51st International Mathematical Olympiad Astana, Kazakhstan 2010

Problems with Solutions

Contents

roblems	5
lutions	7
Problem 1	. 7
Problem 2	. 8
Problem 3	. 9
Problem 4	. 10
Problem 5	. 11
Problem 6	. 13

Problems

Problem 1. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that the equality

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z \rfloor$ denotes the greatest integer less than or equal to z.)

Problem 2. Let *I* be the incentre of triangle *ABC* and let Γ be its circumcircle. Let the line *AI* intersect Γ again at *D*. Let *E* be a point on the arc \widehat{BDC} and *F* a point on the side *BC* such that

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Finally, let G be the midpoint of the segment IF. Prove that the lines DG and EI intersect on Γ .

Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g: \mathbb{N} \to \mathbb{N}$ such that

$$(g(m)+n)(m+g(n))$$

is a perfect square for all $m, n \in \mathbb{N}$.

Problem 4. Let P be a point inside the triangle ABC. The lines AP, BP and CP intersect the circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C intersects the line AB at S. Suppose that SC = SP. Prove that MK = ML.

Problem 5. In each of six boxes $B_1, B_2, B_3, B_4, B_5, B_6$ there is initially one coin. There are two types of operation allowed:

- Type 1: Choose a nonempty box B_j with $1 \le j \le 5$. Remove one coin from B_j and add two coins to B_{j+1} .
- Type 2: Choose a nonempty box B_k with $1 \le k \le 4$. Remove one coin from B_k and exchange the contents of (possibly empty) boxes B_{k+1} and B_{k+2} .

Determine whether there is a finite sequence of such operations that results in boxes B_1, B_2, B_3, B_4, B_5 being empty and box B_6 containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^c} = a^{(b^c)}$.)

Problem 6. Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers. Suppose that for some positive integer s, we have

 $a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n - 1\}$

for all n > s. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_n = a_\ell + a_{n-\ell}$ for all $n \geq N$.

Solutions

Problem 1. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that the equality

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor \tag{1}$$

holds for all $x, y \in \mathbb{R}$. (Here |z| denotes the greatest integer less than or equal to z.)

Answer. f(x) = const = C, where C = 0 or $1 \le C < 2$.

Solution 1. First, setting x = 0 in (1) we get

$$f(0) = f(0)\lfloor f(y) \rfloor \tag{2}$$

for all $y \in \mathbb{R}$. Now, two cases are possible.

Case 1. Assume that $f(0) \neq 0$. Then from (2) we conclude that $\lfloor f(y) \rfloor = 1$ for all $y \in \mathbb{R}$. Therefore, equation (1) becomes $f(\lfloor x \rfloor y) = f(x)$, and substituting y = 0 we have $f(x) = f(0) = C \neq 0$. Finally, from $\lfloor f(y) \rfloor = 1 = \lfloor C \rfloor$ we obtain that $1 \leq C < 2$.

Case 2. Now we have f(0) = 0. Here we consider two subcases.

Subcase 2a. Suppose that there exists $0 < \alpha < 1$ such that $f(\alpha) \neq 0$. Then setting $x = \alpha$ in (1) we obtain $0 = f(0) = f(\alpha) \lfloor f(y) \rfloor$ for all $y \in \mathbb{R}$. Hence, $\lfloor f(y) \rfloor = 0$ for all $y \in \mathbb{R}$. Finally, substituting x = 1 in (1) provides f(y) = 0 for all $y \in \mathbb{R}$, thus contradicting the condition $f(\alpha) \neq 0$.

Subcase 2b. Conversely, we have $f(\alpha) = 0$ for all $0 \le \alpha < 1$. Consider any real z; there exists an integer N such that $\alpha = \frac{z}{N} \in [0, 1)$ (one may set $N = \lfloor z \rfloor + 1$ if $z \ge 0$ and $N = \lfloor z \rfloor - 1$ otherwise). Now, from (1) we get $f(z) = f(\lfloor N \rfloor \alpha) = f(N) \lfloor f(\alpha) \rfloor = 0$ for all $z \in \mathbb{R}$.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that $\lfloor f(y) \rfloor = 0$ for some y; then the substitution x = 1 provides $f(y) = f(1)\lfloor f(y) \rfloor = 0$. Hence, if $\lfloor f(y) \rfloor = 0$ for all y, then f(y) = 0 for all y. This function obviously satisfies the problem conditions.

So we are left to consider the case when $\lfloor f(a) \rfloor \neq 0$ for some a. Then we have

$$f(\lfloor x \rfloor a) = f(x) \lfloor f(a) \rfloor, \quad \text{or} \quad f(x) = \frac{f(\lfloor x \rfloor a)}{\lfloor f(a) \rfloor}.$$
(3)

This means that $f(x_1) = f(x_2)$ whenever $\lfloor x_1 \rfloor = \lfloor x_2 \rfloor$, hence $f(x) = f(\lfloor x \rfloor)$, and we may assume that a is an integer.

Now we have

$$f(a) = f\left(2a \cdot \frac{1}{2}\right) = f(2a) \left\lfloor f\left(\frac{1}{2}\right) \right\rfloor = f(2a) \left\lfloor f(0) \right\rfloor$$

this implies $\lfloor f(0) \rfloor \neq 0$, so we may even assume that a = 0. Therefore equation (3) provides

$$f(x) = \frac{f(0)}{\lfloor f(0) \rfloor} = C \neq 0$$

for each x. Now, condition (1) becomes equivalent to the equation $C = C \lfloor C \rfloor$ which holds exactly when $\lfloor C \rfloor = 1$.

Problem 2. Let *I* be the incentre of triangle *ABC* and let Γ be its circumcircle. Let the line *AI* intersect Γ again at *D*. Let *E* be a point on the arc \widehat{BDC} and *F* a point on the side *BC* such that

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Finally, let G be the midpoint of the segment IF. Prove that the lines DG and EI intersect on Γ .

Solution 1. Let X be the second point of intersection of line EI with Γ , and L be the foot of the bisector of angle BAC. Let G' and T be the points of intersection of segment DX with lines IF and AF, respectively. We are to prove that G = G', or IG' = G'F. By the Menelaus theorem applied to triangle AIF and line DX, it means that we need the relation

$$1 = \frac{G'F}{IG'} = \frac{TF}{AT} \cdot \frac{AD}{ID}, \quad \text{or} \quad \frac{TF}{AT} = \frac{ID}{AD}$$

Let the line AF intersect Γ at point $K \neq A$ (see Fig. 1); since $\angle BAK = \angle CAE$ we have $\widehat{BK} = \widehat{CE}$, hence $KE \parallel BC$. Notice that $\angle IAT = \angle DAK = \angle EAD = \angle EXD = \angle IXT$, so the points I, A, X, T are concyclic. Hence we have $\angle ITA = \angle IXA = \angle EXA = \angle EKA$, so $IT \parallel KE \parallel BC$. Therefore we obtain $\frac{TF}{AT} = \frac{IL}{AI}$.

Since CI is the bisector of $\angle ACL$, we get $\frac{IL}{AI} = \frac{CL}{AC}$. Furthermore, $\angle DCL = \angle DCB = \angle DAB = \angle CAD = \frac{1}{2} \angle BAC$, hence the triangles DCL and DAC are similar; therefore we get $\frac{CL}{AC} = \frac{DC}{AD}$. Finally, it is known that the midpoint D of arc BC is equidistant from points I, B, C, hence $\frac{DC}{AD} = \frac{ID}{AD}$.

Summarizing all these equalities, we get

$$\frac{TF}{AT} = \frac{IL}{AI} = \frac{CL}{AC} = \frac{DC}{AD} = \frac{ID}{AD}$$

as desired.

Comment. The equality $\frac{AI}{IL} = \frac{AD}{DI}$ is known and can be obtained in many different ways. For instance, one can consider the inversion with center D and radius DC = DI. This inversion takes \widehat{BAC} to the segment BC, so point A goes to L. Hence $\frac{IL}{DI} = \frac{AI}{AD}$, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that it suffice to prove the equality

$$\frac{TF}{AT} = \frac{DI}{AD} \quad \iff \quad \frac{TF + AT}{AT} = \frac{DI + AD}{AD} \quad \iff \quad \frac{AT}{AD} = \frac{AF}{DI + AD}$$

Since $\angle FAD = \angle EAI$ and $\angle TDA = \angle XDA = \angle XEA = \angle IEA$, we get that the triangles ATD and AIE are similar, therefore $\frac{AT}{AD} = \frac{AI}{AE}$.

Next, we also use the relation DB = DC = DI. Let J be the point on the extension of segment AD over point D such that DJ = DI = DC (see Fig. 2). Then $\angle DJC = \angle JCD = \frac{1}{2}(\pi - \angle JDC) = \frac{1}{2}\angle ADC = \frac{1}{2}\angle ABC = \angle ABI$. Moreover, $\angle BAI = \angle JAC$, hence triangles ABI and AJC are similar, so $\frac{AB}{AJ} = \frac{AI}{AC}$, or $AB \cdot AC = AJ \cdot AI = (DI + AD) \cdot AI$.

On the other hand, we get $\angle ABF = \angle ABC = \angle AEC$ and $\angle BAF = \angle CAE$, so triangles ABF and AEC are also similar, which implies $\frac{AF}{AC} = \frac{AB}{AE}$, or $AB \cdot AC = AF \cdot AE$.

Summarizing we get

$$(DI + AD) \cdot AI = AB \cdot AC = AF \cdot AE \quad \Rightarrow \quad \frac{AI}{AE} = \frac{AF}{AD + DI} \quad \Rightarrow \quad \frac{AT}{AD} = \frac{AF}{AD + DI}$$

as desired.

Comment. In fact, point J is an excenter of triangle ABC.

Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g \colon \mathbb{N} \to \mathbb{N}$ such that (g(m) + n)(m + g(n))

is a perfect square for all $m, n \in \mathbb{N}$.

Answer. All functions of the form g(n) = n + c, where $c \in \mathbb{N} \cup \{0\}$.

Solution. First, it is clear that all functions of the form g(n) = n + c with a constant nonnegative integer c satisfy the problem conditions since $(g(m) + n)(g(n) + m) = (n + m + c)^2$ is a square.

We are left to prove that there are no other functions. We start with the following

Lemma. Suppose that $p \mid g(k) - g(\ell)$ for some prime p and positive integers k, ℓ . Then $p \mid k - \ell$. Proof. Suppose first that $p^2 \mid g(k) - g(\ell)$, so $g(\ell) = g(k) + p^2 a$ for some integer a. Take some positive integer $D > \max\{g(k), g(\ell)\}$ which is not divisible by p and set n = pD - g(k). Then the positive numbers n + g(k) = pD and $n + g(\ell) = pD + (g(\ell) - g(k)) = p(D + pa)$ are both divisible by p but not by p^2 . Now, applying the problem conditions, we get that both the numbers (g(k) + n)(g(n) + k)and $(g(\ell) + n)(g(n) + \ell)$ are squares divisible by p (and thus by p^2); this means that the multipliers g(n) + k and $g(n) + \ell$ are also divisible by p, therefore $p \mid (g(n) + k) - (g(n) + \ell) = k - \ell$ as well.

On the other hand, if $g(k)-g(\ell)$ is divisible by p but not by p^2 , then choose the same number D and set $n = p^3D - g(k)$. Then the positive numbers $g(k) + n = p^3D$ and $g(\ell) + n = p^3D + (g(\ell) - g(k))$ are respectively divisible by p^3 (but not by p^4) and by p (but not by p^2). Hence in analogous way we obtain that the numbers g(n) + k and $g(n) + \ell$ are divisible by p, therefore $p \mid (g(n) + k) - (g(n) + \ell) = k - \ell$. \Box

We turn to the problem. First, suppose that $g(k) = g(\ell)$ for some $k, \ell \in \mathbb{N}$. Then by Lemma we have that $k - \ell$ is divisible by every prime number, so $k - \ell = 0$, or $k = \ell$. Therefore, the function g is injective.

Next, consider the numbers g(k) and g(k+1). Since the number (k+1) - k = 1 has no prime divisors, by Lemma the same holds for g(k+1) - g(k); thus |g(k+1) - g(k)| = 1.

Now, let g(2) - g(1) = q, |q| = 1. Then we prove by induction that g(n) = g(1) + q(n-1). The base for n = 1, 2 holds by the definition of q. For the step, if n > 1 we have $g(n+1) = g(n) \pm q = g(1) + q(n-1) \pm q$. Since $g(n) \neq g(n-2) = g(1) + q(n-2)$, we get g(n) = g(1) + qn, as desired.

Finally, we have g(n) = g(1) + q(n-1). Then q cannot be -1 since otherwise for $n \ge g(1) + 1$ we have $g(n) \le 0$ which is impossible. Hence q = 1 and g(n) = (g(1) - 1) + n for each $n \in \mathbb{N}$, and $g(1) - 1 \ge 0$, as desired.

Problem 4. Let P be a point inside the triangle ABC. The lines AP, BP and CP intersect the circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C intersects the line AB at S. Suppose that SC = SP. Prove that MK = ML.

Solution 1. We assume that CA > CB, so point S lies on the ray AB.

From the similar triangles $\triangle PKM \sim \triangle PCA$ and $\triangle PLM \sim \triangle PCB$ we get $\frac{PM}{KM} = \frac{PA}{CA}$ and $\frac{LM}{PM} = \frac{CB}{PB}$. Multiplying these two equalities, we get

$$\frac{LM}{KM} = \frac{CB}{CA} \cdot \frac{PA}{PB}$$

Hence, the relation MK = ML is equivalent to $\frac{CB}{CA} = \frac{PB}{PA}$.

Denote by E the foot of the bisector of angle B in triangle ABC. Recall that the locus of points X for which $\frac{XA}{XB} = \frac{CA}{CB}$ is the Apollonius circle Ω with the center Q on the line AB, and this circle passes through C and E. Hence, we have MK = ML if and only if P lies on Ω , that is QP = QC.

Fig. 1

Now we prove that S = Q, thus establishing the problem statement. We have $\angle CES = \angle CAE + \angle ACE = \angle BCS + \angle ECB = \angle ECS$, so SC = SE. Hence, the point S lies on AB as well as on the perpendicular bisector of CE and therefore coincides with Q.

Comment. In this solution we proved more general fact: SC = SP if and only if MK = ML.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

Let P be an arbitrary point inside both the circumcircle ω of the triangle ABC and the angle ASC, the points K, L, M defined as in the problem.

Let E and F be the points of intersection of the line SP with ω , point E lying on the segment SP (see Fig. 2).

We have $SP^2 = SC^2 = SA \cdot SB$, so $\frac{SP}{SB} = \frac{SA}{SP}$, and hence $\triangle PSA \sim \triangle BSP$. Then $\angle BPS = \angle SAP$. Since $2\angle BPS = \widehat{BE} + \widehat{LF}$ and $2\angle SAP = \widehat{BE} + \widehat{EK}$ we have

$$\widehat{LF} = \widehat{EK}.\tag{4}$$

On the other hand, from $\angle SPC = \angle SCP$ we have $\widehat{EC} + \widehat{MF} = \widehat{EC} + \widehat{EM}$, or

$$\widehat{MF} = \widehat{EM}.\tag{5}$$

From (4) and (5) we get $\widehat{MFL} = \widehat{MF} + \widehat{FL} = \widehat{ME} + \widehat{EK} = \widehat{MEK}$ and hence MK = ML. The claim is proved.

Problem 5. In each of six boxes $B_1, B_2, B_3, B_4, B_5, B_6$ there is initially one coin. There are two types of operation allowed:

- Type 1: Choose a nonempty box B_j with $1 \le j \le 5$. Remove one coin from B_j and add two coins to B_{j+1} .
- Type 2: Choose a nonempty box B_k with $1 \le k \le 4$. Remove one coin from B_k and exchange the contents of (possibly empty) boxes B_{k+1} and B_{k+2} .

Determine whether there is a finite sequence of such operations that results in boxes B_1, B_2, B_3, B_4, B_5 being empty and box B_6 containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^c} = a^{(b^c)}$.)

Answer. Yes. There exists such a sequence of moves.

Solution. Denote by $(a_1, a_2, \ldots, a_n) \to (a'_1, a'_2, \ldots, a'_n)$ the following: if some consecutive boxes contain a_1, \ldots, a_n coins, then it is possible to perform several allowed moves such that the boxes contain a'_1, \ldots, a'_n coins respectively, whereas the contents of the other boxes remain unchanged.

Let $A = 2010^{2010^{2010}}$, respectively. Our goal is to show that

$$(1, 1, 1, 1, 1, 1) \rightarrow (0, 0, 0, 0, 0, A).$$

First we prove two auxiliary observations.

Lemma 1. $(a, 0, 0) \to (0, 2^a, 0)$ for every $a \ge 1$.

Proof. We prove by induction that $(a, 0, 0) \rightarrow (a - k, 2^k, 0)$ for every $1 \le k \le a$. For k = 1, apply Type 1 to the first box:

$$(a, 0, 0) \rightarrow (a - 1, 2, 0) = (a - 1, 2^1, 0).$$

Now assume that k < a and the statement holds for some k < a. Starting from $(a - k, 2^k, 0)$, apply Type 1 to the middle box 2^k times, until it becomes empty. Then apply Type 2 to the first box:

$$(a-k, 2^k, 0) \to (a-k, 2^k-1, 2) \to \dots \to (a-k, 0, 2^{k+1}) \to (a-k-1, 2^{k+1}, 0).$$

Hence,

$$(a, 0, 0) \to (a - k, 2^k, 0) \to (a - k - 1, 2^{k+1}, 0).$$

Lemma 2. For every positive integer n, let $P_n = 2^{2^{n^2}}$ (e.g. $P_3 = 2^{2^2} = 16$). Then $(a, 0, 0, 0) \rightarrow (0, P_a, 0, 0)$ for every $a \ge 1$.

Proof. Similarly to Lemma 1, we prove that $(a, 0, 0, 0) \rightarrow (a - k, P_k, 0, 0)$ for every $1 \le k \le a$. For k = 1, apply Type 1 to the first box:

$$(a, 0, 0, 0) \rightarrow (a - 1, 2, 0, 0) = (a - 1, P_1, 0, 0).$$

Now assume that the lemma holds for some k < a. Starting from $(a - k, P_k, 0, 0)$, apply Lemma 1, then apply Type 1 to the first box:

$$(a - k, P_k, 0, 0) \rightarrow (a - k, 0, 2^{P_k}, 0) = (a - k, 0, P_{k+1}, 0) \rightarrow (a - k - 1, P_{k+1}, 0, 0).$$

Therefore,

$$(a, 0, 0, 0) \rightarrow (a - k, P_k, 0, 0) \rightarrow (a - k - 1, P_{k+1}, 0, 0).$$

Now we prove the statement of the problem.

First apply Type 1 to box 5, then apply Type 2 to boxes B_4 , B_3 , B_2 and B_1 in this order. Then apply Lemma 2 twice:

$$(1, 1, 1, 1, 1) \to (1, 1, 1, 1, 0, 3) \to (1, 1, 1, 0, 3, 0) \to (1, 1, 0, 3, 0, 0) \to (1, 0, 3, 0, 0, 0) \to (0, 3, 0, 0, 0) \to (0, 0, 0, P_3, 0, 0, 0) = (0, 0, 16, 0, 0, 0) \to (0, 0, 0, 0, P_{16}, 0, 0).$$

We already have more than A coins in box B_4 , since

$$A \le 2010^{2010^{2010}} < (2^{11})^{2010^{2010}} = 2^{11 \cdot 2010^{2010}} < 2^{2010^{2011}} < 2^{(2^{11})^{2011}} = 2^{2^{11 \cdot 2011}} < 2^{2^{2^{15}}} < P_{16}.$$

To decrease the number of coins in box B_4 , apply Type 2 to this stack repeatedly until its size decreases to A/4. (In every step, we remove a coin from B_4 and exchange the empty boxes B_5 and B_6 .)

$$(0, 0, 0, P_{16}, 0, 0) \to (0, 0, 0, P_{16} - 1, 0, 0) \to (0, 0, 0, P_{16} - 2, 0, 0) \to \\ \to \dots \to (0, 0, 0, 0, A/4, 0, 0).$$

Finally, apply Type 1 repeatedly to empty boxes B_4 and B_5 :

$$(0, 0, 0, A/4, 0, 0) \rightarrow \cdots \rightarrow (0, 0, 0, 0, A/2, 0) \rightarrow \cdots \rightarrow (0, 0, 0, 0, 0, A).$$

Comment. Starting with only 4 boxes, it is not hard to check manually that we can achieve at most 28 coins in the last position. However, around 5 and 6 boxes the maximal number of coins explodes. With 5 boxes it is possible to achieve more than $2^{2^{14}}$ coins. With 6 boxes the maximum is greater than $P_{P_{2^{14}}}$.

Problem 6. Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers. Suppose that for some positive integer s, we have

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n-1\}$$
(6)

for all n > s. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_n = a_\ell + a_{n-\ell}$ for all $n \geq N$.

Solution 1. First, from the problem conditions we have that each a_n (n > s) can be expressed as $a_n = a_{j_1} + a_{j_2}$ with $j_1, j_2 < n, j_1 + j_2 = n$. If, say, $j_1 > s$ then we can proceed in the same way with a_{j_1} , and so on. Finally, we represent a_n in a form

$$a_n = a_{i_1} + \dots + a_{i_k},\tag{7}$$

$$1 \le i_j \le s, \quad i_1 + \dots + i_k = n.$$

$$\tag{8}$$

Moreover, if a_{i_1} and a_{i_2} are the numbers in (7) obtained on the last step, then $i_1 + i_2 > s$. Hence we can adjust (8) as

$$1 \le i_j \le s, \quad i_1 + \dots + i_k = n, \quad i_1 + i_2 > s.$$
 (9)

On the other hand, suppose that the indices i_1, \ldots, i_k satisfy the conditions (9). Then, denoting $s_j = i_1 + \cdots + i_j$, from (6) we have

$$a_n = a_{s_k} \ge a_{s_{k-1}} + a_{i_k} \ge a_{s_{k-2}} + a_{i_{k-1}} + a_{i_k} \ge \dots \ge a_{i_1} + \dots + a_{i_k}$$

Summarizing these observations we get the following

Claim. For every n > s, we have

 $a_n = \max\{a_{i_1} + \dots + a_{i_k} : \text{the collection } (i_1, \dots, i_k) \text{ satisfies } (9)\}.$

Now we denote

$$m = \max_{1 \le i \le s} \frac{a_i}{i}$$

and fix some index $\ell \leq s$ such that $m = \frac{a_{\ell}}{\ell}$.

Consider some $n \ge s^2 \ell + 2s$ and choose an expansion of a_n in the form (7), (9). Then we have $n = i_1 + \cdots + i_k \le sk$, so $k \ge n/s \ge s\ell + 2$. Suppose that none of the numbers i_3, \ldots, i_k equals ℓ . Then by the pigeonhole principle there is an index $1 \le j \le s$ which appears among i_3, \ldots, i_k at least ℓ times, and surely $j \ne \ell$. Let us delete these ℓ occurrences of j from (i_1, \ldots, i_k) , and add j occurrences of ℓ instead, obtaining a sequence $(i_1, i_2, i'_3, \ldots, i'_{k'})$ also satisfying (9). By Claim, we have

$$a_{i_1} + \dots + a_{i_k} = a_n \ge a_{i_1} + a_{i_2} + a_{i'_3} + \dots + a_{i'_{k'}}$$

or, after removing the coinciding terms, $\ell a_j \ge j a_\ell$, so $\frac{a_\ell}{\ell} \le \frac{a_j}{j}$. By the definition of ℓ , this means that $\ell a_j = j a_\ell$, hence

$$a_n = a_{i_1} + a_{i_2} + a_{i'_3} + \dots + a_{i'_{k'}}$$

Thus, for every $n \ge s^2 \ell + 2s$ we have found a representation of the form (7), (9) with $i_j = \ell$ for some $j \ge 3$. Rearranging the indices we may assume that $i_k = \ell$.

Finally, observe that in this representation, the indices (i_1, \ldots, i_{k-1}) satisfy the conditions (9) with n replaced by $n - \ell$. Thus, from the Claim we get

$$a_{n-\ell} + a_{\ell} \ge (a_{i_1} + \dots + a_{i_{k-1}}) + a_{\ell} = a_n,$$

which by (6) implies

$$a_n = a_{n-\ell} + a_\ell$$
 for each $n \ge s^2\ell + 2s$

as desired.

Solution 2. As in the previous solution, we involve the expansion (7), (8), and we fix some index $1 \le \ell \le s$ such that

$$\frac{a_\ell}{\ell} = m = \max_{1 \le i \le s} \frac{a_i}{i}.$$

Now, we introduce the sequence (b_n) as $b_n = a_n - mn$; then $b_\ell = 0$.

We prove by induction on n that $b_n \leq 0$, and (b_n) satisfies the same recurrence relation as (a_n) . The base cases $n \leq s$ follow from the definition of m. Now, for n > s from the induction hypothesis we have

$$b_n = \max_{1 \le k \le n-1} (a_k + a_{n-k}) - nm = \max_{1 \le k \le n-1} (b_k + b_{n-k} + nm) - nm = \max_{1 \le k \le n-1} (b_k + b_{n-k}) \le 0,$$

as required.

Now, if $b_k = 0$ for all $1 \le k \le s$, then $b_n = 0$ for all n, hence $a_n = mn$, and the statement is trivial. Otherwise, define

$$M = \max_{1 \le i \le s} |b_i|, \quad \varepsilon = \min\{|b_i| : 1 \le i \le s, \ b_i < 0\}.$$

Then for n > s we obtain

$$b_n = \max_{1 \le k \le n-1} (b_k + b_{n-k}) \ge b_\ell + b_{n-\ell} = b_{n-\ell}$$

 \mathbf{SO}

$$0 \ge b_n \ge b_{n-\ell} \ge b_{n-2\ell} \ge \dots \ge -M.$$

Thus, in view of the expansion (7), (8) applied to the sequence (b_n) , we get that each b_n is contained in a set

$$T = \{b_{i_1} + b_{i_2} + \dots + b_{i_k} : i_1, \dots, i_k \le s\} \cap [-M, 0]$$

We claim that this set is finite. Actually, for any $x \in T$, let $x = b_{i_1} + \cdots + b_{i_k}$ $(i_1, \ldots, i_k \leq s)$. Then among b_{i_j} 's there are at most $\frac{M}{\varepsilon}$ nonzero terms (otherwise $x < \frac{M}{\varepsilon} \cdot (-\varepsilon) < -M$). Thus x can be expressed in the same way with $k \leq \frac{M}{\varepsilon}$, and there is only a finite number of such sums.

Finally, for every $t = 1, 2, ..., \ell$ we get that the sequence

$$b_{s+t}, b_{s+t+\ell}, b_{s+t+2\ell}, \ldots$$

is non-decreasing and attains the finite number of values; therefore it is constant from some index. Thus, the sequence (b_n) is periodic with period ℓ from some index N, which means that

$$b_n = b_{n-\ell} = b_{n-\ell} + b_\ell \qquad \text{for all } n > N + \ell,$$

and hence

$$a_n = b_n + nm = (b_{n-\ell} + (n-\ell)m) + (b_\ell + \ell m) = a_{n-\ell} + a_\ell$$
 for all $n > N + \ell$,

as desired.