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Qlong hai, Hai nan

1. Given an acute triangle PBC, - PB # PC. Let boiﬁts A,
D be on sides PB and PC, respectively. Let' M, N be the
midpoints of segments BC and AD, respectively. Lines AC and

'BD mtersect af 1 point O. Draw OE L 4B at point E and OF L. CD

at point F. - : SRR

. (1) Prove 'that if 4, B, C, D are concyclic, then
EM-FN=EN- FM. > : :

(2) Are- the four points- 4, B, C, D always concycllc

i ifEM -FN = EN - FM ? Prove your answet:

2. Find all pairs (p, q) of prime numbers such that -
pq]S" +59.

2n+1

3. Let m, n be integers with 4<m<n,and 44,4

be a regular 2n+1-polygon. LetP = {A Ay Ay} Find the

; number of convex m-polygons with exactly two acute mtemal '

- angles whose vertices are all i inP.



4.Let n>3 be a given integer, and a,,a,, -, a, be real

’ numbers sat1sfymg in |, :

1£i<}$n X
of Zlakl

H

’ 5 Fmd all integers n- such that we " can colour the all -

edges and -diagonals of a convex &z -polygon by n given
colours satlsfymg the following conditions:

one colour; “
(2) For any three distinct colours there exists a triangle

- whose vertices are:vertices, of the n-polygon and three edges

are coloured by the three colours, respectively.
‘ 6. Given an integer : # > 3. Prove that there exists a set S
of n distinct positive integers such that for any two distinct
non—empty subsets 4 and B of S, the numbers
2x - Xx

alld xelB o
B .

: are two copnme comp031te mtegers where Zx denotes the
' - . . } xeX

sum of all elements of a finite set X ;and ‘X | denotes the

2

a, —a j.‘ =1. Find the minimum value

(1) Every one of edges or dlagonals is coloured by only.

T e

o

. \8‘:"’ "

- cardinality of X.

Solution

. (D) Denote by O,R the mldpomts of .0B,0C,

respectlvely Itis easﬂy toseethat

EQ ——OB RM, MQ -—oc RF,

and :
LEQM = LEQO +£0QM =2LEBO+Z0QM ,
LMRF = /FRO+ ZORM = 2AFCO+AORM
Because of that 4,8,C,D are
concyclic, and Q,R are the
midpoints of OB,0C, we have o
ZEBO=/FCO,Z00M = ZORM .
So ZEQM = /MRF , which
follows that AEQM =aMRF , and
EM=FM.

Similarly, we have EN = FN
so EM-FN =EN-FM holds. :

(2) Suppose that OA=2a,0B = 2b,0C =2¢,0D=2d
- and AOAB a, LOBA ,8 AODC 7,LOCD 6.
Then

cos LEQM = cos(LEQO+éOQM)
= cos(28 + LAOB) = —cos(ax — ).

So . o




EM*=EQ* + OM* -2EQ-OM -cos ZEQM
=b* +¢* +2bc cos(a - f).

Make the similar equations for EN,FN,FM , we have
EN-FM =EM -FN
< EN*-FM*® =EM’ .FN’

< (a* +d* +2ad cos(a — B))(B* +¢* + 2bc cos(y — )

=(a’ +d” +2ad cos(y — O))(b* +c* + 2bc cos(a — B))

< (cos(y ~0)—cos(a — f))ab—cd)(ac-bd) =0.
Because of a+f=y+6,
. cos(y—@)—cos(a—fB)=0 holds
if and only if a =y, =0 (that is
concyclic) or a=6,f=y (that
follows AB//CD, contradiction.);
ab—cd =0 holds if and only if
AD//BC ; ac—bd=0 holds if
~and only if 4,B,C,D are
concyclic. : ' ,
So, when AD//BC holds, we also have
EM-FN=EN-FM . We know that A4,B,C,D are not
concyclic in this case because of PB = PC, so the answer is
“false”. ‘ ‘
2. If 2|pg, we suppose that p=2 without loss of

generality, then g|5¢+25. By Fermat theorem we have

AM;::M' L

q15“-5, so q|30, here (2,3) and (2,5) are solutions.

((2,2) don’t fit)
If 5|pg , we suppose that p=35 without loss of

generality, then ¢|5/+5°. By Fermat theoxfem‘ we have
q157—5,s0 ¢q|3130,here (5,5) and (5,313) are solutions.
Otherwise, we have pg |57 +5", so

571 +59 =0 (mod p). @
By Fermz;f’ theorem we have - |
5¢71 El(mod‘p), @
Because of @ and @,
 s'=_i(modp). ®

Denote by p-1=2"(2r-1), ¢-1=2'(2s-1), where

k,l,r,s are positive integers.
If k<1, then we get

1= 12’“’ 2s-1) - (Sp-l)z’"*(zs-—l) _ 52’(2r-1)(23-1)
=" = ()" =-1(mod p),
which is contradictory with p#2.So k>1.
But we have k<! by a similar reason, contradiction.



So, all' the pairs of pnmcs (p,q) are (2 3) @3, 2)
(2 5, (5,2), (5,5, (5,313) and (313, 5)
" 3. Notice that if a regular- m polygon has exactly two
acute angles, they must. be at' consecutive vertices: for
otherwise there would be two disjoint pairs of sides that take up

more than half of the circle each. Now assume that the last

vertex, clockwme of these four vertxces that make up two acute
angles is fixed; this reduces the total number of regular m
polygons 2n+1 tlmes and ‘we will later multxply by this
factor. ‘ ‘

four vertices make contains k points, and the other arc
contains 2n—1-k points. For each %, the vertices of the m
polygon on the smaller arc may be arranged in ("7 7%) ways,
and -the two vertices on the larger arc may fl'}e: afranged in
(k—n-1)* ways kso that the two axiglcs cut off more than half

of the circle).

The total number of polygons ngen by k is thus -
o .(k n— 1) x( ”‘“1"") Summatlon over all k a;nd change of

variable gives that the total number of polygons (dmded by a

factor of 2n+1) s -

2 n-k—2
Z k m—4 .

k20

Suppose the 1arger arc that the first and the last of these

Thls can bc provcn to be-exactly (m_1)+("“) by double

' mductlon on n>m and m>4 The base cases n=m+1

and m= 5 are readily calculated. The induction step is

TRCED =LK -G LR G

k=0 - k=0 k20
- : i N . +
=)+ (i‘,,_,) +(7) + () = G + G-

m-1

So the total number of 2+l polygons is

(2n +1)((;-1) + ::11 ).
4. Without loss of génerali';y,'let a, <a, <-<a,, note

that

en a2 =20

{ak|+ a?,_ml 2la

 for 1$k.<_n.::

. So

Zlaki —~ank13 + “n+1—k13) |

k=1
= ‘;'i({akl @1k i( akl n«l—l-kD2 = (lakl +|a
pot

“Z qakl Ry L D Z‘n +1-24 .

‘When » is odd,

b )

’ n—-l

Sln+1-2k =2:2°- ¥ - (n )

k==l g



When 7 is even,

2]n+1 2k] —2i(2z—l)

k=1 =l

R ZJ 2(2:)% 2)

<So, Z:lakls_>.—1—(1r12—l)‘2 for odd #,and
= 320 - 7 ,

ilakl3 2 -?;]En?'(n?‘ -2)

k=1 .
for even n. The equality holds at a, =i— ——;—l i=12,-
S. Forall odd number n that n>1.

First of all since there are G) _wéys to choose 3 among

n colors, and __ (G) ways to choose 3 vertices to form a triangle

so if the question's condition is fulfilled, all the triangles should

have different color combination kamong each other. (a 1-1

correspondence) Note that each two line with the same color
cannot have a P’ s vertex as a common point,

As each color combination is used in exactly one triangle,

for each color, there should be exactly ('2_‘"1) triangle which has

2

_one side in this color, so there should be exactly n_;_l_ lines in

this color. So 7 -is odd.

Now gives a construction method for all odd 7.

As the orientation of the vertices doesn't really matters, we
assume that the polygon is aregular n polygon. First color the
n sides of the polygon in the n distinct colors. Then for each
side, color those diagonals that are parallel to this side into the
same color.’ o

In this way, for each color, there are n diagonals colored
in this cotor, notice that each of these diagonals are of different
length e ®

Besides, for any two triangles w1th all vertices in, we shall

| prove that they should have different color combination.

Suppose the contrary, they bave exactly the same three colors

~ as their sides. Because of that all the sides with the same line
- are parallel, the two triangles must be similar. For their vertices

are in the same circle, they must be same, but it is the

. contradiction of (D. This completes the proof.

6. Let f(X) be the average of elements of finite number
set X.

#

Fitst of all, make »- different primes p,, p,,*****, p, Which

“are all bigger than »n, we prove that for any different




I~

no‘n—émpty subset A4,B of set S ={El—1<ji<n ,
o _ , P

J

J(4A)# f(B) always holds.
In fact, we can suppose ‘e 4 and L ¢pB
: - 2 P

without loss of genera}ity. Every element of B can be divided: ,

by p, so pn'f (B). But A have exactly one element’ -

which cannot be divide by : pl, SO we getv n! f(A4) cénnot

d1v1ded by p, (Note that p, >n) so nlf (A)¢ nlf (B)

which follows f (A) # f (B) . . o
. Second, let S, = {n!x: xeS} then f(A) and f(B) are
different positive integers when A B are dlﬁ‘ercnt non-empty
subsets of Sy
In fact, it is ‘easily to see that there exists two sets 4,8,
which are different non-empty subsets of S , and
S(A)=nlf(4),f(B)=nf(B) holds. We get f(A)= f(B)
from f(4)=f (B) -and  f(4), f(B) are positive integers
from | 4),| B |<#n and the elements of thern are all positive.
Then, Iet K be the largest element of S, . We prove that

for every two  distinct subset A,B  of set.

10

\ 0<f(4),f(B)sL and f(‘A_,)¢f(Bl), so p<L, which

S, ={Klx+1l:xeS,}, [ (A) and f(B) are coprnne integers
which are both larger than 1.

In fact, it is easily to see that there exists two sets 4, B
which are different non-empty subsets of S, , -and
f(A)=K!f(4)+1,f(B)=K!f(B)+] holds. Obviously,
f(4) and f(B) are dlﬁerent integers which are both larger
than 1. If they have common divisors, let p be a prime
common divisor of them without loss of generality. Clearly we

have p|(K!:| f(4)~f(B)]. We get. 1] f(4)-fB) <K

by 0<f(4).f(B)<K and f(4)*f(B), so p<K,

which follows p|K!f(4),then p|1, contradiction.

Last, let L be the largest element of S,. We prove that -
for every two distinct non-émpty subset A,B of set
S,={L4x:xe8}, f(4) and f(B) are two composites
which share no common divisors. '

In fact, it is easily to see that there exists two sets 4, B,
which are different. non-empty subsets of S, , and f(4)=
L% f(4,), f(B)=Lf(B) holds. Obviously, f(4) and
f(B) are different integers which are both larger than 1.
Because of that L is the largest element of S,, we have
f(Al)jL' and f(4)]f(4). We get f(4) is comp031te by
f(4) < f(4). By a similar reason f(B) is composite too. If

- "they have common divisors, let p be a prime common divisor

of them without loss of generality. It is obviously that
PILY f(4)-f(B)) . We get 1< f(4)-f(B)IsL by

11




follows p| f(4,)) and p|f(B), which is a contradiction of

the fact that  f(4,) and f (B) are coprlme That complete the _

proof.

12

12009 Chinese Girls” Mathematics Olympiad

Zhong shan, China

1. (a) Detenmne if the set {1, 2 96} can be be pamtmned into
32 sets of equal size and equal sum, , ,

(b) Determine if the set :{1,2,...,99} can be be part’itione.i\iilnto
33 'sets of equal size and equal sum. o S

2. Let #(x)=ax’ +bx* +ex+d be a polynomial with real
coefficients. Given that ¢(x) has three positive real roots and that
#(0) <0, prove that 2b* +9a*d - Tabc 0.

3. Determine the least real number a greater than 1 such that for

", any point P in the interior of square ABCD, the area ratio between

some two of the triangles PAB, PBC, PCD, PDA lies in the interval

I

. 4. Equilateral triangles 4BQ, BCR, CDS, DAP sare erected
out-Side of the(convex) quadrilateral 4BCD. Let X, 7, Z, W be the
midpoints of the segments PQ, OR, RS, SP, respectlvely Determine
the maximum value of

X7+ YW
AC+BD’

13



5. In (convex) quadrila;teralz ABCD, AB=BC and AD=DC.
Point £ lies on segment AB and point F lies on segment 4D such that
B, E, F, D lie on a circle. Point P is such that triangles DPE and 4DC
 are similar and the cotresponding vertices are in the same onentatlon
(clockwme or counterclockmse) Point Q is such that triangles BOF

and ABC are similar and the correspondmg vertlces are in the same )

orientation. Prove that pomts A4, P, Qare collmear '
’ 6. Let (x,x,,...) be a sequence of positive numbers such that
8x, —7Tx, )xl =8 and

8
=kl "% for k=2, 3,.:’;.,-

2
XeaXpg ™ X

Determme the real number a such that if X >a, then the
sequence is monotomcaﬂy decreasing, and if 0<x1‘<a, then the
sequehbe is not monotonic.

7. On a given 2008 X 2008 ‘chessboard, each unit square is
colored in a different color, Every unit square is filled with one of the
letters C, G, M, O. The resulting board is called harmonic if
~every 2><2 subsquare contains all four dlfferent letters. How many
harmonic boards are there?

14

8 For positive integers 7, fn'=[2" -«1' 2008]+[2" -«/2}009}‘. Plfgve

- that there are infinitely many odd numbers and in-ﬁnitelyt many even

numbers in the sequence f;, f»ee-

1} . .

-Solutions

1. The answer is no for part (a)and yes for part (b) A
(@) Smce 1+2+---+96=48-97 is not d1v151ble by 32 we

. cannot partition the the set {1,2,..:96} into 32 sets of equal sum

(b) Sincel+2+-++99=50-99, each of the 33 subsets piust”

have-sum 150. We part1t1on the numbers in the set ,2,...,6} into -

33 "pairs with their sums formmg an anthmetlc progression of

common difference 1:
(1,50}, (3,49}, {5,48},.. (33,34},
(2,66}, {4,65},..., (32,51}

It is then easy to see that
{1,50,99}, {3,49,98}, {5,48,97},..., {33,34,83},
(2,66,82}, {4,65,81},...,{32,51,67}

isa partltlon satlsfymg the conditions of the problem.
" Remark: In general the set(l,2,...,3n} can be be partl-tloned

into 7 sets of equal size and equal sum if and only if » is odd.
2. Solution 1. Denote by x;,x,,x, the roots of ¢(x). By Vleta’

relatxon we have

. c . :
X Xy X =—;‘, XX, + Xy X5 + X3 X =2 XXy %y =7

13




Since #0)=d <0 and xx,x, >0, it follows that a>0 .
Dividing both sides of the desired inequality by o’ gives |

3
2[£) wod 7224y
a a a da .

or
=2 3 43 + X))’ =9x,%; +T(x +X; + %)(5X, +X,%, + x,%) <0
Expanding the terms on the lefi-hand side of the last inequality
‘and simplifying gives , :
X% + XX+ X%+ 0 +xix 4! <208 +xX+x2), - (1)

which is true by Schur’s inequality and the AM-GM inequality.

Indeed,

) ;
XX + XX5 + X0, + X, %7 + X2x, + X, x2

Sx13+ x; +x§ 443;Jt1x2x3 SZ(xf’ +x§ +x§).

Solution 2. One can also establish (1) by noting that
(5 = %) = %)= (5 —x,) (x5, +x,)>2
or ' :
2, + 52 <X 42 |
Adding the last inequality with its cyclic analogous forms yields (1).
Selution 3. One can also establish (*) by adding inequalities
X%+ 5%+ 025 <5 +2+x and x2x +xix, + x5y, < X +x+x.
(Both inequalities ~ follow directly from the Re-arrangement
inequality.) S
3. The answer is the golden ratio ¢ = 1+2\/§ .

16

We first show that there must always be two triangles whose

ratio lies in the interval [é,;ﬁ}. ,
By scaling, we may assume without loss of generality that
ABCD has area 2. Then [PAB]+{PCD]=% [4BCD]=1, and likewise

[PBCI+[PDAJ=1. Let [PAB] = x, so that [PCD]=1-x ; by symmetry

we may assume ’withmit loss of generality that x>1-x, or

equivalently, that xzé-. Likewise, let [PBCl=y ;‘a'nd [PDA]= »

~ 1-y, and again we may assume yZVlmy. Finally, we may also

assume without loss of generality that x<y.
. e
‘We know that % < x <1: we now divide into cases based on the
value of x.

Case |: xS%.Inthiscase,‘l—le—l>0, SO

by the well-known identity that ¢—1=-‘IZ . Since x21-x ,

__’E_21?_£,andso I e -1-,¢ as desired.

1 . -
Case2: x 2; . Now, since ;1;< x < y<1, we conclude that

17
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% =
A

S =]
o
-

- as desired.
We now show that no smaller value of a works.

: We first note that for any x and y strictly between 0 and 1, we
can find a point P such that [P4B]=x, [PCD]=1-x, [PBC]=y,

[PDA}=1~y: juét take a point‘P which is distance 7%— away from

_ 81de AB and mstanc -\-/J-)—-.. away from s1de BC

We now set x——%- and conmder the limiting case as y-

appfoachcs 0. By inspection, we see t_hat' the smallest triangle area

ratio greater than 1 is [PD4] (1 )¢ , which approaches ¢ in the

A [PCD] U
limit as y—>0. L1ke\mse, the largest area ratio less than 1 is
[PCD] 1

, which approaches — in the limiting case. Hence
[PDA] ~ 0- ) PIOERSS g 11 e TTIE

any a that satisfies the .conditions of the problem must ‘Sat'isfy either'

>—1- either way, a must be at Ieast(l y)g.

donesa or ao%%s"

Takmg the hmltmg case as y—0, we see that a=¢ is the

minimal value of  that works.

1+\/~ :

4. Solutmn 1. The answer is-

18

Similarly, we can show that

We consider the configuration shown above. (Our proofs can be
adjustéd slightly for other configurations.) LetP1, Q1, Ri1, S1 be the
"midpoints of segments Dd, 4B, BC, CA, respectively. It is well
known that P1Q1R151 is a parallelogram (since BQ, || BDIIR,S, and
QR NACIIS,E). Let M and N be the midpoints of segments DP and

DS respec’uvely Note that
-DS,=SN=DN= WN

and
DE=FEM=MD=WN.
Note also'that o
AI}DS’I = /PDS -120°=180°— ZDNW ~120° -
- =60°— ZDNW = LWNS,. ' -
By SAS (WN=DB, £BDS,=/WNS,, and NS, =DS, ), we
conclude that triangles WAS, and F,S, are congruent to each other:

L1kew1se we can show that triangles PMW and ADS are

cengruent to each other. It follows that ES,=WS =EW ; that is,
tnangle WS, P is equilateral. In exactly the same way, we can show
that. YO R, is also equilateral.

Let U and ¥ be the midpoints of segments S, F, and Q,&

Then in parallelogram PQRS,, UV =EQ =—2— . By the tnanglc
inequality, we have ' ' g ' ‘

YW<YV+VU+UW WP;/- PQ, Q‘YJ_

=.5*£J'+BD+Q,R,I__BD+AC\/‘
2 o2



http:BD+AC.J3
http:r:QI+QI~.J3
http:yw~yv+vu+uw=W;.J3
http:r:QIR,.SI

XZS_AC+BD\/§'

Adding the last two inequalities yields

148 ycrpD) or LIV 143

XZ+YW <L -
2 AC+BD 2

Equality holds when W, U, V, Y are collinear; that is, 4C L BD. |

Solution 2. Let the Iower case letter denote the complex number
associated with the point labeled by the upper case letter.

_1+43
2

Letw=

be a cube root of unity, so that &* +@+1=0.

' The statement that ABQ is an equilateral triangle can be restated
as (b—g)=aw(a—b) , of, expanding and using @+l=-0"
g+ @a+»*b=0. Solving for g, we obtain g =-wa~w’b. Likewise,
we obtain the formulas :

r=-wb-a'c, s=-wc-0'd, p=—wd-o'a.
Since X is the midpoint of QR, it follows that

2= L2 J@arb)+aibre). D
And likewise |
y= w;—(w(b ro+atcrd), @)
z;—-;-(a)(c-;-d)«&wz(d—i-a)) ) » (4)
w=—%(w(d+a)+a}2(a+b)). ()

Now, the length XZ is equal to the absolute value |x—2z]|, and

using the above we can write

20

. -

x=z=2(0(c+d-a=b)+0*(d+a-b-0)

or -

x_-z;(d)_zwzJ(w—a)vfr[wz;mj(d—b). . ®

Note that @ -w* = and @+a’=-1.

1+ \/:3 _ I- \/:5 _ \[—_3
2 2
Using this to apply the triangle inequality to (6) yields

XZ=x-z]=

—J?(c—a)+%(b~d){f

from which it follows that

)fzs—\/—g-[c—a1+l1b—d1=£3—AC+lBD. - (D
2 2 2 2 -
Similarly, we can show that
YWs—-\[z—?—BDwL%AC. o (8)

We now complete the probf as in the first solution,
5. Let O be the center of the circle through B, E, F, and D.
Because O is the circumcenter  of triangle  BDF,
ZBOF =2/BDF =2/BDA. Also, ZCDA=2/BDAbecause triangles
ADB and ADC are congruent. Sincevtriéngles BOF and CDA are both
isosceles and ZBOF = ACDA, triangles BOF and CDA are similar,

‘But we are given that CDA is similar to £PD, so we conclude that -

triangles BOF and EPD are similar. Also, triangles BAF and ADF are
similar because quadrilateral BEFD is cyclic. Putting these facts

21




together, we see that quadnlaterals ABOF and ADPE are smtnlar In
particular, ZBAO = ZDAQ .

By exactly the same argument as above, quadnlaterals AEOD

and AFQB are also snmlar and hkewxse ZBAO = ZDAP.

We conclude that ADAQ .{.DAP and the three points 4, P, Q

are collmear as desired. .
. ’ 8 x
6. Dmdmg the equation x,,x, , — x; =: "“ £ by %%, and

7

‘ kxlc-l
manipulating yields } _
| My m 11 OB
X X X x/f-l B
Rearranging, we find that , .
G L% 1 ok 17 (10)
- 8 8 : 8 8 . ] ST
e N Xy Xy X

Using the condition (8x, ~7x)x =8. We can rewrite this as a
recurrence ,

7 o
X1 '=’§xk + x'k7 (1 1)

- for all k>1 We now see mductwely that thc starting condition

%, >0 iroplies that x,‘ is posmve for:all £.

- We can rewrite the recurrence _(11)' as X, —X =X, (x;* -—-é-)

. . .1 = :
Since X 1s positive, we see that if x, >8%, then x, >x,,,, and if

R

- x, <8, then x, < i -
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7 1 1

For all k217, x, = ;xk+ 1 @xTy>x5.(85) =8 by

weighted AM-GM, with equality in the case that x, =8¢ .
l
We now proceed to show that a=8%. We must show that if

, xl > 8 then the sequence {x,} is monotone decreasmg, and that if

O<x1 <88 , the sequence . is not monotone First suppose that

X >83 By the above, we have x >x, >88 and repeating this

argument iteratively yields x >x,>x, >-~>8“ , so the sequence

{x.} is monotone increasing as desired

On the other hand, if x < 88 we have seen above that X <X
however, by the AM-GM above, it is the case that x, > 88 and so by
the argument of the prewous case, we see that x, >x, >-- Smce '
x < x, > x, >, the sequence. {xk} is not monotone as desired.

7. The answer is 12- 220"8 24.

Let a configuration of letters be called Iegal 1f it fulfills the
condition of the problem.' We first’ estabhsh the following
observation: ' ' '

In every legal conﬁguranon, at least one of the:
followmg must occur: every row alternates between some
" two letters, or every column altemates betwcen some two
letters. : o
Indeed, suppose that some row does not altemate; then this row

must contain some three 'successive distinct létters.wSuppése without

loss of generality that these letters are C, G, M, as in the left-hand

~ side figure shown below. It is then easy to conclude first that
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X, =X; =0, and second that X, =X, =M and X, =X,=C,

as in the right-hand side figure shown below.

X | X X3 s M0 | C
C |G | M C .
Xi | Xs | Xe M|O|C

'We can easily repeat this argument to show that the these three
columns must alternate between two letters, and then it is easy to see
that every column must alternate between two letters.

Now that our initial claim is proven, we can count the legal
configurations. If the leﬁmost column alternates between some two
letters (say C and M), then a straightforward induction shows that
every odd-indexed column alternates between these two letters, and

every even-indexed column alternates between the other two letters

(e.g. G and O). Each column may begin with either of its two letters;
it is easy to check that any configuration thus obtained is legal.

Hence, we have (3) =6 ways to choose which two letters occur in

the first colurnn, and 2208 ways to decide what letter begins each
‘column, overall, then, we have 6-2°"® possible configurations in
which each column alternates. Likewise, we also have
627 possible conﬁguratiens in which each row alternates.

All that remains is to subtract off the number of eouﬁgurations

that have been counted twice——that is, in which each row
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alternates and each column alternates. Certainly,‘ any arrangement of
the four different letters in the upper-left-hand

~ 2x2corner can be extended to a legal configuration of the entire

grid, simpiy by filling in the first two columns so that they altemate,I
then filling in all the rows so that they alternate, conversely, any such
doubly-alternating  configuration is uniquely determined by this
upper-lefi-hand corner. There are 4!=24 ways to arrange the four
letters in this upper-left- hand corner, so we get 24 configurations in
which every row and every column altemates, and the above answer
follows. , o

Remark: ThlS problem is inspired by the follomng problem
from the 1996 IMO shortlist:

A square of dimensions (n Dx(n-1) is divided Into

(n- 1) unit squares in the usual manner. Each of then n’® veitices

- of these squares is to be colored red or blue. Find the number of
. different colonngs such that each unit square has exactly two red

wertices. (Two coloring schemes are regarded as different if at least
one vertex is colored differently in the two schemes )

8. We write 42008 and 42009 in base 2:

\/2008=101100.a1a2...(2) and \/2009=-101100.b1b2...(2)

First, we show that there are infinitely many even numbers in the
sequence. Assume on the contrary that there are only finitely many
even numbers in the sequence. Then there exists a positive integer N
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such that f is o0dd for every positive integer n> N . Adding the

base 2 expansions, we find that for every positive integer i

fN+,~101100bb bN+t(2)+101100a1a2 R

and the right-hand side is congruent to by, +ay.; modulo 2. Since
fou is 0dd, it follows that {b,,ﬂ,a,\,“} {0,1} and, in particular,
ay,, +by,, =1. Therefore, B ‘

2008 +J2909 =1011001.G,¢, ...cy11 1.,

i‘
!

- In particular, ~2008 ++/2009 is rational in base 2, which is.e
impossible, - since /2008 ++/2009 is irrational. Thus, our.

' ’assump'tion was wrong, and there are infinitely many even numbers
in the.sequence. ‘ e

Similarly, we can show that there are mﬁmtely many odd
ﬁilmbers in the sequence. Setg, !_n\/Z—O(EJ anJ It is
clear that g, and f have the same panty Thus for n >N
g,is even. Note that, in baseZ

-

v =10110080; ... by, ) —101100a,3, ... dyyyiay »

- which is congruent to by, —ay,;

by,; = ay.;. Therefore,

V2008 ++/2009 =0. dd; ...dy000...,

In pirticulai',\/ZOOS +«/2009 is ratlonal in base 2whlch is
impossible, since v 2008 +\/200 is irrational. Thus, _our

26

»modulob 2. Since fy,, is odd,

assumption was wrong, and there are infinitely ; many even numbers

in the sequence.
Remark: The problem is mspued by the followmg classic

pi*oblem on the Pigeonhole prmt:_lple;

For positive mtegcrs n, f,, =Ln\/56(_)§ J + Ln\/il—()@ J

A Prove that there are infinitely many odd numbers and infinitely

many even numbers in the sequence f;, f;...
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2008 China Western Mathematical Olympiad
Gui yang, Gui zhou V

( Attempt all problems; each carries 15 marks)

1. A sequence of real numbers {g, } is defined by

ay 0,1, a, =1-—-a0, a,. =l—an(l-—a,,) ’ n=1,2,---.

that for any positive integer n, we have
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Prove

2. In A ABC, AB=AC, the inscribed circle J
touches BC, C4, AB at points D, E and F respectively.

Pisa pomt on arc EF (not content D). Line BP intersects circle
I at another point (0, lines EP, EQ meet hne BCat M, N

Tespectively. Prove that

(1) P, F, B, M are concyclic;

@) EM_BD.

EN BP | ; ,
3. Given an integer m>2, and m positive integers

@,ay-,a, . Prove that there exist infinitely many positive -

integers n, suchthat @ -1"+a, 2" +---+ a,-m" is composite.

4. Givenan integér m22, and two real numbers a b

‘with a>0 and b#0. The sequence {x,}is such thafxi =b,

and x,,, =ax’ +bn=12-.-. Prove that

(1) when 5<0 and m is even, the sequence {x,} is

bounded if and enly if ab™ >-2; and |
(2) when b<0 and mis odd, or when b>0, the
(m_l)m—l

sequence {x,} is bounded ikf and only if ab™' <>
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(Attempt all problenis; each carries 15 marks)

5. Four frogs are postioned at four points on a straight line
such that the distance between any two néighbouring points is 1
unit length. Suppose that every frog can : jump to its
corresponding point of reflection, by taking any one of the
. other 3 frogs as the reference point. Prove that, there is no éuc,h

case that the distance between any two neighbouring points,

where the frogs stay, are all equal to 2008 unit length.
6. vaen Xo Y ZE (0,)) satisfying that

\/' _x+ ,_y+\/l_—z‘=2.
yz Nz xy

Find the maximum value of xyz .

7.Fora glven positive integer n, find the greatest positive
integer k, such that there exist three sets of k distinct
non-negative 1ntcgers ’

, ~A={x1;. Xpoos X}y B={yy ypu pi}
and C={z, z,--- z,} with xj'+yj+z}.v;=n for any
'1<]<k

8. Let Pbe an mtenor pomt of aregular n-gon 4 A4, --- 4,

the lines A,.P meet the regular n-gon 4,4, -4, at another

30

povint‘ B, , where i=1, 2, ..., n. Prove that ZPA >ZPB

i=1- i=1

Solutlon

? ' - 1.From the gwen condmon, we have
. 1l-a,=q, (I-a,) =_ a,‘a,,;1 (I-a, )=
. . YT.:‘an“-aAl(lual)':an”_'aia().’ .
1e.. an;-l ‘=1——aaal...an y n=12,-,

By Mathematical Induction.
- When n=1, the proposition holds. Assuming that it holds
for n=k, thenwhen n= k+1 we have

(11 11
LT R ;‘“‘f‘;*""f—‘i‘ :
-\ %

T a 4,

(1.1 1 ~
TAAGy G| =t — G Y4018, a,
o aQ a9 Q)

=8y, T aaa, 4 =1

So it also holds when n=k+1.
" Hence, it holds for any positive integern.
2. (1) From the given condition, EF//BC $0
LABC = LAFE = = LAFP + LPFE

= APEF +LPFE 180°— AFPE;
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Thus P, F, B, M are concyclic.

(2) By Sine Law, EF//BC and the fact that P, F, B, M are
concyclic, we have

EM sin/ZENM _ sin/ZFEN _sinZFPB BF

EN sinZEMN sin(n)- ZPFB sin/PFB BP
Together with BF = BD, the proposition is proved.

3. Let p be a prime factor of g, +2a, +---+ma,,, Fermat
Thebrem, we have for any k and m satisfying 1<k<m, we

’ have k” =k(mod p). Thus, for any positive integer n, we have
a, ~1pn +a,-2" +---ta,-m” =qa +2a, +oe -ma,, = 0(mod p),

Hence, a,-17 +a,-2” +---+a,-m” (n=1,2,--) is composite.

4. (1) When b<0 and m is even, in order that
ab™! < -2, we should first have ab™ +b>-b>0, therefore

a(ab™ +bY" +b>ab" +b>0, that is x, >x,>0. Using the
fact that ax™ +b is monotonically increasing on (0,+00), it can

~ be established that each succeeding term of sequence{x,}is

greater- than its preceeding term, and is greater -than -b
starting from the second term.
Considering any three consecutive terms of the sequence

X, X, n=2,3,---, wehave

n+l? n+2 2
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i

xn+2_xn _a(‘x+l_x) Cl( n+l JC)( m»l n+1 n+ JC)

-1
> am (3, ~ %,) > am(=B)" (5, = x,)

>2m(X,,; = X,) > X, =X,

it is obvious tﬁat the difference of any twdconsecutivc terms of }
sequence {x } is increasing, and hence it is not bounded.’

When ab™'2>-2, Mathematical Induction is - used to

prove that each term of the sequencé{x"} falls on the closed

interval [b,-b].
The first term b falls on the interval [b,—b]. Suppose the

term x, satisfies the condition b<x, <-b for a particular n,
then 0<x] <b™, and hence

b=a-0"+b<x  <ab™ +b<-b.

: : ntl =
Thus, the sequence {x,} is bounded if and only if

ab™ ' >-2,

(2) When 5>0, each term of the sequence {x,)} is

 positive. So, we first prove that, the sequence {x, } is bounded if

and only if the equation ax™ +b=x has positive real roots.
Suppose ax™ +b=x has no positive real roots, in such
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case, tne minimum value of the function p(x)=ax" +b—x

on the interval (0,-+cc) is greater than zero. Let ¢ be the

minimum value, it follows that for any two consecutive terms
of the sequence x, and x,,, we have X, —X, =ax"—x, +b.
Thus each succeeding term of the sequence {x,} is greater

than the preceeding term at least by . Hence, it is "‘n(;)t
bounded. | i

If tl_le equation ax"+b=x has positive real roots, let x,

be one of the positive real roots, then by using Matheématical

Induction to prove that each term of the sequence {x,}is less
than x,. Firstly, the first term b is _less than x,. Suppose

x, <‘5c‘0 for a particular », by vntue of the fact that ax"" +b is
‘increasing on the interval [Ogmj, vitAc'é,nbe established that
X, =ax"tb<ax” +b=1x, . |
bounded

Further the equatlon ax™ +b x has positve roots if and

only if the minimum value of ax™ +2 on the interval
: : ‘ x

(_0,:l-oé) is not greater thanl, whereas the minimum value of
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Therefore the sequence is -

.
|
|
|
|
]
T
!

o™+ L] can be determined by mean inequality, that isjf'

‘m'—l b m-1 b ! b

b ax + . .+.,_.+ N >m ab™
x (m-Dx (m-Dx  \(m-D"""_

‘As such, the sequence {x,,} is bounded if and only if

‘ -] m-~1 '
mm—@—-—;_l, that is, ab”‘”1<w-——
Y (m-1)" A ooomt

When b%O,andmi,sodd, let y, =—x,,then y =—b>0,

Vo =AY (—b) glvmg that sequence {x } is bounded if and '

only if sequence {y }1s bounded Thus, by usmg the above

'reasomng, it can be proved that (2) holds.

5. Without loss of generality, we may think of the initial
posmomng of the four frogs are on the real number line at '
pomts 1, 2, 3, and 4. Further, it can be established that the
frogs at odd number posmons remain at odd number posruons

after each Jumpmg, and likewise for frogs at even number

positions. Thus, no matter .after how many number of
jumping, there are two frogs remain at odd number positions
while the other two frogs remain at even number ‘positions.
Therefore, in order that the distances between any-two
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neighbouring frogs are all equal to 2008, all the frogs need to
stay at points which are either all odd or all even, which is
contrary to the actual situation. Hence, the proposition is
proved. S

6. Denoting u = {/xyz, then by the given condition and
Mean Inequality

2 =2z =—\/1—§_—Zﬂ/x(3-—3x) ‘

1 ¢x+(3-30_ 33 1
G2 21 G

<_[__\[— \/——h.B_\[_._\/_2

(.;c+y+z)

Therefore, 4u®+2+/3u* =33 <0, ie.

(2u—J§)(2u2+2\/§u+3)S0,
‘ 3 ) ) 27
and thus u S—E—. Following this, we have wzs—éz , and

. ; .27
equality holds when x=y=z =% . Hence, maximum is % .

7. By the given condition, we have

k-1
anZ(x +y,+2)23) = 3]‘('; l),

i=1 i=0
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k' :andthen k<[23 }-1

| The followihg illuStrates the case of k= [%ﬂ +10-

When n=3m , for 1<j<m+l, let x,=j-1,

yy=mej-1, z,=2m-2j+2; for m+2<j<2m+1, let

x‘j.z;j—ly,"yj=j—m~2 ‘,"zj=4m-—42»j+3 , the result is
'ObViOUS; . V

When n=3m+l, for 1<j<m, let x,=j-1,
yy=m+j , 2,=2m=2j+2 ; for m+l<j<2m , let
x,=j+1,  y=j-m-1, z;=4m+1-2j; and

' Xama =m, yz,,;f+1}=2m+’1, z,.,, =0 will lead to the expected

- result;

When,n=3m+2,' for 1<j<m+1, let x,=j-1,
¥, —m+,J ,—2m 2]+3 for m+2<j<2m+1, let

X, =] s yy=j-m=2 ,  z;=4m=2j+4 and
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Xpmia =2m+2 s Vs = m,z w2 = 0, the result follows

&

V - . L ' ) .V 2n wz‘t‘;r'C‘reet Minds
In summary, -the maximum value of k is {?— +1. Connecting Breat ¥IH

8. Denotmg t= [2]4-1 andlet 4, =4, _,j=1,2,-~,n

Notmg that the distance between any vertex of a regular
n-gon and a point on its side is not greater than 1ts Jongest ',

" diagonal d, we therefore have, forany 1<i<n, v I - Mathematlcal '
AP+PB =AB <d. BN O] N @1 plad
‘ ~ in China (2007-2008)

Furthermorc, usmg the fact that the sum of any two sides oroblems and Solutions

of a triangle 1s longer than the third side, we have, for any
1<1$n

. S : ' . S T R I Oy SR ) P;’obiemsana S!Ltion%
W AP+PA,2A4,=d @
Summmg up @@ fr i=] 2 n, We ha/e

" Xiong Bin | Lee Peng Yee sauo

Z(4P+PA+,) >nd>Z(AP+PB ),

i=l S
ie. 22 PA, > Z4P+ Z followmg whxch the proposition
. i=] Co=l ) i=1 '
is proved R ' o I L
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