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, Qiong hai, Rai nan 

1. Given an acute triangle PBC, ' PB .;, PC . Let points A, 
D be on sides PB and PC. respectively; Let' M,N be the 

midpoints of segments BC and AD, respectively. Lines AC and 

'. BD intersect a(point O. Draw OE1.AB at po·int E and OF1.CD 
at pointF. 

, (1) Proye that. if A~ B. C~ Dare concyclic, then 

EM·FN~EN·FM. 

(2) Are· the four ' points, A, B, C; Dalways concyclic 

; ifEM .FN =EN· FM? Prove your answer-:­
2. 'Find all pairs (p, q) of prime numbers, such that 

pqlSp +sq . 

3. Let m, n be integers with 4 < m < n ,and AI ~ ...A2n+I 

be a regular 2n+I-polygon. Let P = {AI' A2 ,. .. , A2n+1}. Find the 

number of convex m-polygons with exactly two acute internal 

, angles whose vertices are all in P. 



4. Let n ~ 3 be a given integer ,and a l ., a2 ,"', a" be real 

numbers satisfying min Ia- a;I 1 . Find the minimum value j 
. lS/<j!;". 

n 3 

. of 2:iakl . 
~, I 

'. '.5. Find all integers n such that we' can colour the' ali ­

edges and diagonals of aconvexn -polygon by .?l given 

colours satisfying the following conditions: 

(1) Every one of edges or diagonals is coloured by only 

one colour; 

(2) For any three distinct colours, there 'exists a triangle 

whose. vertices are;vertic~& of the n -:polygon and three edges 

are coloured by the three colours, respectively. 

6. Given an integer · n ~ 3 .' Prove that there exists a set S 

of n distinct positive,integers such that for any two 9;istinct 

non-empty subsets A and B ofS, the numbers. 

LX LX 

XEA XEDand' 

IAI. IBI' 

. are two coprime composite integers, ~hereL; denotes the 

, XEX 

sum of all elements of a fmite set X; and 'IXI denotes the 

cardinality of X. 

Solution 


1'.(1) Denote by Q,R the midpoints ofOB,OC, 

respectively. !tis easily to see that 

1 .' 1 ' 


EQ=.-OB=RM, MQ=-OC=RF, 
. 2 . .' 2 . 

and 
LEQM.=LEQO+LOQM 2LEBO +LOQM" , 

LMRF = LFRO +LORM ~ 2LFCO +LORM . 

Because of that A,B,C,D are 

concyclic, and Q,R are the 


midpoints of OB, OC , we have 


LEBO =LFCO ,LOQM = LORM . 


SO LEQM = LMRF , which 


follows that t>.EQM ~t>.MRF " and 


EM=FM. 
~cSimilarly, we have EN =FN , B 


so EM· FN = EN .FM holds. 

(2) Suppose that OA ~ 2a,OB =2b,OC = 2c,OD,=2d 

and LOAB = a, LOBA =P,LODC = r, LOCD =B . 

Then 

c9s LEQM = cos(LEQO +LOQM) 


../ 
= cos(2P +LAOB) = -cos(a-P). 

So , 

3 

M 

2 



EM2 EQ2 + QM2 
- 2EQ· QM .cos LEQM 

= b2 2+ c +2bc cos(a - P). 

Make the similar equations for EN, PN, FM , we have 


EN·PM EM·FN 


<=> EN2 
• FM2 = EM2 .FN2 


<=> (a2 +d2 + 2adcos(a - P))(b2 +c2 +2bccos(y-0)) 

:= (a 2 +d2 + 2ad cos(r-0))(b2 +c2 + 2bccos(a - P)) 

<=> (cos(y - 0) - cos(a P))( ab - cd)( ac - bd) = 0 . 


Because of a+ p:= r+O , 


. cos(y - 0) - cos(a - P) =0 holds 

if and only if a=r,p=O(that is 

concyclic) or a:= O,p = r (that 

follows AB II CD, contradiction.); 

ab - cd := 0 holds if and only if 

ADII BC; ac - bd := 0 holds if 

and only if A,B,C,D are R y .~ '" C 

concyclic. 

So, when AD II BC holds, we also have 
EM ·PN:= EN ·PM. We know that A,B,C,D are not 

concyclic in this case because of PB '* PC, so the answer is 
"false", 

2. If 2 Ipq, we suppose that p:= 2 without loss of 

generality, then q 15q +25. By Fermat theorem we have 

q 15q -5, so q 130, here (2,3) and (2,5) are solutions. 

«2,2) don't fit) 

If 51 pq '. we suppose that p := 5 without loss of 

generality, then q 15q +55. By Fermat theorem we have 

qI5q -5,so qI3130,here (5,5) and (5,313) are solutions. 

Otherwise, we have pq 15p
-
1 + 5Q

-
1
, so 

5P 1 +5q 1 
- - == 0 (modp). CD 

/ 

By Fermat theorem we have 

5P-
1 =1(modp) , ® 

Because of CD and ®, 

5q l 
- == -1 (modp). ® 

Denote by p-l=2k (2r-l) , q-l 2/(28-1), where 

k, /, r, 8 are positive integers. 


If k::;; / , then we get 


t1= l i -t(2.-I) == (5P- I )21
- (2.-1) = 521 (2r-l){2.-1) 

= (5q-
1)2r-l =(_1)2r-l ==-1 (modp), 

which is contradictory with p '* 2 . So k > / . 
But we have k < / by a similar reason, contradiction. 

4 5 



So, all" the pairs of primes (p, q) are (2, 3), (3,2), 

(2,5), (5,2), (5,5), (5, 313) and (313,5). 

3. , Notice· that if a regular m polY$on. has exactly .two 

acute angles, they must.. be at consecutive vertices: for 

otherwise there would beiwo disjoint pairs of sides that take up 

more than half of the circie each. Now assume that the last 

vertex, clockwise, of these four vertices that make up two acute 

angles is fixed; this reduces the total number of regular m 

polygons 2n + 1 times and we will later multiply by this 

factor. 

Suppose the larger arc that theflrst and the last of these 

four vertices make contains k points, and the other arc 

contains 2n -1-k points. For each k, the vertices of the m 

polygon on the smaller arc may be arra~ged in G,,,:;-k) ways, 

and . the two vertices on the larger arc may be arranged in 

(k-n-I)2 ways (so that.the two angles cut off more than half 

of the circle). 

The total number of polygons ,given by k is thus 
--. 

(k - n -Il x (!:;-k). Summation over all k and change of 

variable gives that the total number of polygons (divided by a 

factor of 2n +1 ) is 

2:e .(:~~-2). 
k~O 

, Tbis can be proven to be exactly (~-I)+(~~l) by double 

induction on n > ~and m > 4, The base cases n =m+ 1 
and m =5 are readily calc~ated- The induction step is 

"e _(,,-k-2) = "e .(("~I)-k-7)+"k2_((,,-I)-k-2) 
,LJ m-4. LJ m-4 LJ (",-1)-4 
k~O k~O k2!O' 

, . (,,-i) ('" ) ·(,,-1) (" ). (" ) (,,+1)== m-I + m-I +. ".-2 + ".-2 = m-I + ",-1 . 

So the total number of 2n + 1 .polygons is 

(2n +I)((~_I) + (~~I»)' 

4. Without loss of generality, let al < a2 < ... < a", note 

that 

lak1+ la,,-hll ~ la"-k+1 - akI~ In +1- 2kl· 

for I~k ~ n . .. 

So 

tlakl3 =!tijak l3 +la,,+I_kI3
) . 

k=1 2 k,,1 

'I " {3 . 1 2)
2 {;~ak [+ la,,+I-k 1\4 ~ak1- [a,,+I_k If +4 ~ak [+ la,,+l-k I) 

I"rl' )31" 3· ~-2:~akl+la"+I-kl ~-2:ln+1- 2kl . 
8 k=1 . 8 k=1 

-~.. ' . 

,When n is odd, 
,,-L 

~I .'13 3 ~.3 1 2 2LJ n+ 1-2k =2·2 'l;;j == -en -1) . 
k=1 i=1 4 
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When n IS wen, 

It 

3fln+I- 2kI =it(2i-l)3 
k",J j",J 

=2[~j'-t(2il}!n'(n' -2), 
3

So, flak l ~ _1 (n 2 _1)2 for odd n, and 
k:J 32· 

It 3 12:lakl ~_n2(n2_2) 
k=l 32 

for even n. The equality holds at a
j 
= i - n + I ,i = 1,2, ... , n. 

. 2 
5. For all odd number n that n:> 1. 

First of all since there are G) ways to choose 3 among 

. n colors, and . G) ways to choose 3 vertices to form a triangle, 

so if the question's condition is fulfilled, all the triangles should 

have different color combination among each other. (a 

correspondence) Note that each two line with the same color 

cannot have a P' s vertex as a common point. 

As each color combination is used in exactly one triangle, 

for each color, there should be exactly <;-1) triangle which has . 

one side in this color, so there should be· exactly n -1 lines in .. 2 

this color. So n is odd. 

Now gives a construction method for all odd n. 
As the orientation of the vertices doesn't really matters, we 

assume that the polygon is a regular n polygon. First color the 

n sides of the polygon in the n distinct colors. Then for each 

side, color those diagonals that are parallel to this side into the 

same color. 

In this way, for each color, there are n diagonals colored 

in this color, notice that each of these diagonals are of different 

length. 
/ 

. CD 
Besides, for any two triangles with all vertices in, we shall 

prove that they should have different color combination. 

Suppose the contrary, they have exactly the same three colors 

as their sides. Because of that all the sides with the same line 

are parallel, the two triangles must be similar. For their vertices 

are in the' same circle, they· must be same, but it is the 

. contradiction of CD. This completes the proof. 

6. Let I(X) be the average ofelementsoffinite number 

set X 
. , 

Fitst ofall, make n different primes PI ,P2'......, Pn which 

. are all bigger than n, we prove that for any different 

8 
9 



II 
n 

Pi 
non-empty subset A,B of set 81 ={~:I:S:j:S:n} 

Pj 

I(A) ~ f(B) always holds. 
" n n

IIPi TIPi" ". 
In fact, we can suppose ~ E A and ~ Ii!: B 

PI PI 
without loss of generality. Every element of B can be divided: 

by PI' so p~ InlfeB). But A have exactly one element' 
" I 

_ 

which cannot be divide by PI ' so we get n!f(A) cannot 

divided by PI (Note that p) > n), so n!f(A) ~ n!f(B) , 

which follows f(A)::F- f(B). 


Second, let 82 ={n!x: x E 81}, then f(A) and feB) are 


different positive integers When A,B are different non-empty 


subsets of 82 , 


In fact, itiseasily to see that there exists two sets ApEI 


which are different non-emptY .subsets of 8 ' and

1 

f(A) =n!f(AI),f(B) =n!f(BI) holds. We get I(A) ~ feB) 

from f(AI) ~ Ie!!.!), and f(A) , feB) are positive integers 

from f A f, fB f:S:n . and th~ elements of them are all positive. 

Then, let K be the largest element of 8
2

, We prove that 

for every two distinct subset A, B of set" 

" 10 

8
3 
={K!x+ 1: x ES2}, f(A) and feB) are coprime integers 

which are both larger than 1. 

In fact, it" is easily to see that there exists two sets 4,B) 

which are different non-empty subsets of 8 2 ,and 

f(A) =K!f(AI)+I,/(B) ='K!f(B)) +1 h~lds. Obviously, 

f(A) and feB). are different integers which are both larger 

than 1. If they have common divisors, let P be" a _prime 

common divisor of them without loss of generality. Clearly we 

have pl(K!'lf(4)- f(B I )!)· We get. 1:S:lf(A,,)- f(BI)I:S:K 

by 0 < f(4),f(BI) :S: K and f(A,,) ~ f(B)), so p:S: K , 

which follows P IK !f (AI)' then P 11, contradiction. 

Last, let L be the largest element of 83 , We prove that 

for every two distinct non-empty subset A,B of set 

8
4 

= {L!+ x: x E 83}, f(A) and feB) are two composites 

which share no common divisors. 

In fact, it is easily to see that there exists two sets ApB} 

which are different non-empty subsets of 83 , arid f(A) = 

L!+ f(4), feB) =L!+ f(BI) holds. Obviously, f(A) and 

feB) are different integers which are both larger than 1. . 

Because of that L is the largest element of 83 , we have 
'" f(A,,) 1L!, and f(A)) If(A). We get f(A) is composite by 

f(A,,) < f(A). Bya similar reason, feB) is composite too. If 
,/ 

. they have common divisors, let p be a prime common divisor 

of them without loss of generality. It is obviously that 

pj(LHf(AI)- f(BI)!). We get 1:S:lf(AI )- f(BI)I-:;,L by 

0< f(AI),f(BI):S: L and f(A,,) ~ f(Bl), so p:;;.L, which 
11 



follows pi f(A1) and pi f(B1), which is a contradiction of 

the fact that f(A,) and f(B) are coprime. That complete the, 

proof. 

,. 
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2009 Chinese Gi~ls' Mathematics Olympia~ 

Zhong shan, China 

1. (a) Detennine if the set {1,2, ... ,96} can be be partitioned into 

32 sets of equal size and equal sum. 

(b) Determine if the set {1,2, ... ,99} can be be partitione~Into 

33' sets of equal ,Size and equal sum. 

2. Let fjJ(x) = ax3 +bx2 +ex + d be a polynomial with real 

coefficients. Given that r/J(x) has three positive real roots and that 

fjJ(O) < 0, prove that 2b3 +9a2d -7abe:::; O. 

3. Determine the least real number a greater than 1 such that for 

any point P in the interior of square ABCD, the area ratio between 

some two of the triangles PAB, PBC, PCD, PDA lies in the interval 

[~,al 
.. 4. Equilateral.' triangles ABQ, BCR, CDS, DAP are erected 

out-Side of the( convex) quadrilateral ABCD. Let X, Y, Z, W be the 

midpoints of the segments PQ, QR, RS, SF, respectively. Determine 

the maximum value of 

XZ+YW 

AC+BD 
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S. In (convex) quadrilateraL ABCD, AB;;;; BC and AD ::: DC. 

Point E lies on segment AB and point F lies on segment AD such that 

B, E, F, D lie on a circle. Point P is such that trianglesDPE and ADC 

are similar and the corresponding vertices are in the same orientation 
. , ,. 

(clockwise or counterclockwise). Point Qis such that triangles BQF; 
and ABC are similar and the corresponding vertices are, in the same 

orienfation. Prove that points A, P, Q ¥e collinear. 

6. Let (xl> Xl"") be a sequence of positive numbers such that 

(8Xl -7~ )xr= 8 and 
8 8 

2 Xl::_1 - Xl:: Co k·· 
Xl::+tXl::_1 - Xl:: = 7 7 .lor =2,3,.;;.. 

xl'x,1;-! 

Determine the real number a such that. if .. Xi. > a, then the 

sequence is monotonlcally decreasing, and if 0 < x:< a, then the 

sequence is not monotonic. 

7. On a giveJi 2008 X 2008 chessboard, each unit square is 

colored in a different :color." Every unit square is filled with Qneof the 

letters C, G, M, O. The resulting board is called har""onic ,if 

every 2 X 2 subsquare c:ontains all four different letters. How many 

harmonic boards are there? 

. \ 

8. For positive integers n, .r..'= [2" . .J2008] +[2" . .J200?]. Prove 

that there are infinitely many odd numbers and in-finitely many.even 

numbers in the sequence 1;,1;.,.... 

. Solutions 

1. The answer is no, for part (a) and yes for part (b). 

(a) Since 1+2+ ..·+96=48·97 is not divisible by 32~ we 

cannot partition the the set {1,2, ...%} into 32 s~tsof eqUal sum. ., 

(b) Sincel-t2+..·+99=50·99,each of the 33 subsets niUSt 

have'sum 150. We partitionthe numbers in the set {1,2, ... /6} mto .. · 

33 . pairs with their sums forming an arithmetic progression of 

common difference I: 
,{I,50}, {3,49}, {5,48}, ... ,{33,34}, 

{2,66}, {4;65}, ... ,{32,51}. 

It is then easy to see that 


{1,50,99}, {3, 49,98}; {5,48,97},~ .. , {33,34,83}, 


{2,66,82}, {4,65,81}, ..., {32,51,67} 


is a partition satisfying the conditions ofthe problem. 


Remark: In general, the set {l,2, ...,3n} can be be parti-tioned 


into n sets of equal size and equal sum if and only ifn is odd. 


2. So~ution 1. Denote by ~,Xl'~ the roots of ¢(x). By Vieta's 

relation, we have 

bed 
Xi.+~+~=-~,Xi.~+~~+~Xi.=-,Xi.~~=-- . 

a a a 

14 
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Since ¢(O) =d < 0 and XjX2X3 > 0, it foHows that a> 0 . 

a3Dividing both sides of the desired inequality by gives
\ 

b)3 d b c2- +9--7 ._._:$; 0(a a a a 

or 

-2 XI +X2 +X()3 -9XjX2.l3 +7(Xi +X2 +X3)(XIX1 +X2X3 +X3XI)~0. 

Expanding the terms on the left-hand side of the last inequality 

and simplifying gives 

2 2 2 1 1 . 2 2( 3 3 _3) (1)XI X2 +Xix1 +X2.l3 +X2XJ +X3 XJ +x3X} ~ Xj +Xl +x3 , 

which is true by Schur's inequality and the AM-GM inequality. 

Indeed. 

2 1 2 2 2 2XjX2+XjX2+X2X,+X2X,+X,Xj+.l3Xj 

:$;xi+x~ +xi +3XjX2X3 ~2(x~ +x~ + xi)· 

Solution 2. One can also establish (1) by noting that 

(Xi X2)(~2_X;)=(Xj~X2)2(Xi+Xl»2 

or 
2 2 _3 3

XjX2 +XjX2 :$;X1 +XZ· 

Adding the last inequality with its cyclic analogous forms yields (1). 

Solution 3. One can also establish (*) by adding inequalities 
2 2 2 ' 3 3 ·3 d 2 . 2 2 < 3 3 3

XjX2 +X2X3 +X3Xi ~Xj +X2+X3 an X2X1 +X3X2+XjX3 -Xj +X2 +X3' 

(Both inequalities follow directly from the Re-arrangement 

inequality,) 

3. The answer is the golden ratio ¢ =1+.J5 . 
. 2 

16 

We fITst show that there must always be two triangles whose 

ratio lies in the interval [~.¢]. 
By scaling, we may assume without loss of generality that 

ABCD has area 2. Then [PAB]+[PCD]=.!. [ABCD]=I, and likewise 
2 

[PBC]+[PDA]=l. Let [PAB] =x, so that [PCD]=I-x; by symmetry 

we may assume without loss of generality that x ~ 1-x, or 

equivalently, that x ~.!.. Likewise, let [PBC] =y and [PDA] = 
2 

1 y, and again we may assume y ~1-y, Finally, we may also 

assume w:ithout loss of generality that x:$; y . 
/ 

We know that 1 ~ x <1 : we now divide into cases based on the 
2 

value ofx. 

Case 1: x ~ .!. .In this case, 1 - x ~ 1 - .!. > 0, so 
¢ ¢ 

1 
~ ¢ 1 1 
I-x ~ 1-.!. =¢-l = .!. =¢ 

¢ ¢ 

by the well-known identity that ¢ -1 .!.. Since x ~1-x , 

[1] 
¢ 

x 1 x .-- ~ 1~ -, and so -- E -,¢ as deSired. 
I-x ¢ I-x ¢ 

Case 2: x ~.!. .Now, since .!. <x ~ y <1 , we conclude that 
¢ ¢ 

17 
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1 
<-=¢ 

x 	 . 1 
¢ 

as desired. 

We now show that no smaller value ofa w01;ks. 

We first note that for any x and y strictly between 0 and 1, we 

can find a point P such that [PAB]=x, IPCD],=I-x, [PBC}=y, 

[PDA] =1- y : just take a point P which is distance ~ away from 
,,2 

. side ABand distance .Ii away from side BC., 

We now set x = r and consider the limiting case as y
¢ 

approaches O. By inspection, we see ~t the smallest triangle area 

ratio greater than 1 is [PDAJ =(1- y)¢ , which approaches ¢ in the 
. [PCD]. ". . 

limit as y ~ 0 .' Likewise, the largest area ratio less thari" 1 is 

[PCD] 1 hi h' h' 1 " th 1"'· H--- ,w c approac es - ill e. lIDlting case. eIice 
[PDA] (1- y)¢ . ¢ 

any a that satisfies the conditions of the problem must satisfy either 

1 1 . 
(1- y)¢ ~ a or. . ~-: either way, a must be at least(1- y)¢.

(1- y)¢ a. . . 

Taking the limiting case as y ~0, we see that a = ¢ is the' 

. minimal value ofa that works. 

. .' . 1+.J3 . 
4•. Solution 1. The answer is--, . 	 2 

We consider the configuration shown above. (Our proofs can be 

adjusted slightly for other configurations.) LetPl, Q1, Rl, SI be the 
. 	 . ' 

midpoints. of segments DA, AB, BC, CA, respectively. It is well 

known thatPIQIRISI is a parallelogram (since ~QIIIBDURISI and 

QIRIII ACIISI~)' Let M andNbe the midpointS of segments DP and 

1 
DS, respectively. Note that 

·DS1 =SIN=DN=WN 

and 

Dr: =~M=MD=WN. 

Note also that 

LPPSI=LPDS -1200 =180° - LDNW -120° 

. = 600 -LDNW=LWNS1• 

By SAS (WN =l)~, Lr:DSI= LWNS1 , and NS1=DS1 ), we 

conclude that triangles WNS1 and PDSI are congruent to each other: 

Likewise, we can show that triangles~MWand r:DS are 

congruent to each other. It follows that ftSr =WS1:::: r:W ;. that is, 

tri!lllgle WS1r: is equilateral. In exactly the same way, we can show 

that. YQIRI is also equilateral. 

Let U and V be the midpoiIits of segments SIr: and QIR,.. 

. . BD. 
Then ill parallelogram r:QIR,.SI' UV = r:QI == -. By the tnangle 

:1 	 ·2· 

'inequality, we have 

...-/ . yw~yv+vu+uw=W;.J3 +r:QI+QI~.J3 
SIr:.J3 +BD+QIR,..J3 BD+AC.J3 

'2 	 2 

Similarly, we can show that 
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http:r:QI+QI~.J3
http:yw~yv+vu+uw=W;.J3
http:r:QIR,.SI


. 1 . ~ . .XZ~AC+BDfj. .... x-z=-(OJ(c+d-a-b)+OJ (d+a-b-c))
2 2 . 


Adding the last two inequalities yields or 


XZ+yw~l+fj.(AC+BD) or .xz+yw ~1+.J3. 
( 

OJ-m2) (ol + OJ)x-z= .-2- (c-a)+ -.-2- (d-b). (6)
2 AC+BD 2 


Equality holds when W, U, V, Yare collinear; that is, AC 1. BD. 
 . l+H I-H r:;
Note thatOJ-OJ2 = . =,,-3 and m+OJ2 =-1. 

Solution 2. Let the lower case letter denote the complex number 2 2 

associated with the point labeled by the upper case letter. Using this to apply the triangle inequality to (6) yields ~ 

l+fj . . . ..[:3. 1Let OJ = -- be a cube root of umty, so that OJ2 + Co + 1=0 . 
2· . XZ =lx-zl=I-(c-a)+-(b-d)"

2 2 
The statement that ABQ is an equilateral triangle can be restated 

as (b q) = OJ(a - b) , or, expanding and using OJ +1 _OJ2 
., from which it follows that 

q + OJa + OJ2b =O. Solving for q, we obtain q =-OJa-OJ2b. Likewise, /fj . 1 .J3 1 
XZ ~-Ic-al+-Ib-dl=-AC+-BD. (7) 

we obtain the fonnulas 2 222 
r = -0Jb - alc, s = -OJC - OJ2d, p:::: -Old - OJ2 a . Similarly, we can show that 

Since X is the midpoint of QR, it follows that YW~ fj BD+!AC. (8)
q+r 1·· .. 2 2 

x=--=--(OJ(a+b))+OJ2(b c)). (2) 
2 2 We now complete the proof as in the first solution. 

And likewise S. Let 0 be the Center of the circle through B, E, F, and D. 

1 
;, 

Because 0 is the circumcenter of triangle BDF, 
y = -,-(m(b+c)+ m2(c+ d)), (3)

2. . LBOF =2LBDF =2LBDA. Also, LCDA :::: 2LBDA because triangles 

1 ., ADB and ADC are congruent. Since triangles BOF and CDA are both 
z =--(OJ(c+ d) +OJ2(d +a)), (4)

2 , isosceles and LBOF =LCDA, triangles BOF and CDA are similar. 

1 But we are given that CDA is similar to EPD, so we conclude that . 
w=--(OJ(d + a) +OJ2 (a+ b)). (5) 

2 triangles BOF andliPD are similar. Also, triangles BAF and ADE are 

Now, the length XZ is equal to the absolute value Ix - z I, and similar because quadrilateral BEFD is cyclic. Putting these facts 

using the above we c~Write 

20 21 



together,we see that quadrilaterals ABOF and ADPE are similar. In 

particui¥, LEAO = LDAQ . 

By· exactly th€: same argument as above, quadrilaterals AEOD 

and AFQB are also similar, andllkewiseLEAO = LnAP . 

We conclude that LnAQ = LnAP and the three points A, P, Q 
are collinear, as desired. 

8 XS2 _ X _ - k
6. Dividing the equation X-Xk -

k
7 
l 

7 by XkXk_l and
Xk+l k-l Xi;X _ 

k l 

manipulating yields 

Xi;+l Xi; 1 1-----=8--S-· (9) 
Xi; Xi;_l Xi; _Xk l 

Rearranging, we fmd.that 

Xi;+l __1 ::::.!L __ 1_= ... ,,;, x2 _.l=2 (10) 
.. 8 . 8 . 8' 

Xi; Xk Xi;_l Xk_1 .:11 ~ 8 

Using the condition (8X20 -7x,)xi =8. We 
. 

can 
/ 
J;'ewrite this as a 

recurrence . 

7 .-7 
Xi;+l .= - Xi; + Xi; (11)

8 

for all k ~ 1. We now see inductively that the starting condition 

~ > 0 implies that Xi; is positive for all k. 

We can rewrite the recurrence (11) as Xi;+l -Xi; ~ Xi; (xi" -i). 
1 

Since Xi;. is positive, we see that if Xi; > 88, then Xk > Xk+l' and if 

1 

Xi; < 88 , then Xi; < Xk+l' 

22 

7 ..1 -7·· '!.. .!.. !
For . all k ~ 1 , Xk+l =gXk +g(8Xi; )~X: • (8Xk )8 ::::88 by 

. 1 

weighted AM-GM, with eguality in the case that. Xk :::: 88 .. 
• 1 

We now proceed to show that a 88 . W~ must show that if 
. ! .. . . . 

. Xl> 88 
, then the sequence {xk } is monotone decreasing, and that if 

I 

o< ~ < 88 , .the sequence . is not monotone. First suppose that 
i 1 ·1 

Xl > 88 • By the above, we have . Xl > X2 > 88, and repeating this 
I 

argument iteratively yields XI >x2 > Xl > ... > 88 , so the sequence 

{x.J . is monotone increasing as desired. 
I 

On the other hand, if ~ < 88 , we have seen above that Xl < X2 ; 
1 

however~ by the AM-GM above, it is the case that X2 > 88 , and so by 

the argument of the previous case, we see that x2 > Xl > .... Since 

XI < X2 > XJ > ... , the sequence .. {Xi;}· is not monotone, as desired. 

7. The aIlSwer is 12.22008 
- 24. 

Let a· configUration· of letters·be called legal if it fulfills the 

cOhdition of the problem. We . first establish the following 

observation: 
~ 

In every legal configuration,· at least one of the· 

following must occUr: every row alternates between some 

two letters, or every column alternates between some two 

...-' letters. : 

Indeed, suppose that some row does not alternate; then this row 

must contain some three· successive distinct letters.· Suppose without 

loss of genefality that these letters are C, G,M, as in the left-hand 

side figure shown below. It is then easy· to conclude first that 
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" 

alternates and each column alternates. Certainly, any arrangement of 
X = Xs = 0, and second that Xl = X 4 = M and X) = X6 =C,2 the four different letters in the upper-left-hand 

. 2 x 2 corner can be extended to a legal configuration of the entire as in the right-hand side figure shown below. 
grid, simply by filling in the first two columns so that they alternate, 

Xl X2 X3 M 0 C 

C G M C G M 

X4 Xs X6 M 0 C 

then filling in all the rows so that they alternate, conversely, any such 

doubly-alternating' configuration is uniquely determined by this 

upper-left-hand corner. There are 4!=24 ways to arrange the four 

letters in this upper-Ieft- hand corner, so we get 24 configurations in 

which every row and every column alternates,and the above answer 

follows . . We can easily repeat this argument to show that the these three 
Remark: This problem is inspired by the following problem columns must alternate between two letters, and then it is easy to see 

from the 1996 IMO shortlist: that every column must alternate between two letters, 

Now that our initial claim is proven, we can count the legal A square ~f dimensions (n-l)x(n-l). is divided Into 

configurations. If the leftmost column alternates between some two 2(n _1)2 unit squares in the usual manner. Each of then n vertices 
letters (say C and M), then a straightforward induction shows that 

of these squares is to be colored red or blue. Find the number ofevery odd-indexed column alternates between these two letters, and 
_ different colorings such that each unit square has exactly two red every even-indexed column alternates between the other two letters . 

'Vertices. (Two coloring schemes are regarded as different if at least (e~g. G and 0). Each column may begin with either of its two letters; 
one vertex is colored differently in the two schemes.) it is easy to check that any configuration thus obtained is legal. 

Hence, we have (~) 6 ways to choose which two letters occur in 8. We write.J2008 and ../2009 in base 2: 

22008the first column, and ways to decide what letter begins each v'2008 = 1011 00.a1a2 • "(2) and v'2009 = 101100h1b2 ., '(2) 

column, overall, then, we have 6 '.22008 possible configurations in 
First, we show that there are infinitely many even numbers in the which each. column alternates. Likewise, we also have 
sequence. Assume on the contrary that there are only finitely many 6.22008 possible configurations in which each row alternates. 
even numbers in the sequence. Then there exists a positive integer NAll that remains is to subtract off the number of configurations 

that have been counted twice --that is, in which each row 
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such that In is odd for every positive integer n >N. Adding· the 

base 2 expansions, we find that for every positive integer i 

!N+i =10 II 00.b1b2 •• •bN+i(2) +101100.a1a2 ...GN+i(2) , 

and the right-hand side is congruent to' bN+i+aN+i modulo 2. Since 

fN+i is odd, it follows that {bN+i,aN+J ={O,I} and, in particular, 

aN+i +bN+i = 1. Therefore, 

)2008 + )2009 = lOilOOl.c1c2 ••• cNIl 1."(2)' 

In particular, ../2008 +../2009 is ratio~l in base 2, which is. 

impossible, 'since .J2008 + ~2009 . is irrational.' Thus, our . 

. assumption was wrong, and there are infinitely many even numbers 

in the sequence. 

Similarly, we can show that there are infinifely many odd 

numbers, in the 'sequence. Set gn = Ln~2009J-ln.J2008J. It is 

clear that gn and /" have, the same paritY. Thus, for n:> N , 

gn is even. Note that, in base 2, 

gN+1 = 1011 00b1b2 ... bN+i(2) -101100a1a 2 ••• a N+t(2) , 

which is congruent to bN+i -aN+i modulo 2. Since fN+i is odd, . 

bN+i = a N+I . Therefore, 

..)2008 +~2009 = 0.d1d2 ...dN OOO"'(2)' 

In particular,../2008 +~2009 !s'rational in base 2,which is 

imposs.ible, since.J2008 + .J2009 . is' 'irrational.' Thus, , our 

" 
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assumption was wrong, and there are infinitely many even numbers 

in the sequence. 

Remark: The problem. is inspired by the following classic 

problem on the Pigeonnole principle: . , 

For positive integers n, In ln~2008j+ln~2009J. 
Prove that there are in:C:mitely many' odd numbers and infmitely 

many even numbers in the sequence h,1;, .... 

.,.. ' 
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(Attempt all problems; each carries 15 marks) 

1. 	A sequence of real numbers {an} is defined by 

a ,*0,1, a =1-ao ' an+1 =1-an(1-an), n=I,2.···. Proveo 1 

that for any positive integer n, we have 

ao~ ... an(~+~+···+_1)=1.
ao a1 an 

N/ Y "'" """" \ >­
B D C M 

.. 2. In /2, ABC, AB= AC, the inscribed circle I 

touche~,BC, CA, AB at points D, E and F respectively. 

P is a p;[nt on arc EF (not content D). Line BP intersects circle 
I at another point Q, lines EP, EQ meet line BC at M, N 

. respectively. Prove that 

(1) 	 P, F, B,. Mare concyclic; 

(2) 	 EM~= BD . 

EN BP 


3 • . Given an integer m ~ 2 , . and m positive inte~ers 

a.. a2,· ".am ,{ Prove that there exist infinitely many positive 

integers n, such/that a. ·In +a2 ·2
n +"'+a

m 
·m" is composite. 

4. 	 Given an integer m ~ 2, and two real numbers a, b 

with a >0 and b::/; O. The sequence{xnHssuch thatx
1 
=b , 

IfD.d 	 xn+l =a x: +b, n = 1,2.··· . Prove that 

(1) when b <0 and m is even, the sequence {x) is 

bounded if and only if ab",-l ~ -2; and. 

(2) when b < 0 and m is odd, or when b > 0, the 

sequence {xn} is bounded if and only if abm-1 < (m _1)m-l 
mm 
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(Attempt all problems; each carries 15 marks) 

5. Four frogs are postioned at four points on a straight line 

such that the distance between any two neighbouring points is 1 

unit length. Suppose that . every frog can jump to its 

corresponding point of reflection, by taking' anyone of the 

other 3 frogs as the reference point. Prove that~ there is no suqh 

case that the distance between any two neighbouring point!?· 
. . 

where the frogs stay, ~e all equal to 2008 unit length. 

6. Given x, Y, .z ~.(O,I) satisfying that 

l-X /¥.-Y. 'R-z--+ --+ -=2. 
yz . zxxy .!?

Find the maximum value of xyz. 

7. For a given positive integer n, fmd the greatest positive 

integer k, such that there eXIst three sets of k distinct 

non-negative integers, 

·A={x1,· X2'~"J xk}, B={Yl'- Y2"'" Yk} 

and C={ZI' Z2"'" zkL with xj+Yj+zj:;:::n for any 

l'5.j'5.k. 

8. LetP be an interior point of a regular n-gon AIA2 ... An ' 

the linesAjP meet the regular ·n-gonAJA2 •·..An at another 

. n:' n 

point B;, where i=l, 2, ... ,no Prov~ that IPAt ~ LPBt • 
;=1 . /"1 

·.Solution. 

1. From the given condition, we have 

1- a1l+1= an (1:- a1/) =a1/a1/:'1 (1 - an-i) =... 
'=a ···a(l-a)=a ···aan I I' /I .. 0..> 

I.e. a1/+I= l- ao.al ••• a1/' . n = 1,2~···.. 

By Mathematical Induction. 

When n 1 • the proposition .holds. Ass~ng that it holds 

for n = k, then when n = k +I , we have 

1 1 1 1)a a 0. · .. a k+1 -+-+'''+-+-' 

. ao. a l ak ak+1 


I ( . 

=a aa "'a '(1-+-+1 ...+-'IJ a +aan- "'a. 0. 12k hI 0. l-:z k'. ao. a l ak · 

=ak+1 +ao.ai~ ···ak=1. 

So it also holds when n=k+1 . 
./ 

. Hence, it holds for any positive integer n .. 

2. (I) From the given condition, EFIIBC , so 

LABC = LAFE =.:LAFP+LPFE 

= LPEF +LPFE = 1800 
- LFPE. 
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Thus P, F, B,.Mare concyclic. 

(2) By Sine Law t EFIIBe and the fact that P, F, B, Mare 

concyclic, we have 

EM sinLENM
--:::::---'-­

sin DEN sinLFPB BF 

EN sin LElvlN sin(1t~ LPFB sinLPFB BP 

Together with BF = BD , the proposition is proved. 

3. Let p be a prime .factor of + 2az + ... + mam, Fermatal 

Theorem, we have for any k and m satisfying 1 ~ k .s; m, we 

k Phave == k(mod p) . Thus, for any positive integer n, we have 

a ·F" +a ·2P" +"'+a ·mP
• ==a +2a +"'ma ==O(modp')I. Zm I Z m , 

Hence, °' F" + a2 ·2
P" + ... + am .mP

' (n ::::: 1,2,···) is composite. 1 

4. (1) When b < 0 and m is even. in order that 

abm-' < -2. we should fIrst have abm+ b > -b > O. therefore 

a(abm+b)m+b>abm+b>O, that is X3 >xz >0. Using the 

fact that axm +b is monotonically increasing on (0,+00), it can 

be established that each succeeding term of sequence {x) is 

greater· than its preceeding term, and is greater than -b 

starting from the second term. 

Considering any three consecutive terms of the sequence 

Xn' x,j+" xn+2 ,n =2,3"", we have 

( m m) ( ).( m-! m-Z' m)xn+Z ­ xn+1 =a xn+! - Xn =a xn+1 -'Xn xn+l + xn+1 xn +... xn 

>amx;-I(xn+1 -xn) > am(-b)m-I(xn+l -xn) 

>2m(xn+l-xn»xn+I-Xn' 

it is obvious that the difference of any two consecutive terms of 

sequence {x) is increasing, and hence it is not bounded. 

When abm 
-

I z -2, Mathematical Induction is used to 

prove that each term of the sequence{x)falls on the closed 

interval [b, - b]. 
The first term b falls on the interval' [b, - b]. Suppose the 

term xn satisfIes the condition b ~ xn ~ -b for a particular n. 

then 0 ~ x; ~ bm 
• and hence 

b =a .om +b ~ Xn+1 ~ abm+ b ~ -b . 

r 

! Thus, the 

abm 
-

I z-2. 

sequence {x) is bounded if and only if 

(2) When b > 0 t each term of the sequence {xn} is 

. ,, positive. So, we first prove that, the sequence{x) is bounded if 

and only if the equation ax m + b =x has positive real roots. 

Suppose ax m + b = x has no positive real roots. in such 
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j
case; the minimum value of the function p(x) = axm + b - x I 

on the interval (0, +<:0) is greater than zero. Let t be the 

minimum value, it follows that for any two consecutive tenns 

of the sequence Xn and Xn+l' we have xn+l -xn ax: -xn +b. 

I.Thus each succeeding term of the sequence {x,,} is greater 

! 
I 

than the ,preceeding term at least by t. Hence, it is not 

bounded. 

If the equation axm +b = x has positive real roots, let Xo 

be one of the positive real roots, then by using Mathematical 

Induction to prove that each tenn of the sequence {x,,} is less 

than xo·' First~y, the first term b is less than xo' Suppose 

XII <xo for a particular n, by virtue of the fact that axm +b is 

increasing on the interval [0,+00), it can be established that 

m ·b . m b
XII+1 = axil + < QXo + =Xo Therefore the. sequence is 

bounded 

Further the eqllation axm +b = X has positve roots if and 

only if. the minimum value' ofaxm
-

1 +!!.... on the interval ,, . X ' 

(0,+00) is not w,-ea,.ter thanI , whereas the minimum value of 

34 

axin
-

1 + b. can be determined by mean inequality, that is 

x 


m-l b m-l b . b ~ ab
m

-
1 

ax +-=ax +' +... + >m . 
x (m -l)x (m~ l)x (m _l)m-l 

As such,the sequence {xn} is bounded if and only if 

ab m- 1 
I
(m ~ 1)0-1 ';1, that is, !'bo

- ,; (m -1)'-1 
. mm 

When b<O,andmisodd,let Yn=-xn,then Yl=-b>O, 

Yn+l = ay: +(-b), giving that sequence {XII} is bounded if and . 

only if sequence {Yn} is bounded. Thus, by using the above 

reasoning, it can be proved that (2) holds. 

5. Without loss of generality, we may think of the, initial 

positioning of the four frogs are on the real number line at 

points'l, 2, 3, ~d 4.· Further, it can be established that the 

frogs at odd number po~itions. remain at odd number positions 

after each jumping, and likewise for frogs at even number 

positions. Thus, no matter ,after how many number of 

jumping, there are two frogs remain:· at odd number positions 

while the other two frogs remain at even number ,positions. 

Therefore, in order that the distances between any· two , 
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neighbouring frogs are all equal to 2008, all the frogs need to 	 n 
aI!d then k5: [23 ] + I. 

stay at points which are either all· odd or all even, which is 

contrary to the actual situation. Hence, the proposition is 	 n
The following illustrates the case of k=[23 ] + 1 £ . 

proved. 

When n=3m, for 15:j5:m+l, let Xj =j-I , 

6. Denoting 	 u = ~xyz, then by the given condition and 
Y j == m + j -I, Z j == 2m - 2j + 2; for m+ 2 5: j 5: 2m + 1, let 

Mean Inequality 
. 1 

2u3 Xj =j -1 , Y j == j - m - 2 , Z j 4m - 2j + 3 , the result is=2.Jxyz= .J3 I.Jx(3-3x) . 

obvious; 

1 "x + (3 - 3x) 3.J3 1 (. )
<--£....J --- x+Y+z When n/:::: 3m + 1, for 15: j 5: m, let Xj =j"":'l ,.J3 2 2.J3 I 

5: 3../3 _ .J3 . Vxyz = 3.J3 .J3u2 , Yj =m+ j , i j =2m-2j+2 for m+15; j 5: 2m let 
2 2 

I xr=j+1 , yj==j-m-I, Zj =4m+I-2j andTherefore, 4u3 + 2.J3u2 -3../3 5: 0, Le. 

I 
 ... xZm+! =m ,Yzm+! :;;;; 2m+ 1, z2m+! =0 will lead to the expected (2u -../3)(2u2 +2.J3u +3) 5: 0, 

result; 
and thus u 5:.J3 . Following this, we have xyz 5: 27 , and 

. . 2 	 .. M When n=3m+2, for l~j5:m+l, let xj=j-I, 

equality holds when x =Y =Z :;;;; ~ • Hence, maximum is 27 
4 64 Yj=m+.J, zJ=2m-2j+3 ; for m+25:j5:2m+l, let 

7. By the given condition, we have X.=j' y,=j-,m-2 Zj =4m-2j+4 and 
k k-l, 3k(k-l) J .. 

kn~L(Xi+Yi+ZJ~3I'= , 
i=l 	 j=O 2 
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X 2m+2 =2m+2 ,Ym+2 = m ,Zm+2 = 0, the result follows. 

In summary, the maximum value ofkis [2;]+ 1.· 

8. Denoting t =[;]+1, and let .4,.., =A, ' j =1,2,. ··,n. 

Noting that the dis~ce between any vertex of a regular 
n-gon and a point on its side is' not greater than its longest : 
diagonal d, We therefore have, for any 1 S;; is;; n , 

~.~A'p+PB. == Ll.B.I 5: d . CD,.t~ . 

,. 

Furthennore, using the fact that the sum of any two sides 

of a triangle is longer than the third side, we have, for any 
15:iS;;n, ,. 

~P+P~+t ~~~+t=d. ® 

SummingupQ),®fa- i==l,2~··.,n, we hale 
n n 

?:(A;P+PA1+t ) ~ nd ~ L(AjP+ PBj ) , " 

10=[ /:=1 . .f ~ 

n ·n n 

. i.e.2LP~:?: L~P+LPBI' following 'Whi.ch the proposition· 
1:=1 1",1 1=[ 

is proved. 
/."".... 

f 
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