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We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing
some of the common approaches used in dealing with integer polynomials.

• Looking at the coefficients

◦ Bound the size of the coefficients

◦ Modulos reduction. In particular, a− b | P (a)− P (b) whenever P (x) ∈ Z[x] and a, b are distinct
integers.

• Looking at the roots

◦ Bound their location on the complex plane.

◦ Examine the algebraic degree of the roots, and consider field extensions. Minimal polynomials.

Many problems deal with the irreducibility of polynomials. A polynomial is reducible if it can be written
as the product of two nonconstant polynomials, both with rational coefficients. Fortunately, if the origi-
nal polynomial has integer coefficients, then the concepts of (ir)reducibility over the integers and over the
rationals are equivalent. This is due to Gauss’ Lemma.

Theorem 1 (Gauss). If a polynomial with integer coefficients is reducible over Q, then it is reducible over
Z.

Thus, it is generally safe to talk about the reducibility of integer polynomials without being pedantic
about whether we are dealing with Q or Z.

Modulo Reduction

It is often a good idea to look at the coefficients of the polynomial from a number theoretical standpoint.
The general principle is that any polynomial equation can be reduced mod m to obtain another polynomial
equation whose coefficients are the residue classes mod m.

Many criterions exist for testing whether a polynomial is irreducible. Unfortunately, none are powerful
enough to be universal. One of the most well-known criteria is Eisenstein’s criterion.

Theorem 2 (Eisenstein). Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial with integer
coefficients such that p | ai for 0 ≤ i ≤ n− 1, p - an and p2 - a0. Then f(x) is irreducible.

Proof. Suppose that f = gh, where g and h are nonconstant integer polynomials. Consider the reduction
mod p (i.e., apply the ring homomorphism Z[x] → Fp[x]), and let f̄ , ḡ, h̄ denote the residues of f, g, h (i.e.
the coefficients are residues mod p). We have f̄(x) = a0x

n. Since Fp[x] is a unique factorization domain, we
see that the only possibilities for ḡ and h̄ are cxk for some integers c and k ≥ 1. Then, the constant terms
of g and h are both divisible by p, so p2 | a0. Contradiction.

The most typical example for the application of Eisenstein’s criterion is to show that the cyclotomic
polynomial Φp(x) is irreducible for prime p:

Problem 1. Let p be a prime number. Show that f(x) = xp−1 + xp−2 + · · ·+ x+ 1 is irreducible.
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Solution. The polynomial f(x) is irreducible if and only if f(x+ 1) is irreducible. We have

f(x+ 1) =
(x+ 1)p − 1
(x+ 1)− 1

= xp−1 +
(
p

1

)
xp−2 +

(
p

2

)
xp−3 + · · ·+

(
p

p− 2

)
x+ p.

Note that f(x+ 1) fails the Eisenstein criterion for the prime p. Therefore f(x) is irreducible.

Note that the proof of Eisenstein’s criterion extends to other rings with similar properties. For instance,
to show that x4 + 2x+ 2 is irreducible over the Gaussian integers Z[i], we can simply apply Eisenstein with
the Gaussian prime 1 + i.

The proof of Eisenstein’s Criterion can be slightly generalized to the following. The proof is more or less
the same, and so it’s left as exercise.

Theorem 3 (Extended Eisenstein). Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial with
integer coefficients such that p | ai for 0 ≤ i ≤ n− k, p - ak and p2 - a0. Then f(x) has an irreducible factor
of degree greater than k.

We give one more result that relates to looking at the modulo reduction of polynomials, known as
Hensel’s lemma.

Theorem 4 (Hensel). Let a0, a1, . . . , ak be integers, and let P (x) = anx
k + · · · a1x+a0, and let P ′(x) denote

the derivative of P (x). Suppose that x1 is an integer such that P (x1) ≡ 0 (mod p) and P ′(x1) 6≡ 0 (mod p).
Then, for any positive integer k, there exists an unique residue x (mod pk), such that P (xk) ≡ 0 (mod pk)
and x ≡ x1 (mod p).

The proof of Hensel’s lemma closely mimics Newton’s method of finding roots. We work up the powers
of p, and find the a zero of P (x) mod pk for k = 2, 3, . . . . The details of the proof are omitted here.

Root Hunting

When working with integer polynomials, it is often not enough to stay in Z. We have to think outside
the box and move our scope to the complex numbers. A lot can be a said about a polynomial if we know
something about its complex zeros. Many irreducibility problems hinge on placing bounds on the zeros of
the polynomial in the complex plane. We begin with a familiar example.

Problem 2. Let f(x) = anx
n + an−1x

n + · · ·+ a1x+ a0 be a polynomial with integer coefficients, such that
|a0| is prime and

|a0| > |a1|+ |a2|+ · · ·+ |an|.

Show that f(x) is irreducible.

Solution. Let α be any complex zero of f . Suppose that |α| ≤ 1, then

|a0| = |a1α+ · · ·+ anα
n| ≤ |a1|+ · · ·+ |an|,

a contradiction. Therefore, all the zeros of f satisfies |α| > 1.
Now, suppose that f(x) = g(x)h(x), where g and g are nonconstant integer polynomials. Then a0 =

f(0) = g(0)h(0). Since |a0| is prime, one of |g(0)|, |h(0)| equals 1. Say |g(0)| = 1, and let b be the leading
coefficient of g. If α1, . . . , αk are the roots of g, then |α1α2 · · ·αk| = 1/|b| ≤ 1. However, α1, . . . , αk are also
zeros of f , and so each has an magnitude greater than 1. Contradiction. Therefore, f is irreducible.

Next, we present a Perron’s criterion, which has a similar statement but a much more difficult proof
compared with the previous result.

Theorem 5 (Perron). Let P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be a polynomial with a0 6= 0 and

|an−1| > 1 + |an−2|+ · · ·+ |a1|+ |a0|.

Then P (x) is irreducible.
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Again, the idea is to put bounds on the modulus of the roots of f . The key lies in the following lemma.

Lemma 1. Let P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be a polynomial with

|an−1| > 1 + |an−2|+ · · ·+ |a1|+ |a0|.

Then exactly one zero of P satisfies |z| > 1, and the other n− 1 zeros of P satisfy |z| < 1.

Let us see how we can prove Perron’s criterion if we have this lemma. Suppose that P (x) = f(x)g(x),
where f and g are integer polynomials. Since P has only one zero with modulus not less than 1, one of
the polynomials f , g, has all its zeros strictly inside the unit circle. Suppose that z1, . . . , zk are the zeros
of f , and |z1|, . . . , |zk| < 1. Note that f(0) is a nonzero integer, and |f(0)| = |z1 · · · zk| < 1, contradiction.
Therefore, f is irreducible.

Now, let us prove Lemma 1. We offer two proofs. The first proof is an elementary proof that uses only the
triangle inequality. The second proof invokes theorems from complex analysis, but it is much more intuitive
and instructive.

First proof of the Lemma 1. (due to Laurentiu Panaitopol) Let us suppose wolog that a0 6= 0 since we can
remove any factors of the form xk . Let’s first prove that there is no root α of P (x) with |α| = 1. Suppose
otherwise, then we have that

−an−1α
n−1 = αn + an−2α

n−2 + · · ·+ a1α+ a0,

thus

|an−1| = |an−1α
n−1| = |αn + an−2α

n−2 + · · ·+ a1α+ a0|
≤ |αn|+ |an−2α

n−2|+ · · ·+ |a1α|+ |a0|
= 1 + |an−2|+ · · ·+ |a1|+ |a0|.

This contradicts the given inequality. Therefore, no zero of f(x) lies on the unit circle.
Let’s denote with α1, α2, . . ., αn be the zeros of P . Since |α1α2 · · ·αn| = a0, it follows that at least one

of the roots is larger than 1 in absolute value. Suppose that |α1| > 1 and let

Q(x) = xn−1 + bn−2x
n−2 + · · ·+ b1x+ b0

be the polynomial with roots α2, α3, . . ., αn. Then,

P (x) = (x− α1)Q(x) = xn + (bn−2 − α1)xn−1 + (bn−3 − bn−2α1)xn−2 + · · ·+ (b0 − b1α1)x− b0α1

It follows that bn−1 = 1, a0 = −b0α1, and ak = bk−1 − bkα1 for all 1 ≤ k ≤ n − 1. Then, using the given
inequality, we have

|bn−2 − α1| = |an−1| > 1 + |an−2|+ · · ·+ |a1|+ |a0|
= 1 + |bn−3 − bn−2α1|+ · · ·+ |b0α1|
≥ 1 + |bn−2||α1| − |bn−3|+ |bn−3||α1| − |bn−4|+ · · ·+ |b1||x1| − |b0|+ |b0||x1|
= 1 + |bn−2|+ (|α1| − 1) (|bn−2|+ |bn−3|+ · · ·+ |b1|+ |b0|) .

On the other hand, |bn−2 − α1| ≤ |bn−2|+ |α1|, so

|bn−2|+ |α1| > 1 + |bn−2|+ (|α1| − 1) (|bn−2|+ |bn−3|+ · · ·+ |b1|+ |b0|)

and therefore
|bn−2|+ |bn−3|+ · · ·+ |b1|+ |b0| < 1.
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Then, for any complex number α with |α| ≥ 1, we have

|Q(α)| = |αn−1 + bn−2α
n−2 + bn−3α

n−3 + · · ·+ b1α+ b0|
≥ |αn−1| − |bn−2α

n−2| − |bn−3α
n−3| − · · · − |b1α| − |b0|

≥ |α|n−1 − |α|n−1 (|bn−2|+ |bn−3|+ · · ·+ |b1|+ |b0|)
= |α|n−1 (1− |bn−2| − |bn−3| − · · · − |b1| − |b0|)
> 0

And so α cannot be a root. It follows that all the zeros of Q lie strictly inside the unit circle. This completes
the proof of the lemma.

In the polynomial P , the second term xn−1 is “dominating,” in the sense that the absolute value of its
coefficient is greater than the sum of the absolute values of all the other coefficients. In the above proof, we
managed to construct a new polynomial Q, whose leading term is dominating. While exactly one zero of P
is outside the unit circle, none of the zeros of Q is outside the unit circle. This observation generalizes to
the following result.

Proposition 6. Let P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a polynomial with complex coefficients,
and such that

|ak| > |a0|+ |a1|+ · · ·+ |ak−1|+ |ak+1|+ · · ·+ |an|

for some 0 ≤ k ≤ n. Then exactly k zeros of P lie strictly inside the unit circle, and the other n− k zeros of
P lie strictly outside the unit circle.

This is indeed true. The easiest way to prove this result is to invoke a well-known theorem in complex
analysis, known as Rouché’s theorem.

Theorem 7 (Rouché). Let f and g be analytic functions on and inside a simple closed curve C. Suppose
that |f(z)| > |g(z)| for all points z on C. Then f and f + g have the same number of zeros (counting
multiplicities) interior to C.

The proof of Rouché’s theorem uses the argument principle. It can be found in any standard complex
analysis textbook.

In practice, for polynomials, Rouché’s theorem is generally applied to some circle, and is useful when one
term is very big compared to the other terms.

Proposition 6 becomes very easy to prove with the aid of Rouché’s theorem. Indeed, let us apply Rouché’s
theorem to the functions akz

k and P (z) − akz
k with the curve being the unit circle. The given inequality

implies that |akz
k| > |P (z) − akz

k| for all |z| = 1. It follows that P has the same number of zeros as akz
k

inside the unit circle. It follows that P has exactly k zeros inside the unit circle. Also, it is not hard to show
that P has no zeros on the unit circle (c.f. first proof of Lemma 1). Thus we have proved Proposition 6.

Second proof of Lemma 1. Apply Proposition 6 to k = n− 1.

While we’re at it, let’s look at couple of neat applications of Rouché’s theorem, just for fun. These are
not integer polynomial problems, but they contain useful ideas.

Problem 3. (Romania ??) Let f ∈ C[x] be a monic polynomial. Prove that we can find a z ∈ C such that
|z| = 1 and |f(z)| ≥ 1.

Solution. Let degP = n. Suppose that |f(z)| < 1 for all z on the unit circle. Then |f(z)| < |zn| for all z on
the unit circle. So, by Rouché’s theorem, f(z) − zn has n roots inside the unit circle, which is impossible,
since f(z)− zn has degree n− 1.

The Fundamental Theorem of Algebra is also an easy consequence of Rouché’s theorem.

Theorem 8 (Fundamental Theorem of Algebra). Any polynomial P (x) ∈ C[x] of degree n has exactly n
complex zeros.

4



MOP 2007 Black Group Integer Polynomials Yufei Zhao

Proof. Let P (x) = anx
n + · · ·+ a1x+ a0. For a sufficiently large real number R, we have

|an|Rn > |an−1|Rn−1 + · · ·+ |a1|R+ a0.

Apply Rouché’s theorem to the functions anx
n and P (x)−anx

n on the circle |z| = R, we find that P (x) has
exactly n zeros inside the circle. Also, since we may choose R arbitrarily large, so there are no additional
zeros.

Note that the above proof also gives a bound (although rather weak) for the zeros of a polynomial. This
bound is attributed to Cauchy.

Finally, the following result is a slightly stronger version of Rouché’s theorem.

Theorem 9 (Extended Rouché). Let f and g be analytic functions on and inside a simple closed curve C.
Suppose that

|f(z) + g(z)| < |f(z)|+ |g(z)|

for all points z on C. Then f and g have the same number of zeros (counting multiplicities) interior to C.

There are many ways of bounding polynomial zeros on the complex plane. The following result is worth
mentioning, as it has proven useful quite a few times.

Proposition 10. Let P (x) = a0 + a1x+ · · ·+ anx
n, where 0 < a0 ≤ a1 ≤ · · · ≤ an are real numbers, then

any complex zero of the polynomial satisfies |z| ≤ 1.

Proof. If |z| > 1, then, since z is a zero of (1− x)P (x), we get

a0 + (a1 − a0)z + · · ·+ (an − an−1)zn − anz
n = 0.

Thus,

|anz
n| = |a0 + (a1 − a0)z + · · ·+ (an − an−1)zn|
≤ a0 + (a1 − a0)|z|+ · · ·+ (an − an−1)|zn|
< a0|z|n + (a1 − a0)|z|n + · · ·+ (an − an−1)|z|n

= a0|z|n − a0|z|n + a1|z|n − a1|z|n + · · ·+ an|z|n

= |anz
n|

contradiction. Therefore, |z| ≤ 1.

It follows as a simple corollary that for any polynomial with positive real coefficients, P (x) = a0 + a1x+
· · ·+ anx

n, all its zeros lie in the annulus

min
1≤k≤n

ak−1

ak
≤ |z| ≤ max

1≤k≤n

ak−1

ak

Finally, we present one more irreducibility criterion, known as Cohn’s criterion. Essentially, it says
that if f(x) has nonnegative integer coefficients, and f(n) is prime for some n greater than all the coefficients,
then f is irreducible.

Theorem 11 (Cohn’s Criterion). Let p be a prime number, and b ≥ 2 an integer. Suppose that pnpn−1 · · · p1p0

is the base-b representation of p, with 0 ≤ pi < b for each i and pn 6= 0, then the polynomial

f(x) = pnx
n + pn−1x

n + · · ·+ p1x+ p0

is irreducible.

The following proof is due to M. Ram Murty1.
As before, we begin with a lemma bounding the complex zeros of the polynomial.

1M. Ram Murty, Prime Numbers and Irreducible Polynomials, Amer. Math. Monthly. 109 (2002) 452–458

5



MOP 2007 Black Group Integer Polynomials Yufei Zhao

Lemma 2. Let f(x) = anx
n + an−1x

n−2 + · · ·+ a1x+ a0 belong to Z[x]. Suppose that an ≥ 1, an−1 ≥ 0,
and |ai| ≤ H for i = 0, 1, . . . , n − 2, where H is some positive constant. Then any complex zero α of f(x)
either has nonpositive real part, or satisfies

|α| < 1 +
√

1 + 4H
2

Proof. If |z| > 1 and Re z > 0, we observe that∣∣∣∣f(z)
zn

∣∣∣∣ ≥ ∣∣∣an +
an−1

z

∣∣∣−H ( 1
|z|2

+ · · · 1
|z|n

)
> Re

(
an +

an−1

z

)
− H

|z|2 − |z|

≥ 1− H

|z|2 − |z|
=
|z|2 − |z| −H
|z|2 − |z|

≥ 0

whenever

|z| ≥ 1 +
√

1 + 4H
2

.

It follows that α cannot be a zero of f if |α| ≥ 1+
√

1+4H
2 and Reα > 0.

To prove Theorem 11 for the case b ≥ 3, we notice that Lemma 2 implies if α is a zero of f(x),
then |b − α| > 1. Suppose that f(x) = g(x)h(x), where g and h are nonconstant integer polynomials.
Since f(b) is prime, one of |g(b)|, |h(b)| is 1. Say |g(b)| = 1, and the zeros of g are α1, . . . , αk. We have
|g(b)| = |b− α1| · · · |b− αk| > 1, contradiction. Therefore, f is irreducible.

The b = 2 case is special, and requires more analysis.

Lemma 3. Let f(x) = xn + an−1x
n−2 + · · ·+ a1x+ a0 with ai ∈ {0, 1} for each i. Then all the zeros of f

lie in the half plane Re z < 3
2 .

Proof. The cases n = 1 and 2 can be verified by hand. Assume that n ≥ 3. Then, for z 6= 0, we have∣∣∣∣f(z)
zn

∣∣∣∣ ≥ ∣∣∣1 +
am−1

z
+
am−2

z2

∣∣∣− ( 1
|z|3

+ · · ·+ 1
|z|m

)
>
∣∣∣1 +

am−1

z
+
am−2

z2

∣∣∣− 1
|z|2(|z| − 1)

.

If z satisfies | arg z| ≤ π/4, then we have Re(1/z2) ≥ 0, and we get∣∣∣∣f(z)
zn

∣∣∣∣ > 1− 1
|z|2(|z| − 1)

.

If |z| ≥ 3
2 , then |z|2(|z| − 1) ≥

(
3
2

)2 ( 3
2 − 1

)
= 9

8 > 1, and so f(z) 6= 0. On the other hand, if z is a zero
of f with | arg z| > π/4, and suppose that Re z > 0, then from Lemma 2 we have |z| < 1+

√
5

2 , and thus
Re z < 1+

√
5

2
√

2
< 3

2 . It follows that all zeros of f lie in the half-plane Re z < 3
2 .

To finish off the proof, suppose that f(x) = g(x)h(x), where g and h are integer polynomials. Since f(2)
is prime, one of |g(2)|, |h(2)| is 1. Say |g(2)| = 1. By Lemma 3, all the zeros of f lie in the half plane
Re z < 3

2 , which means that they satisfy |z − 2| > |z − 1|. Thus, if α1, . . . , αk are the zeros of g, we have
|g(2)| = |2− α1| · · · |2− αk| > |1− α1| · · · |1− αk| = |g(1)| ≥ 1. So |g(2)| > 1, contradiction.
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Problems

1. If q is a rational number and cos qπ is also rational, show that cos qπ ∈ {0,± 1
2 ,±1}.

2. Let P (x) be a monic polynomial with integer coefficients such that all its zeros lie on the unit circle.
Show that all the zeros of P (x) are roots of unity, i.e., P (x)|(xn − 1)k for some n, k ∈ N.

3. If P (x) is a polynomial that such that P (n) is an integer for every integer n, then show that

P (x) = cn

(
x

n

)
+ cn−1

(
x

n− 1

)
+ · · ·+ c0

(
x

0

)
,

for some integers cn, . . . , c0. (Note that the coefficients of P are not necessarily integers.)

4. Let f be an irreducible polynomial in Z[x], show that f has no multiple roots.

5. Player A and B play the following game. Player A thinks of a polynomial, P (x), with non-negative
integer coefficients. Player B may pick a number a, and ask player A to return the value of P (a), and
then player B may choose another number b and ask player A to return the value of P (b). After the
two questions, player B must guess P (x). Does player B have a winning strategy?

6. Determine all pairs of polynomials f, g ∈ Z[x], such that f(g(x)) = x2007 + 2x+ 1.

7. (a) (USAMO 1974) Let a, b, c be three distinct integers, and let P be a polynomial with integer
coefficients. Show that in this case the conditions P (a) = b, P (b) = c, P (c) = a cannot be
satisfied simultaneously.

(b) Let P (x) be a polynomial with integer coefficients, and let n be an odd positive integer. Suppose
that x1, x2, . . . , xn is a sequence of integers such that x2 = P (x1), x3 = P (x2), . . . , xn = P (xn−1),
and x1 = P (xn). Prove that all the xi’s are equal.2

(c) (Putnam 2000) Let f(x) be a polynomial with integer coefficients. Define a sequence a0, a1, . . .
of integers such that a0 = 0 and an+1 = f(an) for all n ≥ 0. Prove that if there exists a positive
integer m for which am = 0 then either a1 = 0 or a2 = 0.

(d) (IMO 2006) Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be a
positive integer. Consider the polynomial

Q(x) = P (P (. . . (P (x) . . . ))︸ ︷︷ ︸
k P ′s

Prove that there are at most n integers t such that Q(t) = t.

8. (IMO Shortlist 1997) Find all positive integers k for which the following statement is true: if P (x) is a
polynomial with integer coefficients satisfying the condition 0 ≤ P (c) ≤ k for c = 0, 1, . . . , k + 1, then
F (0) = F (1) = · · · = F (k + 1).

9. Let f(x) = x4 + 6x2 + 1. Show that for any prime p, f(x) is reducible over Fp, but f(x) is irreducible
over Z.

10. Let m,n, and a be positive integers and p a prime number less than a− 1. Prove that the polynomial
f(x) = xm(x− a)n + p is irreducible.

11. Let p be prime. Show that f(x) = xp−1 + 2xp−2 + 3xp−3 + · · ·+ (p− 1)x+ p is irreducible.

12. (IMO 1993) Let f(x) = xn +5xn−1 +3, where n > 1 is an integer. Prove that f(x) cannot be expressed
as the product of two nonconstant polynomials with integer coefficients.

13. (Romania TST 2003) Let f(x) ∈ Z[x] be an irreducible monic polynomial with integer coefficients.
Suppose that |f(0)| is not a perfect square. Show that f(x2) is also irreducible.

2This problem appeared in Reid Barton’s handout in 2005. Compare with the IMO 2006 problem.
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14. Let z1, z2, . . . , zn ∈ Z[i] be Gaussian integers (i.e., complex numbers of the form a+ bi, where a, b ∈ Z)
such that |zi − z1| > 2 for all i > 1. Prove that the polynomial (x − z1)(x − z2) · · · (x − zn) + 1 is
irreducible over Z[i].

15. (Brazil 2006) Let f(x) be an irreducible polynomial, and suppose that it has two roots whose product
is 1. Show that the degree of f is even.

16. (MathLinks Contest) Let a be a nonzero integer, and n ≥ 3 be another integer. Prove that the the
following polynomial is irreducible over the integers:

P (x) = xn + axn−1 + axn−2 + · · ·+ ax− 1.

17. Let a1 ≥ a2 ≥ · · · ≥ an > 0 be positive integers. Show that the following polynomial is irreducible:

P (x) = xn − a1x
n−1 − a2x

n−2 − · · · − an

18. (MOP 2007) Let p(x) be a polynomial with integer coefficients. Determine if there always exists a
positive integer k such that p(x)− k is irreducible.

19. (Iran TST 2007) Does there exist a sequence a0, a1, a2, . . . in N, such that for each i 6= j, gcd(ai, aj) = 1,
and for each n, the polynomial

∑n
i=0 aix

i is irreducible in Z[x]?

20. (China TST Quizzes 2006) Let n be a positive integer, and let A1, A2, . . . , Ak be a partition of the
set of positive integers. Show that for some i ∈ {1, 2, . . . , k}, there are infinitely many irreducible
polynomials of degree n and whose coefficients are distinct elements from Ai.

21. Prove that xn − x− 1 is irreducible over the integers for all n ≥ 2.

22. (Iran 2003) Let f1, f2, . . . , fn be polynomials with integer coefficients. Show that there exists a reducible
polynomial g(x) ∈ Z[x] such that fi(x) + g(x) is irreducible for i = 1, 2, . . . , n.

23. (IMO Shortlist 1997) Let f be a polynomial with integer coefficients and let p be a prime such that
f(0) = 0, f(1) = 1, and f(k) ≡ 0 or 1 (mod p) for all positive integers k. Show that deg f ≥ p− 1.

24. (IMO Shortlist 2005) Find all monic integer polynomials p(x) of degree two for which there exists an
integer polynomial q(x) such that p(x)q(x) is a polynomial having all coefficients ±1.

25. (IMO Shortlist 2005) Let a, b, c, d, e and f be positive integers. Suppose that the sum S = a+ b+ c+
d+ e+ f divides both abc+ def and ab+ bc+ ca− de− ef − fd. Prove that S is composite.

26. (IMO 2002) Find all pairs of integers m,n ≥ 3 such that there exist infinitely many positive integers
a for which

am + a− 1
an + a2 − 1

is an integer.

27. (IMO Shortlist 2002) Let P (x) be a cubic polynomial with integer coefficients. Suppose that xP (x) =
yP (y) for infinitely many pairs x, y of integers with x 6= y. Prove that the equation P (x) = 0 has an
integer root.

28. (IMO Shortlist 1996) For each positive integer n, show that there exists a positive integer k such that

k = f(x)(x+ 1)2n + g(x)(x2n + 1)

for some polynomials f, g with integer coefficients, and find the smallest such k as a function of n.

29. (Romania TST 1998) show that for any n ∈ N, the polynomial P (x) = (x2 + x)2
n

+ 1 is irreducible
over the integers.
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