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Problems

Problem 1. Determine all functions f: R — R such that the equality

f(lzly) = f(2)|f(v)]

holds for all 2,y € R. (Here |z denotes the greatest integer less than or equal to z.)

Problem 2. Let I be the incentre of triangle ABC and let T' be its circumcircle. Let the line Al
intersect I' again at D. Let E be a point on the arc BDC' and F' a point on the side BC' such that

/BAF = /CAE < L/BAC.

Finally, let G be the midpoint of the segment IF'. Prove that the lines DG and E1 intersect on I'.

Problem 3. Let N be the set of positive integers. Determine all functions g: N — N such that

(9(m) +n) (m + g(n))

is a perfect square for all m,n € N.

Problem 4. Let P be a point inside the triangle ABC. The lines AP, BP and C'P intersect the
circumcircle I' of triangle ABC' again at the points K, L and M respectively. The tangent to I' at C'
intersects the line AB at S. Suppose that SC' = SP. Prove that MK = M L.

Problem 5. In each of six boxes By, Bs, B3, By, Bs, Bg there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box B; with 1 < j < 5. Remove one coin from B; and add two
coins to Bjiq.

Type 2: Choose a nonempty box By with 1 < k£ < 4. Remove one coin from By and exchange
the contents of (possibly empty) boxes By,1 and Bjyo.

Determine whether there is a finite sequence of such operations that results in boxes By, By, B3, By, Bs
being empty and box Bs containing exactly 20102019 coins. (Note that a* = a®).)

Problem 6. Let aq,as,as3,... be a sequence of positive real numbers. Suppose that for some
positive integer s, we have
ap, =max{ay +an,_ | 1 <k <n-1}

for all n > s. Prove that there exist positive integers £ and N, with ¢/ < s and such that a,, = a,+a,_,
for all n > N.






Solutions

Problem 1. Determine all functions f: R — R such that the equality

f(lzly) = f@)[f(y)] (1)

holds for all 2,y € R. (Here | 2| denotes the greatest integer less than or equal to z.)
Answer. f(z) =const =C, where C =0o0r1<C < 2.
Solution 1. First, setting z = 0 in (1) we get

F0) = FO)Lf(v)] (2)

for all y € R. Now, two cases are possible.

Case 1. Assume that f(0) # 0. Then from (2) we conclude that |f(y)| = 1 for all y € R.
Therefore, equation (1) becomes f(|z]y) = f(x), and substituting y = 0 we have f(z) = f(0) =
C # 0. Finally, from [ f(y)] =1 = |C| we obtain that 1 < C < 2.

Case 2. Now we have f(0) = 0. Here we consider two subcases.

Subcase 2a. Suppose that there exists 0 < o < 1 such that f(a) # 0. Then setting z = « in (1)
we obtain 0 = f(0) = f(«)| f(y)] for all y € R. Hence, | f(y)] = 0 for all y € R. Finally, substituting
x =11n (1) provides f(y) = 0 for all y € R, thus contradicting the condition f(a) # 0.

Subcase 2b. Conversely, we have f(a) =0 for all 0 < a < 1. Consider any real z; there exists an
integer N such that o = % €[0,1) (one may set N = |z] +1if 2> 0 and N = |z] — 1 otherwise).
Now, from (1) we get f(z) = f(|N]a) = f(N)|[f(a)] =0 for all z € R.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that |f(y)] = 0 for some y; then the substitution x = 1 provides f(y) =
f()|f(y)] = 0. Hence, if | f(y)] = 0 for all y, then f(y) = 0 for all y. This function obviously
satisfies the problem conditions.

So we are left to consider the case when | f(a)] # 0 for some a. Then we have

= f(z)| f(a or f(x)= J([z)a)
f(lz]a) = f(z)[f(a)], /(=) )] (3)
This means that f(z1) = f(x2) whenever |z;| = |x2], hence f(x) = f(|z]), and we may assume

that a is an integer.
Now we have

fla)=f(2a-3) = f(20) [ f (3)] = F(20) LF(0)];

this implies | f(0)] # 0, so we may even assume that a = 0. Therefore equation (3) provides

)
fe)=Troy =¢7°



for each x. Now, condition (1) becomes equivalent to the equation C' = C'|C'| which holds exactly
when |[C] = 1.

Problem 2. Let I be the incentre of triangle ABC and let I' be its circumcircle. Let the line Al
intersect I' again at D. Let E be a point on the arc BDC' and F' a point on the side BC' such that

/BAF = /CAE < L/BAC.

Finally, let G be the midpoint of the segment I F. Prove that the lines DG and ET intersect on I'.

Solution 1. Let X be the second point of intersection of line E1 with I', and L be the foot of the
bisector of angle BAC. Let G’ and T be the points of intersection of segment DX with lines I F
and AF, respectively. We are to prove that G = G’, or IG' = G'F. By the Menelaus theorem
applied to triangle AIF and line DX, it means that we need the relation
_GF TF AD TF ID
T~ IG T AT 1D’ % AT T AD

Let the line AF intersect I' at point K # A (see Fig. 1); since ZBAK = ZCAE we have
BEK = CE, hence KE | BC. Notice that ZIAT = /DAK = /EAD = /EXD = /IXT, so
the points I, A, X, T are concyclic. Hence we have L/ITA = /IXA = /EXA = ZEKA, so

1

TE IL
IT || KE || BC. Theref btain — = —.
| | BC. Therefore we obtain AT — Al . .
Since C1 is the bisector of ZACL, we get 1 - Ao Furthermore, /DCL = /DCB =

/ZDAB = ZCAD = %ABAC, hence the triangles DCL and DAC' are similar; therefore we get

cL DC
10 =~ AD" Finally, it is known that the midpoint D of arc BC' is equidistant from points I, B, C,
b DC ID
ence —— = —
AD ~ AD .
Summarizing all these equalities, we get

TF IL CL DC ID
AT ~— Al AC~ AD ~ AD’

as desired.

Fig. 2



Al  AD
Comment. The equality — 7= DI is known and can be obtained in many different ways. For instance,

one can consider the inversion with center D and radius DC = DJI. This inversion takes @ to the

segment BC, so point A goes to L. Hence — , which is the desired equality.

DI~ AD
Solution 2. As in the previous solution, we introduce the points X, T" and K and note that it
suffice to prove the equality

TF DI TF+ AT DI+ AD AT AF
AT~ AD AT AD  ~°  AD DIt AD
Since /ZFAD = /FAI and /TDA = /XDA = Z/XFEA = ZIEA, we get that the triangles AT D
and AIE are similar, therefore £ = Al
AD ~ AE’

Next, we also use the relation DB = DC = DI. Let J be the point on the extension of
segment AD over point D such that DJ = DI = DC (see Fig. 2). Then £DJC = ZJCD =
s(m— £JDC) = 3ZADC = 1 /ABC = ZABI. Moreover, ZBAI = ZJAC, hence triangles ABIT

and AJC are similar, so i—? = jé or AB-AC = AJ-Al = (DI + AD) - Al
On the other hand, we get ZABF = ZABC = ZAEC and Z/BAF = ZCAFE, so triangles ABF
AF AB
and AEC are also similar, which implies 10— AR or AB-AC = AF - AFE.
Summarizing we get
Al AF AT AF
(DI + AD)- Al = AB-AC = AF - AEF = AE ~ AD + DI = 1D ~ AD+ DI’

as desired.

Comment. In fact, point J is an excenter of triangle ABC.

Problem 3. Let N be the set of positive integers. Determine all functions g: N — N such that

(g(m) + n) (m + g(n))

is a perfect square for all m,n € N.
Answer. All functions of the form g(n) = n + ¢, where ¢ € NU {0}.

Solution. First, it is clear that all functions of the form g(n) = n + ¢ with a constant nonnegative

integer ¢ satisfy the problem conditions since (g(m) + n)(g(n) +m) = (n +m + ¢)* is a square.
We are left to prove that there are no other functions. We start with the following

Lemma. Suppose that p ‘ g(k) — g(¢) for some prime p and positive integers k, £. Then p ’ k—¢.

Proof. Suppose first that p? ‘ g(k) —g(0), so g(¢) = g(k) + p*a for some integer a. Take some positive
integer D > max{g(k), g(¢)} which is not divisible by p and set n = pD — g(k). Then the positive
numbers n + g(k) = pD and n + g(¢) = pD + (g(¢) — g(k)) = p(D + pa) are both divisible by p but
not by p?. Now, applying the problem conditions, we get that both the numbers (g(k)+n) (g(n)+k)
and (g(é) - n) ( (n)+ E) are squares divisible by p (and thus by p?); this means that the multipliers
g(n) + k and g(n) + ¢ are also divisible by p, therefore p | (g(n) + k) — (g(n) + ¢) = k — ¢ as well.

On the other hand, if g(k)—g(¥) is divisible by p but not by p?, then choose the same number D and
set n = p*D — g(k). Then the positive numbers g(k)+n = p*D and g(¢)+n = p*D+ (g(¢) — g(k)) are
respectively divisible by p® (but not by p*) and by p (but not by p?). Hence in analogous way we obtain
that the numbers g(n)+ k& and g(n)+/ are divisible by p, therefore p } (n)+k)—(g(n)+€) =k—1.
0
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We turn to the problem. First, suppose that g(k) = g(¢) for some k,¢ € N. Then by Lemma we
have that k — ¢ is divisible by every prime number, so k — ¢ = 0, or k = £. Therefore, the function g
is injective.

Next, consider the numbers g(k) and g(k + 1). Since the number (k + 1) — k = 1 has no prime
divisors, by Lemma the same holds for g(k + 1) — g(k); thus |g(k + 1) — g(k)| = 1.

Now, let g(2) — g(1) = g, |¢| = 1. Then we prove by induction that g(n) = g(1) 4+ g(n — 1). The
base for n = 1,2 holds by the definition of ¢g. For the step, if n > 1 we have g(n+ 1) = g(n) £ ¢ =
g(1) + q(n —1) £ q. Since g(n) # g(n —2) = g(1) + q(n — 2), we get g(n) = g(1) + ¢qn, as desired.

Finally, we have g(n) = ¢g(1) + ¢(n — 1). Then ¢ cannot be —1 since otherwise for n > ¢g(1) + 1
we have g(n) < 0 which is impossible. Hence ¢ = 1 and g(n) = (g(1) — 1) + n for each n € N, and
g(1) =1 >0, as desired.

Problem 4. Let P be a point inside the triangle ABC'. The lines AP, BP and C'P intersect the
circumcircle I' of triangle ABC' again at the points K, L and M respectively. The tangent to I' at C'
intersects the line AB at S. Suppose that SC' = SP. Prove that MK = M L.

Solution 1. We assume that C'A > CB, so point S lies on the ray AB.

PM  PA
From the similar triangles APKM ~ APCA and APLM ~ APCB we get KM - CA and
LM OB Multiplying these t liti t
—_— == iplyin iti
o7 — pp- Multiplying these two equalities, we ge
LM CB PA
KM CA PB
CB PB
H the relation MK = ML i ivalent to — = —.
ence, the relation is equivalent to —— = —=
Denote by E the foot of the bisector of angle B in triangle ABC'. Recall that the locus of points X
XA CA
for which XE - CB is the Apollonius circle 2 with the center () on the line AB, and this circle

passes through C' and E. Hence, we have M K = ML if and only if P lies on €, that is QP = QC.
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Now we prove that S = @), thus establishing the problem statement. We have Z/CES = ZCAE +
JACE = /BCS+ /ECB = ZECS, so SC = SE. Hence, the point S lies on AB as well as on the

perpendicular bisector of C'E and therefore coincides with Q.
Comment. In this solution we proved more general fact: SC' = SP if and only if MK = M L.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

Let P be an arbitrary point inside both the circumcircle w of the triangle ABC and the angle
ASC, the points K, L, M defined as in the problem.

Let E and F' be the points of intersection of the line SP with w, point £ lying on the segment S P
(see Fig. 2).

P A
We have SP? = SC? = SA - SB, so g_B = %, and hence APSA ~ ABSP. Then /BPS =

/SAP. Since 2/BPS = BE + LF and 2/SAP = BE + EK we have

LF = EK. (4)
On the other hand, from ZSPC = ZSCP we have EC+MF =EC + E/]\\4, or
MF = EM. (5)

From (4) and (5) we get MFL = MF + FL = ME + EK = MEK and hence MK = ML. The
claim is proved.

Problem 5. In each of six boxes By, By, Bs, By, By, Bg there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box B; with 1 < j < 5. Remove one coin from B; and add two
coins to Bjiq.

Type 2: Choose a nonempty box By with 1 < k£ < 4. Remove one coin from By and exchange
the contents of (possibly empty) boxes By.1 and By,os.
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Determine whether there is a finite sequence of such operations that results in boxes By, Bs, B3, By, Bs
being empty and box Bs containing exactly 20102019°"" coins. (Note that a* = a®).)

Answer. Yes. There exists such a sequence of moves.

Solution. Denote by (ay,as,...,a,) — (a},d}, ... al) the following: if some consecutive boxes
contain aq, ..., a, coins, then it is possible to perform several allowed moves such that the boxes
contain af,...,al coins respectively, whereas the contents of the other boxes remain unchanged.

Let A = 20102000 respectively. Our goal is to show that

(1,1,1,1,1,1) — (0,0,0,0,0, A).

First we prove two auxiliary observations.
Lemma 1. (a,0,0) — (0,2%,0) for every a > 1.

Proof. We prove by induction that (a,0,0) — (a — k,2%,0) for every 1 < k < a. For k = 1, apply
Type 1 to the first box:

(a,0,0) — (a—1,2,0) = (a — 1,2, 0).
Now assume that k& < a and the statement holds for some k < a. Starting from (a — k, 2%, 0),

apply Type 1 to the middle box 2* times, until it becomes empty. Then apply Type 2 to the first
box:

(0= 5,2,0) = (0= k.2 = 1,2) = - = (0= £,0,2) = (a = k= 1,2, 0).

Hence,
(a,0,0) — (a —k,2%,0) — (a — k — 1,2, 0). O

‘2
Lemma 2. For every positive integer n, let P, = 2% (eg. Py = 22* — 16). Then (a,0,0,0) —

n

(0, P,,0,0) for every a > 1.

Proof. Similarly to Lemma 1, we prove that (a,0,0,0) — (a — k, P, 0,0) for every 1 < k < a.
For k =1, apply Type 1 to the first box:

(a,0,0,0) = (@ —1,2,0,0) = (a — 1, P1,0,0).

Now assume that the lemma holds for some k < a. Starting from (a—k, Py, 0,0), apply Lemma 1,
then apply Type 1 to the first box:

(a —k, P,0,0) — (a —k,0,27,0) = (a — k,0, Poy1,0) — (a — k — 1, Ppy1,0,0).

Therefore,
(a,0,0,0) — (a — k, P,0,0) — (a — k — 1, Py11,0,0). O
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Now we prove the statement of the problem.
First apply Type 1 to box 5, then apply Type 2 to boxes By, B3, By and By in this order. Then
apply Lemma 2 twice:

(1,1,1,1,1,1) — (1,1,1,1,0,3) — (1,1,1,0,3,0) — (1,1,0,3,0,0) — (1,0,3,0,0,0) —
— (0,3,0,0,0,0) — (0,0, Ps,0,0,0) = (0,0, 16,0,0,0) — (0,0,0, P, 0,0).

We already have more than A coins in box By, since

15
211)2011 o 221142011 922

A< 201020102010 < (211)20102010 _ 211-20102010 < 220102011 < 9o <9 < Pp.

To decrease the number of coins in box By, apply Type 2 to this stack repeatedly until its size
decreases to A/4. (In every step, we remove a coin from B, and exchange the empty boxes Bs
and Bg.)

(070707P)167070)_> (anaO)P16_17070) - (070707P16_27070) -
— .-+ —(0,0,0,A/4,0,0).

Finally, apply Type 1 repeatedly to empty boxes By and Bs:

(0,0,0, 4/4,0,0) — - -- — (0,0,0,0,A/2,0) — --- — (0,0,0,0,0, A).

Comment. Starting with only 4 boxes, it is not hard to check manually that we can achieve at most 28
coins in the last position. However, around 5 and 6 boxes the maximal number of coins explodes. With 5
boxes it is possible to achieve more than 22" coins. With 6 boxes the maximum is greater than PP2 -

Problem 6. Let aq,as,as3,... be a sequence of positive real numbers. Suppose that for some

positive integer s, we have
a, =max{ay +a,— | 1 <k<n-1} (6)

for all n > s. Prove that there exist positive integers £ and N, with ¢ < s and such that a,, = ay+a,_,
forallm > N.

Solution 1. First, from the problem conditions we have that each a, (n > s) can be expressed as
a, = a;, + aj, with ji,jo < n, ji + jo = n. If, say, j1 > s then we can proceed in the same way
with a;,, and so on. Finally, we represent a,, in a form

(p, = Qi + 00+ GGy, (7)

1<i;<s, i1+-+ix=n. (8)

Moreover, if a;, and a;, are the numbers in (7) obtained on the last step, then iy + iy > s. Hence we
can adjust (8) as
1§i]’§8, Z1+—|—Zk:n, 11 + 19 > S. (9)

On the other hand, suppose that the indices iy, ..., 4 satisfy the conditions (9). Then, denoting
$; =11+ -+ +1;, from (6) we have

Un = Qg 2 Oy + Qi 2 Qs 5 + Q5 + Q5 200 2 + -0+ QG

Summarizing these observations we get the following
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Claim. For every n > s, we have

a, = max{a;, +--- + a;, : the collection (i1, ...,1) satisfies (9)}. O
Now we denote W
m = max —
1<i<s 1§
ag

and fix some index ¢ < s such that m = E

Consider some n > s*( + 2s and choose an expansion of a, in the form (7), (9). Then we have
n=iy+- - +ix < sk,sok >n/s> sl +2. Suppose that none of the numbers i3, ..., i equals /.
Then by the pigeonhole principle there is an index 1 < 57 < s which appears among is,...,7; at

least ¢ times, and surely j # (. Let us delete these ¢ occurrences of j from (i1,...,4), and add
J occurrences of ¢ instead, obtaining a sequence (i, i2,175, . . ., 1},) also satisfying (9). By Claim, we
have

Qiy + o gy = A 2 Gy F g + et ay,
4

J

a
or, after removing the coinciding terms, fa; > jay, so 76 < —. By the definition of ¢, this means

that fa; = jay, hence
(p = Qj; + Ay + gy +---+ai;€,.

Thus, for every n > s*¢ + 2s we have found a representation of the form (7), (9) with i; = ¢ for
some j > 3. Rearranging the indices we may assume that i, = £.

Finally, observe that in this representation, the indices (iy,...,ix_1) satisfy the conditions (9)
with n replaced by n — £. Thus, from the Claim we get

Ao+ ag > (@i, + -+ ay_,) +ag = an,

which by (6) implies
Un = Gp_¢+a,  for each n > 520 + 2s,

as desired.

Solution 2. As in the previous solution, we involve the expansion (7), (8), and we fix some index
1 < ¢ < s such that

Qg a;

— =71 = Imax —.

¢ 1<i<s 4

Now, we introduce the sequence (b,,) as b, = a,, — mn; then b, = 0.

We prove by induction on n that b, < 0, and (b,,) satisfies the same recurrence relation as (a,).
The base cases n < s follow from the definition of m. Now, for n > s from the induction hypothesis
we have

b, = max (ay+ an,_) —nm= max (by+b,_x+nm)—nm= max (by+b,_x) <0,
1<k<n—1 1<k<n—1 1<k<n—1

as required.

Now, if b, = 0 for all 1 < k < s, then b, = 0 for all n, hence a, = mn, and the statement is
trivial. Otherwise, define

M = max |b;], e=min{|b;]:1<i<s, b <0}
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Then for n > s we obtain

b, = max (by +by_g) > by +byy = by,

1<k<n-—-1

SO
Oanan—ean—zéZ“'Z—M-

Thus, in view of the expansion (7), (8) applied to the sequence (b,), we get that each b, is
contained in a set
T = {b“ +bzz++bzk : il,...,ik S s}ﬂ[—M,O]

We claim that this set is finite. Actually, for any z € T', let © = b;, +--- +b;, (i1,...,9 < s). Then

M M
among b;,’s there are at most — nonzero terms (otherwise » < — - (—¢) < —M). Thus x can be
€

expressed in the same way with £ < — and there is only a finite number of such sums.
€

Finally, for every t = 1,2,...,¢ we get that the sequence

bs—l—t; bs—f—t-l—@; bs—l—t—l—%) s

is non-decreasing and attains the finite number of values; therefore it is constant from some index.
Thus, the sequence (b,,) is periodic with period ¢ from some index N, which means that

b, =bu_y =by_p+ by foralln > N + ¢,
and hence
an =b, +nm = (by_g+ (n—0)m) + (by + m) = a,_¢ + ay forallm > N + ¢,

as desired.



