defined by
h(z) = f({/z). By the Stone-Weicrstrass Applo»(lma,tlon Theorem [MH93,
pag. 284], there is a polynomial P such that |P(x) —~ h(z)| < &/2 for
z € [0, 1], from which it follows that

|P (z*) - =|P(z') — h(z*)| <e/2 for ze[0,1].
IfP=7 :: o arz®, take Cg,...,C, € Q such that EEIZ::O lag - Cx| < €/2.
Then we have

n n n n
A W) . | ., =\ o uh
}_J ezt - flz)| < ‘E:. ) Crx®t — - ) 4T AR 4 }_ arpzt® — f(z)]
k=0 Thk=0 k==0 k=0
1.7 Fourier Series
Solution to 1.7.1: 1. We have, for n € N,
1 T
— / f(z)cosnz de =0
T Jn
because the integrand is an odd function. Also
1 [" 2
- f(z)sinnx do = = / f(z)sinnz dz
TSy 7w Jo
2 ( zcosnc (”’ cosnz
=2 ST ) 2 ’
™\ (i Jg. n )
. 2 (__]‘L)n-i 1
oo

so the Fourier series of f is

\‘f’.\ (--1)"*i2
————— sinnx.
4_..1 7n

=]

2. If the series converged uniformly the function f would be continuous,
which is not the case.
3. As f and f’ are sectionally continuous, we have

‘5—\ (-t 2sinna_ f(z—) + flz+) J flx) if =z 7 (2n+ Dm
Lt n B 2 10 if z=02n+)r

n=1

where n € Z.
Solution to 1.7.2: 1. Since f(x) is an odd function, the integrals

1
- / f(z) cosnx dz
T Jox
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vanish for n € N. The Fourier series has only terms in sin nx given by
1 s
b, =~ , z3sinnz dz.
)y

2. As f and f’ are sectionally continuous, we have

S 4, sinng = JE) F @) { fl@) if z#(@n+)n
2:_{ br sin i = 2 10 if z=n+n

where n € Z.
3. Using Parseval’s Identity [MH93, pag. 577

l_ 00
1, <
500+ )

n=1

Y . 1 ¥/ .
(a% +b2) = o [W A(z) dz
and the fact that all a,, = 0,

o 1" 2

Y b = — / 2% dx = a8,
A w ~

n=1 o7

Solution to 1.7.3: The answer is no; f(z) = 1 satisfics the above equation
and is not identically zero.

Solution to 1.7.4: As f is v/2-periodic, we have

rl 1l
f n‘) — F(x) 8-—2',n7ri.'t dr = , f(il? 41 /32 e-—?'mr*i:v dr.
o / o J \

0 v o

Letting y = = + /2, we get
N 5 (-l‘i-'\/f!. ) )
f('”') o~ echﬂ‘z\ 2 / ~ f(y)e—-AZ'nﬂ-zy‘ dy
JV2

Since f is also 1-periodic, we have

r1
f(‘n) — 6‘2" Tivy'2 / f'{ﬁy)e 2nriy d]’/ — elnfrzy f (n)
Jo
oy i oS D) . , R ] ' .
e?n™iVZ oL 1 for n # 0, so f(n) =0 for n # 0 and f is constant.
Solution to 1.7.5: Suppose that such an f exists. As the power series for
e converges uniformly, we have, for n > 0,

n 1
f‘(in,) = / f(x)e'-%l'i'n;a: dr =

Jo

f(z)z* dz = —27ni.
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This equality contradicts the Riemann-Lebesgue Lemma [MH93, pag. 628],
which says that litn, . f(n} = 0, so no such a function can exist.

Solution to 1.7.6: The Fourier series of f converges to [ because f”
exists. Let the Fourier series of f be

oC
[8.0)) L) .
-+ > (ancosnz + B, sinna).
Lo
- ne=1

As f" = g — kf is continuous, wc obtain its Fourier series by termwise

differentiating the series for f, and get

[ole]
’CO’() ™ ‘
- .l . (N2 w )
=+ D ((k — n?) cn cosnz + (k - n?) B, sinnz) =
n=1
a cQ
0 w . N . .
5 + 2‘_ 4(% cosnx + by, sinnr).
’ n=1
S0 we have
ay an bn X ]
Qo= -, Qpn=1—, [bo=— for n>1.
k k—-n?’ "' k—n?

Solution to 1.7.7: Consider the Fourier serics of f,

o

v N N
fla) = —+ S J(an cosnzx -+ by, sinna).

L

n=1

We have ag == 0, and, by Parseval’s Identity [MH93, pag. 577],

a2 o0 oc 2x
= ,. . N 0 " NN
/ fHz)dz =mn 5_»_ ) (a2 +b2) < :}_‘ (n®a? + n?b2) = / (f (2))%da.
Jo n=1 n=1 J0

Solution to 1.7.8: The Riemman-Lebesgue Lemma [MH93, pag. 628]
states that the result is valid for all functions g(x) of the type

cos(kmz) and sin(kwrz)
/

using linearity of the integral; the result extends to all finite trigonometric

polynomials
n

L ) N . N
p(z) = ) akcos(knz) + bysin(krz) .
k==0
We will now use the fact that the set of trigonometric polynomials is dense
in the space of continuous functions with the sup norm (Stone-Weierstrass
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Approximation Theorern [MH93, pag. 284]) to extend it to all continuous
functions. Given any ¢ > 0, there exists a p.(z) as above such that

lg9(x) —pe(x)| <&

then
1 . rl o 1
lirn / f(z)g(nz)dx — / f(z)dz / g(x)dx
n—0o0 [ Jo Jo
/ 1 o1, (.1 N
lim / F(z)pe (nz)dx — / flx)dx / De (a:)dz)
e Jo Jo ,
1
< | lim J/ flz)(g(nz) — p.(na))dz| 4 f(z )da/ (9(z) - pe(x))dx
-+ 0
1 fl S|
< lim / |f(x)] |g(nz) — pe(nx)| dz + / | f(z)| dx / lg(z) — p:(z)| dz
n—oo o Jo JO
/,1
< 2 S| dx
Jo | )|

and the result follows.

1.8 Convex Function

Solution to 1.8.1: Let M = max,¢,1]|f(z)|. Consider a sequence (z,,)
such that o = 1, and 0 < x,, < 37 x,-1 satisfies |f(z)] < M/2" for
0 < 2 < zy,. Define g : [0,1] - [0,1] by g(0) = 0 and, using the fact that
Zn — 0,

M M
g(z) = too + 0= 5=

for 0 <& =1tTpp1 +(1—t)zp, t€[0,1],n=0,1,.... We have g > f and

9(x0a) = 9(@n41) _ M/2m - 1‘\,[/‘211—-1 _ 9(zn-1) — g(zn)

-

(XY

Tn — T+l Tp — Tn41 Tn — LTyl Lpn-1—Tn
SO g is concave.
Solution to 1.8.2: For z % y and ¢ € [0, 1], let

¢ = (log f(y) ~log f(z))/(z — ¥).

By hypothesis, we have

e T £t + (1 - t)y) < e f(a) + (1 - eV f(y)
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80

fltz + (1 = t)y) < tecCENU=D 2(2) 4 (1 - t)e~ =W f(y)
= tellog W) =log FE)1=8) p(py 4 (1 — p)ellos F(z)—log Fw))t f(y))

L (f@NT (@)Y
_t(_.f(y) ) f@r0-0(F)

— f(w)tf(y)lAm
taking logarithms, we get that log f is convex.

Solution to 1.8.3: Consider an interval [a,b] and suppose that the max-
imum of f does not occur at one of its endpoints. Then, by Weicrstrass
Theorem [MH93, pag. 189], there is ¢ € (a,b) maximizing f. By the con-
tinuity of f, there are intervals A = [a,ap] and B = [by, b] in [a, b] with

f(z) < f(e) if z lies in A or B. By the Mean Value Incquality for Integrals
[M H93, pag. 457], we have

, 1 f 1 7
fle) < oy / f(y) dy + T j(%m] fy)dy + 5 5 J/ f{y) dy

7AY

1

I

i

|

I

|

I
Ly
—
N>

!

T

i

1

|

i

1

1

1

|
s

R
—
o
~

i

1

I

I

[

!
—
—_
~

= f(c).
This contradiction shows that f must attain its maximum at a or b.
If L{x) is any linear function, a straightforward calculation shows that
L is convex and satisfies the mean value inequality above, and that both of
these inequalities are, in fact, equalities. Now let L be given by

(z —a)f(b) - (z —b)f(a)
b-—-a

L(z) =

and consider G'(z) == f(z) — L(z). By the linearity of the integral, since f
and L satisfy the Mean Value Inequality, G does as well. Therefore, G takes
its maximum value at a or b. A calculation shows that G(a) = G(b) = 0.
Therefore, we must have that f(r) < L(z) for all z € [a,b]. For any t €
0,1}, (1 — t)a + tb € |a, b]. Substituting this into the inequality gives that
f is convex.
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Multivariable Calculus

2.1 Limits and Continuity

Solution to 2.1.1: Let x € R™, € > 0, and let B dcnote the open ball
with center f(z) and radius e. For n = 1,2,.. . let K, be the closed ball
with center z and radius 1/n. By (ii) we have N{°f(K,,) = {f(z)}. By
(i) the sets (R™ — B) N f(K,) arc compact for n = 1,2,.... They form
a decreasing sequence, and their intersection is empty, by the preceding
equality. Hence, there is an ng such that (R" — B) N f(K,,) = @, which
means that |f(y) — f(z)| < € whenever |y — z| < 1/ng. So f is continuous
at z.

Solution to 2.1.4: We show that f is continuous at (0,0); for the general
case, use a change of variables. By adding a constant, if necessary, we
may assume f(0,0) = 0. Suppose f is not continuous at the origin. Then,
for any € > 0, there is a sequence ((z,,y.)) tending to the origin with
|f(zn,yn)| > € for each n. Since f is continuous in the first variable, there
exists a § > 0 such that if |z| < 6, then | f(z,0)| < £/2. Applying this to our
sequence, we sec that there is an N > 0, such that if n > N then |z,| < 6,
s0 | f(zn,0)] < £/2. However, for each such n, f(x,,,y) is continuous in the
second variable, so by the Intermediate Value Theorem [Rud87, pag. 93],
there exists y/,, 0 < y!, < yn, such that |f(z,,y,)| = ne/(n + 1). Since the
¥'s tend to 0 as » tends to infinity; the g/,’s do so as well. Hence, the set
E = {(zn,y,,)|n > N}U{(0,0)} is compact. Then by our hypothcsis, the
set f(E) is compact. But f(E) = {ne/(n+1)|n > N} U {0}, and ¢ is a
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limit point of this set which is not contained in it, a contradiction. Hence,
f is continuous at the origin and we are done.

Solution to 2.1.5: Continuity implies f(0) = 0, so if any zy, is 0, then so
are all subsequent ones, and the desired conclusion holds. Assume therefore,
that zx # 0 for all k. The sequence (||z«|l) is then a decreasing sequence of
positive numbers, so it has a nonnegative limit, say ¢. Suppose ¢ > 0. The
sequence (zy), being bounded, has a convergent subsequence, say (zx,),
with limit a. Then ||| = lim;j_,o ||zk;|| = ¢. Hence, || f(a)|| < c. But, by
the continuity of f,
fla) = lim f(zy;) = jli{goiﬂkﬁl,

J—00

and ||z;+1]| = ¢ for all j, so we have a contradiction, and the desired

conclusion follows.

2.2 Differential Calculus

Solution to 2.2.1: We maximize the function f(z,y) = (2% + y?)e =¥
in the first quadrant, x > 0 and y > 0. The function attains a maximum
there because it is nonnegative and tends to 0 as cither variable tends to
oo. We have

of of

9 2z — 2® —yP)e TV, 5‘@; =2y —z? —y?)e Y.

The critical points of f arc thus the points (z,y) that satisfy
2r—12 — 9 =0=2y—z% 9.

These equalities imply z = y and
202 — 22 =0, 2% —2y=0.

Hence, the critical points are (1,1) and (0,0). Obviously, f does not attain
its maximum at the latter point. The only candidate in the open quadrant
for a point at which f attains its maximum is (1,1).

On the z-axis, we have f(x,0) = z%~* and md%’ﬂ = (2% — 2r)e™ 7,
) %&’Q = 0 only for z = 0 and = = 2. The point (2,0) is thus another
candidate for the point at which f attains its maximum. By the same
reasoning, the point (0,2) is another such candidate. The points (2,0) and
(0,2) are the only candidates on the boundary of the quadrant.

We have

fL,) =272,  f(2,00=4¢%=f(0,2).
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Hence, the maximum value of f in the quadrant is 4e~2, that is,

(2% +12)e™" Y < 4e72
2 2
Zz + y < eZ+y—2
— S

forz >0, y>0.

Solution to 2.2.2: The function f is differentiable at the point
z = (z0,y) € U if there is a linear transformation f'(z) € L (R% R!)

such that ,
o M@+ ) = £2) = P (B _
h—0 i

Continuity of the partial derivatives is a sufficient condition for differentia-
bility. A calculation gives

0.

@:( )= (4/3)x'/3sin(y/z) — yz =/ cos(y/x) if z#0
oz Y T 0 if =0
af _f x'YBcos(y/z) if zH#0
a_y(“”y)‘{o if z=0

which are continuous on R?\ {(0,y) |y € R}. Thus, f is differentiable there.
At any point (0, y), we have

(k) = FO9) _ oiym _ B
Tl O(h|*/%) = 0(1) (h—0)

so f is differentiable at these points also.

Solution to 2.2.3: Since f is continuous and R" is connected, f(R™) is
connected. We will prove that f(R™) is both open and closed in R™. This
will imply that f(R") = R", because f(R™) # 0.

Let y = f(z) € f(R™). As the rank of (0f;/0z;) is n, by the Inverse
Function Theorem [Rud87, pag. 221}, there are open neighborhoods V, and
Vy of z and y such that f|y, : V; — V, is a diffeomorphism; therefore, V,
is an open neighborhood of y, and f(R™) is open.

Let (yn) be a sequence in f(R™) converging to y € R™, f(z,) = ¥n,
say. The set K = {y, |n € N} U {y} is compact; therefore, f~!(K) is also
compact. But {z, |n € N} C f~!(K); therefore, it contains a convergent
subsequence, say (zn;) with z,; — = € R™. Since f is continuous, f(zx,) —
f(z). But lim; .o Yn,; = y; therefore, f(z) =y, and f(R") is closed.

Solution to 2.2.4: We have R? = f(S) U (R?\ f(S)) where S is the set
of singularities of f. It suffices to show that f maps R = R%\ f~1 (f(9))
onto R%\ f(S). f(S) is finite, so R?\ f(S) is connected. As f(S) is closed,
R is open. It suffices to show that f(R) is open and closed in R? \ f(S).
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As RN S = 0, by the Inverse Function Theorem [Rud87, pag. 221],
f is invertible in a neighborhood of each point of R. Hence, locally, f is an
open map, and as the union of open sets is open, f(R) is open.

Let & be a limit point of f(R) in R?\ f(S), and (£,) be a sequence in
f(R) converging to £. The set (£,) is bounded, therefore, by hypothesis,
(f~'(&)) is bounded. Let (x,) be a sequence such that f(z,) = &,. This
sequence is bounded, so it must have a limit point, z, say. As f is continu-
ous, we have f(z) = £. Since £ € f(S), z & f~1(f(S)), so € R. Thercfore,
€ € f(R), so f(R) is closed in R?\ f(S).

Solution to 2.2.5: Consider the scalar field G : R® — R given by G(y) =

[V f(y)||*. We have 2
DG(y) = (BZ L (y>) |

By the hypothesis, we have G(z) = 0, G is C!, and G’(x) # 0. Therefore,
by the Inverse Function Theorem [Rud87, pag. 221], G is locally a diffeo-
morphism onto a neighborhood of 0 in R. In particular, it is injective in
some ncighborhood of z, so it has no other zeros there.

Solution to 2.2.6: 1. Since f is C?, we can expand f in a Taylor series
[MH93, pag. 359] around a and obtain

fla-+h) = f(@) + J'(@) bt 57"(@)- B+ O(AIY) (h—0)

where f"(a) - h® = h'Hh = (b, Hh), H = (52£-), and the big Oh
notation means that for 2 in some neighborhood of 0, A € Vj, we have
|O(Jh|?)| < K|h|? for some K > 0.

The hypothesis that a is a critical point implies that f'(a) -h = 0
for all h € R™, and the hypothesis that H is positive definite implies
that (h, Hh) > 0 for all h € R™ and zero only at h = 0. Therefore, all
the eigenvalues of H are positive and there exists some ¢ > 0 such that
(h, Hh) > c|h|? (namely c is the minimum of all the eigenvalues, which are
all real because H is symmetric, by the Schwarz Theorem [HK61, pag.
340]). Let W, = {a + h | h € Vp, |h| < ¢/k}. We have

fla+h)—f(a) = (h,Hh)+O(h*) > c|h|* + O(|R[)
> clh|? = K|h]® = |h]2(c — K|h|]) >0

which shows that f(a + k) > f(a) for h # 0 and h € W,, and, therefore, a
is a local minimum.

2. Assume f has two critical points, p; and ps. Since the Hessian matrix
is positive definite, p; and pg are local minima. Let tp; + (1 — t)po, t € R,
be the line containing p; and ps. Consider the real function g given by
g(t) = f(tp1 + (1 — t)p2). g has local minima at ¢ = 0 and at t = 1.
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Therefore, g has a local maximum at some ¢o € (0,1). We have ¢"(¢) < 0,
but

9" (to) = f'(tp1 + (1 — to)p2)(p1 — p2)* = (P — P2, H(p1 — p2))

and our assumptions on H imply (p1—p2, H(p1—p2)) > 0, a contradiction.

Solution to 2.2.7: As the Laplacian of f is positive, the Hessian of f has
positive trace everywhere. However, since f € C3, for f to have a relative
maximum its Hessian must have negative eigenvalues and so its trace must
be negative.

Solution to 2.2.9: The derivative of T is given by

1 2u
DT = (1 211)

which is always nonsingular since det(DT) = 2v — 2u is never 0. By the
Inverse Function Theorem [Rud87, pag. 221], this means that T is locally
one-to-onc.

2. Considering the function f(u,v) = u + v restricted to u? + v? = y, we
conclude that —/2y < u + v < 1/2y; therefore, the range of T is

{@wly>0,-Vy<o< oy}

Let (z,y) € range(T). u+wv = z is the equation of a straight line with slope
—1 in the u, v-plane which intersects the circle 42 + v = y centered at the
origin with radius /9. Thesc two lines intersect exactly at one point in U,
so T is globally injective.
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Solution to 2.2.10: Letting f1 and f3 be the components of f, we have

LUOI = 21:110) + 21240

Assume t > 0 and use the Mean Value Theorem [Rud87, pag. 108| to
rewrite the right side as

2t (fi(E)A ) + () £2(8))

where 0 < &1 =&,(t) < tand 0 < & = &(t) < t. Ast\, 0, the continuity
of f' gives

FEV®) + &) f5t) — I17/(0)]* > 0.
Hence, there is an € > 0 such that 2| f'(t)|[> > 0 for 0 < ¢ < ¢, and the
desired conclusion follows.

Solution to 2.2.11: For X € ¥, we have

[4-X[*=(1-2)?+9*+2°+(2-1t)
=2 422412 +2% 4+ (2-1)?
> 2z +1—-2z+2|z|(2-t)
= 4|z| - 2z + 2(Lyz — |z|t) + 1

We can choose the sign, so +yz—|z|t = 0 because det X = 0. As 4|z|—2z >
0, we have ||A — X| > 1 with equality when 4|z| — 2z = 0, |z| = 2 — ¢,

y = *z, and det X = zt — yz =0, which give § = (gg :

Solution to 2.2.13: Each elcment of P; has the form az? + bz + ¢ for
(a,b,c) € R3, so we can identify P, with R? and J becomcs a scalar field
on R3:
1 2 b 9 b2
J(a,b,c) =/ (az? +bz+c)?dr =2+ 2 + 22512 fpet

o 5 23 '3
To @ corresponds the set {(a,b,¢)|a+b+ec=1}. If J achieves a minimum
value on @), then, by the Method of Lagrange Multipliers [MH93, pag. 414],
we know that there is a constant A with VJ = A\Vg, where g(a,b,c) =
a+b+c—1. We have

2¢ b 2¢ a 2b 2a

and Vg = (1,1,1). These and the constraint equation g(a, b,c) = 0 form
the system

2/5 1/2 2/3 -1
1/2 2/3 1 -1
2/3 1 2 -1
1 1 1 0

>0 e
[l == R en i« ]
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which has the unique solution A = 2/9, (a, b, c) = (10/3, —8/3,1/3). There-
fore, if J attains a minimum, it must do so at this point. To see that J
does attain a minimum, parameterize the plane @ with the xy coordi-
nates and consider the quadratic surface with a linear z term defined by
z = J(z,y, | —x—y) in R3. The surface is the graph of the map J : P, — R.
Rotating around the z—axis will eliminate the zy cross-terms in the equa-
tion, reducing it to the standard equation of either an elliptic paraboloid or
a hyperbolic paraboloid. However, J is always nonnegative, so the surface
must be an elliptic paraboloid and, as such, has a minimum.

Solution to 2.2.17: Let (z,t) € R2. By the Mean Value Theorem, [Rud87,
pag. 108] and the hypothesis, we have, for some (£, 77) in the segment con-
necting (z,y) to (z +y,0),
f(z,t) — fz+1,0)=Df(&n)- ((z,t) — (z +1,0))
_[(Of af
- (Zen Zen) 1o

(Sen-Fen)
0

It

so f(z,t) = f(z +¢,0) > 0.

Solution to 2.2.18: Given two points z and y € R” one can build a polyg-
onal path from z to y with n segments all parallel to the axis (adjusting
one coordinate at a time). Applying the Mean Value Theorem [Rud87,
pag. 108] to each of the segments of the path, we have
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[F(Z1y .o Tim 1, Ziy Yid 1y s Yn)—F(Z1s o oy Bim 1, Uiy Wit 1y - - 2 Un)| < K2 —y4]

and then

1f(@) = F@) < D 1f @1, Zim 1, Tiy Yit 15+ -+ Yn)
i=1

“f(zly--~1zz’—17yz'ryz'+lx--~yyn)l

n

<KDY zi— il
=1

Now applying the Cauchy—Schwarz Inequality [MH93, pag. 69] to the
vectors (1,1,...,1) and z — vy, we get

1f@) = f@ <K (D1 Y Jwi - wil?
i=1

i=1
=vn K [z—yl.
Solution to 2.2.19: Let ((x1,...,Zn))x be a sequence in R™ converging

to (0,...,0). This sequence is Cauchy, so there is an N > 0 such that if
k,1 > N, then for each of the coordinates we have |x;; — 4| < €/2nM.
Then we draw a polygonal path, as in the Solution to Problem 2.2.18, from
(Z1ks. .y Znk) to (T11y ..., Zny), parallel to the axes.

If this path does not goes through the origin, then as before

"
If(@1ks e Tak) — F(Z1, - T0)| < MZ|$z‘k —zy|<e

i=1

and if the origin is in one of the segments of the polygonal path, we can
perturb it a bit, by traversing in the same direction but €/4M away from
the origin. On this altered path

n
3
lf(l'lk, .. -,-'Enk) — f(.’l:ll, .. .,.’lrnl)i < M; lxik — l'z‘l' -+ ZMW <g¢
in both case the sequence (f(z1,...,,)), is Cauchy and, thus, it converges.
Given any other sequence ((zy,.. ., xn));, an identical argument shows that
|f(@in, ..., Zin) = (i, . . ., ;)] tends to 0, so all sequences must converge

to the same value, which can be defined as the continuous extension of f to
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the origin. For n = 1, consider the function f(z) =1ifz < 0 and f(z) =0
ifz > 0.

Solution to 2.2.20: 1. The answer is no, and a counterexample is the
function

f@) = g for@y) # (0,0

f is differentiable everywhere, but cannot be extended continuously to the
origin, because it is constant equal to k/(1+k?) on cach line y = kz passing
through the origin.

2. The answer is again no, with the counterexample a variant of the previous
one, the function

zy?

11:2'—_+_y2 and g(O, 0) =0

g(l', U) =
g is now continuous everywhere, but not differentiable because the direc-
tional derivative does not depend linearly on the vector. Let (u,v) # (0, 0).
We have
g((Ov 0) + t(uv ’U)) _ g(ov 0) u,UZ

. imi 2 o
}l—r}[l) t zh—r»%tu2+'vz

So the directional derivatives at the origin exist in all directions. If g were
differentiable at (0,0), as all the directional derivatives vanish there, we
would have Dg(0,0) = 0 (the zero linear map). Then, by definition of
differentiability, we would have

9@,y) = ol yl) (=9 — (0,0)
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which is absurd, since

. g(z,y) . z®
lim _— — 1] 0
oo T D +20 222/358 7

Both examples are from [Lim82].
Solution to 2.2.21: A simple counterexample is

_J oz if y=0
f(xay)_{o if y#£0

and not even continuity at the origin and C! on the rest of the plane is

enough to guarantee differentiability, as shown in the counterexample of
Problem 2.2.20, Part 2.

Solution to 2.2.22: Let € > 0. By the hypothesis, there is § such that
|Df(w)| < eif |jw]| < é. For ||z|| < 6, by the Mean Value Theorem [Rud87,
pag. 108], applied to the line segment joining 0 and z, we have

1f(z) — fOIl < | Df(€)llll — Ol < eflx]| forsome 0<&<1,

which implies differentiability at the origin.

Solution to 2.2.25: The answer is no; to see it, consider f(zr,,z2,23) =

2 _ 2 .2
1-2]—-125—1r35.

Solution to 2.2.26: Fix a point 2 € R". By the Chain Rule [Rud87, pag.
214],

D(go f)(zx) = ((Dg) (f(2))) (Df)(z)) = 0.
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The transformation (Dg) (f(z)) : R®™ — R is nonzero because g has no
critical points. The preceding equality therefore implies that the transfor-
mation (Df)(z) : R* — R”" is noninvertible, so its determinant vanishes.
That determinant is the Jacobian determinant of f at z.

Solution to 2.2.27: 1. Let F : RZ — R be defined by F(z,t) = f(z) —
tg(z). Then F is a smooth scalar field with F(0,0) = 0 and

oF
5—(070) = f'(0) - 0g'(0) #0.
z
Therefore, by the Implicit Function Theorem [Rud87, pag. 224], there
exists a positive § such that, for |t| < 6, = is a smooth function of ¢, with
z(0) = 0.
2. Differentiating both sides of f(z(t)) = tg(x(t)) with respect to t, we
have, for |f| < §,
t
2(t) = g9(t) .

f'(8)
As z(0) = 0, the desired expansion of z(t) is

9(0)
0N

Solution to 2.2.30: Consider the function G : R? — R? given by

Since Vu and Vv are linearly dependent and Vu is never 0, G’ has rank
1 everywhere. Therefore, by the Rank Theorem [Bar76, pag. 391], given
a point po € R?, there is a neighborhood V of py, an open set W C R2,
a diffeomorphism h : W — V, and a C'-function g = (g1,92) : R — R?
such that G (h(z,y)) = g(z) on W. So gi(z) is never 0. Therefore, by the
Inverse Function Theorem [Rud87, pag. 221], g; is locally invertible. By
shrinking the set W (and so the set V'), we may assume that it is invertible.
Therefore, g7 (u (h(z,y))) = z or gao gy * (u (h(z,y))) = v (h(z,y)) for all
(z,y) € W. Since h is a diffeomorphism of W onto V, it follows that
g2 0 97 ' (u(z,y)) = v(z,y) for all (z,y) € V. F = gy og;" satisfics the
required condition.

Solution to 2.2.31: The conclusion is trivial if f is constant, so we assume
f is not a constant. There is (zg,y0) € R? such that Df(zo,y0) # O.
After performing a rotation of the coordinates, if necessary, we assume
fz(zo,90) # 0. Let a = f(zo,yo), and consider the function F : R? — R?
given by

F(z,y) = (f(z,9),y) .
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The Jacobian of F is nonzero at (xg, y), so, by the Inverse Function The-
orem [Rud87, pag. 221], the function F has a local inverse, G, defined in a
neighborhood of (a, yg). Thus, F' (G(a, yo)) = (a,y) for all y in some closed
interval I containing yo. Let v be any one-to-one map of [0, 1] onto I. The
function

9(t) = G(a,7(t)) (t€0,1])

has the desired properties.

Solution to 2.2.32: Consider F : R? — R? given by

F(z,y) = (f(z), —y + zf(2)) .

A calculation gives that the Jacobian of F' at (z¢, o) is —f'(zo) # 0. So,
by the Inverse Function Theorem [Rud87, pag. 221}, F' is invertible in a
neighborhood of (zg,yo). Similarly, f has a local inverse, g, close to zg.
In a sufficiently small neighborhood of (zg, yo) we can then solve for each
component of F~1 explicitly and get

g(u) =g(f(z)) ==

and
y=-v+zf(z) =—v+g(u)f(g(u)) = —v+ug(u).

Solution to 2.2.35: 1. Let F : R* — R* be defined by
F(z,y,z,w) = (m2 +yz,y(z + w), z(x + w), 2y + w2) .

This map is associated with the given map because

g y\ [ 2+yz y+w)

z w /) T\ zz+tw) zy+w? )°
The Jacobian of F at (1,0,0,1) is 2%; therefore, F is locally invertible near
that point.

2. We have F(1,¢,e,—1) = (1,0,0,1) for any ¢, so F is not invertible near
(1,0,0,—1).

Solution to 2.2.36: Identify the matrix X = (7 ?) with the element of
(z,y,z,w) € R* in the usual way. Let F' be defined by F/(X) = X2 + X*.
We have

2r +1 z Y 0
y T+w 1 y
DFX)@,yzuw)=| ¥ v LY

0 z Y 2w+1
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SO
1000
0010
DF(X)(0,0,000=| o | o ¢
000 1

is invertible; therefore, by the Inverse Function Theorem [Rud87, pag. 221],
there is such an e.
Global unicity fails for X = (_01 g) since X% + Xt =0 =02+ 0%

Solution to 2.2.37: Since F(0) =0 and F is clearly a C*®°function, the
Inverse Function Theorem [Rud87, pag. 221] will yield the result if we can
prove that DF(0) is invertible. We have

F(X+hY)-F(X)=X+hY +(X+hY )2~ X - X?=hY +hXY +hY X +h?Y?

therefore,
DF(X)Y =Y +XY+YX.

In particular, DF(0) is the identity operator which is invertible.
Solution to 2.2.39:

1. Using the method of Laplace Expansions [HK61, pag. 179] we can see
that finding the determinant involves only sums and multiplications
of the entries of a matrix, therefore, it is a C°°—function.

2. Fori,j = 1,...,n, let z;; denote the (4, 5)* entry of X, and let X;;
denote the cofactor of z;;, so that

F(X):Z:Einz’j (i=1,...,n).
j=1

0X
Since 3 K — 0 for each i, 7, k, it follows from the preceding expres-
Iij
sion that oF
Buy; 9

Thus, X is a critical point of F' if and only if X;; = 0 for every i and
7 or, what is equivalent, if and only if the rank of X does not exceed
n—2.

Solution to 2.2.40: Let A; be the 1-column matrix
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so A is the matrix whose column j is A;, that is, A = (A,,..., Ap). Since
det is an n-linear function of (R™)" into R, the derivative is given by

—det Zdet(Al,. :tA ..,An).

Let A(¢,j) denote the cofactor of a;j, that is,

aii aij—1 1541 Ain
(i,j) - (_1)i+j ai—-11 .-+ Gi—15-1 Qi-1541 ... Gi—1n
Qiy11 --- Q11 Qi1+l --- Qitln

anp1 Anji—1 Anj+1 Ann

Using Laplace’s Expansion Method to evaluate the determinant [HK61,
pag. 179]

det (Al,...,gt—Aj,...,An)

of each component of the derivative, by developing the j** column we get

d "\ d .
det (Al,...,&Aj,...,An) = ;d—taﬁfl(l,])
and

——det ii a” (i, 4) szawdet

j=1:1=1

where the last equality follows from the fact that the inverse matrix is given
by b;; = m - A(j,1). Therefore, we have

1 d

d
a¢ B = Gy
1
= det(A) E_l El ——aw det(A) -

=33 St

j=1li=1
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2.3 Integral Calculus

Solution to 2.3.1: Let f: R? — R, f(z,y,2) = (az, by, cz). The volume
given is the image, under f, of the unit ball of R®, B. As the Jacobian of f
is abc everywhere, we have

vol (f(B)) = dzdydz = / abcdzdydz = §7rabc.
®) B 3

Solution to 2.3.2: Using polar coordinates, we have

2w 1
/e_’”z_y dzdy:/ / pe“PdedH
A 0o Jo
1 27 1 2
= ——/ / —2pe™*f dpdb
2Jo Jo
1 2w .

:*5/0 (- 1)

=n(e™! - 1).

Solution to 2.3.4: Using the parametcrization

y=sinpsingd 0<p<nw

r=sinpcosfd 0<0<2rx
z=cosp

we have
dA = siny df dy

and
T p2m
/(xz+y+z)dA:// (sin? pcos? @ -+ sin psin 0 + cos ) sinp df dp.
s 0 Jo

Breaking the integral in three terms, we get

T p2T ™
1
// sincpcos<pd0dcp=27r-—/ sin2¢ dp =0
o Jo 2 Jo

T p27T T 2m
// sin® psin@ df dp = (/ sin? ¢ d(p)/ sinf df =0
0 Jo 0 0
™ p2T m 2w
/ / sin® p cos? 0 df dyp = ( / sin® o dtp) ( / cos® ¢ d0)
0 Jo 0 0
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™1 27
= / 1(3 sin ¢ — sin® cp)dtp/ cos® 0 df
0 0

1 L o ™/ ¥ 1+ cos20
= (Z(—3coscp+ é—cos cp)o)(/o —2———d0)
1

Therefore,

/(ac2 +y+2)dA= éw.
s 3

Solution to 2.3.5: 1. We have

v 7 k
d/0x 0/oy  0/0z
2 +y—4 3ry 2x2+ 22

—

= —2z7+ (3y — 1)k.

2. Let H = {(z,y,2) € R3| 2%+ 3% + 22 = 16, 2 > 0}, and consider the set
D given by D = {(z,y,0) € R*|z? + y2 < 16}. H and D have the same
boundary, so, by Stokes’ Theorem [Rud87, pag. 253]

/(vXF)-dTS:/ F-Jl:/ F-dl
M oM oD
_ [ (VFxF).ds= / (—22+ 3y ~ V)F) - F dzdy
oD D
= / 3y — 1)dzdy = —16m7.
D
Solution to 2.3.6: Let f(z,y) = x3 — 3zy?. Derivating twice (see Prob-

lem 5.10.1), we can see that Af = 0, so f is harmonic. Let By = {(z, ) | (z+
12+ 42 <9} and B: = {(z,9) | (z — 1)2 + y? < 1}. We have

IRSYIReIR

3 27 )
[ revsty = | ( £(€ +3ew)do) dr,
B; 0 0

where £ = (—1,0) is the center of B,. As f is harmonic, the inner integral
is equal to 27 f(£) = —2m and the integral of f over B is —97. An identical

and



2.3 Integral Calculus 217

calculation shows that the integral over By is 7, so the integral of f over
R is —107.

Solution to 2.3.7: Let C be a smooth closed path in R? which does not
contain the origin, and let L be any polygonal line from the origin to infinity
that does not intersect C. V = R3\ L is simply connected; so to show that

/F~ds=0
C

it suffices to show that V x F = 0. Let r = (z,y, 2) and F = (P,Q, R). We
have

F(r)y=(g(lrDz,g(rl) v glrl)2)-
By the Chain Rule [Rud87, pag. 214},

0R _3Q o,
5 o =9 U

- '(nrn>—My-g(nrn>@

=g (lIrlh ” ” ~g'(Irll) =
= 0.

, 0z
2+ (Irl) 52

i II

Similarly, oP on 00 op

B 9 oz oy 0
and we are done.
Solution to 2.3.8: 1. From the identity
V- (17) = (V) - T+ V- T=V-T

and Gauss Theorem [Rud87, pag. 272], we obtain

/B(ﬁf) - Jdzdydz

Il

/Bﬁ-(ff) dz dy dz

I

fJ-fidA
on
=0.

2. Apply Part 1 with f(z,y,2) = z.
Solution to 2.3.9: By Gauss Theorem [Rud87, pag. 272],

// div (ugrad u)dzdy = / (ugradu) - fids,
D oD
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where 7i is the unit outward normal, and ds is the differential of arc length.
The right-hand side vanishes because u = 0 on dD. The left side equals the
left side of (x) because

o (0 o ( 0
div (ugrad u) = . (ué—z—) + By (ués)

_(‘9_“)2+ du\*  (Pu, Ou
-\ 0z oy ox?  Oy?

= |grad u|? + Au?.

Solution to 2.3.10: By the Change of Variable Formula for multiple
integrals [MH93, pag. 505],

vol  (Qr(z0)) = / 17(2)] d.

Q’r‘(zo)

Hence, if M, is the maximum and m, the minimum of |J(z)| for € Q. (xo),
we have

m, < r73vol £ (Qr(z0)) < M,.

By the continuity of J, we have m, — |J(z¢)| and M, — |J{zo)| as r — 0,
from which the desired equality follows.
To establish the inequality, we note that the same reasoning gives

) W) = Jimg 7D

where B, (z¢) denotes the ball of radius r and center xo. Let

K — limsup 1) = F@o)l

z—zo  [[€— ol

Then, given € > 0, there is an r. > 0 such that ||f(z) — f(zo)|| < (K +
)|z — zo]| for ||z — zo|| < re. The latter means that, for r < r, ‘

f(B,-(:l:o)) - B(K+E)T (f((l:()))
so that
volf (By(x0) _ (K +e)*r

4,3 - 4.3
37l’1” 371'1”

= (K +¢)*

In view of (x), this gives |J(xg)| < (K + €)3. Since ¢ is arbitrary, we get
|J(zo)] < K3, the desired inequality.
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Differential Equations

3.1 First Order Equations

Solution to 3.1.1: Suppose y is such a function. Then
Y (z) = y(x)"

or

y "M =(1-n)z+c.
Moreover, ¢ = 1/y(0)"~! > 0. We thus have
_ 1
C(e~(n- 1):1:)1/("—1).

y(z)

This function solves the initial value problem 3’ = »", y(0) = ¢~ /(1 in
the interval {0, -%7), and, by the Picard’s Theorem [San79, pag. 8], it is
the only solution. Since the function tends to co as £ — =%y, there is no

function meeting the original requirements.

Solution to 3.1.5: We have ¢’(z)/g(z) = 2, so g(z) = Ke?* where K
is a constant. The initial condition g(0) = a gives K = a; therefore,

9(x) = ae?®.
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Solution to 3.1.7: Suppose y(t) > 0 for t € (to,t1), y(to) = 0. Integrating
the equation
!
Y _
Vi
we get the solution y(t) = (t + ¢)?/4 where ¢ is a constant. Each such
solution can be extended to a differentiable function on R:

a_J0 if t<t,
y(t) = (t—to)2/4 if t>t

We must have tg > 0 for y to satisfy the given initial condition. y = 0 is
also a solution.

Solution to 3.1.8: From the equation, we get '’ = 0 iff 23—z = 0, so the
constant solutions are z = -1,z =0, and z = 1.
2. Considering the sign of z’, we get the phase portrait

So 0 is a stable singularity, and 1 a unstable one. There are no other
singularities in [0, 1], so the limit of the orbit of the solution xz(t) that
verifies £(0) = 1/2 is 0.

Solution to 3.1.9: The given equation satisfies the hypotheses of Picard’s
Theorem [San79, pag. 8], so a solution z(t) exists in a neighborhood of the
origin. Since 2’(0) = 231485 cos 85 # 0, by the Inverse Function Theorem
[Rud87, pag. 221], z is locally invertible. Its inverse satisfies the initial value
problem:

dt 1

—_——— 77)=0.
dr 3z +85cosz’ (77)

So , .
He) = /;7 3¢ +85 cosEdﬁ

in some neighborhood of 77. There are numbers a1 and ag such that a; <
77 < 0, 3a; + 85cosa; =0, and 3a; + 85cosa; > 0 in (a1, az). So t(z) is
increasing. The function 3£ + 85 cos £ behaves like {€ — | as € — ay, so

lim ¢(z) = —-00 and lim #(z) = oo.
T— 0 T2

We may take the inverse of ¢ : (a3, a2) — R and get a function z(t) that
solves our initial value problem and is defined in all of R.
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Solution to 3.1.16: 1. Let u be defined by u(z) = exp(—3z2/2)y(z). The
given equation becomes

% = —Bxe_%zzy(z) +e 2% <3xy(z) + ly_{(_zzz)
_ =)
T 1+ e ty(x)?
= f(z,u).

f is clearly C!, so it satisfies the Lipschitz condition on any compact
convex domain. The initial value problem

du_ U

(0) = *
dr 14 37y’ wW=a

then has a unique solution for any n € N.

2. f =0 is the unique solution of the initial value problem associated with
the condition #(0) = 0. Therefore, f, cannot have any zero, so f,(z) >0
for z € [0,1]. For u(x) = exp(—3x2/2) f.(x), we have

!
0<% 1 <)
u ~ 14e3%7y?
S0
u(0) = 1 <wu(z) < lex
T n - n
therefore,
_l_e% S fn(o) S leg
n n

and f,(0) — 0 when n — oo.

Solution to 3.1.17: If y(¢t) < 0 for some ¢, then y/(t) > 1, so y(t) is
growing faster than z(t) = ¢ for all ¢ where y(t) < 0. Hence, there is a ¢
with y(tp) > 0. For y > 0, v/ > 0, so for ¢t > tp, ¥ is positive. Further, for
y>0,e¥>e3 soy >e . Now consider the equation 2/ = e~ 52,
Solving this by separation of variables, we get z(t) = log(t/5 + C)/5, and
for some choice of C, we have z(ty) = y(to). For all t > t9, ¥ > 2/, so
2(t) < y(t) for t > tg. Since z(t) tends to infinity as ¢ does, so does y.

Solution to 3.1.18: Multiplying the first equation by the integrating fac-
tor exp ( [y q(t)dt), we get

ai‘i- ( f(z)exp ( /O ’ q(t)dt)) 0.

The general solution is therefore,

@) =Cep (- [ awa)
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where C is a constant. The hypothesis is that lim;_, fo t)dt = -+oo.
Even if [p| > |g], the corresponding property may fail for p. For example, for
p = —1 and g = 1, the general solutions are respectively f(z) = C exp(—z)
and f(z) = Cexp(z).

Solution to 3.1.19: Consider the equation
0= F(z,y,2) = (" siny)z® + (e” cosy)z + €Y tanz.
F(0,0,0) = 0, and all the partial derivatives of F' are continuous, with
oF

. 2/ T o3 _
57 | 000 = (32%(e” siny) + €” cosy) |(0,0,0) =1

By the Implicit Function Theorem [Rud87, pag. 224], there is a real valued

function f with continuous partial derivatives, such that,
F (z,y, f(z,y)) = 0 in a neighborhood of (0, 0,0). Locally, then, the given
differential equation is equivalent to 3y = f(z,y). Since f satisfies the hy-
potheses of Picard’s Theorem [San79, pag. 8], there is a unique solution y
in a neighborhood of 0 with y(0) = 0.

Solution to 3.1.20: Sincc f and g are positive, the solutions of both
problems are monotonically increasing. The first differential equation can
be rewritten as dz/ f(z) = dt, so its solution is given by x = h~1(t), where
the function h is defined by

T dé-
o f€)

Because the solution is defined for all ¢, we must have

[ S /’wﬁz_w
o FO T L 1©

Since g < f, it follows that

Using a similar reasoning we can see that the solution of the second cquation
is given by = = H~!(t), where

_ [T dg
Hiz)= /og(ﬁ)

The conditions fo (s) = oo, and [, ﬁ% = —oo guarantee that H maps

R onto R, hence that H ! is defined on all of R. Thus, the solution of the
second equation is defined on R.

hiz) =
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Solution to 3.1.21: Picard’s Theorem [San79, pag. 8] applies because the
function 2% — 8 is Lipschitzian on finite subintervals of the z—axis. Thus,
two distinct solution curves are non intersecting. The constant functions
z(t) = 0 and z(t) = 1 are solutions. Hence, if the solution z(t) satisfies
z(0) > 1, then z(¢t) > 1 for all ¢, and if it satisfies 0 < x(0) < 1, then
0 < z(t) < 1forall t.

Since

;1;2_:1;6 ::1;2(1 _IE4) = (1 —:1:):1:2(1+.'E+:1:2+$3) )
we have
d
) Ze-D=-@-10(1+s+a+2%) .

We see from this (or directly from the original equation) that if z(0) > 1,
then £ — 1 decreases as ¢ increases, and if 0 < 2(0) < 1, then 1—z decreases
as T increases.

Casc 1: z(0) > 1. In this case, () implies
d
“r—1) < —( —
dt(x < —(z—-1)
(since z(¢t) > 1 for all t), so that
d
Et-(et(a: -1))<0.

Hence, e(xz(t) — 1) < x(0) — 1, that is, z(t) — 1 < e *(x(0) — 1), from which
the desired conclusion follows.

Casc 2: 0 < z(0) < 1. In this case, (%) implics
S0~ 2) < —2(0/(1 - 2)
a- "=

(since z(t) > x(0) for all t), so that

d, o
@ 1-2) <0,

Therefore, €t (1—x(t)) < 1—z(0), that is, 1 —z(t) < e~=O**(1 — (D)),
and the desired conclusion follows.

Solution to 3.1.22: Let y be a solution of the given differential equation.
If 4/ never vanishes, then 3 has constant sign, so y is monotone.

Suppose that y'(z1) = 0 for some z,. Then the constant function y;(z) =
y(z1) is a solution of f(y;) = 0. Consider the function z, z(z) = ¥ for all x.
Then the differential equation i = f(y) with initial condition y(z;) = y;
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is satisfied by y and by 2. f is continuously differentiable and by Picard’s
Theorem [San79, pag. 8], ¥y = z, so y is constant.

Solution to 3.1.23: For (zg,y) to be the midpoint of L(zg,yo), the y
intercept of L must be 2y and the x intercept must be 2z(. Hence, the slope
of the tangent line is —ygp/zo. Let the curve have the equation y = f(z).
We get the differential equation

fie) =12,

or
1 fi=) lay
z flz)  yda

By separation of variables, we get

logy = —logz + C.

Hence,
D
flx)=y=—
T

for some constant D. Solving for the initial condition f(3) = 2, we get

/(@) = 6/z.

3.2 Second Order Equations

Solution to 3.2.1: By Picard’s Theorem [San79, pag. 8] there is, at most,
one real valued function f on [0,c0) such that f(0) = 1, f(0) = 0 and

f"(z) = (2% — 1) f(z). Since the function e~%"/2 gatisfics these conditions,
we must have f(z) = e~*"/2. We then have

lim f(z) = lim e /% =0.

Solution to 3.2.2: The characteristic polynomial of the given diffcrential
equation is (r — 1)? so the general solution is

aet + Btet.
The initial conditions give o = 1, and 8 = 0, so the solution is y(t) = €'.

Solution to 3.2.3: The characteristic polynomial of the associated homo-
geneous equation is
rP—2r+1=(r-1)>3
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so the general solution of the homogeneous equation

d’z _dz
— —2—+4+2=0
dt? dt
is
Ae' + Bte*  (A,B€R).
(cos t)/2 is easily found to be a particular solution of the original equation,
so the general solution is

cost
Ae! + Bte! + %-

and B = -21-, so the solution is

N

The initial conditions give A = —

1
E(Et — te' + cost).

Solution to 3.2.4: The characteristic polynomial of the given equation is
5r% + 10r + 6

which has roots —1 £14/4/5, so the general solution is given by

z(t) = cre” ! cos (\_/t_g) + epe—t sin (_\;_5)

where ¢; and cg are constants. We can assume c¢; # 0 or ¢2 # 0. Using
calculus, we can see that u?(1 + u*)~! < 1/2 with equality when u = +1.
Then f attains a maximum of 1/2 iff z attains one of the values +1. We
have lim;_, o, 2(t) = 0. Suppose ¢; # 0. Then, if k is a large enough integer,

we have
la: (——\/gknr)| = |cl|e‘/gk” >1

so, by the Intermediate Value Theorem [Rud87, pag. 93|, = attains one of
the values +1. If ¢ # 0, a similar argument gives the same conclusion.

Solution to 3.2.5: We first solve the homogeneous equation x” +8z'+25 =
0. The general solution is zo(t) = c1e*t + c2e'2?, where ¢; and cy are
constants and 7, = —4 + 3¢, k = 1,2, are the roots of the characteristic
equation 72 + 8r + 25 = 0.

All the solutions of the differential equation z” + 8z’ + 25z = 2cost are
of the form z(t) = zo(¢) + s(¢), where s(t) is any particular solution. We
solve for an s(t) by the Method of Undetermined Coefficients [BD65, pag.
115]. Consider s(t) = Acost+ Bsint. Differentiating this expression twice,
we get

2cost = s’ + 8s' +25s = (24A + 8B)cost + (24B — 8A)sint.
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Solving the two lincar equations gives A = 3/40 and B = 1/40. There-
fore, the desired solution z(t) is given by zo(t) + s(t), where ¢ and c
are chosen to give the correct initial conditions. zo(t) tends to 0 as ¢
tends to infinity; therefore, to finish the problem, we need to find con-
stants a and § with acos(t — §) = Acost + Bsint. We have acos(t — 8) =
acostcosd + asintsinég, so the problem reduces to solving acosé = 3/40
and asiné = 1/40. These equations imply tan§ = 1/3 or § = arctan(1/3).
Hence, by elementary trigonometry, cos § = 3/1/10, so a = 1/10/40.

Solution to 3.2.6: 1. The differential equation is equivalent to ¥/ = z and
7 = —|y]. We have

(21, 1 ]) = (22, ly2DIl = V(21 — 22)2 + (lya| — [91])2
< V(21— 2)? + (y2 — 91)?
= [|(z21, 1) — (22, 12)|l

so the Lipschitz condition is verified and our initial value problem has,
by Picard’s Theorem [San79, pag. 8], a unique solution. If y is such a
solution, define the function z by z(z) = y(—z). We have 2"/ (z) = y/'(—z) =
—ly(=z)| = —|2(z)}, 2(0) = y(0) = 1 and 2'(0) = —¢/(0) =0, so z = y and

y is even.
Y (@) = / Sy ()t = - [ Cy(®)lde < 0
0 0

2. We have

so y is a decreasing function; therefore, it has, at most, one positive zero.
If y is positive on R, by continuity, y is positive in some interval of the
form (—g,00) for some € > 0. Together with y(0) = 1, /'(0) = 0 gives
y(z) = cosz, which is absurd. We conclude then that y has exactly one
positive zero.

Solution to 3.2.7: 1. Let the function g be defined by g(t) = f(z(t), z'(¢)).
We have
() ¢ =-20"() +2(t)")
so g is a decreasing function.
2. Tt is enough to show that lim,_, g(t) = 0.
Since g is a positive decreasing function, the limit exists and satisfies

lim;_,o0 g(t) = ¢ > 0. If ¢ > 0, then, for some ¢ > 0, T € R we have
z'(t)2 + z*(t) > ¢ for t > T. Then, by (*), we have

g e _ /m(ac’(t)2 +a(t)")dt > /oo edt =

2 T T

which is absurd. We must then have ¢ = 0, as desired.
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Solution to 3.2.8: Substituting y(z) = z® gives the quadratic equation
a(a — 1) + 1 = 0. The two roots are

LB
2

)

N =

so the general solution is

y(z) = Avzcos (? loga:) + By/z cos (?loga:) .

The boundary condition y(1) = 0 implies A = 0 and then the boundary
condition y(L) = 0 can be satisfied for nonzero B only if

sin (—?logL) =0.

L = e2n7r/\/§

Equivalently,

where n is any positive integer.

Solution to 3.2.10: Multiplying the first equation by a(t)/p(t) where a is
a differentiable function, we get

a0a(t) , . ()
OO

Expanding the second given equation, we get

a(t)z" (t) + z(t) = 0.

a(t)z" (t) + o' ()’ (t) + b(t)z(t) = 0.

For the two equations to be equivalent, we must have a’(t) = a(t)q(t)/p(t).
Solving this by separation of variables, we get

a(t)zexp(/ot%dx>.

Letting b(t) = a(t)r(t)/p(t), we are done.

Solution to 3.2.11: The function z'(1)z(t) — z'(0)z(t + 1) satisfies the
differential equation and vanishes along with its first derivative at ¢ = 0.
By Picard’s Theorem [San79, pag. 8| this function vanishes identically.
Assuming z is not the zero function, we have z'(0) # 0 (again, by Picard’s
Theorem), so z(t + 1) = ex(t), where ¢ = z'(1)/2'(0). It follows that the
zero set of z is invariant under translation by one unit, which implies the
desired conclusion.
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Solution to 3.2.12: The characteristic polynomial of the equation is 12 —
2¢l + 1 = 0, which has the roots ¢ + v/¢2 — 1.
Case 1: |¢| > 1. Let w = +/c® — 1. Then the general solution is

z(t) = e”*(Acoshwt + Bsinhwt) .

The condition z(0) = 0 implies A = 0, and then the condition z(27k) = 0
implies B = 0, that is, z(t) = 0. There are no nontrivial solutions in this
case.

Case 2: ¢ = 1. The general solution is

z(t) = Ae' + Bte' .

The condition z(0) = 0 implies A = 0, and then the condition z(27k) = 0
implies B = 0. There are no nontrivial solutions in this case.

Case 3: ¢ = —1. Similar reasoning shows that there are no nontrivial
solutions in this case.

Case 4: ~1 <c < 1. Let w = v/1 — 2. The general solution is then

z(t) = e“(Acoswt + Bsinwt) .

The condition z(0) = 0 implies A = 0. If B # 0, the condition z(27k) =0
then implies 27kw = mn (n € Z), that is, w = n/2k, and
n2

2] —wr=1- =
c w e

The right side is nonncgative and less than 1 only for 0 < |n| < 2k. The
required values of ¢ are thus

3.3 Higher Order Equations

Solution to 3.3.3:
1. The characteristic polynomial of the equation is

7 78 -1
'+ +z+l=
r—1

which has roots —1, =+, and % For each such root z;, = up +
ivg (k=1,...,7), we have the corresponding solution

e*t = e"**(cos vkt + isin vt)
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and these form a basis for the space of complex solutions. To get a
basis for the real solutions, we take the real and imaginary parts,
getting the basis

A 1
z1(t) = et z3(t) =cost, z3(t) =sint, z4(t) = V3! cos —=t,

N

_ et =Y 1 o=ty 1
xz5(t) = Vi sin —t, we(t) =evz cos —t, x7(t) =eV2 s1n72.t.

V2 V2

2. A solution tends to 0 at oo iff it is a linear combination of solutions
in the basis with the same property. Hence, the functions z,, g, and
z7 form a basis for the space of solutions tending to 0 at co.

Solution to 3.3.4: The set of complex solutions of the equation forms a
complex vector space which is invariant under differentiation. Hence, the
functions cos ¢ and cos 2t are also solutions, and, therefore, so are et*t =
cost +isint and e*?" = cos 2t + isin2t. It follows that the characteristic
polynomial of the equation has at least the four roots i, +2i, so it is
divisible by the polynomial (A? + 1)(A? + 4). The differential equation is
therefore, at least of order 4. The smallest possible order is, in fact, 4,
because the given functions are both solutions of the equation

d? d?
(52 +1) (5 +4) o

diz d?z
hadlid Ar =
it +5 — yry +4x = 0.

The preceding reasoning applies for both real and complex coeflicients.

that is,

Solution to 3.3.5: Solving the characteristic equation 3 — 1 = 0, we find
that the general solution to ¥/ —y = 0 is given by

(*) y(x) = c1® + coe %/ cos(2/3/2) + cze ¥ % sin(zv/3/2),

with ¢1, ¢2, and ¢35 € R. limg—,o y(z) = 0 when ¢; = 0. But (), with
¢1 = 0, is the general solution of the differential equation with characteristic
polynomial (r3 —1)/(r — 1) = 7% + 7 + 1, that is,

Y +y +y=0.

So y’(0) +¥'(0) + y(0) =0, and we can take a =b=c=1 and d = 0.
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3.4 Systems of Differential Equations

Solution to 3.4.3: Solving the first equation for y and differentiating gives

= 1:r+ 3
Y=107 T10”
1 3
v o, 9
V=1" T 1%

Substituting this into the second equation and simplifying yields
" — 5z’ + 6z =0
Factoring the characteristic polynomial, we get
r2 —5r 46 = (r—2)(r—3),
so the general solution to this differential equation is given by
z(t) = Cre?t + Che®,
where C; and C; arc constants. Substituting this in the above, we get

Cl 2z 30263t.

ut) = .

Solution to 3.4.4: We have

dt d dt
= 2z(—z + y) + 2y(log(20 + z))

= —222 + 22y — 2¢° + 2ylog(20 + z).
As, for any positive €,
log(20 + z) = o(z®) (T — +00)
and

< -2z +y° — |zyl)
< -2z - y)?
<0

—22% 4 2xy — 2y°

we conclude that 4
a (:r2 + ’y2) S 0
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for ||(z,v)|| large enough so the distance of (z, y) to the origin is bounded.

Solution to 3.4.5: 1. Using polar coordinates, x = r cos§ and y = rsiné,
we get
dr _zdx  ydy

— = — — 2
dt rdt rdt r(=r%

solving these, we get

t
r:——————c-lf—— and 0 = —t+cy

where ¢y, c2 are constants.
For (z9,y0) = (0,0), we have fi'—f = %% = 0; therefore, z = y = 0. For
(zo,y0) # (0,0) let g = rgcos by and yg = rosinfy. We have

Cc; = "o 5 and Cy = 9()
1—rg
)
(t) Qe 0s(fp — t) y(t) af g (0o — t)
z(t) = ————ex==c — 1), = sin(lp — t).
V1+c e 0 1+ c et 0
2. We have
t
limr = lim ——2% =1

t— o0 t—o0 /1 + cleﬁt

Solution to 3.4.9: We have

SOl = 3 (a(0),2(0)

= (@' (), z(t)) + (z(1), z(1))
= (Az(t), z(t)) + (x(t), Az(t))
= ((A+47) (1), z(1))

so it suffices to prove that A + A* is positive definite. We have

2 2 -2
A+ A" = 2 8 2
-2 2 16

and it is enough to check that the determinant of the principal minors are
positive, which is a simple calculation.
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Solution to 3.4.10: We have
dz
dt
so, for small positive &, (z(¢), y(t)) lies in the right half-plane. For 0 < z < 1,
we have

(0) =1,

1 1 1
— = 1 Zr2gi > [ 2 > -
' +2x siny > 1 2:v z 5
Thus, the function z(t) is increasing with slope at least 1/2. Therefore, by

the time ¢ = 2, the curve (z(t), y(t)) will cross the linec z = 1.

Solution to 3.4.11: 1. We have

OF OQF 8z OFdy

I — _ — 3_ 5 _ 3 5 _ 2
ot or 6t+ay ot y(x i-IL‘) y(ay+-'1: +£l)) ay”.

Thus, 8F/d0t < 0, which implies that F' decreases along any solution
(z(t), y(t)) of the differential equation.

2. Let € > 0. Since F is continuous, there exists a § > 0 such that F(z,y) <
£2/2 if ||(z,y)|| < 6. Further, by letting (x, y) vary over all points such that
|l (z,y)|| = €, elementary calculus shows that F(z,y) > £2/2.

Let the initial conditions z(0) and y(0) be such that |(z(0),y(0))|| < 4.
By Picard’s Theorem [San79, pag. 8, there exist unique solutions z(t) and
y(t) to the differential equation satisfying these initial conditions. Since
F(z,y) decreases along solutions, we must have that F(z(t),y(t)) < €2/2
for all ¢ > 0 in the domain of the solution. Now suppose that for some ¢t > 0
in this domain, ||(z(t),y(t))|| = . We would have F(z(t),y(t)) > €%/2, a
contradiction. Therefore, ||(x(t),y(t))|| < € for all ¢ > 0 in the domain of
the solution. But this bound is independent of ¢, so the Extension Theorem
[San79, pag. 131] shows that this solution exists on all positive .

Solution to 3.4.13: Let f),..., f, be a basis for V. Since V is closed
under differentiation, we have the system of equations

n
f{zzaijfj 1<i<n.
J=l1

Let A=(a;;). This system has solutions of the form f;(x) = C;e*®, where
the C;’s are constants and the A;’s are the (complex) eigenvalues of the
matrix A. By the properties of the exponential function, we immediately
have that f;(z +a) = Cf;(z) for some constant C depending on a, so f;(z+
a) € V. Since the f;’s form a basis of V, V is closed under translation.

Solution to 3.4.14: We will show that for 1 <k <n+1,

n+1

fe(t) = &e 7t
=k
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where the £;’s are constants depending on k. From this, it follows that cach
fr(t) approaches 0 as t tends to infinity.
Solving the second equation, we get

Jr1(t) = §n+1€_("+l)t

for some &, 41 € R, which has the desired form. Assume that, for some k,
the formula holds for fi4,. Differentiating it and substituting it into the
first equation gives

n+1
fo=Y (k+1+5)&e 7" —kfs.
j=k+1
This is a first order linear differential equation which we can solve. Letting
ps = (k+1+5)¢;, we get

n+1

t
fe = /eks pie ] ds+C e *t
[ D

j=k+1

where C' is a constant. Changing the order of summation and evaluating,
we get

t
n+1 n+l

Jk= E’%e("_j)m +C et = Z{fje‘jt
J=k+1 J =0 j=k

where the £;’s are some real constants, and we are done.

Solution to 3.4.15: We solve the case n = 1 in two different ways. First
method. Let B be the indefinite integral of A vanishing at 0. One can then
integrate the equation ‘—fi% = Az with the help of the integrating factor e~ 5,
namely

dz dz d
-B3T _ _B,%T ¢, B

@ Aa=ale o
giving z(t) = e z(0). Since A(t) < 3, we have B(t) < Bt for t > 0, so

l2(t)] = |2(0)[e”® < |z(0)]e~",

0=

as desired.
n = 1, Second method. Consider the derivative of e tz:

d d
p (e7Plz) = e P (E? — ﬂz) =e P (A-p)z.
By Picard’s Theorem [San79, pag. 8|, z cither has a constant sign or is

identically 0. Hence, e Pz is nonincreasing when z is positive and nonde-
creasing when z is negative, which gives the desired conclusion.
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n > 1. We have for a solution z(t),

d, .o ,,dz

Sl =2 o)
= 2(Ax, x)
< 2f|=||*

which reduces the case n > 1 to the case n = 1.

Solution to 3.4.16: 1. We have

d _d ) _ _dX(t)
SIXOI = SO - X@) =2X(0) - =57
= 2X(t) - WX(t) = 2WX () - X(¢)

= 2WX(t)  X(t) = —2X(t) - WX(¢)
= -2 IXO?,

from which it follows that dit | X(#)||* = 0, hence that || X(t)] is constant.
2. We have
d dx(t)

S(X(® ) =

o=WX(#)-v
=X(t) - W =—-X(t)- Wv=0.

3. It will suffice to show that the null space of W is nontrivial. For if v is
a nonzero vector in that null space, then

I1X() = ol = | X + lol|* — 2X(t) - v ,

which is constant by Part 1 and Part 2, implying that X(t) lies on the
intersection of two spheres, one with center 0 and one with center v.

The nontriviality of the null space of W follows from the antisymmetry
of W:

det W = det W' = det(-W)
=(-1)*det W = —det W .
Hence, det W = 0, so W is singular.
Solution to 3.4.17: Consider the function u defined by u(t) = ||=z(¢)||%.
We have, using Rayleigh’s Theorem [ND88, pag. 418],
u'(t) = 2(z(t), 2'(¢))
= 2(z(t), P(t)z(t))
< —2(z(t), z(t))
= —2u(t)
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which implies that u(t) < u(0)exp(—2t) for t > 0, so lim;—, u(t) = 0,
and the result follows.

Solution to 3.4.18: Expanding the matrix differential equation, we get
the family of differential equations

iy

dt =f’i—1j—17 ISZ,]Sn,

where f;; = 0 if i or j equals 0. Solving these, we get

&1 &12 &13 Eia
X(t)= S21 Enb+&x S12t + &23 €13t + €24
€31 Lot + &30 %511152 + £2at + £33 1810t% + Lost + Ea4

b1 Eat+&aa lort® + st +Lus  FEtd + SEoat? + Lazt + Lua

where the £;;’s are constants.

Solution 2. We will use a power series. Assume X(t) = Y > t"C,. The
given equation gives

> nt"TlC, =Y At"C.B
n=1 n=0
which can be written as
>t ((n+1)Crs1 — ACrB) =0
n=0
giving the recurrence relation

1
Cni1= ——AC,B,
T +1

so we have 1
C, = —TA"COB".
n!

Since A* = B* = 0, the solution reduces to a polynomial of degree at most
5 t? t3 .
X(t) = Co+ tACyHB + EAZCOB2 + —gASCOB"

where Cy = X(0) is the initial value of X.



4
Metric Spaces

4.1 Topology of R"

Solution to 4.1.1: Suppose there is no such €. Then there exists a sequence
(r,) in K such that none of the balls B, ,,(x,) is contained in any of the
balls B;. Since K is compact, this sequence has a limit point, by the
Bolzano-Weierstrass Theorem [Rud87, pag. 40], [MH93, pag. 153], z € K.
Then, since the B;’s are an open cover of K, there is a j and an € > 0
such that B.(z) C B;. Let 1/N < ¢/2, and choose n > N such that
|z — x| < €/2. Then By/n(zn) C B:(z) C Bj, contradicting our choice of
Z»’s. Hence, the desired ¢ must exist.

Solution 2. Suppose the conclusion is false. Then, for each positive inte-
ger n, there are two points z, and y, in K such that |z, — y,| < 1/n,
yet no B; contains both z, and y,. Since K is compact, the sequence
(z,) has a convergent subsequence, (z,,) say, with limit p € K. Then,
obviously, yn, — p. There is a B; that contains p. Since B; is open and
p = limz,, = limy,,, both z,, and y,, must be in B; for k sufficiently
large, in contradiction to the way the points x, and y, were chosen.

Solution 8. By compactness, we can choose a finite subcover { B;}I_, of K,
[Rud87, pag. 30]. For z € K, define

f(z) = max{dist(z,R™\ B;)|z € B;}.

Then f(z) > 0 for each x € K, because each B; is open and there are only
finitely many of them. Since K is compact and f is continuous and strictly
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positive on K, f has a positive minimum ¢ > 0. By definition of f, every
e-ball centered at a point of K is contained in some Bj;.

Solution to 4.1.2: Suppose U, is an open set of real numbers for n € N,
such that Q@ = NU,,. Then ecach set R \ U, is nowhere dense, since it is a
closed set which contains only irrational numbers. We then have

R = UUn U{q}

nEN qEQ

but R is not a countable union of nowhere dense sets, by Baire’s Category
Theorem [MH93, pag. 175]. So Q cannot be a countable intersection of
open sets.

Solution to 4.1.3: Suppose z,y € X. Without loss of generality, assume
z < y. Let z be such that z < z < y (for instance, z irrational verifying
the double inequality). Then

(—00,2)NX, (2,00)NX

is a disconnection of X. We conclude then that X can have only onc ele-
ment.

Solution to 4.1.4: The Cantor set [Rud87, pag. 41] is an example of a
closed set having uncountably many connected components.

Let A be an open set and suppose C, , « € T" are its connected compo-
nents. Each C, is an open set, so it contains a rational number. As the
components are disjoint, we have an injection of I in Q, so I is, at most,
countable.

Solution to 4.1.5: Supposc we have

0,11 = | las,b

ieN

where the [a;, b;]’s are non empty pairwise disjoint intervals. Let X be the
set of the corresponding endpoints:

X = {al,a2,...}U{b1,b2,...}.

We will show that X is a perfect set, so it cannot be countable.

The complement of X in [0, 1] is a union of open intervals, so it is open,
and X is closed. By the assumption, therc must be elements of X in
(a; — €,a;) for each € > 0, and each i € N, and similarly for the b;’s.
Each element of X is then an accumulation point, and X is perfect.

Solution to 4.1.6: 1. Let X = {z} and (y,,) be a sequence in Y such that
|z —yn| < d(X,Y) +1/n. As (y,) is bounded, passing to a subsequence,
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we may assume that it converges, to y, say. As Y is closed, y € Y and, by
the continuity of the norm, |z — y| = d(X,Y).

2. Let (z,) be a sequence in X such that d((z,),Y) < d(X,Y)+1/n. As X
is compact, by the Bolzano—Weierstrass Theorem [Rud87, pag. 40], [MH93,
pag. 153}, we may assume, passing to a subsequence, that (z,) converges,
to z, say. We then have d(X,Y) = d({z},Y) and the result follows from
Part 1.

3. Take X = {(z,1/z)|z > 0} and Y = {(z,0) | z > 0} in R?

Solution to 4.1.7: Suppose that S contains no limit points. Then, for
each r € S, there is a §; > 0 such that Bs, NS = {z}. Let ¢, = §,,/2. The
balls B._(z) are disjoint, so we can choose a distinct point from each one
with rational coordinates. Since the collection of points in R™ with rational
coordinates is countable, the set S must be countable, a contradiction.
Hence, S must contain one of its limit points.

Solution to 4.1.8: Let y be a limit point of Y and (y,) a sequence in Y
converging to y. Without loss of generality, we may suppose that |y, —y| <
r. By the definition of Y, there is a sequence (z,) in X with |z, —yn| =7.
Therefore, |z, —y| < |&n — Yn| + |yn — y| < 2r, so the sequence (z,) is
bounded. Hence, it has a limit point £ € X. By passing to subsequences of
(z») and (y»), if necessary, we may assume that limz,, = z. Let ¢ > 0. For
n large, we have

|z —yl <lo—Tnl +lon —ynl +lyn —yl <7+ 26
and
7= En = yn| S |Tn — 2l + e -yl + |y —yal <7 -9l + 26
Since ¢ is arbitrary, |z — y| = r. Hence, y € Y and Y is closed.

Solution to 4.1.9: For k = 1,..., let By be the family of open balls in
R™ whose centers have rational coordinates and whose radii are 1/k. Each
family By is countable. For each ball B € By such that BN A # (3, choose
a point in BN A, and let Az be the set of chosen points. Each A is a
countable subset of A, so the set A, = UAj is a countable subset of A.
Since A is closed, the inclusion A,, C A is obvious. Suppose a € A and
fix a positive integer k. Then a lies in some ball B € By, and this ball B
must then contain a point of Ay, hence of A,,. Thus, some point of A lies
within a distance of 2/k of a. Since k is arbitrary, it follows that @ € A,
and, thus, that A C A.

Solution to 4.1.10: Yor k£ = 1,2,..., let By be the closed ball in R”
with center at 0 and radius k. Each compact of R" is contained in some
By. As each By is compact, it is covered by finitely many U;’s, by the
Heine-Borel Theorem, [Rud87, pag. 30]. Let jx be the smallest index such
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that By is covered by Uly,...,U;,. Define V; by setting V; = U; \ By, for
gk +1 < 3§ < jeya (if the indices ji are all equal from some point on, set
V; =0 for j larger than their ultimate value.) The sets Vi, V4, ... have the
required property.

Solution to 4.1.11: If K is not bounded, then the function  — ||z|| is not
bounded on K. If K is bounded but not compact, then it is not closed, by
the Heine-Borel Theorem, [Rud87, pag. 40], [MH93, pag. 155]; therefore,
there exists £ € K \ K. In this case, the function z — ||z — £||~! is not
bounded on K.

Solution to 4.1.12: 1. Suppose not. Then there is a positive number §
and a subsequence of (z;), (y.), such that

|yn — x| > 6.

As A is compact, by the Bolzano-Weierstrass Theorem [Rud87, pag. 40],
[MH93, pag. 153], (y-) has a convergent subsequence, which, by hypothesis,
converges to z, contradicting the inequality.

2. Let A =R and consider

|

All the convergent subsequences converge to zero, but (z;) diverges.

if ¢ isodd
if 7 iseven.

R

Solution to 4.1.13: Let £ > 0. As f is uniformly continuous on X, there
is a 6 > 0 such that

|f(z) = f(y)l <e <e+ Mz —yl

for |z — y| < § and any M; > 0.
Assume |z — y| > 4. As f is bounded, there is an My > 0 with
|f(z) = f(y)| < M3 for all z and y. Let M; = My/§. We have

If(z) = f(y)| <6My < M|z —y| < Milz —y| +e
for all z,y € X.

Solution to 4.1.14: Let
S=|JS.=AUB
[e3
where A and B are open. The origin belongs to A or to B. Without loss of
generality, assume O € A. For every a, we have

Sa = (Sa NA)U (S, N B)
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so, as S, is connected and O € S, N A, we get S, N B = ). Therefore,

SnB=|J(SsnB)=10

and S is connected.

Solution to 4.1.16: The assertion is true. Let .S be such a set and a a point
in S. Define the set S, = {b € S|a and b are connected by a path in S}. S,
is open (because S is locally path connected) as well as its complement in
S, so these two sets make up a partition of .S, which is connected, therefore,
the partition is trivial and S, is the whole S.

Solution to 4.1.19: 1. P? is the quotient of the sphere S? by the equiva-
lence relation that identifies two antipode points ¢ and —z. If 7 : §% — P2
is the natural projection which associates each point z € S? to its equiv-
alence class w(x) = {z,—x} € P?, the natural topology is the quotient
topology; that is, A C P2 is open if and only if 77 1(A4) C $? is open. With
this topology, the projection 7 is a continuous function and P? = 7(S?) is
compact, being the image of a compact by a continuous function.

Another topology frequently referred to as the usual topology of P? is
the one defined by the metric

d(z,y) = min{|z — y|, |z + y|}.

It is a straightforward verification that the function d above satisfies all
axioms of a metric. We will show now that it defines the same topology as
the one above, on the space that we will call (P2, d) .
The application 7 : §2 — P? with the metric as above satisfies the
inequality
d(m(z), m(y)) < |z -yl
so d is continuous. This defines a function 7 on the quoticnt which is

T

52 (P?,d)

P2
the identity and then continuous. Since P? is compact and (P?,d) Haus-
dorff, 7 is a homeomorphism and the two topologies in P? are equivalent.
Now SQO(3) is the group of orthogonal transformations of R? with deter-
minant 1, so every matrix in this set of satisfies

X-Xt=| 010
0 01
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therefore, Zi:l X% =1, fori = 1,2,3, implying that SO(3) is bounded.
Consider now the transformation

f:Ms3~R® — Mjyz xR
X — (X'X,det X).

f is continuous and SO(3) = f~1(I, 1), that is, the inverse image of a closed
set, then itself a closed set, showing that SO(3) is compact. Another way
to see this is to observe that the function

X — /tr (XtX)

is a norm on the space of matrices M, x, = R"* and that for matrices in
the orthogonal group tr (X*X) = n, so O(n) and, consequentially, SO(n)
are compact.

2. To see the homeomorphism between P? and Q, first define the application
¢ : P2 - Q given by the following construction: For each line  through
the origin, take ¢, : R3 — R3 as the rotation of 180° around the axis z.
This is well defined and continuous. To see that it is surjective, notice that
every orthogonal matrix in dim 3 is equivalent to one of the form

1 0 0
0 cosf@ sin@
0 —sinf cosé@

and with the additional condition of symmetry 6 = m, which is a rota-
tion of 180° around an axis. For more details see the Solution to Prob-
lem 7.4.18. Since ¢ is continuous and injective on a compact, it is an home-
omorphism.

Solution to 4.1.21: Convergence in M, x, is entrywise convergence. In
other words, the sequence (Ax) in M, x, converges to the matrix A if and
only if, for each i and j, the (i, j)*" entry of A;, converges to the (3, ) entry
of A. Tt follows that the operator of multiplication in M« is continuous;
in other words, if Ay — A and By — B, then Ay By — AB. Now suppose
(Ag) is a sequence of nilpotent matrices in M, x, and assume A; — A.
Then A7 — A™ by the continuity of multiplication. But A} = 0 for each k
since A; is nilpotent. Hence, A™ = 0, that is, A is nilpotent. As a subset
of a metric space is closed exactly when it contains all its limit points, the
conclusion follows.

4.2 General Theory

Solution to 4.2.1: Let U be an open cover of C. Then there is a set Up in
U that contains xq. Since lim,,_,o Z, = Zg, there is an ng such that z,, is in
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Uy for all n > ng. For each n < ng there is a set U,, in I/ that contains z,,.
The subfamily {Up, Ui, ..., Un, } is then a finite subcover of C, proving, by
the Heine-Borel Theorem [Rud87, pag. 30], that C is compact.

Solution to 4.2.2: Let X be a compact metric space. For each n € N, con-
sider a cover of X by balls with radius 1/n, B(1/n) = {Ba(Za,1/n) |24 €
X}. As X is compact, a finite subcollection of B(1/n), B'(1/n), covers X,
by the Heine-Borel Theorem [Rud87, pag. 30]. Let A be the set cousisting
of the centers of the balls in B'(1/n), n € N. A is a countable union of
finite sets, so it is countable. It is also clearly dense in X.

Solution to 4.2.3: Supposc z ¢ f(X). As f(X) is closed, there exists a
positive number £ such that d(z, f(X)) > €.

As X is compact, using the Bolzano-Weierstrass Theorem [Rud87, pag.
40], [MH93, pag. 153], the sequence of iterates (f"(z)) has a convergent
subsequence, (f™(x)), say. For i < j, we have

d(f™(2), f (@) = d(z, () 2 €

which contradicts the fact that every convergent sequence in X is a Cauchy
sequence, and the conclusion follows.

Solution to 4.2.4: For x € C we clearly have f(z) = 0. Conversely, if
f(z) = 0, then there is a sequence (y,,) in C with d(z,y,) — 0. As C is
closed, we have z € C.

Given z, z € M and y € C, we have, by the Triangle Inequality [MH87,

pag. 20},
d(z,y) < d(z, 2) + d(z, y).

Taking the infimum of both sides over y € C, we get
fl@) <d(z,2) + f(2)

or
and, by symmetry,
Therefore,

and f is continuous.

Solution to 4.2.5: || fl| > 0 for all f in C'/3 is clear. If f = 0, it is obvious
that || f|| = 0. Conversely, suppose that ||f|| = 0. Then, for all z # 0, we
e /(@) ~ 5(0)]
) —
L2 s 2 L =(.
0 < L0 <y —o
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Since f(0) = 0, this implies f(x) = 0 for all . Let f,g € C*/3 and € > 0.
There exists ¢ # y such that

I(f +9)(z) = (f +9)(¥)| te

I +gll <

2 gl17?
£~ F)] | lo(z) ~ 9(5)
SRR R

<l +llgll + &

Since € was arbitrary, the Triangle Inequality holds.

The property ||cf|| = |c|||f|| for f € C'/3 and ¢ € R is clear.

Let {f,} be a Cauchy sequence in C'/3. By the definition of the norm,
for all z € [0,1] and any € > 0 there is an N > 0 such that if n,m > N,
we have

[(fn = fn) (@) = (fn = fn)(O)] < |z~ 0]'/%€
or

|fn(z) — fm(z)| <e.

Hence, the sequence {f,} is uniformly Cauchy. A similar calculation shows
that functions in C''/3 are continuous. Since the space of continuous func-
tions on [0, 1] is complete with respect to uniform convergence, there exists
a continuous function f such that the f,’s converge to f uniformly. Suppose
f ¢ CY3. Then, for any M > 0, there exist z # y such that

[f(z) — f(y)l
T M

[f(@) ~ fu(@)| | [fn(2) = fu )] | 1f() — fu(®)]
I Y R PRV > M

Since the f,’s converge to f uniformly, for fixed z and y we can make the
first and third terms as small as desired. Hence, || f,.|| > M for all M and
n sufficiently large, contradicting the fact that f, € C'/3 and that, since
the f,’s are Cauchy, their norms are uniformly bounded.

Suppose now that the sequence {f,} does not converge to f in C1/3,
Then there is an € > 0 such that || f, — f|| > € for infinitely many n’s. But
then there exist x # y with

(@) = f@)] | 1faly) = FWI
|z —y|!/3 |z —y|*/3

for those n’s. But, as we have uniform convergence, we can make the left
hand side as small as desired for fixed = and y, a contradiction.

Solution to 4.2.7: Since f(K) C f(K,) for all n, the inclusion f(K) C
N f(K.,) is clear. Let y be a point in N$° f(K,,). Then, for each n, the set
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“1({y}) N K,, is nonempty and compact (the latter because it is a closed
subset of the compact set K,,). Also, f~'({y}) N Kny1 C F1{y}) N K.
Hence, by the Nested Set Property [MH93, pag. 157], the set

[e ]

N {whnks) = ({whHnk

1
is noncmpty; that is, y € f(K).

Solution to 4.2.8: 1. The completeness of X; implies the completeness
of X;. In fact, assume X is complete, and let (y,) be a Cauchy sequence
in X5. The conditions on f imply that it is one-to-one, so each , can be
written uniquely as f(z,) with z,, in X;. Then di(Zm, Z») < d2(Ym, Yn),
implying that (z,) is a Cauchy sequence, hence convergent, say to x. Since
f is continuous, we then have lim y,, = f(z), proving that X5 is complete.
2. The completeness of X3 does not imply the completeness of X;. For an
example, take X; = (-%,%), X2 =R, and f(z) = tanz. Since f'(z) =
sec2z > 1 on X, the condition |z — y| < |f(z) — f(y)| holds.

4.3 Fixed Point Theorem

Solution to 4.3.1: The map is the image, by a contraction, of a complete
metric space (California!). The result is a consequence of the Fixed Point
Theorem [Rud87, pag. 220}

Solution to 4.3.2: Let g(z) = (1 + z)~!. We have

-1
’ -
9(z) (1+ x)?
therefore,
1
lgl(q;)' < am)—z <1 for z> xg.

Then, by the Fixed Point Theorem [Rud87, pag. 220}, the sequence given
by

>0, Tnil = g{Tp)
converges to the unique fixed point of g in [zg,00). Solving g(z) = z in
that domain gives us the limit

“1+V5,
2
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Solution to 4.3.3: Let S = {z € [0, 00) |z - f(z) < 0}. S is not empty be-
cause 0 € S; also, every element of S is less than 100, so S has a supremum,
Zg, say. For any ¢ > 0, there exists an element of S, z, with

r<xg<T+e

S0
To— flxo)<zmo— flx) <z +e~ flz)<e

and we conclude, since € is arbitrary, that z¢ < f(zo)-
Suppose f(zg) — 2o = & > 0. Then, for some z € S, we have £ < 29 <
To + 6; therefore,
z<xo< f(xo) —xo+2x+6

and we get
z<xo < flxg) — 20+ 2

from which follows, since f is an increasing function,

f(xo) —zo + 2z < f(z0) < f(f(x0) — z0 + )

but then z¢ < f(zo) — zo +z € S, which contradicts the definition of x,.
We must then have f(zo) = zo.

Solution to 4.3.4: Consider F : K — R defined by F(z) = d(z, p(z)).
, being a contraction, is continuous, and so is F'. Since K is compact and
nonempty, F attains its minimum ¢ at a point m € K, d(m, p(m)) = ¢.
From the minimality of ¢, it follows that d (p(m), ¢ (p(m))) = F (p(m)) >
€ = d (m, ¢(m)). The contractiveness assumption implies that m = ¢(m).

Suppose n € K also satisfies n = ¢(n). Then d (p(n), p(m)) = d(n,m),
which, by the contractiveness assumption, implies n = m.

Solution to 4.3.5: As the unit square is compact, max |K(z,y)| = M < 1.
Consider the map T : C(|0,1]) — C([0, 1]) defined by

T(f)(z) = =" ~ / K(z,5)f(v)dy.
We have

IT(f)(z) - T(g)(z)| = /0 K(z, y)(9(y) — f(y))dy

< / Mla(y) — F(y)ldy
0
<M max |g(y) — f(y)|

0<y<1

= Mllg - fIl.
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By the Contraction Mapping Principle [MH93, pag. 275], T’ has a unique
fixed point, h € C([0, 1]). We have

1
2
+ [ K@ phwiy = e
0
Any such a solution is a fixed point of T, so it must equal h.

Solution to 4.3.6: Consider the map T': C ([0, 1]) — C ([0, 1]) defined by

+ /(:r flz —t)et dt.

Given f,h € C ([0, 1]), we have

IT(f) = T()lloo < sup / @) — h(z — t)]e=" dt

z€[0,1]

<11 ~ hlloo sup / - gt

z€[0,11J0
1
2
— I — hlloo / e dt < ||f - hlloo
0

so T is a contraction. Since C ([0, 1]) is a complete metric space, by the
Contraction Mapping Principle [MH93, pag. 275| there is f € C ([0, 1]) such
that T(f) = f, as desired.

Solution to 4.3.7: Define the operator T on C ([0, 1]) b,
it)

ez tyt+l

T(f)(z) =sinz +
0

Let f,g € C([0,1]). We have

()~ T <sup{ [ g g )

< wp(17() - o@le™) [ oL,

<1 -9l (- 7)
<Al - ol

where 0 < A < 1is a constant. Hence, 7 is a strict contraction. Therefore,
by the Contraction Mapping Principle [MH93, pag. 275], there is a unique
f € C((0,1)) with T(f) = /.

Solution to 4.3.8: Since M is a complete metric space and S? is a strict
contraction, by the Contraction Mapping Principle [MH93, pag. 275| there
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is a unique point £ € M such that S%(z) = z. Let S(x) = y. Then S%(y) =
S$3(x) = S(z) = y. Hence, y is a fixed point of S?, so z = y. Any fixed
point of S is a fixed point S?, so S has a unique fixed point.



5
Complex Analysis

5.1 Complex Numbers

Solution to 5.1.1: We have

2kmi

l=e for ke Z;

therefore,
13+ = e(-;~+i) log1 _ e(%-H’)ka‘
— g 2km il
2k

k
= C_gk“ (COS 2T7r + isin -3—) (k c Z)

Solution to 5.1.2: We have i¢ = €''°¢% and logi = log|i| + iargi =
i(w/2 + 2km), k € Z. So the values of i* are {e~(*/2+2k7) |k € Z}.

Solution to 5.1.4: Multiplying by a unimodular constant, if necessary,
we can assume ¢ = 1. Then Sa + Sb = 0. So a = b. Their real part must
be negative, since otherwise the real parts of a, b, and ¢ would sum to
a positive number. Therefore, there is € such that a = cos@ + isinf and
b =cosf# —isinf, cosf = —1/2. Then § = 2n/3 and we are done.

Solution to 5.1.5: 1. We have
" -1

r—1

Pn—l(w) =
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:x1L—-1+_”_+_1
forz# 1,80 P,_1(1) =n.
2. Let ikt
pr=¢e n fork=1,...,n

be the n'” roots of 1. As p; = 1, we have

n

1z~ ) = Paca(2)-

=2
Letting z = 1, and using Part 1, we get the desired result.

Solution to 5.1.6: Consider the complex plane divided into four quadrants
by the lines Rz = +32, and let A; be the set of indices j such that z; lies
in the i*" quadrant. The union of the four sets A, is {1,2,...,n}, so there
is an i such that A = A, satisfies

Slal> 1Y lal
JEA J=1

Since multiplying all of the z; by a unimodular constant will not affect this

sum, we may assume that A is the quadrant in the right half-plane, where
Rz, > 0 and |2;] < vV2R2;. So we have

I zZészz%lejl-

JEA JEA JEA

Combining this with the previous inequality, we get the desired result.

Solution to 5.1.7: The functions 1, €27, ..., e2™"* are orthonormal on
[0,1]. Hence,
1 n ) 2 n
/ I_Zake%rzkz d$=1+§:|as|221
0 k=1 k=1

Since the integrand is continuous and nonnegative, it must be > 1 at some
point.

Solution 2. Since fol e?mkzdy = (0 for k # 0, we have

1 n 1 n
1= / <1 — Zaw“”) dx < / 1-— Zak etk
0 k=1 0 k=1

Now argue as above.

dz .
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Solution to 5.1.8: We have

b
eb—e":/ e*dz
a

for all complex numbers a and b, where the integral is taken over any path
connecting them. Suppose that a and b lie in the left half-plane. Then we
can take a path also in the same half-plane, and for any z on this line,
|e?| < 1. Therefore, integrating along this line, we get

e — 7] < /ble"lldzl <lb—al.

Solution to 5.1.9: The boundary of N(A,r) consists of a finite set of
circular arcs C}, cach centered at a point a; in A. The sectors S; with base
C; and vertex a; are disjoint, and their total arca is Lr/2, where L is the
length of the boundary. Since everything lies in a disc of radius 2, the total
area is at most 4w, so L < 8x/r.

Solution to 5.1.10: Without loss of generality, suppose that
laa| < lag| < -+ <ay| < ogqr]| =--- = |ax

that is, exactly & — [ of the a’s with maximum modulus ({ may be zero.)

We will first show that |ax| = sup; |a;] is an upper bound for the ex-
pression, and then prove that a subsequence gets arbitrarily close to this
value. We have

1/n
k / k

Doy < | Xl

=1 j=1

1/n
(klakln)l/n — kl/n Iakl

IA

the limit on the right exists and is |ay| = sup|a;|, so
i

1
k /n

lim sup Za; < sup|ayl .
n =1 7
Now dividing the whole expression by a} we get
k k a n l o n k
n__n <5 . ) &5 inf;
Yop=ardo(2) a2 (2) ¢+ 2
= = j=i+1

since the last k& — [ terms all have absolute value 1.
I suffices to show that
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since

n k
Za? = |au] Z(Z—i) + Z e

7=1 7=1 J=l+1

(%) is a consequence of the the fact that orbits of irrational rotation on
the circle are dense in the unit circle. To see that, discard the first term

n

El._l (3-?-) because its limit exists and equals zero, being a finite sum of
7= ag

terms that converge to zero, and distribute the rest in two sums, one con-

taining all rational angles (p;/¢;), and another one containing all irrational

angles (s;). Without loss of generality we are left to prove that

Ko, k
: ”‘T,JT insj| _
lim sup e 9+ € =k-1.
n j=l+1 j=k'+1

If the sequence contains only rational angles choose P = 2] ; 95, twice the
product of the denominators of the rational angles. Then the sequence nP
where n € N will land all angles at zero and the summation is equal to
k-1

Now if there is at least one irrational angle among them the set of points

Pl s Pl
ni nikEs nis isk
(e a1, e e ek neN

in the tori S x §! x ... x S! is infinite (the last coordinates will never
repeat) and so has an accumulation point, that is, for any € > 0 there are
two iterates m > n such that

- P4 .Pk/ . ,.Plil ‘pk’ .
mi—— me nt n
(6 arlL..e qkl,_._,e"”sk>—(e 1L e qk’,...,enwk) <eg
and then
_\ P PR/ ) .
m—n)i m—n)i—f- — —
(e( ) 7Y ,...,6( ) ey ,e(m ")13k’+1’“.’e(m n)zsk)

is e-close to (1,...,1), and we are done.
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5.2 Series and Sequences of Functions

Solution to 5.2.1: Multiplying the first N + 1 factors we get

1— le 1- leO 1-— leOO 1-— leN 1— leN

1—z 1-210 12100 ~"T_,00N-1~ "1,

so the product converges to 1/(1 — z) as N — oc.

Solution to 5.2.2: From the recurrence relation, we see that the coeffi-
cients a,, grow, at most, at an exponential rate, so the series has a positive
radius of convergence. Let f be the function it represents in its disc of
convergence, and consider the polynomial p(z) = 3 + 4z — 2%. We have

o0

p(2)f(z) = (3 + 42 — 2?) Z an 2"

n=0
oo

= 309 + (3a1 + 4ag)z + Z(3an +4a,-1 — an_2)2"
n=0

=3+ z.

So

3+ 2
f(z) = 3+4z—22
The radius of convergence of the series is the distance from 0 to the closest
singularity of f, which is the closest root of p. The roots of p are 2 + v/7.
Hence, the radius of convergence is VT-2.

Solution to 5.2.3: Let f(2) = exp ( fz). The series can then be rewritten

Z
as Y oo 1 25 (f(2))", so, by the standard theory of power series, it converges
if and only if | f(z)] < 1. The preceding inequality holds when ®-25 < 0,
so the problem reduces to that of finding the region sent into the closed

left half-plane by the linear fractional map z +— -%;- The inverse of the
preceding map is the map g defined by g(z) = -2. Since g(0) = 0 and

g(oco) = 2, the image of the imaginary axis un(zier1 g is a circle passing
through the points 0 and 2. As g sends the real axis onto itself, that circle
must be orthogonal to the real axis, so it is the circle |z — 1] = 1. Thus,
g sends the open left half-plane either to the interior or to the exterior of
that circle. Since g(—1) = 1, the first possibility occurs. We can conclude
that | f(2)| <1 if and only if |z — 1] < 1 and 2z # 2, which is the region of

convergence of the original series.
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Solution to 5.2.4: The radius of convergence, R, of this power series is
given by

1
— = limsup|a.|"/".
7 nqmpl |

For |z| < 1, we have

oo o0 / 1 ’ 1
n—1 _ n i — .
Y= () = (133) =

n=0

By the Identity Theorem [MH87, pag. 397],

1
f(2)=(1—_2—)§

where the right-hand side is analytic. Since this happens everywhere except
at z = 1, the power series expansion of f centered at —2 will have a radius
of convergence equal to the distance between —2 and 1. Hence, R = 3.

Solution to 5.2.5: As

1

-4zt -84 = ——
14122

which has singularities at +1, the radius of convergence of

i an(z — 3)"
n=0

is the distance from 3 to %i, [3 F i| = v/10. We then have

. 1 1
hilisup (|an| n) = Tﬁ

Solution to 5.2.6: As lim,_,, ¥n2 =1, we have

1
= limsup ¥/|a,| = limsup {/n?|a,|
nN—00

TL—r00
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so >.a,z" and ¥ n%a,2" have the same radius of convergence, and the
conclusion follows.

Solution to 5.2.9: Let R denote the radius of convergence of this power
series.

lognll/n

R =limsup|n = limsupe(l"g")z/" =e’=1.
n n

The series and all term by term derivatives converge absolutely on |z| < 1
and diverge for |2| > 1. Let |z| = 1. For k > 0 the k*" derivative of the
power series is

0 Zn—k
E;Cn(n——l)---(n—k—kl)nlogﬂ-

To see that this converges absolutely, note that

;n(n_l)...(n—kﬁ-l)w Sg_nlogn—k'

Since, for n sufficiently large, logn — k > 2, and 3 1/n? converges, by the
Comparison Test [Rud87, pag. 60] it follows that the power series converges
absolutely on the circle |z| = 1.

Solution to 5.2.10: We have

a, 1/n 1/ 1/n
lim sup | — = limsup|a,| /" limsup | —~
n! n!
1 1M
= —limsup |—
R ! P n!
"R
=0

so h is entire.

Let 0 < r < R. Then 1/R < 1/r, so there is an N > 0 such that
lan| < 2/r™ for n > N. Further, there exists a constant M > 2 such that
|an| < M/r™ for 1 <n < N. Therefore, for all 2,

~ 2" > 2™ g
|h(z)| < ;'a"lﬁ < M;m = Mel*l/m,

Solution to 5.2.11: Let the residue of f at 1 be K. We have

Zanz" = - K + anz” with limsup[bn|1/" > 1.
—0 1- z n—oo

n=0
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Therefore,

Z a,z" Z (K +b,)z"
n=0
and a, = K + b,,. As zbn < 00, we have limb,, = 0 and lima, = K.

Solution to 5.2.12: The rational function

f(z) =

1-—22
1-— 212

has poles at all nonreal twelfth roots of unity (the singularities at 22 = 1
are removable). Thus, the radius of convergence is the distance from 1 to
the nearest singularity:

— |exp(ni/6) — 1| = /(cos(n/6) — 1)2 + sin®(r/6) = /2~ V3 .

Solution to 5.2.14: By the Hurwitz Theorem [MH87, pag. 423], each
zero of g is the limit of a sequence of zeros of the g,’s, which are all real,
so the limit will be real as well.

Solution to 5.2.15: Let & = limn—o0 g4 (0). Then, clearly, [ex| < | F®)(0))
for all k. Since f is an entire function, its Maclaurin series [MH87, pag. 234]
converges absolutely for all z. Therefore, by the Comparison Test [Rud87,

pag. 60], the series
S
k=0

converges for all z and defines an entire function g(2). Let R > 0and e > 0.
For |z} < R, we have

|9.(2) — g(2)] < Zlg(’“’ 0) — ex| R

N

<) 19t (0) — ex|R* + Z 2 f¥)(0)| R

k=0 k=N+1

taking N sufficiently large, the second term is less than €/2 (since the
power series for f converges absolutely and uniformly on the disc |2| < R).

Let n be so large that [gSLk)(O) — ekl <e/2M for 1 <k < N, where

N
M=) "Rk
k=0

Thus, for such n, we have |g,,(z)—g(z)| < €. Since this bound is independent
of z, the convergence is uniform.
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5.3 Conformal Mappings

Solution to 5.3.1: We will show that the given transformations also map
straight lines into circles or straight lines.
z+— z-+band z— kz clearly map circles and straight lines into circles
and straight lines.
Let S = {z||z—a| =1}, @ = ¢ + iyo, and f(2) = 1/z2 = w = u + .
The equation for S is
z-a)z-a)=r?

or ) _
—:—g—2=r2—|a|2-
ww W w
o If r = |a], that is, when S contains the origin, we get
l—-ow—-—aw=20
or
R(aw) = L
=5
This is equivalent to
1
ugo — vYo = 3

which represents a straight line.

o If 7 # ||, we obtain

P I o —1
w - w — w = M
=72 P =72) ¥ = [P =7

Letting _
a
grEE
we get
_ = 2 r2
v O ap—ap
and

2 r ?
v =f = ()

which represents the circle centered at 8 with radius r/(Jal? — r?).

If S is a straight line, then, for some real constants a, b, and ¢, we have,
forz=z+1iy €S,
ax + by = c.



258 5. Complex Analysis

Letting o = a — ib, we get
R(az) =c¢

or
az+az =2¢

and it follows, as above, that f(.S) is a straight line or a circle.
Finally, let

az+b
f(z)— cz+d.

If ¢ =0 f is linear, so it is the sum of two functions that map circles and
lines into circles and lines, so f itself has that mapping property. If ¢ # 0,

we have
az+b 1 (a— ad——bc)

cz+d c cz+d
so f(2) = fa(f2(f1(2))) where

a ad-bc

AR =etd, =2, )

= - - Z,
C C

each of which has the desired property, and so does f.

Solution to 5.3.3: Let A= {z||z| <1, |z —1/4| >1/4}and B = {z|r <
[z| < 1}. Let f(2) = (z — a)/(az — 1) be a linear fractional transformation
mapping A onto B, where —1 < a < 1. We have

f({zllz—1/4| = 1/4}) = {z]|z| =}

{7(0), 7(1/2)} = {-r,7}
and
1/2—«a
af2-1

which implies o = 2 — +/3. Therefore, r = |f(0)| = 2 — V/3.

Suppose now that g is a linear fractional transformation mapping C =
{z|s < |2z| < 1} onto A. Then g~ !(R) is a straight line through the ori-
gin, because the real line is orthogonal to the circles {z| |z — 1/4| = 1/4}
and {z]||2| = 1}. Multiplying by a unimodular constant, we may assume
g (R) =R. Then fog(C) = A and f o g(R) = R. Replacing, if necessary,
9(2) by g(s/z), we may suppose f o g({z||z| < 1}) = {z|[2] < 1}, s0

O=r—r=f0+f(1/2)=a+

zZ—Q

foglz)=p—_—

with || < || = 1.

Using the relation 0 = f(s) + f(—s), we get @ = 0, so f o g(2) = Pz and
s=1=2—1/3.
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Solution to 5.3.4: Suppose f is such a function. Let g : A — B be defined
by g(z) = f(2)?/z. Then, as on C; U Cy, the absolute value of g is 1, then
g is a constant, c, say. Therefore, f(z) = /cz which is not continuous on
A. We conclude that no such function can exist.

Solution to 5.3.5: The map z — iz maps the given region conformally
onto A =D N {z| ¥z > 0}. The map

14+w
W —
1—w

maps A onto the first quadrant, ). The square function takes ) onto
{z] Sz > 0}. Finally,
g £
&+
takes {¢| 3¢ > 0} onto D. Combining these, we get for the requested map:

(42 -1 —i2)?
(14722)% +i(1 —iz)?

Solution to 5.3.6: The map ¢;(2) = 2z—1 maps conformally the semidisc
{z|$2>0,|2—-1/2| < 1/2}
onto the upper half of the unit disc. The map

142
1—2

p2(2) =
maps the unit disc conformally onto the right half-plane. Letting z = re®,
it becomes ]
1+re? 1—r%+ 2rsinf
1—reif |14 ref|?

Since sinf > 0 for 0 < 6 < &, p, maps the upper half of D onto the
upper-right quadrant. The map 3(z) = 2% maps the upper-right quadrant
conformally onto the upper half-plane. The composition of ¢;, @2, and 3
is the desired map, namely the function z — (_Tiﬁ

Solution to 5.3.8: Suppose f is such a map. f is bounded, so the singu-
larity at the origin is removable, p = lim,_,¢ f(z). Since f is continuous, p
is in the closure of A.

Suppose that p is on the boundary of A. Then f (G) = AU {p}, which is
not an open  sct, contradicting the Open Mapping Theorem, [MH87, pag.
436).

Let p € A and a € G be such that f(a) = p. Take disjoint open neigh-
borhoods U of 0 and V of a. By the Open Mapping Theorem, f(U) and
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f(V) are open sets containing p. Then f(U) N f(V) is a nonempty open
set. Take z € f(U)N f(V), x # p. Then z = f(z) for some nonzero z € U
and r = f(w) for some w € V. Then z and w are distinct elements of G
with f(z) = f(w), contradicting the injectivity of f.

5.4 Integral Representation of Analytic Functions

Solution to 5.4.1: By the Cauchy-Riemann equations [MH87, pag. 72],
Up = Vy and Uy = —Vg.
Thus, au + bv = ¢ implies
aug + buy =0 = auy + by,

and, therefore,
aug — buy = 0 = auy + bu,.

In matrix form, this reads

a —b uz Y _ (0
b a Uy 0/
Since the matrix has nonzero determinant a?+ b2, the homogeneous system

has only the zero solution. Hence, u, = 4y = 0. By the Cauchy-Riemann
equations, v; = v, = 0. Since D is connected, f is constant.

(_1)nz2n

Solution to 5.4.2: 1. The Maclaurin series for cosz is )’ )
)t

and it converges uniformly on compact sets. Hence, for fixed z,

f(t) COS(zt) = Z (—1)"{2(;))1: n,2n

0

with the series converging uniformly on [0,1]. We can therefore, interchange
the order of integration and summation to get

h(z) = i %711—;7 (/01 t2"f(t)dt> 2"

n=0

in other words, h has the power series representation

—_ — z2n s _q( l)n 2n
h(z)—;c% with Cop = @) /t f(t)dt

Since h is given by a convergent power series, it is analytic.
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2. Suppose h is the zero function. Then, by Part 1, fol t2" f(t)dt = 0 for
n=0,1,2,.... Hence, if p is any polynomial, then fol p(t3) f(t)dt = 0. By
the Stone-Weierstrass Approximation Theorem [MH93, pag. 284], there is

a sequence {px} of polynomials such that px(t) — f (v/t) uniformly on
[0,1]. Then px(£%) — f(¢) uniformly on [0,1], so

[ s = jim [ s =

implying that f = 0.

Solution to 5.4.3: Let z € C. We have

1 oo n,n
o) = [ S0
n=0

Since f is bounded, this series converges uniformly in ¢, so we can change
the order of summation and get

g(zz}oj: < /f(tt"dt) Zgn

where

1 1 n
snza/() foy d.

6l < — /vwm

so the radius of convergence of the series of g is co.
Solution 2. Let zg € C. We have

2—20

We have

. . _ 1" (z— n
From the power series expansion et(*=%0) = $°° 220" gne gets

n!

etz . etZo

= te'* + O(z — z)

Z2— 20
uniformly on 0 < ¢t < 1, when 2 — 2g. Thus, as z — zg, the integrand in
the integral above converges uniformly on [0, 1] to ¢f(t)et?®, and one can
pass to the limit under the integral sign to get

lim 92) = 9(0) _ / 1tf(t)e”°dt,

Z/29 zZ— ZO 0
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proving that g is differentiable at 2.

Solution 3. The intcgrand in the integral defining g is a continuous function
of the pair of variables (¢, z) € [0, 1] x C, implying that g is continuous. If
R C C is a rectangle, then by Fubini’s Theorem [MH93, pag. 500] and the
analyticity of e!? with respect to z,

[ staz= [ | ft)ededz = / 1]3 F®)etdzdt — 0

By Morera’s Theorem [MH87, pag. 173], g is analytic.

Solution to 5.4.4: 1. Let f and g have the Maclaurin expansions [MHS87,

pag. 234]
= Zanz", g(z) = anz".
k=0 k=0

By Cauchy’s Integral Formula [MH87, pag. 167] and the uniform conver-
gence of the series for g, we have

%C_f() ( 2m/cz n+1

S 1
=0 2m c, W

anbpz™ .

I

il

M

x
I

0

limsup V/|a,|limsup V/|b,| > limsup {/|a,b,|
n—o00 n—oo n—o0

the radius of convergence of h is at least 1.
2. If we take f(z) = sinz and g(z) = cos z, we have ag, = bap—1 = 0 for
n=12,..,s0 h=0.

As

5.5 Functions on the Unit Disc

Solution to 5.5.1: Let b/a = re*” and consider the function g defined by
9(z) = f(2)a"'e /2. We have

g (69) = 0-2) 4 piGr2-0
= (1+4r)cos(f — 5/2) + (1 —r)sin(f — 3/2)

so the image of the unit circle under g is the ellipse in standard position
with axes 1+ r and |1 — 7|. As f(2) = aexp(i3/2)g(z), f maps the unit
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circle onto the ellipse of axes |al(1 4+ r) and |a(1 ~ 7)|, rotated from the
standard position arga + (/2.

Solution to 5.5.2: We have
27 27
L= / |£'(e")] |ie®®| d6 :/ |£'(e?)| df
0 0

27
> f’(ew)dG,

0

=2r|f'(0)]
by the Mean Value Property [MHS87, pag. 185].

Solution to 5.5.3: As the Jacobian of the transformation is | f'(2)|2, we
have

A= [\ QP dsa

J/(2) can be found by term by term differentiation:

f'(z) = i nc, 2" !

n=1

S0
oo

lf’(z)]2= Z jijEkzj_IZkﬂl.

3,k=1
We then have
e, o]
A:// Z jkcjékzj‘lzk"ldxdy.
D .
7,k=1

Letting 2z = re®?, we get

o0 1 2m
A=Y jke;e /0 /0 pith=1¢1G=k)0 gogr.

dk=1
2n )
/ e™do =0
0
for n # 0, we have

o0 1 oo
A= 2#2 nzlcnlz/ r2nldy = nZn]cn|2.
n=1

0 n=1

Since
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Solution to 5.5.4: We have, for z,w € D,

fw) = f(z) iff (w=2) (1+ w;”z) ~0
so f in injective. Then the area of its image is given by
f(z 2d:1:dy:/ 1+ 2Rz + |2]?) dz
JNIE! [ ( 1)

=/H)(1+2m+x2+y2)da:dy

27 1
= / / (1 + 2rcos @ +r?) drdf
o Jo
3

2

Solution to 5.5.5: Assume f is not constant. Fix 29 € D and let A be
defined by h(z) = f(2) — f(z0). As h has only isolated zeros in D, we can
find an increasing sequence p; — 1 with h(2) # 0 for |2| = p;, i = 1,....
Let g be the function given by g(2) = a1(z — 29). For |z| = p;, we have

E anz"—g anzy

n>2 n>2

l9(2) — h(2)|

d
max\ o Z anz” |z— zp| (winthesegment (2, 2])
n>2

IA

Z=w

> nang |z = 2l

n>2

IA

< la1l|z — 20}
= |g(2)|.

By Rouché’s Theorem [MH87, pag. 421], h has a unique zero in the disc
{z||z] < p:}, so f assumes the value f(zp) only once there. Letting p; — 1,
we get that f is injective in D.

Solution to 5.5.6: Let f € X;, z € D, and ~ be the circle around z with
radius r = (1 — |z|)/2. 7 lies inside the unit disc, so, by Cauchy’s Integral
Formula for derivatives [MH87, pag. 169], we have

1 [ 1f(w) c
S S T G

[f(2)] <

2r J, |z~ wj?

where C is a constant, so f' € Xx41.
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Let f/ € Xg41 with f(0) = 0 (the general case follows easily from this).
Letting z = re®®, we have

1£(2)] < / 1 () |du]
- / |£/(te®))| dt
0

164
<), o
kC

p
Hence, f € Xk.

Solution to 5.5.7: Let f(z) = }_,5¢an2"™ for z€ D = {2 [2| < 1}.

As f(z) is analytic, so is g : D — C defined by g(2) = f(2) — f(Z). We
have, for real z € D,

9(z) = X(an —@n)2™

= f(2) - f(?)
= f(z) - f(2)
= 0
therefore, g(z) = 0 on D, so the coeflicients a,, are all real.
Put 2y = ei"‘/i, and let a; be the nonzero coefficient of smallest index.

We have F(tz0)
tZ() — Qo k t nyn—k+1
—_— g =2+ — Z an2yt .
k 0 n~<0
akt Ok n>k+1
tzg € D for t € [0,1) and the left hand side expression is a real number for
all £, so

tim L0~ 00 _ kg

= 2
t—0 aktk 0

which implies k = 0, by the irrationality of v/2, thus f is a constant.

Solution to 5.5.8: Let > o°c.2™ be the Maclaurin series for f. Then
f'(z) = 377 nep2z™ 1. The Cauchy Inequalities [MH87, pag. 170] give

!
21 [zj=r Al

1
2rpn—1

M

oy rn__l ’

lenl =

i

27
fl(reie)e—i(n—l)edo
0

O0<r<l1-
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Letting 7 — 1, we get |cpl < M/n (n=1,2,...). Hence,

1 [o3¢}
/[0 M@)o < fo (Z lala )dw

T

. 1
:|Co|+M1!l_I'I} (—(1-m)log1_$+z>

0
= |eco| + M.

Solution to 5.5.9: As |h(0)| = 5, by the Maximum Modulus Principle
[MH87, pag. 185], h is constant in the unit disc. Therefore, h’(0) = 0.

ol2) =Gf)

maps the unit disc to the upper half-plane with ¢(0) = i. Thus, fo ¢ maps
the unit disc into itself fixing 0. By the Schwarz Lemma [MH87, pag. 190],
|f o p(2)] < |z]. Solving p(2) = 2i, we get z = 1/3. Hence, |f(2i)] < 1/3.
Letting f = ¢!, we see that this bound is sharp.

Solution to 5.5.10:

Solution to 5.5.11: The function

1+2
1-2

o(2) =

maps the unit disc, D, onto the right half-plane, with ¢(0) = 1. There-
fore, the function f o ¢ maps D into itself, with f o (0) = 0. By the
Schwarz Lemma [MH87, pag. 190], we have |( foyp) (O)| < 1, which gives
| ((0))¢’(0)] < 1 and |f'(1)] < 1/2. A calculation shows that equality
happens for f = p~1.

Solution to 5.5.12: Supposc f has infinitely many zeros in D. If they have
a cluster point in D, then f = 0 and the result is trivial. Otherwise, since
{z € C [|z| < 1} is compact, there is a sequence of zeros converging to a
point in the boundary of I, and the conclusion follows.

Assume now that f has only finitely many zeros in D, w;,. .., wn. Then
f can be written as

f(2) = (z—w)* - (2 = wm)*"9(2)
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where g is analytic and never zero on D. Applying the Maximum Modulus
Principle [MH87, pag. 185], we get that 1/g attains a maximum in the
disc |z| < (1 — 1/n) at a point 2, with |z, = 1 —1/n (n > 2). Then
lg(22)| > |g(23)| = ---- The product (z - w1)® - (2 — wm)*™ is clearly
bounded, and so is f(z,).

Solution to 5.5.13: 1. We can assume f has only finitely many zeros.
(Otherwise, assuming f # 0, its zero sequence has the required property,
since the zeros of a nonconstant analytic function in an open connected
set can cluster only on the boundary of the set.) That done, we can, after
replacing f by its quotient with a suitable polynomial, assume f has no
zeros. Then 1/f is analytic in the disc. For n = 1,2,..,, let M, be the
maximum of |1/ f(z)] for |2| = 1 — 1. By the Maximum Modulus Principle
[MHS87, pag. 185], M,, > M; for all n. Hence, for each n, there is a point
an such that |a.| = 1— 1 and |f(as)| = /M, < 1/M; = |f(0)]. Then
(f(an)) is a bounded sequence of complex numbers and so has a convergent
subsequence, which gives the desired conclusion.

2. Let (2n,) be a sequence with the properties given in Part 1. Subtracting a
constant from f, if needed, we can assume lim f(z,) = 0. We can suppose
also that |2p41] > |2,| > 0 for all n. For each n, let M,, be the maximum of
| f(2)] for |z| = |zx|. The numbers M,, are positive (since f is nonconstant)
and increase with n (by the Maximum Modulus Principle [MH87, pag.
185]). Since f(zn) — 0, there is an ng such that |f(z,)| < M) for n > ny.
For such n, the restriction of |f| to the circle |z| = |2,| is a continuous
function that takes values both larger than M; and smaller than M;. By
the Intermediate Value Theorem [Rud87, pag. 93], there is for each n >
no, a point b, such that |b,| = |z, and |f(b,)] = M;. Then, for the
desired sequence (wy,), we can take any subsequence of (b,) along which
f converges. (There will be such a subsequence by the boundedness of the

sequence (f(b,))-)

Solution to 5.5.14: Suppose f(a) = a € D, f(b) =be D, and a # b.
Let ¢ : D — D be the automorphism of the unit disc that maps 0 to a
(¢(2) = (a — 2)/(1 — @z)). Then the function g = ¢~! o f o ¢ maps D into
itself with g(0) = 0 and g(¢~1(b)) = ¢~ '(b). Since ¢ is one-to-one and
a#b, o~ 1(b) # 0. Hence, by the Schwarz Lemma [MH87, pag. 190], there
exists a unimodular constant A such that g(z) = Az, and letting z = @~ 1(b),
we see that A = 1; that is, g is the identity map and so is f.

Solution to 5.5.15: Let ¢,, be the automorphism of the unit disc given
by

_ zZ—Zg
(IDZO(z)_ 1__20z7
we have 20l?
1- 20
P, (2) =

(1 — Z2)? .
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Now consider the composition

9(2) = Prop. (0)© F 0 P20(2) = Pr(—20) © f © P2 (2)

then g(0) = 0 and as composition of maps of the unit disc into itself, we
can apply the Schwarz Lemma [MH87, pag. 190] to obtain |¢'(0)] < 1.
Computing ¢'(0) using the chain rule, we have

oY = | L ey (1 1zl
9O = [Ty ) (A= lal?) <1
80 we can conclude that
, @ 1
)< Sk

The first inequality is known as Picks’ Lemma and is the main ingredient
in the proof that an analytic map of the disc into itself that preserves the
hyperbolic distance between any two points, preserves all distances, for
more detail see [Car60, Vol. 2, §290] or [Kra90, pag. 16].

Solution 2. Using the same notation as above,
1 |f 0 pzo (w)]
(FowayOls 4 [ LoPsliy
27 Joj=r wl®

that is

I

1 [*dg 1

1 1— 2! < __/ a1
e Ry
which holds for any |29| < 7 = |w| < 1, so the conclusion follows.

Solution to 5.5.16: Let £ € D and ¢ : D — D be the automorphism of D
that maps £ to 0,
—-£

w)— "

Cauchy’s Integral Formula for derivatives [MH87, pag. 169] gives, for
€l <r<1,
/ (foup) (W) .
2
271 Jrol=r w

1 C
< S
= o /lwlzr T TeDwf !

1 C
<57 ) T

__¢
N r(l—r)

[(fop) (0)] <
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In the last inequality, we used the Schwarz Lemma, [MH87, pag. 190],
lp(w)| < |w|. Elementary calculus shows that

C
Mo =

so we have
|(f o) (0)] < 4C
and since ¢'(0) = 1/(1 — |¢]?),

4C

7)< =

Solution to 5.5.17: Using Cauchy’s Integral Formula [MHS87, pag. 169],
for 0 < r < 1, we have

M) 1 ()
<%AHMWM|

Tl
1 1 1
< — = .
T2 [w|=r (1 - T)Tn+1 'dwl (1 - T)Tn

Letting r = n/(n+1), we get | f(™(0)/n!| < (n+1)(1+1/n)" < (n+1)e.

Solution to 5.5.18: By the Schwarz Lemma [MHS87, pag. 190],

[f(2)] < |zl
If f(z) = a1z + a22? + - - -, let g be defined by
g(z) — M = a2z+a4z3 +a6z5 + ..

2z

g is analytic in I, and since

f ()] +1f(=2)]
l9(2)] < BT <1

g maps D into D. Hence, by the Schwarz Lemma,

l9(2)] < |2

1f(2) + f(=2)] < 22f*

Now suppose equality held for z5 € . We would have {g(2g)| = |20] so, by
the Schwarz Lemma,
9(2) = Az
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for some unimodular A, or
F(2) + f(=2) = 2)2%.

Plugging this back into the power series for g(z), we get az = A and
a4 = ag = -+ - = 0. Hence,

f(2) = A2? + h(2)
where h(z) is odd. We have
1> [£(2)] = A2 + h(2)|

and
12 |f(=2)| = |A2% + h(=2)| = [A2® — h(2)|.
Therefore,
A2+ h(2)A22+h(z)) < 1
(A2® = h(2))(A22 — h(z)) < 1.

Expanding and adding, we get

l21* + |h(2)? < 1
h(2)]? < 1-]ef*

which, by the Maximum Modulus Principle [MH87, pag. 185], implies
h(z) =0.

Solution to 5.5.19: Schwarz’s Lemma [MHS87, pag. 190] implies that the
function fi(2) = f(z)/z satisfies |fi(z)] < 1. The linear fractional map
2=" gends the unit disc onto itsclf. Applying Schwarz’s Lemma to

z = 1-rz

the function fa2(z) = fi (Z—_T), we conclude that the function f3(2) =

l1-rz
fHi(z)/ (f_‘rrz) satisfies |fa(z)| < 1. Similarly, the map z +— &L= sends

the unit disc onto itself, and Schwarz’s Lemma applied to the function

fa(z) = fa(2)/ ( lz;j;rz) implies that the function f5(z) = f3 (fj;rz) satisfies

|fs(2)] £ 1. All together, then,

z
1

z+r
1+r2

r z2+r

Z2—r
1472 —

7@ <1 ;

[fs(2)] < ||

—Te rz

which is the desired inequality.

5.6 Growth Conditions

Solution to 5.6.1: Let g(2) = f(2) — f(0). Then g(0) = 0, so g(z)/z has a
removable singularity at 0 and extends to an entire function. g(z)/z tends
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to 0 as |2| tends to infinity since f(z)/z does. Let £ > 0. There is an R > 0
such that |g(z)/z| < e for 2| > R. By the Maximum Modulus Principle
[MH87, pag. 185], |9(2)/2| < € for all z. Since ¢ is arbitrary, g(z)/z is
identically 0. Hence, g(z) = 0 for all z and f is constant.

Solution to 5.6.3: If g = 0, the result is trivially true. Otherwise, the zeros
of g are isolated points. |f/g| is bounded by 1 in C, so all the singularities
of f/g are removable, and f/g can be extended to an entire function.
Liouville’s Theorem [MH87, pag. 170] now guarantees that f/g must be a
constant.

Solution to 5.6.4: Let h(z) = f(z) —kg(z). Then h is entire and Rh(z) <
0. We then have

Ieh(z) <1 forall z€C

therefore, by Liouville’s Theorem [MHS87, pag. 170], " is constant, and so
is h.

Solution to 5.6.5: 1. Using Cauchy’s Integral Formula for derivatives
[MH87, pag. 169], we get

)f(k) O)' - 27r_/
< 5}%5 /‘z‘:R 'a\/l_z_|+ b‘ [dz|
K (ol + b)

Rk
= o(1) (R — oo)

f(2)

gl ZFH

|dz]

so f(*)(0) = 0 for k > 1, and f reduces to a constant, f(0).
2. Using the same method as above for k > 3, we get

.f(k) O)I - 27r_/ -R z’S‘H 2]
< sazm /M:R |oV/IZF + ] 1d2]
LD I

so f*)(0) =0 for k > 3 and f reduces to a polynomial of degree, at most,

2, f(0) + £'(0)z + f(0)2°/2.
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Solution to 5.6.6: For r > 0, let z = re®® in Cauchy’s Integral Formula
for derivatives [MH87, pag. 169] to get

1 2m 10
mgy < 2L [ )
£ 27t J, rremd

Combining this with the inequality given yields
|F™(0)]/n! < r17/3-7 /2,

For n > 5, letting r tend to infinity, we get f(™(0) = 0. If n < 5, letting
r tend to 0 gives the same result. Hence, the coefficients of the Maclaurin
series [MH87, pag. 234} of f are all 0, so f = 0.

Solution to 5.6.7: If such a function f exists then g = 1/ f is also analytic
on C \ {0}, and satisfies |g(z)| < /]| Since g is bounded on {z: 0 < |2z| <
1}, g has a removable singularity at 0, and extends as an analytic function
over the complex plane. Fix z, choose R > |z|, and let Cr be the circle
with center 0 and radius R.

Then

gl(z) _ i/ g(w) dw

278 Jo, (w— 2)?

50

, 1 VR
< —.97R. Y _ .
lg'(2)| < o TR TEE —0as R— o0

Thus, ¢’ = 0 everywhere, so g (and hence, f) is constant. But this contra-
dicts the hypothesis |f(2)| > \/I— for small z, so no such function exists.

Solution to 5.6.8: By Liouville’s Theorem [MH87, pag. 170], it will be
enough to prove that f is bounded. For |Rz| > 1/2, we have |f(2)| < v/2.
Let zp be a point such that |[Rzo| < 1/2. Let .S be the square with vertices
1329 = 1 + ¢, oriented counterclockwise.
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M

Then 2 is in the interior of S, so Cauchy’s Integral Formula [MH87, pag.
167] gives
FION

27r1, g2 zo

f(z0) =

The absolute value of the integrand is, at most, 2|Rz|~'/2. The contribution
to the integral from each vertical edge is thus, at most, 4 in absolute value.
The contribution from each horizontal edge is, at most, 2 f_ll |z|~1/2dz = 8
in absolute value. Hence,

|f(20)] < 2i (4+4+8+8) =127

proving that f is bounded.

5.7 Analytic and Meromorphic Functions

Solution to 5.7.1: f(z) = /2 is a counterexample. Define it by making
a cut on the negative real axis and choosing an associated branch of the

logarithm:
logz P _Ié 0
H(z) = { z=0.

[ is analytic in the right half-plane and so on the disc |z — 1| < 1. Since /2
tends to 0 as 2 tends to 0, f is continuous on the disc |z — 1| < 1. However,
f cannot be analytic on any open disc of radius larger than 1. For if it were,
f would be analytic at 0, so

z—-»O Z
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would exist and be finite, which is absurd.

Solution to 5.7.2: 1. f(z) = 2? is entirc and satisfies

f/n) = f(=1/n) = 1/n?.

2. By the Identity Theorem [MHS87, pag. 397], in a disc centered at the
origin, g would have to be z3 and —23, which is not possible; therefore, no
such function g can exist.

Solution to 5.7.4: Suppose f(C) is not dense. Then, for some w € C
and € > 0, we have | f(z) —w| > € for all z € C. The function 1/(f(2) — w)
is then entire and bounded in modulus by 1/¢, so, by Liouville’s Theorem
[MHS87, pag. 170], is a constant, and so is f.

Solution to 5.7.5: Let f(z+iy) = u(z, y)+iv(z,y), where u(z,y) = e*s(y)
and v(z,y) = €"t(y). From the Cauchy-Riemann equations [MH87, pag.
72], we get e”s(y) = €“t'(y), so s(y) = t'(y). Similarly, s'(y) = —t(y).
This equation has the unique solution s(y) = cosy satisfying the initial
conditions $(0) = 1 and s'(0) = —¢£(0) = 0, which, in turn, implies that

t(y) = —s'(y) = siny.

Solutlon to 5.7.6: f” + f is analytic on D and vanishes on
= {1/n|n > 0}, so it vanishes identically. Using the Maclaurin ex-
pansion [MHS87, pag. 234] of f, we get

PV oF iasiO N

k! k!
k>0 k>0

So we have

f(0) = =f"(0) = --- = (-1)*f@P(0) =
and

(O) ”’(O) . — (_l)kf(2k+l)(0) — .
Therefore,

(=D*
= f(0) kgo 2k)‘ O)ICZ>0 T 1)‘ Z2k+1

= f(0)cos z + f'(0)sin 2.

Conversely, any linear combination of cosz and sin z satisfies the given
equation, so these are all such functions.

Solution to 5.7.7: It is enough to show that for any 2 € Q, the derivative
in the sense of R? has an associated matrix

i -(5 &)
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satisfying @ = d and ¢ = —b. As Df(2)(1,0) L Df(z)(0,1), we have
¢ = —kb and d = ka for some k. As f preserves orientation, det Df(z) > 0,
so k > 0.

If a® + b2 = 0, then Df(z) = 0 and there is nothing to show.

Assume a? + b2 # 0. As, for (z,y) # 0, Df(2)(z,y) L Df(2)(~y,z), we
have 0 = (k% — 1)(a? + b%)zy. Therefore, k = 1 and the result follows.

Solution to 5.7.8: Let g = f? and let the common domain of f and ¢
be G. We will show that ¢(G) contains no path with winding number 1
about 0. Suppose that for some path v : [0,1] — G, g() had winding
number 1 about 0. Since g(vy) is compact, there is a finite cover of it by n
open, overlapping balls, none of which contain 0. In the first ball, define
the function h;(z) = /g(z), where the branch of the square root is cho-
sen so that hy(y(0)) = f(7(0)). In each successive ball, define the function
hi(2) = \/9(z), with the branch chosen so that hy is an analytic continu-
ation of hy_;. This implies that if v(¢) is in the domain h;, we must have
hi(7(t)) = f(7(t)). However, since these analytic extensions wrap around
the origin, h,,(v(1)) = hp(7(0)) # h1(7(0)), which contradicts the continu-
ity of f.

Therefore, since g(G) contains no path with winding number 1 about the
origin, there exists a branch of the square root on it which is analytic and
such that f(z) = +/g(z) for all z in G. Thus, f is an analytic function.

Solution to 5.7.9: We have f = f3/f2 = g/h. It is clear that f3 and f2
have the same zero set. If zg is a common zero, there are analytic functions
g1 and hy which are not zero at zp such that f3(z) = (2 — 29)*h1(z) and
f4(2) = (2 = 2V or(2). But (£2)* = ° = (f2)°, s0 (2 ~ 20)*h(2)* =
(z2—29)%g1(2)3. Rearranging, we get h1(2)?/91(2)3 = (2—29)%/ 2. Neither
hi1 nor g; are zero at zp, so the left side is analytic and nonzero at zg. Hence,
we must have 35 — 2k =0, so k > j. Therefore, z; has a higher multiplicity
as a zero of f3 than it does as a zero of f2. Thus, the function f3/f? has a
removable singularity at zg. Since this holds for every zero, f = f3/f? can
be extended to an analytic function on D.

Solution to 5.7.10: 1. Let w be an n'® primitive root of unity. Then the
function w*g, 0 < k < n — 1 are all n** roots of f, analytic and distinct.
Let h be any analytic nt* root of f. Fix zp € G, € > 0 such that f(z) # 0
for |z—2p| < €. h/g is continuous in |z2—2p| < € and since h™ /g™ = 1, h/g has
its range among the n points 1, w, ..., w" . Since it is continuous, it must
be constant. Therefore, h = w*g for some k in this little neighborhood, so
h = wky.
2. The function f : [0,1] — R defined by f(z) = (¢ — 1/2)? has four
continuous square roots, f1, f2, fa, and f4, given by

filzg)=z-1/2 fa(z) = - fi(z)
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f3<w>={ R S L ORI AO)

Solution to 5.7.11: The function g(z) = f(z) is analytic in the same
region as f, and f — g = 0 on (1,00). Since the zero set of f — g has
limit points in the region |z| > 1, the Identity Theorem [MH87, pag. 397]
implies that f—g = 0. Hence, f(z) = f(Z). In particular, for z in (—oo, —1),
f(z) = f(z).

Solution 2. Let 3°° _cnz" be the Laurent expansion [MH87, pag. 246]
of f about co. It will suffice to show that c, is real for all n. The se-
ries ) _(Re,)2™ converges everywhere the original series does (since its

terms are dominated in absolute value by those of the original series); let
9(2) = 3% (Ren)z™. For z in (1, 00),

g9(z) = Rf(z) = f(z) .

As above, the Identity Theorem [MH87, pag. 397] implies g = f, so cach
¢, is real, as desired.

Solution to 5.7.12: The function g(z) = f(z) is analytic and coincides
with f on the real axis; therefore, it equals f. The line in question is its
own reflection with respect to the real axis. Since it also passes through
the origin, it must be one of the axes.

Solution to 5.7.13: By the Schwarz Reflection Principle for circles [BN82,
pag. 85], we have

For z real, we get

(z)

=
3]
~—
I
=
—
~
8
~—
Il

so f(z) is real.

Solution to 5.7.14: 1. Let 23, 22,..., 2, be the zeros of p, ennumerated
with multiplicities, so that

p(z) =c(z —21)(2 — 22) -+ (2 — 2n)

where c is a constant. Then

! 1 1
p (z) = 1 + PP +
p(z) 2z—2n 2z—2 Z2— 2,
and, for x real,
8{p’(z) S S29 Sz,

= + oo "
p(z)  lz—al  |z- 2 |z — 2n|?
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Part 1 is now obvious.
2. Write z; = z; + y;, so that

00 ., . IS )
—o |2 — 7] o (T3P Y
=/00 Yj dz
—oo T2+ Y2
lo o]
= / _ﬁi_ (arctan _x_) dz
—00 dil} yj

Hence,

Solution to 5.7.15: Let D be an open disc with D C G. It will suffice to
show that there is an n such that f(™ has infinitely many zeros in D. For
then, the zeros of f(™) will have a limit point in G, forcing f(™ to vanish
identically in G by the Identity Theorem [MH87, pag. 397], and it follows
that f is a polynomial of degree, at most, n — 1.

By hypothesis, D is the union of the sets Z, = {z € D| f®)(2) = 0} for
n=1,2,... Since D is uncountable, at least one Z, is, in fact, uncountable
(because a countable union of finite sets is, at most, countable).

Solution to 5.7.16: We have

log (z( ~ )) =log(2 — 2) +log( i1>

1
2
1
=log2+log(1——;—)+m+log<1_l)-
z

In the unit disc the principal branch of log ( ) is represented by the se-

ries 21 Z-, which one can obtain by termwise integration of the geometric
scries o = Y o 2™. Hence,
om (121 <2),

log(l——) 2nn

2%
1og< %) iz‘n (2] > 1),

TL

and

9 —1 n X n
log(i%_—;—))=—z%+log2+ﬂ“25% for 1< |z]<2.

—00 1
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Solution to 5.7.17: Let u = Rf and v = S f. For x real, we have

ou 5]
J'(2) = 5,(@0) = 3-(2,0)

where the first equality holds because v = 0 on the real axis and the second
one follows from the Cauchy-Riemann equations [MHS87, pag. 72]. Since v
is positive in the upper half-plane, g—; > 0 on the real axis. It remains to
show that f’ does not vanish on the real axis.

It suffices to show that f/(0) # 0. In the contrary case, since f is non-
constant, we have

f(z) = ez® (1+ 0(z)) (z—0)

where ¢ # 0 is real and k > 2. For small z, the argument of the factor
1+0(z) lies between —§ and %, say, whereas on any half-circle in the upper
half-plane centered at 0, the factor czF assumes all possible arguments.
On a sufficiently small such half-circle, therefore, the product will assume
arguments between 7 and 27, contrary to the assumption that Sf(z) > 0
for 3z > 0. This proves f/(0) # 0.

Solution to 5.7.18: Letting z = i6, we have
cosf = 1(z+271)

and df = dz/iz, so that

27
17 gaceosogg L/ec(wz“)@
27 Jo 2x J,

where v is the unit circle. Next,

1 _ 1 s o) n
— [ Stz ndz _ _/Z_l_ ¢ e dz
27/, z 2ni J, nl \ z 2

n=0
B SRN fay
= 2 J, nl 2z
Now,
eb? 1 1 2 1 k
prr iy 14+ ¢z + 5(¢2) +~~-+H((z) +e
1 C 1 Cn Cn+1

— 42 =2
ntl g nl 2 + (n+1)!
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Thus, the residue at zero is ¢"/n! and

1 / eS? Qs = ¢
27 J, 2"t Tt
r\* 1 /g"eCZ dz
nl) ~ 2mi 5 nl2™

Solution to 5.7.19: 1. The function f is not constant, because if f took
the constant value c, then f~!({c}) would equal U, a noncompact set. Since
f is holomorphic and nonconstant, it is an open map, and f(U) is open.
Since V is connected, it only remains to show that f(U) is closed relative
to V. Let a € V N f(U). There is a sequence (w,) in f(U) such that
a = limw,. For each n, there is a point 2, in U with w, = f(2,). The set
K = {a, w1, ws,...} is a compact subset of V, so f~}(X) is also compact.
Since the sequence (z,) lies in a compact subset of U, it has a subsequence,
(2n, ), converging to a point b of U. Then f(b) =lim f(z,,) = limw,, = a,
proving that a is in f(I/) and hence that f(U) is closed relative to V.

2. Take U =V =C and f(2) =z|.

hence

and the result follows.

Solution to 5.7.20: By the Inverse Function Theorem [Rud87, pag. 221],
it will suffice to prove that Jh(0) # 0, where Jh denotes the Jacobian of h:

Zu+p) £w—yq)
Jh = det )
u+p) Lv-q)

By the Cauchy—Riemann equations [MH87, pag. 72],
Ou Ov ou  Ov Op Oq Op  Oq

oz Oy’ By Oz’ Bz oy’ By oz
Hence,

Su 4 Op Qv _
8z+61 oz

g

Jh = det

_9v __ 99 Su__0p
oz oz oz Oz

)22

“\9z) \oz oz) B:E)
=IfP*-1g7.

Since {¢’(0)| < |f'(0)], it follows that (Jh)(0) # 0, as desired.

Solution to 5.7.21: f does not have a removable singularity at oco. If f
had an essential singularity at infinity, for any w € C there would exist a
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sequence 2p — oo with lim f(2,) = w. Therefore, f has a pole at infinity
and is a polynomial.

Solution to 5.7.22: Clearly, entire functions of the form f(z) = az + b,
a,be C a#0, are one-to-one maps of C onto C. We will show that these
are all such maps by considering the kind of singularity such a map f has
at oo. If it has a removable singularity, then it is a bounded entire function,
and, by Liouville’s Theorem [MH87, pag. 170], a constant.

If it has an essential singularity, then, by the Casorati~Weierstrass The-
orem [MHS87, pag. 256], it gets arbitrarily close to any complex number in
any neighborhood of co. But if we look at, say, f(0), we know that for some
e and 6, the disc |z| < § is mapped onto |f(0) — 2| < € by f. Hence, f is
not injective.

Therefore, f has a pole at 0o, so is a polynomial. But all polynomials of
degree 2 or more have more than one root, so are not injective.

Solution to 5.7.23: 1. If w is a period of f, an easy induction argument
shows that all integer multiples of w are periods of f. It is also clear that
any linear combination of periods of f, with integer coeflicients, is a period
of f.

2. If f had infinitely many periods in a bounded region, by the Identity
Theorem [MH87, pag. 397], f would be constant.

Solution to 5.7.24: For 0 < r < ryg, by the formula for Laurent cocflicients
[MH87, pag. 246], we have

ool < g |, 1114
_ 1 o ig
=g | e a0

2nrm

/M ;
< . —(TL+2)
= 27‘(‘T -

If n < -2, as r gets arbitrarily close to zero, this upper bound gets
arbitrarily small. Hence, for n < -2, ¢, =0.

5.8 Cauchy’s Theorem

Solution to 5.8.1: By Cauchy’s Integral Formula [MH87, pag. 167], we
have
oo L e L[ e
2mi |z]|=1 z 2w 0
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2 0
/ e’ db = 2m.
0

Solution to 5.8.2: By Cauchy’s Integral Formula for derivatives [MH87,

pag. 169], we have
27
= —1—/ -eidz = —1——/ e’ =% dp
2=0 2w |z|=1 22 2 0

27 ) ]
/ et =040 — 2.
0

therefore,

d
dz

ez

therefore,

Solution to 5.8.4: Let p(2) = an 2™+ - - -+ ap. If p has no zeros then 1/p
is entire. As limy,|oc p(2) = 00, 1/p is bounded. By Liouville’s Theorem
[MHS87, pag. 170] 1/p is constant, and so is p.

Solution 2. Let p(z) = ap2™ + ---+ ag, n > 1. If p has no zeros, then 1/p
is entire. As lim|;|—q P(2) = o0, the Maximum Modulus Principle [MH87,
pag. 185] gives

1 1
max —— = lim max —— = lim max —— =
T P A kTP it 12k [p(2)]
which is a contradiction.

Solution 3. For p(z) = an2z™+---+ap with n > 1 let the functions f and g
be given by f(z) = a,2z", 9(z) = p(z) — f(z). For R > 1 consider the circle
centered at the origin with radius R, Cp. For 2 € C'z we have

|f(2)| = lan|R* and [g(2)| < (lao| + -+ |an—s]) R*7.
Therefore, on Cg,

lag| + - - - + |@n—1]

ol <if] i R> SO

so, by Rouché’s Theorem [MH87, pag. 421], f + g = p has n zeros in
{z € C||z| < R}.
Solution 4. Let P(z) be a nonconstant polynomial. We may assume P(z)

is real for real z, otherwise we consider P(z)P(z). Suppose that P is never
zero. Since P(z) does not either vanish or change sign for real z, we have

2 do
() /0 PZoosd) 7
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T4 1 dz
/ P“(T—e):/]."ﬁ(_f—i

B 1/ 2" dz

i jz]=1 Q(2)

where Q(z) = zP(z + z!) is a polynomial. For z # 0, Q(z) # 0; in
addition, if a,, is the leading coefficient of P, we have Q(0) = a,, # 0. Since
Q(2) is never zero, the last integrand is analytic and, hence, the integral is
zero, by Cauchy’s Theorem [MHS87, pag. 152], contradicting (*).
This solution is an adaptation of [Boa64].

Solution 5. Let p(z) = a,2"+- - -+ap,n > 1. We know that lim|,| . |p(2)| =
00, thus the preimage, by p, of any bounded set is bounded. Let w be in the
closure of p(C). There exists a sequence {w,} C p(C) with lim, w, = w.
The set {wn|n € N} is bounded so, by the previous observation, so is
its preimage, p~!({w, |n € N}) = X. X contains a convergent sequence,
Zn — 2o, say. By continuity we have p(zg) = w, so w € p(C). We proved
then that p(C) is closed. As any analytic function is open we have that
p(C) is closed and open. As only the empty set and C itself are closed and
open we get that p(C) = C and p is onto. In fact, all we need here, in order
to show that p is open, is that p : R2 — R? has isolated singularities, which
guides us into another proof.

Solution 6. By the Solution to Problem 2.2.4 the map p : R? — R? is onto
guaranteeing a point where p(z,y) = (0,0).

But

Solution 7. Let p(z) = anz™ +--- + ag, n > 1. Consider the polynomial q
given by q(z) = @,2"™ + - - - + @g. Assume p has no zeros. As the conjugate
of any root of ¢ is a root of p, ¢ is also zero free. Then the function 1/pq is
entire. By Cauchy’s Theorem [MH87, pag. 152], we have

dz
Ap@«azo

where I' is the segment from —R to R in the horizontal axis together with
the half circle C = {2 € C1|2| = R, (2) > 0}. But we have

dz _ dz R dz
Amw«n‘ﬁmwan+ﬁnmaw

B dz
:“”+1RmaP(R*”)

B dz
.KRmawzo

this gives, for large R,
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which is absurd since the integrand is a continuous positive function.

Solution 8. Let p(z) = a,z™ + -+ ap, » > 1. For R large enough, as
limy,| oo p(2) = 00, |p| has a minimum in {2z € C||z| < R}, at 2, say.
Suppose p(zp) # 0. Expanding p around zp we get

p(2) = p(z0) + Y bj(z — 20)7 b #0.
Let w be a k-root of —p(zy)/bx. We get, for € > 0,

n
plzo + we) = p(2) + bpw*e® + Z bju’ e’
j=k+1

= p(zp)(1 — ) wajej

j=k+1

therefore, for £ small enough, we have |z -+ we| < R and

Ip(20 + we)] < [p(20)]11 — €*] - Z [bjw |€?

j=k+1

n

= [p(20)] = | Ip(z0)l = D lbjw’le’™* | &

j=k+1
< |p(z0)]

which contradicts the definition of z;. We conclude then that p(z) = 0.
Solution 9. Let p(z) = an2z™ + - -- + ag, n > 1. We have

Res (E-,oo) =— lim zp (2) = —n.
p l2]—o0 " p(2)

As the singularities of p’/p occur at the zeros of its denominator, the con-
clusion follows.

Solution to 5.8.5: By Morera’s Theorem [MH87, pag. 173], it suffices to

show that
/ f(z)dz =
¥

for all rectangles y in C . Since f is analyticon {z |3z # 0}, which is simply
connected, it is enough to consider rectangles which contain part of the real
axis in their interiors.

Let v be such a rectangle and I be the segment of R in its interior. For
€ > 0 small enough, draw line segments /; and Iy parallel to the real axis
at distance € above and below it, forming contours vy, and ~».
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N
Y
|
I
€}---- -
—E|---- - A
Y
|
i
Y2

Since f is continuous, its integral depends continuously on the path. So,
as € tends to 0,

(+) f@de+ [ f)dz= |

Y1 Y2 T1+72

f(z)dz—»[/f(z)dz,

since the integrals along /; and l; have opposite orientation, in the limit,
they cancel each other. By Cauchy’s Theorem [MHS87, pag. 152], the left

side of (*) is always 0, so
/f(z) dz =0.
v

Solution to 5.8.6: We have, using the fact that the exponential is 27-
periodic,

1
110 (0 T ey

2
- dz
211 lz|=R 27t |z|=R

n
E a; 2
i=0

1 n n
=9 z"’*IZaileaizz dz
T Jizl=R i=0 i=0
1 [ P o
= L [T Rt Y agmitedg
TJo i,j=0
1 2T n

Z aia—jRn+i+je(n+i—j)9 do

=0
TJo =0
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1 27
E aoa-nRZ" do
= apln Rzn.

Solution to 5.8.7: By Cauchy’s Theorem [MH87, pag. 152],

1 dz
— f(z )2 = f(0)?
2my |z|=r
for r > 1. Parameterizing the domain of integration by z = re*?, we find
L7 ety 2 gop.
27

Simplifying and taking real parts gives
27
/ (u(rem)2 ~v(re'?)?) df = 2 (u(0)? —v(0)?) =0.
0
Solution to 5.8.8: We have

drnf
dz™m

< M(1+|2%)

for all z. Dividing both sides by |z|* and taking the limit as |z| tends to
infinity, we see that d™ f/dz™ has a pole at infinity of degree at most, k so
d™ f/dz™ is a polynomial of degree, at most, k. Lettingn =m +k + 1, we
must have that d"f/dz" = 0 and that n is the best possible such bound.

Solution to 5.8.9: 1. We have
() =(z—2)"" - (2 = z)™ g(2)
where g is an analytic function with no zeros in Q. So

FE m e d@)
flz) z—2z Z— 2k + 9(2)

Since g is never 0 in €, ¢’/g is analytic there, and, by Cauchy’s Theorem
[MH87, pag. 152], its integral around + is 0. Therefore,

['(2)
f;r; L f(2) dz_z:?m/z—zJ

~ Yo
=1
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2. We have
UGN ()
f(z)  z2—= g(2)

50

Solution to 5.8.10: Suppose f(z1) = f(22) and let v be the segment
connecting these two points. We have 0 = f f!(2)dz. Hence,

[0 = oz = =F o)zz = )
-
Taking absolute values, we get

|f'(20)] 22— 21|</lf f(z0)! ld2| </|f'(20)| |dz| = | f'(20)| | 22— 21,

an absurd. We conclude, then, that f is injective.

Solution to 5.8.11: It suffices to show that therc exists an integer n such
that the image of €2 under h(z) = f(z)/2™ contains no curves with positive
winding number about 0; because it implies the existence of an analytic
branch of the logarithm in A(Q). Each closed curve in h(f2) is the image
of a closed curve in €2, so it is enough to show that the images of simple
closed curves in 2 have winding number 0 about the origin.

Consider two classes of simple closed curves in {2

e I'y, the curves with 0 in their interiors, and
e I'y, the curves with 0 in their exteriors.

Since f has no zeros in €2, it is clear that if v € I'y, then Inds(,)(0) = 0.
From the shape of €2, it follows that all the curves in I'; are homotopic. Let
n be the winding number about 0 of f(v) for v € I'y. Since h has no zeros
in Q, we must have Indp(,)(0) = 0 for v € I'y. Fix v € I'y; then

1 h'(z) , 1 fl(z) n . o
Indp(,)(0) = 2 ), h(2) dz = 3o 7( 7o) ;) dz=Inds(,)(0)—n=0

and we are done.

Solution to 5.8.12: Let ¢ > 0. It suffices to show that there is a constant
M such that

[f(z1) = f(z2)| < M|z1 — 22| forall zi1,22 € {z|Rz>c, |21~ 22| < c}.
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Fix two such points and let v be the circle of radius ¢ whose center is the
midpoint of the segment joining them. - lies in the right half-plane, so, by
Cauchy’s Integral Formula [MH87 pag. 167], we have

(a2) — F(z2)] (O

l/\

JO | 1ag

lel—zzl ldCl
/ |21 = ¢]|22 — ¢l

where N is the supremum of | f| in the right half-plane. On ~, |z; — (| > ¢/2
fori =1,2, s0

A

Fle) = J(e2) < “2 a1 - 2l

5.9 Zeros and Singularities

Solution to 5.9.1: F is a map from C3 to the space of monic polyno-
mials of degree 3, that takes the roots of a monic cubic polynomial to its
coefficients, because if -, 3, and v are the zeros of 22 — A2? + Bz — C, we
have
A=a+pg+7, af +ay+ 0y =B, apy=_C

Thus, by the Fundamental Theorem of Algebra (for several different proofs
see the Solution to Problem 5.8.4), it is clear that F is onto. F'(1,1,0) =
F(1,0,1),s0 F is not injective, in fact, F/(u,v, w) = F(v,w,u) = F(w,u,v).

Solution to 5.9.2: Using Rouché’s Theorem [MH87, pag. 421], it is easy
to conclude that p(z) has two zeros inside the circle |z| = 3/4.

Solution 2. The constant term of p is 1, so the product of its roots is 1, in
absolute value. They either all have absolute value 1, or at least one lies
inside |z| < 1. The former is not possible, since the degree of p is odd, it
has at least one real root, and a calculation shows that neither 1 nor —1 is
a root. So p has a root in the unit disc.

Solution to 5.9.3: For |2| = 1, we have

-2 =1> |£(2)

so, by Rouché’s Theorem [MHS87, pag. 421], f(z) — 2® and 23 have the same
number of zeros in the unit disc.

Solution to 5.9.4: Let f; and f, be defined by fi(z) = 32'%0 and
f2(2) = —€*. On the unit circle, we have

|A1(2) = 3> 1=fa2)].
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By Rouché’s Theorem [MHS87, pag. 421], we know that f and f; have the
same number of zeros in the unit disc, namely 100.
Let £ be a zero of f. Then

£1(6) = 3006% — * = 3006 — 3¢ = 36%° (100 — 3¢) £ 0
so all the zeros of f are simple.

Solution to 5.9.5: 1. Let f(z) = 422 and g(z) = 225 + 1. For |z| = 1, we
have

IF(2)] =4>3>g(2)] .

By Rouché’s Theorem [MHS87, pag. 421], f and p = f + g have the same
number of roots in |z| < 1. Since f has two roots in |z| < 1, so does p.
2. There is at least one real root, since p has odd degree. We have p/(2) =

10z* + 82, so p’ has two real zeros, namely at 0 and —(4/5)3. Moreover, on
the real axis, p’ is positive on (—o0, —(4/5)%) and (0, o), and negative on
(—(4/5)3,0). Thus, p is increasing on the first two intervals and decreasing
on the last one. Since p(0) = 1 > 0, also p(—(4/5)3) > 0, so p has no
root in [—(4/5)%, 00) and exactly one in (—oco, —(4/5)3). (The real root is
actually in (—2, —1), since p(—1) > 0 and p(-2) < 0.)

Solution to 5.9.6: Let p(z) = 32% + 825 + 2° + 223 + 1. For |2] = 2, we
have

Ip(z) — 32°%| = [82% 4 25 + 223 + 1
<8l28 + 2P + 222 +1
= 561 < 1536 = |32°
so, by Rouché’s Theorem [MH87, pag. 421], p has nine roots in |z| < 9.
For |z| = 1, we have
|p(z) — 828| = 327 + 2° + 22° + 1|
<32+ |2° + 22> + 1
=7<8=|82°

and we conclude that p has six roots in |z| < 1. Combining these results,
we get that p has three roots in 1 < |z| < 2.

Solution to 5.9.7: For z in the unit circle, we have
|5z2| =5>4> |z5+z3+2|

so, by Rouché’s Theorem [MH87, pag. 421|, p(z) has two zeros in the unit
disc. For |z| = 2,
|2°| = 32> 30 > |2® + 52° + 2|
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so p(z) has five zeros in {z||2| < 2}. We conclude then that p(z) has three
zeros in 1 < |z < 2-

Solution to 5.9.8: Let p(z) = 27 — 423 — 11. For z in the unit circle, we
have

p(z) — 11] = |¢" - 42°| <5< 11
s0, by Rouché’s Theorem [MH87, pag. 421], the given polynomial has no
zeros in the unit disc. For |z| = 2,

Ip(z) — 27| = |42° + 11| < 43 < 128 = ||

so there are seven zeros inside the disc {z||z| < 2} and they are all between
the two given circles.

Solution to 5.9.9: Rescale by setting 2 = e~'/5w. Then we need to show
that exactly five roots of the rescaled polynomial

pe(w) = w’ +w? 4+ 6,

with 8 = €2/5 — 0 as € — 0, converge to the unit circle as ¢ — 0. We have
po(w) = w?(w” + 1). Since two roots of py are at w = 0 and the other five
are on the unit circle, the result follows from the continuity of the roots of
a polynomial as functions of the coefficients, see 5.9.27.

Solution 2. Let q(z) = 22 + 1, so

p(2) — a(2)| = el2|" = 7€~/

on the circle |z| = re~1/5. Also,
lg(2)| = |22 + 1| > r?e 25 -1

on |z| = re~1/5. Since r < 1, r7 < 72, and r7e"2/% < r22%/5 _ 1 for
¢ sufficiently small. Then |p(z) — q(2)| < lg(2)| on |2| = re~'/5, and by
Rouché’s Theorem [MH87, pag. 421], p and ¢ have the same number of
zeros inside |2| = re~1/5, namely two. By the Fundamental Theorem of
Algebra (for several different proofs see the Solution to Problem 5.8.4), the
other five roots must lic in |z| > re~1/5.

Now take g(z) = €27, so

Ip(2) — q(2)| = |22 + 1| < R% /5 +1

on |z| = Re~!/% where
la(2)| = R7e™*/%.

Since R > 1, we have R” > R? and

R26~2/5+ 1< R7E—2/5
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for ¢ sufficiently small. Thus, |p(z) — ¢(2)| < |q(2)| on |2] = Re~'/%, so p
and q have the same number of zeros inside |z| = Re~!/5, namely seven.
This leaves precisely five roots between the two circles.

Solution to 5.9.10: The determinant of A(z) is 8z + 622 + 1. For z in
the unit circle, we have

|82%| =8> 7> 622 +1]
s0, by Rouché’s Theorem [MH87, pag. 421], det A(z) has four zeros in the

unit disc. Also,

% (det A(2)) = 2(322° + 12)

with roots

0, £iy/ -
718

which are not zeros of det A(z). Thus, all the four zeros are simple, so they
are distinct.

Solution to 5.9.12: Let 2;,..., 2, be the zeros of p, and z a zero of p’,
z2# 2z;,1=1,...,n. We have

p’ 1
O:‘—— ==
2 (=3

=1

Using the fact that 1/a = &/|a|? and conjugating we get
Z T
|z~ zi[?

which is clearly impossible if 2 < 0.

This result can be generalized to give the Gauss—Lucas Theorem [LR70,
pag. 94]: The zeros of p’ lie in the convex hull of the zeros of p. If 21,..., 2,
are the zeros of p, and 2 is a zero of p’, 2 # 2;, 1 = 1,...,n. We have,
similar to the above,

which is impossible if z is not in the convex hull of zy, ..., z,.

Solution to 5.9.13: We may assume 7 # 0. Let n = degp and z, < z3 <

- <z be the roots of p, with multiplicities m;, ma, . .., mx, respectively.
If any m; exceeds 1, then p — rp’ has a root at z; of multiplicity m; — 1
(giving a total of n — k roots all together). We have

p(z) = c(z —z)™ - (& — )™
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The logarithmic derivative p’/p is given by
k

p'(z) _ m;
p(z) o r-g;
Its range on the interval (z;,2;41) (j =1,...,k — 1) is all of R, since it is
continuous there and
/ /
im P20 o gim 2O
z=z;+ p(z) z—z;— p(z)

Hence, there is a point z € (z;,z;41) where p’(z)/p(z) = 1/r; in other
words, where p — rp’ has a root. Thus, p — rp’ has at least k — 1 real roots
other than the n—k that are roots of p. Hence, p—rp’ has at least n—1 real
roots all together, and the nonreal ones come in conjugate pairs. Hence, it
has only real roots.

Solution to 5.9.14: Let R > X + 1 and consider the contour
Cg = I'r U [—Ri, Ri], where T'p = {2||2| = R, ®z < 0} and [—Ri, Ri] =
{z|Rz=0, -R <3z < R}

iR

I'r

—iR

Let the functions f and g be defined by f(z) = 2+ A, g(2) = —e®. On
I'r, we have
1F(2) 2 [zl = A > 1 = |g(2)]
and on [~Ri, Ri],
[f(2) 2 A>1=lg(2)|.
By Rouché’s Theorem [MH87, pag. 421], f) and f have the same number
of zeros inside the contour Cg, so fy has exactly one zero there. As this
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conclusion is valid for every R > A+ 1, we conclude that f, has one zero
in the left half-plane. As f is real on the real axis and f(z)f(0) < 0 for z
small enough, we get that the zero of f, is real.

Solution 2. We find the number of zeros of f in the left half-plane by
considering a Nyquist diagram [Boa87, pag. 106] rclative to the rectangle
with corners iy, —z + iy, —z — iy, and —iy, =,y > A. This will give the
change in (1/27) arg fA(2). Then we let z,y — co.

On the right side of the rectangle, as ¢ ranges from —y to y, fo(it) =
it+ A—cos t—isint has a positive real part, and its imaginary part changes
sign from negative to positive. On the top of the rectangle, as s ranges from
0to —z, fa(s+1iy) = s +iy+ A —e® cosy — ie® sin y has positive imaginary
part, and its real part changes sign from positive to negative.

Similar reasoning shows that on the left side of the rectangle, Rf\, < 0
and 3 f, changes sign from positive to negative. On the bottom of the
rectangle, Sfy < 0 and Rfx changes sign from negative to positive. Hence,
f» is never 0 on this rectangle and the image of the rectangle winds around
the origin exactly once. By the Argument Principle [MH87, pag. 419}, fa
has exactly one zero in the interior of this rectangle. Letting x and y tend
to infinity, we see that fy has exactly one zero in the left half-plane. As f,
is real on the real axis and f»(z)f\(0) < 0 for z small enough, we get that
the zero of f) is real.

Solution to 5.9.15: For |2{ = 1, we have

]ze’\_zl =2 S0 =1 = —1

so, by Rouché’s Theorem [MH87, pag. 421], the given equation has one
solution in the unit disc. Let f(z) = ze*2. As, for z real, f increascs
from f(0) = 0 to f(1) = ¢*~! > 1, by the Intermediate Value Theorem
[Rud87, pag. 93], f(£) = 1 for some £ € (0,1).

Solution to 5.9.16: By the Gauss-Lucas Theorem [LR70, pag. 94] (sce
Solution to 5.9.12), if p(z) is a polynomial, then all of the roots of p’(2) lic
in the convex hull of the roots of p(z). Let z = 1/w. The given equation
becomes, after multiplying by w”, w™ + w® ™! + a = 0. The derivative
of the right-hand side is nw”~! 4+ (n — 1)w™~2, which has roots 0 and
—(n—1)/n > 1/2. For these two roots to lie in the convex hull of the roots
of w™ +w" ™! 4 a, the latter must have at least one root in [w| > 1/2, which
implies that az™ + z + 1 has at least one root in |2| < 2.

Solution 2. The product of the roots of p(z) = az™ + 2 + 1 is its constant
term, namely 1, so all p’s roots are unimodular or at least one is in |2z <
1.
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Solution to 5.9.19: Let p(2) denote the polynomial and suppose p(zp) = 0
for some zg € D. Then 2 is also a root of (2 — 1)p(z). We then have

0=aozy™ + (a1 - ap)zy + -+ (@n — an-1)z0 — ap.

Since all the a;’s are positive and |z < 1, we have, by the Triangle
Inequality [MHS87, pag. 20],

a, = |aoz(’}+l + (a1 — ag)zy + - -+ (an — an—-1)2o0|
<ag+ (a1 —ag)+ -+ (an — an-1)

= a’!L ]
a contradiction.

Solution to 5.9.20: By Descartes’ Rule of Signs [Caj69, pag. 7], [Coh95,
vol. 1, pag. 172], the polynomial p(z) has zero or two positive real roots. As
p(0) = 3 and p(1) = —2, by the Intermediate Value Theorem [Rud87, pag.
93], p(z) has one and so, two, positive real roots. Replacing z by —z, and
again applying Descartes’ Rule of Signs, we sce that p(—z) has one positive
real root, so p(z) has one negative real root. Applying Rouché’s Theorem
[MHS87, pag. 421] to the functions f = p and g = 6z on the unit circle,
we sec that p has exactly one zero in the unit disc, which is positive as
seen above. Hence, the real roots are distinct. (The same conclusion would
follow from noticing that p and p’ have no common roots.) The imaginary
roots are conjugate, so they are distinct as well.

Solution 2. Graphing the polynomial y = z5 — 6z + 3 (for real x), we can
see the result easily. First, 5/ = 5z? — 6 and the only two real roots are
x = +4/6/5 and none of them are multiple. Now looking at the limits when
x — —oo and £ — oo, we can conclude that the graph looks like

14

/T w
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So there are three distinct real roots. There cannot be a forth, otherwise
y’ would have a third root. The other two roots are then complex and not
real; since they are conjugate, they are distinct, making for five distinct
roots, three of them real.

Solution to 5.9.21: Let z be a zero of the given polynomial with |z] = r.
If » < 1, then z lies in the given disc. For r > 1, we have

n—1 2

E C,‘Z1

i=0

,’,2n:|_zn|2:

By the Cauchy—Schwarz Inequality [MH93, pag. 69], we get
n—1 n—1
,’,2n < Z Ici'2 Z [2”2.
i=0 i=0

The second sum is a finite geometric series which sums to =

these, we have
n—1 7'2n
. 2 -
< (};Iczl ) (r2~_1>

Multiplying both sides by 2n , we get the result wanted.

Comblmng

Solution to 5.9.22: The product of all zeros of P(z) (with multiplicities)
equals +1, so, if there are no roots inside the unit circle, then there are no
roots outside the unit circle either. Hence, all roots are on the unit circle.
From P(0) = -1 < 0 and lim, o P(z) = +o0o0, it follows that P(z) has a
real zero in the interval (0,00). Since it lies on the unit circle, it must be
1,50 P(1) =0.

Solution to 5.9.23: Let R > 0. Consider the semicircle with diameter
[ Ri, Ri] containing R and its diameter. We will apply the Argument Prin-
ciple [MH87, pag. 419] to the given function on this curve.

Suppose n is even. Then

(Zy)2n +a2(iy)2n—1 +132 — y2n + 132 2(12]]2" 1

is always in the first quadrant for y < 0, so the change in the argument
when we move from 0 to — Ri is close to zero, for R large. On the semicircle,

2 2,2 132
n+azn1+ﬂ2= (+_+ )

which is close to 22" for R large. So the argument changes by 27n when
we go from —Rj to Ri. From Ri to 0,

y2n+ﬂ2 2y2n 1
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is always in the fourth quadrant, so the change in the argument is close to
zero, for R large. The total change is then 2#n, so there are n roots with
positive real part.

Now, suppose that n is odd. We have

(Z-y)2n + a2(iy)2n—1 +/32 — _y2n + /32 + ia2y2"_l

so when we go from the origin to —Ri, for R large, the argument change
is close to —7. The variation on the semicircle is again about 27n. The
change when y goes from R to 0 in the argument of

_y2n +,32 +ia2y2n~l

is about —#. Therefore, the number of zeros with, positive real part is now
(-r+2r—7m)/2r =n— 1.

Solution to 5.9.24: Let p > 0 and consider the functions

ZZ 2"
9n(2) = fu(1/2) = 1+Z+§T +ood
Since ¢,{(0) # 0 for all n, g,(z) has a zero in |z| < p if and only if f,(z)
has a zero in |z| > p. gn(2) is a partial sum of the power series for e*. Since
this series converges locally uniformly and {z||z| < p} is compact, for any
€ > 0 there is N > 0 such that if n > N, then |g,(2) — e*| < € for all z in
this disc. e? attains its minimum 7 > 0 in this disc. Taking Ny such that if
n > Ny, |gn(z) — €*| < m/2 for all z in the disc, we get that g,(z) is never
zero for |z| < p. Therefore, f,(z) has no zeros outside this disc.

Solution to 5.9.26: The function sin z satisfies the identity sin(z + #) =
—sin z, and vanishes at the points nm, n € Z, and only at those points.
For m a positive integer, let R,, denote the closed rectangle with vertices
(m — %)w + ie and (m + 3)7 & ée. The function sinz has no zeros on
the boundary of R,,, so its absolute value has a positive lower bound,
say 6, there. (The number § is independent of m because of the identity

sin(z + w) = —sin z.) Suppose (m — )7 — [a| > - Then, for z in R, we
have
1 1 1
< < . <
e e g ey ¥

implying that 171_01 < |sin z| on the boundary of R,,,. By Rouché’s Theorem
[MHS87, pag. 421] then, the functions sin z and f(z) = sinz + =1 have the
same number of zeros in the interior of R,,. Since sin 2 has one zero there,
so does f(z). As the condition on m holds for all sufficiently large m, the

desired conclusion follows.

Solution to 5.9.27; We will prove that the simple zeros of a polynomial
depend continuously on the cocfficients of the polynomial, around a simple
root.
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Consider
p(z) =g+ 412 + - + 42" =Gy, H(z —2z;)™  (an #0).
Jj=1

For (£o,...,&n—1) € C", let F be the polynomial given by
F(z) = oo + (81 + &)z + -+ + (@n1 + &n1)2" 7 + 302"

and, for each 1 <k < s, let 0 < rp < mingy; |2 — z;].
We will show that for some € > 0, |§| < € fori =0,...,n — 1 implies
that F' has m; zcros inside the circle Cj, centered at 2z, with radius .
Let ¢ be the polynomial given by

((2) =&+ &z 4+ & 12" L

On C}, we have

n—1

() < eMy, M=y (ri+|z])

j=1

and
k

p(2)] > lanlry® [T (2 — 2l — 7)™ = 6k > 0,
it
Taking € < 8;/My, we get [((2)|] < |p(2)| on Cy; therefore, by Rouché’s

Theorcm [MH87, pag. 421], F has the same number of zeros in Cj, as p. As
in this domain p has a single zero with multiplicity m;, we arc done.

Solution to 5.9.28: From

B (z) = Z nn—1)---(n—k+a,z""*,

n>k

we conclude that _
|18 e < |1 0)

for 0 < r<1,and 0 < 0 < 27. Suppose f can be analytically continued in
a neighborhood of z = 1; then its power series expansion around z = 1/2,

> Balz - 1/2)

n=0

has a radius of convergence R > 1/2. Let (y,) be the Taylor cocfficients
[MH87, pag. 233] of the powcer series expansion of f around the point
(1/2)e". By the above inequality, |v,| < |8.|. Therefore, the power series
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around the point (1/2)e?’ has a radius of convergence of at least R. So f
can be analytically continued in a neighborhood of every point of the unit
circle. However, the Maclaurin series [MH87, pag. 234] of f has radius of
convergence 1, which implies that at least one point on the unit circle is a
singularity of f, and get a contradiction.

Solution to 5.9.29: Without loss of generality, assume r = 1.

Suppose f is analytic at 2 = 1. Then f has a power expansion centered
at 1 with positive radius of convergence. Thercfore, f has a power series
expansion centered at z = 1/2 with radius 1/2 4 ¢ for some positive .

(D

()Tt

k>n

As

we have, forl <z <1 +e¢,

o=y L0 (1)

n>0
1 1\" k! 1\
-Sa(3) Satae(a)
k n k—n
k! 1 (1)
go knz:‘:)n!(k—n)! ( 2) 2
:Zakxk
k>0

which is absurd because we assumed the radius of convergence of 3 a,, z"
to be 1. This contradiction shows that f cannot be analytic at z = 1.
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Solution to 5.9.30: 1. As

2 2
_ _y 2% —(tanz)
t 2_,2_2 AT
(tanz) # 2%(tan z)?

the Maclaurin expansion [MH87, pag. 234| of the numerator has no terms
of degree up to 3, whereas the expansion of the denominator starts with
2%, therefore, the limit is finite.

2. As

1
tanz:z+§z3+o(z4) (z—0)

we have

o 22=22 32" to(z)
24 +o(2*)

(tanz)™2 — 2 (z—0)

so the limit at 0 is —2/3.

Solution to 5.9.31: If g has a removable singularity at infinity, it is a
bounded entire function, and so, by Liouville’s Theorem [MH87, pag. 170],
it is constant, which contradicts our hypothesis. If ¢ has an essential singu-
larity at infinity, by, the Casorati-Weierstrass Theorem [MHS87, pag. 256],
there is an unbounded sequence (z,) such that g(2,) tends to 0. Hence,
h(z,) tends to f(0), contradicting the fact that h is a polynomial and,
thus, has a pole at infinity. Therefore, ¢ must have a pole at infinity and
be a polynomial.

Let ({,) be any unbounded sequence. Since g is a polynomial, it is surjec-
tive and maps bounded sets to bounded sets. Hence, there is an unbounded
sequence (&) with g(§,) = {, for all n. Therefore, f((,) = h(£,) tends to
infinity as n tends to infinity, since A has a pole at infinity. Since this holds
for all unbounded sequences, we see that f has a pole at infinity as well, so
it is also a polynomial.

5.10 Harmonic Functions

Solution to 5.10.1: Derivating twice, we can see that

8%y 8%u

— =6r=——,

ox? o2

so Au = 0. The function f is then given by (see [Car63b, pages 126-127])

3

o= (3 5) =2 (5 -3y ) =+
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Solution to 5.10.2: Since u is the real part of an analytic function, it is
harmonic in the unit disc . By Green’s Theorem [Rud87, pag. 253],

Ou ou 0%y 0%y
oayie = aptn= [ (5 + 5 ) dotn =0

Solution to 5.10.3: 1. Let f = u + iv. Then v is identically 0 on the unit
circle. By the Maximum Modulus Principle [MH87, pag. 185} for harmonic
functions, v is identically zero on D. By the Cauchy—Riemann equations
[MH87, pag. 72], the partial derivatives of » vanish; hence, u is constant
also and so is f.

2. Consider 1
2

f is analytic everywhere in C except at 1. We have

i i0/2 | ,—i0/2
oy _ .6 +1 e/ +e . 0
() = i =t aa—ers = <ot (5 eR.

Solution to 5.10.4: We have u = R2°, z° = ¢°'°87, and log z = principal
branch of log with —7 < arg 2z < . 2° is analytic in the slit plane C\(—o00, 0]
and ad;es logz — 523—1, Hence, u = R2* is harmonic in the same domain.

Solution to 5.10.5: Let v be the harmonic conjugate of u. Then, f = u+iv
is an entire function. Consider h = ¢~/. Since u > 0, [h| < 1, h isa bounded
entire function and, by Liouville’s Theorem [MHS87, pag. 170}, a constant.
Therefore, u is constant as well.

Solution to 5.10.6: Let v be a harmonic conjugate of u, and let f = e“**,
Then f is an entire function and, for |z| > 1, we have

lf(z)' — eu(z) < ealog\z\+b — eblzla .

Let n be a positive integer such that n > a. Then the function 2" f(z) has
an isolated singularity at oo and, by the preceding inequality, is bounded
in a neighborhood of co. Hence, oo is a removable singularity of 27" f(z)
and, thus, is, at worst, a pole of f. That means f is an entire function
with, at worst, a pole at oo, and so f is a polynomial. Since nonconstant
polynomials are surjective and f omits the value 0, f must be constant,
and so is u, as desired.

5.11 Residue Theory

Solution to 5.11.1: Since the r;’s are distinct, f has a simple pole at
each of these points. If Ay, Aa, ..., A, are the residues of f at each of these
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points, then

42) = f() - E -

is entire. Clearly, g tends to zero as 2 tends to infinity, so, by the Maximum
Modulus Principle [MH87, pag. 185], ¢ must be identically zero and we are
done.
Solution to 5.11.2: We have
3
a_; = Res(cot 7z, —1) + Res(cot 7z,0) + Res (cot 72, 1) = -

For n < —1, the coeflicients are given by

1 cot'rrzd

Qn = — —dz
1
27 Jo=3j2 2"F

cot rz cot mz
= Res (W, —1) + Res (W, 1)
cot 7rz cotmwz

= ((—1)‘"‘1 + 1)

Solution to 5.11.4: If the roots of f are not distinct, then some zq satisfies
m—1
f(zo) = f'(z0) =0.But f'(z) =1+z+---+ m, S0

0= f(zo) = f'(ao) =

and z¢ = 0. However, 0 is clearly not a root of f. Hence, the roots of f are
distinct and nonzero.
For 0 < k < n— 2, consider the integral

Lk
24
c,. f(z) ‘

where C, is a circle of radius r centered at the origin such that all the roots
of f lie inside it. By Cauchy’s Theorem [MHS87, pag. 152], I}, is independent
of r, and as r — 00, the integral tends to 0. Hence, I; = 0. By the Residue
Theorem [MH87, pag. 280],

ZRes Zf’(z Z 5 'sz "

1f(21)—%r i=1

Since 2 < m — k < n, we get the desired result.

I, =
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Solution to 5.11.5: Let the disc centered at the origin with radius r
contain all the zeros of (). Let Cr be a circle centered at the origin with
radius R > r. Then, by the Deformation Theorem [MH87, pag. 148],

Plz), [ P

z

c Q(2) B Cr Q(z)

where C is any closed curve outside |z] = r. As

dz

{% —0(14%) (2 — o)

we have P(2)
VA —
GG =0 () 2mR=o() (R~ o0)

and the result follows.

Solution to 5.11.6: We have

2% +e? 1 e 1
[ e el e L Mt e

We will usc the Residue Theorem [MH87, pag. 280].

1
—,2) =1
Res(zﬂ2, )

Let f(z) = €*/2%(z — 2). The following expansions hold:

e’ 1424 P n 23 " 1 1 1
— e — z - P (SN ———— e ..
2%(z — 2) 2 3 222 42 8

__ L3 _5_
222 42 8
thus 3
Res(f(2),0) =-7
Also,
Res(f(2),2) = Bd_zz_: ) 2=0.

Therefore, we have, for a > 2,

22 +éf , 1 i
/Ca ;2—(;—:—2)(12: 27i Res (;_—2,2> +RGS(f,0)+ReS(f,2) = ——2—
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and for a < 2,

22 +e* . 3mi
/Ca mdz =27 Res(f(z),O) = — 2-'

Solution to 5.11.7: Let f(z) = V22 —-1=3, ( 1]/92 ) 2%k, f is ana-

lytic for |z| > 1; therefore,

V2% —1dz = —2mi Res (f(z),00).
c

We have
L (2)- b
()
) Res (f(2), 00) = Res (—%f (1) ,o) -1

We then obtain

/ Vz2~1dz = —mi.
C

Solution to 5.11.8: Using the change of variables z = 1/w, we obtain

L
2mi Josinl  2mi Jy o5 w?sinw

where the contour is oriented clockwise. By the Residue Theorem [MH87,
pag. 280], we have

-1 —dw 1 1
— . = Res 5, T + Res 5 , —T
270 Jjppy=5 w?sinw w? sinw w?sinw

+Res (

—— 0] -
w?sinw’

We have

1 . wFT 1
Res o , 2w ) = lim 5 ? ]
wesinw w—ET W4 Sin w T
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and
1 1
w?sinw  w? (w—w3/3 +wd/5! +--)
1 1
T wdl— (w3l - wi/5l+ )

= 513 (1+ (w?/3!1 —wi/5t+--)

+ (w2/3!—w4/5!+---)2+--')
=1/3w+---

Then,

1 dw 2

1
278 Jypj=5 wsinw T 6 w2

Solution to 5.11.11: (¢?™* + 1)~2 has a double pole at +i/2. By the
Residue Theorem [MH87, pag. 280], the value of this integral is 27i times
the sum of the residues of (€2"% + 1)~2 at these two points. We have
€™ = ¢ = @274/ = 1 4 (2 —i/2) + 202 (2 ~ i/2)% + - - -
hence,
e¥™ 41 =2n(z2—14/2) - 2n%(z —1/2)* — . ..
and so
(€** +1)? = an?(z —i/2)* + 87 (2 — i/2)° + - -~
The residue at i/2 is

i (e=17)

d 1
z:i/Z— dz (47r2 +8n3(2 —14/2) + O((z — z/2)2))
87+ 0(2—1/2)
T (42 + O(z — 1/2))?
1

—5
Using the fact that —e?™ = e™e?"%, an identical calculation shows that

the other residue is also —1/2, so the integral equals —2i.

z=1/2

z=1/2

Solution to 5.11.12: A standard application of the Rouché’s Theorem
[MH87, pag. 421] shows that all the roots of the denominator lie in the
open unit disc. By the Deformation Theorem [MH87, pag. 148], therefore,
the integral will not change if we replace the given contour by the circle
centered at the origin with radius R > 1. Using polar coordinates on this
circle, the integral becomes

1 27 RelliBiReinB
2mi /0 12R12¢12i0 — QR9¢940 { 2R0e50 — 4R3e30 £ 1
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1 [ do

b /0 12 —9R-3¢-3i0 | QR—6¢—6i0 _ AR—9¢-90 | p-12
which has the limit 1/12 as R — oo. The value of the given integral is
therefore, 1/12.

Solution to 5.11.13: We make the change of variables u = z — 1. The
integral becomes

/ (2u + 1)e* 1/ du,
lu+1|=2

Using the power series for the exponential function, we get
2
(2u+1)e!TV/* =e <2u+3+ - +> .
u

The residue of this function at zero, which lies inside |u + 1] = 2, is 2e, so
the integral is demi.

Solution to 5.11.14: Denote the integrand by f. By the Residue Theorem
[MHS87, pag. 280], I is equal to the sum of the residues of f at —1/2 and
1/3, which lie in the interior of C. I is also the negative of the sum of the
residues in the exterior of C, namely at 2 and co. We have

Res (£,2) = lim(z ~ 2)f(z) = —1/55.
As lim,, f(z) =0,
Res (f,00) = _zl—iglo zf(z) = 0.

So I =1/5°.

Solution to 5.11.15: The numerator in the integrand is 31; times the
1

derivative of the denominator. Hence, I equals 5. timcs the number of

zeros of the denominator inside C; that is, I = 3.
Solution 2. For r > 1, let C,. be the circle |z| = r, oriented counterclockwise.
By Cauchy’s Theorem [ME87, pag. 152], and using the parameterization
z =re'f,

1 zn—l

I=— d
2 Jo, 32™ — 1 ?
1 27 rheint

oo o 3rmet™ —1

do.

As r — 00, the integrand converges uniformly to %, giving I = §

Solution to 5.11.16: The integrand has two singularities inside C, a pole
of order 1 at the origin and a pole of order 2 at —1/2. Hence,

e . e’ e 1
o7 = (e (g 0) o (e 3))
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The residues can be evaluated by standard methods:

ez ez
= =1
ReS(z(2z+1)2’0) 222+ 1)2|
e 1 1 d (e*
Res | oy —= | == — (=
es(z(2z+1)2 2) 4 dz (z) R
_1(e ey s
T4\ z Z Y - 2

Hence,

e 3
¢ dr=omi1--2).
| s e =i 2\/6)

Solution to 5.11.17: The function f has polesof order 1 at z = +1 and a
pole of order 2 at z = 0. These are the only singularities of f. The winding
numbers of v around —1, 0, 1 are 1, 2, —1, respectively. By the Residue
Theorem [MH87, pag. 280],

1
2mi

/ F(2)dz = Res (f, —1) + 2Res (f,0)  Res (f, 1) .

Since 1 and -1 are simple poles, we have

Res (/1) = Iy = D/6) = gy =
. —e* e—l
Res(f,=1) = lim, (e + DI() = 5| _ =%
z=-1

To find the residue at 0, we use power series:

z 1 2
__i*=_2(1+z+z—+---) (1+22+24+--)
z

22(1 — 22) 2
1 1 1
= —(1 )= =4 4.
z2( +z+--) z2+z+
It follows that Res(f,0) = 1. Hence,
=5 €9
2m/f +2+2 + cosh 1.

Solution to 5.11719: The roots of 1 — 2zcosf + 22 = 0 are z = cosf £
iv1 —cos?@ = et'®, Using the Residue Theorem, [MH87, pag. 280], we
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get

1 / zn dz _ 1 / 2m d
278 Jyz=2 1 — 22 cosO+22°  2mi (2|=2 (z — €%)(z — e ) Z

= Res ((z — ew)z(z — -y e"9>

2" 0
-+Res - — e "
(2 — €Y (2 — e10)’
2" 2"
Cz—e P z—e¥
z=eif z=e—16
ezne e—1n9
- 610 6—10 e—‘i9 619
eine e—in()
T Teib _gib
sin(nd)
" sinf

Solution to 5.11.20: Substituting z = ¢, we have

27 27 i0
do i
I(a) =/ 03 o—10 22/ iee 201'0
0 a+ —HE— o 2ae¥ +e20 41

_2/ dz
i e 224 202 +1

The roots of the polynomial in the denominator are —a + va? — 1 and
—a — Va? — 1, of which only the former is within the unit circle. By the
Residue Theorem [MH87, pag. 280],

I(a) = 47 Res (

—a+\/ﬁ).

224 2az+1"

Since the function in question has a single pole at z = —a + va? — 1, the
residue equals

1 1
242, 7 2VaE-1

giving I(a) = %
Consider the function F defined for £ ¢ [—1, 1] by

2 do

F&) = 0 £+cos0'
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As F'(£) exists, F is analytic on its domain. Combining with the previous
results, we have that the function

2

F(f)—“gi—l

is analytic and vanishes for £ > 1; therefore, it must be identically zero.
From this, we obtain that

/2” & o
o &+cosf £2 -1

Solution to 5.11.21: Let f be the function defined by

in the domain of F.

1= ey
We have o w0
/le fz)dz = / T=2rcos6 412
For |r| < 1, _
Res (f(2),r) =
and

/2” do o
o 1—2rcos@+r2 1-—r2
1 i
Res (1:),7) = 1272

/2" do 2%
o 1—2rcos@+r2 r2_-1

Solution 2. Suppose that r € R and 0 < r < 1. Let ug be defined on the unit
circle by ug(z) = 1. The solution of the corresponding Dirichlet Problem
[MH93, pag. 600}, that is, the harmonic function on D, u, that agrees with
ug on D is given by Poisson’s Formula [MH87, pag. 195]:

For |r| > 1, we get

and

1—r2 27 Ao

ulr) = .
) 2 jn 1 --2rcosf + r?

but w = 1 is clearly a solution of the same problem. Therefore, by unicity,
we get

/”'2" do 2
Jo 1—2rcosf+r2 112
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If r > 1, consider a similar Dirichlet problem with ug(z) = 1 for |z| ==
We get

2 E 27
r<—1 do
1 =u(l) =
(1) 2 jo, 1— 2rcosf +r?
50 ‘
2 do _or
/0 1-2rcosf+72  r2 -1

If r < 0, a similar argument applied to w(—7), u(—1) leads to the results
above, noting that cos(@ — r) = — cos §.

Solution to 5.11.22: Evaluating the integral using the Residue Theorem
[MH87, pag. 280], we have

[ __(0:442__ o =R / oo
‘/0 ]l '*‘ CO‘)‘ 9 - J() 1 ‘*‘ (0526'

™ 64110
= | ———— —
" 4 I G i
™ 416
Y A
‘/0 6 -+ 821‘9 + (2—210
3 dz
o= 4§]R -—-a’———f':__.-—_._ ;g'__
| =1 24402 4 12z
.,2
)T N . »
/H 1 24 +62+1
! 2 ') =
— 9% 2 [ Res ( ---------------- 34 2v/2
7r|\€ T es 1 3+ 2v H
-~ 4n ( 34 A ) = —t2n+ .
42, NG

o D\G ¢ )
L

R
2 7 Jo 2% - 5e%0 4.2

r 23
[ P

=1 222 — Bz + 2

02 1] 2i8
-1 L 6816 + g2
— do

iz

We evaluate this integral using the Residue Theorem [MH87, pag. 280].
As the integrand has a simple pole at z = 1/2 inside the unit circle and na
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) dr
z==1/2 8

/

others, we have

Solution to 5.11.24: Consider the contour in the figure

/
\\ /
N s
\\\ rd
\\\\\ L
We have
r27 1 — cos(nf 275 | — cos(n) =g ] . gin?
/ ————————E-——z df = lim / ———————— g6 = lim / —————————— do,
Jo 1—cosb e=0 f, 1—-cosf -0 /g 1-—-cosf
the last equality because the integral of f(6) = Zf{'—‘(%%z vanishes (since

f(2r — 6) = - f(8)). Next,

where I, is the almost-circle {€!? : ¢ < 8 < 2 — ¢}, traversed counterclock-
wise. The latter integral equals

which, when ¢ — 0, tends to

) o 1 N

2 2 ‘
ni-- Res ( T l.) = 27n,

i —1)2
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so the integral in the statement of the problem has the value 27n.

Solution to 5.11.25: Let z = €. Then

™ sinn@ i / 2t — 2" dz
T ad = T T
J_.. sind Jajm1 2 2t iz

1 211
= - / ————————————— dz
7 i;‘;':-l e~ 1 AL
T -
= - / ‘\l -+- 2 +. ...... {,._ «h 2)
[ |z|==1
n—1
A S2k—n g,
- ‘2_‘ / “~ d‘. .
k=0 Y |2l=1

If n is even, only even powers of z occur, and each term vanishes. For odd

n, we have

. Sinf @ Jp=1 #

/ osinnfl 1 / 4 o
|

Solution to 5.11.26: We have

T ing
(ﬁY ! el Al . e“/n '6)
Onla) + 18, (a) = | aTeed d

—n

_p €210 — 2qet0 4 1

=2 e
J|Z|:1 2% - 2az+ 1

. " Z.TL
2 , ——————————————— dz

dé

Let f(z) denote this last integrand. Its denominator has two zeros,

fEem— L a2

a =+ va? ~1, of which a — Va2 — 1 is inside the unit circle. The residue

Res ( fa— \/a?" - 1\) = =

(a—
Therefore, by the Residue Theorem [MH87, pag. 280],

2 ( a - \/455—:—1-)“

m(a) +15,(a) =

a2 ~1~a—+Va2—-1)

Since the right-hand side is real, this must be the value

Sh( a) =0.

of C,(a), and
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5.12 Integrals Along the Real Axis

Solution to 5.12.1: We have

[~ k@=L [ o e HD
JmA\&L ) Jn\d ) € "_n

dux.
J-—co R S (IE + i)m+-] (:E - i)n—!—l

If m = n, we get

(e8]

1 1 dz 1
il 0 = —alctan
A1 < i

-0
Ifm < n,asz?+ 1= (z—i){x+1i), we have

1 /°° 1 @t
T o T2+ 1(x— i)™ -

Since the numerator has degree 2 less than the denominator, the inte-
gral converges absolutely. We evaluate it using residue theory. Let Cp =
[~ R, R|UTR be the contour

-R 0 R

We evaluate the integral over Cr. For R > 0 sufficiently large, the integrand
has a pole at z = i inside the contour. Calculating the residue, we get

m--m+1 / vy 1Y
d ((ﬁm - gyt (@19) ) =0.

((lf - ,‘i)n—-m—l—l ,

=i

By the Residue Theorem [MHS87, pag. 280], the integral over C'x is 0 for
all such R. Letting R tend to infinity, we see that the integral over the
semicircle 'y tends to 0 since the numerator has degree 2 less than the

denominator. So
1 X2 ] (a: + ,‘i)i’l“"’l'na
- 5 et - dx == (.
T Joiee 241 (2 —d)n™
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Solution to 5.12.2: Consider the following contour around the pole of the

function
. 1 - ¢tlalz
2) = —5—
2
iR
e e
" I .
,/”/ \\\\\[UQ
e \\
/7 N\
/ \
/ \

| |
)\

) “e0€ R

On the larger arc » =

oa
1

R(cos @ +isinf), so

1 — eilalz 1+ e-—R|u|sin [t} o '
’ 2 < T =0(R?) (R- ).
Then
o0 - ; . N\
1 - cosax 1 . 1 — etlel
/ e I = 5§]FE‘ (m Res l( —————— ;0 )
J() X “ \ “ .
_lg (ﬂ.,.; o —ilalele? ‘)
z=0/
_mlal
2
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where Cr =I'p U [-qR, R].

—-R 0 R
Therefore,
R iz _ 1)2 24z
/ -gf————,,——U—— Iz + / -‘:———5——}-«17; + 2i / fi—'f =0-
J-R o JUR z JIR z
We have 0
get® — 1 .
/ L——;———-dz: =0(l) (R-> 00)
Cr

r ) 2 R-—00

» O *‘;., ,\ 2 " o R ,3“: _ 1 2 \
[~ (522) = 2 i ( / <>d)

| dz
= —=2i lim -—
2 R—oo J e 2

=T.

Solution 2. Assuming Dirichlet's Integral

*© sinzx T
——dr = -
Jo z 2

whose evaluation can be found in [Boa87, page 86}, we can use integration
by parts:

{ * gin® g o > 1sin2c |
- dr = —=sin®z| - — Ly
0 r“ r 0 i} T xr
f°° siny
=0+ / St A
Jo Yy
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Solution to 5.12.4: The integrand is absolutely integrable, because it is
bounded in absolute value by 1 necar the origin and by 1/|z|® away from
the origin. We have

. 1, .. i3 1 . g i o i
Sln3 I=—— (ell —e 11,, = —— (eﬂaa, e 3¢’ 4 3e m)
&1 ’ 8i
/ 1
= ( : ‘Biz —_ _{ef;‘m )
3% 1

For 0 < € < R, consider the contour Ce g =I'p U~ U[—R, —¢] U [, R]

——————
—————

f—,r\

-R —€ Q€ R

by Cauchy’s Theorem [MH87, pag. 152],
o 3 A 331‘32: J r d
0= / Ll = / + f + / +f .
J Ce,R z JI'Rp J [——-R,—-E:] Ye } [E,R]

The integral over 'y is bounded in absolute value by (4R™3)(27R) since
le*| and |e*!#| are bounded by 1 in the upper half-plane, so it tends to 0
as R — oo. To estimate the integral over ., we note that

b1 (@ o)
23 T\ 2 2 o

2 3 .
=—+ > + O(1) (z — 0).

P2
Hence,
PRES i 0 7 ] [ \
[(Ber - 2 __ 3 Lom)iee®
‘ /’YE ————'—155" dZ == | } - ( E;i—e‘Bie (‘ei ] l“ ‘)(1)) ee d(?
2i 0 e 0
= / e~ %949 4 3¢ / dé + O(¢)
6“’ o -) w
=0—3mi+ O(e) — -3 as € - 0.
Thus,
/ —€ ggiz _ gdixw R3 iz __ 3ix \
lim ( / -—E————gi——— dz + / 4—5————5—‘———— da | = 3mi
Sy \Je @ Jeo @ ,
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The integral I is one-fourth the imaginary part of the preceding limit, so
f - 37,
4

Solution to 5.12.5: Let

o ‘Ei,z 2:3 Bil zEI

j(z) = -’——‘2 i 3 == - Y - 2‘w
(22 +1) (z +1)2%(z — 1)

Integrate f over a closed semicircular contour Cr = [—R, R|UT'gr with
radius R in the upper half plane.

____ — e,

-R 0 R

The portion [—R, R] along the axis gives

(g8 )
/ e (€05 £ + i sin x)dx
J-R ((Z!“ + 1)2 ’

whose imaginary part is
1 a3sing
/ YACEIELEY) dz.
J-r (&% +1)?
This integral converges as B — co to
/"‘” z3sinz J
e
J—cc (.’1/ + l]‘

To establish the eonvergence, note that integration by parts gives

3 . R R o AN
/ B 23sing ] (- cosz)a3 ! . /‘R 082 d ( 3 )d’
- ; AT = AT -+ 0SL = | w3 e
Jogr (@*+1)? (z2+1)? |_p  Jogr dz \ (2% +1)2,
and ) ) 3
(—cosx)z 1
e[ L — =0 a3 o X
(x? +1)2 lz| 7 '

1

and the second term is integrable by the Comparison Test [Rud87, pag. 60],
as it is cos x times a rational function; that is, O(1/2?). The real part also
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converges by similar reasoning, and since the integrand is odd, it converges
to zero.
The integral of f over I is treated as follows. Let z = Re® for0 < 0 < &

Then 4 i R(cos 0-+isin 0) 3
elzz:{ m ell A("OE:' -+ 81 2 . .
/ s dz = / s iRe® do .
Jon @D o (1)

This is bounded above in absolute value for large R by
g Y

rT
A / o~ Rsiné gg
Jo

for a constant A and this integral tends to zero as R — oo (Jordan’s Lemma
[MH87, pag. 301]). Finally,

/. f(z)dz = 2mi Res(f, 1)
JCR

and since we have a second order pole, we have

d et z% 1
I{ P‘ "“ = v;wh————.——-) = ——
CS(] 3 L,) dz ( (z + 2)2 o de
Thus,
[ \ Wi
f(2)dz = —
/ Cnr ’ 2e

and so the required integral is 7 /2e.

Solution to 5.12.6: Using an argument similar to the one in Problern 5.12.5

with the function

we get

< gsinz ¢z
‘ [ -—f——El—f—E dz = R (2ri Res(f, 1)) = R2 nz-% (,——(———%ﬁ)

oo (24 1)
. T
=Rl 27— | = —-
( e 46 ) 2e

Solution to 5.12.7: The function

l?!‘

is entire and satisfies g(z) = o(]z|?) (|z| — o0) so the given integral, I say,

is absolutely convergent.

A
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We have

('CO ‘ei:r OO e iz
Ll.[ = I f'id’a’: ‘|" “““““““““““““
./__m z(z? + a?) o 2(Z% + az)
sonsider the integral
f eiz
————— r———"—-112
u/C'n z(z" + aZ)

where the contour Cg is the interval and the semicircle with the same
endpoints oriented counterclockwise.

iR

ia \
/ \

~R 0 R

By Jordan’s Lemma [MH87, pag. 301], we have

<Z /r ————— LI dz=o0(1) (|z| — o0)
= R Jr, (22 +a?) ' '

so the contribution from the semicircle to the integral above is zero. By
the Residue Theorem [MH87, pag. 280], we have

, iz [ g o
/ S dz = 2mi Res ‘ ————— N , m) = ———( ———————

Jen 2(2% +a?) \ 2(2% + a?)

So

o0 et e @

dr =
./_c,c, z{x? + az)( * ia(2ia)
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By a similar argument, considering the contour C¥,

8
—-R /—f\ ) R

\ = 7
\ //

\ /
\\ /
\ /
\\ //
G / T
\\\\ e - R
‘\5—_fﬁ____—’
iR
we conclude that
X0 -3z —iz
e e ]

Joeoo (X2 + a?)

/ e 1% A 4 — bz
== 27t Res ( e Q) ) + Res ‘ —————————————
2(z? +a?)’ y \ 2(2? + a?
e ” 1
—ia(—2ia) a?
0
=T (] — g—a’)
T a2 €
2a
Solution to 5.12.8: We have
sing _ sinz(z+3i) e\ | . [ €% )
T — 3% = 229 = _3!____§ + 313 \:‘5_—“(5 :
T — 3t x 4+ 9, T4 +9)
So R R ; R
sinx | re'® . ‘ e
/ ——dr =S / ———— dz + 3i3 / e dz.
~R T3 Jorz*+9 Jop = +9
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As 2% 49 has simple zeros at 431, by the Residue Theorem [MH87, pag.

280,
zZ L
——————— dz = 2mi Res (f, 3i) = e i
}CR Z" + 9 (j ) "¢
By Jordan’s Lemma [MHS87, pag. 301], we have
—_fi(‘:’z_z_-- / 2| < /n _‘.f!___;_i__ d < ____‘_ _____ = ]’ I{’ — O
J/F Frade| s | el T =o(l) (R~ o)

80, in the limit the integral along the upper half-circle contributes nothing.

We can evaluate the second integral in the same way, getting

r 82
e [
/ dz =

Joun 2249 3

-3 T

Again, in the limit, the upper half-circle contributes zero, so

. B sing 3
lim ———dz = e 7.

By Cauchy’s Theorem [MH87, pag. 152],

/C =

where C(g, R) is the contour ' U~y U [e, 7 — €] Uy, U7+ &, R].

_________

( Yo s \
)\ 0\
—-R —€ Q€ m R

The poles of f at 0 and 7 are simple; therefore,

!}m / F(2)dz = —mi Res (f(2),0) =1
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lim / f(2)dz = —mi Res(f(2),n) = i.
£—0 IV )

We also have, for |2| = R,

——e =0 (R%) (R~ o0)

SO

lim / f(z)dz = 0.

R-—o00 R

Taking imaginary parts, we obtain

Solution to 5.12.11: An argument similar to the onc used in Prob-
lern 5.12.9 with the contour around the simple poles —1/2 and 1/2, gives

" cos(mz) L/ ez ].) e 1\
SOTE) dz =R (i (Res | —o——, —= | + Res | ——r, = ))
J/_oo 21 (7”(\ - (\42‘! 1 z) TRe 2,), ,
e.‘;(z'_ (A
Friliti) =

Solution to 5.12.12: Cousider the following contour C and the function

s ——,

‘We have

37‘7'/2 ‘Jq',
s / F|;4+1“iz' S R‘Z 1
o rlR -1 ) - '+ "
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which approaches 0 when R — co (note that for z € Ly, |e"*| = - e Snz o

1). Taking the real part and using the fact that for these roots 1/28 = —2,
we have
OO T / in
Cos T [4
/ - dz == lim R ( / =TT a!z)
J BN 2 o | R—o0 \Jo #* +1 )
( etnz A [ einz . N\
- R g | e i /4 CPRace | el Sai/d
R (Zﬂw ( Res et 1) + Res e 7€ / | )1)
/ ein'* einz ‘
\ 42” z=xe™i/4 42’“’ PRSP LLVEY
eV [ m n )
== —— = ( cos —z= + sin ~— '
vZ o\ V2 V2)

Solution to 5.12.13: Consider the same contour C' as in Problem 5.12.12;
. . : i i | .
which encircles two of the poles (¢ T and e* ), and the function

We have

2241 (. 22 41 74\ ‘22 +1 3ri/d
Jo aty1d =g\ (mes (e )+ Res (G o)
=i (:"_2__"5_3_ s )

\ 423 |, i 423 |, _omisa)
T
= ——_‘Z (( + 1)2|z:::e’”'/‘ + (2% + 1) ' € "”/4)
- iy
=7

Solution to 5.12.14: This integral converges, by Dirichlet’s Test [MH93,
pag. 287], since

T
lim ————— =0
=00 2244 +20
monotonically and
3
/ sinz dx = O(1) (c— =00, 3~ 00).
@
Consider the integral
i . z
I= / f(2)e'* dz where f(2) = —————e-
Jcmj‘) e (2) = 2+ 4z + 20
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The curve C'y is the contour

—————————

/ ]

—-R 0 R

where I'p is the semicircle of radius R > 0. The integral I is equal to the
sum of the residues of g(z) = f(z)e** inside of Cp. f has poles at —2 £ 44,
of which only—2 -+ 4i lies inside Cg. Hence,

I == 271 Res (ga -2 + 4l) = 27 -—»hjgll—ﬁiz ::_:_Z——i'_:j_lil—; = Z‘E(_— 2 + 4’1.)13_-4_ 2!2'.

We have, by Jordan’s Lemma [MH87, pag. 301],

[ 10| < R / i2) | 7] < Rr \
. { | |dz| < —5——m—x =o(l) (R - .
|y, 9o < T J 1N S g = o) (B eo)
S0,
rOQ ) 4 rOO - \
J/ f(z)sinzde = ( / Flx)e' dz ’

R-»00

=G (215(--:: + i)™t

T, o
= ——(2cos 2 +s8in2).
Qet” ’

= %( lim [ f(z)e* dz\'
/C /

Solution to 5.12.15: Consider the following contour avoiding the pole of
the function
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e

-R —€ 0€ R
we have
" PPN 21z > B
[ 2t o) / Pt 1) gy o B AL
Jo, 2 r, R R?

which approaches 0 when R — oo (note that for 2z € I'p, |€%*| = 7% < 1);
and around 0,

/

z+ie* 1 . (i2)? \’ i ,
-———23———- = :;5 ( z41 ( 1 +12 '—-é—“ 4o ’) = ‘;" e o S”\iZ)v

\

where g is analytic. Then

[ 24 ie'? " dz i [ dz '
—————————— dz =i / - -z / — + (2)dz
j 3 ' Js € 3 2: Jye 2 ‘)/ g( ‘

~
h

T [
=—3 + / g(z)dz.
Ve

&

Now since

3 |
/ g(2)dz
Jve

< Ima;>< lg(2)lme — 0 as € — 0
z|<e

the integral along the real axis will approach 7. Taking the real part, one

gets

gl =

/" * r—sing
Jo z3

Solution to 5.12.16: Denote the given integral by I. Consider the function
f(z) = (1 + 24 2%)72 f has two poles of degree 2 at 2 = (—1 +14+/3)/2.
We cvaluate the contour integral

I = / f(2)dz.
JCn
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—-R 0 R

By the Residue Theorem [MHSE7, pag. 280], for R large enough,
I' = 2mi Res (f,~1+ iV3) /2). As R tends to infinity, the integral along
the upper half-circle tends to 0 since the denominator of f(z) has degree
4 higher than the numerator. Hence, I’ tends to I as R tends to infinity.
Therefore,

d e
== 2 - ~—— - (1 -+ ;\ /. 2
mio (2 + (14 iv3)/2) )

z=(—1+iv3) /2

=

Consider the integral

Pa——— dz
'}C(:' R ] + 'Zz ’

i G,
- —
ot —

~—
o
g
e

—
™~
AP )

Oe jw

i
o
A
I
i
m
m e~
N
&
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where the small circle, 7, has radius ¢, and the large circle, T'g, radius R.
Since z2*! is defined to be e?*~D108z we choose as our branch of the
logarithm that with arguments between —/2 and 37 /2 (that is, the one
with the cut along the negative imaginary axis).

The integrand has a simple pole inside C.p at i, so, by the Residue
Theoremn [MH87, pag. 280, the integral is equal to

) o 27["&.6(20‘"1) log ¢ ' )
27i Res(f,i) = ———— = —mie®™".

As £ and R tend to 0 and infinity, respectively, the integral on [e, R] tends
to the desired integral. On the segment [~ R, —¢|, we make the change of
variables y = --z, getting

T 6(20'——1)101;2 R _(2a-1)logy
f ’ " PO ;2o [ c o l X
} _——'I___"E!__— az = —¢€ / "—"_[_—_‘ CI aiy,
Jor 1tz Je 1+y

so this integral tends to a constant multiple of the desired integral. On g,
. — WRa—1 .~ arg i :

a calculation shows that |.z2c’ ! |#Ro-1g—2aarez g0 if we assume that

N ~ oy — - MR —

S > 0, we have |z‘2“' 1| < |z]2Re—1

| = |z
and

21

a

T 1{2 Re

-

SR -1

J

' }72 e dz

This tends to 0 whenever Ra < 1.
On ., essentially the same estimate holds:

r z:!a—-]l i ) 71}.52%(1
5 A2| & ;
jn 1422 1--¢2
and this tends to 0 whenever o > 0.
So we have
- ) [OO t?,ad-]. )
l[l . 6"'“ m) _____ ? dt — '—'7I'Z.‘Ea"'z X
Jo ] “‘}‘ t -
Dividing through, we get
— e ™

1—¢e2am — 2sin(ra)

Therefore, twice this is our answer, subject to the restrictions 0 < R < 1
and S« > 0. However, if Sa < 0, we may replace o by & and obtain
the above equality with @. Then, by taking the complex conjugate of both
sides, we see that we can eliminate the second restriction.

Solution 2. Considering the slightly more complex contour of integration
below, we can do away with the change of variables. So consider the integral
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where C is

e e e e

The origin is a branch point and the two straight lines are close to the

z—axis. The integrand has one simple pole at 2 = —1 inside C. Thus,

2= 1 "ot Al a1 ) B
/ ——————— dz = 2ni Res l ——————— ,—1 ) = 2ri lim (z+1) = 2miela— D7,
Joz+1 z+1 y z——12+1

On the other hand, the intcgral can be split in four integrals along the
segments of the contour:

. Zo:——l za~_l r za«l zct—]. .
2mi el BT = / ——————— dz + / ——dz + / ——————— dz + / ——————— dz
rp 2 +1 Jy. 2+ 1 Jo, 21 Jo, 2+ 1
f21r (Rei@)u—-] 0 [() (E Pu? a--1 e
= At iR edl+ | ——f— ee'? df
./D Re® +1 h et 11t
R o 1 e (xe.n)a——l
+ / ——dr +4 / ————————————— dz.
Je T+ 1" r e 41
Taking the limits as € — 0 and R — o0, we get
poo ae—1 0 2ri(a—1),.00~1 )
/ T dr+ / G g = 2mi el
JU T+ 1 J 00 z+1
or
) 00 L.a—]
(JL — g?mile '1)) / e dz = 2mi el D™
J(l T ‘}' ]
Hence,
0 a1 omi el@—mi T

dx =

./0 z+1 1 — ele=1)27  gipqgr
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Solution to 5.12.18: Making the substitution x = ,/y the integral be-

Comes 1 /4
o0 -—
Y
=4 B S dy
3./2 1+y

which is equal to ;’%) by Problem 5.12.17 with o = 3{ .

—_

)

Solution to 5.12.19: Observing that the function is even, doubling the
integral from 0 to co and making the substitution y = z?", we get

»OQ . OO , Cco ,,5-—1
LY R N A L M.
Joo 142" Jo 14z n ‘/0 y+1 nsin(n/2n)

by Problem 5.12.17.

Solution to 5.12.20: We have

e

[ V-1 Y0 m \
0\ TR N,
"R 1 e (€ 1 R

By Cauchy’s Theorem [MHS87, pag. 152], we have

/ f(2)dz =0
JI
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‘alSOr,
‘}( f(z)dz = -_-iﬂ- RCS(f, '_' 1) == 'I_T;_
Jyy -
[ log 1
/ f(2)dz = —ir —9%——- =
¢ RE i
| i RlogR
LR f(Z)dZ —0 as R-—oo since Izl l_»oo -}1559%__]' =
f lone
/ uf(ZJCLZ‘—Q'(’ Sin(K? h“]lf—ifgl__:z 0"
Yo S .
So we get
[c,c» log |u| , 2
o QY =
/ oo 21 2
and |
3 2
T8

Solution to 5.12.21: The roots of the denorinator are 1 = 4v/3, and
for large |x|, the absolute value of the integrand is of the same order of
magnitude as 27 2. It follows that the integral converges. For R > 2, let

where the contour Cp cousists of the segment [—R, R] together with the
semicircle I'g in the lower half-plane with the same endpoints as that seg-
ment, directed clockwise.

~R 0 R

1

/

~ - ]-12

S e
P

iR

The integrand has only one singularity inside Cg, a simple pole at
1 — i+/3. By the Residue Theorem [MH87, pag. 280],
o—12

Ir = —-27i Res (';i—f‘—* —————— , 2=1-— 2\/ J)

/
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The residue, since we are dealing with a simple pole, equals

1 ) () -
im ( z—1+41iv p = =
z—+1—i/a - 22 + 4 21— Z\/3> 2=1—iV3 27,\/'5

e~ VI~ .
Hence, I = ——- I Since |e™**| is bounded by 1 in the lower half-plane,
we have, for ].zurgerlR,

" e ® 2nR )
_____________ | < et 5 R —
lJ/ Pyl Bl - Ty R (R = o0)
Hence,
I - R —ix : iz
e e e .
——— = ———— x4  ———— dz — 1 R — o0),
3 /,44-2x+4‘ +Anz2—2z+4‘ 7 ( °)
giving I = ,,,-63-—\/5—-7
’ y d = ———
V3

Solution to 5.12.22: The integral converges absolutely since, for each
0 < e < 1, we have logz = o(z%) {z — 0+).
Consider the function

and, for 0 < ¢ < R, consider the contour C. p = I'pU~.U[~R, —¢|U]e, R)].

/ ’ "E i
1 s

-R € () € R

On the small circle, we have

. " | ]]\Og Ef‘ + 7 \
F ol < e TE T -
e]l!f% J( . j (,Z)ﬂm = ‘lj TE 9(] ]' (E r 0)

and on the larger one,

[HogR| + 7
SRR =9

lim
R-cc

TR =0(1) (R - o).

/ f(2)dz| <

T'n
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Jombining with the Residue Theorem [MHS87, pag. 280] we get

r0 OO
/ f(2)dz + / f(2)dz = 2ni (Res(f, 1) + Res(f, 2i)).
v =00 .)O
We have .
Res(f, 1) = lim f(2)(z — i) = —
Tz 12
and
) . . log2+ % ilog? o«
'S f = ]i F( V4 —_ 2 = > 2 = d ——
Res(/,24) == Jig, J(2)(z = 20) = =75 2 2
We also have
0 0 . .
. I
[ e [ logCalemi
J—co J—oo ( z° -+ l)(ﬂ?‘ +4)
e log x e Ly
= [ el TS dx + / YO e
Jo (@24 1)(z2+4) Jo (@ 4+ 1)(z%+ 4)
and
('CO i . OO l‘Og; T
VA 12( = f{ T
[ e = [
S0
oo log z i ‘m ilog2  w°
r! / ——————————————————— l ————— = —_— 20
‘), Win@splt oy T ( 127 12 24.,)
and .
< l_tzg_f _______ dz = 7 log2

Solution to 5.12.23: For 0 < ¢ < 1 < R, let C; g denote the contour
pictured below. Let log z denote the branch of the logarithm function in
the plane slit along the negative imaginary axis.
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By the Residue Theorem [MH87, pag. 280], since i is a simple pole of the
integrand, we have

r 2 P,
/ @yLqumq@ypq
Jo.n 22+1 22417,
log 2
= 2mi lin -g—eg'—EL
20 Z -1
(74}
= 21 —‘—2{)—2——
24
s
!

For z negative, we have logz = log |z| + 7, so (logx)? = (log |z|)? — 7? +
27ilog |z|. Thus, the contribution to the integral from the interval [- R, —¢]
equals

/ R (logz)? — 7% + 2milogz dp = /'R (log x)* — n? - / (log 2)*? s
i 21 ) == J ( 2

[ (log z)?
- VO82) iy i | =2
1 /% 21 dz + 2t ‘ /E o dx
__r
T4
Also,
(log z)? _ (log R)*(nR) 3
=70 dz| < ~——— i = 0(1 R—
jr- R 221 ‘1= TR o(l) ( %)
and

. (log €)?(me)
- e2-1

== o(1) (e — 0).

r (logz)?
/ (gg, ?) dz
v Ye z ~+— ]

In the limit we then obtain, considering the real parts,

AOO (]{ 7 2 3 cc 2 3 ‘.3 3
Z/L%QM:JL”f4LWI"L+L:L
Jo 352 +1 4 Jo + 1 4 2 4
and -
[ (oga)” , _ 7°
o TZH41 8

Solution to 5.12.24: For A == 0, we have

oo
/ (sechz)?®dz = tanhz|y = 1.
Jo
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For A #£ 0,

(sechz)? cos A\ = R ( ————s
\(e” +e )" )

s0 we consider the function f given by

This function has a simple pole inside the contour

O = [-R,R|U[R, R+ wi] U [R + i, - R + 73] U [- B + =i, — K.

T

omrif2

-R ] R
We have

[ f(e)dz =

J[R+mi,— B+mi)

/r- {4 eiMa+mi) g
o

= - Ty
J-r (e® +e )"

and

rl (31"/\(1'2-]-771':1:) widr
‘/0 (65R+7r1‘,ac + e Iit-—vrim)z

/ f(z)dz
[R, 2 +7]

<; —————— z—-—_——-j—:z = O(l) (1?, — C‘))
sirnilarly, we get

f(z)dz = 0(1) (R - 00).
J{~R+ri,~R]

Therefore,

wi > )wr‘e")‘"/f2

(1-e) / ‘ | ———n——-l—l—-:L——- = 271 Res (\ f(2), = 5
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Thus,

ge 9]
o
( (sech £)* cos Axp dr = ———~Lm--
Jo ) sinh{Ar/2)

Solution to 5.12.25: If b = 0, the integral is well known:

o0

2 /m
/ e dr= -3—;—
JO 2

and we will use this result to compute the full integral (for other values
of b) below. It can also be computed using the Residue Theoremn applied
to the function f(z) = e
[MH93, pag. 321-322].

and the following contour. For the details, see

/
K r/a
N\

{im

'R

Now if b # 0, consider the function f(z) = e~*"€i2%% and the contour

-R 0 R

Since f is entire, the integral around the contour is zero, for any R and T.
If b is less than zero, then draw the contour below the r—axis. Evaluating
the integral over each one of the two sides parallel to the z—axis, we have

p [‘R g .
J/ f(2)dz = / e e gy

I J-R
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. R L
f(z)dz = / e~ (T g1267 gy
m R
P ‘AR 2 .
= ——EZT —Q‘b»-r'/ Ewa eZi’,(b——T)z dx.
~R
Along the vertical segments (II and IV),
Ur(,,)l = ye—f(':t:R-i-ﬂiy)? ty'ii!b(:tﬁf-f-ify)!

2 2 o
— e——H Sy e by

< g R gr?+2br

\ ] . . p? Ry .

Then |[,; f| and | [, f| are bounded by re~* e 27, and with 7 and
b fixed, this goes to 0 as K — co. Letting R — oo, the integral along the
circuit becomes

'- L] 2 2 O 2
—z° 2bix 7 —2b7 — 2i(b—T)a
/ e &2 dy — g7 T / e 4TI gy =
J—o0 J—oa

Since this holds for all T and b, let b = 7 and the integral becornes

lo o] 0 2 o 2
—_ D} N _ e
/ e T e (fp = g™ / e da
=00

J o0

2 —
=e Y /1.

and the result follows.
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Algebra,

6.1 Examples of Groups and General Theory

Solution to 6.1.6: If a,b € G, then @ > 0 and b # 1, so a'°8® € G.
Therefore, the operation * is well defined.

Identity. The constant e is the identity since a * e = a'°8¢ = q! = @ and
exa=e%?=gq,

Associativity. We have

log alog b log b log ¢
(a * b) *xC = Clog(e ) — e1ogz7,logblogc — alog(e ) = a * (b* C).

Invertibility. Since a # 1, ¢'/1°8¢ exists and is an element of G. A calcu-
lation shows that a x ¢!/ 8¢ = ¢l/1082 4 g — ¢,

Solution 2. The map log : G — R\ {0} is a bijection that transforms the
operation * into multiplication; that is, log(a * b) = (loga)(logb). Since
R\ {0} forms a group with respect to multiplication, G is a group with
respect to *.

Solution to 6.1.8: Fix an element a € G different from the identity, and
consider the map ¢ : G\ {e} — G\ {e} defined by ¢(c) = ¢ 'ac. The map
is onto, so, since G is finite, it is one-to-one. As p(a) = a and a™2aa? = q,
it must be that a®? = e. Thus, all elements of G, other than the identity,

have order 2. Then, if a and b are in G, we have

ab = a(ab)?b = a?*(ba)b?® = ba



336 6. Algebra

in other words, G is commutative, and it follows that G has order 2.

Solution 2. Since G is finite, it has an element of prime order p. Hence, every
element of G, other than the identity, has order p. Since G is a p—group,
it has a nontrivial central element. Therefore, all elements are central; in
other words, G is abelian. Hence, G has order 2.

Solution 8. By our hypothesis, any two nonidentity elements are conjugate.
Hence, there are two conjugacy classes: The class containing the identity
and the class containing all the other elements of G. Letting n be the order
of G, we see that the second conjugacy class must contain 7 — 1 elements.
But, by the class equation, we know that the order of any conjugacy class
divides the order of the group, so (n — 1)|n. Solving for n > 0, we see that
the only possible solution is n = 2.

Solution to 6.1.10: Consider the group G' = {a"d |0 < n<r—-1,0<
m < s — 1}. As the order of any element of G’ divides the order of G', we
have |G'| = rs. This shows that (ab)* is never the identity for 0 < k < rs.
Clearly we have (ab)™ = a"b® = ¢, so the order of ab is rs.

Solution to 6.1.12: Let g,h € H and let z € D\ H. Then

h=lg7! = gha 'zgz™! = zhgr ! = (hg) ! =g 'h7!

and we can conclude immediately from this that H is abelian.

Let © € D\ H. We have [D:H|=2, so z? € H. By hypothesis,
zz?z~! = 72 or % = 1. Therefore, = has order 1, 2, or 4. But n is odd, so
4 does not divide the order of D, so, by Lagrange’s Theorem [Her75, pag.
41], = cannot have order 4. By our choice of z,  # 1, so £ cannot have
order 1. Hence, x has order 2.

6.2 Homomorphisms and Subgroups

Solution to 6.2.2: Let n = [C* : H]. By Lagrange’s Theorem [Her75,
pag. 41], the order of any element of C*/H divides n. So z" € H for all
z € C*. Therefore, (C*)" =C C H.

Solution to 6.2.3: 1. The number of conjugates of H in G is |G : N(H; G)|
where N(H;G) = {g € G|g~'Hg = H} is the normalizer of H. As
H C N(H;G), we have |G : H| > |G : N(H;G)|.

2. By Problem 6.4.16, there is a normal subgroup of G, N, contained in
H, such that G/N is finite. By Part 1 we can find a coset Ng € G/N such
that Ng is not contained in any conjugate y~* Hy/N of H/N in G/N. Then
g &y 'Hy for any y € G.
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Solution to 6.2.4: We will prove a more general result. Let G = (g),
|G| = n, and o € AutG. As a(g) also generates G, we have a(g) = g* for
some 1 < k < n, (k,n) = 1. Conversely, z — z* is an automorphism of G
for (k,1) = 1. Let Z,, be the multiplicative group of residue classes modulo
n relatively prime to n. If & denotes the residue class containing k, we can
define @ : Aut G — Z,, by

@)=k if a(g) =g".

It is clear that ® is an isomorphism. As Z,, is an abelian group of order
©(n) (p is Euler’s totient function [Sta89, pag. 77|, (Her75, pag. 43]), so is
Aut G. When n is prime, these groups are also cyclic.

Solution to 6.2.5: 1. If g7'¢(g) = h~'p(h) for some g,h € G, then
w(9)p(h)™' = gh™!, so, by hypothesis, gh~! = 1 and g = h. Thus, there
are |G| elements of that form, so they must constitute all of G.

2. Using Part 1, we have, for z = g~ ly(g) € G,

o(2) = p(g7" )% (9) = (g™ )g = 27"

so g — g~ ! is an automorphism of GG, which implies that G is abelian. For
any z € G, 2 # 1, we have 27! = ¢p(2) # 2, so G has no element of order
2, and |G| is odd.

Solution to 6.2.6: Let G be the group. If G is not abelian and a is
an element not in the center, then the map xz — a 'za is the desired
automorphism. If G is cyclic, say of order m, and n is an integer larger
than 1 and relatively prime to m, then the map z +— z™ is the desired
automorphism. If G is any finite abelian group, then, by the Structure
Theorem [Her75, pag. 109], it is a direct product of cyclic groups. If one of
the factors has order at least 3, we get the desired automorphism by using
the preceding one in that factor and the identity in the other factors. If
every factor has order 2, we get the desired automorphism by permuting
any two of the factors.

Solution to 6.2.11: The only homomorphism is the trivial one. Suppose
¢ is a nontrivial homomorphism. Then ¢(a) = m # 1 for some a,m € Q.
We have
_a a_a a a
=gt 3t3t3zto

but m is not the nt* power of a rational number for every positive n. For
example 3/5=1/5+1/5+ 1/5 but {/g ¢ Qt.

Solution to 6.2.12: We show that f is an isomorphism from ker: onto
ker j. Let y € keri. We have

Jfw) = fly) — f(e(f(»))) = fly — 9(f(¥))) = f(i(y)) = f(0) = 0.
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Hence, f maps keri into ker j. Let y € keri with f(y) = 0; then
0=1i(y) =y—9(f(¥) =v.

Thus, f is injective. Let ¢ € kerj. Then 0 = j(z) = z — f(g(x)), so
f(g(z)) = z. Therefore, f is onto if g(x) € keri. However, an argument
identical to the first one shows that this is the case, so we are done.

Solution to 6.2.13: By assumption, H has only finitely many right cosets,
say H,z,H,...,z,H, whose union is G. Hence, K is the union of the
sets KN H KNnxzH,...,KNz,H, some of which may be empty, say
K=(KnH)U(KNz:H)U---U(KNz,H) (the notation being so chosen
that KNz; H = P if and only if j > m). If KNz ; H # 0, then we may assume
z; is in K (since y is in ¢ H if and only if yH = zH). After making this
assumption, we have K = z; K, so that KNz, H = z; KNx;H = z;(KNH),
whence
K=(KnH)Uz;,(KNH)U---Uz,(KNH).

This shows K N H has only finitely many right cosets in K, the desired
conclusion.

Solution to 6.2.14: For each g € G, let S; = {a € G|ag = ga}. Each S,
is a nontrivial subgroup of G, because g € S; and S. = G. The intersection
of all Sy, g € G, is the center of G. So H is a subset of the center of G.

Solution to 6.2.15: Since G is finitely gencrated, Hom(G, Si) is finite
(bounded by (k!)™), where Si denotes the symmetric group on k numbers
1,2,...,k. For any subgroup H of index k in G, we can identify G/H with
this set of symbols, sending the coset H to 1. Then the left action of G on
G/H determines an element of Hom(G, Si) such that H is the stabilizer of
1. Thus, the number of such H’s is, at most, (k!)™.

6.3 Cyclic Groups

Solution to 6.3.1: 1. Let GG be the subgroup of Q generated by the nonzero
numbers ay, ..., a,, and let ¢ be a common multiple of the denominators of
a1,...,ar. Then each a; has the form p;/q with p; € Z, and, accordingly,
G = %Go, where Gy is the subgroup of Z generated by py,...,p,. Since
all subgroups of Z are cyclic, it follows that G is cyclic, that is, G = gZ,
where p is a generator of Gy.

2. Let 7 : Q@ — Q/Z be the quotient map. Suppose G is a finitely generated
subgroup of Q/Z, say with generators by, ..., b,. Let Gy be the subgroup of
Q generated by 1,77(b;),...,#~1(b.). Then #(G,) = G, and G, is cyclic
by Part 1. Hence, G is cyclic.
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Solution to 6.3.3: 1. Let G = {c¢). We have a = ¢" and b = ¢* for some
positive odd integers r and s, so ab = ¢"*° with r + s even, and ab is a
square.

2. Let G = Q*, the multiplicative group of the rational numbers, a = 2,
and b= 3. Then ab = 6, and none of these is a square in G.

Solution to 6.3.5: Let € be the identity in G, and let N = {e,a} be the
normal subgroup of order 2. If z € G, then z7*az € N and certainly does
not equal e, so it equals a. Thus, xa = ax for all £ € G. The quotient group
G/N has order p and so is cyclic. Let £ be any element not in V. Then the
coset of x in G/N has order p, so, in particular, the order of z itself is not
2. But the order of x divides 2p, so it must be p or 2p. In the latter case,
G is the cyclic group generated by z. In the former case, since za = az,
we have (za)P = zPaP = a, so (za)?®® = a? = e, and za has order 2p, which
means G is the cyclic group generated by za.

6.4 Normality, Quotients, and Homomorphisms

Solution to 6.4.3: The subgroup H is normal only if aHa=* = H or
aH = Ha for all a € G. Since H has only one left coset different from itself,
it will suffice to show that this is true for a fixed a which is a representative
element of this coset. Since H has the same mimber of right and left cosets,
there exists a b such that H and bH form a partition of G. Since cosets are
either disjoint or equal and H NaH = {}, we must have that aH = Hb. But
then a € Hb, so Hb = Ha.

Solution to 6.4.5: Denote by h; H (and k;K) a coset of H (and K) and
suppose
G=hHU---UhHUKKU- ---Uk,K.

Since all of the cosets of K are equal or disjoint and since the index of K
in G is infinite, there is a k € K such that

kK chiHU---Uh,.H.
Therefore, for 1 <1i < s,
kLK C kik_lthU e U kik_lhrH.

This implies that G can be written as the union of a finite number of cosets
of H, contradicting the fact that the index of H in G is infinite. Hence, G
cannot be written as the finite union of cosets of H and K.

Solution to 6.4.6: 1. First, note that the multiplication rule in G reads

a b ay b1 . aa; aby +b(11_1
( 0 a! )( 0 ajt >—( 0 a~lay? ’ (6.1)
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which gives (§ fl)_l = (a; ~%). This makes it clear that N is a sub-
group, and if (é ) is in N, then

b\ _[a! b a b+fa?
0 a‘1 0 a”l ) 0 a 0 a”!
(1 pa?
= ( 0 1 ) €N,
proving that N is normal.

By (6.1), the map from G onto R, (the group of positive reals under

multiplication) given by (0 afl) + a is a homomorphism whose kernel is
N (which by itself proves that N is a normal subgroup). Hence, G/N is
isomorphic to R, which is isomorphic to the additive group R.
2. To obtain the desired normal subgroup majorizing N, we can take the
inverse image under the homomorphism above of any nontrivial proper
subgroup of R . If we take the inverse image of Q ., the group of positive
rationals, we get the proper normal subgroup

v={(g b ) mca.)

of G, which contains N properly.

Solution to 6.4.11: Let {a1H,a2H,...,an H} be the set of distinct cosets
of H. G acts on on this set by left multiplication and any g € G permutes
these n/m cosets. This group action defines a map

¢:G— S

from G to the permutation group on n/m objects. There are two cases to
consider depending on ¢ being injective or not.
If ¢ is not injective, then ker ¢y is a normal subgroup K # {e}; and
K # G, as well, because if g ¢ H,gH # H;so g is not a trivial permutation.
If ¢ is injective, then [p(G)| = n, and ¢(G) is a subgroup of Sx». But
[Sz 1 o(G)] = |S2|/lp(G)} = (F)/n < 2.80 [S= : p(G)] =1, that is, G is

isomorphic to Sx, and in that case, A is a nontrivial normal subgroup.

Solution to 6.4.12:

Let H be a subgroup of G of index 3. G acts by left multiplication on
the left cosets {gH} of the subgroup H. This gives a homomorphism of G
into the symmetric group of degree 3, the group of permutations of these
cosets. The subgroup H is the stabilizer of one element of this set of cosets,
namely the coset 1H. This homomorphism cannot map onto the entire
symmetric group, since this symmetric group has a subgroup of index 2,
which would pull back to a subgroup of G of index 2. Thus, it must map
onto the cyclic subgroup of order 3, and the group H is then the kernel of
this homomorphism.
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Solution to 6.4.13: 1. The cycles of A, are the right cosets (g)x of the
subgroup (g} in G, so the lengths of each one is the order of g, and the
number of cycles is [G : {g)].

If the order of g is odd, then each cycle has odd length, so each cycle is
even, and so is Ag.

If the order of g is even, then each cycle is of even length and, therefore,
odd. Also,

[G: {g)] - o)l = 1G]

is odd. As [G : (g)] is the number of cycles, A, is odd.

2. Let ¢ : G — {—1,1} be defined by g — w(g) = sign of A;. ¢ is a
morphism and, by Part 1, its kernel is N. So N is a normal subgroup of G
with index 1 or 2. By Cauchy’s Theorem [Her75, pag. 61], G has an element
of order 2, which is not in N, so N has order 2.

Solution to 6.4.14: Let ¢ = zyz~'y~! be a commutator. It suffices to
show that conjugation by g fixes every element of N. As N is cyclic, Aut(N)
is abelian, and, because N is normal, conjugation by any element of G is an
automorphism of N. Let ¢, be the automorphism of conjugation by x. We
have g, = @, @.. Hence, forn € N, gng™! = g 09,00, top, ! (n) =n.

Solution to 6.4.15: We will show that if the index of NV in G is not finite
and equal to a prime number, then there is a subgroup H properly between
N and G. Since any nontrivial proper subgroup of G/N is the image of such
a subgroup, we need only look at subgroups of G/N.

Suppose first that the index of N in G is infinite, and let g be an element
of G/N. If g is a generator of G/N, then G/N is isomorphic to Z, and the
element g2 generates a proper nontrivial subgroup of G/N. Otherwise, g
generates such a subgroup.

Suppose that the index of N in G is finite but not a prime number. Let
p be any prime divisor of the index. By Cauchy’s Theorem [MH87, pag.
152], there is an element of order p in G/N. This element cannot generate
the whole group, so it generates a nontrivial proper subgroup of G/N.

Solution to 6.4.16: Let the index of A in G be n. G acts by left multi-
plication on the cosets gA, and this gives a homomorphism into the group
of permutations of the cosets, which has order n!. The kernel, N, of this
homomorphism is contained in A, so the index of N in G is, at most, n!.

6.5 Sn, An, D, ..

Solution to 6.5.2: Think of $; as permuting the set {1,2,3,4}.
For 1 < i < 4, let G; C S, be the set of all permutations which fix i.
Clearly, G; is a subgroup of Sy; since the elements of G; may freely per-
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mute the threc elements of {1,2, 3,4} \ {1}, it follows that G; is isomorphic
to S3. Thus, the G;’s are the desired four subgroups isomorphic to Ss.

Similarly, for ¢, j € {1,2,3,4}, ¢ # j, let H,; be the set of permutations
which fix ¢ and j. Again H;; is a subgroup of S4, and since its elements
can freely permute the other two elements, each must be isomorphic to Sz.
Since for each pair i and j we must get a distinct subgroup, this gives us
six such subgroups.

Finally, note that S; is of order 2 and so is isomorphic to Z3. Therefore,
any subgroup of S; which contains the identity and an elecment of order 2
is isomorphic to S3. Consider the following three subgroups: {1, (12)(34)},
{1,(13)(24)}, and {1,(14)(23)}. None of these three groups fix any of the
elements of {1, 2,3, 4}, so they are not isomorphic to any of the H;;. Thus,
we have found the final three desired subgroups.

Solution to 6.5.3: Let o be a 5-cycle and 7 a 2-cycle. By renaming the
elements of the set, we may assume o = (1234 5) and 7 = (a b). Letting o
act repeatedly on 7 as in the hint, we get the five transpositions (a+i b+1),
1 <1 < 5, where we interpret a +i to be a +i— 5 if a +i > 5. Fixing i
such that ¢ +i — 5 = 1 and letting ¢ = b + %, we see that G contains the
five transpositions (1¢), (2¢+1),...,(5¢c+4). Sincc a #£ b, ¢ £ 1.

Let d = c¢— 1. Since d does not equal 0 or 5, these five transpositions can
be written as (¢ + nd ¢+ (n+ 1)d), 0 < n < 4. By the Induction Principle
[MH93, pag. 7] the hint shows that G contains the four transpositions

(Ic+nd)=(1c+n—1)d)(c+ (n—1)dc+nd)(1lc+ (n—1)d),

1 < n < 4. Since they are distinct, it follows that G contains the four
transpositions (1 2), (1 3), (1 4), and (1 5). Applying the hint a third
time, we see that (i j) = (1 9)(1 7)(1 i) is an element of G for all i and
3, 1 <14,7 < 5. Hence, G contains all of the 2-cycles. Since every element
in S, can be written as the product of 2-cycles, we see that G is all of

Sh.

Solution to 6.5.7: The order of a k—cycle is k, so the smallest m which
simultaneously annihilates all 9-cycles, 8-cycles, 7-cycles, and 5-cycles is
23.32.5.7 = 2520. Any n—cycle, n < 9, raised to this power is annihilated,
so n = 2520.

To compute n for Ag, note that an 8-cycle is an odd permutation, so no
8-cycles are in Ag. Therefore, n need only annihilate 4-cycles (since a 4-
cycle times a transposition is in Ag), 9-cycles, 7-cycles, and 5-cycles. Thus,
n = 2520/2 = 1260.

Solution to 6.5.8: We have 1111 = 11x 101, the product of two primes. So
G is cyclic, say G = {(a). From 1111 > 999, it follows that a, when written
as a product of disjoint cycles, has no cycles of length 1111. Therefore, all
cycles of a have lengths 1, 11, and 101. Let there be z, y, and 2z cycles of
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lengths, respectively, 1, 11, and 101. If z > 0, then a has a fixed point, and
this is then the desired fixed point for all of G. So assume that £ = 0. Then
11z + 101z = 999. It follows that 22 =9 (mod 11),s0 2 =10 (mod 11),
and, therefore, z > 10. But then 999 = 11y + 101z > 1010, a contradiction.

Solution to 6.5.9: Call ¢ and j € {1,2,...,n} equivalent if there exists
o € G with o(i) = j. (This is clearly an equivalence relation.) For each
i, the set G, = {0 € G|a(i) = i} is a subgroup of G, and the map
G —{1,2,...,n}, 0+ (i), induces a bijection from the coset space G/G;
to the equivalence class of i. Hence, for each i, the size of its equivalence
class equals |G : G;], which is a power of p. Choosing one ¢ from each
equivalence class and summing over %, one finds that all these powers of p
add up to n, since p does not divide n, one of these powers have to be
p® = 1. This corresponds to an equivalence class that contains a single
element %, and this ¢ satisfies o(¢) =i for all ¢ € G.

Solution to 6.5.12: To determine the center of
D, = {a,b|a™ = b* = 1,ba = a™'b)

(a is a rotation by 27/n and b is a flip), it suffices to find those elements
which commute with the generators a and b. Since n > 3, a™! # a. There-
fore,

a"t'b = a(a"d) = (a"b)a=a""'b

so a® = 1, a contradiction; thus, no element of the form a’b is in the
center. Similarly, if for 1 < s < n, a®h = ba® = a~°b, then a?* = 1, which is
possible only if 2s = n. Hence, a® commutes with b if and only if n = 2s.
So, if n = 2s, the center of D, is {1,a%}; if n is odd the center is {1}.

Solution to 6.5.13: The number of Sylow 2-subgroups of D,, is odd and
divides n. Each Sylow 2-subgroup is cyclic of order 2, since 2! is the largest
power of 2 dividing the order of the group. By considering the elements of
D,, as symmetries of a regular n—gon, we see that there are n reflections
through axes dividing the n—gon in half, and each of these generates a
different subgroup of order 2. Thus, the answer is that there are exactly n
Sylow 2-subgroups in D,, when n is odd.

6.6 Direct Products

Solution to 6.6.2: Suppose Q was the direct sum of two nontrivial sub-
groups A and B. Fix a # 0 in A and b # 0 in B. We can write a = ag/a;
and b = by/by, where the a;’s and b;’s are nonzero integers. Since A and
B are subgroups, na € A and nb € B for all integers n. In particular,
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(albo)a € A and (blao)b € B. But
(albo)a = (albo)ao/al = (I()bo = (blao)bo/bl = (blao)b.

Hence, A and B have a nontrivial intersection, a contradiction.

Solution to 6.6.3: Let C,, denote the cyclic group of order m for m € N.
By the Structure Theorem for abelian groups [Her75, pag. 109], if G is a
finite abelian group, there exist unique nonnegative integers n,-(G) for each
prime number p and each nonnegative integer r such that G is isomorphic

to
n,r(G)
1T
P T
If H is another abelian group, G x H is isomorphic to
(G r(H) ~ n,r(G)+n r(fi)
[T c @« TTTT o ™ = [T e ™.
p T p T p T

Hence, npr (G x H) = nyr (G) + nypr (H). Now this and the fact that A x B
is isomorphic to A x C yield the identities n,r (B) = n,-(C) for all primes
p and all nonnegative integers r. We conclude B and C' are isomorphic.

Solution to 6.6.4: Let 73 : A — (1 x G2 be the natural projection
map. We have ker 73 = {(1,1,¢93) € A}. Let N3 = {g3| (1,1, g3) € ker w3}
Since kerws is a normal subgroup of A, N3 is normal in Gz. Let A’ =
G1 x G2 x G3/N3. Since 73 is onto, for any (g1, g2) € G1 x G2, there exists
g3 € G5 such that (g1, g2,93) € A, and, thus, (g1, 92,93) € 4’.

Define the map ¢ : G1 x G2 — G3/N3 by ¢(g1, g2) = 73, where g3 is such
that (g1,92,93) € A. This is well defined, for if (g1, g2, g3) and (g1, g2, h3)
are both in A, then (1,1, gghgl) € A, so gghgl € Nj, which, in turn, implies
that g3 = hs. The map ¢ is clearly a homomorphism. Furthermore, since
71 : A — G2 x G3 is onto, if g3 € G3, there exist g; € G; and g2 € G4 such
that (g1, g2, 93) € A. Thus, p(g1, g2) = g3 so ¢ is onto.

Therefore, (G x {1}) and ({1} x G3) are subgroups of G3/N3 which
commute with each other. If these two subgroups were equal to one an-
other and to G3/N3, then G3/N3 would be abelian. As G3 is generated
by its commutator subgroup, this would imply G3/Ns to be trivial or,
equivalently, G3 = N3, which we assumed not to be the case. So we may
assume that ({1} x G2) # G3/N;. Pick g3 € G3/N3 \ ¢({1} x G2). Since
w1 A — G x G3 is onto, there exists a g2 € G2 such that (1, g2, g3) € A.
Hence, ¢(1, g2) = g3, contradicting our choice of g3.

Therefore, we must have that N3 = G3, so {1} x {1} x G3 C A. Similar
arguments show that {1} x G2 x {1} and G; x {1} x {1} are contained in
A and, thus, A =G.
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Solution to 6.6.6: The obvious isomorphism F:Aut(G) x Aut(H) —
Aut(G x H) is defined by

Flag,an)(g,h) = (ac(g), anu(h)).

Since a¢ and oy are automorphisms of G and H, it is clear that F(ag, an)
is an automorphism of G x H. Let us prove now that F' is an isomorphism.

e F is injective: Let F(ag,ap) = idgxn. Then ag = idg and ay =
idy by definition of F'. Hence, ker F is trivial so F is injective.

e F is surjective: Choose a € Aut(G x H). Define ag, ay by
ag(g) = mg(alg,idy)) and  ay(h) =7y (a(ids, h))
where 7 and 7y are the quotient maps. Thus,

a(g,h) = (ac(9),an(h)) = Flag, an)(g, h).

Since the situation is symmetric between G and H; and G is finite,
we need only show that a¢ is injective. Let ag(g) = idg. Then
a(g,idg) = (idg, h) for some h € H. Suppose n = |G|. Then

(idG, hn) = a(g, idH)n = a(g",idH) = (idG,idH).

Hence, h™ = idy, so the order of h divides |G|. But, by Lagrange’s
Theorem [Her75, pag. 41], the order of h also divides |H|, which is
relatively prime to |G|, so the order of h is one and h = idy.

6.7 Free Groups, Products, Generators, and
Relations

Solution to 6.7.2: Supposc Q is finitely gencrated, with generators
/B, ..., ox/Be i, B €ZL.

Then any element of Q can be written as > n;a;/8;, where the n;’s are
integers. This sum can be written as a single fraction with denominator
s = B1---Bx. Consider a prime p which does not divide s. Then we have
1/p = r/s for some integer r, or pr = s, contradicting the fact that p does
not divide s. Hence, Q) cannot be finitely generated.

Solution 2. Suppose Q is finitely generated, then using the solution to
Part 1 of Problem 6.3.1, Q is cyclic, which is a contradiction.

Solution to 6.7.4: 253 = z8y5 implies z3y? = 1. Then z%y = z3y? and
z%y = 1. Hence, 23y? = 2%y, so xy = 1. But then zy = z2y, so we have
that z = 1. This implies that y = 1 also, and G is trivial.
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Solution to 6.7.5: We start with the given relations
(1) aa=0 and (2) b 'a’b=a’.
From (1), we get a~'b%a = b°® and
a"2b%? = o % = (a7 10%)b*a = b*(a1b%a) = b3BS = b°
using the relation just obtained and (2), we get
b® = (a=2)b%a? = ba=3b 0% (a?) = ba 30 b%ba’b! = ba"3b%ab7!,
and we conclude that
a 3b%a® = b° = a"%b"a?

from which we obtain ab? = b*a. This, combined with the squarc of relation
(1) (a=1b*a = b®), gives b2 = 1 and substitution back in (1) shows that
b = 1; then, substituting that into relation (2), we see that a = 1, so the
group is trivial.

Solution to 6.7.6: Let G = (a,b | a2 = b = 1) and H = (ab, ba).
Since ab = (ba)~1, it is clear that H is the subgroup of G which consists
of all words of even length: abab---ab and baba---ba. So H # G, but
G = HUaH. Hence, H has index 2 in G.

Suppose now that G’ is any such group. Then

G =G/R
where R is the normal relation subgroup. Let H' = H/R. We have
|G'/H'| = |G/R|/|H/R| = |G/H| = 2.
Hence, H' is the desired subgroup.

Solution to 6.7.8: We use the Induction Principle [MH93, pag. 7]. For
n = 1, the result is obvious.

Suppose g1, - - ., g, generate the group G and let H be a subgroup of G.
If H C {g2,--.,9n), by the induction hypothesis, H is generated by n — 1
elements or fewer. Otherwise let

y=g1"--gsm €H

be such that |m;| is minimal but nonzero. We can assume, without loss of
generality, that m,; > 0. For any z € H,

k kn
z:gll...gn
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there are integers ¢ and r such that k&, = gm; +r and 0 < r < m,. Then
the exponent of ¢, in zy~9 is 7, and, by the choice of m;, we obtain r = 0.
Hence,

H={y,K) where K=HnN{g2,...,9n).

By the induction hypothesis, K is gencrated by, at most, n — 1 elements,
and the result follows.

Solution to 6.7.10: By the Structure Theorem for finite abelian groups
(Her75, pag. 109], there are integers my, . .., mg, mj|lm;jy, for 1 < j < k—1,
such that A is isomorphic to Z,,, ® - - ® Z,,. We identify A with this
direct sum. Clearly m = my. Therefore, S must contain the elements of
the form (0,0,...,1) and (0,...,0,1,0,...,1), where the middle 1 is in the
jt* position, 1 < j < k — 1. Hence, using elements in S, we can generate
all the elements of A which are zero everywhere cxcept in the j* position.
These, in turn, clearly generate A, so S generates A as well.

6.8 Finite Groups

Solution to 6.8.1: Any group with one element must be the trivial group.

By Lagrange’s Theorem [Her75, pag. 41], any group with prime order
is cyclic and so abelian. Therefore, by the Structure Theorem for abelian
groups [Her75, pag. 109], every group of orders 2, 3, or 5 is isomorphic to
Za, Z3, or Zs, respectively.

If a group G has order 4, it is either cyclic, and so abelian, or each of
its elements has order 2. In this case, we must have 1 = (ab)? = abab or
ba = ab, so the group is abelian. Then, again by the Structure Theorem
for abelian groups, a group of order 4 must be isomorphic to Z4 or Z2®Z,.
These two groups of order 4 are not isomorphic since only one of them has
an element of order 4.

Since groups of different orders can not be isomorphic, it follows that all
of the groups on this list are distinct.

Solution to 6.8.2: The trivial group is clearly abelian. Groups of prime
order are cyclic, by Lagrange’s Theorem [Her75, pag. 41] and so must be
abelian. Hence, groups of orders 2, 3, and 5 are abelian. This leaves only
groups of order 4. Every group of order 4 can have nontrivial clements of
orders 2 or 4. If such a group has an element of order 4, it is cyclic, and so
abelian. If every element is of order 2, it is also abelian, since, given any
two elements a and b,

abab = (ab)? = 1 = a?b?,

and canceling yields ba = ab. The group of symmetries of the triangle, D3,
has 6 elements and is nonabelian.
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Solution to 6.8.5: By the Structure Theorem for finitely generated
abelian groups [Her75, pag. 109], there are three: Zg, Zy x Z4, and Z3 X
Zz x Zz.

1. (Z1s5)* = {1,2,4,7,8,11,13,14} . By inspection, we see that every
element is of order 2 or 4. Hence, (Z15)* ~ Z3 x Z4

2. (Z17)* =1{1,2,...,16} = {+£1,42,...,48}, passing to the quotient
(Za7)*/{£1} = {1,2,...,8} which is generated by 3, so (Z17)* ~ Zs.

3. The roots form a cyclic group of order 8 isomorphic to Zsg.

4. Fg is a field of characteristic 2, so every element added to itself is 0.
Hence,
F;EZQ X Zo X ZLs.

5. (Z16)* ={1,3,5,7,9,11,13,15} 2 Z, x Z4.

Solution to 6.8.6: Order 24: The groups S4 and S3 X Z4 are nonabelian
of order 24. They are not isomorphic since S; does not contain any element
of order 24 but S3 x Z4 does.

Order 30: The groups D3 X Zs and D5 x Z3 have different numbers of
Sylow 2-subgroups, namely 3 and 5, respectively.

Order 40: There are two examples where the Sylow 2-subgroup is normal:
The direct product of Zs with a nonabelian group of order 8. Such order 8
groups are the dihedral group of symmetries of the square (which has only
two elements of order 4), and the group of the quaternions {1, £, -7, +k}
(which has six elements of order 4). There are also several other examples
where the Sylow 2-subgroup is not normal.

Solution to 6.8.8: The number of Sylow 3-subgroups is congruent to 1
mod 3 and divides 5; hence, there is exactly one such subgroup, which is
normal in the group. It is an abelian group of order 9. The abelian groups
of this order are the cyclic group of order 9 and the direct product of two
cyclic groups of order 3.

The number of Sylow 5-subgroups is congruent to 1 mod 5 and divides
9; hence, there is exactly one such subgroup, which is the (normal) cyclic
group of order 5. The Sylow 3-subgroup and the Sylow 5-subgroup intersect
trivially so their direct product is contained in the whole group, and a
computation of the order shows that the whole group is exactly this direct
product. Therefore, there are, up to isomorphism, two possibilities

ZgXZs, Z3><Z3XZ5.
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Solution to 6.8.11: If p = 2, then the group is either cyclic and so isomor-
phic to Z4, or every element has order 2 and so is abelian and isomorphic
to Zo @ Zo.

Now suppose p > 2 and let G have order 2p. By Sylow’s Theorems
[Her75, pag. 91], the p-Sylow subgroup of G must be normal, since the
number of such subgroups must divide 2p and be congruent to 1 mod p.
Since the p-Sylow subgroup has order p, it is cyclic; let it be generated by
g. A similar argument shows that the number of 2-Sylow subgroups is odd
and divides 2p; hence, there is a unique, normal 2-Sylow subgroup, or there
are p conjugate 2-Sylow subgroups. Let one of the 2-Sylow subgroups be
generated by h.

In the first case, the element ghg~*h~! is in the intersection of the
2-Sylow and the p-Sylow subgroups since they are both normal; these
are cyclic groups of different orders, so it follows that ghg~'h~! = 1, or
hg = gh. Since g and h must generate G, we see that G is abelian and
isomorphic to Zo @ Z,,.

In the second case, a counting argument shows that all the elements of G
can be written in the form g*h?, 0 < i < p, 0 < j < 2. Since all the elements
of the form g¢° have order p, it follows that all the 2-Sylow subgroups are
generated by the clements g'h. Hence, all of these elements are of order 2;
in particular, ghgh = 1, or hg = g~ 'h. Thus, G = (g,h | g* = h®* = 1,hg =
g~ 'h) and so G is the dihedral group D,,.

Solution to 6.8.12: By Cayley’s Theorem [Her75, pag. 71], every group
of order n is isomorphic to a subgroup of S,,, so it is enough to show that
S, is isomorphic to a subgroup of Q(n). For each o € S,, consider the
matrix A, = (ai;), where a,(;); = 1 and all other entries are zero. Let ¢
be defined by o — ¢(0) = A,. The matrix A, has exactly one 1 in each
row and column. Hence, both the rows and columns form an orthonormal
basis of R", so A, is orthogonal. ¢ maps S, into O(n). Let A, = (a;;) and
B.,- = (blj) Then

A, B; = (cyj) (Zazkbk]>

An element of this matrix is 1 if and only if ¢ = (k) and k = 7(j) for some
k; equivalently, if and only if ¢ = o(7(5)). Hence, c(-¢);: = 1 and all the
other entries are 0. Therefore, (c;;) = As.r, 50 ¢ is a homomorphism.

If A, equals the identity matrix, then o(i) = ¢ for 1 <4 < n, so o is the
identity permutation. Thus, ¢ has trivial kernel and is one-to-one hence an
isomorphism.

Solution to 6.8.13: 1. For any sct X let Sx be the group of bijections
0:X — X. If X is a finite set with n elements then Sx is isomorphic to
Sy, the group of all permutations of {1,2,...,n}.
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For any group G and any element g € G, define a mapping ¢, : G - G
by ¢4(z) = gz forallz € G. For any g, h,z € G, (pg-901)(x) = @4(pn(x)) =
g (hz) = g(hz) = (gh)z = @gn(z). This shows that pgr = g - Ph.

It follows that, for each g € G, ¢, : G — G is a bijection, with inverse

pg-1. In other words ¢, € S for all g € G, defining a map ¢ : G — Sg.
Since @gn = @q - Yh, ¢ : G — S is a group homomorphism. If ¢, = @4
for two elements g,h € G then g = ¢4(1) = pu(1) = h, showing that
¢ : G — Sg is injective. Therefore, G is isomorphic to the subgroup ¢(G)
of SG.
2. Since any group of order n embeds in S,, it suffices to embed S, into
the group of even permutations of n + 2 objects. Let € : S,, — Zg be the
homomorphism that maps even permutations to 0 and odd permutations
to 1.

Define 0 : S, — Spy2 by 0(c) = o - (n+ 1,n 4 2)°(®). Since the trans-
position (n + 1,n + 2) commutes with each element o € S, 0 is a homo-
morphism, clearly injective. Since ¢ and (n + 1,7 + 2)5(°) have the same
parity, their product (o) is even.

6.9 Rings and Their Homomorphisms

Solution to 6.9.3: Let ¢ : C® — C be a ring homomorphism and
er = (1,0,0,...,0),e2 = (0,1,0,...,0),...,e, = (0,0,0,...,1), then
eie; =0 for all i # j and if p(e1) =--- = p(en) =0,

o(Z1,- -, ZTn) = @(21,0,...,0)p(e1) + -+ ©(0,0,...,z,)p(en) =0

that is, ¢ is identically zero.

Suppose now that ¢ is a nontrivial homomorphism, then ¢(e;) # 0 for
some ¢ and in this case p(e;) = p(e;e;) = w(e;)p(e;) and p(e;) = 1. At
the same time 0 = @(e;e;) = @(e;)p(e;) we conclude that (e;) = 0 for all
j # i, and ¢ is determined by its valuc on the i** coordinate.

O(T1y oy Tiye ey Tn) = (0, ..., T4y .., 0)0(€1)
=(0,...,2,...,0)1
:(P(O,...,IL‘i,...,O)

So for every homomorphism ¢ : C — C we can create n such homo-
morphisms from C™ to C by composing ¢(z1,...,T,) = o(m(z1,...,T5))
where 7; is the projection on the i*® coordinate, and the argument above
shows that all arise in this way.

Solution to 6.9.4: Let R contain k elements (¥ < 0o) and consider the
ring
S=RxRx---xR
LSy

k copies
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Let R ={ry,...,rx} and o = (r1,...,7;) € S. Now consider the collcc-
tion of elements a, a2, a3,.... Since S is also a finite ring, by the Pigeon-
hole Principle [Her75, pag. 127], there exist n and m sufficiently large with
o™ = a™. Coordinatewise, this means that »' =" for 1 < { <k, and we
are done.

Solution to 6.9.5: If ax = 0 (or za = 0) with a # 0, then aza = 0a or
a0 = 0. If b is as in the text, then a(b + z)a = a, so, by uniqueness of b,
b=b+ 2z and £ = 0. Thus, there are no zero divisors.

Fix a and b such that aba = a. If x € R, then zaba = xa and, as there
are no zero divisors, zab = z, so ab is a right identity. Similarly, abar = az
implies bax = x and ba is a left identity. Since any right identity is equal
to any right identity, we get ab = ba = 1. Since b = a~}, R is a division
ring.

Solution to 6.9.6: Since (R, +) is a finite abelian group with p? elements,
by the Structure Theorem for finite abelian groups [Her75, pag. 109], it is
isomorphic to either Z,. or Z, @ Z,. In the first case, there is an element
z € R such that every element of R can be written as nz, for 1 < n < p?.
Since all elements of this form commute, it follows that R is abelian.

In the second case, every nonzero element must have additive order p.
Let € R be any element not in the additive subgroup generated by 1.
Then it too must have additive order p. Thus, a counting argument shows
that every element of R can be written in the form n + kz, 1 < n < p,
1 < k < p. Since all elements of this form commute, it follows that R is
commutative.

Solution to 6.9.7: One can embed R in the field of quotients of R; then the
finite subgroup of R* is a finite subgroup of the multiplicative group of the
field; it is a finite abelian group, and so can be written as a direct product of
Zy~ for various primes p. If there are two such factors for the same p, then
there are at least p elements of the field satisfying the equation z? — 1 = 0.
However, in a field, due to the uniqueness of factorization in the polynomial
ring, there are, at most, n solutions to any n!” degree polynomial equation
in one variable. Thus, in the factorization of our group, each prime p occurs
at most once, therefore, any such group is cyclic.

Solution to 6.9.8: 1 = 2 : There exist v, # v2 such that uv; = uve = 1;
thus, u(v; — v2) = 0 and u is a zero divisor.

2 = 3 : Suppose that u is a unit with inverse v. If the uv = 0 then
w = (vu)w = v(uw) = v0 = 0 and, therefore, u is not a left zero divisor.

3 = 1: Let v be aright inverse for u, that is, uv = 1. Since u is not a unit
vu # 1 implying vu—1 # 0. Now consider the element v/ = v+(vu—1) # v,
and we have

w' =wv+u(vu — 1)
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=1—(uv)u —u
=l+u—u=1

showing that u has more than one right inverse.

Solution to 6.9.9: The identity element of such a ring would belong to
the additive group of the ring, which is a torsion group; thus there is some
finite n such that if you add the identity element, 1, to itself n times, you
get 0. In other words, the ring would have some finite characteristic n. But
this implies that the additive order of every element of the ring divides n,
and this is false, for example, for the element 1/(n + 1).

Solution to 6.9.11: The degree-2 polynomial 22 + 42 — 1 does not factor
into the product of two linear ones (since the circle z2 +y* = 1 is not a
union of two lines). This implies that the ideal (z? + %% — 1) is prime and,
thus, the ring R = Q [z,y]/(z? + y* — 1) is an integral domain.

Consider now the stereographic projection (z,y) — (1,y/(z + 1)) (at
half of the speed of the standard one, in order to make the expressions
simpler) of the circle from the point (-1,0) to the line (1,t). It provides a
homomorphism ¢t = y/(z + 1) of Q (t) to the field of fractions of R. The
inverse homomorphism is given by the formulas z = (1 — ¢?)/(1 + ¢2) and
y=2t/(1+t?).

6.10 Ideals

Solution to 6.10.3: We will first show that for all n, M,x,(F) has no
nontrivial proper ideals. This will show that any ring homomorphism from
M 41)x(n+1)(F) onto M., (F) must be an isomorphism. We will then
show that this is not possible.

Assume that J is a nontrivial ideal. Let M;; be the n x n matrix with
1 in the (4,7)*" position and zeros elsewhere. Choose A € J such that
a = a;; # 0. Then, for 1 < k < n, My; AMjj, is a matrix which has a in the
(k, k)™ entry and 0 elsewhere. Since 7 is an ideal, My; AMj; € J. The sum
of these matrices is aJ and so this matrix is also in J. However, since F is
a field, a is invertible, so 3 = M, (F).

M, «n(F) is an F—vector field, and if we identify F with {aJ|a € F}, we
see that any ring homomorphism induces a vector space homomorphism.
Hence, if My, (F) and M(y,1)x(n+1)(F) are isomorphic as rings, they are
isomorphic as vector spaces. However, they have different dimensions (n?
and (n + 1)?, respectively), so this is impossible.

Solution to 6.10.4: Each element of F induces a constant function on
X, and we identify the function with the eclement of F. In particular, the
function 1 is the unit element in R(X, F).



6.10 Ideals 353

Let J be a proper ideal of R(X, F). We will prove that there is a nonempty
subset Y of X such that J = {f € R(X,F)|f(z) = 0Vz € Y} = Jy.
Suppose not. Then either J C Jy for some set Y or, for every point z € X,
there is a function f; in J such that f;(z) = a # 0. In the latter case, since
J is an ideal and F is a field, we can replace f, by the function a=!f;, so
we may assume that f.(z) = 1. Multiplying f, by the function g, which
maps z to 1 and all other points of X to 0, we see that J contains g, for
all points € X. But then, since X is finite, J contains }_ g, = 1, which
implies that J is not a proper ideal.

Hence, there is a nonempty set Y such that J C Jy. Let Y be the largest
such set. As for every z € Y, there is an f, € J such that f.(z) # 0
(otherwise we would have J C Jyy{,}) by an argument similar to the
above, J contains all the functions g,, x € Y. But, from these, we can
construct any function in Jy, so Jy C 7.

Let J and J be two ideals, and the associated sets be Y and Z. Then
J c J if and only if Z C Y. Therefore, an ideal is maximal if and only
if its associated set is as small as possible without being empty. Hence,
the maximal ideals are precisely those ideals consisting of functions which
vanish at one point of X.

Solution to 6.10.5: Let J = (a™ —1,a™ ~1) and J = (a?~1). Forn =rd
the polynomial z™ — 1 factors into (¢ — 1)(z"(4~D 4 £7(@=2) 4... 4 g7 4 1).
Therefore, in R, a” ~1 = (a®~1)(a"4"D 4-a"(¢=2) 4 ... 44" 4 1). A similar
identity holds for a™ — 1. Hence, the two generators of J are in J,s0 J C J.

Since d = ged{n,m}, there exist positive integers z and y such that
zn — ym =d. A calculation gives

ad_lzad_l_ad+ym+azn
= —a(@¥™ - 1) +a*" -1
= —a%(a™ - 1)(ay(m—1) 4+ 4a¥ +1)
+(a" ~ 1)(@®™ D ... 40" +1).

Hence, a¢ — 1is in J, so J C J and the two ideals are equal.

Solution to 6.10.6: 1. If there is an ideal J # R of index, at most, 4, then
there is also a maximal ideal of index, at most, 4, 9, say. Then R/M is a
field of cardinality less than 5 containing an element a with a3 = a + 1,
namely a = a + M. By direct inspection, we see that none of the fields
F3, F3, F4 contains such an element. Therefore, J = R.

2. Let R=1Zs, a =2 (mod 5), and J = {0}.

Solution 2. Since R/7J has order less than 5, two of the elements 0, 1, a, a?, a
have the same image in R/J. Then J contains one of their differences, that
is, one of

3

l,a,a2,a3,a—1,a>-1,0®> -1, a(a —a), a(a® - 1), a®(a —1).
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But all these elements are units, since
ala-1(a+1)=aa®~-1) =1, a®-1=a.
Therefore, J contains a unit, so 3 = R.

Solution to 6.10.7: Let 3 be such an ideal. Consider ¢ : R — R/3J,
the quotient map. Since R/J is a three element ring with 1, it must be
isomorphic to Zsz. If u € R* is a unit then so is ¢(u). Hence, p(u) = +1,
and p(u?) = 1. As the squares of the units generate the additive group of
R, this uniquely determines ¢ so there is, at most, one such J.

Solution to 6.10.8: It suffices to show that if ab — ba is any generator of
J and if ¢ is any element of R, then abc — bac is in J. By the definition of 3,
a(bc) — (bc)a is an element of 3. Further, since J is a left ideal, b(ca — ac) =
beca — bac is an element of J. Therefore, abc — bac = abe — bea + bea — bac
is in J, and we are done.

Solution to 6.10.9: The fact that this map is a ring homomorphism
follows from the fact that the inclusion map R — S is a ring homomorphism
mapping mR into mS. Let 1 = an+ bm, with integers a, b. Let r € R be in
the kernel. Then r = ms for some s € S, so r = (am+bn)r = m(ar + bns).
Since R has index n in S, we have ns € R and so r € mR. This shows
that the map is an injection. Now suppose s € S. Then s = (am + bn)s =
b(ns) mod mS. As ns € R, the map is a surjection.

Solution to 6.10.11: We have J = (i) and J = (j), for some 3,j € R.
Suppose first that 3+ J = R. Then 1 € 34 3, so 1 = ri + sj for some
r,8 € R. Therefore, the greatest common divisor of i and j is 1. Now J3J
and INJ are both ideals and, clearly, have generators ij and k, respectively,
where £ is the least common multiple of 7 and j. But the greatest common
divisor of 7 and j is 1, so i = k, and JJ = J N J. Since every implication
in the previous argument can be reversed, if 33 =3N J, then J+J =R
and we are donec.

6.11 Polynomials

Solution to 6.11.2: If P(z) is a polynomial of degree n with « as a root,
then 2" P(1/z) is a polynomial of degree n with 1/a as a root.

Solution to 6.11.3: Since ¢ is a primitive seventh root of unity, we have
CH+C+--+¢+1=0.
Dividing this by ¢3, we get
(EHNHEHTHHE+HTH +1=0.
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As (C+ ¢ =(C+¢ ) +2and ((+¢)P =+ +3(C+¢,

the above equation becomes, letting a = (¢ +¢71),

a®+a?2—-2a-1=0.

Solution to 6.11.4: 1. Let £ = /5 + /7. Squaring and rearranging suc-
cessively, we get

z—-V5=V7
22— 2Vbr +5="7
22— 2 =25z

gt — 2422 +4=0

This calculation shows that /5 + /7 is a root of f(z) = z* — 242 + 4.
2. If f had a linear factor, then it would have a rational root, but a calcu-
lation shows that none of +1, 4+2 is such a root (if p/q in lowest terms is
a root of a,z" + - - - + ap then, p|ag and gla,,). Suppose now that for some
a,b,c,d € Z,

f(x) = (2 + az + b)(z* + cx + d).

Since the coeflicient of 2 in f is zero, ¢ = —a, so we have
f(z) = (% + az + b)(z® — az + d).

As the coefficient of x in f is zero, we get ad — ab = 0. If a = 0, then
f(z) = (22 + b)(z? +d) = z* + (b + d)x? + bd, but the equations bd = 4,
b+ d = —24 have no integer solutions. If b = d, then f(z) = (2% + ax +
b)(z? —azx +b) = z* + (20— a?)z? + b2, s0 b2 = 4 and 2b—a? = ~24, which
also have no solutions in Z.

Solution to 6.11.5: It is easy to see that v/2 + ¥/3 is a zero of a monic
polynomial p € Z[z] (use the process described on Problem 6.11.4.) If it
were a rational number, it would have to be an integer, since its denomina-
tor would divide the leading coefficient of p. As v2+ ¥/3 is strictly between
2 and 3, it must be irrational.

Solution 2. Suppose V2 + V/3 € Q. Then Q (v2) = Q (V/3). However, this
contradicts the fact that the fields Q (v2) and Q (¥/3) have degrees 2 and

3 over Q, respectively, since by Eisenstein Criterion {Her75, pag. 160], the
polynomials 2 — 2 and 3 — 3 are irreducible over Q.

Solution to 6.11.6: Suppose that w is a primitive k*® root Aof unity and
that w; = ' for 1 < i < k. Let P(2) =ao+az+---+aj2? (j <k); we
have
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Since w* = 1, we have w™ — 1 =0 for 1 < r < j. Factoring and replacing
1 by w™, we get

0= (wr _ 1)(wrk + wr(k—l) IS wr)‘
Since r < k and w is a primitive root of unity, w™ # 1. Therefore,
wrk: +wr(k—l) 4. ._*_w'r =0.

Substituting this into the above equality gives

e

k k

1 .
EPw’:—anOZ:a = P(0).
i=1 ) kz‘:lo ’ ©

Solution to 6.11.7: By the Euclidean Algorithm, the vector space
V = Q[z]/{f) has dimension d = deg(f). Therefore, the infinitely many
equivalence classes

£2,73,2% ...
are linearly dependent in V', so we can let g; be a finite collection of rational
numbers not all zero and satisfying

027° + q32° + g5z° + - = 0.
This means that
327° + q3z° + g52° + - - = f(z)g()
for some nonzero g € Q[z].

Solution to 6.11.8: First, note that each polynomial p(z) in Z[z] is con-
gruent modulo x — 7 to a unique integer, namely the remainder one obtains
by using the division algorithm to divide z — 7 into p(z). (Only integer
coefficients arise in the process, because the coefficient of z in z — 7 is 1.)
If p(z) lies in J, then so does the preceding remainder. However, the only
members of JNZ are the integers that are divisible by 15. In fact, if k is in
INZ,say k = (x — T)q(x) + 157(x), then k = 15r(7). Hence, we get a well
defined map from Z[z]/7J into Z,5 by sending p(z) + J to k + 15Z, where k
is the remainder one gets when dividing p(z) by  — 7. The map is clearly
a homomorphism. If p(z) is not a unit in 7, then the remainder is clearly
not divisible by 15, from which we conclude that the map is one-to-one.
The map is obviously surjective. It is, thus, the required isomorphism.

Solution 2. The map ¢ : Z[z] — Z[z] defined by ¢ (p(z)) = p(z + 7) is a
ring automorphism and it maps J onto the ideal generated by x and 15.
The quotient ring Z[z]/¢(J) is isomorphic to Zis under the map p(z) —
p(0) + 15Z, implying the desired conclusion.
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Solution to 6.11.9: J is prime. To show this we will prove that the quo-
tient ring Z[z]/J is a field. Since 5 € J, this quotient ring is isomorphic to
Zs|z]/(x3+z +1). So it suffices to show that z3+ x + 1 is irreducible (mod
5). If it were reducible, it would have a linear factor, and, hence, a zero.
But we can evaluate this polynomial for each x € Z5 as follows:
zlz®+z+1

BN =RO
o T By

Since there is no zero, the polynomial is irreducible, and the quotient ring
Zs|z]/(z®+ x + 1) is a field.

Solution to 6.11.12: Case 1: p = 2. In this case, define a map of Fa[z]
into itself by ¢(1) = 1 and ¢{z) = = + 1, and extend it in the obvious
way. Since constants are fixed and p(x + 1) = z, it is clear that this is a
ring isomorphism. Further, p(z? —2) = (z - 1)2 -2 =224+ 1 =22 - 3;
we see that ¢ maps the ideal (2 — 2) onto the ideal (z? — 3). It follows
immediatcly from this that the two rings Fo[z]/(z? — 2) and Fa[z]/(z? — 3)
are isomorphic.

Case 2: p = 5. By checking all the elements of F5, we see that x? — 2
and z? — 3 are both irreducible polynomials in Fs[x]. Therefore, the ide-
als they gencrate are maximal and the quotient rings F5[z]/(z? — 2) and
Fs[z]/ (22 — 3) are fields. The Euclidean Algorithm [Her75, pag. 155) shows
that each is a finite field with 25 elements. Since finite fields of the same
order are isomorphic, the quotient rings in this case are isomorphic.

Case 3: p = 11. In this case, checking all the elements of F;, shows that
z? — 2 is irreducible, but 22 — 3 = (z — 5)(x + 5) is not. Hence, the quotient
ring F11{z]/(z% - 2) is a field, whereas F,[x]/(z? — 3) is not, so the two
quotient rings are not isomorphic in this case.

Solution to 6.11.13: Since z — 3 is a monic polynomial, given any poly-
nomial r(z) in Z{z], there exist polynomials t(z) and s(x) such that r(z) =
t(z)(x — 3) + s(z) and deg s(r) < deg(x — 3) = 1. Hence, s(x) is a con-
stant, and so it is congruent modulo 7 to some a, 0 < a < 6. Hence,
r(z) —a = t(z)(x — 3) + (s(x) — a), and the right-hand term is clearly an
element of J.

In the special case where r(z) = z2%° 4 152'* 4+ 22 + 5, we have, by
the Euclidean Algorithm [Her75, pag. 155|, r(z) = t(z)(z — 3) + a. Sub-
stituting z = 3, we get r(3) = a. Since we only need to know a modulo
7, we reduce 7(3) mod 7 using the fact that n” = n (mnod 7), getting
r(3)=3*+32+32+5=6 (mod 7). Hence, a = 6 is the desired value.
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Solution to 6.11.14: Let ¢ : Z[z] — Zi3 be the unique ring homo-
morphism such that ¢(z) = 4. A polynomial a(z) € Z[z] is in the ker-
nel of ¢ if and only if «(4) = 0 (mod 13). This occurs if and only if
a(z) = (z — 4)B(z) (mod 13) for some B(z) € Zlz], i.e., exactly when
a(z) = (z — 4)B(z) + 13y(z) for some y(z) € Z[z], in other words if and
only if a(x) € J.

Set f(z) = (%6 + x + 1) € Z[z]; then f(z) — m € 3 if and only if
@(f(z) —m) = 0, which holds if and only if f(4) = m (mod 13).

By Fermat’s Little Theorem [Sta89, pag. 80|, [Her75, pag. 44|, ifa € Z is
not divisible by the prime p then a?~! = 1 (mod p). This gives (426+4+1) =
(4%2+45) = 8 (mod 13), and f(4) = 8" = 8 (mod 13). So m = 8 is the unique
integer in the range 0 < m < 12 such that (z*® +z+ 1) —m € J.

Solution to 6.11.16: Let ¢ : Z[z] — Z[z] be any automorphism. Since ¢
is determined by the value of x, every element of Z[z] must be a polynomial
in ¢(x). In order to get x in the image of ¢, we see that ¢(x) must be of
the form +x + a for some constant a.

Solution to 6.11.20: If the fraction p/q in lowest terms is a zero of
0+ 2% 428 + ...+ z + 1, then p|1 and ¢|1, so the possible rational zeros
are =1. A calculation shows that ncither of these is a zero, so the given
polynomial is irreducible over Q. -1 is a zero of the second polynomial, so
it is reducible over Q.

Solution to 6.11.21: Note that 539 = 72.11, 511 = 7-23, and 847 = 7-112.
Thus, all the coefficients except the leading one are divisible by 7, but the
constant term is not divisible by 72. Since 7 is a prime, by Eisenstein
Criterion [Her75, pag. 160], the polynomial is irreducible in Z[z].

Solution to 6.11.22: By the Gauss Lemma [BML97, pag. 85], an integral
polynomial that can be factored over rationals can be factored into poly-
nomials of the same degree over the integers. Since +1 are not roots (and
they are the only ones possible because a9 = a, = 1), there are no linear
terms and the only possible factorizations are in polynomials of degree 2.

o (2?2 +ax+ 1)(z%+bx+1)
o (z? +ax — 1)(z?+ bz — 1)

In the first, case we get 2% 4 (a + b)z® + (2 + ab)z? + (a + b)z + 1, which
implies that the coefficients of the terms of degree 1 and 3, are the same, a
contradiction. The other case is analogous, showing that the polynomial is
irreducible over Q.

Solution to 6.11.23: We will use Eisenstcin Criterion [Her75, pag. 160].
Let £ = y+ 1. We have

PPl =y )P g+ )P
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Since the prime p divides all the coefficients except the first and p? does
not divide the last, it follows that the polynomial is irreducible in Q[z].
Therefore, the given polynomial must also be irreducible, since if it were
not, the same change of variables would give a factorization of the new
polynomial.

Solution to 6.11.24: Put z =y + 1 to get

f(z):w5—1+5$=(y+1)5—1

+ 5y + 5.
z—1

The coefficients of 3%, y?, y, and 1 are integers divisible by p = 5 and
the constant term is 10, which is not divisible by p2. Thus, by Eisenstein
Criterion [Her75, pag. 160], f is irreducible over Q .

Solution to 6.11.25: Let f(z) = 23+ +2. A calculation shows that 2 is
a zero of f(x) over Z3, but 0 and 1 are not. Hence, we get the factorization
f(z) = (z —2)(z? + 22 +2) = (z — 2)g(z). Clearly, 0 and 1 are not roots of
g(x) since they are not roots of f(z); another calculation shows that 2 is
not a root of g(z). Hence, g(z) is irreducible, and the above factorization
is the desired one.

Solution to 6.11.30: Suppose, to the contrary, that z? — a has nontrivial
factors f(z) and g(z) in F[z]. Let K be a splitting field of z? — a. Then, in
K, there are elements ay,...,a, such that 2P —a = (z — a1)-- - (x — ap).
We may assume without loss of generality that f(z) = (x —a1)--- (z — ax)
and g(z) = ( — ax+1) - (¢ — ap). Therefore, A = a1 ---ar = +f(0) and
B = ag41---ap = £g(0) are both elements of F. Further, since the a;’s are
zeros of P —a, ag-’ = a for all j. Hence, AP = a* and BP = aP~*. Since k and
p are relatively prime, there exist integers x and y such that kx + py = 1.
Let r = —y and s = £ + y. Then A°/B" is an element of F and

—BTT arp—rk

Hence, a is a p** power, contradicting our assumptions. Therefore, P — a
must be irreducible over F.



360 6. Algebra

Solution to 6.11.31: Suppose g(z) (or h(z)) is not irreducible. Then z*+1
has a linear factor and, hence, a zero. In other words, there is an element
a € Z, with a* = —1. It follows that a® = 1, and since a* # 1 (p is odd),
a has order 8 in the multiplicative group Z; of the field with p elements.
But Zj is a group of order p—1 =2 (mod 4), so 8 cannot divide p — 1,
and we have a contradiction.

Solution to 6.11.32: Let deg f = n. Then the collection of all real poly-
nomials of deg < n — 1 is an m-dimensional vector space. Hence, any
collection of n + 1 polynomials of degree < n — 1 is linearly dependent. By
the Euclidean Algorithm [Her75, pag. 155], we have

¥ = q(z)f(z) +ro(z) withdegro <n
2 = q@)f(z) +ri(z) withdegr, <n
2" = q.(x)f(z) +ro(x) withdegr, < n.
The polynomials rg, . . ., r, are linearly dependent, so, for some a; € R, we
have
Z airi(z) =0.
Therefore,

p(z) = Z ai$2i = f(z) Z aiq:()
and f(z)|p(z).

Solution to 6.11.33: Fix f € R\ F of least degrec n, say. Choose poly-
nomials fi, f2,..., fn—1 in R such that deg f; =7 (mod n) and such that
each f; is of least degree with this property, 1 < j < n —1, if such a
polynomial exists, otherwise take f; = 0. Let f, = f. We will prove that
R = F[f, f2,--., fn]- Suppose not, and fix g € R\ F[f1, fo,..., fa] of
least degree, and suppose degg = j (mod n). For some k > 0, degg =
deg(fF f;). Hence, g —« fk f; is of lower degree than g for some « € F, and,
by the minimality of g, must lie in F[fi1, fa, ..., fn]. However, this implies
that g € F[f1, fa,. .-, fn] as well.

6.12 Fields and Their Extensions

Solution to 6.12.1: Since the 2 x 2 matrices over a field form a ring,
to show that R is a commutative ring with 1 it suffices to show that it
is closed under addition and multiplication, commutative with respect to
multiplication, and contains I. The first and the last are obvious, and the
second follows almost as quickly from

a —b ¢c d\ (a—-bd —ad—bc\ ([ c —d a —b
b a d ¢ ) \ad+bc ac—bd )" \ d ¢ b a

):
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The inverse of a nonzero element in R is given by

1 a b
a?+b2\ —b a
which lies in R provided that a%? + 5% # 0. If F = Q, then a® + 4% > 0

for @ and b not both equal to 0; hence, every nonzero element of R has an
inverse, so R is a field. If F = C, then the matrix

(1 7)

has no inverse since i2 + 12 = 0. Therefore, in this case, R is not a field.
Similarly, if F = Zs, we have that 22412 = 0, so there exists a noninvertible
matrix in R and so R is not a field. Finally, if F = Z, the equation
a? 4+ b2 = 0 has no nonzero solutions, so every nonzero element of R has an
inverse and R is a field.

Solution to 6.12.2: Let R be a finite integral domain. Let 0 #£ b € R and
enumerate the elements of R by ¢1,c¢3...,c,. Since R, has no zero divisors,
cancellation shows that the elements bc; are distinct. Since there are n of
them, it follows that there is an element c;, such that bc;, = 1. Hence, ¢;,
is the inverse of b and we are done.

Solution to 6.12.3: Since a and b are algebraic over F, there exist integers
n and m such that [F(a) : F] = n and [F(b) : F| = m. Because b is algebraic
over F, it must also be algebraic over T = F(a) of degree, at most, m.
Hence, [T(b) : F(a)] < m, which implies

[T(b) : F] = [T(b) : F(a)][F(a) : F] < nm.

Therefore, T(b) is a finite extension of F. T'(b) contains a+b and so contains
F(a + b); the latter must, therefore, be a finite extension of F, so a + b is
algebraic over F.

Solution to 6.12.4: From the fact that the group is finite, we can see
that all elements are in the unit circle, otherwise consecutive powers would
make an infinite sequence.

All elements of the group are roots of unity (maybe of different degrees),
since a high enough power will end up in 1 (the order of an element always
divides the order of the group). We will prove that they are all roots of unity
of the same degree. Let a be the element with smallest positive argument
(arg a € (0,27)). We will show that this element generates the whole group.
Suppose that there is an element [ that is not in the group generated by
a. There is a p € N such that

arga? < arg B < argaPt!
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therefore,
arg(fa™?) < arg o

which contradicts the minimality of arg a. We conclude then that the group
is generated by a. See also the Solution to Problem 6.12.5.

Solution to 6.12.5: Let G be a finite subgroup of F* of order n. By
the Structure Theorem for finite abelian groups [Her75, pag. 109], there
are integers my|mg| - - - |my such that G is isomorphic to Z,,, ® -+ ® Zyp, -
To show that G is cyclic, it suffices to show that my; = n. Suppose that
my < n. From the structure of G we know that g"* = 1 for every g € G.
Hence, the polynomial x™* — 1 has n roots, contradicting the fact that a
polynomial over a field has no more roots than its degree. Hence, my = n
and G is cyclic.

Solution to 6.12.6: Since z3 — 2 is irreducible over Q [z], (z3 — 2) is a
maximal ideal in Q [z],s0 F = Q [z]/(z3 — 2} is a field. Using the relation-
ship 23 = 2, we get that every element of F can be written in the form
a + b% + cx?, where a,b,c € Q. Further, such a representation is unique,
since otherwise we could find a, b, c € Q , not all 0, with a+bZ+cz? = 0. On
pulling back to Q [z], we find that 3 —2 divides a+bx+cz?, a contradiction.

Consider the map ¢ : F — F given by ¢(a) = aifa € Q, and ¢(¢/2) = 2.
Since (¥/2)® = 2 and % = 2 this extends to a ring epimorphism in the
obvious way. It is also one-to-one, since if p(a + b2 + cv/4) = 0 then
a+bZ +ci?2 =0,s0 a=b=c=0. Hence, F is the isomorphic image of a
field, and it is field.

Further, by the isomorphism we see that every element can be expressed
uniquely in the desired form. In particular, (1— /2 )}(-1— ¢/2—v4) = 1.

Solution to 6.12.7: Consider the ring homomorphism ¢ : Z — F that
satisfies ¢(1) = 1. Since F is finite, ker # 0. Since F is a field, it has
characteristic p, where p is a prime number. Hence, ker ¢ contains the ideal
(p), which is maximal. Therefore, ker¢p = (p), and the image of Z is a
subfield of F isomorphic to Z,,. Identify Z, with this subfield. Then F is a
vector space over Z,, and it must be of finite dimension since F is finite.
Let dimF = r. A counting argument shows that F has p" elements.

Solution to 6.12.8: Since F has characteristic p, it contains a subfield
isomorphic to Z,, which we identify with Z,. For j € Z,, o + j is an
clement of F(a). Using the identity (o + j)P = a? + j7, we get

flot+j)=a? —a+3+57 —j=0.
Therefore, f has p roots in F(a), which are clearly distinct.

Solution to 6.12.9: Notice that Q [z] is an Euclidean domain, so the ideal
(f, g) is generated by a single polynomial, h say. f and g have a common
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root if and only if that root is also a root of h. We can use the Fuclidean
algorithm to find h = 2+ 3z 4 1, which has roots —3/24+/5 /2. Therefore,
f and g have exactly two common roots, both in Q (v/5).

Solution to 6.12.10: Let = be an element of F that is not in Q . Then =
satisfies an equation ax? + bz + ¢ = 0 with a, b, and ¢ € Q. Completing the
square, we see that (z + %)2 € Q, whereas (z+ %) ¢ Q. Let £ = (z + %).
As €2 € Q, we can write it as %;m, where ¢,d,m € Z and m is square

free (i.e., m has no multiple prime factors). As F = Q (£) = Q (£¢), we

c
get an isomorphism F — Q (y/m) by sending 7 + s (££) to r + s\/m. The
uniqueness of m follows from the fact that the elements of F that are not
in Q but whose squares are in Q are those of the form k£ for some nonzero

keQ.

Solution to 6.12.11: Let p, = 2, p» = 3, ..., be the prime numbers and
F; = Q ({/p:). Claim: The fields F; are pairwise nonisomorphic. Indeed, if
F; were isomorphic to F;, then there would exist 7 € K such that r? = p;.
Write such an r in the form

r=a+b/p; a,beQ.

Then
r? = a? + bp; + 2ab\/B; = p;

if and only if ab = 0. Therefore, either p; = ¢* or p; = c? for some c € Q,
which contradicts the primality of p; and p;.

Solution to 6.12.12:

0 iin®Y = cosd 4 ising
cos 7 +ising ) = cosf +isin
0 0

= 3sin§ — 4sin® 3= sinf

= FEy D Fy

All the possibilities can occur. For example
dimp, Eg =1 if 0=
dimp, Eg =2 if 8=
dimp, Ep =3 if 9:%

N3

In the last example, 4z3 — 3z + 1/2 or 8z3 — 6z + 1 is irreducible because
+1, £1/2, +1/4, and £1/8 are not roots of the above polynomial.

Solution to 6.12.13: 1. A 2 x 2 matrix over F is invertible if and only if
the first column is nonzero and the second is not a F—multiple of the first.
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This gives |F|2—1 = p?® — 1 possibilities for the first column of an invertible
matrix, and, given the first column, |F|? — |F| = p?" — p" for the second,
hence the result. See also Problem 7.1.1 for a more general solution.

2. The map F — G sending a to ((1) ¢) is easily checked to be an injective
group homomorphism. Its image is a subgroup S of G that is isomorphic
to the additive group of F and that, consequently, has order p™. By 1., this
is the largest power of p dividing the order of G. Hence, S is, in fact, a
p-Sylow subgroup of G. Since all p-Sylow subgroups of a finite group are
conjugate (and hence isomorphic), this implies the result.

Solution to 6.12.14: The zero element of F, obviously has a unique
square root and a unique cube root. Let F;, denote the multiplicative group
of nonzero elements of F,. It is a cyclic group of order p— 1. Since p—1 is
even, the homomorphism z — z2 of F;‘, into itself has a kernel of order 2,
which means that its range has order (p—1)/2. There are, thus, 14+(p—1)/2
elements of F, with square roots.

If p — 1 is not divisible by 3, the homomorphism z — z3 of F,, into itself
has a trivial kernel, and so every element of F;, has a cube root. If 3 divides
p — 1, then the preceding homomorphism has a kernel of order 3, so its
range has order (p — 1)/3. In this case, there are 1+ (p — 1)/3 elements of
F, with cube roots.

Solution to 6.12.15: All functions are polynomials. A polynomial with
the value 1 at 0 and 0 elsewhere is p(z) = 1 — z9~!; from this one, we can
construct any function by considering sums Y, f; -p(z —z;). Thus, there are
q? such functions, and that many polynomials. Another way is to observe
that all polynomials of degree, at most, g—1 define nonzero functions unless
the polynomial is the zero polynomial.

Solution to 6.12.16: Let K be that subfield. The homomorphism of mul-
tiplicative groups F* — K* sending z to z> has a kernel of order, at most,
3, so |[K*| > |F*|/3, that is, (|F| — 1)/(JK| — 1) < 3. Also, if the exten-
sion degree [F : K] equals n, then n > 2, so |[F| = |K|* > |K|?, and
(IF| - 1)/(K| - 1) > |[K] + 1, with equality if and only if n = 2. Thus,
3 > |K| + 1, which gives |[K| =2, n =2, and |F| = 22 = 4.

Solution to 6.12.17: As A has dimension at least 2 as a vector space over
C, it contains an element a which is not in the subspace spanned by the
identity element 1 € A. Since A has finite dimension over C, there exists
a complex number A such that (a — A1)z = 0 for some nonzero z € A. Let
€ be the ideal generated by b = a — A1, and § = {z € A|bz = 0} the
annihilator of b. We have € N § = {0} since all the elements of € N § have
zero square. As the dimensions of € and § add up to the dimension of A
we must have A = € ® § as vector spaces over C . Since € and § are ideals
inA, A=¢®F asrings. Let l = e+ f withe € €and f € §. Then e =,
f? = f and neither of them is zero or 1.
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Solution to 6.13.1: Let the six people be Aline, Laura, Lucia, Manuel,
Raquel, and Stephanie. Fix onc of them, Manuel, say. The five girls form two
sets: X (Manuel’s friends) and Y (the others). By the Pigeonhole Principle
[Her75, pag. 127], one of these sets has cardinality at least 3. Suppose it is X
that contains at least three elements, say { Aline, Laura, Stephanie} C X. If
Aline, Laura, and Stephanie are pairwise strangers, we are done. Otherwise,
two of them are friends of each other, Stephanie and Aline, say. Then
Manuel, Aline, and Stephanie are mutual friends. If the set with three or
more elements is Y, a similar argument leads to the same conclusion.

Solution to 6.13.3: If a = 0, the congruence has the trivial solution z = 0.
For1<a<p-1,ifz2 =a (mod p), we have

(p—2)2=p*—2cp+2>=a (mod p)

so, for a # 0, there are two solutions of the quadratic congruence in each
complete set of residues mod p. We conclude, then, that the total number
isl+(p—-1)/2=(p+1)/2.

Solution to 6.13.4: By Fermat’s Little Theorem [Sta89, pag. 80], [Her75,
pag. 44], we have, raising both sides of the congruence —1 = z2 (mod p)
to the power (p — 1)/2,

(—1)1'%l =z '=1 (mod p)
which implies that (p — 1)/2 is even, and the result follows.

Solution to 6.13.5: Let f(n) = 2" + n2. If f(n) is prime, then it is
congruent with 1, or 5 (mod 6). Suppose f(n) = 6k + 1 for some integer
k. We have

21 4 f(n)? = 25K1 4 36k% + 12k + 1 = (22)°° 2 + 36k% + 12k + 1
which is a multiple of 3. If f(n) = 6k + 5, we have

27 4 f(n)? = (22)*" 222 + 36k2 + 60k +25=2+1=0 (mod 3)
so f(n) is a composite as well.

Solution to 6.13.6: 1. It is enough to show that the sct of units is closed
for multiplication. Let e and b be units with ac =1 (mod n), b3 = 1
(mod n). Then, clearly, a and 3 are also units, and we have

(ab)(Ba) =1 (mod n)

so ab is also a unit.
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2. The congruence ka = 1 (modn) is equivalent to the equation
ka = mn + 1 for some integer m. As all integer linear combinations of
k and n are multiples of ged{k, n}, the first congruence has a solution iff
ged{k,n} = 1.

3. Let ¢ be Euler’s totient function [Sta89, pag. 77|, [Her75, pag. 43]. As ¢
is multiplicative, we have

e(n) = p(p)p(g) = (p — 1)(g— 1).

Solution to 6.13.7: Let p(t) = 3t3 + 10t2 — 3t and n/m € Q;
ged{n, m} = 1. We can assume m # +1. If p(n/m) = k € Q, then m|3 and
nlk. Therefore, we have m = £3.

Suppose m = 3. We have

p(g)=n(%2+log—l).

This expression represents an integer exactly when n?+10n = n(n+10) = 0
(mod 9). As ged{n,3} =1, thismeans n+10 =0 (mod 9), that is, n =8
(mod 9).

A similar argument for the case m = —3 shows that the numbers n/(—3)
withn =1 (mod 9) produce integer values in p.

Solution to 6.13.8:

(1/2):<§)<%—1)---<;—<n—1)) (-1)""' 3.5 (2n— 1)

n n! 2nn!
_(=D)~1'.2.3.4.5...2n (=) (2n
B (2mn!)2 T2 T\

Solution to 6.13.9: A counting argument shows that the power of 2 which
divides n! is given by
n
> |z

k>1

where |z| denotes the largest integer less than or equal to z. Since
cn = (2n)!/(n!)?, to show that c, is cven it suffices to show that

M FIENETE

Suppose 2" < n < 2771, For k < r, there is an 7+, 0 < 74 < 1, such that

n n
2—k=bﬂ+”
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or 9
_’E:g[”

2k

2n n
[ﬂ"J 22| 5|
and equality holds if and only if n is a power of 2. For k£ = r + 1, we have
that |n/2"*!| = 0 while |2n/2"*!| = 1. Finally, for & > r, the terms in
both sums are 0. Hence, we see that the above inequality holds. Further,

we see that the left side is 2 or more greater than the right side (i.e., ¢, is
divisible by 4) if and only n is not a power of 2.

J+2rk

SO

Solution to 6.13.10: We may assume that n > 3. Converting the sum
into a single fraction, we get

nl/1+nl/24+ - +nl/n
n!

Let 7 be such that 27|n! but 27t does not divide n!, and s be such that
2% is the largest power of 2 less than or equal to n. Since n > 3,7 > s > 0.
The only integer in 1,...,n, divisible by 2° is 2°. Hence, for 1 < k < n,
n!/k is divisible by 27~¢, and every term except 1 is divisible by 2" ~5*!. So

nl/1+nl/24 - +nl/n  277°(25+1) 2j+1
n! B 27k 2%k

for some integers j and k. The numerator is odd and the denominator is
even, so this fraction is never an integer.

Solution to 6.13. 11 Recall that 1f p1,P2, .- - is the sequence of prime
numbers and z = [] p “and y = []p}, we have

gcd{z y} — Hpmln{&l 771} ].Cm {fl' y} _ Hpnlax{é‘zy"h

a=[]pr o=][p" c=]I»"

Let

we have

ged{a, lem{b, c}} = Hp?m{ai’maxwm”}
_ pr_nax{min{ai Bi}min{a;,yi }}

= lem {ged{a, b}, ged{a, c}.}

Solution to 6.13.12: There are nine prime numbers < 25:

p1:2a p‘2:37 P3:5, p4:7) p5:115
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pe =13, pr =17, ps=19, pg=23.

By unique factorization, for each 1 < a < 25 there is an integer sequence
v(a) = (vj(a))?=1 with @ = H?zlp;.’j(a). The 10 sequences v(a;) € Q° must
be linearly dependent, so

10
Z n,-vj(a,') =0
=1

for all j, for some rational numbers n; which are not all 0. Multiplying by
a common multiple of the denominators, we can assume that the n;’s are

integers. So
e > 210 ( )
; .1 Mivila;
IIO,?.'~—||])_,’-1_1 ’ —1,
i=1 =1

as required.

Solution to 6.13.13: Denote the given number by n and let n = a'3. By
counting digits, we see that n < 1026, s0 a < 100. As 8!2 = 7934527488, we
have 80'3 < n and a > 80. Notc that n =9 (mod 10). The integers ¢ < 10
such that ¢* =9 (mod 10) forsome kare3,7and 9. But3* =74 =91 =1
(mod 10) and 13 =3-4+1,s0 c® =c*%c=¢c=9 (mod 10) so c = 9.
Hence, a = 89 or a = 99. As 3 does not divide n, 3 does not divide a.
Hence, a = 89.

Solution to 6.13.14: Since 17 =7 (mod 10),
A=7"" (mod 10).

Since (7,10) = 1, we can apply Euler’s Theorem [Sta89, pag. 80], [Her75,
pag. 43]:

7¢09 =1 (mod 10).
The numbers k such that 1 < k < 10 and (k, 10) = 1 are precisely 1, 3, 7,
and 9, so ¢(10) =4. Now 17=1 (mod 4),s0 17'7 =1 (mod 4). Thus,

77" =7'=7 (mod 10)
and the rightmost decimal digit of A is 7.

Solution to 6.13.15: As 23 = 3 (mod 10), it suffices to find 323"
(mod 10). We have ¢(10) = 4, where ¢ is Euler’s totient function, and, by
Euler’s Theorem [Sta89, pag. 80|, [Her75, pag. 43],3" = 3° (mod 10) when
r = s (mod4). So we will find 2323*°  (mod 4). We have
23 = 3 (mod 4), so 23%” = 32 (mod4). As -1 = 3 (mod 4),
328" = (-1)2" = | (mod 4), because 2323 is odd. Hence, 23%3°° = 3

(mod 4), and 323" — g3 _ 7 (mod 10).
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Solution to 6.13.16: Let

{0,1}uU {4,5,6} U {11,12,13,14,15} U - - -
{2,3} U {7,8,9,10}U {16,17,18,19,20,21} U - - -

Ny
N

It

We have
No NN, =0, NoUN, =24

and, clearly, neither can contain an arithmetic progression.

Solution to 6.13.17: Consider the ring Z,«_,. Since a > 1, (a,a*—1) = 1,
s0 a € Z%x_,. Further, it is clear that k is the least integer such that a* =
(mod a*—1), s0 k is the order of a in Z«_,. Hence, by Lagrange’s Theorem
[Her75, pag. 41], k divides the order of the group Z_,, which is ¢(a*—1).

Solution to 6.13.18: Let N be the desired greatest common divisor. By
Fermat’s Little Theorem [Sta89, pag. 80], [Her75, pag. 44], we have

=0 2n=n*n=n'=n*=n (mod 2).

Hence, 2|(n'3—n) for all n, so 2| N. An identical calculation shows that p|N
for p € {3,5,7,13}. Since these are all prime, their product, 2730, divides
N. However, 2!3 — 2 = 8190 = 3- 2730, so N is either 2730 or 3 - 2730. As
313 — 3 =3(3'2 - 1) is not divisible by 9, N = 2730.

Solution to 6.13.19: Let
n=pypy o p

be the factorization into a product of prime powers (p1 < p2 < -+ < pn)
for n. The positive integer divisors of n are then the numbers

ppl Pl 0<j <Ky

It follows that d(n) is the number of r—tuples (j1, jo, .. ., j-) satisfying the
preceding conditions. In other words,

d(n) = (kv +1)(k2 +1)- - (kn + 1),

which is odd iff each k; is even; in other words, iff n is a perfect square.



7
Linear Algebra

7.1 Vector Spaces

Solution to 7.1.1: 1. Every element of V' can be uniquely written in the
form a vy + -- - + a,v,, where the v;’s form a basis of V and the a;’s are
elements of F. Since F has ¢ elements it follows that V' has g™ elements.
2. A matrix A in GL,(F) is nonsingular if and only if its columns are
linearly independent vectors in F”. Therefore, the first column A; can be
any nonzero vector in F”, so there are ¢" — 1 possibilities. Once the first
column is chosen, the second column, A3, can be any vector which is not a
multiple of the first, that is, Aa # cA;, where ¢ € F, leaving ¢" — ¢ choices
for As. In general, the i column A; can be any vector which cannot be
written in the form ¢;A; + c2Az + -+ - + ¢;_14:_1 where ¢; € F. Hence,
there are q® — ¢! possibilities for A;. By multiplying these together we
see that the order of GL,(F) is (¢" ~ 1)(¢" — q)--- (¢" — q" 7).

3. The determinant clearly induces a homomorphism from GL,(F) onto
the multiplicative group F*, which has q — 1 elements. The kernel of the
homomorphism is SL,(F), and the cosets with respect to this kernel are
the elements of GL,(F) which have the same determinant. Since all cosets
of a group must have the same order, it follows that the order of SL, (F)
is |GLn(F))/(g - 1).

Solution to 7.1.2: If p is prime then the order of GL2(Z,) is the number
of ordered bases of a two-dimensional vector space over the field Z,, namely
(p? — 1)(p? — p), as in the solution to Part 2 of Problem 7.1.1 above.
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A square matrix A over Z,~ is invertible when det(A) is invertible modulo
p™, which happens exactly when det(A) is not a multiple of p. Let p(A)
denote the matrix over Z, obtained from A by reducing all its entries
modulo p. We have det(p(A)) = det(A) (mod p), thus

AeGLy (Zy) if p(A) € GLy(Zyp),
giving a surjective homomorphism
p: GL2 (an) — GLy (Zp) .

The kernel of p is composed of the 2 x 2 matrices that reduce to the Identity
modulo p so the diagonal entries come from the set {1,p+1,2p+1,...,p" —
P+ 1} and the off-diagonal are drawn from the set that reduce to 0 modulo
p, that is, {0,p,2p,...,p" — p}. Both sets have cardinality p™™!, so the
order of the kernel is (p"~!)4, and order of GL; (Z,) is

p P — 1)@ —p) =p" 3p - 1)(P* - 1).

Solution to 7.1.3: Let F = {0,1,a, b}. The lines through the origin can
have slopes 0, 1, a, b, or oo, so S has cardinality 5. Let L; be the line
through the origin with slope y. Suppose v € G fixes all these lines, to be

specific say
_{T ¥
= (2 1)

vLo = Lo

Then

implies that
7(170)t = (iL‘, Z)t = (C, O)t

for some ¢ # 0. Thus, 2 = 0. Similarly, the invariance of L., implies
= 0 and of L, implies x = w. Then det(y) = z2 = 1 and since F has
characteristic 2, we must have 2 = 1 and -~y is the identity.

Solution to 7.1.4: 1. F[z] is a ring under polynomial addition and multi-
plication because F is a ring. The other three axioms of vector addition —
associativity, uniqueness of the zero, and inverse — are trivial to verify; as
for scalar multiplication, there is a unit (same as in F) and all four axioms
are trivial to verify, making it a vector field.

2. To see this, observe that the set {1,z,22,...,2"} form a basis for this
space, because any linear combination will be zero, if and only if, all coef-
ficients are zero, by looking at the degree on both sides.

3. An argument as above shows that

agl +ar(z—a)+---+a(z—a)" =0
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only if the coefficients are all zero.

Solution to 7.1.5: Let Y denote the given intersection. Then Y is a sub-
space of V and, clearly, W C Y. Suppose that there exists a nonzero vector
v € Y\ W. Since v is not in W, a set consisting of v and a basis for
W is linearly independent. Extend this to a basis of V', and let Z be the
n — 1-dimensional subspace obtained by omitting v from this basis. Then
W C Z, so Z is a term in the intersection used to define Y. However, v is
not in Z, so v cannot be an element of Y, a contradiction. Hence, Y C W
and we are done.

Solution to 7.1.6: We use the Induction Principle [MH93, pag. 7] on the
dimension of V. If dimV = 1, the only proper subspace is {0}, so V' is
clearly not the union of a finite number of proper subspaces.

Now suppose the result is true for dimension n — 1 and that there is a

V,dimV = n, with
k
v=w,
=1

where we may assume dimW; = n — 1, 1 < i < k. Suppose that there
existed a subspace W of V of dimension n — 1 which was not equal to any
of the W;’s. We have

n
W= JWwnw,).
i=1
But dim(W N'W;) < n — 2, and this contradicts our induction hypothesis.
Therefore, to complete the proof, it remains to show that such a subspace
W exists. Fix a basis z;,...,z, of V. For each a € F, a # 0, consider the
n — 1-dimensional subspace given by

Wo={az1+ -+ anzn|ar +- - +ap_1 +aa, =0}

Any two of these subspaces intersect in a subspace of dimension, at most,
n — 2, so they are distinct. Since there are infinitely many of these, because
F is infinite, we can find W as desired.

Solution 2. Suppose that V = U,<;<xV;. After discarding superfluous V;’s,
we may assume that
VUV forall 1<ipg<k
iio

Then k > 2, and there must be vectors vy, v in V such that

(1) 'UIGVI\UVi and (2) ’U2€V2\UV1‘.
i#1 i#2
Let (x5) be sequence of distinct, nonzero elements of the field. Then, for
each s, the vector u, = v, + z,v2 does not lie in V; UV (if u; € 1,
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then v = (us — v1)/xs € Vi, contradicting (1); similarly, us & V2.) It
follows that, for all s, us € U;x1 2V;. Since the vectors u, are all distinct,
it follows that, for some s # s’ and © # 1,2, u; and u, lie in V;. But then
vg = (us — Uy )/(@s — x5) € Vi, contradicting (2). Hence, V # Ui<i<iVi.

Solution to 7.1.7: Note first that if A and B are matrices and C is an
invertible matrix, then

AB=BA iff C'ACC™'BC =C"'BCC'AC.

Also, if Dq,..., D, are linearly independent matrices, so are the matrices
C~D,C,...,C™'D,C. We may then assume that A is in Jordan Canonical
Form [HK61, pag. 247].

a 1 ... 0
A direct calculation shows that if A = isakxk
0 a
by bo b
Jordan block, then A commutes with B = e by
0 b1

Therefore, by block multiplication, A commutes with any matrix of the
form
B,

B =

B,

where the B,’s have the form of B and the same dimension as the Jordan
blocks of A. Since there are n variables in B, dim C(4) > n.

Solution to 7.1.8: tr(AB — BA) = 0, so S is contained in the kernel of the
trace. Since the trace is a linear transformation from M, xn(R) = R"™” onto
R, its kernel must have dimension, at most, n? — 1. Therefore, it suffices to
show that S contains n? — 1 lincarly independent matrices.

Let M;; denote the matrix with a 1 in the (,4)'" coordinate and 0’s
elsewhere. A calculation shows that for i # j, M;; = M;xMy; — My; My,
SO Mij is in S. Similarly, for 2 S ] S n, M11 - ij = Mlej — Mlelj-
Together, these n2 — 1 matrices are clearly a linearly independent set.

Solution to 7.1.9: Let f,g € S and let r and s be scalars. Then, for any
v e A, (rf+s9)(v) = f(rv) + g(sv) € A, since A is a vector subspace and
f and ¢ fix A. Similarly rf + sg fixes B, so rf + sg € S and S is a vector
space.

To determine the dimension of S, it suffices to determine the dimension
of the space of matrices which fix A and B. To choose a basis for V, let
A’ denote a complementary subspace of AN B in A and let B’ denote a
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complementary subspace of ANB in B, Then, since A+B=V,r =a+b—n
is the dimension of A N B. Further, dimA’ = a — r and dimB’ = b —r.
Take one basis in each of the spaces A’, B’, and AN B. The union of these
bases form a basis for V. Since any endomorphism which leaves A and B
invariant must also fix A N B, its matrix in this basis must have the form

o O *
[==2NE R 3
* O *

which has, at most, a® +b% +n? — an — bn nonzero entries, so the dimension
of S is a® + b2 + n? — an - bn.

Solution to 7.1.10: Suppose there are scalars such that
aoz + Tz + - +arT*z+ -+ ap1T™ 'z =0
applying 7™ ! to both sides, we get, since 70 = 0,
aT™ 'z +a Tz + -+ a T e+ T =0

S0
aon_ ! z=0

and ag = 0. By the Induction Principle [MH93, pag. 7] (multiplying by
T™k—1) we see that all ay = 0 and the set is linearly independent.

Solution to 7.1.12: Let P be the change of basis matrix from (a;) to
(b;). A straightforward calculation shows that I + 2P is the matrix taking
(ai) to (a; + 2b;). Now (I + 2P)v = Av implies that Pv = (A — 1)v. So
if A is an cigenvalue of I + 2P, then (A — 1) is an eigenvalue of P, and
they correspond to the same eigenvectors. The reverse also holds, so there
is a one-to-one correspondence between the eigenvalues of P and those
of I + 2P. As (a;) and (b;) are orthonormal bases, P is orthogonal and
therefore, all the eigenvalues of P are +1. But this implies that the only
possible eigenvalues of I + 2P are 3 and —1. Hence, 0 is not an eigenvalue
of I + 2P, so it is an invertible matrix and, thus, (a; + 2b;) is a basis.
Further, det P = (~1)*17%, where a and 3 are the algebraic multiplicities
of —1 and 1 as eigenvalues of P. Thus, det(I + 2P) = (—1)*3". Since we
are given that det P > 0, a is even and, thus, det(I + 2P) is positive as
well. Therefore, (a; + 2b;) has the same orientation as (a;).

7.2 Rank and Determinants

Solution to 7.2.1: 1. Let A = (a;;), and R; denote the i*" row of A. Let
T, 1 < r < m, be the row rank of A, and S; = (b;1,...,bin), 1 <i <7, be
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a basis for the row space. The rows are linear combinations of the S;’s:
r
Ri———Zkiij, 1< <m.
=1

For 1 <1 < n, isolating the I** coordinate of each of these equations gives

ay =kubu+--+kirby
ag; = ko1by + - -+ + ko, by

Qml] = kmlbll +eee kmrbrl-

Hence, for 1 < I < n the I** column of A, C}, is given by the equation

Cl = Z blej,
Jj=1

where K is the column vector (kij, ..., kn;)t. Hence, the space spanned
by the columns of A is also spanned by the r vectors Kj, so its dimension
is less than or equal to r. Therefore, the column rank of A is less than or
equal to its row rank. In exactly the same way, we can show the reverse
inequality, so the two are equal.

2. Using Gauss elimination we get the matrix

10 3 -2
01 -4 4
00 2 O
00 2 0
00 0 O

so the four columns of M are linearly independent.

3. If a set of rows of M is linearly independent over F, then clearly it is
also independent over K, so the rank of M over F is, at most, the rank of
M over K.

Solution to 7.2.2: As A’AV C AV, it suffices to prove that dim A’ AV =
dim A'V. We know that rankA = dim(Im A) and that

dim(Im A) + dim(ker A) =n

Similar formulas hold for A*A. Therefore, it is enough to show that ker A
and ker A’A have the same dimension. In fact, they are equal. Clearly,
ker A C ker AtA. Conversely, take any v € ker A*A. Then

0 = (A' Av,v) = (Av, Av),
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so ||Av|| = 0. Hence, v € ker A and we are done.

Solution to 7.2.3: Since 1 — P — @ is invertible, P has the same rank as
P(l—-P-Q)=P-P?-PQ=—-PQ.

Similarly, @ has the same rank as
(1-P-Q)QR=Q-PQ-Q*=-PQ,

so P and @ have the same rank.

Solution to 7.2.4: 1. and 2. Since T is symmetric it is diagonalizable, so
R™ can be written as the direct sum of the eigenspaces of T'. It suffices
to show that any eigenspace has dimension, at most, 1. For if this is the
case, then the kernel has dimension, at most, 1, and, by the Rank—Nullity
Theorem [HK61, pag. 71], T has rank at least n — 1, and there must be
n distinct eigenspaces, so there are n distinct eigenvalues associated with
them.

Let A € R, and consider the system of equations Tx = Ax. The first
equation is a1z + b1z2 = Az;. Since b; # 0, we can solve for z; in terms of
x1. Suppose that we can solve the first i—1 equations for x4, . . ., z; in terms
of ;. Then, since b; # 0, we can solve the it equation b;,_1z;_1 + a;z; +
b;x;11 = Az; for x;41 in terms of x;. Therefore, by the Induction Principle
IMH93, pag. 7}, we can solve the first n—1 equations for 23, ..., z, in terms
of z;.

The last equation, b,,—1Zn—1 +anZTn = AT, is either consistent with this
or is not. If not, A is not an eigenvalue; if it is, then A is an eigenvalue
and we have one degree of freedom in determining eigenvectors. Hence, in
either case the associated eigenspace has dimension, at most, 1 and we are
done.

Solution 2. 1. The submatrix one obtains by deleting the first row and
the first column is upper triangular with nonzero diagonal entries, so its
determinant is nonzero. Thus, the first n — 1 columns of T are linearly
independent.

2. By the Spectral Theorem [HK61, pag. 335], [Str93, pag. 235], R™ has
a basis consisting of eigenvectors of T. If A is an eigenvalue of T, then
T — A has rank n — 1 by Part 1, so ker(T' — Al) has dimension 1. Since
the eigenspaces span R™ and each has dimension 1, there must be n of
them.

Solution to 7.2.6: 1. Write the characteristic polynomial of A, det(A—\I),
as (—1)"A"+cy A"+ - -+, . Since the entries of A are integers, each ¢y is an
integer, and ¢, = det A. If A is an integer eigenvalue, then det(4 —nl) = 0,
)

det A = (—l)r_lnr +ean Ve
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showing that n divides det A.
2. Under the given hypotheses, n is an eigenvalue with eigenvector
(1,1,...,1)t, so Part 1 applies.

Solution to 7.2.7: We use the Induction Principle [MH93, pag. 32] in the
order of the matrix. If n = 2,

1 T
(1 2)
which has determinant (z2 — z;).

Suppose the result holds for all £ < n, and let A be the n x n Vander-
monde matrix [HK61, pag. 125]. Treating the indeterminates z1,...,Zn—1
as constants and expanding the determinant of A along the last row, we
see that det A is an (n — 1)!* degree polynomial in z,, which can have,
at most, n — 1 roots. If we let z,, = z; for 1 < i < n — 1, A would have
two identical rows, so det A would equal 0. Hence, the z;’s are the roots of
det A as a polynomial in z,,. In other words, there exists a constant ¢ > 0
such that

n—1

detA=c H(:cn - T;).

i=1

c is the coefficient of the z"~! term, which, when we expand the determi-
nant, is equal to the determinant of the (n — 1) x (n — 1) Vandermonde
matrix. So, by the induction hypothesis,

det A = H (z: — a:j)ﬁ(wn —-x;) = H(l‘i —Zj).

j<i<n—1 i>j

Solution to 7.2.8: 1. As shown in the solution of Problem 7.2.7, the
determinant of the matrix is

[I(: —a))
i>j
which is nonzero if the a; arc all different.
2. The function f given by
n — coo(z — ai—)bi(z — aip1) - (x — ap,
f@ =3 (z —ag)- - (z —ai-1)bi(z — @i1) - (z — an)

(@i — ao) - - (a; — ai~1)bi(a; — aiy1) -+ - (a; — an)

=0

has degree n and takes f(a;) into b;. Now, if ¢)(z) is another such polynomial
of degree n, the polynomial

f(z) — ¥(x)
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has degree n with n + 1 different roots (the a;’s), so it has to be the zcro
polynomial and f is unique.

Solution to 7.2.9: Consider the function v(t) = (1,t,¢2). To show that
v(t1), v(t2), and v(t3) form a basis for R?® whenever the t,’s are distinct,
it will suffice to show that the matrix which has these vectors as rows has
nonzero determinant. But this matrix is

1t #2
1 to 2
1 t3 t2

which is the 3 x 3 Vandermonde matrix [HK61, pag. 125]. Its determinant
is given by
(t3 — t2)(ts — t1)(t2 — t1)

which is nonzero whenever the t;’s are distinct.

Solution to 7.2.10: Let G be the matrix with entries

b

If the determinant of G vanishes, then G is singular; let a be a nonzero
n—vector with Ga = 0. Then

n n b b n 2
0=a"Ga= ZZ/ a;fi(z)a; f;(z)dz = / (Z aifi(z)) dz
i=1 i=j 7@ ¢ \ai=1

50, since the f;’s are continuous functions, the linear combination ) a; f;
must vanish identically. Hence, the set {f;} is linearly dependent on [a, b].
Conversely, if {f;} is linearly dependent, some f; can be expressed as a
linear combination of the rest, so some row of (@ is a linear combination of
the rest and G is singular. '

Solution to 7.2.11: Identify Msy2 with R* via

(¢a)-

and dccompose L into the multiplication of two linear transformations,

a0 o8

L L
M2x2 jacd R4 =4, R4 ——B> R4 ~ M2x2

where Ls(X) = AX and Lp(X) = XB.
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The matrices of these two linear transformations on the canonical basis
of R is

1 02 0 2000

3 0 10 2 [ 1400
La=1 1 030 and L= ¢ o 9 ¢
0 -1 0 3 001 4

then det L = det Ly -det Lg = (9 + 6 + 2(2+ 3)) - (2- 32) = 26 5%, and
to compute the trace of L, we only need the diagonal elements of L4 - L,
that is,

trL=24+4+6+4+12=24.

Solution to 7.2.12: Let X = (z;;) be any element of M3(R). A calculation
gives
T 3z12/2 T3
T(X) = 3:1:21/2 2:1,‘22 3:1323/2
31 3z32/2  Tas

It follows that the basis matrices M;; are eigenvectors of T'. Taking the
product of their associated eigenvalues, we get det T = 2(3/2)* = 81/8.

Solution to 7.2.13: Since the minimal polynomial of A splits into dis-
tinct linear factors, R3 has a basis {v;,v2,v3} of eigenvectors of A. Since
det A = 32, two of those, say v; and wvg, are associated with the eigen-
value 4, and one, vs, is associated with the eigenvalue 2. Now consider the
nine matrices E;;, 1 < 4,5 < 3, whose it" column is the vector v; and
whose other columns are zero. Since the v;’s are linearly independent, the
matrices E;; are linearly independent in M35 and form a basis of M3x3.
Further, a calculation shows that AE,; = A;E;;, where Ay = A2 = 4 and
A3 = 2. Hence, M3x3 has a basis of eigenvectors of L4, so it follows that
trLyg =6-44+3-2=30.

Solution to 7.2.15: We have
dimrangeT = dim M7 x7 — dimker T = 49 — dimker T

so it suffices to find the dimension of ker T; i1 other words, the dimension of
the subspace of matrices that commute with A. Let E; be the eigenspace of
A for the eigenvalue 1 and E_ be the cigenspace of A for the eigenvaluc —1.
Then R = E, ® E_. A matrix that commutes with A leaves E, and E_
invariant, so, as linear transformations on R?, can be expressed as the direct
sum of a linear transformation on FE; with a linear transformation on E_.
Moreover, any matrix that can be so expressed commutes with A. Hence,
the space of matrices that commute with A is isomorphic to Myx4 ® M3xs,
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and so has dimension 16 + 9 = 25. It follows that dimrangeT = 49 — 25 =
24,

Solution to 7.2.16: m > n. We write T' = 11713, where Ty : My x,, —
M, xm is defined by To(X) = BX and T : Myxn — Myuxn is defined by
Ty(Y) = AY. Since dim M, x,, = nm > n? = dim M, xn, the transforma-
tion T has a nontrivial kernel, by the Rank-Nullity Theorem [HK61, pag.
71]. Hence, T also has a nontrivial kernel and is not invertible.

m < n. We write T = TyT;, where T} : Mpxm — Mpxm is defined by
Ti(X) = AX and T, : Mpyxm — M,,x, is defined by T2(Y) = BY. Now
we have dim M,xm = nm > m? = dim M,,xm, so T1 has a nontrivial
kernel, and we conclude as before that T is not invertible.

7.3 Systems of Equations

Solution to 7.3.2: 1. Through linear combinations of rows, reduce the
system of equations to a row-reduced echelon form, that is, a system where:

e the first nonzero entry in each nonzero row is equal to 1;

e each column which contains the leading nonzero entry of some row
has all its other entries 0;

e cvery row which has all entries 0 occurs below every row that has a
nonzero entry;

e if rows 1,...,r are the nonzero rows and if the leading nonzero entry
of row 7 occurs in column k;, i =1,...,r, then k; <kg < -+ < k,.

This new system has a number of nonzero rows r < m < n and it is easy
to see that it has nonzero solution.

Since the original system is equivalent to the row-reduced one, they have
exactly the same solutions.

2. Let V be a vector space spanned by m vectors fy, ..., G,,. We will show
that every subset S = {ai,...,a,} of V with n > m vectors is linear
dependent.

Since fi, ..., Om span V, there are scalars A;; in the field F such that

m
ai=) Ay .
i=1
For any set of scalar z4,...,z, in F, we have

n
1] + -+ Tply = E zTia;
Jj=1
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has a nontrivial solution so the set is linear dependent, proving the asser-
tion.

Solution to 7.3.3: The answer is yes. Writing the system of linear equa-
tions in matrix form, we have Az = 0, where A is an m X n matrix with
rational entries. Let the column vector = (z3,...,Z,)" be a complex so-
lution to this system, and let V be the Q -vector space spanned by the z;’s.
ThendimV =p <n.Ify,,...,y, € C is a basis of V, then there is a ratio-
nal nx p matrix B with By = x (where y is the column vector (y1, ..., yp)").
Substituting this into the original equation, we get ABy = 0. Since y is
composed of basis vectors, this is possible only if AB = 0. In particular,
every column of B is a rational solution of the equation Az = 0.

7.4 Linear Transformations

Solution to 7.4.1: 1. We need to show that vector addition and scalar
multiplication are closed in S(EY), but this is a trivial verification because
if v = S(z) and w = S(y) are vectors in S(E), then

v+w=_5(x+y) and cv=8(cz)

are also in S(F).
2. If S is not injective, then two different vectors x and y have the same
image S(z) = S(y) = v, so

Sz -y)=S5)-Sy) =v-v=0

that is, £ — y # 0 is a vector in the kernel of S. On the other hand, if S is
injective, it only takes 0 € E into 0 € F, showing the result.



7.4 Linear Transformations 383

3. Assuming that S is injective, the application S~! : S(E) — E is well
defined. Given av + bw € S(E) with v = S(z) and w = S(y), we have

S (av +w) = S~ (aS(z) + bS(y))
= S5 Y(S(azx + by))
=az + by
=aS (v) + bS™(w)

therefore, S~1 is linear.

Solution to 7.4.2: Let {o),...,ax} be a basis for ker T and extend it to
{ai,...,Qk,...,an}, a basis of V. We will show that {Tay41,...,Ta,}is
a basis for the range of T'. It is obvious they span the range since Ta; =0
for j < k. Assume

n

Z ci(Tai) =0

i=k+1

T( En: ciTa¢> =0

i=k+1

which is equivalent to

that is, & = 30", 41 i is in the kernel of T. We can then write o as
a= Zle b;a; and have

n

k
Zbiai - Z c.iTai =0
i=1

i=k+1

which implies all ¢; = 0, and the vectors T'ay41,. .., Ta, form a basis for
the range of T'.

Solution to 7.4.3: Let vy, ..., v, be a basis for V' such that v, ..., v
is a basis for W. Then the matrix for L in terms of this basis has the form
(1:)4 1(\)’), where M is a k x k matrix and N is k x (n—k). It follows that M is
the matrix of Ly with respect to the basis vy, .. ., vx. As the matrix of 1—tL

is (1M 7N, it follows that det(1 —tL) = det(l —tM) = det(1 — tLy).

Solution to 7.4.4: Let V; = {v € V| xi(L)(v) = 0}, for ¢ = 1, 2. Clearly,
each V; is a subspace of V with x;(L)V; = 0. To show that V is the direct
sum of V; and V3, choose polynomials a and b over F for which ax; +byz =
1. Then a(L)x1(L) + b(L)x2(L) = 1. If v € Vi NV,, then v = 1.y =
a(L)x1(L) + b(L)x2(L)v = a(L)0+ HL)0 =0,s50 Vi NV, ={0}. Ifv e V,
then by Cayley—Hamilton Theorem [HK61, pag. 194], we have x(L)v = 0.
Hence, v1 = a(L)x1(L)v is annihilated by x2(L) and, therefore, belongs to
Va. Likewise, vo = b(L)x2(L)v belongs to V;. Since v = v1 + v2, this shows
that V=WV + V5.
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Solution to 7.4.8: Since the linear transformation f has rank n — 1, we
know that f(R™) is an n — 1-dimensional subspace of R". Hence, there
exist real constants J;, ..., A,, not all zero, such that

Z Aifi(v) =0
i=1

for all v € R™. The A;’s are unique up to constant multiples. Further, this
equation determines the subspace: If w € R™ satisfies it, then w € f(R™),
Now suppose that the A;’s all have the same sign, or, without loss of
generality, that they are all nonnegative. Then if there cxisted v € R™
with f;(v) > 0 for all 4, we would have Y A;fi(v) > 0, a contradiction.
Hence, there can be no such v.
Conversely, suppose that two of the A;’s, say A1 and A2, have different

signs. Let z3 = x4 =--- =z, = 1, and choose z; > 0 sufficiently large so
that

Z Az > 0.

i#£2

Then there is a real number x5 > 0 such that

But then we know that there exists v € f(R™) such that f(v) = (z1,-..,Z.).
Since each of the z;’s is positive, we have found the desired point v.

Solution to 7.4.9: Let (, ) denote the ordinary inner product. From
d(s,t)? = d(s,0)% +d(t,0)% — 2(s, t) and the hypothesis, it follows that

(p(8),0(t)) = {s,t) forall s,teS.

Let V C R” denote the subspace spanned by S, and choose a subset T' C S
that is a basis of V. Clearly, there is a unique linear map f: V — V that
agrees with ¢ on T. Then one has (f(t), f(¢')) = (t,t) forall t and ¢’ € T
By bilinearity, it follows that (f(v), f(v'}) = {v,v') for all v and v/ € V.
Taking v = v, one finds that f(v) # 0 for v # 0, so f is injective, and
f(V)y=V.Takingv =s€ S and v' =t € T, one finds that

(£(5), F@)) = (1) = (p(3), (1)) = (p(s), F(£)),

so f(s) — ¢(s) is orthogonal to f(t) for all t € T, and hence to all of
f(V) = V. That is, for all s € S, one has f(s) — ¢(s) € V*L; but also
f(s) —p(s) € V, s0 f(s) — w(s) = 0. This shows that f agrees with ¢ on
S. It now suffices to extend f to a linear map R™ — R", which one can do
by supplementing 7" to a basis for R™ and defining f arbitrarily on the new
basis vectors.
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Solution to 7.4.11: We use Complete Induction [MH93, pag. 32] on the
dimension of V. If dimV = 1, then V has a single basis vector f; # 0, so
there is z1 € X such that fi(z1) # 0. Hence, the map f — f(z;) is the
desired isomorphism.

Now suppose the result is true for dimensions less than n and let dimV =
n. Fix a basis fi1, f2,..., fn of V. Then, by the induction hypothesis, there
are points z1, T2, ..., Tn—1 such that the map f — (f(z1),..., f(zn-1),0)
is an isomorphism of the subspace of V spanned by fi,...,f,_1 onto
R"~1 ¢ R™. In particular, the vector (f,(z1),..-, fa(Tn-1),0) is a linear
combination of the basis vectors {(fi(z1),..., fi(zn-1),0),1 <i<n -1},
so there exists a unique set of A;’s, 1 < i < n, such that

Y Nfi(z) =0, 1<j<n-1.
i=1

Suppose there is no point € X such that the given map is an isomorphism
from V onto R™. This implies that the set {(fi(z1),..., filZTn—1), fi(z)),
1 € i < n} is linearly dependent for all z. But because of the uniqueness
of the )A;’s, this, in turn, implies that for all z,

Z /\sz (.’II) = 0.

Hence, the fi’s are linearly dependent in V, a contradiction. Therefore,
such an z,, exists and we are done.

Solution to 7.4.13: Since the formula holds, irrespective of the values
of ¢, for the polynomials 2**!, it suffices, by linearity, to restrict to
the vector space P, of polynomials of degree, at most, 2n. This vector
space has dimension 2n 4+ 1 and the map P, — R?"*+! given by p —

(p(—n),p(—n + 1),...,p(n)) is an isomorphism. As the integral is a linear
function on R?2"+1, there exist unique real numbers c¢_,,c_n¢1,..., c, such
that

n

1
/ p(z)dz = Z ckp(k) forall p € Psy,.

1 k=—-n

We have

n

1 1
/ p(x)dw=/ p(—z)dz = Z cxp(k) forallpe Py,
-1 -1

k=—n

80 ¢ = ¢k by uniqueness of the ¢, and, therefore,

1 n
/ p(z)de = cop(0) + 3 ci (p(k) + p(—k))  forall p € Py
-1 k=1
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Setting p = 1, we find that

n
2=CO+Z2Ck
k=1

so, upon eliminating co,

/ p(z)dz = 2p(0) + 3 & (p(k) + p(—k) — 20(0)).

-1

Solution to 7.4.14: Let vy, vs, .. ., v, be a basis for R" consisting of eigen-
vectors of T, say Tv, = A,v,. Let uy,us, ..., u, be the orthonormal basis
one obtains from vy, vs,...,v, by the Gram-Schmidt Procedure [HK61,
pag. 280]. Then, for each index k, the vector uy is a linear combination of
V1, ..., Vk, SAY

Uk = Ck1V1 + Cr2U2 + - + CkkVk -

Also, each vy is a linear combination of ui,...,us. (This is guaranteed by
the Gram—Schmidt Procedure; in fact, u;,. .., ux is an orthonormal basis
for the subspace generated by vy,...,vs.) We have

Tur = ck1Tvy + cxoTvg + -+ - + e Tuk

= Cr1A1V1 + Ck2AoUg + + + - + Crr AUk .

In view of the preceding remark, it follows that Tuy is a linear combination
of uy,...,uk, and, thus, T has an upper-triangular matrix in the basis
UL, U2y ..., Un.

Solution to 7.4.17: 1. The characteristic polynomial of T has degree 3
so it has at least one real root. The space generated by the eigenvector
associated with this eigenvalue is invariant under 7.

2. The linear transformation T' — Al has rank 0, 1, or 2. If the rank is 0
then T = AI and all subspaces are invariant, if it is 1 then ker(T — AI)
will do and if it is 2 the image of (T' — AI) is the desired subspace. This
is equivalent to the Jordan Canonical Form [HK61, pag. 247] of T being
either a diagonal matrix with three 1 x 1 blocks or with one 1 x 1 and one
2 x 2 block, in both cases there is a 2-dimensional invariant subspace.

Solution to 7.4.19: Clearly, both R and S are rotations and so have
rank 3. Therefore, T, their composition, is'a rank 3 operator. In particular,
it must have trivial kernel. Since T is an operator on R3, its character-
istic polynomial is of degree 3, and so it has a real root. This root is an
eigenvalue, which must be nontrivial since T has trivial kernel. Hence, the
associated eigenspace must contain a line which is fixed by T

Solution to 7.4.20: Let z = (z1, T2, 73) in the standard basis of R3. The
line joining the points £ and T’z intersects the line containing e at the point
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= (e, z)e and is perpendicular to it. We then have Tz = 2(f — z) + z =
2f —z, or, in the standard basis, Tz = (2{e, z)a—x1,2{e, )b—z2, 2{e, z)c—
z3). With respect to the standard basis for R3, the columns of the matrix of
T are Te1, Tez, and Te3. Applying our formula and noting that (e, e;) = a,
(e,e2) = b, and (e, e3) = ¢, we get that the matrix for T is

2a2 -1 2ab 2ac
2ab 202 -1 2bc
2ac 2bc 2¢2 — 1

Solution to 7.4.21: Since the minimal polynomial divides the character-
istic polynomial and this last one has degree 3, it follows that the char-
acteristic polynomial of T is (t2 4 1)(t — 10) and the eigenvalues +i and
10.

Now T(1,1,1) = A(1,1, 1) implies that A = 10 because 10 is the unique
real eigenvalue of T'.

The plane perpendicular to (1, 1, 1) is generated by (1, —1,0) and (%, %, -1)
since these are perpendicular to each other and to (1,1, 1).

Let
fl = (lalal)
f2 (1,-1,0)/v2

fs = (272")/ 4+ +1" 172’_ /\/>

we have T'f; = 10 f; and, for +i to be the other eigenvalues of T', T'fa = f3,

and Tf3 = —fz.
The matrix of T in the basis {f1, f2, fa} = 8 is then
10 0 0
T = 0 01
0 -1 0

The matrix that transforms the coordinates relative to the basis 3 into the
coordinates relative to the canonical basis is

1 1/vV2  V6/4
P=|1 -1/v2 6/4
1 0 —v/6/2
and a calculation gives
1/3 1/3 1/3

Pl=1[ V2/2 —V2/2 0
2/3v6 2/3v6 —4/36

Therefore, the matrix of T in the canonical basis is
10 1 10 , 13
3+ 33 3 + E\/ﬁ

wlg olg
|

3]

PR
%

— -1 _ 0 1 10 5v3
10, V3 10_y3 10
3 2 3 2 3
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Solution to 7.4.23: Forn = 1,2,..., let P, be the space of polynomials
whose degrees are, at most, n. The subspaces P, are invariant under E, they
increase with n, and their union is P. To prove F is invertible (i.e., one-to-
one and onto), it will suffice to prove that each restriction E|p, is invertible.
The subspace P, is of dimension n+1, it has the basis 1, z, z2,. .., 2", with
respect to which the matrix of E|p, is

110 0 0
012 0 0
0 01 3 0
000 0 1 =n
0 00 0 0 1

In particular, the matrix is upper-triangular, with 1 at every diagonal entry,
so its determinant is 1. Thus, E|p, is invertible, as desired. Alternatively,
since deg Ef = deg f, the kernel of E is trivial, so its restriction to any
finite dimensional invariant subspace is invertible.

Solution 2. We can describe F to be I + D, where I is the identity operator
and D is the derivative operator, on the vector space of all real polynomials
P. For any element f of P, there exists n such that D"(f) = 0; namely
n = deg p+1. Thus, the inverse of E can be described as [—-D+D?—D3+. . .,

Specifically, writing elements of P as polynomials in z, we have
E711)=1, EY(z)=2—1, E~Y(z?) =22 - 22+ 2, etc.

Solution to 7.4.24: Given the polynomial 7 (z), there are constants a and
r > 0 and a polynomial ¢(x) such that w(x) = z"p(x) + a. If p(z) = 0,
then w(D) = al, it follows that the minimal polynomial of the operator
m(D) is x — a. If p(z) is not zero, then for any polynomial f € P,, by the
definition of D, (n(D) — al)(f(z)) = g(z), where g(x) is some polynomial
such that degg = max(deg f — r,0). Hence, letting E = n(D) — al, we
have el?/m1+1(f) = 0 for all f € P,. ([n/r| denotes the greatest integer
less than or equal to n/r.) The polynomial f(x) = =™ shows that |n/r|+1
is the minimal degree such that this is true. It follows from this that the
minimal polynomial of 7(D) is (z — a)L?/71+1,

7.5 Eigenvalues and Eigenvectors

Solution to 7.5.1: 1. The minimal polynomial of M divides z3 — 1 =
(x—1)(x?+x+1); since M # I, the minimal polynomial (and characteristic
as well) is (x — 1)(z? + £ + 1) and the only possible real eigenvalue is 1.
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1 0 0

2 sy 27
0 cos 3 sin £

— gin 27T 2m
0 sin 5 cos 5

Solution to 7.5.2: Suppose such X exists; then the characteristic polyno-
mial for X is xx(t) = t*, but this is a contradiction since X2*~! # 0 and
2n—1>n.

Solution to 7.5.3: Since A™ = 0 for some m, A is a root of the polynomial
p(z) = z™. By the definition of the minimal polynomial, p4(t)[p(t), so
pa(t) = t* for some k < n, then A™ = A% = 0.

Solution to 7.5.4: As MP = I, the minimal polynomial of M divides
tP—1=(t—-1)tP~t +¢P~2 + ... + ¢t + 1). Since M fixes no nontrivial
vector, 1 is not an eigenvalue of M, so it cannot be a root of the minimal
polynomial. Therefore, pps (t)|(tP~ 14?2 +. .. 4+¢+1). Since p is prime, the
polynomial on the right is irreducible, so pas(t) must equal it. The minimal
and characteristic polynomials of M have the same irreducible factors, so
xm (t) = pprr(t)* for some k > 1. Therefore,

dimV = degxa(t) = k(p— 1)
and we are done.

Solution to 7.5.5: 1. Let d = deg u. Since u(T)v = 0, the vector T%v is
linearly dependent on the vectors v, T'v, . . ., T%~'v. Hence, T4t™v is linearly
dependent on T"v, T"t1y,..., T"*+% 1y and so, by the Induction Principle
[MH93, pag. 7], on v,Tv,...,T* v (n=1,2,...). Thus, v,Tv,..., T4 v
span V1, so dim V; < d.

On the other hand, the minimum polynomial of T'|y, must divide y (since

u(Tlyv,) = 0), so it equals p because p is irreducible. Thus, dim Vi > d.
The desired equality, dim Vi = d, now follows.
2. In the case V] # V, let T be the linear transformation on the quotient
space V/V1 induced by T'. (It is well defined because V; is T-invariant.)
Clearly, p(Ty) = 0, so the minimum polynomial of 77 divides p, hence
equals p. Therefore, by Part 1, V/V; has a Ti—invariant subspace of di-
mension d, whose inverse image under the quotient map is a T-invariant
subspace Va2 of V of dimension 2d. In the case V2 # V, we can repeat the
argument to show that V has a T-invariant subspace of dimension 3d, and
so on. After finitely many repetitions, we find dim V' = kd for some integers
k.

Solution to 7.5.6: Since the matrix is real and symmetric, its eigenval-
ues are real. As the trace of the matrix is 0, and equal to the sum of its
eigenvalues, it has at least one positive and one negative eigenvalue.
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The matrix is invertible because the span of its columns has dimension
4. In fact, the space of the first and last columns contains all columns of
the form

O* ¥ O

The span of all four columns thus contains

5
8 and
1

NOO =

which together span all columns of the form

* OO %

Since the matrix is invertible it does not have 0 as an eigenvalue. There are
now only three possibilities:

e three positive and one negative eigenvalues;
e two positive and two negative eigenvalues;
e one positive and three negative eigenvalues.

A calculation shows that the determinant is positive. Since it equals
the product of the eigenvalues, we can only have two positives and two
negatives, completing the proof.

Solution to 7.5.7: A calculation shows that the characteristic polynomial
of the given matrix is

—z(x® — 3z — 2(1.00001% — 1))

so one of the eigenvalues is 0 and the product of the other two is ~2(1.000012—
1)) < 0, so one is negative and the other is positive.

Solution to 7.5.8: Denote the matrix by A. A calculation shows that
A is a root of the polynomial p(t) = t3 — ct? — bt — a. In fact, this is
the minimal polynomial of A. To prove this, it suffices to find a vector
z € F? such that A%z, Az, and z are linearly independent. Let z = (1,0, 0).
Then Az = (0,1,0) and A%z = (0,0, 1); these three vectors arc linearly
independent, so we are done.

Solution to 7.5.9:
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1. This is false. Consider A= (} ;) and B = (§}). AB = (; 2) and has
(1, 1) as an eigenvector, which is clearly not an eigenvector of BA =
(f f) The condition that AB and BA have a common eigenvector
is algebraic in the entries of A and B; therefore it is satisfied either
by all of A and B or by a subset of codimension at least one, so in
dimensions two and higher almost every pair of matrices would be a

counterexample.

2. This is true. Let x be an eigenvector associated with the eigenvalue
A of AB. We have

BA(Bz) = B(ABz) = B(Az) = ABz

so A is an eigenvalue of BA.

Solution to 7.5.11: We usc the Induction Principle [MH93, pag. 7]. As
the space M,(C) is finite dimensional, we may assume that S is finite. If
S has one element, the result is trivial. Now suppose any commuting set
of n elements has a common eigenvector, and let S have n + 1 elements
Ay, ..., Ayq1. By induction hypothesis, the matrices A;,..., A, have a
common eigenvector v. Let E be the vector space spanned by the common
eigenvectors of Ay,..., Ap. If v € E, AjAp v = A1 Asv = M A v for
all i, so A,+1v € E. Hence, A, fixes E. Let B be the restriction of A, 1,
to E. The minimal polynomial of B splits into linear factors (since we are
dealing with complex matrices), so B has an eigenvector in E, which must
be an eigenvector of A, 1 by the definition of B, and an eigenvector for
each of the other A;’s by the definition of E.

Solution to 7.5.14: 1. For (a1, az, as, . -.) to be an eigenvector associated
with the eigenvalue A, we must have

S{(a1,az,as3,...)) = Aaz,as,a4,...)
which is equivalent to
az =M1, a3=2>Aag,..., Qp=Alp_1, ...

so the eigenvectors are of the form a; (1, A, A\2,...).

2. Let £ = (x1,x2,...) € W. Then z is completely determined by the first
two components x1 and z3. Therefore, the dimension of W is, at most,
two. If an element of W is an eigenvector, it must be associated with an
eigenvalue satisfying A% = A + 1, which gives the two possible eigenvalues

1+\/g -1 1—\/5
p = 5 and —¢ 7 = 7

A basis for W is then

{(<P, <P2, @37 - ')1 (_(p—lv @_27 '_(p_Sa e )}
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which is clearly invariant under S.
3. To express the Fibonacci sequence in the basis above, we have just to
find the constants k; and &k, that satisfy

1 = kip—kop!
1 = k@?+kop™?

which give k; =1/ V5 = —ky. We then have, for the Fibonacci numbers,
s L (1B (1-vB)"
" V5 2 2 )

Solution to 7.5.16:

A=uu'—T where u=]:
1

and ] is the identity matrix. If Az = Az, where x # 0, then
wulz -z = (u'z)u —z = Az

so x is either perpendicular or parallel to . In the latter case, we can
suppose without loss of generality that z = u, so v‘uu — u = Au and
A =n— 1. This gives a 1-dimensional eigenspace spanned by u with eigen-
value n — 1. In the former case z lies in a n — 1-dimensional eigenspace
which is the nullspace of the rank-1 matrix uut, so

Az = (wu' — Do =—-Ir = -2

and the eigenvalue associated with this eigenspace is —1, with multiplicity
n — 1. Since the determinant is the product of the eigenvalues, we have

det(A) = (-1)"~(n — 1).

Solution to 7.5.17: Since A is positive definite, there is an invertible
Hermitian matrix C such that C? = A. Thus, we have C~}(AB)C =
C~1C?BC = CBC. By taking adjoints, we see that C BC is Hermitian, so
it has real eigenvalues. Since similar matrices have the same cigenvalues,
AB has real eigenvalues.

Solution to 7.5.20: The characteristic polynomial of A is
xa(t) = t2 — (a + d)t + (ad — bc).
which has roots

@+din)

1 1
tzi(a+d):i:—2~ (a —d)? +4bc=

N =
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A is positive, so A has real eigenvalues. Let A = % (a +d+ \/Z) and let

v = (z,y) be an eigenvector associated with this eigenvalue with z > 0.
Expanding the first entry of Av, we get

(a+d+\/z)m

N —

ar + by =

or

Wy = (d~a+\/K)m.

Since b > 0, to see that y > 0 it suffices to show that d — a + VA > 0, or
VA > a — d. But this is immediate from the definition of vA and we are
done.

Solution to 7.5.21: It suffices to show that A is positive definite. Let
z = (z1,-..,Za), We have

(Az,z) = 222 — 2103 — T1To + 225 — ToT3 — -+ — Tp_ 1T, + 2131

=22+ (21— 22)? + (22 —23)* + -+ (Tp—1 — T0) 2 + 22,

Thus, for all nonzero z, {(Az,z) > 0. In fact, it is strictly positive, since
one of the center terms is greater than 0, or z; = z2 = --- = z,, and all the
x;’s are nonzero, so z2 > 0. Hence, A is positive definite and we are done.

Solution 2. Since A is symmetric, all eigenvalues are real. Let z = (z;)7 be
an eigenvector with eigenvalue A. Since z # 0, we have max; |z;| > 0. Let
k be the least ¢ with |z;| maximmum. Replacing ¢ by —z, if necessary, we
may assume z; > 0. We have

AT = —Tp_1 + 2Tk — Tp41

where nonexistent terms are taken to be zero. By the choice of zx, we have
Tr—1 < zg and T4 < Tk, 50 we get Az, > 0 and A > 0.

Solution to 7.5.22: Let A¢ be the largest eigenvalue of A. We have
Mo = max {(Az,z) |z € R, |z|| = 1},

and the maximum it attained precisely when z is an eigenvector of A with
eigenvalue Ag. Suppose v is a unit vector for which the maximum is attained,
and let u be the vector whose coordinates are the absolute values of the
coordinates of v. Since the entries of A are nonnegative, we have

(Au, u) > (Av,v) = Ao,

implying that {Au,u) = Ag and so that u is an eigenvector of A for the
eigenvalue Ag.
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Solution to 7.5.23: Let A be an eigenvalue of A and z = (z1,...,z,) a
corresponding eigenvector. Let z; be the entry of 2 whose absolute value is

greatest. We have
n
/\.’L‘i = Z aijxj
Jj=1

50

k(3 n
Az <Y aijles| < lzj] Y ai; = |al.
j=1 j=1

Hence, |A| £ 1.

Solution to 7.5.24: Since A is Hermitian, by Rayleigh’s Theorem [ND88,
pag. 418], we have
(z, Az)

/\min <
(z, )

S /\max

for z € C™, z # 0, where Apin and Ap.x are its smallest and largest
eigenvalues, respectively. Therefore,
(z, Az)

a< S <y
(z,)

Similarly for B:

Hence,

(z,(A+ B)z)
(z,z)
However, A+ B is Hermitian since A and B are, so the middle term above is
bounded above and below by the largest and smallest eigenvalues of A+ B.
But, again by Rayleigh’s Theorem, we know these bounds are sharp, so all

the eigenvalues of A + B must lie in [a + b, a’ + b'].

a+b< <d+¥

Solution to 7.5.25: Let v = (1,1,0,...,0). A calculation shows that

Av=(k+1,k+1,1,0,...,0), so
(Av,v) _
(v,0)

Similarly, for v = (1,-1,0,...,0), we have Au = (k—1,1—-%,-1,0,...,0)
and so

kE+1.

(Au,u)
(u, u)
By Rayleigh’s Theorem [ND88, pag. 418|, we know that

(v,0)
in <
i = o,0)

=k-1.

S AHIB.)('
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for all nonzero vectors v, and the desired conclusion follows.

Solution to 7.5.26: As B is positive definite, there is an invertible matrix
C such that B = C!C, so

(Az,z)  (Az,z) (Az,z).

(Bz,z) (C'Cz,z) (Cz,Cz)

Let Cx = y. The right-hand side equals

(AC™'y,C7ly) _ ((C1)'AC 1y,y)
(v,9) (v, y)

Since the matrix (C _l)t AC~! is symmetric, by Rayleigh’s Theorem [ND88,
pag. 418], the right-hand side is bounded by A, where A is the largest eigen-
value of (C‘l)t AC~!L. Further, the maximum is attained at the associated
eigenvector. Let yg be such an eigenvector. Then G(x) attains its maximum
at £ = C1lyp, which is an eigenvector of the matrix (C‘l)t A.

Solution to 7.5.27: Let y # 0 in R”. A is real symmetric, so there is
an orthogonal matrix, P, such that B = P!AP is diagonal. Since P is
invertible, there is a nonzero vector z such that y = Pz. Therefore,

(Am+ly,y> _ (A"'H'le,Pz) _ (PtAm+1PZ,Z> B (Bm+12,2>
(Amyy) ~ (A"Pz,Pz)  (P'A™Pzz)  (Brzz)

Since A is positive definite, we may assume without loss of generality that
B has the form

A O 0
0 A 0
0 o An

where \y > A2 > - > A, > 0. Let 2= (21,...,2,) # 0, and i < n be such
that 2; is the first nonzero coordinate of z. Then

(BmHlz,z)  APMlz24 .4 A2
(B™z, z) AMz2 o AT 22
224+ N/ N)™ 2 - (/M)
' ( 22+ Mg/ M)m22 ) o+ (A /M) ™22 )
~ A (m — o).
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7.6 Canonical Forms

Solution to 7.6.1: The minimal polynomial of A divides z* — 1 so it has
no multiple roots, which implies that A is diagonalizable.

Solution to 7.6.2: Assume A™ is diagonalizable. Then its minimal poly-
nomial, pam (), has no repeated roots, that is,

pam(z) = (2~ a1) - (T — ax)

where a; # a; fori # j.
The matrix A™ satisfies the equation

(A™ —ayI)---(A™ —arI) =0

so A is a root of the polynomial (™ — a1) - - - (2™ — ay), therefore, pa(x)
divides this polynomial. To show that A is diagonalizable, it is enough
to show this polynomial has no repeated roots, which is clear, because the
roots of the factors £™ — a; are different, and different factors have different
roots.

This proves more than what was asked; it shows that if A is an invertible
linear transformation on a finite dimensional vector space over a field F
of characteristic not dividing n, the characteristic polynomial of A factors
completely over F, and if A™ is diagonalizable, then A is diagonalizable.

On this footing, we can rewrite the above proof as follows: We may
suppose that the vector space V' has positive dimension m. Let A be an
eigenvalue of A. Then A # 0. We may replace V by the largest subspace of
V on which A — AI is nilpotent, so that we may suppose the characteristic
polynomial of A is (x — A)™. Since A™ is diagonalizable, we must have
A™ = A" since A" is the only eigenvalue of A™. Thus, A satisfies the
equation z" — A" = 0. Since the only common factor of z" — A" and
(x — A\)™ is  — A, and as the characteristic of F does not divide n, A = AI
and, hence, is diagonal.

Solution to 7.6.4: The characteristic polynomial of A4 is x4(z) = z2 — 3,
so A% = 31, and multiplying both sides by A~!, we have

1
A7l =Z A
3

Solution to 7.6.5: 1. Subtracting the second line from the other three
and expanding along the first line, we have

z 1 1 1 1 1
detA,=(z-1)|1-2 z—1 0 |+(xzx-1)]0 z—-1 O
11—z 0 z—1 0 0 z—1

=(z-1)%(z +3).
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2. Suppose now that £ # 1 and —3. Then A, is invertible and the charac-
teristic polynomial is given by:

t—xz -1 -1 -1 T —t 1 1

-1 t—z -1 -1 1 T—t 1 1
xa.O0= 1 4 4z 1T 1 1 z-t 1

-1 -1 -1 t—-z 1 1 1 T—1

=(x—-t—1)3z—-t+3)

Now an easy substitution shows that the minimal polynomial is
pa(t) = (@ —t— 1)z —t—3)
so substituting ¢ by A, we have

(- 1)1y —Az)((z+3)[4 —Az) =0
(z - 1)(z+3)s - 2(z+ 1)A, - A3 =0
multiplying both sides by A.?,
(x—-1)(z+3)A;' =2z + 1), — A,
=-A_; 2

SO
A7l = —(z - 1)z +3) 1A, 5.

Solution to 7.6.6: The characteristic polynomial of A is x 4(t) = t3—8t2—
20t—16 = (t—4)(t—2)? and the minimal polynomialis pa(t) = (£--2)(t—4).
By the Euclidean Algorithm [Her75, pag. 155], there is a polynomial p(t)
and constants a and b such that

t'% = p(t)ua(t) +at +b.

Substituting ¢ = 2 and ¢ = 4 and solving for a and b yields a = 2°(210 — 1)

and b = —2!1(2%9—1). Therefore, since 4 is a root of its minimal polynomial,
3a+b a a
A = gA+ bl = 2a da+b 2a
—a —-a a-t+b

Solution to 7.6.7: The characteristic polynomial of A is xa(t) = t2 —
2t + 1 = (¢ — 1)2. By the Euclidean Algorithm [Her75, pag. 155, there is a
polynomial ¢(t) and constants a and b such that t190 = g(¢)(t —1)2 +at +b.
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Differentiating both sides of this equation, we get 100t = ¢’(t)(t — 1)? +
2q(t){t — 1) +a. Substituting t = 1 into cach equation and solving for a and
b, we get a = 100 and b = —99. Therefore, since A satisfies its characteristic
equation, substituting it into the first equation yields A'%® = 1004 — 991,

or
51 50
100 _
AT = ( ~50 49 )

An identical calculation shows that A7 = 7A — 61, so
A7 — 9/2 T7/2
—7/2 —5/2 )
From this it follows immediately that

().

Solution to 7.6.8: Counterexample: Let

A (0 Y_pge_(a b)[(a b\_(a®+b ab+tbd
“\0 0) 7 " \c d c d) \ca+dc cb+d? )’
Equating entries, we find that ¢(a + d) = 0 and b(a +d) =1, so b # 0 and
a +d # 0. Thus, ¢ = 0. The vanishing of the diagonal entries of B2 then

implies that a® = d2 = 0 and, thus, a + d = 0. This contradiction proves
that no such B can exist, so A has no square root.

Solution 2. Let .
0
A= (00,

Any square root B of A must have zero eigenvalues, and since it cannot
be the zero matrix, it must have Jordan Canonical Form [HK61, pag. 247]
JBJ™! = A. But then B2 = J"1A%J = 0 since A% =0, so no such B can

exist.
Solution to 7.6.9: 1. Let
a b
a=(%2)

then
A2 — a’?+bc (a+d)b
(a+d)e be+ d?
Therefore, A2 = —I is equivalent to the system
a?+be = -1
(a+d)p = 0
(a+d)e = 0

be+d? = -1
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if a + d # 0, the second equation above gives b = 0, and from the fourth,
we obtain d? = —1, which is absurd. We must then have a = —d and the
result follows.

2. The system that we get in this case is

a?+be = -1
(e+d)p = 0
(a+d)e = 0
bc+d*? = -1-—¢
As above, we cannot have a # —d. But combining a = —d with the first and

fourth equations of the system, we get £ = 0, a contradiction. Therefore,
no such matrix exists.

Solution to 7.6.10: Suppose such a matrix A exists. One of the eingen-
values of A would be w and the other (1 + £)'/2%w where w is a twentieth
root of —1. From the fact that A is real we can see that both eigenvalues
are real or form a complex conjugate pair, but neither can occur because
none the twentieth root of —1 are real and the fact that

lw] =1# (1+¢)/2

make it impossible for them to be a conjugate pair, so no such a matrix
exist.

Solution to 7.6.11: A™ = I implies that the minimal polynomial of A,
u(z) € Zlx), satisfies p(x)|(z™ — 1). Let (i, ...,¢{n be the distinct roots of
™ — 1 in C. We will scparate the two possible cases for the degree of pu:

o degpu = 1. We have u(z) =z —1and A =1, or u(z) = z + 1 and
A=—I,A%=1.

e degp = 2. (; and (; are roots of u for some i # j, in which case (; =
¢ = ( say, since p has real cocfficients. Thus, u(z) = (z—¢) (z - () =
z2 — 2R(¢)z + 1. In particular, 2R(¢) € Z, so the possibilities are
R(C) = 0, £1/2, and +1. We cannot have R({) = +1 because the
corresponding polynomials, (z —1)2 and (z+1)2, have repeated roots,
so they are not divisors of ™ — 1.

R(¢) =0. We have u(zx) =22+ 1and A2 = -1, A*=1I.

R(¢) = 1/2. In this case p(z) = 22—z + 1. ¢ is a primitive sixth
root of unity, so A5 = 1.

R(¢) = —1/2. We have u(z) = 22 +z + 1. ¢ is a primitive third
root of unity, so A3 = 1.

From the above, we see that if A™ = I for some n € Z;, then one of the
following holds:

A=1 A>=1] A3=1 A*=1 A® =1




400 7. Linear Algebra

Further, for each n = 2, 3, 4, and 6 there is a matrix A such that A™ = I
but A¥ #£1 for 0 < k < n:

(19)
(%)
o (50)

(51)

Solution to 7.6.12: Since A is upper-triangular, its eigenvalues are its
diagonal entries, that is, 1, 4, and 9. It can, thus, be diagonalized, and in,
fact, we will have

1
S51AS=10

where S is a matrix whose columns are eigenvectors of A for the respective
eigenvalues 1, 4, and 9. The matrix

1 00
B=S| 0 2 0 }s!
0 0 3
will then be a square root of A.
Carrying out the computations, one obtains
111 1
S=]1011 and S7'={10 1 -1
0 01 0
giving

The number of square roots of A is the same as the number of square
roots of its diagonalization, D = S~!AS. Any matrix commuting with D
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preserves its eigenspaces and so is diagonal. In particular, any square root
of D is diagonal. Hence, D has exactly eight square roots, namely

1 00 +£1 0 0
0 4 0 )= 0 +4 0
0 09 0o 0 £9

Solution to 7.6.13: n = 1. There is the solution X = A.
n = 2. A is similar to the matrix

0

(== el e R e}
SO O
(== oo R en B e}

0
0
0

under the transformation that interchanges the third and fourth basis vec-
tors and leaves the first and second basis vectors fixed. The latter matrix
is the square of

0100
0 010
0 00O
0 0 0O
Hence, A is the square of
0100
0 0 01
0 0 0O
0 0 00

n = 3. The Jordan matrix [HK61, pag. 247]

010
X =

o~ oo

0
0
0

(o= R el
o O =

is a solution.

n > 4. If X¥ = A, then X is nilpotent since A is. Then the characteristic
polynomial of X divides %, so that X4 = 0, and, a fortiori, X = 0 for
n 2> 4. There is, thus, no solution for n > 4.

Solution to 7.6.14: Suppose such a matrix A exists. Its minimal polyno-
mial must divide t? + 2¢ + 5. However, this polynomial is irreducible over
R, so pa(t) = t2+2t + 5. Since the characteristic and minimal polynomials
have the same irreducible factors, x 4(t) = pa(t)*. Therefore, deg xa(t) = n
must be even.
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Conversely, a calculation shows that the 2 x 2 real matrix

0 -5
w0-(173)
is a root of this polynomial. Therefore, any 2n x 2n block diagonal matrix
which has n copies of Ag on the diagonal will satisfy this equation as well.

Solution to 7.6.15: Let p(t) = ¢35 + 3 +¢ — 3. As p(A) = 0, we have
pa(t)|p(t). However, since A is Hermitian, its minimal polynomial has only
real roots. Taking the derivative of p, we see that p’(t) = 5¢*+3t2+1 > 0 for
all ¢, so p(t) has exactly one real root. A calculation shows that p(1) = 0, but
9’ (1) # 0. Therefore, p(t) = (t—1)q(t), where ¢(t) has only nonreal complex
roots. It follows that p4(t)|(t — 1). Since t — 1 is irreducible, pa(t) =t -1
and A=1.

Solution to 7.6.17: Note that

2 0 0
A= 0 2 0
0 -1 1

can be decomposed into the two blocks (2) and ( % 9), since the space

spanned by (100) is invariant. We will find a 2 x 2 matrix C such that
C!= ( 1 1) = D, say.

The eigenvalues of D are 2 and 1, and the corresponding Lagrange
Polynomials [MH93, pag. 286] are p;(z) = (x —2)/(1 —2) = 2 — z and
p2(xz) = (x — 1)/(2 — 1) = = — 1. Therefore, the spectral projection of D

S
(1) (A 1)-(40)
o-(1 ) ()

As P,-Py= P, P, =0 and P2 = P;, P2 = P,, letting C = (? ?)+

O -

We have

91/4 ( _11 8 ) = 1P, 4+ 21/4P;, we get

Ct=Ptt - +(2Y*P)* =P +2P, = D.
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2'/t 0
C:<1—21/4 1)

21/4 0 0
0 2l/4 g
0 1-2¥4 1

Then

and B is

Solution to 7.6.18: It suffices to show that every element w € W is a
sum of eigenvectors of T" in W. Let a,,...,a, be the distinct eigenvalues
of T. We may write

w=wun+---+v,

where each v; is in V and is an eigenvector of T with eigenvalue a;. Then

H(T — aj)w = H(ai - aj)vi.

i#j i#£]
This element lies in W since W is T invariant. Hence, v; € W for all i and
the result follows.

Solution 2. To see this in a matrix form, take an ordered basis of W and
extend it to a basis of V; on this basis, a matrix representing 7" will have

the block form A C
T8 = < 0 B )

because of the invariance of the subspace W with respect to 7T'.

Using the block structure of 7', we can see that the characteristic and
minimal polynomials of A divide the ones for T'. For the characteristic
polynomial, it is immediate from the fact that

det(z] — [T]|B) = det(z] — A) det(z] — B)

For the minimal polynomial, observe that

ms- (5 o)

where Cy, is some r % (n —r) matrix. Therefore, any polynomial that annihi-
lates [T] also annihilates A and B; so the minimal polynomial of A divides
the one for [T1.

Now, since T is diagonalizable, the minimal polynomial factors out in
different linear terms and so does the one for A, proving the result.

Solution to 7.6.20: Let A be an eigenvalue of A and v a vector in the
associated eigenspace, A). Then A(Bv) = BAv = B(Mv) = A(Bv), so
Bv € A,. Now fix an eigenvalue A and let C be the linear transformation
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obtained by restricting B to Ay. Take any v € A,. Then, since C is the
restriction of B,
mp(C)v = mp(B)v =0,

so C is a root of mp(t). It follows from this that mc(t)|mp(t). But B
was diagonalizable, so mpg(t) splits into distinct linear factors. Therefore,
me(t) must split into distinct linear factors as well and so Ay has a basis
of eigenvectors of C. As A is diagonalizable, V can be written as the direct
sum of the eigenspaces of A. However, each of these eigenspaces has a basis
which consists of vectors which arc simultaneously eigenvectors of A and of
B. Therefore, V itself must have such a basis, and this is the basis which
simultaneously diagonalizes A and B.

Solution 2. (This one, in fact, shows much more; it proves that a set of nxn
diagonalizable matrices over a field F which commute with each other arc
all simultaneously diagonalizable.) Let S be a set of n x n diagonalizable
matrices over a field F which commute with each other. Let V = F".
Suppose T is a maximal subset of S such that there exists a decomposition
of

V=;V;

where V; is a nonzero eigenspace for each element of T such that for 7 # 7,
there exists an element of T with distinct eigenvalues on V; and V;. We claim
that T = S. If not, there exists an N € § —T. Since N commutes with all
the elements of T', NV, C V;. Indeed, there exists a function a; : T — F
such that v € V;, if and only if Mv =a;(M)v forall M € T. Now if v € V;
and M €T,

MNv=NMv=Na,(M)=a;(M)Nv

so Nv € V;. Since N is diagonalizable on V/, it is diagonalizable on V;. (See
Problem 7.6.18; it satisfies a polynomial with distinct roots in K.) This
means we can decompose each V; into eigenspaces V; ; for N with distinct
eigenvalues. Hence, we have a decomposition of the right sort for T U N,

V=o D; Vi,j.

Hence, T' = S. We may now make a basis for V' by choosing a basis for V;
and taking the union. Then A will be the change of basis matrix.

Solution to 7.6.22: The characteristic polynomial of A is

z—-7 -15

xa(x) = 9 w+4l=(z—l)(x—2)

so A is diagonalizable and a short calculation shows that eigenvectors asso-
ciated with the eigenvalues 1 and 2 are (5, —2)" and (3, —1)?, so the matrix

Bis (5, 3). Indeed, in this case, B-'AB = (1 9).
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Solution to 7.6.24: The characteristic polynomial of A is x4(t) = (¢ —
1)(t —4)2. Since the minimal polynomial and the characteristic polynomial
share the same irreducible factors, another calculation shows that p4(t) =
(t — 1)(t — 4)2. Therefore, the Jordan Canonical Form [HK61, pag. 247] of
A must have one Jordan block of order 2 associated with 4 and one Jordan
block of order 1 associated with 1. Hence, the Jordan form of A is

O O =
O O
== O

Solution to 7.6.26: Combining the equations, we get u(z)? = p(z)(z —
i)(z? + 1) and, thus, p(z) = (z — i)%(z + i). So the Jordan blocks of the
Jordan Canonical Form [HK61, pag. 247) J4, correspond to the eigenvalues
+i. There is at least one block of size 2 corresponding to the eigenvalue
7 and no larger block corresponding to i. Similarly, there is at least one
block of size 1 corresponding to —i. We have x(x) = (z — i)3(z + 1), so
n = deg xy = 4, and the remaining block is a block of size 1 corresponding
to i, since the total dimension of the eigenspace is the degree with which
the factor appears in the characteristic polynomial. Therefore,

Ja =

O OO s
OO &
[ I PR an R e

OO O

Solution to 7.6.27: 1. As all the rows of M are equal, M must have rank
1, so its nullity has dimension n — 1. It is easy to see that M? = nM, or
M(M — nI) =0, so the characteristic polynomial is x5 = z(z — n).
2. If charF = 0 or if char F = p and p does not divide n, then 0 and n are
the two distinct eigenvalues, and since the minimal polynomial does not
have repeated roots, M is diagonalizable.

If char F = p, p|n, then n is identified with 0 in F. Therefore, the minimal
polynomial of M is pas(z) = z2 and M is not diagonalizable.
3. In the first case, since the null space has dimension n — 1, the Jordan
form [HK61, pag. 247] is
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If char F = p, p|n, then all the cigenvalues of M are 0, and there is one
2-block and n — 1 1-blocks in the Jordan form:

01 --- 0
00 --- 0

Solution to 7.6.28: A computation gives

T ZT11 T12 _ —T21 Z11 — T22 .
T21 T2 0 T2y

In particular, for the basis elements

1 0 0 1 00 0
El:(o 0)’ E2:<0 0)’ E3=(1 0)’ ‘E’*:(o

we have

y

0 1
TE1:<O 0):E2, TE, =0,

-1 0

0 -1
TE3=( 0 1):—E1+E4, TE4:(0 A ):—E2.

The matrix for T with respect to the basis {E1, Fa, E3, E4} is then

00 -1 O
10 0 -1
§= 00 0 O
00 1 O

A calculation shows that the characteristic polynomial of § is A*. Thus, S
is nilpotent. Moreover, the index of nilpotency is 3, since we have

T?E; =T?Ey = T?E; =0, T?E5= —2FE,.

The only 4 x 4 nilpotent Jordan matrix [HK61, pag. 247] with index of
nilpotency 3 is

00 00O
0010
0 0 01
0 0 0 O

which is, therefore, the Jordan Canonical Form of T'. A basis in which T is
represented by the preceding matrix is
E\—Es _Es }

{E1+E4aE2y 2 ) )



7.6 Canonical Forms 407

Solution to 7.6.29: A direct calculation shows that (A—1I)3 = 0 and this
is the least positive exponent for which this is true. Hence, the minimal
polynomial of A is pa(t) = (¢ — 1)3. Thus, its characteristic polynomial
must be x4(t) = (¢ — 1)®. Therefore, the Jordan Canonical Form [HK61,
pag. 247] of A must contain one 3 x 3 Jordan block associated with 1.
The number of blocks is the dimension of the eigenspace associated with
1. Letting z = (z1,...,%6)" and solving Az = z, we get the two equations
21 =0 and z2 + 3 + 4 + 5 = 0. Since zg is not determined, these give
four degrees of freedom, so the eigenspace has dimension 4. Therefore, the
Jordan Canonical Form of A must contain four Jordan blocks and so it
must be

1100 00
011000
001000
0 00100
000010
0 000 01

Solution to 7.6.35: Since A is nonsingular, A*A is positive definite. Let
B = V/AtA. Consider P = BA~'. Then PA = B, so it suffices to show
that P is orthogonal, for in that case, Q = P~! = P* will be orthogonal
and A = QB. We have

PP =(A")"'B'BA™! = (A")7'B%?A7! = (A")TTAPAAT = 1
Suppose that we had a second factorization A = @, B;. Then
B? = A'A = B!Q!Q,B, = B?.

Since a positive matrix has a unique positive square root, it follows that
B = B,. As A is invertible, B is invertible, and canceling gives Q = Q.

Solution to 7.6.36: An easy calculation shows that A has eigenvalues 0,
1, and 3, so A is similar to the diagonal matrix with entries 0, 1, and 3.
Since clearly the problem does not change when A is replaced by a similar
matrix, we may replace A by that diagonal matrix. Then the condition on
a is that each of the sequences (0™), (a"), and ((3a)") has a limit, and that
at least one of these limits is nonzero. This occurs if and only if a = 1/3.

Solution to 7.6.37: Let g be an element of the group. Consider the Jor-
dan Canonical Form [HK61, pag. 247] of the matrix g in F}. a quadratic
extension of Fp,. The characteristic polynomial has degree 2 and is either
irreducible in F,, and the canonical form is diagonal with two conjugate en-
tries in the extension or reducible with the Jordan Canonical Form having
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the same diagonal elements az,nd a 1 in the upper right-hand corner. In the
first case, we can see that g? ~! = I and in the second gP(P~1) = .

7.7 Similarity

Solution to 7.7.1: A simple calculation shows that A and B have the
same characteristic polynomial, namely (z — 1)?(x — 2). However,

0 00 010
A-I=| -1 01}, B-I=|0 00
-1 0 1 00 1

Since A — I has rank 1 and B — I has rank 2, these two matrices are not
similar, and therefore, neither are A and B.

Solution to 7.7.5: The eigenvalues of A an B are either +1 and neither
is I or —I, since the equation AB + BA = 0 would force the other matrix
to be zecro. Therefore, A and B have distinct eigenvalues and are both
diagonalizable. Let S be such that SAS~! = (} ° ). Multiplying on the left
by S and on the right by S~! the relations above we see that C = SBS~!
satisfies C2 = I and (SAS™!)(SBS~1)+ (SBS~!)(SAS™1) = 0. We get

c:(‘g léc) for ¢ 0

and taking D = (C(f 2) we can easily see that 7= DS satisfies

4 (1 0 (01
rar= (4 0) e (9 ),

Solution to 7.7.9: 1. Let A be any element of the group:

(i) Every element in a finite group has finite order, so there is an n > 0
such that A” = I. Therefore, (det A)” = det(A™) = 1. But A is an
integer matrix, so det A must be +1.

(ii) If A is an eigenvalue of A, then A” = 1, so each eigenvalue has modulo
1, and at the same time, A is a root of a second degree monic charac-
teristic polynomial x 4(z) = 22+ azx +b for A. If |\| = 1 then b = +1
and a = 0, £1, and £2 since all roots are in the unit circle. Writing
out all 10 polynomials and eliminating the ones whose roots are not
in the unit circle, we are left with z2+1, z?+z +1, and 22+ 2z + 1,
and the possible roots are A = +1, %4, and liz‘/gi and _liz‘/gi, the
sixth roots of unity.
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(iii) The Jordan Canonical Form [HK61, pag. 247] of A, Ja, must be
diagonal, otherwise it would be of the form J4 = (7 1), and the
subsequent powers (J4)* = (“ﬁ: kz:,:l), which is never the identity
matrix since kz*~! # 0 (remember |z| = 1). So the Jordan Canonical
Form of A is diagonal, with the root above and the complex roots

occurring in conjugate pairs only.

The Rational Canonical Form [HK61, pag. 238| can be read off from
the possible polynomials.

(iv) A can only have order 1, 2, 3, 4, or 6, depending on A.

Solution to 7.7.10: Let R4 and Rp be the Rational Canonical Forms
[HK61, pag. 238] of A and B, respectively, over R; that is, there are real
invertible matrices K and L such that

Ry = KAK™!
Rg = LBL™.

Observe now that R4 and Rp are also the Rational Canonical Forms
over C as well, and by the uniqueness of the canonical form, they must
be the same matrices. If KAK~! = LBL™! then A= K~1LB(K~'L)1,
so K~ 'L is a real matrix defining the similarity over R. Observe that the
proof works for any subfield; in particular, two rational matrices that are
similar over R are similar over Q .

Solution 2. Let U = K +iL where K and L are real and L # 0 (otherwisc
we arc done). Take real and imaginary parts of

A(K+iL)= AU =UB = (K +iL)B
and add them together after multiplying the imaginary part by z to get
A(K +2L) = (K +2L)B

for any complex z. Let p(z) = det(K + zL). Since p is a polynomial of
degree n, not identically zero (p(:) # 0), it has, at most, n roots. For
real zg not one of the roots of p, V = K + 2¢L is real and invertible and
A=VBV-L

Solution to 7.7.11: The minimal polynomial of A divides (z — 1)”, so
I — A is nilpotent, say of order r. Thus, A is invertible with

r—1

Al =(I-(I-A)" = (I-4).

=0
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Suppose first that A is just a single Jordan block [HK61, pag. 247], say
with matrix

110 ---0

o011 -0

0 00 ---1
relative to the basis {v;, ve, ..., v, }. Then A~! has the same matrix relative
to the basis {vy,v1 +ve, +-,v1+v2+--+v,}, so A'and A~! are similar.

In the general case, by the theory of Jordan Canonical Form, the vector
space can be written as a direct sum of A-invariant subspaces on each
of which A acts as a single Jordan block. By the formula above for A7!,
each subspace in the decomposition is A~!-invariant, so the direct sum
decomposition of A is also one of A~!. The general case thus reduces to
the case where A is a single Jordan block.

Solution to 7.7.12: The statement is true. First of all, A is similar
to a Jordan matrix [HK61, pag. 247], A = S~!JS, where S is invertible
and J is a direct sum of Jordan blocks. Then A* = S'J!(S*)~! (since
(S71)t = (8*)71); that is, At is similar to J®. Moreover, J! is the direct
sum of the transposes of the Jordan blocks whose direct sum is J. It will,
thus, suffice to prove that each of these Jordan blocks is similar to its
transpose. In other words, it will suffice to prove the statement for the case
where A is a Jordan block.
Let A be an n x n Jordan block:

A1 0 --- 0
A— 0 X 1
N oo 0
00 --- X 1
Let ey, ..., e, be the standard basis vectors for C”, so that Ae; = Aej-+ej_;

for 7 > 1 and Ae; = Ae;. Let the matrix S be defined by Se; = ep_j41.
Then § = 57!, and

S™1ASe; = SAe,_;
- { S()\en_j+1 +6n_j) , j<n

S(Aen—j+1) j=n
_J Aeiteinn, j<n
- )\ej y j=n

which shows that S~1AS = A’.

Solution to 7.7.14: Using the first condition the Jordan Canonical Form
[HK61, pag. 247] of this matrix is a 6 x 6 matrix with five 1’s and one -1
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on the diagonal. The blocks corresponding to the eigenvalue 1 arc either
1 x 1 or 2 X 2, by the second condition, with at least one of them having
dimension 2. Thus, there could be three 1-blocks and one 2-block (for the
eigenvalue 1), or one 1-block and two 2-blocks. In this way, we get the
following two possibilities for the Jordan Form of the matrix:

0

SO O~
oo Oo

QOO R OO
SO, OOO
O, ,OOO
— oo ooo
[ R e R e R e R B
SCOO0OO ~O
QOO =O
SO~ OO0
O~ OOO
—o o000

Solution to 7.7.15: Since A and B have the same characteristic poly-
nomial, they have the same n distinct eigenvalues Iy,...,[,. Let x(z) =
(z — L) - - (z — ln)°" be the characteristic polynomial and let u(z) =
(z — )™ ---(z — l,)™ be the minimal polynomial. Since a nondiago-
nal Jordan block [HK61, pag. 247] must be at least 2 x 2, there can be,
at most, one nondiagonal Jordan block for N < 3. Hence, the Jordan
Canonical Form is completely determined by p(z) and x(z) for N < 3. If
uw(z) = x(z), then each distinct eigenvalue corresponds to a single Jordan
block of size equal to the multiplicity of the eigenvalue as a root of x(z), so
the Jordan Canonical Form is completely determined by x(z), and A and
B must then be similar.

7.8 Bilinear, Quadratic Forms, and Inner Product
Spaces

Solution to 7.8.2: Every vector in W is orthogonal to v = (a, b, ¢). Let @
be the orthogonal projection of R3 onto the space spanned by v, identified
with its matrix. The columns of Q are Qe;, 1 < j < 3, where the e;’s are
the standard basis vectors in R3. But

Qe1 = (v,e1)v = (a?, ab, ac)

Qes = (v, e9)v = (ab, b%, be)

Qe3 = (v, e3)v = (ac, be, c2).
Therefore, the orthogonal projection onto W is given by

1-a2 —ab —ac
P=I-Q=| -ab 1-b* -bc
—ac —be 1-¢?



412 7. Linear Algebra

Solution to 7.8.3: 1. The monomials 1,¢,t2,...,t" form a basis for P,.
Applying the Gram-Schmidt Procedure [HK61, pag. 280] to this basis gives
us an orthonormal basis pg, p1,...,Pn. The (kK + 1)** vector in the latter
basis, px, is a linear combination of 1, ¢, ...,t*, the first k4 1 vectors in the
former basis, with t* having a nonzero coefficient. (This is built into the
Gram-Schmidt Procedure.) Hence, deg px = k.

2. Since p}, has degree k—1, it is a linear combination of pg, py, . . ., px—1, for
those functions form an orthonormal basis for P_;. Since pj, is orthogonal
to po,P1, . - -, Pk—1, it is orthogonal to pj..

Solution to 7.8.5: Let n = dim E, and choose a basis v1,...,v, for E.
Define the n x n matrix A = (a;) by ajx = B(vk,v;). The linear transfor-
mation T4 on E induced by A is determined by the relations

TAvk:Zajkvj =ZB(Uk,Uj)Uj , k=1,...,n,
J J

implying that Tav = 3, B(v,v;)v; (v € E). It follows that E; = ker T4.

By similar reasoning, Es = ker T'4:, where A! is the transpose of A. By the

Rank-Nullity Theorem [HK61, pag. 71], dim E; equals n minus the dimen-

sion of the column space of A, and dim Fs equals n minus the dimension of

the row space of A. Since the row space and the column space of a matrix
have the same dimension, the desired equality follows.

Solution to 7.8.7: 1. Since A is positive definite, one can define a new
inner product {,)4 on R™ by

(z,y)a = (Az,y).

The linear operator A~! B is a symmetric with respect to this inner product,
that is,

(A*lea y)A = (B"L‘iy> = (x’Bty> = (I7By>
= (A" Az, By) = (Az, A"'By) = (z, A"'By)a

So there is a basis {v1,...v,} of R", orthonormal with respect to (,)a, in
which the matrix for A~'B is diagonal. This is the basis we are looking
for; in particular, v; is an eigenvector for A~! B, with eigenvalue \; and

(vi,vj)a = by

(Bu;,vj) = (A7'Bu;, v;) 4 = (Aivi,v) 4 = Ai6ij.

2. Let U be the matrix which takes the standard basis to {vy, ...v,,} above,
that is, Ue; = v;. Since the e; form an orthonormal basis, for any matrix



7.8 Bilinear, Quadratic Forms, and Inner Product Spaces 413

n
Mz = Z(Mz, ej)e;

=1

.

in particular

UtAUei = (UtAUei,ej)ej

M-

i
NgE

(AUe;,Uej)e;

<.
i
—

I
NE

(A’U,;, vj)ej

.,
il
—

61']‘6]‘ = €;

<
Il
—

I

showing that Ut AU = 1.
Using the same decomposition for U* BU, we have

n
UtBUe; = UtBUe;, e; Ye;
7
j=1
n
= Z(Bvi,vj)ej
Jj=1
n
=Y " Nbijei = hies
Jj=1

so U*BU is diagonal.

Solution to 7.8.13: Suppose we have such u and v. By Cauchy-Schwarz
Inequality [MH93, pag. 69], we have

(u1v1 + ugv2)? < (u? +u)(v] + 3).

Since u-v = 0, (uwl +u2v2)2 (ab)?; since |Ju| = ||v]| = 1, 1-a? = u2+ul,
and 1 — b? = v? + vZ. Combining these, we get

(ab)? < (1 —-a?)(1-b?) =1—a® - b? + (ab)?,

which implies a? + 5% < 1.

Conversely, suppose that a? + b% < 1. Let u = (0,v1 —a?,a). ljul| = 1,
and we now find v; and vs such that v? +v§ +b% =1and ugva +ab=0.1If
a =1, then b =0, so we can take v = (0,1,0). If @ # 1, solving the second
equation for vy, we get

—ab

\/1—(12‘

Vg =
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Using this to solve for v;, we get

_ V1—a?-b?
n=

By our condition on a and b, both of these are real, so u and v = (v1, vz, b)
are the desired vectors.

7.9 General Theory of Matrices

Solution to 7.9.4: We will use a powerful result on the structure of real
normal operators, not commonly found in the literature. We provide also
a second solution, not using the normal form, but which is inspired on it.
Lemma (Structure of Real Normal Operators): Given a normal op-
erator on an euclidean space R™, A, there exists an orthonormal basis in
which the matrix of A has the form

( g1 7
—T1 01
g2 T2
—T2 02
Ok Tk
Tk O
A2k+1
An
where the numbers A\; = o, -+i7;, § = 1,...,k and Aggq1,..., A, are the

characteristic values of A.

The proof is obtained by embedding each component of R™ as the real
slice of each component of C™, extending A to a normal operator on C",
and noticing that the new operator has the same real matrix (on the same
basis) and over C™ has basis of characteristic vectors. A change of basis,
picking the new vectors as the real and imaginary parts of the eigenvectors
associated with the imaginary eigenvalues, reduces it to the desired form.
For details on the proof we refer the reader to [Shi77, pag. 265-271] or
[HS74, pag. 117].

The matrix of an anti-symmetric operator A has the property

aij = (Aei, €5) = (e, A'e;) = (&, —Ae;) = —{Aej, &) = —aj;.

Since anti-symmetric operators are normal, they have a basis of character-
istic values, these satisfy the above equality and are all pure imaginary.
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Thus, in the standard decomposition described above all characteristic
values are pure imaginary, i.e., 01y =--- =0k = Aag41 = -+ = A, = 0 and
the decomposition in this case is

((_Oﬁg> 0
(% 7)
(5 7)

which obviously has even rank.

Solution 2. Consider A the complerification of A, that is, the linear operator
from C™ to C™ with the same matrix as A with respect to the standard
basis. Since A is skew-symmetric, all its eigenvalues are pure imaginary and
from the fact that the characteristic polynomial has real coefficients, the
non-real eigenvalues show up in conjugate pairs, therefore, the polynomial
has the form

xa(t) =t p ()™ - p (1),

where the p;’s are real, irreducible quadratics.
From the diagonal form of A over C we can see that the minimal poly-
nomial has the factor in ¢ with power 1, that is, of the form

pa(t) = pa(t) =tpr (@)™ - -p(£)".

Now consider the Rational Canonical Form [HK61, pag. 238] of A. It
is a block diagonal matrix composed of blocks of even size and full rank,
together with a block of a zero matrix corresponding to the zero eigenvalues,
showing that A has even rank.

Solution to 7.9.5: Since A is symmetric it can be diagonalized: Let
A=QDQ!
where D = diag(d,,...,d,) and each d; is nonnegative. Then
0=Q Y(AB+BA)Q =DC+CD
where C' = Q' BQ. Individual entries of this equation read

0= (di + dj)c,-j
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so for each i and j we must have either ¢;; = 0 or d; = d; = 0. In either
case,
dicij = djcij =0

which is the same as
DC=CD=0.

Hence, AB = BA =0.

=(8) 2=(Y)

Solution 2. Since A is symmetric, it is diagonalizable. Let v be an eigen-
vector of A with Av = Av, then

Example:

A(Bv) = —BAv = —ABv

that is, Bv is an ecigenvector of A with eigenvalue —A.

Using one of the conditions we get (A Bv, Bv) > 0 but on the other hand
(A Bv, Bvy = —A(Bv, Bv) <0, so either A =0 or Bv = 0. Writing 4 and
B on this basis, that diagonalizes A, ordered with the zero eigenvalues in
a first block we have

A 0
which implies that AB = 0 and similarly that BA = 0.
Solution to 7.9.11: Let Y = AD — BC. We have

A B D -B\ (AD-BC -AB+BA\ _ (Y 0
¢ D -C A “\CD-DC -CB+DA ) \ 0 Y /-

If Y is invertible, then so are g 3 ) and X.

Assume now that X is invertible, and let v be vector in the kernel of Y :
(AD — BC)v = 0. Then

A B Dy 0= A B —Bv

C D —-Cv ) ~~\C D Av
implying that Dv = Cv = Bv = Av = 0. But then X ( :)) ) = 0, so, by
the invertibility of X, v = 0, proving that Y is invertible.
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Solution to 7.9.12: If det B = 0, then det B=0 (mod 2). Hence, if we
can show that det B # 0 over the ficld Z;, we are done. In the field Z,,
1 = —1, so B is equal to the matrix with zeros along the diagonal and
1’s everywhere else. Since adding one row of a matrix to another row does
not change the determinant, we can replace B by the matrix obtained by
adding the first ninetecn rows of B to the last row. Since each column of
B contains exactly nineteen 1’s, B becomes

o011 --- 11
101 --- 11
111 -+ 01
111 11
By adding the last row of B to each of the other rows, B becomes
100 --- 00
0190 ---00
000 ---10
111 --- 11

This is a lower-triangular matrix, so its determinant is the product of its
diagonal elements. Hence, the determinant of B is equal to 1 over Z2, and
we are done.

Solution 2. In the matrix modulo 2, the sum of all columns except column
i is the ¢** standard basis vector, so the span of the columns has dimension
20, and the matrix is nonsingular.

Solution to 7.9.13: Let C be the set of real matrices that commute with A.
It is clearly a vector space of dimension, at most, 4. The set {sI+tA|s,t €
R} is a two-dimensional subspace of C, so it suffices to show that there
are two linearly independent matrices which do not commute with A. A

calculation show that the matrices () and (% }) are such matrices.

Solution to 7.9.14: Let

A:(ab> and X:(”” y).
c d z w

If AX = XA, we have the three equations: bz = yc, ay + bw = zb + yd,
and cz + dz = za + we.

e b=c = 0. Since A is not a multiple of the identity, a # d. The above
equations reduce to ay = dy and dz = az, which, in turn, imply that
y = z = 0. Hence,

X = (g 3}): <z—afd(z-w))1+(z:1;’)A.
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e b#£ 0 or ¢ # 0. We can assume, without loss of gencrality, that b # 0,
as the other case is identical. Then z = cy/b and w =z — y(a — d)/b.
Hence,

X:1<bx—ay+ay by ):<b:v—ay>l+%A'

b cy bxr —ay + dy b

Solution to 7.9.17: Definc the norm of a matrix X = (z;;) by
Xl = 3., |i;|- Notice that if By, k = 0,1,..., are matrices such that
3> 1B]l < oo, then Y~ By converges, because the convergence of the norms
clearly implies the absolute entrywise convergence.

In our case, we have By = A*. The desired result follows from the fact
that 3~ [|A||*/k! converges for any matrix A.

Solution to 7.9.18: Note that, if A is an invertible matrix, we have
AeM A1 = gAMAT!

so we may assume that A is upper triangular. Under this assumption e

is also upper triangular, and if a4,...,a, are M’s diagonal entries, then
the diagonal entries of e are

and we get

n
det (eM) = He‘“ — eXiiai _ (M)

=1
Solution to 7.9.23: 1. Let oo = ~tr(M), so that tr(M — al) = 0. Let

A=%(M—Mt), S=(M+M)~al.

[

The desired conditions are then satisfied.
2. We have

M? = A% + 8% + oI + 20A +2aS + AS + SA.

The trace of M is the sum of the traces of the seven terms on the right.
We have tr(A) = tr(B) = 0. Also,

tr(AS) = tr ((AS)") = tr (S*A") = tr(-SA) = —tr(54),

so tr(AS + SA) = 0 (in fact, tr(AS) = 0 since tr(AS) = tr(SA)). The
desired equality now follows.



7.9 General Theory of Matrices 419

Solution to 7.9.25: We will prove the equivalent result that the kernel of
A is trivial. Let £ = (z1,...,z,)" be a nonzero vector in R™. We have

n
Al‘ T = E aij:cizj

ij=1
n
__§ 2 E T
= Qi X; + Qi ;LT
i=1 i#j
n
2
> _;_ z; — _s_ |as;ziz;)
i=1 i#j

So (Az,z) # 0 and Az # 0, therefore, the kernel of A is trivial.

Solution to 7.9.26: Suppose z is in the kernel. Then
a,‘j.’L‘i = - Z ;T ;
J#i
for each i. Let 7 be such that |z;| = maxy |zx| = M, say. Then
lasl M <Y lagsllzs] <D lai| M
JF#i J#
S0
laisl Y laij] | M <0.
A
Since the therm inside the parenthesis is strictly positive by assumption,

we must have M =0, so £ = 0 and A is invertible.

Solution to 7.9.27: It will suffice to prove that ker(I — A) is trivial. Let
z= (1,22, ", zn)t be a nonzero vector in R", and let y = (I — A)z. Pick
k such that |zi| = max{|z1|,...,|zs|}. Then

"
lykl = |z — ) _ axsa;]
=1
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n

> |zl = Y lawgl ;]
Jj=1

n

> |zl = D lak;] okl

=1
= |zk| I—ZIakjl >0.
Jj=1

Hence, y # 0, as desired.

Solution 2. Let @ < 1 be a positive number such that, for all z, we have
> =1 laijl < a. Then,

> laijainl =) (laz’jl > l%‘kl) <a) lal<a®.
ik i P i

And so, inductively, the sum of the absolute values of the terms in one row
of A™ is bounded by a™. Thus, the entries in the infinite sum

I+A+A*+ A%+

are all bounded by the geometric series 1 + a + a? + --- , and so are
absolutely convergent; thus, this sum exists and the product

(I-A)I+A+A*+--)=1
is valid, so that the inverse of I — A is this infinite sum.

Solution to 7.9.28: 1. If A is symmetric then, by the Spectral The-
orem [HKG61, pag. 335], [Str93, pag. 235], there is an orthonormal basis

{e1,€2,...,en} for R™ with respect to which A is diagonal: Ae; = Aje;,
j=1,...,n. Let z be any vector in R". We can write x = c,e;+---+cnén
for some scalars ¢y, .. ., ¢,, and have Az = A\jcye;+- - -+ A\pcne,. Moreover,

lalf? =+ -+ &
Az]? = e + - 4 N2
<max{A},..., A2} + - -+ ) = M%|z|?,
which is the desired inequality.
2. The matrix 8 (1) ) gives a counterexample with n = 2. Its only

eigenvalue is 0, yet it is not the zero matrix.



Appendix A
How to Get the Exams

A.1 On-line

Open a Web browser of your choice, on the URL
http://math.berkeley.edu/

and choose Preliminary Exams on the main page. You can then proceed to
explore the set of exams or download them in several of the formats avail-
able. When this page changes, you can do a search on the words Berkeley
Preliminary Exam and you should be guided to a possible new location
by one of the net search engines.

To suggest improvements, comments, or submit a solution, you can send
e-mail to the authors. If you are submitting a new solution, make sure you
include your full name, so we can cite you, if you so wish.

A.2 Off-line, the Last Resort

Even if you do not have access to the net, you can reconstruct each of the
exams using the following tables. This method should be used only as a last
resort, since some of the problems have been slightly altered to uniformize
notation and/or correct some errors in the original text.
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Spring 77 | Summer 77 Fall 77 Spring 78 Summer 78 Fall 78
1.4.19 714 7.6.22 1.6.8 6.1.3 1.2.6
1.5.3 5.8.5 7.3.2 2.1.2 6.12.1 1.6.21
5.1.5 6.11.4 7.9.19 5.7.4 7.9.10 2.2.38
5.8.4 7.9.17 7.4.15 5.12.3 7.3.2 5.11.21
6.12.3 5.1.2 6.13.6 6.11.11 5.8.2 5.8.6
6.1.1 1.1.31 5.10.1 6.12.3 5.6.5 3.1.6
7.2.8 7.6.23 5.12.19 2.3.1 2.2.34,3.1.5 6.4.1
7.7.14 3.1.9 3.2.3 3.1.3 4.1.14 7.6.27
3.2.2 7.4.22 1.1.2 7.6.24 4.1.6 7.8.11
2.2.15 1.1.20 1.6.2 7.9.6 2.2.23 6.2.1
5.2.5 2217 3.1.2 5.11.3 5.2.6 2.2.14
6.13.3 7.4.25 4.1.3 5.2.13 5.7.3 2.2.22
7.9.16 5.2.4 5.3.1 3.14 6.11.17 2.2.24
7.9.15 6.3.1 5.1.1 6.4.8 7.7.9 5.3.2
5.7.23 4.1.12 2.2.18 6.11.28 7.5.13 5.5.9
5.12.12 5.11.20 7.4.1 7.5.10 7.6.31 7.7.2
6.7.1 6.11.10 6.1.2 2.3.2 3.3.1 6.2.10
6.11.15 5.9.27 6.11.2 7.2.1 2.1.6 6.12.4
2.2.16 6.13.4 7.5.1 1.5.4 1.1.24 7.6.4
1.24 7.3.1 5.9.1 2.2.28 2.2.34 4.1.18
Spring 79 Summer 79 Fall 79 Spring 80 | Summer 80 Fall 80
2.2.20 7.5.6 5.9.2 1.7.1 7.4.21 1.1.33
7.8.12 6.11.19 5.5.10 1.6.2 7.6.16 771
6.5.5 2.2.33 6.2.6 2.2.13 7.4.6 5.7.2
4.2.2 6.2.4 6.11.13 5.11.6 6.2.3 6.4.2
3.1.7 1.4.23 7.9.4 5.5.5 3.4.4 5.12.17
5.9.14 5.8.6 7.5.2 6.4.11 5.11.7 6.9.1
5.12.13 5.4.3 7.5.14 6.13.5 5.3.5 1.7.6
7.7.13 2.1.3 1.3.11 7.6.21 4.1.4 6.5.1
7.7.4 7.4.17 1.1.32 7.9.13 1.3.18 2211
6.11.18 3.4.2 343 3.1.8 2.2.6 2.2.36
6.8.10 7.7.6 4.3.1 2.34 6.8.13 5.10.2
6.4.9 6.13.7 4.1.15 7.2.13 2.2.12 6.8.3
3.4.1 7.1.1 1.6.4 6.5.10 6.11.13 1.3.9
2.2.39 6.6.3 3.2.6 7.6.17 7.7.5 7.7.8
7.7.3 5.2.8 5.6.3 7.1.6 7.8.5 3.2.7
5.2.7 5.2.14 5.12.17 223 1.6.17 7.9.5
5.11.5 2.2.25 7.6.32 6.5.6 4.3.3 1.6.4
1.6.29 7.4.5 79.2 3.4.17 5.9.6 5.9.3
7.9.3 1.6.22 6.10.2 5.5.3 5.9.29 423
1.4.16 3.24 6.7.3 5.3.4 3.19 6.1.4
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Spring 81 Summer 81 Fall 81 Spring 82 | Summer 82 Fall 82
2.3.5 1.1.7 5.12.12 5.8.4 7.6.24 3.1.10
7.1.10 6.2.5 3.4.6 4.1.7 5.12.19 6.11.13
6.9.10 4.1.2 6.5.9 7.9.20 4.3.4 5.11.2
3.4.5 1.5.5 7.9.1 2.2.21 6.7.5 7.2.1

6.11.29 7.2.14 1.3.10 1.6.18 5.9.19 1.6.24
5.9.27 4.1.19 1.7.8 1.1.12 1.4.19 7.5.15
5.12.6 5.11.8 6.11.4 6.7.4 7.2.12 5.12.11
1.6.11 6.11.20 5.9.4 5.12.12 6.13.9 6.4.6
7.5.19 1.7.2 7.2.11 7.6.24 5.2.9 1.1.29
1.6.3 7.5.14 2.2.40 6.3.4 5.1.10 5.1.8
5.11.18 1.1.11 7.9.9 5.9.30 5.7.5 1.1.8
7.6.5 6.9.9 5.10.1 4.1.16 6.11.20 776
1.3.16 6.2.7 2.2.5 7.4.2 1.7.3 1.6.7
4.1.17 1.4.24 3.4.7 1.8.2 7.8.6 7.4.16
6.10.10 7.5.4 5.5.14 7.1.1 5.5.12 6.6.5
1.1.3 1.6.23 6.4.9 6.4.12 7.9.15 3.1.11
7.6.33 5.6.3 1.2.10 1.6.19 2.2.8 5.124
2.2.29 7.7.10 7.7.10 5.4.3 1.1.27 4.3.5
6.1.7 5.9.23 1.1.6 3.19 7.54 5.5.1
1.8.1 3.2.6 6.4.8 6.11.22 2.2.35 6.7.3
Spring 83 | Summer 83 Fall 83 Spring 84 | Summer 84 Fall 84
1.5.12 6.13.13 5.12.24 1.5.21 6.4.3 6.2.9
7.2.5 5.8.8 6.10.3 6.1.9 6.11.21 7.9.22
5.3.3 7.6.26 2.2.19 1.4.25 7.4.8 1.6.1
6.1.5 14.1 1.3.14 1.1.17 7.5.20 5.12.15
3.1.12 1.3.15 7.5.16 7.5.12 5.11.9 3.1.16
1.23 7.1.12 5.9.7 1.3.7 5.9.24 6.13.11
6.2.8 1.5.21 6.6.1 5.9.8 2.2.32 7.2.7
6.13.10 6.6.4 7.4.18 3.4.8 1.5.7 7.5.18
2.1.8 5.8.9 3.2.9 7.3.4 3.4.10 5.4.4
5.12.3 1.7.7 1.5.10 6.10.11 4.2.5 1.4.18
7.6.34 7.6.25 1.4.18 7.7.10 6.5.2 6.8.2
5.7.6 1.2.8 5.11.1 3.1.15 7.1.1 7.4.19
1.6.25 7.9.8 3.1.14 1.4.14 7.9.14 1.6.5
6.7.8 6.5.11 7.6.20 6.10.4 7.1.5 5.12.16,5.11.20
5.11.5 5.5.2 5.10.3 5.4.5 6.11.25 3.4.11
7.8.8 5.7.7 7.9.21 7.6.2 1.1.13 6.11.30
5.12.9 7.6.15 6.12.2 1.4.15 5.2.10 7.6.27
7.1.1 3.1.13 2.2.27 1.2.5 4.3.7 7.4.24
3.1.9 5.5.4 6.11.23 1.4.2 3.2.5 5.7.8
4.1.5 1.4.17 4.1.20 6.7.9 5.12.14 1.1.14
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Spring 85 Summer 85 Fall 85 Spring 86 Fall 86 Spring 87
1.4.3 7.6.9 5.12.2 7.4.20 1.6.14 4.1.11
6.1.10 1.1.23 5.9.15 1.7.4 5.1.4 229
5.1.3 7.6.35 6.11.27 5.11.10 2.3.6 5.7.9
5.2.11 6.4.4 6.12.4 1.4.9 5.9.20 6.11.34
6.11.26 6.11.1 5.9.11 6.9.2 7.6.28 1.6.28
7.5.24 5.12.17 7.5.25 7.4.7 3.1.18 5.5.16
5.12.25 1.5.6 3.1.17 3.4.12 6.12.10 3.2.10
3.2.13 1.6.12 1.5.20 5.9.10 1.4.13 5.9.12
1.6.26 14.5 7.8.9 6.4.7 5.12.22 7.34
7.5.8 5.9.14 1.6.10 6.9.3 1.1.5 6.8.12
6.12.6 6.3.3 6.5.4 5.12.1 7.2.1 1.4.20
5.12.17 7.2.2 5.8.1 1.8.3 4.1.10 1.5.14
5.9.16 6.11.6 5.5.11 7.5.11 2.2.2 2.2.19
1.5.22 6.10.3 759 4.1.1 7.8.13 6.8.4
6.11.3 5.5.6 1.5.8 7.4.10 6.11.23 5.7.21
1.6.27 1.2.7 6.12.9 6.11.12 3.1.19 426
1.4.21 5.9.28 43.8 3.4.13 6.5.3 3.3.2
7.5.17 3.4.3 6.1.11 5.2.15 5.11.12 7.6.20
6.12.7 1.3.1 7.8.7 6.7.2 6.13.1 6.12.5
5.5.15 6.12.8 1.5.9 5.11.11 1.5.11 5.11.22
Fall 87 Spring 88
111 1.4.10 Fall 88 Spring 89 Fall 89 Spring 90
1.6.9 6.13.15 6.9.4 1.3.22 6.7.10 1.4.4
1.5.15 7.3.3 5.7.22 7.5.3 1.4.22 7.6.1
2.2.30 5.7.1 3.4.14 1.2.12 7.6.30 5.9.21
7.6.7 6.1.12 7.6.29 5.9.14 5.5.16 6.10.7
6.6.6 7.6.14 1.5.17 6.4.13 6.4.14 1.3.12
7.5.26 6.10.5 1.2.11 7.1.8 4.1.8 7.2.9
6.12.1 5.11.26 6.8.5 3.4.18 7.6.19 5.12.7
5.11.23 1.5.19 5.9.25 5.5.14 1.5.21 6.2.2
5.5.17 5.7.10 7.5.24 6.4.5 6.11.33 1.2.2
7.6.18 6.5.7 6.8.11 7.9.11 1.3.5 6.8.6
7.7.10 1.4.11 5.8.10 6.9.5 6.13.17 5.8.12
6.2.11 6.2.6 6.11.32 5.11.13 5.8.11 7.5.21
6.10.2 5.5.7 7.1.7 6.5.12 7.2.2 1.4.7
5.7.13 7.6.6 6.7.6 224 4.1.13 7.1.9
5.9.8 7.4.11 2.2.7 7.9.12 6.7.7 5.3.6
5.10.5 5.5.18 5.11.4 5.9.31 5.9.2 6.13.18
3.1.23 7.6.11 5.12.20 6.10.6 7.1.6 1.5.9
4.3.2 6.13.16 4.3.6 2.1.4 1.1.25 5.1.6
1.1.28 1.7.5
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Fall 90 Spring 91 Fall 91 Spring 92 Fall 92 Spring 93
1.1.15 6.8.1 6.2.6 6.3.1 7.7.1 1.3.13
5.11.14 5.4.3 1.2.9 7.6.12 6.11.9 7.9.27
6.10.8 6.13.19 5.11.15 5.7.15 5.9.5 5.12.5
1.5.2 6.9.6 7.9.23 4.1.9 3.2.6 6.7.4
7.5.27 7.2.6 1.4.7 2.2.26 6.2.13 3.2.12
5.6.1 2.3.7 5.5.8 6.11.31 4.2.8 7.7.14
6.4.15 5.5.19 3.4.15 6.13.12 5.11.16 1.6.18
1.5.13 7.2.4 1.3.17 5.12.4 7.5.5 6.8.8
7.8.2 2.1.5 6.3.5 5.9.13 5.7.11 5.9.26
7.6.24 6.6.2 7.1.1 7.6.13 6.5.13 1.1.26
1.2.1 1.3.19 4.2.7 5.7.16 7.8.5 7.4.23
6.2.12 1.3.21 5.7.14 7.5.22 1.6.15 5.7.18
5.5.10 5.12.8 7.5.23 2.3.10 5.12.7 6.9.9
6.11.5 3.49 238 6.11.4 3.1.20 3.1.21
7.4.13 6.1.8 6.11.8 6.5.8 6.4.6 6.12.1
1.3.23 7.7.11 4.1.21 1.3.3 2.2.3 221
6.1.6 5.7.24 2.2.10 1.1.16 5.10.4 6.4.12
5.6.6 1.4.12 5.6.8 5.7.17 1.3.6 5.5.13
Fall 93 Spring 94 Fall 94 Spring 95 Fall 95 Spring 96
4.2.1 4.1.1 1.3.20 1.6.13 6.2.15 1.3.2
6.2.11 7.9.28 7.5.7 7.6.36 5.1.9 4.1.1
5.2.3 5.11.20 5.11.25 5.11.19 5.2.12 5.11.20
7.2.16 6.4.16 6.2.14 6.12.13 7.7.10 5.9.9
3.2.11 3.34 3.3.3 3.1.22 6.9.11 76.8
6.6.3 7.7.12 7.9.25 6.10.9 3.2.8 7.3.3
2.2.39 5.1.7 2.2.31 1.1.4 5.4.4 6.11.24
7.6.1 6.11.16 6.12.12 7.4.3 7.9.26 6.13.14
5.12.21 5.7.19 5.12.23 5.9.22 1.3.8 6.12.11
1.1.10 1.5.18 211 1.6.6 6.12.5 1.1.19
6.9.7 74.14 7.7.14 7.4.9 5.8.7 1.1.30
5.11.17 5.7.20 5.2.2 5.11.24 1.5.16 2.2.37
6.8.6 6.12.15 6.12.14 6.5.9 5.2.1 5.4.1
3.1.1 3.4.16 1.1.9 3.3.5 6.11.7 5.4.3
7.5.6 1.3.5 7.2.15 6.12.16 1.4.26 7.9.5
1.6.20 1.1.18 2.3.9 4.3.4 7.7.15 7.5.16
7.8.3 6.8.6 6.9.8 7.4.4 7.2.10 713
5.4.2 5.10.6 5.7.12 5.3.8 1.1.34 6.6.6
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Fall 96

1.6.16
1.2.7
5.12.18
5.6.7
7.4.17
7.7.5
7.6.37
6.13.8
6.13.11
1.1.21
1.1.29
5.9.8
5.9.1
5.5.2
7.6.10
7.6.3
6.11.14
6.8.13

Spring 97

1.3.18
4.24
1.5.13
5.6.4
5.12.26
7.4.12
7.5.9
6.8.9
7.9.29
1.2.11
3.2.1
5.12.3
5.7.22
7.9.18
7.2.3
6.12.17
7.1.2
6.4.17

Fall 97

1.34
1.4.23
5.6.2
5.12.19
5.5.14
7.1.11
7.8.10
6.4.10
6.8.7
1.1.22
1.4.8
2.1.7
5.3.7
5.12.10
7.1.8
7.7.7
6.7.6
6.3.6

Spring 98

5.9.17
5.9.18
4.3.8
1.5.1
6.10.1
6.3.2
7.5.10
6.13.2
7.9.7
1.1.9
7.8.1
2.3.3
5.8.3
1.4.6
7.8.4
5.7.25
7.7.16
7.9.24




Appendix B

Passing Scores

The passing scores and data presented here go back to the first Preliminary
Examination, which was held on January 1977.

Date Minimum # of students # of students % passing

passing score taking passing  the exam
Spring 98 71/120 15 9 60.0%
Fall 97 64/120 41 28 68.3%
Spring 97 70/120 10 5 50.0%
Fall 96 80/120 24 17 70.8%
Spring 96 84/120 17 13 76.5%
Fall 95 64/120 41 19 46.3%
Spring 95 65/120 10 4 20.0%
Fall 94 71/120 28 16 57.1%
Spring 94 70/120 11 5 45.5%
Fall 93 79/120 40 28 70.0%
Spring 93 69/120 22 17 77.3%
Fall 92 71/120 53 34 64.2%
Spring 92 58/120 27 13 48.1%
Fall 91 66/120 66 42 63.6%




430 Appendix B. Passing Scores

Date Minimum  # of students  # of students % passing

passing score taking passing  the exam
Spring 91 60/120 13 21 18.8%
Fall 90 71/120 89 50 56.2%
Spring 90 68/120 47 24 51.0%
Fall 89 71/120 56 18 32.1%
Spring 89 66/120 31 16 51.6%
Fall 88 70/120 44 22 50.0%
Spring 88 74/140 25 16 64.0%
Fall 87 81/140 29 21 72.4%
Spring 87 73/140 46 31 67.4%
Fall 86 93/140 24 13 54.2%
Spring 86 75/140 37 25 67.6%
Fall 85 89/140 23 16 69.6%
Summer 85 90,/140 16 11 68.8%
Spring 85 97/140 19 12 63.2%
Fall 84 99/140 26 18 69.2%
Summer 84 82/140 10 6 60.0%
Spring 84 82/140 35 24 69.0%
Fall 83 92/140 16 11 68.8%
Summer 83 86,140 14 7 50.0%
Spring 83 81/140 26 17 65.4%
Fall 82 84/140 15 8 53.0%
Summer 82 88/140 23 17 73.9%
Spring 82 90/140 15 12 80.0%
Fall 81 82/140 15 10 66.7%
Summer 81 65/140 21 14 67.0%
Spring 81 106/140 32 24 75.0%
Fall 80 99/140 23 17 74.0%
Summer 80 82/140 24 12 50.0%
Spring 80 88/140 30 17 56.7%
Fall 79 84/140 13 7 53.8%
Summer 79 101/140 15 7 46.7%
Spring 79 97/140 23 18 78.3%
Fall 78 90/140 17 12 71.0%
Summer 78 89/140 21 12 57.1%
Spring 78 95/140 32 19 59.4%
Fall 77 809140 13 12 92.0%
Summer 77 90/140 20 18 90.0%
Spring 77 90/140 42 29 69.0%




Appendix C
The Syllabus

The syllabus is designed around a working knowledge and understanding
of an honors undergraduatc mathematics major. A student taking the
examination should be familiar with the material outlined below.

Calculus

Basic first- and second-year calculus. Derivatives of maps from R™ to R",
gradient, chain rule; maxima and minima, Lagrange multipliers; line and
surface integrals of scalar and vector functions; Gauss’, Green’s and Stokes’
theorems. Ordinary differential equations; explicit solutions of simple equa-
tions.

Classical Analysis

Point-set topology of R™ and metric spaces; properties of continuous func-
tions, compactness, connectedness, limit points; least upper bound prop-
erty of R. Sequences and series, Cauchy sequences, uniform convergence
and its relation to derivatives and integrals; power series, radius of conver-
gence, Weierstrass M-test; convergence of improper integrals. Compactness
in function spaces. Inverse and Implicit Function Theorems and applica-
tions; the derivative as a linear map; existence and uniqueness theorems
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for solutions of ordinary differential equations; elementary Fourier series.
Texts: [Ros86], [MH93], [Bar76], [Rud87].

Abstract Algebra

Elementary set theory, e.g., uncountability of R. Groups, subgroups, nor-
mal subgroups, homomorphisms, quotient groups, automorphisms, groups
acting on sets, Sylow theorems and applications, finitcly generated abelian
groups. Examples: permutation groups, cyclic groups, dihedral groups, ma-
trix groups. Basic properties of rings, units, ideals, homomorphisms, quo-
tient rings, prime and maximal ideals, fields of fractions, Euclidean do-
mains, principal ideal domains and unique factorization domains, polyno-
mial rings. Elementary properties of finite field extensions and roots of
polynomials, finite fields. Texts: [Lan94], [Hun96], [Her75].

Linear Algebra

Matrices, linear transformations, change of basis; nullity-rank theorem.
Eigenvalues and eigenvectors; determinants, characteristic and minimal
polynomials, Cayley-Hamilton Theorem; diagonalization and triangulariza-
tion of operators; Jordan normal form, Rational Canonical Form; invariant
subspaces and canonical forms; inner product spaces, hermitian and unitary
operators, adjoints. Quadratic forms. Texts: [ND88], [HK61], [Str93].

Complex Analysis

Basic properties of the complex number system. Analytic functions, con-
formality, Cauchy-Riemann equations, elementary functions and their ba-
sic properties (rational functions, exponential function, logarithm function,
trigonometric functions, roots, e.g., v/z). Cauchy’s Theorem and Cauchy’s
integral formula, power series and Laurent series, isolation of zeros, clas-
sification of isolated singularities (including singularity at co), analyticity
of limit functions. Maximum Principle, Schwarz’s Lemma, Liouville’s The-
orem, Morera’s Theorem, Argument Principle, Rouché’s Theorem. Basic
properties of harmonic functions in the plane, connection with analytic
functions, harmonic conjugates, Mean Value Property, Maximum Princi-
ple. Residue Theorem, evaluation of definite integrals. Mapping properties
of linear fractional transformations, conformal equivalences of the unit disc
with itself and with the upper half-plane. Texts: [MH87], [Ahl79], [ConT78].
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