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Al Basketball star Shanille O’'Keal's team statistician
keeps track of the numbef (), of successful free
throws she has made in her firStattempts of the sea-
son. Early in the seasow)(N) was less than 80% of
N, but by the end of the seasafi(V) was more than
80% of N. Was there necessarily a moment in between
whenS(N) was exactly 80% ofV'?

A2 Fori = 1,2 let T; be a triangle with side lengths
a;,b;,c;, and aread;. Suppose that, < as,b; <
ba,c1 < co, and thatT; is an acute triangle. Does it
follow that A; < A5?

A3 Define a sequendgui, 152, by up = u1 = up = 1, and
thereafter by the condition that

det( tn u"+1> =n!

un+2 un+3

for all n > 0. Show thatu,, is an integer for alh. (By
conventionp! = 1.)

A4 Show that for any positive integer, there is an integer
N such that the product; zs - - - z,, can be expressed
identically in the form

N
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i=1

where thec; are rational numbers and eac} is one of
the numbers-1,0, 1.

A5 An m x n checkerboard is colored randomly: each
square is independently assigned red or black with
probability1/2. We say that two squargsandg, are in
the same connected monochromatic component if there
is a sequence of squares, all of the same color, starting
atp and ending a4, in which successive squares in the

Bl Let P(z) = c,a™ + ¢_12" 1 + - + co be a poly-
nomial with integer coefficients. Suppose thais a
rational number such that(r) = 0. Show that the:
numbers
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are integers.
B2 Letm andn be positive integers. Show that
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B3 Determine all real numbers > 0 for which there ex-
ists a nonnegative continuous functigt) defined on
[0, a] with the property that the region

R={(z,y);0 <z <a,0<y< f(z)}

has perimetek units and are& square units for some
real numbetr.

B4 Letn be a positive integer, > 2, and putd = 27 /n.
Define pointsP; (k,0) in the zy-plane, fork =
1,2,...,n. Let Ry be the map that rotates the plane
counterclockwise by the angleabout the poinf,. Let
R denote the map obtained by applying, in ordey,
then Ry, ..., thenR,,. For an arbitrary poinfz,y),
find, and simplify, the coordinates &f(z, y).
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B5 Evaluate

1 +xn+1
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sequence share a common side. Show that the expected

number of connected monochromatic regions is greater
thanmn /8.

A6 Suppose thaf(z,y) is a continuous real-valued func-
tion on the unit squaré < = < 1,0 < y < 1. Show
that

/o1 (/olf(x’y)dm>2dy+/ol (/Olf(x,y)dy)zdx
< </01/01f(:c,y)dxdy)2+/01/01 (f(x,y))? da dy.

B6 Let.A be a non-empty set of positive integers, and let
N(z) denote the number of elements.4fnot exceed-
ing x. Let B denote the set of positive integdrghat
can be written in the formh = a — o’ witha € A and
a' € A. Letb; < by < --- be the members d8, listed
in increasing order. Show that if the sequebga — b,
is unbounded, then

lim N(z)/x =0.
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