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Problems

Problem 1. Determine all functions f : R → R such that the equality

f
(
⌊x⌋y

)
= f(x)

⌊
f(y)

⌋
holds for all x, y ∈ R. (Here ⌊z⌋ denotes the greatest integer less than or equal to z.)

Problem 2. Let I be the incentre of triangle ABC and let Γ be its circumcircle. Let the line AI

intersect Γ again at D. Let E be a point on the arc B̂DC and F a point on the side BC such that

∠BAF = ∠CAE < 1
2
∠BAC.

Finally, let G be the midpoint of the segment IF . Prove that the lines DG and EI intersect on Γ.

Problem 3. Let N be the set of positive integers. Determine all functions g : N → N such that(
g(m) + n

)(
m + g(n)

)
is a perfect square for all m,n ∈ N.

Problem 4. Let P be a point inside the triangle ABC. The lines AP , BP and CP intersect the
circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C
intersects the line AB at S. Suppose that SC = SP . Prove that MK = ML.

Problem 5. In each of six boxes B1, B2, B3, B4, B5, B6 there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box Bj with 1 ≤ j ≤ 5. Remove one coin from Bj and add two
coins to Bj+1.

Type 2: Choose a nonempty box Bk with 1 ≤ k ≤ 4. Remove one coin from Bk and exchange
the contents of (possibly empty) boxes Bk+1 and Bk+2.

Determine whether there is a finite sequence of such operations that results in boxes B1, B2, B3, B4, B5

being empty and box B6 containing exactly 201020102010
coins. (Note that abc

= a(bc).)

Problem 6. Let a1, a2, a3, . . . be a sequence of positive real numbers. Suppose that for some
positive integer s, we have

an = max{ak + an−k | 1 ≤ k ≤ n − 1}
for all n > s. Prove that there exist positive integers ℓ and N , with ℓ ≤ s and such that an = aℓ+an−ℓ

for all n ≥ N .
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Solutions

Problem 1. Determine all functions f : R → R such that the equality

f
(
⌊x⌋y

)
= f(x)

⌊
f(y)

⌋
(1)

holds for all x, y ∈ R. (Here ⌊z⌋ denotes the greatest integer less than or equal to z.)

Answer. f(x) = const = C, where C = 0 or 1 ≤ C < 2.

Solution 1. First, setting x = 0 in (1) we get

f(0) = f(0)⌊f(y)⌋ (2)

for all y ∈ R. Now, two cases are possible.

Case 1. Assume that f(0) ̸= 0. Then from (2) we conclude that ⌊f(y)⌋ = 1 for all y ∈ R.
Therefore, equation (1) becomes f(⌊x⌋y) = f(x), and substituting y = 0 we have f(x) = f(0) =
C ̸= 0. Finally, from ⌊f(y)⌋ = 1 = ⌊C⌋ we obtain that 1 ≤ C < 2.

Case 2. Now we have f(0) = 0. Here we consider two subcases.
Subcase 2a. Suppose that there exists 0 < α < 1 such that f(α) ̸= 0. Then setting x = α in (1)

we obtain 0 = f(0) = f(α)⌊f(y)⌋ for all y ∈ R. Hence, ⌊f(y)⌋ = 0 for all y ∈ R. Finally, substituting
x = 1 in (1) provides f(y) = 0 for all y ∈ R, thus contradicting the condition f(α) ̸= 0.

Subcase 2b. Conversely, we have f(α) = 0 for all 0 ≤ α < 1. Consider any real z; there exists an

integer N such that α =
z

N
∈ [0, 1) (one may set N = ⌊z⌋ + 1 if z ≥ 0 and N = ⌊z⌋ − 1 otherwise).

Now, from (1) we get f(z) = f(⌊N⌋α) = f(N)⌊f(α)⌋ = 0 for all z ∈ R.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that ⌊f(y)⌋ = 0 for some y; then the substitution x = 1 provides f(y) =
f(1)⌊f(y)⌋ = 0. Hence, if ⌊f(y)⌋ = 0 for all y, then f(y) = 0 for all y. This function obviously
satisfies the problem conditions.

So we are left to consider the case when ⌊f(a)⌋ ̸= 0 for some a. Then we have

f(⌊x⌋a) = f(x)⌊f(a)⌋, or f(x) =
f(⌊x⌋a)

⌊f(a)⌋
. (3)

This means that f(x1) = f(x2) whenever ⌊x1⌋ = ⌊x2⌋, hence f(x) = f(⌊x⌋), and we may assume
that a is an integer.

Now we have
f(a) = f

(
2a · 1

2

)
= f(2a)

⌊
f

(
1
2

)⌋
= f(2a)⌊f(0)⌋;

this implies ⌊f(0)⌋ ̸= 0, so we may even assume that a = 0. Therefore equation (3) provides

f(x) =
f(0)

⌊f(0)⌋
= C ̸= 0
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for each x. Now, condition (1) becomes equivalent to the equation C = C⌊C⌋ which holds exactly
when ⌊C⌋ = 1.

Problem 2. Let I be the incentre of triangle ABC and let Γ be its circumcircle. Let the line AI

intersect Γ again at D. Let E be a point on the arc B̂DC and F a point on the side BC such that

∠BAF = ∠CAE < 1
2
∠BAC.

Finally, let G be the midpoint of the segment IF . Prove that the lines DG and EI intersect on Γ.

Solution 1. Let X be the second point of intersection of line EI with Γ, and L be the foot of the
bisector of angle BAC. Let G′ and T be the points of intersection of segment DX with lines IF
and AF , respectively. We are to prove that G = G′, or IG′ = G′F . By the Menelaus theorem
applied to triangle AIF and line DX, it means that we need the relation

1 =
G′F

IG′ =
TF

AT
· AD

ID
, or

TF

AT
=

ID

AD
.

Let the line AF intersect Γ at point K ̸= A (see Fig. 1); since ∠BAK = ∠CAE we have

B̂K = ĈE, hence KE ∥ BC. Notice that ∠IAT = ∠DAK = ∠EAD = ∠EXD = ∠IXT , so
the points I, A, X, T are concyclic. Hence we have ∠ITA = ∠IXA = ∠EXA = ∠EKA, so

IT ∥ KE ∥ BC. Therefore we obtain
TF

AT
=

IL

AI
.

Since CI is the bisector of ∠ACL, we get
IL

AI
=

CL

AC
. Furthermore, ∠DCL = ∠DCB =

∠DAB = ∠CAD = 1
2
∠BAC, hence the triangles DCL and DAC are similar; therefore we get

CL

AC
=

DC

AD
. Finally, it is known that the midpoint D of arc BC is equidistant from points I, B, C,

hence
DC

AD
=

ID

AD
.

Summarizing all these equalities, we get

TF

AT
=

IL

AI
=

CL

AC
=

DC

AD
=

ID

AD
,

as desired.

A

B C

D

E

F

G′

K

L

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

X

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

A

B C

I

D

J

Fig. 1 Fig. 2
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Comment. The equality
AI

IL
=

AD

DI
is known and can be obtained in many different ways. For instance,

one can consider the inversion with center D and radius DC = DI. This inversion takes B̂AC to the
segment BC, so point A goes to L. Hence

IL

DI
=

AI

AD
, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that it
suffice to prove the equality

TF

AT
=

DI

AD
⇐⇒ TF + AT

AT
=

DI + AD

AD
⇐⇒ AT

AD
=

AF

DI + AD
.

Since ∠FAD = ∠EAI and ∠TDA = ∠XDA = ∠XEA = ∠IEA, we get that the triangles ATD

and AIE are similar, therefore
AT

AD
=

AI

AE
.

Next, we also use the relation DB = DC = DI. Let J be the point on the extension of
segment AD over point D such that DJ = DI = DC (see Fig. 2). Then ∠DJC = ∠JCD =
1
2
(π − ∠JDC) = 1

2
∠ADC = 1

2
∠ABC = ∠ABI. Moreover, ∠BAI = ∠JAC, hence triangles ABI

and AJC are similar, so
AB

AJ
=

AI

AC
, or AB · AC = AJ · AI = (DI + AD) · AI.

On the other hand, we get ∠ABF = ∠ABC = ∠AEC and ∠BAF = ∠CAE, so triangles ABF

and AEC are also similar, which implies
AF

AC
=

AB

AE
, or AB · AC = AF · AE.

Summarizing we get

(DI + AD) · AI = AB · AC = AF · AE ⇒ AI

AE
=

AF

AD + DI
⇒ AT

AD
=

AF

AD + DI
,

as desired.

Comment. In fact, point J is an excenter of triangle ABC.

Problem 3. Let N be the set of positive integers. Determine all functions g : N → N such that(
g(m) + n

)(
m + g(n)

)
is a perfect square for all m,n ∈ N.

Answer. All functions of the form g(n) = n + c, where c ∈ N ∪ {0}.
Solution. First, it is clear that all functions of the form g(n) = n + c with a constant nonnegative
integer c satisfy the problem conditions since

(
g(m) + n

)(
g(n) + m

)
= (n + m + c)2 is a square.

We are left to prove that there are no other functions. We start with the following

Lemma. Suppose that p
∣∣ g(k) − g(ℓ) for some prime p and positive integers k, ℓ. Then p

∣∣ k − ℓ.

Proof. Suppose first that p2
∣∣ g(k)− g(ℓ), so g(ℓ) = g(k)+p2a for some integer a. Take some positive

integer D > max{g(k), g(ℓ)} which is not divisible by p and set n = pD − g(k). Then the positive
numbers n + g(k) = pD and n + g(ℓ) = pD +

(
g(ℓ) − g(k)

)
= p(D + pa) are both divisible by p but

not by p2. Now, applying the problem conditions, we get that both the numbers
(
g(k)+n

)(
g(n)+k

)
and

(
g(ℓ) + n

)(
g(n) + ℓ

)
are squares divisible by p (and thus by p2); this means that the multipliers

g(n) + k and g(n) + ℓ are also divisible by p, therefore p
∣∣ (

g(n) + k
)
−

(
g(n) + ℓ

)
= k − ℓ as well.

On the other hand, if g(k)−g(ℓ) is divisible by p but not by p2, then choose the same number D and
set n = p3D−g(k). Then the positive numbers g(k)+n = p3D and g(ℓ)+n = p3D+

(
g(ℓ)−g(k)

)
are

respectively divisible by p3 (but not by p4) and by p (but not by p2). Hence in analogous way we obtain
that the numbers g(n)+k and g(n)+ℓ are divisible by p, therefore p

∣∣ (
g(n)+k

)
−

(
g(n)+ℓ

)
= k−ℓ.

�
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We turn to the problem. First, suppose that g(k) = g(ℓ) for some k, ℓ ∈ N. Then by Lemma we
have that k − ℓ is divisible by every prime number, so k − ℓ = 0, or k = ℓ. Therefore, the function g
is injective.

Next, consider the numbers g(k) and g(k + 1). Since the number (k + 1) − k = 1 has no prime
divisors, by Lemma the same holds for g(k + 1) − g(k); thus |g(k + 1) − g(k)| = 1.

Now, let g(2) − g(1) = q, |q| = 1. Then we prove by induction that g(n) = g(1) + q(n − 1). The
base for n = 1, 2 holds by the definition of q. For the step, if n > 1 we have g(n + 1) = g(n) ± q =
g(1) + q(n − 1) ± q. Since g(n) ̸= g(n − 2) = g(1) + q(n − 2), we get g(n) = g(1) + qn, as desired.

Finally, we have g(n) = g(1) + q(n − 1). Then q cannot be −1 since otherwise for n ≥ g(1) + 1
we have g(n) ≤ 0 which is impossible. Hence q = 1 and g(n) = (g(1) − 1) + n for each n ∈ N, and
g(1) − 1 ≥ 0, as desired.

Problem 4. Let P be a point inside the triangle ABC. The lines AP , BP and CP intersect the
circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C
intersects the line AB at S. Suppose that SC = SP . Prove that MK = ML.

Solution 1. We assume that CA > CB, so point S lies on the ray AB.

From the similar triangles △PKM ∼ △PCA and △PLM ∼ △PCB we get
PM

KM
=

PA

CA
and

LM

PM
=

CB

PB
. Multiplying these two equalities, we get

LM

KM
=

CB

CA
· PA

PB
.

Hence, the relation MK = ML is equivalent to
CB

CA
=

PB

PA
.

Denote by E the foot of the bisector of angle B in triangle ABC. Recall that the locus of points X

for which
XA

XB
=

CA

CB
is the Apollonius circle Ω with the center Q on the line AB, and this circle

passes through C and E. Hence, we have MK = ML if and only if P lies on Ω, that is QP = QC.

A B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

S

K

L

M

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

E

Ω

Fig. 1
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Now we prove that S = Q, thus establishing the problem statement. We have ∠CES = ∠CAE +
∠ACE = ∠BCS + ∠ECB = ∠ECS, so SC = SE. Hence, the point S lies on AB as well as on the
perpendicular bisector of CE and therefore coincides with Q.

Comment. In this solution we proved more general fact: SC = SP if and only if MK = ML.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

Let P be an arbitrary point inside both the circumcircle ω of the triangle ABC and the angle
ASC, the points K, L, M defined as in the problem.

Let E and F be the points of intersection of the line SP with ω, point E lying on the segment SP
(see Fig. 2).

A B

C

S

K

L

M

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

E

F

ω

Fig. 2

We have SP 2 = SC2 = SA · SB, so
SP

SB
=

SA

SP
, and hence △PSA ∼ △BSP . Then ∠BPS =

∠SAP . Since 2∠BPS = B̂E + L̂F and 2∠SAP = B̂E + ÊK we have

L̂F = ÊK. (4)

On the other hand, from ∠SPC = ∠SCP we have ÊC + M̂F = ÊC + ÊM , or

M̂F = ÊM. (5)

From (4) and (5) we get M̂FL = M̂F + F̂L = M̂E + ÊK = M̂EK and hence MK = ML. The
claim is proved.

Problem 5. In each of six boxes B1, B2, B3, B4, B5, B6 there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box Bj with 1 ≤ j ≤ 5. Remove one coin from Bj and add two
coins to Bj+1.

Type 2: Choose a nonempty box Bk with 1 ≤ k ≤ 4. Remove one coin from Bk and exchange
the contents of (possibly empty) boxes Bk+1 and Bk+2.
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Determine whether there is a finite sequence of such operations that results in boxes B1, B2, B3, B4, B5

being empty and box B6 containing exactly 201020102010
coins. (Note that abc

= a(bc).)

Answer. Yes. There exists such a sequence of moves.

Solution. Denote by (a1, a2, . . . , an) → (a′
1, a

′
2, . . . , a

′
n) the following: if some consecutive boxes

contain a1, . . . , an coins, then it is possible to perform several allowed moves such that the boxes
contain a′

1, . . . , a
′
n coins respectively, whereas the contents of the other boxes remain unchanged.

Let A = 201020102010
, respectively. Our goal is to show that

(1, 1, 1, 1, 1, 1) → (0, 0, 0, 0, 0, A).

First we prove two auxiliary observations.

Lemma 1. (a, 0, 0) → (0, 2a, 0) for every a ≥ 1.

Proof. We prove by induction that (a, 0, 0) → (a − k, 2k, 0) for every 1 ≤ k ≤ a. For k = 1, apply
Type 1 to the first box:

(a, 0, 0) → (a − 1, 2, 0) = (a − 1, 21, 0).

Now assume that k < a and the statement holds for some k < a. Starting from (a − k, 2k, 0),
apply Type 1 to the middle box 2k times, until it becomes empty. Then apply Type 2 to the first
box:

(a − k, 2k, 0) → (a − k, 2k − 1, 2) → · · · → (a − k, 0, 2k+1) → (a − k − 1, 2k+1, 0).

Hence,

(a, 0, 0) → (a − k, 2k, 0) → (a − k − 1, 2k+1, 0). �

Lemma 2. For every positive integer n, let Pn = 22..
.2︸︷︷︸

n

(e.g. P3 = 222
= 16). Then (a, 0, 0, 0) →

(0, Pa, 0, 0) for every a ≥ 1.

Proof. Similarly to Lemma 1, we prove that (a, 0, 0, 0) → (a − k, Pk, 0, 0) for every 1 ≤ k ≤ a.

For k = 1, apply Type 1 to the first box:

(a, 0, 0, 0) → (a − 1, 2, 0, 0) = (a − 1, P1, 0, 0).

Now assume that the lemma holds for some k < a. Starting from (a−k, Pk, 0, 0), apply Lemma 1,
then apply Type 1 to the first box:

(a − k, Pk, 0, 0) → (a − k, 0, 2Pk , 0) = (a − k, 0, Pk+1, 0) → (a − k − 1, Pk+1, 0, 0).

Therefore,

(a, 0, 0, 0) → (a − k, Pk, 0, 0) → (a − k − 1, Pk+1, 0, 0). �
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Now we prove the statement of the problem.
First apply Type 1 to box 5, then apply Type 2 to boxes B4, B3, B2 and B1 in this order. Then

apply Lemma 2 twice:

(1, 1, 1, 1, 1, 1) → (1, 1, 1, 1, 0, 3) → (1, 1, 1, 0, 3, 0) → (1, 1, 0, 3, 0, 0) → (1, 0, 3, 0, 0, 0) →
→ (0, 3, 0, 0, 0, 0) → (0, 0, P3, 0, 0, 0) = (0, 0, 16, 0, 0, 0) → (0, 0, 0, P16, 0, 0).

We already have more than A coins in box B4, since

A ≤ 201020102010

< (211)20102010

= 211·20102010

< 220102011

< 2(211)2011 = 2211·2011
< 22215

< P16.

To decrease the number of coins in box B4, apply Type 2 to this stack repeatedly until its size
decreases to A/4. (In every step, we remove a coin from B4 and exchange the empty boxes B5

and B6.)

(0, 0, 0, P16, 0, 0) → (0, 0, 0, P16 − 1, 0, 0) → (0, 0, 0, P16 − 2, 0, 0) →
→ · · · → (0, 0, 0, A/4, 0, 0).

Finally, apply Type 1 repeatedly to empty boxes B4 and B5:

(0, 0, 0, A/4, 0, 0) → · · · → (0, 0, 0, 0, A/2, 0) → · · · → (0, 0, 0, 0, 0, A).

Comment. Starting with only 4 boxes, it is not hard to check manually that we can achieve at most 28
coins in the last position. However, around 5 and 6 boxes the maximal number of coins explodes. With 5
boxes it is possible to achieve more than 2214

coins. With 6 boxes the maximum is greater than PP214
.

Problem 6. Let a1, a2, a3, . . . be a sequence of positive real numbers. Suppose that for some
positive integer s, we have

an = max{ak + an−k | 1 ≤ k ≤ n − 1} (6)

for all n > s. Prove that there exist positive integers ℓ and N , with ℓ ≤ s and such that an = aℓ+an−ℓ

for all n ≥ N .

Solution 1. First, from the problem conditions we have that each an (n > s) can be expressed as
an = aj1 + aj2 with j1, j2 < n, j1 + j2 = n. If, say, j1 > s then we can proceed in the same way
with aj1 , and so on. Finally, we represent an in a form

an = ai1 + · · · + aik , (7)

1 ≤ ij ≤ s, i1 + · · · + ik = n. (8)

Moreover, if ai1 and ai2 are the numbers in (7) obtained on the last step, then i1 + i2 > s. Hence we
can adjust (8) as

1 ≤ ij ≤ s, i1 + · · · + ik = n, i1 + i2 > s. (9)

On the other hand, suppose that the indices i1, . . . , ik satisfy the conditions (9). Then, denoting
sj = i1 + · · · + ij, from (6) we have

an = ask
≥ ask−1

+ aik ≥ ask−2
+ aik−1

+ aik ≥ · · · ≥ ai1 + · · · + aik .

Summarizing these observations we get the following
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Claim. For every n > s, we have

an = max{ai1 + · · · + aik : the collection (i1, . . . , ik) satisfies (9)}. �

Now we denote
m = max

1≤i≤s

ai

i

and fix some index ℓ ≤ s such that m =
aℓ

ℓ
.

Consider some n ≥ s2ℓ + 2s and choose an expansion of an in the form (7), (9). Then we have
n = i1 + · · · + ik ≤ sk, so k ≥ n/s ≥ sℓ + 2. Suppose that none of the numbers i3, . . . , ik equals ℓ.
Then by the pigeonhole principle there is an index 1 ≤ j ≤ s which appears among i3, . . . , ik at
least ℓ times, and surely j ̸= ℓ. Let us delete these ℓ occurrences of j from (i1, . . . , ik), and add
j occurrences of ℓ instead, obtaining a sequence (i1, i2, i

′
3, . . . , i

′
k′) also satisfying (9). By Claim, we

have
ai1 + · · · + aik = an ≥ ai1 + ai2 + ai′3

+ · · · + ai′
k′
,

or, after removing the coinciding terms, ℓaj ≥ jaℓ, so
aℓ

ℓ
≤ aj

j
. By the definition of ℓ, this means

that ℓaj = jaℓ, hence
an = ai1 + ai2 + ai′3

+ · · · + ai′
k′
.

Thus, for every n ≥ s2ℓ + 2s we have found a representation of the form (7), (9) with ij = ℓ for
some j ≥ 3. Rearranging the indices we may assume that ik = ℓ.

Finally, observe that in this representation, the indices (i1, . . . , ik−1) satisfy the conditions (9)
with n replaced by n − ℓ. Thus, from the Claim we get

an−ℓ + aℓ ≥ (ai1 + · · · + aik−1
) + aℓ = an,

which by (6) implies
an = an−ℓ + aℓ for each n ≥ s2ℓ + 2s,

as desired.

Solution 2. As in the previous solution, we involve the expansion (7), (8), and we fix some index
1 ≤ ℓ ≤ s such that

aℓ

ℓ
= m = max

1≤i≤s

ai

i
.

Now, we introduce the sequence (bn) as bn = an − mn; then bℓ = 0.
We prove by induction on n that bn ≤ 0, and (bn) satisfies the same recurrence relation as (an).

The base cases n ≤ s follow from the definition of m. Now, for n > s from the induction hypothesis
we have

bn = max
1≤k≤n−1

(ak + an−k) − nm = max
1≤k≤n−1

(bk + bn−k + nm) − nm = max
1≤k≤n−1

(bk + bn−k) ≤ 0,

as required.

Now, if bk = 0 for all 1 ≤ k ≤ s, then bn = 0 for all n, hence an = mn, and the statement is
trivial. Otherwise, define

M = max
1≤i≤s

|bi|, ε = min{|bi| : 1 ≤ i ≤ s, bi < 0}.
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Then for n > s we obtain

bn = max
1≤k≤n−1

(bk + bn−k) ≥ bℓ + bn−ℓ = bn−ℓ,

so
0 ≥ bn ≥ bn−ℓ ≥ bn−2ℓ ≥ · · · ≥ −M.

Thus, in view of the expansion (7), (8) applied to the sequence (bn), we get that each bn is
contained in a set

T = {bi1 + bi2 + · · · + bik : i1, . . . , ik ≤ s} ∩ [−M, 0]

We claim that this set is finite. Actually, for any x ∈ T , let x = bi1 + · · · + bik (i1, . . . , ik ≤ s). Then

among bij ’s there are at most
M

ε
nonzero terms (otherwise x <

M

ε
· (−ε) < −M). Thus x can be

expressed in the same way with k ≤ M

ε
, and there is only a finite number of such sums.

Finally, for every t = 1, 2, . . . , ℓ we get that the sequence

bs+t, bs+t+ℓ, bs+t+2ℓ, . . .

is non-decreasing and attains the finite number of values; therefore it is constant from some index.
Thus, the sequence (bn) is periodic with period ℓ from some index N , which means that

bn = bn−ℓ = bn−ℓ + bℓ for all n > N + ℓ,

and hence

an = bn + nm = (bn−ℓ + (n − ℓ)m) + (bℓ + ℓm) = an−ℓ + aℓ for all n > N + ℓ,

as desired.


