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Preface 

The first time China sent a team to IMO was in 1985. At that time, two 
students were sent to take part in the 26th IMO. Since 1986, China has 
always sent a team of 6 students to IMO except in 1998 when it was held in 
%wan. So far (up to 2006) , China has achieved the number one ranking in 
team effort for 13 times. A great majority of students have received gold 
medals. The fact that China achieved such encouraging result is due to, on 
one hand, Chinese students’ hard working and perseverance, and on the other 
hand, the effort of teachers in schools and the training offered by national 
coaches. As we believe, it is also a result of the educational system in China, 
in particular, the emphasis on training of basic skills in science education. 

The materials of this book come from a series of four books (in 
Chinese) on Forurzrd to IMO: a collection of mathematical Olympiad 
problems (2003 - 2006). It is a collection of problems and solutions of the 
major mathematical competitions in China, which provides a glimpse on 
how the China national team is selected and formed. First, it is the China 
Mathematical Competition, a national event, which is held on the second 
Sunday of October every year. Through the competition, about 120 
students are selected to join the China Mathematical Olympiad (commonly 
known as the Winter Camp) , or in short CMO, in January of the second 
year. CMO lasts for five days. Both the type and the difficulty of the 
problems match those of IMO. Similarly, they solve three problems every 
day in four and half hours. From CMO, about 20 to 30 students are 
selected to form a national training team. The training lasts for two weeks 
in March every year. After six to eight tests, plus two qualifying 

vii 
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examinations, six students are finally selected to form the national team, to 
take part in IMO in July that year. 

Because of the differences in education, culture and economy of 
West China in comparison with East China, mathematical 
competitions in the west did not develop as fast as in the east. In 
order to promote the activity of mathematical competition there, 
China Mathematical Olympiad Committee conducted the China 
Western Mathematical Olympiad from 2001. The top two winners will 
be admitted to the national training team. Through the China 
Western Mathematical Olympiad, there have been two students who 
entered the national team and received Gold Medals at IMO. 

Since 1986, the china team has never had a female student. In 
order to encourage more female students to participate in the 
mathematical competition, starting from 2002, China Mathematical 
Olympiad Committee conducted the China Girls’ mathematical 
Olympiad. Again, the top two winners will be admitted directly into 
the national training team. 

The authors of this book are coaches of the China national team. 
They are Xiong Bin, Li Shenghong , Chen Yonggao , Leng Gangsong, 
Wang Jianwei, Li Weigu, Zhu Huawei, Feng Zhigang, Wang 
Haiming, Xu Wenbin, Tao Pingshen, and Zheng Chongyi. Those 
who took part in the translation work are Xiong Bin, Feng Zhigang, 
Ma Guoxuan, Lin Lei, Wang Shanping, Zheng Chongyi, and Hao 
Lili. We are grateful to Qiu Zhonghu, Wang Jie, Wu Jianping, and 
Pan Chengbiao for their guidance and assistance to authors. We are 
grateful to Ni Ming and Xu Jin of East China Normal University 
Press. Their effort has helped make our job easier. We are also 
grateful to Zhang Ji of World Scientific Publishing for her hard work 
leading to the final publication of the book. 

Authors 
March 2007 



Introduction 

Early days 
The International Mathematical Olympiad (IMO) , founded in 1959, 
is one of the most competitive and highly intellectual activities in the 
world for high school students. 

Even before IMO, there were already many countries which had 
mathematics competition. They were mainly the countries in Eastern 
Europe and in Asia. In addition to the popularization of mathematics 
and the convergence in educational systems among different 
countries, the success of mathematical competitions at the national 
level provided a foundation for the setting-up of IMO. The countries 
that asserted great influence are Hungary, the former Soviet Union 
and the United States. Here is a brief review of the IMO and 
mathematical competition in China. 

In 1894, the Department of Education in Hungary passed a 
motion and decided to conduct a mathematical competition for the 
secondary schools. The well-known scientist, 1. volt Etovos , was the 
Minister of Education at that time. His support in the event had made 
it a success and thus it was well publicized. In addition, the success of 
his son, R . volt Etovos , who was also a physicist , in proving the 
principle of equivalence of the general theory of relativity by A.  
Einstein through experiment, had brought Hungary to the world stage 
in science. Thereafter, the prize for mathematics competition in 
Hungary was named “Etovos prize”. This was the first formally 
organized mathematical competition in the world. In what follows, 
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Hungary had indeed produced a lot of well-known scientists including 
L. Fejer, G. Szego, T .  Rado, A .  Haar and M .  Riesz (in real 
analysis), D. Konig ( in combinatorics) , T. von Kdrmdn ( in 
aerodynamics) , and 1. C. Harsanyi (in game theory, who had also 
won the Nobel Prize for Economics in 1994). They all were the 
winners of Hungary mathematical competition. The top scientific 
genius of Hungary, 1. von Neumann, was one of the leading 
mathematicians in the 20th century. Neumann was overseas while the 
competition took place. Later he did it himself and it took him half 
an hour to complete. Another mathematician worth mentioning is the 
highly productive number theorist P. Erdos. He was a pupil of Fejer 
and also a winner of the Wolf Prize. Erdos was very passionate about 
mathematical competition and setting competition questions. His 
contribution to discrete mathematics was unique and greatly 
significant. The rapid progress and development of discrete 
mathematics over the subsequent decades had indirectly influenced the 
types of questions set in IMO. An internationally recognized prize 
named after Erdos was to honour those who had contributed to the 
education of mathematical competition. Professor Qiu Zonghu from 
China had won the prize in 1993. 

In 1934, B. Delone, a famous mathematician, conducted a 
mathematical competition for high school students in Leningrad (now 
St. Petersburg). In 1935 , Moscow also started organizing such event. 
Other than being interrupted during the World War II , these events 
had been carried on until today. As for the Russian Mathematical 
Competition ( later renamed as the Soviet Mathematical 
Competition) , it was not started until 1961. Thus, the former Soviet 
Union and Russia became the leading powers of Mathematical 
Olympiad. A lot of grandmasters in mathematics including A.  N. 
Kolmogorov were all very enthusiastic about the mathematical 
competition. They would personally involve in setting the questions 
for the competition. The former Soviet Union even called it the 
Mathematical Olympiad, believing that mathematics is the 
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“gymnastics of thinking”. These points of view gave a great impact on 
the educational community. The winner of the Fields Medal in 1998, 
M. Kontsevich, was once the first runner-up of the Russian 
Mathematical Competition. G . Kasparov , the international chess 
grandmaster, was once the second runner-up. Grigori Perelman , the 
winner of the Fields Medal in 2006, who solved the Poincare’s 
Conjecture, was a gold medalist of IMO in 1982. 

In the United States of America, due to the active promotion by 
the renowned mathematician Birkhoff and his son, together with G .  
Polya , the Putnam mathematics competition was organized in 1938 
for junior undergraduates. Many of the questions were within the 
scope of high school students. The top five contestants of the Putnam 
mathematical competition would be entitled to the membership of 
Putnam. Many of these were eventually outstanding mathematicians. 
There were R . Feynman (winner of the Nobel Prize for Physics, 
1965), K .  Wilson (winner of the Nobel Prize for Physics, 1982), 1. 
Milnor (winner of the Fields Medal, 1962), D. Mumford (winner of 
the Fields Medal, 1974), D. Quillen (winner of the Fields Medal, 
1978), et al. 

Since 1972, in order to prepare for the IMO, the United States of 
American Mathematical Olympiad ( USAMO) was organized. The 
standard of questions posed was very high, parallel to that of the 
Winter Camp in China. Prior to this, the United States had organized 
American High School Mathematics Examination ( AHSME) for the 
high school students since 1950. This was at the junior level yet the 
most popular mathematics competition in America. Originally, it was 
planned to select about 100 contestants from AHSME to participate in 
USAMO. However, due to the discrepancy in the level of difficulty 
between the two competitions and other restrictions, from 1983 
onwards, an intermediate level of competition, namely, American 
Invitational Mathematics Examination ( AIME ) , was introduced. 
Henceforth both AHSME and AIME became internationally well- 
known. A few cities in China had participated in the competition and 



xii Mathematical Olympiad in China 

the results were encouraging. 
The members of the national team who were selected from 

USAMO would undergo training at the West Point Military Academy, 
and would meet the President at the White House together with their 
parents. Similarly as in the former Soviet Union, the Mathematical 
Olympiad education was widely recognized in America. The book 
“HOW to Solve it” written by George Polya along with many other 
titles had been translated into many different languages. George Polya 
provided a whole series of general heuristics for solving problems of 
all kinds. His influence in the educational community in China should 
not be underestimated. 

International Mathematical Olympiad 
In 1956, the East European countries and the Soviet Union took the 
initiative to organize the IMO formally. The first International 
Mathematical Olympiad (IMO) was held in Brasov, Romania, in 
1959. At the time, there were only seven participating countries, 
namely , Romania , Bulgaria, Poland , Hungary , Czechoslovakia, East 
Germany and the Soviet Union. Subsequently, the United States of 
America, United Kingdom, France, Germany and also other 
countries including those from Asia joined. Today, the IMO had 
managed to reach almost all the developed and developing countries. 
Except in the year 1980 due to financial difficulties faced by the host 
country, Mongolia, there were already 47 Olympiads held and 90 
countries participating. 

The mathematical topics in the IMO include number theory, 
polynomials, functional equations, inequalities, graph theory, 
complex numbers, combinatorics, geometry and game theory. These 
areas had provided guidance for setting questions for the 
competitions. Other than the first few Olympiads, each IMO is 
normally held in mid-July every year and the test paper consists of 6 
questions in all. The actual competition lasts for 2 days for a total of 9 
hours where participants are required to complete 3 questions each 
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day. Each question is 7 marks which total up to 42 marks. The full 
score for a team is 252 marks. About half of the participants will be 
awarded a medal, where 1/12 will be awarded a gold medal. The 
numbers of gold, silver and bronze medals awarded are in the ratio of 
1 :2:3 approximately. In the case when a participant provides a better 
solution than the official answer, a special award is given. 

Each participating country will take turn to host the IMO. The 
cost is borne by the host country. China had successfully hosted the 
31st IMO in Beijing in 1990. The event had made a great impact on 
the mathematical community in China. According to the rules and 
regulations of the IMO, all participating countries are required to 
send a delegation consisting of a leader, a deputy leader and 6 
contestants. The problems are contributed by the participating 
countries and are later selected carefully by the host country for 
submission to the international jury set up by the host country. 
Eventually, only 6 problems will be accepted for use in the 
competition. The host country does not provide any question. The 
short-listed problems are subsequently translated, if necessary , in 
English, French, German, Russian and other working languages. 
After that , the team leaders will translate the problems into their own 
languages. 

The answer scripts of each participating team will be marked by 
the team leader and the deputy leader. The team leader will later 
present the scripts of their contestants to the coordinators for 
assessment. If there is any dispute, the matter will be settled by the 
jury. The jury is formed by the various team leaders and an appointed 
chairman by the host country. The jury is responsible for deciding the 
final 6 problems for the competition. Their duties also include 
finalizing the marking standard, ensuring the accuracy of the 
translation of the problems, standardizing replies to written queries 
raised by participants during the competition, synchronizing 
differences in marking between the leaders and the coordinators and 
also deciding on the cut-off points for the medals depending on the 
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contestants’ results as the difficulties of problems each year are 
different. 

China had participated informally in the 26th IMO in 1985. Only 
two students were sent. Starting from 1986, except in 1998 when the 
IMO was held in Taiwan, China had always sent 6 official contestants 
to the IMO. Today, the Chinese contestants not only performed 
outstandingly in the IMO, but also in the International Physics, 
Chemistry, Informatics, and Biology Olympiads. So far, no other 
countries have overtaken China in the number of gold and silver 
medals received. This can be regarded as an indication that China 
pays great attention to the training of basic skills in mathematics and 
science education. 

Winners of the IMO 
Among all the IMO medalists, there were many of them who 
eventually became great mathematicians. Some of them were also 
awarded the Fields Medal, Wolf Prize or Nevanlinna Prize ( a 
prominent mathematics prize for computing and informatics). In 
what follows, we name some of the winners. 

G .  Margulis , a silver medalist of IMO in 1959 , was awarded the 
Fields Medal in 1978. L.  Lovasz, who won the Wolf Prize in 1999, 
was awarded the Special Award in IMO consecutively in 1965 and 
1966. V. Drinfeld , a gold medalist of IMO in 1969, was awarded the 
Fields Medal in 1990. 1. -C. Yoccoz and T .  Gowers, who were both 
awarded the Fields Medal in 1998, were gold medalists in IMO in 1974 
and 1981 respectively. A silver medalist of IMO in 1985, L. 
Lafforgue , won the Fields Medal in 2002. A gold medalist of IMO in 
1982, Grigori Perelman from Russia, was awarded the Fields Medal in 
2006 for solving the final step of the Poincar6 conjecture. In 1986, 
1987, and 1988, Terence Tao won a bronze, silver, and gold medal 
respectively. He was the youngest participant to date in the IMO, 
first competing at the age of ten. He was also awarded the Fields 
Medal in 2006. 
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A silver medalist of IMO in 1977, P. Shor, was awarded the 
Nevanlinna Prize. A gold medalist of IMO in 1979, A.  Razborov , 
was awarded the Nevanlinna Prize. Another gold medalist of IMO in 
1986, S. Smirnov, was awarded the Clay Research Award. V. 
Lafforgue, a gold medalist of IMO in 1990, was awarded the 
European Mathematical Society prize. He is L.  Laforgue’s younger 
brother. 

Also, a famous mathematician in number theory, N. Elkis, who 
is also a foundation professor at Havard University, was awarded a 
gold medal of IMO in 1981. Other winners include P. Kronheimer 
awarded a silver medal in 1981 and R .  Taylor a contestant of IMO in 
1980. 

Mathemat ica I competitions in China 
Due to various reasons , mathematical competitions in China started 
relatively late but is progressing vigorously. 

“We are going to have our own mathematical competition too!” 
said Hua Luogeng. Hua is a house-hold name in China. The first 
mathematical competition was held concurrently in Beijing , Tianjing, 
Shanghai and Wuhan in 1956. Due to the political situation at the 
time, this event was interrupted a few times. Until 1962, when the 
political environment started to improve, Beijing and other cities 
started organizing the competition though not regularly. In the era of 
cultural revolution, the whole educational system in China was in 
chaos. The mathematical competition came to a complete halt. In 
contrast, the mathematical competition in the former Soviet Union 
was still on-going during the war and at a time under the difficult 
political situation. The competitions in Moscow were interrupted only 
3 times between 1942 and 1944. It was indeed commendable. 

In 1978, it was the spring of science. Hua Luogeng conducted the 
Middle School Mathematical Competition for 8 provinces in China. 
The mathematical competition in China was then making a fresh start 
and embarked on a road of rapid development. Hua passed away in 
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1985. In commemorating him, a competition named Hua Luogeng 
Gold Cup was set up in 1986 for the junior middle school students and 
it had a great impact. 

The mathematical competitions in China before 1980 can be 
considered as the initial period. The problems set were within the 
scope of middle school textbooks. After 1980, the competitions were 
gradually moving towards the senior middle school level. In 1981 , the 
Chinese Mathematical Society decided to conduct the China 
Mathematical Competition, a national event for high schools. 

In 1981 , the United States of America, the host country of IMO, 
issued an invitation to China to participate in the event. Only in 1985 , 
China sent two contestants to participate informally in the IMO. The 
results were not encouraging. In view of this, another activity called 
the Winter Camp was conducted after the China Mathematical 
Competition. The Winter Camp was later renamed as the China 
Mathematical Olympiad or CMO. The winning team would be 
awarded the Chern Shiing-Shen Cup. Based on the outcome at the 
Winter Camp, a selection would be made to form the 6-member 
national team for IMO. From 1986 onwards, other than the year 
when IMO was organized in Taiwan, China had been sending a 6- 
member team to IMO every year. China is normally awarded the 
champion or first runner-up except on three occasions when the results 
were lacking. Up to 2006, China had been awarded the overall team 
champion for 13 times. 

In 1990, China had successfully hosted the 31st IMO. It showed 
that the standard of mathematical competition in China has leveled 
that of other leading countries. First, the fact that China achieves the 
highest marks at the 31st IMO for the team is an evidence of the 
effectiveness of the pyramid approach in selecting the contestants in 
China. Secondly, the Chinese mathematicians had simplified and 
modified over 100 problems and submitted them to the team leaders of 
the 35 countries for their perusal. Eventually, 28 problems were 
recommended. At the end, 5 problems were chosen OM0 requires 6 
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problems). This is another evidence to show that China has achieved 
the highest quality in setting problems. Thirdly, the answer scripts of 
the participants were marked by the various team leaders and assessed 
by the coordinators who were nominated by the host countries. China 
had formed a group 50 mathematicians to serve as coordinators who 
would ensure the high accuracy and fairness in marking. The marking 
process was completed half a day earlier than it was scheduled. 
Fourthly, that was the first ever IMO organized in Asia. The 
outstanding performance by China had encouraged the other 
developing countries, especially those in Asia. The organizing and 
coordinating work of the IMO by the host country was also reasonably 
good. 

In China, the outstanding performance in mathematical 
competition is a result of many contributions from all the quarters of 
mathematical community. There are the older generation of 
mathematicians, middle-aged mathematicians and also the middle and 
elementary school teachers. There is one person who deserves a 
special mention and he is Hua Luogeng. He initiated and promoted 
the mathematical competition. He is also the author of the following 
books: Beyond Yang hui’s Triangle, Beyond the pi of Zu Chongzhi , 
Beyond the Magic Computation of Sun-zi , Mathematical Induction, 
and Mathematical Problems of Bee Hive. These books were derived 
from mathematics competitions. When China resumed mathematical 
competition in 1978, he participated in setting problems and giving 
critique to solutions of the problems. Other outstanding books derived 
from the Chinese mathematics competitions are: Symmetry by Duan 
Xuefu, Lattice and Area by He Sihe, One Stroke Drawing and 
Postman Problem by Jiang Boju . 

After 1980 , the younger mathematicians in China had taken over 
from the older generation of mathematicians in running the 
mathematical competition. They worked and strived hard to bring the 
level of mathematical competition in China to a new height. Qiu 
Zonghu is one such outstanding representative. From the training of 
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contestants and leading the team 3 times to IMO to the organizing of 
the 31th IMO in China, he had contributed prominently and was 
awarded the P. Erdos prize. 

Preparation for IMO 
Currently, the selection process of participants for IMO in China is as 
follows. 

First, the China Mathematical Competition, a national 
competition for high Schools, is organized on the second Sunday in 
October every year. The objectives are: to increase the interest of 
students in learning mathematics, to promote the development of co- 
curricular activities in mathematics, to help improve the teaching of 
mathematics in high schools, to discover and cultivate the talents and 
also to prepare for the IMO. This happens since 1981. Currently there 
are about 200 000 participants taking part. 

Through the China Mathematical Competition, around 120 of 
students are selected to take part in the China Mathematical Olympiad 
or CMO, that is, the Winter Camp. The CMO lasts for 5 days and is 
held in January every year. The types and difficulties of the problems 
in CMO are very much similar to the IMO. There are also 3 problems 
to be completed within four and half hours each day. However, the 
score for each problem is 21 marks which add up to 126 marks in 
total. Starting from 1990, the Winter Camp instituted the Chern 
Shiing-Shen Cup for team championship. In 1991, the Winter Camp 
was officially renamed as the China Mathematical Olympiad (CMO) . 
It is similar to the highest national mathematical competition in the 
former Soviet Union and the United States. 

The CMO awards the first, second and third prizes. Among the 
participants of CMO, about 20 to 30 students are selected to 
participate in the training for IMO. The training takes place in March 
every year. After 6 to 8 tests and another 2 rounds of qualifying 
examinations, only 6 contestants are short-listed to form the China 
IMO national team to take part in the IMO in July. 
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Besides the China Mathematical Competition (for high schools) , 
the Junior Middle School Mathematical Competition is also developing 
well. Starting from 1984, the competition is organized in April every 
year by the Popularization Committee of the Chinese Mathematical 
Society. The various provinces, cities and autonomous regions would 
rotate to host the event. Another mathematical competition for the 
junior middle schools is also conducted in April every year by the 
Middle School Mathematics Education Society of the Chinese 
Educational Society since 1998 till now. 

The Hua Luogeng Gold Cup, a competition by invitation, had 
also been successfully conducted since 1986. The participating students 
comprise elementary six and junior middle one students. The format 
of the competition consists of a preliminary round, semifinals in 
various provinces, cities and autonomous regions, then the finals. 

Mathematical competition in China provides a platform for 
students to showcase their talents in mathematics. It encourages 
learning of mathematics among students. It helps identify talented 
students and to provide them with differentiated learning 
opportunity. It develops co-curricular activities in mathematics. 
Finally, it brings about changes in the teaching of mathematics. 
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China Mathematical 
Competition 

T h e  China Mathematical Competition is organiEd in October 
every year. The Popularization Committee of the Chinese 
Mathematical Society and the local Mathematical Society are 
responsible for the assignments of the competition problems. 

The test paper consists of 6 choices, 6 blanks and 3 
questions to be solved with complete process. The full score is 
150 marks. Besides, 3 questions are used in the Extra Test, with 
50 marks each. The participants with high total marks in the China 
Mathematical Competition plus the Extra Test are awarded the first 
prize (1 000 participants around China), and they will be admitted 
into the university directly. 

The participants with excellent marks are selected to take part 
in the China Mathematical Olympiad the next year. Thus, for 
Chinese high school students, the China Mathematical Olympiad 
is the first step to IMO. 
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2002 (Jilin) 

Popularization Committee of CMS and Jilin Mathematical Society 
were responsible for the assignment of the competition problems in 
the first and second rounds of the contests. 

Part I Multiple-choice Questions (Questions 1 to 6 carry 6 marks each.) 
@@ The interval on which the function f(x) = log+ (2 - 2x - 3)  is 

) . monotone increasing is ( 
(A) (Em, -1) (€3) (Em, 1) 
(C) ( l , + m )  (D) (3, +m> 

Solution First, we will find the domain of f(x). From 2 - 2x - 
3 > 0,  we obtain x <- 1 or x > 3. So the domain of definition for 
f (x ) i s ( - - ,  - 1 ) U  ( 3 , + m ) .  B u t u = 2 - 2 x - 3 =  ( ~ - 1 ) ~ -  
4 is monotone decreasing on (- 00 , - 1) , and monotone increasing on 
(3 , + 00). So fcx) = log3 (2 - 2x - 3) is monotone increasing on 
(- 00 , - 1) , and monotone decreasing on (3 , + 00). Answer: A. 

If r e a l n u m b e r s x a n d y s a t i s f y ( ~ + 5 ) ~ + ( y - 1 2 ) ~ = 1 4 ~ ,  then 
the minimum value of 2 + 3 is ( 

(A) 2 (B) 1 (C) 43 (D) ./z 
). 

Solution Let x+  5 = 14cosOand y-  12 = 14sin0, for 0 E [0, 2x). 
Hence 

=142 + 52 + 122 - 140~0s  8+ 336sin 0 

=365 +28(12sin8- 5 ~ 0 ~ 8 )  
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=365 + 28 x 13sidO- 9) 

=365 + 364sidO- 9) , 
5 where tan9  = - 12' 

3x 5 
2 12 So 2 +$ has the minimum value 1, when O= - +arctan-, i. e. 

5 12 
13 13 

x = - andy =--. Answer: B. 

Remark A geometric significance of this problem is: ( x + 5 I 2  + 
(y  - 1212 = 142 is a circle with C(- 5, 12) as center and 14 as radius. 
We can find a point P on the circumference of this circle such that 
I PO I is minimal, where 0 is the origin of the coordinate system. 
We join CO and extend it to intersect the circumference of the circle 
at P. Then it follows that I PO I is the minimum value of 2 +y2. 

is ( >. @& The function f (x) = ~ - - 
1-2x 2 

X X 

(A) an even but not odd function 
(B) an odd but not even function 
(C) a both even and odd function 
(D) a neither even nor odd function 

Solution It is easy to see that the domain of f (x) is (- -, 0) U 
(0, +-I. Whenx E (--, 0) U (0, +-I, we have 

X X 
- fh>. - - 

1-2x 2 

Therefore, f(x) is an even function, and obviously not an odd 
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function. Answer: A. 

--. I 2 2  c% The straight line + = 1 intersects the ellipse - + = 1 at 
4 3  16 9 

two points A and B. There is a point P on this ellipse such that 
the area of APAB is equal to 3. There is/are ( ) such point/ 
points P. 
(A) 1 (B) 2 (C) 3 (D) 4 

Solution Suppose that there is a point P(4cosa, 3sina) on the 
ellipse. When P and the origin 0 are not on the same side of AB , the 
distance from P to AB is 

3 ( 4 ~ 0 s  a)+ 4(3sina)- 12 
5 

12 
5 = -(cosa+sina-1) 

6 < 7. 

1 6 
2 5 But AB = 5, SOAPAB < - X 5 X - = 3. 

Therefore, when the area of APAB is equal to 3 , points P and 0 
are on the same side of AB . There are two such points P. Answer: B. 

&@ It is given that there are two sets of real numbers A = 

{ a l ,  a2, . . a ,  q o o )  and B = { b l ,  b2 ,  .-, b50). If there is a 
mapping f from A to B such that every element in B has an 
inverse image and 

f(a1)< f ( a 2  I< ... < f(a1oo 1 9  

then the number of such mappings is ( 
(A) C;{o (B) C% (C) c%l (D) C% 

). 

Solution We might as well suppose bl < b2 < < b50 , and divide 
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elementsal , a2 , , a100 inA into 50 nonempty groups according to 
their order. Define a mapping f: A - B, so that the images of all 
the elements in the i-th group are bi ( i  = 1 , 2 , , 50)  under the 
mapping. Obviously, f satisfies the requirements given in the 
problem. Furthermore, there is a one- to-one correspondence 
between all groups so divided and the mappings satisfying the 
condition. So the number of mappings f satisfying the requirements 
is equal to the number of ways dividingA into 50 groups according to 
the order of the subscripts. The number of ways dividing A is C$8. 
Then there are, in all, C$8 such mappings. Answer: D. 
Remark Since C$g = C$8,  Answer B is also true in this problem. 
This may be an oversight when the problem was set. 

A region is enclosed by the curves 2 = 4y, 2 =- 4y, x = 4 and 
x =- 4. V1 is the volume of the solid obtained by rotating the 
above region round the y-axis. Another region consists of points 
(x, y satisfying 2 + y2 < 16, 2 + ( y - 2>2 > 4 and 2 + ( y + 
2>2 2 4 .  V2 is the volume of the solid obtained by rotating this 
region round the y-axis. Then ( 

(A) VI = yV2 

). 
2 

(€3) V1 = 3V2 1 

(C) VI = v2 (D) V1 = 2V2 

5' t5' 

Solution As shown in the diagram, two solids of rotation obtained 
by rotating respectively two regions round the y-axis lie between two 
parallel planes, which are 8 units apart. We cut two solids of rotation 
by any plane which is perpendicular to the y-axis. Suppose the 
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distance from the plane to the origin is I y I (< 4). Then the two 
sectional areas are 

and S2 = ~ ( 4 ~  -y2)-x [4-  (2- I yI 12]= ~ ( 4 ~  -41 yI 1. 

so s1 = s,. 
From the Zugen Principle (or Cavalieri Principle) , we know that 

the volumes of the two geometric solids are equal, and that is, V1 = 

V2. Answer: C. 

Part I1 Short-answer Questions (Questions 7 to 12 carry 6 marks each. ) 
@& It is given that complex numbers z1 and z2 satisfy I z1 I = 2 and 

I z2 I = 3. If the included angle of their corresponding vectors is 
z1 +z2 60", then 1 ~ 1 = 
z1 -z2 

Solution By the cosine rule, we obtain 

I z1 + z2 I =4/ I z1 I 2 + I z2 I 2 - 2 I z1 I I z2 I cos 120" = 2/19, 

and I z1 -z2  I =2/1 z1 l 2  + I z2 l 2  -21 z1 I I z2 I cos60" =fl. 

Therefore , 

1 "  
We arrange the expansion of ( + 29;-) in decreasing powers of 

x .  If the coefficients of the first three terms form an arithmetic 
progression, then, in the expansion, there are terms of 
x with integer power. 

1 Solution The coefficients of the first three terms are 1, TC; and 

1 -Ci. By the assumption, we have 
22 
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1 1 2 -cz, = 1 +-c$ 
2 22 

1 n =  1+-n(n-1). 8 That is 

Solving for n, we obtain n = 8 and n = 1 (not admissible 
1 16-37 

Whenn= 8, Tr+l = a(2) x 7 ,  r =  0, 1, 2 ,  . . a ,  8. But I 

must satisfy 4 I 16-3r, so rcan only take 0,  4 and 8. Therefore, there 
are 3 terms in the expansion of x with integer power. 

&>Q As shown in the diagram, points PI , P2 , . . a ,  PIO are either the 

vertices or the midpoints of the edges of a tetrahedron 
respectively. Then there are groups of four points (PI , 
Pi , P j  , P k )  (1 < i < j < K < 10) on the same plane. 

Solution On each lateral face of the 
tetrahedron other than point PI there are five 
points. Take any three out of the five points and 
add point PI. These four points lie in the same 

h ---- __ _ _ _  P J  

face. Hence there are 3@ groups in all for three P ,  
1’8 lateral faces. 

Furthermore, there are three points on each edge containing 
point PI. We add a midpoint taking from the edge on the base, which 
is not on the same plane with the edge above. Now, we obtain 
another group consisting of four points which also are on the same 
plane. There are 3 groups like this. 

Consequently, there are 3@ +3 = 33 groups of four points on the 
same plane. 

@@ It is given that f(x) is a function defined on R, satisfying f(1) = 

1, and for any x E R, 

f(x + 5 1 2  fh)+ 5 9 
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and 

If g(x) = f(x)+ 1 - x, then g ( 2  002) = 
Solution We determine f (2  002) first. From the conditions given, 
we have 

f(x + 1 I< f(x)+ 1. 

f<x> + 5 < f (x + 5 I< f(x + 4)+ 1 

<f(x+3)+2 < f ( x + 2 ) + 3  

<f(x + 1 I+ 4 < f(x)+ 5. 

Thus the equality holds for all. So we have f(x + 1) = f(x)+ 1. 

f ( 2  002) = 2 002. Therefore, g(2  002) = f ( 2  002)+ 1 - 2 002 = 1. 
Hence, from f(1) = 1, we get f ( 2 )  = 2, f (3)  = 3,  .-, 

@@ If log4 (x + 2y) + log4 (x - 2y) = 1 , then the minimum value of 

Solution First, from 
1x1- I Y I  is 

x + 2 y  > 0, 
x-2y>O, 
(x++y)(x-2y) = 4, 

we obtain 

.z > 21 yI 2 0 ,  
2 - 4 3 ?  = 4. 

By the symmetry, there is no loss of generality in considering 
only the case when y > 0. In view of x > 0,  we need to find the 
minimum value of x - y only. 

Setting u = x- y , and substituting it into 2 - 4y2 = 4 , we obtain 

( * >  3y2 - 2 ~ y  + (4-2~’) = 0. 

Equation ( * ) with respect to y has real solutions. So we have 

A = 4 ~ ~ - 1 2 ( 4 - ~ ~ ) > 0 .  

Thereby U >&. 
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Solution Suppose that (y: - 4, y1 ) is 

9 

c 

4 43 In addition, when x = - 43 and y = - , we have u = 43. 

Therefore , the minimum value of I x I - I y I is a. 
3 3 

s@@$ If the inequality 

s in2x+acosx+a2 > 1 +cosx  

holds for any x E R, the range of values for negative a is 

Solution 
a <- 2, we have 

a+a2 2 2  whenx= 0. Sou<-2 (becausea<O). When 

a ~ + a c o s x > a ~ + a > 2 > c o s ~ x + c o s x  

=I + cosx- sin2x, 

s in2x+acosx+a2 > 1 +cosx, that is, 

Hence, the range of values for negative a is a <- 2. 
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From A > 0,  we obtain y < 0 or y > 4 . 
When y = 0 , the coordinates of B are ( - 3 , - 1) and when y = 4, 

they are (5 ,  - 3) .  They both satisfy the conditions given by the 
problem. So, the range of values for the y-coordinate of point C is 
y < 0 or y > 4. 

@& As shown in the diagram, there is a sequence of the curves P o ,  
PI , P2 , ..a. It is known that the region enclosed by Po has area 1 
and PO is an equilateral triangle. We obtain P&l from Pk by 
operating as follows: Trisecting every side of pk, then we 
construct an equilateral triangle outwardly on every side of pk 
sitting on the middle segment of the side and finally remove this 
middle segment (K = 0,  1 , 2,  ..a). Write S, as the area of the 
region enclosed by P, . 
(1) Find a formula for the general term of the sequence of 

(2) Find limS,. 
numbers { S, } ; 

?I-- 

A 
Po p, p2 

Solution (1) We perform the operation on PO. It is easy to see that 
each side of Po becomes 4 sides of PI. So the number of sides of PI is 
3 4. In the same way, we operate on PI. Each side of PI becomes 4 

sides of P2. So the number of sides of P2 is 3 42. Consequently, it is 
not difficult to get that the number of sides of P, is3 4". 

It is known that the area of Po is So = 1. Comparing PI with Po , 
it is easy to see that we add to PI a smaller equilateral triangle with 

area - on each side of PO. Since PO has 3 sides, so S1 = SO + 3 - = 
32 32 
1 1 
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1 
3 1 +-. Again, comparing P2 with PI , we see that P2 has an additional 

smaller equilateral triangle with area - - on each side of PI , and 

PI has 3 4 sides. So that 

1 1  
32 32 

Similarly, we have 

Hence, we have 

4k-I 

k=l  k=l 

=1++ 3 (9) 4 "  ] 

- - ---. 8 3  ($)". 
5 5  

We will prove ( * ) by mathematical induction as follows: 
When n = 1 , it is known that ( * ) holds from above. 

Suppose, when n = k, we have Sk = - 8 - - 3 ( $ ) k  
5 5  

When n = k + 1 , it is easy to see that, after k + 1 times of 
operations, by comparing Pkfl with Pk, we have added to Pkfl a 

smaller equilateral triangle with area 32<ktl> on each side of Pk and 1 
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Pk has 3 4' sides. SO we get 

By mathematical induction, ( * ) is proved. 

(2) From (l), we have S, = - - - 5 5  

@&B Suppose a quadratic function f(x) = m2 + bx + c ( a ,  b ,  c E R, 
and a # 0) satisfies the following conditions: 
(1) Whenx E R, f (x -4 )=  f ( 2 - x )  andf(x) >x. 

(2) Whenx E (0, 21, fh>< (7) . 
(3) The minimum value of f(x> on R is 0. 
Find the maximal wz (m > 1) such that there exists t E R, 
f ( x + t ) < x h o l d s  so long a s x  E [l, ml. 

x+l 

Analysis We will determine the analytic expression for f(x) by the 
known conditions first. Then discuss about m and t ,  and finally 
determine the maximal value for m. 
Solution Since f(x- 4) = f(2 - x) for x E R, it is known that the 
quadratic function f(x) has x =- 1 as its axis of symmetry. By 
condition (3) ,  we know that f(x) opens upward, that is, a > 0. 
Hence 

f(x) = a ( x +  112 ( a  > 0). 

By condition ( l ) ,  we get f ( l ) >  1 and by ( 2 ) ,  f ( l > <  

(y)2 =l. I t fol lowsthatf( l )=l , i .e .  ~ ( 1 + 1 ) ~ = 1 .  Sou=- .  

Thereby , 

1 
4 

f(x>= , ( x + 1 > 2 .  1 
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1 
4 

Since the graph of the parabola f(x> = - ( ~ + + 1 ) ~  opens 

upward, and a graph of y = fcx + t> can be obtained by translating 
that of f(x> by t units. If we want the graph of y = f (x+t> to lie 
under the graph of y = x when x E [ 1,  m] , and m to be maximal, 
then 1 and m should be two roots of an equation with respect to x 

- ( x + t + 1 > 2  1 = x. 
4 0 

Substituting x = 1 into 0, we get t = 0 or t =- 4. 
Whent = 0,  substituting it into 0, we get x1 = x2 = 1 (in 

When t =- 4 ,  substituting it into 0, we get x1 = 1 ,  and x2 = 9; 

Moreover, when t =- 4 ,  for any x E [ 1,  91, we have always 

contradiction with m > 1). 

and so m = 9. 

( ~ - 1 ) ( ~ - 9 )  < O  

1 
4 H - ( ~ - 4 + 1 ) ~  < x ,  

that is f ( X -  4>< x. 

Therefore, the maximum value of m is 9.  

2003 (Shaanxi) 

Popularization Committee of CMS and Shaanxj Mathematical Society 
were responsible for the assignment of the competition problems in 
the first and the second rounds of the contests. 

Part I Multiple-choice Questions (Questions 1 to 6 carry 6 marks each. ) 
@@$$ A new sequence is obtained from the sequence of the positive 
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integers { 1 , 2 , 3 , 
the 2 003rd term of the new sequence is ( 
(A) 2046 (B) 2047 (C) 2048 (D) 2049 

. } by deleting all the perfect squares. Then 
). 

Solution Since [dTOG] = [.m] = [.SF@] = [dSFB] = 45, 
and 2 003 + 45 = 2 048, Answer: C. 
Remark For any positive whole numbers n and m, satisfying m2 < n 
< (m + 1>2 , we always have n = an--m. 

@&a Suppose a ,  b E R, where ab # 0. Then the graph of the straight 
) . line m-y+b = 0 and the conic section bx2 +ay2 = ab is ( 

(A) (B) (C) (D) 

Solution In each case, considerbanda, the y-axis intercept and the 
slope , of the straight line m - y + b = 0. In (A) , we have b > 0 and 
a < 0,  then the conic section must be a hyperbola, and it is 
impossible. Similarly , (C) is also impossible. We have a > 0 and b < 0 

9 in both (B) and (D) , the conic section is a hyperbola. We have - - 
U 

2 
= I. Answer: B. - b  

@a Let a line with the inclination angle of 60" be drawn through the 
focus F of the parabola y2 = 8(x + 2). If the two intersection 
points of the line and the parabola are A and B, and the 
perpendicular bisector of the chord AB intersects the x-axis at the 
point P, then the length of the segment PF is ( ) . 

Solution It follows from the property of the focus of a parabola 
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that F = (0, 0). Then the equation of the straight line through points 

A and B will be y = fix. Substitute it into the parabola equation, and 
then obtain 

3 2  - 8 ~ - 1 6  = 0. 

Let E be the midpoint of the chord AB , then the x-coordinate of 
4 8  16 X-=-, IPFI=21FEI=-.  4 

3 
Eis-. Thenwehave IFEI=- 3 cos6Oo 3 3 
Answer: A. 

e% L e t X e  [ -- ;;, - 31. Then the maximum value of 

y = tan( x+  $)- tan( x+  :)+ cos(x + :) 
is ( ). 

x Solution Let z =-X--. Then z E [“ “1, and2.z E [“ “1 
We have 

6 6 ’ 4  3 ’ Z  * 

Then 

y = cotz+tanz+cosz = - +cosz. sin 22 

Since both - and cos z are monotonic decreasing in this case, sin 22 

4 43- 11 
- +- = -43. Answer: C. 
6 2  6 
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Suppose x, y E (- 2, 2) and xy =- 1. Then the minimum value 

+ y i s  ( >. ofu=-  

8 (A) 7 

9 4 
4 - 2  9-y  

12 (D) 7 12 (C) 7 24 
(€3) fi 

Solution I We have 

9 2  3 5 2  +- = 1+ 4 u = -  
4 - 2  9 2 - 1  -9x4 + 3 7 2  -4 

35 
2 2  

=1+ 
37- ((3x--) X +12) 

1 1 12 Since x E (- 2 - y ) U ( y , 2) , so u reaches the minimum value - 5 

when x =&g. Answer: D. 

Solution I[ 
y2 > 0. Then 

It is known from the conditions that 4 - 2  > O  and9- 

4 9 12 
4 - 2  9-y2 1/ 36 - 9 2  - 4y2 + ( x Y ) ~  

12 
5 '  

-- - 
12 12 

1/37-92-4Y2 2/37-21/= 
> - - 

12 
5 Since u is - when x , so u reaches the minimum. 

Answer: D. 

=: .. Suppose in the tetrahedron AB CD, AB = 1, CD = a, the 

distance and angle between the lines AB and CD are 2 and 

respectively. Then the volume of the tetrahedron equals ( 
3 
) . 

Solution As in the diagram, from point C draw a line CE such that 
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it is equal and parallel to AB. Construct a 
prism ABF - ECD with ACDE as base and BC 
as a lateral edge. Denote V1 as the volume of M@ 

the tetrahedron and V2 the volume of the B ----------- 

prism, thenV1 = -V2. 
'\ 1 

3 C 

1 
2 Since SAQIE = --cE OCDsin L E D ,  and the common 

perpendicular line IWV of AB and C D  is the height of the prism, then 
1 3 1 1 
2 2 3 2 V2 = - IWV CEO CD sin L E D  = -. So Vl = -V2 = -. 

Answer: B. 
Remark If one is familiar with vector calculus, he will find that the 
volume of the parallelogram formed by s and 3 is equal to I I 

It is easier to find 3 1 3  131. sin60" = -. ThenSAaD = - X -  = 3 
2 2 2 4 '  

the solution using vectors. 

Part I1 &ort-answer Questions (Questions 7 to 12 carry 6 marks each. ) 

eZis L- The solution set of the inequality I x I - 2 2  - 4 I x I + 3 < 0 is 

Solution Notice that 1 . T I  = 3 is a root of the equation 1 X I  - 2 2  - 
4 I x I + 3 = 0. Then the original inequality can be rewritten as ( I x I - 
3)(1x12+ lxl-l)<O, that is 

2 
( I XI -3) ( I XI - 

Since I x I - -'-&>O, 2 then -l+&< 1x2:1<3. 

So the solution set is ( - 3, - &-1 ~) U (Jy, 3 ). 
2 

&@& g 2  Suppose points FI F2 are the foci of the ellipse - +L = 3 9 4  P is 
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a point on the ellipse, and I PF1 I : I PF2 I = 2 : 1. Then the area 
of APFlF2 is equal to 

Solution I PF1 I + I PF2 I = 2a = 6 by definition of an ellipse. Since 
IPF11: IPF2I=2:l,thenIPFlI=4andIPF2I=2. Noticethat 

I FlF2 I = 2c = 2&, and 

I PF1 I + I PF2 I = 42 +22 = 20 = I FlF2 I '. 
1 
2 Then APFl F2 is a right triangle. So S ~ ~ F , F ,  = - I PF1 I I PF2 I = 4. 

@&@ LetA= {x I 2 - 4 x + 3 < 0 ,  x €  R}, B =  {x I 21"+a<0, 
2 - 2 ( ~ + 7 ) ~ + 5 < 0 ,  x E R } .  I f A C B ,  thentherangeofreal 
number a is 

Solution It is easy to see thatA = (1, 3). Now, let 

f<x> = 2l" +a,  g(x) = 2 -2(a+7)x+5. 

Then, when 1 < x < 3 , the images of f(x) and g(x) are both below 
the x-axis since A C B. Using the fact that f(x) is monotone 
decreasing and g(x) is a quadratic function, we get A C B if and only 
i f f ( l><O,  g(l)<O, andg(3)<0. So thesolutionis-4<u<-l1. 

3 5 
2 4 

-........ 2 3  Let a ,  b,  c ,  d be positive integers and logab = -, log,d = -. If 

a - c = 9 ,  thenb-d= 

Solution We have b = a $ ,  d = c? from the assumption. We may 
assume that a = 2 , c = y4 with x and y being positive integers, since 
a ,  b, c, dareallpositiveintegers. Thena-c=x'-y4 = (x-y'), 
(x+$) = 9. It follows that (x-y' , x+y2> = (1, 9). So we obtain 
the solutionx = 5, y = 2. That is, b-d = 2 -y5 = 125-32 = 93. 

623 8 balls of radius 1 are placed in a cylinder in two layers, with 
each layer containing 4 balls. Each ball is in contact with 2 balls 
in the same layer, 2 balls in the other layer, one base and the 
lateral surface of the cylinder. Then the height of the cylinder is 
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Solution As in the diagram, letA, B, C, D 
be the centers of the 4 balls in the bottom 

in the upper layer. Then A, B, C, D and A’, B‘, 
C’, D’are the 4 vertices of squares of length 2, 

with centers 0 and d of the squares constitute the bases of another 
cylinder, and the projecting point of A’ on the bottom base is the 
middle point M of arc AB. 

In AA’AB , we have A’A = A’B = AB = 2,  then A’N =&, where 

N is the middle point of AB. Meanwhile, CYM = OA =a, ON = 1 , so 

layer, and A’, B’ , C’ , D’ the centers of the 4 balls 

respectively. Now , the circumscribed circles D 

Then the height of the original cylinder is& + 2. 
Remark In order to solve the problem, you must first be clear about 
the way the balls are placed (each ball in contact with 4 other balls) , 
then determine the positions of the centers of the balls. 

S@& Let M, = (0. a l a 2 ~ - a ,  I ai = 0 or 1, 1 < i <  n- 1, a, = 1) be a 
set of decimal fractions, T, and S, be the number and the sum of 
the elements in M, respectively. Then 

S n  lim, = 

Solution Since a1 , a2 , . . a ,  anPl all have exactly two possible 
values, so T, = 2”-’. Meanwhile, the frequency of ai = 1 is the same 
as that of ai = 0 for 1 < i < n - 1, and a, = 1. Then 

1 1 + - + ... + -)+ 2”-I X-  (h 1;2 1on-I 10” 
1 
2 

s, = - x 2”-1 

1 
18 
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so 

Part I11 Word Problems (Questions 13 to 15 carry 20 marks each. ) 

@B Suppose 3 < X< 5. Prove that 2d-+ d m +  d=< 

22/19. 
Solution By Cauchy's inequality, we have 

2 d i q 7 + d z T 3 + d G F G  

=d-+d-+dzF3+dGFG 

<J[(x+ 1) + (x+ 1) + ( 2 ~ -  3) + (15 - 3 d ] ( 1 2  + l2 + l2 + 12) 

= 2 d G q T <  2 m ,  

and the equality holds if and only/- = - = - and 

x = 5. But this is impossible. So 24- +- +- < 

Remark Some student contestants used the estimate that 
22/19. 

2 d G + d m + d l F G  

<./[(x+ 1) + (2~-33) + (15 - 3 ~ ) ] ( 2 ~  + l2 + 12> 

but this does not give the value as required. 

@E% Suppose A,  B , C are three non-collinear points corresponding to 

z2 = l + c i ( a ,  bandc 1 
2 complexnumberszo =ai ,  z1 =-+bi ,  

being real numbers) , respectively. Prove that the curve 

z = zo~os4t+2z1~os2t  sin2t+z2sin4t ( t  E R) 

shares a single common point with the line bisecting AB and 
parallel to AC in M C ,  and find this point. 



China Mathematical Competition 2003 21 

x + y i  = acos4t i+2(-++i)cos2t* 1 sin2t+(l+ci)sin4t. 2 

Separating real and imaginary parts, we get , -~ 

A 

x = cos2t sin2t + sin4t = sin2t, 

y = a ( l - x ) 2 + 2 b ( l - x ) x + m 2  

(0 < x< 1). 0 

That is, y = (a+c-2b)2? +2(b-a)x+ 

a (O<x<l)  (1) 

Since A, B, Care non-collinear , a+ c- 2b # 0. So Equation (1) is the 
segment of a parabola (see the diagram). Furthermore, the midpoints 

of AB and B C are D( a, F) and E( 9 ,  F) , respectively. So 

(2) the equation of line DE is y = ( c  - a)x  + - (3a + 2b - c). 

Solving Equations (1) and (2) simultaneously, we get ( a  + c - 

2 b ) ( x - y )  = 0. Thenx=-,sincea+c--2b#O. Sotheparabolaand 

line AT have one and only one common point P( , n+c+2b).  Notice 

that - < - < - , so point P is on the segment DE and satisfies 

Equation (1) , as required. 
Solution I[ We can solve the problem using the method of complex 
numbers directly. Let D, E be the midpoints of AB , CB , respectively. 

Then the complex numbers corresponding to D, E are - (zo + z1 ) = 

1 a+b. 1 3 b+c. 7 + -1, - (ZI + z2) = 7 + -1, respectively. So, complex 

number z corresponding to a point on the segment DE satisfies 

z =  A (: - + " f b i ) + ( l - A ) ( + + ~ c i ) ,  2 2 O < A < I .  

1 
4 

l 2  1 
2 

1 1 3  
4 2 4  

1 
2 

2 2 2 
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Substitute the above expression into the equation of the curve 

z = zo cos4 t + 221 cos2 t sin2 t + z2 sin4 t , 
and separate the real and imaginary parts from both sides to give the 
following two equations, 

/.-I A = sin2tcos2t+sin4t, 

Eliminating A from the equations, we get 

b+ = acos4t + (2b + a - c>sin2t cos2t + asin4 3 
4 - (a-c> +2 

=a(l - 2sin2 t cos2 t> + (2b + a - c> sin9 cos2 t 

=a + (2b - a - c)sin9 cos2t. 

Then (2b- a - c> ( sin9cos2t- - = 0. Since A, B ,  C are non- 

collinear , we know that z1 # - (zo + z2 >. So 2b- a - c # 0. Then sin 

9cos2t  = sin2t(l-sin2t) = l, that is, (sin2t--) = 0. Then we 

4 7 
1 
2 

4 2 
l 2  

3 A 1 l 2  1 
4 2 4  2 2 2 have --- = - + (-) = 1, so A = - E [0, 11. That means that 

the curve and the line DE have one and only one common point, and 
the complex number corresponding to this common point is 

&(l 2 4  4 

@&3 A circle with center 0 and radius R is drawn on a paper, and A is a 
given point in the circle with Q4 = a. Fold the paper to make a point 
A’ on the circderence coincident with point A, then a crease line is 
left on the paper. Find out the set of all points on such crease 
lines, when A’ goes through every point on the circumference. 



China Mathematical Competition 2003 23 

Solution Establish an xy-coodinate system 
as in the diagram withA(a, 0) given. Then the 
crease line IWV is the perpendicular bisector of 
segment AA’ when A’ (Rcos a ,  Rsin a )  is made 
coincident with A by folding the paper. Let 
P(x, y) be any point on IWV, then I PA’ I = 

I PAI. That is 

(x-Rcosa)2 +(y-Rsina)2 = (x-a)2 +y2. 

xcosx + ysina - R2 - a2 + 2 m  
@T7 2 R d m  ‘ 

Then - 

where sin0 = d m ’  X cos = Y w‘ 
R2 - a2 + 2 m  

2 R w  
so 

43? >l.  +- R2 -a2 ’ (2x - a )  
R2 

Squaring both sides, we get 

So the set we want consists of all of the points on the border of or 
2 2 

outside the ellipse (2x-aa) 

Remark As seen in the diagram, suppose the crease line intersects 
OA’at point Q. Then from QA = QA’ we have OQ + QA = OA’ = R; 
that is, Q is on an ellipse whose foci are 0 and A. And the expression 
of the ellipse is 

= 1. R2 R2 -a2 

(x-;)2 2 

(;)2 ( + d F 7 ) ,  
+ = 1. 

For any other point P on the crease line IWV, we always have Po + 
PA =Po + PA’ > OA’ = R. So a point of the crease line is either on 
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the border of or outside the ellipse. On the other hand, if from any 
point P on the border or outside the ellipse, we draw a line tangent to 
the ellipse at point Q, then QO + &A = R. Suppose line QO intersects 
the circle at point A’. Then QO+QA’ = R ,  that is, &A =QA’. Then 
using the property of the tangent to an ellipse, we have that PQ 
bisects LAQA’ , and that means the tangent PQ is the crease line as 
mentioned above. The arguments above reveal that the set we find 
consists of all of the points on every tangent to the ellipse. 

Popularization Committee of CMS and Hainan Mathematical Society 
were responsible for the assignment of the competition problems in 
the first and the second rounds of the contests. 

Part I Multiple-choice Questions (Questions 1 to 6 carry 6 marks each. ) 
s@@ Let 0 be an acute angle such that the equation 2 + 4 x 0 s  0 + 

cote=O involving variable x has multiple roots. Then the 
measure of 0 in radians is ( ) . 

x 5 x  x 5 x  x (B) - or - (C) 6 or 3 (D) 12 12 12 (A) 

Solution Since the equation 2 + 4 x 0 s  O+ cot 0 = 0 has multiple 
roots, we have 

A = 16cos2e- 4cot e = 0,  
or 

4~0te(2sin28- 1) = 0. 

BY assumption, o < e< 5 , we get 2 

1 
2 

sin20 = -. 
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It follows that 
x 5 x  20= - or20= -. 6 6 

x 5 x  
12 12 

Thus 0 = - or 0 = -. Answer: B. 

@%& Assume thatM= {(x, y )  1x2 +2$ = 3}, a n d N =  {(x, y )  I 
Y =m +b) .  If M n N # 0 for all m E R, then b takes values 
from ( ). 

Solution For any m E R we have M n N # 0, which means point 

(0, b) is on or in the ellipsoid - + 2y = 1. Therefore 2 2  
3 3  

2b2 & & -< l ,o r - -<b<- .  3 2 2 

Answer: A. 

1 
2 

@B The solution set of the inequalityd-+-log+$’ +2 > 0 is 

( >. 
(A) [2, 3) (B) (2, 31 (C) [2, 4) (D) (2, 41 

Solution The initial inequality is equivalent to 

4 d w - l l o g 2 X + -  3 3 1  +- > 0,  2 2  
LlOg2X- 1 > 0. 

Let t = d w ,  we have 

Jt-,t2+->0, 3 1 
2 
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The solution of the above inequalities is 0 < t < 1, or 0 < logzx- 
1 < 1 , which implies that 2 < x < 4. Answer: C. 

@$@ Let 0 be an interior point of aABC such that 3 + 2 3 + 
3 Z =O. Then the ratio of the area of aABC to the area of 
a A o c i s (  >. 

5 (A) 2 (€3) 2 (C) 3 (D) j- 3 

Solution In the diagram, let D and E be the midpoints of the sides 
AC and B C , respectively. Then we have 

S + Z = 2 3 ,  (1) 

2 ( 3 + Z )  = 4%. (2) 

and 

By equations (1) and (2) we get 

I: 

S + 2 3 + 3 Z  = 2 ( 3 + 2 % )  = 0. 

It follows that 3 and % are collinear, and 
+ + SaAEC 3 I OD I =2 I OE I .  Consequently, ~ - - - 

E sapoc 2 e 
- - 3. Answer: C. and- - - - SaABC 

sapoc 2 

&% Let n = Zi be a 3-digit number. If we can construct an isosceles 
triangle (including equilateral triangle) with a, b and c as the lengths 
of the sides. The number of such 3-digit integers n is ( ) . 
(A) 45 (B) 81 (C) 165 (D) 216 

Solution If a ,  b and c are the lengths of the sides of a triangle, all of 
them are not zero, it follows that a , b , c E { 1, 2, . . a ,  9). 

(9 If the triangle we construct is equilateral, let nl be the number 
of such 3-digit numbers. Since the three digits in such 3-digit number 
are equal, we have 

nl = = 9. 
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a 

b 

(ii) If the triangle we construct is isosceles but not equilateral, let 
n2 be the number of such 3-digit numbers. Since there are only 2 
different digits in such a 3-digit number, denote them by a and b. Note 
that the equal sides and the base of an isosceles triangle can be 
replaced by each other, thus the number of such pairs (a, b) is 2G. 
But if the bigger number , say a , is the length of the base, then a must 
satisfy the condition b < a < 2b. All pairs that do not satisfy this 
condition we list in the following table. There are 20 pairs. 

9 8 7 6 5 4 3 2 1 

2,  1 2,  1 1 1 4, 3 ,  4, 3 ,  3 ,  2,  3 ,  2,  
2 ,  1 2,  1 1 1 

On the other hand, there are Cg possible 3-digit numbers with 
digits taken from a given pair (a, b). Thus 

n2 = (2G - 20) = 6 ( G  - 10) = 156. 

Consequently, n = nl +n2 = 165. Answer: C. 

The vertical cross-section of a circular cone with vertex P is an 
isosceles right-angled triangle. Point A is on the circumference of 
the base circle, point B is interior to the base circle, 0 is the 
center of the base circle, AB I OB and intersecting at B, OH I 
PB and intersecting at H, PA = 4, and Cis the midpoint of PA. 
When the tetrahedron 0 - HPC has the maximum volume, the 
length of OB is ( >. 

Solution Since AB I OB, andAB I OP, we 
have AB I PB , and PAB I FOB. Moreover, 
from OH I PB we obtain that OH I HC and 
OH I PA. Since C is the midpoint of PA, 
O C I P A .  Thus, PC is the altitude of the A 
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tetrahedron 0 - HPC and PC = 2. 
In RtAOHC, OC = 2. Therefore when HO = HC , SABC reaches 

its maximum, that is, Vo-~pc = V p - ~ a  reaches its maximum. In this 

case, HO =a, and HO = -0P. Hence, L H P O  = 30°, and OB = 

OP *tan3O0 = -. Answer: D. 
3 

1 
2 

2& 

Part I1 Short-answer Questions (Questions 7 to 12 carry 6 marks each. ) 
@&& In a planar rectangular coordinate system d y  , the area enclosed 

by the graph of function f(x> = asinax + cosax (a > 0) defined 
on an interval with the least positive period and by the graph of 

function g(x> = d m  is 

Solution w e  rewrite function f<x> as f < x >  = d m s i n ( a x  + pi> , 
where p = arctan -. Its least positive period is - , and its amplitude is 

d m .  By symmetry of the figure enclosed by the graphs of the 
functions f(x> and g(x> , we can change the figure into a rectangle 

with length ?? and w i d t h d m  using the cut-and-paste method. 

1 2x 
a a 

a 

Therefore its area is @ d W .  
a 

&% Let f: R+R be a function such that f(O> = 1 and for any x, 
y ER, f(xy+l) = f(x>f(y>-f(y>-x+2 holds. Thenf(x> = 

Solution Since for any X, y E R, f(xy + 1) = f(x>f(y> - f(y) - 
x + 2, we have 

f(yx + 1) = f(y>f(x> - f<x> - y + 2. 

Thus, 

f(x>f(y> - f(y) - x + 2 = f(y>f(x> - f<x> - y + 2 , 
that is, 
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f<x> + y = f ( Y )  +x. 

Put y = 0,  we obtain f(x> = x+ 1. 

In the diagram, ABCD -A1 B1 CI D1 is a cube. The dihedral angle 
A - BD1 - Al in degrees is 

Solution Draw line segments DIC, and 
CE such that CE 1 BD1 , Eis the foot of the 
perpendicular. Let the extended lines CE 
andAIB intersect at F. Draw line segment 
AE. By symmetry we have AE 1 BDI. 

dihedral angle A - BD1 - Al. Draw a line 
segment connecting points A and C, and set 

AB = 1, then AC = AD1 = a, BD1 = a. In RtAABDl, AE = 

A, 

Therefore L E A  is the plane angle of the 

A 

AE2 +CE2 -AC2 - - 2AE2 -AC2 
2AE.CE 2AE2 

cosLAEC = 

3 

Thus LAEC = 120". But L E A  is the supplementary angle of LAEC, 
h e n c e L E A  = 60". 

KES Let p be an odd prime. Let K be a positive integer such that 

d m  is also a positive integer. Then K = 

Solution S e t d w = n , n E N .  ThusK2-pK-n2 =O,andK= 

, which implies that p2 + 4n2 is a perfect square, says P t W  
2 

m2,  wherem E N. So (m-2n>(m+2n> = p2. 
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Since p is a prime and p 3 , we have 

m-2n = 1, { m+2n  = p2. 

Solve the equations above and we get 

P2 +1 

p2-1 

m=-, 
2 

4 .  
n=-  

(the negative value is omitted). 

e-i$-s -.....-.. Let q , al , a2 , , a, , be a sequence of numbers satisfying (3 - 
" 1  

%+I) (6+a,) = 18, and% = 3. Then c - equals 
;=o ai 

18 , namely, 

is a geometric progression with common ratio 2. Thus 

b,+- 1 = 2 ~ ( b o + - ) = 2 " ( - + - ) = - X 2 " + ' ,  1 1 1  1 
3 3 a0 3 3 

1 
3 b, = -(2"f1 - 1). 

Therefore 
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1 
3 

- - -(2”f2 -n-3) .  

%@% Let M(- 1, 2) and N(1, 4) be two points in a plane rectangular 
coordinate system xOy. P is a moving point on the x-axis. When 
LMPN takes its maximum value, the x-coordinate of point P is 

Solution The center of a circle passing through pointsMandNis on 
the perpendicular bisector y = 3 - x of M N .  Denote the center by 
S ( a ,  3 - a )  , then the equation of the circle S is 

(x---.)2+(y-3+.)2 = 2(1+a2). 

Since for a chord with a fixed length, the angle at the 
circumference subtended by the corresponding arc will become larger 
as the radius of the circle becomes smaller. When L W N  reaches its 
maximum value, the circle S through the three points M, N and P will 
be tangent to the x-axis at P, which means the value a in the equation 
of S has to satisfy the condition2(1+a2) = ( ~ - 3 ) ~ .  Solve the above 
equation we have a = 1 or a = - 7. Thus the points of contact are 
P(l , 0) and P’(- 7, 0) respectively. 

But the radius of the circle through points M, N, and P’ is larger 
than that of the circle through points M, N and P. Therefore 
L M P N  > LMP’N.  Thus P(1 , 0) is the point we want to find, and 
the x-axis of point P is 1. 

Part I11 Word Problems (Questions 13 to 15 carry 20 marks each. ) 
@ $  The rule of an “obstacle course” specifies that at the nth obstacle 

a person has to toss a die n times. If the sum of points in these n 
tosses is bigger than 2” , the person is said to have crossed the 
obstacle. 
(1) At most how many obstacles can a person cross? 
(2) What is the probability that a person crosses the first three 

obstacles? 
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(Note: A die is a fair regular cube, on its six faces there are 
numbers 1 , 2 , 3 , 4 , 5 , 6 respectively. Toss a die, the point is the 
number appearing on its top face after it stops moving. ) 

Solution Since the die is fair, the probability of any of the six 
numbers appearing is the same. 

(1) Since the highest point of a die is 6, and 6 X 4 > 24 , 6 X 

5 <25 , it is impossible that the sum of points appearing in n tosses is 
bigger than 2” if n 5. This means it is an impossible event, and the 
probability of crossing the obstacle is 0. 

Therefore at most 4 obstacles that a person can cross. 
(2) We denote A, the event “at the nth obstacle the person fails to 

cross” , the complementary event A, is “at the nth obstacle the person 
crosses successfully”. 

At the nth obstacle of this game the number of all possible 
outcomes is 6”. 

The first obstacle: event Al contains 2 possible outcomes (i. e. , 
the outcomes in which the number appearing is 1 or 2 ) .  So the 
probability of crossing the obstacle is 

P(&) = 1- 

The second obstacle: the number of outcomes contained in event 
A2 is the total number of positive integer solution sets of the equation 
x+ y = a where a is taken to be 2,  3 and 4 respectively. Thus the 
number of outcomes equals Ci + + C$ = 1 + 2 + 3 = 6, and the 
probability of crossing the obstacle is 

6 5  
62 6 ’  

- 
P(A2) = 1 - P(A2) = 1 - - = - 

The third obstacle: the number of outcomes contained in event 
A3 is the total number of positive integer solution sets of the equation 
x + y + z = a where a is taken to be 3, 4, 5, 6, 7 and 8 respectively. 
Thus the number of outcomes equals 



China Mathematical Competition 2004 33 

a+C3+C$+@+Cg+C'$  = 1 + 3 + 6 + 1 0 + 1 5 + 2 1 = 5 6 ,  

and the probability of crossing the obstacle is 

56 20 P(&) = 1 - P(A3) = 1 - - = - 
tj3 27' 

Consequently, the probability that a person crosses the first three 
obstacles is 

2 5 20 100 
3 6 27 P(&) x P ( Z )  x P(&) = - x - x - = 243. 

(We can also list all the possible outcomes at the second obstacle and 
at the third obstacle. ) 
Remark Problems concerning probability theory first appeared in 
the National High School Mathematics Competition. Problems are not 
too difficult. Topics such as derivative and its applications have 
already appeared in high school textbooks. These topics will also 
appear in mathematics competitions. 

@$9 In a plane rectangular coordinate system xOy there are three 

pointsA(0, 3)' B(-  1, 0) and C(1, 0). The distance from 

point P to line BC is the geometric mean of the distances from 
this point to lines AB and AC. 
(1) Find the locus equation of point P. 
(2) If lineL passes through the incenter (say, D ) of M C ,  and 

has exactly 3 common points with the locus of point P. 
Determine all values of the slope K of line L. 

4 

4 
3 

Solution (1) The equations of lines AB, AC and BC are y = -(x+ 

1) , y =--(x-l) andy = 0 respectively. The distances from point P 

to AB , AC and BC are respectively 

4 
3 
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1 
5 d2 = - I 4 ~ + 3 y -  4 I , d3 = I y 1 .  

According to the assumption, dl d2 = d? , we have I 16x2- ( 3 ~ -  4>2 
25y2. That is 

1 6 2  - ( 3 ~ - 4 ) ~  +25$ = 0,  or 1 6 2  - ( 3 ~ - 4 4 ) ~  -25y2 = 0. 

By simplifying the above equations, we obtain that the locus 
equations of point P consist of 

circle S :  2 2  +2y2 +3y-2 = 0 

and 

hyperbola T: 8 2  - 17y2 + 12y - 8 = 0. 

(2) According to (1) , the locus of point P consists of two parts 

circle S :  2 2  +2$ +3y-2 = 0,  

hyperbola T: 8 2  - 17y2 + 12y - 8 = 0. 

0 
and 

0 
Since B(- 1 , 0) and C(l , 0) are points satisfying the assumption, 

points B and C are on the locus of point P, and the common points of 
the curves S and Tare points B and C only. 

The incenter of a A B C  is also a point satisfying the assumption. 
1 In view of dl = d2 = d3 , solving the equations we have D( 0 , -) 2 .  

Line L passes though D, and has three common points with the 
locus of point P. So the slope of L is defined. Suppose that the 
equation of L is 

0 

( i ) If k = 0,  then L is tangent to the circle S, which means 
there is a unique common point D. In this case line L is parallel to the 
x-axis, which implies that L and hyperbola T have two other common 
points different from point D. Hence, there are just three common 

1 
2 y = k x + - - .  
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points for L and the locus of point P. 
( ii ) If K # 0 , there are two different intersection points for L and 

the circle S. In order that L and the locus of point P have 3 common 
points, we must have one of the following two cases. 

Case 1: Line L passes through point B or point C, which means 

that the slope of L is K =+’ , and the equation of L is x =+ (2y- 1). 

Substitute it into equation 0 we get 
2 

y(3y-44) = 0. 

) , which means that 

line BD and curve T have 2 intersection points B and E, and line CD 
and curve T have 2 intersection points C and F. 

5 4  Solving it we have E( - -) or F(- - 3 ’  3 3 ’ 3  

Consequently, if K =+ for L and the locus of point P there are 2 
exactly 3 common points. 

Case 2: Line L does not pass through point B and point C 

(i. e. K #+ +). Since for L and S there are two different intersection 

points, there exists a unique common point for L and hyperbola T. 
Thus for the following system of equations 

there is one and only one real solution. After eliminating y and 
simplifying we have 

25 
4 (8-l7K2)2-5Kx-- = O .  

The above equation has a unique real solution if and only if 

8-17K2 = 0 0 
or 
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0 (- 5K)2 + 4(8 - 17K2) - 25 = 0. 
4 

Solving equation @I we get K =+ =. And solving equation 0 
17 

.Jz we obtain K =+ -. 2 
Consequently, the set of all possible values of the slope K of line L 

is the following finite set 

@@ Suppose that a and p are different real roots of the equation 
4 2  - 4tx - 1 = 0 ( t  E R). [ a ,  p] is the domain of the function 

2x- t f<x> = ~ 

x2 + 1' 
(1) Find g(t> = maxf(x> - minf(x). 

(2)ProvethatforuiE (0, ; ) ( i = l ,  2, 3) , i fs inul+sinu2+ 

sinu3 = 1, then 

1 
2 2XIX2 - t(X1 + x 2 )  - - < 0. 

But 

2x2 - t  2x1 - t  

x;+1 x ? + l  
f(X2)-f(X1> = 
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f ( x 2 )  - f(xd > 0. 

Consequently, f(x) is an increasing function on the interval 
[ a ,  la. 

1 
4 Since a +/3 = t and a/3 = - - , 

l6 +24cosui -(++3) 8 - 
cos ui cosui cos ui - - 

16 + 9c0s2ui 
( 2 )  g(tanui) = 

lfi) + 9  

so 

= -( 1 16 X 3+9 X 3 - 9 2  sin2u;). 
16 & i= 1 

Since k s i n u ;  = 1, andui E (0, ;), i = 1, 2 ,  3,  we obtain 
i=l 

i= 1 i= 1 
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Thus 

Remark 
inequality to increase the level of difficulty. 

Part (1) of this problem is well-known, we put in an 

2005 (Jiangxi) 

Popularization Committee of CMS and Jiangxi Mathematical Society 
were responsible for the assignment of the competition problems in 
the first and the second rounds of the contests. 

Part I Multiple-choice Questions (Questions 1 to 6 carry 6 marks each. ) 

@@& Let K be a real number such that the i n e q u a l i t y d a + d z >  
K has a solution. The maximum value of K is ( 
(A)&-& (B)& (C) &+& (D) & 

) . 

Solution Set y = d a + d z ,  3 < x < 6. 
Then 

9 = ( ~ - 3 3 ) + ( 6 - ~ ) + 2 J ( ~ - 3 3 ) ( 6 - ~ )  

< 2 [ ( ~ - 3 ) +  ( 6 - ~ ) ] =  6. 

So 0 < y < &, and the maximum value of K is&. Answer: D. 

-- CS =a A, B, C, D are four points in the space and satisfy 1s I = 3, 

I X l - 7 ,  131 = 11 and 
( ) values. 

= 9. Then IzI has 
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(A) only 1 (B) two 
(C) four (D) infinitely many 

Solution Note that s2 +s2 = 32 +112 = 130 = 72 +92 = Z2 + 
D A 2 .  Since 

s+z+s+s=3, 
DA2 =s2 = (s+Z+s)2 

=AB2 + BC2 + a2 + 2 ( B  Z+Z s+S a) 
=AB2 -BC2 +a2 +2(BC2 +AB *BC+BC*CE+CE AB) 
=AB2 - BC2 +a2 + 2 ( A B + Z )  (Z+S) 9 

i.e. 2 1 x 1  ISI = 2 1 A B + Z I  IZ+SI 
= A D 2 + B C 2 - A B 2 - a 2 = O S  

Thus I x I I S I has only one value 0. Answer: A. 

@@B M C  is inscribed in a unit circle. The three bisectors of the angles A, 
B and Care extended to intersect the circle at A1 , 4 and C, respectively. 

Then the value of 

(A) 2 (B) 4 (C) 6 (D) 8 

A B C A A 1  cos - + BB 1 cos - + CC1 cos - 
2 
sinA + sin B + sin C 2 2 i s (  >. 

Solution Join 841 as shown in the diagram. A 

Then 

A + B + C  B C 
A 4 1  = 2sin( B + $) = 2sin( +2-2) 

B C  
= 2cos( 2 - 2 ). 

A, 

x x 
= cos( - - C)+ cos( - - B )  = sin C+ sin B. 2 2 



40 Mathematical Olympiad in China 

Similarly, 

B C 
2 2 BB1 cos - = sinA + sin C, CC1 cos - = sinA + sin B. 

Therefore 

A B C 
2 2 2 AA cos - + BB cos - + CC1 cos - = 2 (sinA + sin B + sin C) , 

= 2. 2 (sinA + sin B + sin C) 
sinA + sin B + sin C and the original expression = 

Answer: A. 

As shown in the diagram, ABCD -A’B’C’D’ is a cube. Construct 
an arbitrary plane a perpendicular to the diagonal AC ’ such that a 

has common points with each face of the cube. Let S and L 
denote the area and the perimeter of the cross-section of a 

respectively. Then ( ). 

(A) S is a fixed number and L is not 
(B) S is not fixed and L is fixed 
(C) Both S and L are fixed \ /  

\ I \  

\ I ” 

D‘&’-- >+- -> c I ‘\ 

,. (D) Neither S nor L is fixed I ,. 
B 

Solution After cutting off two regular /’ 

pyramidsA -A’BD and C’ - D ’B’C, we get a 
geometric solid V with two parallel planes A’BD and D ’B’C as its 
upper and lower bases. Each lateral face is an isosceles right triangle 
and each side of the cross-section (denoted by W) is parallel to a side 
of the bases of V respectively. Cut the lateral face of V along the edge 
A’B’ and stretch it on a plane, we get DA’B’B1 A1 and the perimeter 
of W is stretched into a line segment (E’E1 in the figure) which is 
parallel to A’Al . Clearly, E’E1 = A’Al . Thus L is a fixed value. 

When E’ is the midpoint of A’B’, W is a regular 6-gon. But when 

A 

E’ is moved to A’, W is an B‘ C D’ B ,  

equilateral triangle. It is easy 
to see that the areas of a A’ B D A ,  

/\ /\ 
\/ 
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regular 6-gon and an equilateral triangle with the same perimeter L are 

24 36 
&L2 and 43 -L2 respectively. Thus S is not fixed. Answer: B. 

+ 2 
sinfi-  sin& 

@@ The curve represented by the equation 

2 
= 1is  ( >. 

cos 42 - cos 43 
(A> An ellipse with the foci on the x-axes 
(B) A hyperbola with the foci on the x-axes 
(C> An ellipse with the foci on the y-axes 
(D) A hyperbola with the foci on the y-axes 

Solution Sincefi+&>x, ~ o O < ~ - f i < & - ~ < ~  and 2 2 2  

cos( 5 -&)> cos(43- 5),  i. e. sin& > sin&. 

x x  SinceO<f i<y ,  y<&<x, s o c o s f i > O ,  cos&<O, and 

cos 42 - cos 43 > 0. Thus the curve represented by the equation is an 
ellipse. 

Since (sinfi-  sin&)- ( c o s f i -  cos&) 

- and x 42-43 ,<,-<o, 
L L 

we get x a+& 3x sin fi-& - < 0 ,  y<- 2 <,, 2 

3x -<- 4 2 

( * >  
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so the expression ( * ) is less than 0. 

ellipse with foci on the y-axies. Answer: C. 
That is sinfi- s inf i<  c o d -  c o s f i ,  therefore the curve is an 

@ L e t T =  (0 ,  1 , 2 , 3 , 4 , 5 , 6 )  a n d M =  ( -+-+-+-;  a1 a2 a3 a4 

7 72 73 74 

ai ET, i = 1, 2, 3 ,  41. Arrange the numbers in M in the 

descending order. Then the 2 005-th number is ( ) . 
5 5 6 3  

7 7 7  
1 1 0 4  
7 7 2 7 7  

(A)?+,+,+, 

(c)-+-+T+Q 

5 5 6 2  
7 7 7  

1 1 0 3  (D) -+-+T+Q 
7 7 2 7 7  

(my+,+,+, 

Solution 
Multiply each number in M by 74 , and we get 

Let [ a l a 2 ~ ~ ~ a k ] p  be a number base p with K digits. 

IVf = ( ~ 1 7 ~  +U272 + a 3 7 + ~ 4 ;  ai E T, 

i = 1, 2, 3 ,  4) = { [ u I u ~ u ~ u ~ ] ;  I ai E T, i = 1, 2, 3, 4). 

The maximum number inM' is [6 66617 = [2 400110. 
In the decimal system, starting from 2 400 in the descending 

order, the 2 005-th number is 2 400 - 2 004 = 396. But [396]10 = 

[l 10417. Divide this number by 74 , we get a number in M, that is 
1 1 0 4  -+,+-+-. Answer: C. 
7 7 73 74 

Part I1 Short-answer Questions (Questions 7 to 12 carry 6 marks each. ) 
@$@ Express the polynomial in x f(x) = 1 - x + 2 - 2 + 

XI9 +go into a polynomial in y g (y) = a0 + a1 y + a2y2 + 
a19yI9 + a20y20 , where y = x - 4. Then a0 + a1 + 

- 

+ 
+ a20 = 

Solution The terms in the expression f(x> form a geometric series 
with first term 1 and common ratio - x .  By the summation formula of 
geometric series, 



China Mathematical Competition 2005 43 

( - d 2 I  -1 2 l + 1  
- 

-x-1 x + l  * 
f<x> = 

Set x = y + 4 ,  g(y> = ( Y + ~ ) ~ ~  +'. Lety = I ,  we get 
Y+5 

521 +1 
a0 +a1 + ... +a20 = g(1) = ~ 

6 '  

@&@ Let f<x) be a decreasing function defined on (0, +m). If 
f(2a2+a+1)<f(3a2-44a+1), then therangeof a is ~ 

Solution Since f<x> is defined on (0, +m), from 

12a2+.+1= 2(a+iC> l 2  +x 7 > o ,  
I 

( 3 a 2 - 4 ~ + 1  = (3a- l ) (u-1)>0,  

1 
3 

a > 1 or a < -. we get (1) 

Since f<x> is a decreasing function on (0, + 00) , so 

2a2 + a +  1 > 3a2 - 4a+ 1*a2 - 5a < 0. 

1 
3 

Thus 0 < a < 5. Combining this with (1) , we have 0 < a < - or 

1 < a < 5 .  

@@ Assumethata,p,  Ysat isfyO<a<P<~<2x.  If 

co& + a> + c 0 4 x  + p> + c 0 4 x  + Y )  = 0 

for arbitrary x E R, then Y -  a = 

Solution Write f<x> = cos(x+a> +cos(x++P) + C O S ( X + Y ) .  Since 
f ( x ) = O f o r x €  R, 

f < - a )  = 0 ,  f<-Y> =Oandf(-p) = O .  
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That is cos(P- a) + COS(Y - a> =- 1, 

cos(a-P> + c o s ( ~ - P )  =- 1, 

cos(a- Y )  + cos(P- Y )  =- 1, and 

1 
2 cos(P- a) = C O S ( Y -  P> = C O S ( Y -  a> =- -. so 

2x 4x 
~ i n c e 0 < a < p < ~ < 2 x ,  sop--, Y-P,  7 - a E  (- }. In 

view of P- a < Y -  a, Y-P< Y- a, it is possible only when P- a = 

3 ' 3  

2x 4x y - P = - , s o y - a = - .  
3 3 

2x 2x 
3 3 On the other hand, whenP-a= y-P= -, we havep= a+-, 

Y = a+ -. For arbitrary x E R, we denote x + a = 8. Since three 4x 
3 

are the vertices of an equilateral triangle on the unit 

circle 2 + y2 = 1 with center at the origin, it is obvious that 

cose+cos ( e+- 3 +cos ( e+- '3") = o ,  

and that is c 0 4 x  + a> + c 0 4 x  + P> + cash + Y )  = 0. 

1 
6 @$B As shown in the diagram, the volume of tetrahedron DABC is -. 

AC Also, L A C B  = 45" , and AD + B C + - = 3. Then CD = 
42 
D 

Solution Since 

1 
6 sin4501 >VDUC = - , so AD *BC > I. 

42 B 
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Notethat3 = A D + B C + -  2 3  J-2 A D * B C * -  3. The 

equality holds if and only if AD = BC = - = 1. It follows that AD is 

perpendicular to the face ABC. So DC =dAD2 +AC2 = a. 

42 
AC 
./z 

@3 If one side of square AB CD is on the line y = 2 x  - 17, and the 
other two vertices lie on parabola y = 2. Then the minimum 
area of the square is 

Solution Assume that AB is on the line y = 2 x  - 17 and the 
coordinates of the other two vertices on the parabola are C(xl , y l )  
and D ( x 2  , y2 ). Then CD is on a line L whose equation is y = 2 x  + b. 
Combining this with the equation of the parabola, we get 2 = 2x+ 

b * X I ,  2 = 1 & d m .  Assume that the length of one side of the 
square is a. Then 

= 5 ( X l  - = 20(b+ 1). (1) 

Pick a point (6, - 5 )  on the line y = 2 x  - 17, and the distance 
from the point to the line y = 2 x  + b is a. 

so ( 2 )  

From (1) and ( 2 ) ,  we get bl = 3, b2 = 63, so a2 = 80 or a2 = 

1 280, and aLn = 80. 

@@iB A natural number a is called a “lucky number” if the sum of its 
digital is 7. Arrange all “lucky numbers” in an ascending order, 
and we get a sequence a1 , a2 , ..a. If a, = 2 005, then a5, = 

Solution 
equation X I  + x 2  + 

Since the number of non-negative integer solutions of 
+ X k  = m is G + k - l ,  the number of integer 
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solutions, whenxl > landx i>O( i>2) ,  isC;&. L e t m = 7 ,  the 
number of lucky numbers with K digits is p(K)  = C2+5. 

Since 2 005 is the minimum lucky number of the type 2abc and 
p(l) =a = 1, p(2) = C$ = 7, p(3) = a = 28. Note that the 
number of four digits lucky numbers of the type labc is the number of 
non-negative integer solutions of a+b+c = 6,  i. e. a++, = 28. Thus 
1 + 7 + 28 + 28 + 1 = 65 and 2 005 is the 65-th lucky number, i. e. 

~ 

~ 

a65 =2 005, SO n = 65, 5n = 325. 
5 

Furthermore p(4) = C$ = 84, p(5) = C ~ O  = 210 and cp(K) = 
k= 1 

330. 
Therefore the last six lucky numbers with 5 digits, from the 

largest to the smallest, are 70 000, 61 000, 60 100, 60 010, 60 001, 
52 000. So The 325-th lucky number is 52 000, i. e. a5, = 52 000. 

Part I11 Word Problems (Questions 13 to 15 carry 20 marks each. ) 
s@.&& Given a sequence {a,} of numbers satisfying a0 = 1, an+l = 

, n E N .  
7a, + d W  

2 
Prove that 
(1) for each n E N, a, is a positive integer. 
(2) for each n E N, anan+l - 1 is a perfect square. 

Proof (1) By assumption, al = 5 and {a, } is strictly increasing with 

Square both sides, and we get 

ai+l - 7a,a,+l + + 9 = 0 9 0 
0 

0 - 0 : an+l = 7a, - U,-l. 0 
It follows from a. = 1 , al = 5 and 0 that a, is a positive integer 

2 a, - 7U,-l a, + Ui-1 + 9 = 0 , 

for each n E N. 



so 

China Mathematical Competition 2005 47 

(2) From 0, we get (a,+l +a,>2 =9(U,U,+l - 1>, 

is a 

(%+I + a n y  - - U,+~U, - 1 is a positive rational number. Since 

%+I +a, 
3 integer, so is 

%+I +a, 
3 By (1) , a, , an+l are positive integers and therefore 

3 

. Thus an+lan - 1 is the square of an integer. 

&5$ -- Nine balls, numbered 1, 2, , 9, are put randomly at 9 equally 
spaced points on a circle, each point with a ball. Let S be the sum 
of the absolute values of the differences of the numbers of all two 
neighboring balls. Find the probability of S to be the minimum 
value. (Remark: If one arrangement of the balls is congruent to 
another after a rotation or a reflection, the two arrangements are 
regarded as the same). 

Solution 9 balls with different numbers are placed at 9 equally 
spaced points on a circle, one point for one ball. This is equivalent to 
a circular arrangement of 9 distinct elements on a circle. Thus there 

81 are 8! arrangements. Considering the reflections, there are 2 
essentially different arrangements. 

Next, we calculate the number of arrangements, which make S 
the minimum. Along the circle there are two routes from 1 to 9, the 
major arc and the minor arc. For each of them, let XI , x 2  , , Xk be 
the numbers of the successive balls on the arc, then 

I1--1I+ I . . 1 - ~ 2 I + - . + I ~ k - ~ I  

> I  (1 - X I >  + (XI - ~ 2 2 >  + 
= I 1 - 9 I = 8. 

+ h k  -9) I 

The equality occurs if and only if 1 < XI < x 2  < < xk < 9, i. e. 
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the numbers of the balls on each route is increasing from 1 to 9. 
Therefore, S- = 2 8 = 16. 

From the above analysis, when the numbers of the balls 
{ 1 , x1 , x2 , , Xk , 9 } on each arc are fixed, the arrangement which 
gets the minimum value is uniquely determined. Divide the set of 7 
balls (2 ,  3,  . . a ,  8 )  into two subsets, then the subset which contains 
less elements has a +G +G +G = 26 cases. Each case corresponds 
to a unique arrangement, which achieves the minimum value of S. 
Thus, the number of the arrangements when S takes the minimun 

26 1 value is 26 and the corresponding probability is p = - = ~ 

- 8! 315' 
2 

@@ Draw a tangent line of parabola y = 2 at the point A(1, 1). 
Suppose the line intersects the x-axis and y-axis at D and B 
respectively. Let point C be on the parabola and point E on AC 

AE BF such that - = A,. Let point F be on BC such that - = A2 and EC FC 
A, + A2 = 1. Assume that CD intersects EF at point P. When point 
Cmoves along the parabola, find the equation of the trail of P. 

Solution I The slope of the tangent line passing through A is y' = 

2x IZ=l = 2. So the equation of the tangent line AB is y = 2x - 1. 

Hence The coordinates of B and D are B(O , - 1) , D ( y , 0). Thus D is 

the midpoint of line segment AB. 
Consider P(x, y) , C(x0 , 4) , E(x1 , y1) , F(x2 , y2 >. Then by 

1 

BE 
1 + A 1  1 + A 1  FC . From - = A,, AE l + A I X O ,  y1 - - 1+Al4 

= A , ,  we know x1 = 

A2 xo - 1 + A 2 4  
' y 2 =  1 + A ,  * 1 +A2 

we get x 2  = ~ 

Therefore the equation of line EF is 
l + A I - d  1 +AIXO 

y- 1 + A ,  x- 1 + A ,  
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Simplifying it, we get 

[(-A2 - -A1 h o  - (1 + A2)ly 

=[(-A, --Add -3]x+l+xo --A2xo. 2 

1 When xo # y , the equation of line CD is 

2 4 x - 4  
y =  2x0-1 * 

(1) 

(2) 

xo+1 x=-  
3 ’  

XO 

3 y = - .  

Eliminating xo , we get the equation of the trail of point P as y = 

From (1) and (2) , we get 

1 
3 -(3x- 1)2. 

1 3 1 1 
2 2 4 

When xo = - , the equation of EF is - -y = ( 4-A2 - --Al - 3) 

3 1  1 x+ - - --A2 , the equation of CD is x = -. Combining them, we 2 4  2 

conclude that (x, y> = ( i, &,) is on the trail of P. Since C and A 

cannot be congruent, x0 # 1, x # 3. 2 

1 2 
3 

Therefore the equation of the trail is y = -(3x - 1)2, x # ?. 
Solution I[ 

B ( 0 ,  - l ) , D ( y ,  0 ) .  ThusDis themidpointofAB. 

From Solution I , the equation of AB is y = 2~ - 1, 
1 

CD CA CB 
CP CE CF SetY=-, t l=- -=l+Al ,  t 2 = - = 1 + A 2 .  Thentl+t2 =3. 

Since AD is a median of M C ,  S a c ~  = 2 S p - c ~ ~  = 2saCBD where 
Sa denotes the area of A. But 
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3 
2 so Y = - and P is the center of gravity for AABC. 

Consider P(x, y> and C(x0 , 4). Since C is different from A, 
xo # 1. Thus the coordinates of the center of gravity P are x = 

-1+1+4 4 
= - Eliminating xo , 2 

3 3 9 x # 3 , y =  3 3' 
O+l+XO 1+xo 

- 

1 1 
3 3 we get y = -(3x- 1>2. Thus the equation of the trail is y = -(3x- 

2 1 > 2 ,  X#?. 



China Mathematical 
Competition (Extra Test) 

a@ As shown in the diagram, in M C ,  L A  = 60°, AB >AC, point 
0 is a circumcenter and H is the intersection point of two 
altitudes BE and CF. Points M and N are on the line segments BH 
and HF respectively, and satisfy BM = CN. Determine the value 

of M H + N H  
OH ' 

Solution 
join OB , OC and O K .  

We take BK = CH on BE and 

From the property of the circumcenter 
of a triangle, we know that L B O C  = 

/ /  

B c 
2 L A  =120°. From the property of the 
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orthocenter of a triangle, we get L B H C  = 180" - L A  = 120". So 
L B O C  =LBHC.  Then four points B, C, H and 0 are concyclic. 
Hence LOBH = LOCH.  

In addition, OB = OC and BK = CH. Therefore, A B O K  Z 
ACOH. It follows that L B O K  = LCOH , and OK = OH. 

so , LKOH = L B o C  = 120", 

LOKH = LOHK = 30". 

In A O K H ,  by the sine rule, we get KH = a 0 H .  In view of 
EM =CN and BK = CH,  we get KM = N H ,  and 

M + N H  = M H + K M =  KH = a O H .  

M + N H  =a. 
OH 

Therefore , 

@$@ There are real numbers a ,  b and c and a positive number A such 
that f (x) = 2 + ax2 + b x  + c has three real roots XI , x2 and x3 
satisfying 
(1) x2 -XI = A, 

1 
(2) x3 > +I +x2) .  

2a3 + 27c - 9ab 
A3 

Find the maximum value of 

2a3 + 27c - 9ab 
A3 

Solution Let S = , then 

- S =  - 

A3 A3 

1 1 
3 

) (- 7 a - x2 ) (- -a - x3 ) 
- - 
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a .  Writeu~=x~+-(z=1,2,3),thenu2-ul=x2-xI=A,u3> 

1 
-(UI +u2) ,  andul +u2 +u3 = XI + x 2  +x3 +a = 0. So, ul, u2 and 2 
u3 satisfy the corresponding conditions too, and 

3 

- 27u1 U2 U3 

3 ’  S =  
(u2 - u1) 

u1 +u2 
By u3 =-(uI + u Z )  >- we get u1 +UZ <O.  Consequently, 2 

at least one of u1 and u2 should be less than 0. We may assume u1 < 0. 
I fu2  < 0 ,  thenS<O. 
If u2 > 0, we suppose further 

- u1 u2 
V l = - , V = % O 2 -  

u2 -u1 u2 - u1 

Then VI + ZQ = 1, V I  and ZQ are both greater than 0 and V I  - ZQ = 

> 0. So it follows that u3 

u2 -u1 

s = 2774 % (Vl - %) = 27V(l- V ) ( l -  2V)  

<27/= 

3 
2 

= -a. 

The equality holds when v = 

. .  1 J 3  equationis2--x+- = OandA= 1 

. The corresponding cubic 

2 
x1 =-- 1+- 

2 

( = 
2 18 
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L(l-$) 2 andx3 = 

3 
2 

Consequently, the maximal value is - a. 

@B Before The World Cup tournament, the football coach of F 
country will let seven players, Al , A2 , , A7 , join three 
training matches (90 minutes each) in order to assess them. 
Suppose, at any moment during a match, one and only one of 
them enters the field, and the total time (which is measured in 
minutes) on the field for each one of A1 , A2 , A3 and & is 
divisible by 7 and the total time for each of A5 , & and A7 is 
divisible by 13. If there is no restriction about the number of 
times of substitution of players during each match, then how 
many possible cases are there within the total time for every 
player on the field? 

Solution Suppose that xi ( i  = 1, 2, . . a ,  7) minutes is the time for 
i-th player on the field. Now, the problem is to find the number of 
solution groups of positive integers for the following equation: 

XI +XZ +.**+Q = 270 (1) 

whentheconditions7 I x i ( i = l ,  2, 3, 4) and13 I xj(Cj=5, 6,  7) 
are satisfied . 

Suppose XI + x 2  + x3 + x 4  = 7m and x 5  + X6 + x 7  = 13n. Then 

7m + 13n = 270, 

andm, n E  N+, m > 4 a n d n > 3 .  
It is easy to find the positive integer solutions (m, n)  to be 

( m ,  n>=(33 ,  3),  (20, l o ) ,  (7, 17) 

which satisfy the conditions above. 

2, 3, 4), then 
When ( m , n )  = (33, 3) , x5 = X6 = X7 = 13. Let xi = 7yi ( i  = 1, 
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Y1 +Y2 +Y3 + Y 4  = 33. 

We get C ~ I  = C?2 = 4 960 solution groups of positive integers 
(yl , y2 , y3 , y4 1 and in this case, we have 4 960 solution groups of 
positive integers satisfying the conditions. 

When(m, n > = ( 2 0 ,  1 0 ) , l e t x i = 7 y i ( i = l , 2 , 3 , 4 ) a n d x j =  
13yj ( j  = 5, 6 ,  7). Hence 

YI +Y2 +Y3 + Y 4  = 20 andy5 +Y6 +Y7 = 10. 

In this case, we have C:9 X 
integers satisfying the conditions. 

13yj(j  = 5, 6 ,  7). Hence 

= 34 884 solution groups of positive 

When(m, n ) = ( 7 , 1 7 ) , s e t x i = 7 y i ( i = l , 2 , 3 , 4 ) a n d x j =  

YI +Y2 +Y3 + Y 4  = 7 andY5 +Y6 +Y7 = 17. 

In this case, we have a X c:6 = 2 400 solution groups of positive 
integers satisfying the conditions. 

Consequently, for (1) , there are 

4 960 + 34 884 + 2 400 = 42 244 

solution groups of positive integers satisfying the conditions. 

2003 (Shaanxi) 

@B From point P outside a circle draw two tangents to the circle 
touching at points A and B. Draw a secant line intersecting the 
circle at points C and D ,  with C between P and D. Choose point Q 
on the chord C D  such that L D A Q  = L P B C .  Prove that 

Solution Using L D A B  = L D C B  , L D A B  = L D A Q  + L @ B ,  
L D C B  = L P B C  + L B P Q ,  and L D A Q  = L P B C ,  we get 

L D B Q  = / P A C .  
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P L Q A B  = L B P Q ,  so points P ,  A ,  Q ,  B share a 
common circle. Then L B  QP = L PAB , that 
is, L D B Q  +LCDB = L P A C + L C A B .  Since 

Remark The condition that P A  and PB are 
tangents to the circle is not necessary. Making 

further complication. 

LCDB = / C A B ,  SO L D B Q  = L P A C .  

use of this condition intentionally may lead to D 

@B Let the three sides of a triangle be integers I ,  m, n, respectively, 

satisfyingZ>m > nand{$)= {z)= {$), where {x} = 

x- [x] and [x] denotes the integral part of the number x. Find 
the minimum perimeter of such a triangle. 

Solution Since 

_-  3z ["]-3" ["I- 3" ["I ,  
104 lo4 104 lo4 104 lo4 

we have 

3z = 3" = 3" (mod104 ) 

3z = 3" = 3" ( m 0 d 2 ~ ) ,  
3' = 3" = 3" (mod5 4 ). 

(1) 
(2) 

As ( 3 ,  2) = 1, we then have from (1) 3"" = 3"" = 1 ( m 0 d 2 ~  ). 

Let u be the minimum positive integer satisfying 3" = 1 ( m 0 d 2 ~  ). 

Then for every positive integer v satisfying 3" = 1 ( m 0 d 2 ~  ) , we must 
have u I v. Otherwise, if u !v , then using division with a remainder we 
could get two non-negative integers a and b satisfying v = a u  + b with 
0 <b < u. Then 3b = 3"* = 3" = 1 ( m 0 d 2 ~ ) ,  contradicting the 
definition of u. Therefore u I v. 

Notice that 

3 = 3 (mod 24 ) , 32 = 9 (mod 24 , 
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then u = 4. We may assume that m- n = 4k , where k is a positive 

In the same way, we get from (2) 3"" = 1 ( m 0 d 5 ~  1 , that is, 

Now, we are going to find number k. As 34K - 1 = (1 +5 X 24 )' - 

integer. 

34K =1 (mod 54 1. 

1 = Om0d5~, i.e. 

x 53 x 212 
k(k - 1) 

2 
k(k - 1) (k  - 2) 

6 
5k X 24 + x 52 x 28 + 

x 53 x 211 
k(k-l)(k-2) 

3 
= 5k+52k[3+ (k-  1) X 27] + 
= O(m0d5~1,  

so k = 5t. Substituting in the above expression, we get 

t+ 5t[3 + (5t- 1) X 27] = O(m0d5~ 1. 

Then k = 5t = 53s, and m- n = 500s, where s is a positive integer. 
In the same way, we get I-n = 500r, where r i s  a positive integer 

and r > s since I > m > n. 
So the three sides of the required triangle are I = 500r + n ,  m = 

500s + n and n, respectively, satisfying n > I - n = 500(r- s). When 
s = 1, r = 2 the perimeter reaches the minimum which equals (1 000 + 

Remark The key to solve the problem is to find the least positive 
integer u satisfying 3" = 1 (mod104), which, in number theory, is 
called the order of 3 with respect to modulus lo4 .  

501) + (500 + 501) + 501 = 3 003. 

@& Let a space figure consist of n vertices and I lines connecting these 
vertices, withn= ? + q + l ,  I>?(q+1)2+1,  4 2 2 ,  q E  N. 
Suppose the figure satisfies the following conditions: every four 
vertices are non-coplanar, every vertex is connected by at least 
one line, and there is a vertex which is connected by at least 4+2 
lines. Prove that there exists a space quadrilateral in the figure, 
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i. e. a quadrilateral with four vertices A ,  B, C, D and four lines 
AB , B C ,  C D  , DA in the figure. 

Solution Let V = {& , A1 , A2, . . a ,  An-l} be the set of all the n 

vertices, Bi the set of all vertices adjacent to vertex Ai (i. e. connected 
with Ai by a line in the figure) , and the number of the elements in Bi 
denoted by I Bi I = bi. Obviously, 

n-1 

e b i  = 2Zandbi < ( n - l ) ,  i = 0,  1, 2,  .-, n-1. 
i=l 

If there exists i such that bi = n- 1, without losing generality, we 
assumetha t i=n-1andq+2<n- l1 ,  andthenwehave 

That means there exists bj > 2 (0 < j < n - 2) , so there must be a 
space quadrilateral including Aj andA,-I as its vertices in the figure. 

Then we consider the case when bi < n- 1, i = 0, 1, 2, 
1 , and we may assume that q + 2 < bo . 

We will give the proof by reduction to absurdity. If there is no 
such a quadrilateral in the figure, Bi and Bj share no vertex-pair when 
i f j ,  then 

, n- 

n B j J < i  c o < i < j < n - i ) .  

so 

I B ~  n B o I > b i - i ,  i = i ,  2,  -., n-i. 

Then we have the number of vertex-pairs inV n BO = Ci-b 
n--l n-I 
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1 
2 ( n  - 1 )  

( n q  - > q+2- bo)(nq - - q + 3 -  

and 

(nq-q+2-b0)-((q+l)(n-b0)  = qbo-q-n+2 

>q(q+2) -q -n+2= 1>0.  (3) 

A s ( n - h ) ( q + l ) ,  (n-bo -1)qare positive numbers, we then 
get from ( 2 )  and (3), 

( n q  - 4 + 2 - bo ) ( n q  - 4 - n + 3 - bo ) 

> q(q+ l > ( n -  bo)(n- bo - 1 )  , 
which contradicts to ( 1 ) .  This completes the proof. 
Remark The question here derives from a research topic in graph 
theory, which investigates under what conditions a graph with n 
vertices and Z edges contains a quadrilateral. 
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2004 (Hainan) 

In an acute triangle ABC, point H is the intersection point of 
altitude CE to AB and altitude BD to AC. A circle with DE as its 
diameter intersects AB and AC at points Fand G, respectively. FG 
and AH intersect at point K. If BC = 25, BD = 20, and BE = 7, 
find the length of AK. 

Solution We know that LADB = LAEC = 90°, therefore 

a A D B m a A E C ,  
and 

AD BD AB 
~ - ~ - ~  

AE - CE -AC’ (1) 

ButBC=25,  BD=20,andBE=7,soCD=15,andCE=24.  
From (1) , we obtain 

A D 5  - 

AE+7 - 5 

~- - 

AE 6 ’  

AD+15 6’ - 

and the solution is 

AD = 15, 
AE = 18. C 

Thus, point D is the midpoint of the 
hypotenuse AC of RtAAEC , and 

1 
2 

DE = -AC = 15. 

A Draw line DF. Since point F is on the 
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circle with DE as its diameter, L D F E  = 90°, we have 

1 A F = - A E = 9 .  
2 

Since four points G, F, E and D are concyclic, and four points D, 
E, B and C are concyclic too, we get 

LAFG = LADE = L A B C .  

Thus GF // CB. Extend line AH to intersect BC at point P ,  then 

A K A F  
A P  -z' -- (2) 

Since H is the orthocenter of AABC, AP 1 BC. From BA = BC 
we have 

AP = CE = 24. 

Due to (2) , we get 

= 8. 64. 
A F * A P  - 9 x 2 4  

A B  25 
- AK= 

@!@ In a planar rectangular coordinate system, a sequence of points 
{A, } on the positive half of the y-axis and a sequence of points 

{B,}  on the curve y = & (x 0) satisfy the condition 
1 I OA, I = I OB, I = -. The x-intercept of line segment A,B,  is 

a, , and the x -coordinate of point B, is b, , n E N. Prove that 
n 

(1) a, > an+l > 4, n E N; 
b2 b3 bn 
bl b2 bn-1 

(2) There isno E N, such that for a n y n > q ,  -+-+...+- 
bn+l 

bn 
+- < n-2 004. 

Proof (1) According to the stated conditions we have A, 0,  - , ( 3 
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2 
E+2b ,=  ( f )  . 

Thus 

b, = / p - l ,  n E N. 

On the other hand, the x-intercept a, of line segment A,B, 
satisfies the following equation 

( ~ ~ - 0 )  &-- = 0-- (b,-0). ( 3 ( 3 
Hence , 

1 
n2 b, 

Since2n2b, = 1 -n2E > 0, we have b, +2  = - and 
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cn = 
1 1 1  \ 2  

Since (2n + 1) ( n  + 2) - 2(n + 1>2 = n > 0,  we obtain 

1 
, n E N .  

cn > n+2 

LetSn=cl+c2+.-+cn, n E N .  I fn=2k-2>1  ( K E  

63 

Therefore, if we put = 24 Oo9 - 2 , then for any n > no we have 

=2 004. 

Consequently , 
b2 b3 bn bn+l 
bl b2 bn-1 bn 
- + - + +- + - < n-  2 004, n > no. 
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Remark To prove ( l ) ,  it is mainly required to determine the 
expression of a, which has many different forms, its monotonicity can 
be observed directly from the expression of a,. So some students 
pointed out that a, > an+l is obvious after writing down the expression 
of a,. 

About proving (2)  one can refer to the test paper of the 19th 
Mathematical Olympiad of Soviet Union (1985). 

@& For integer n 2 4, find the minimal integer f(n), such that for 
any positive integer m, in any subset with f(n) elements of the set 
{m, m+ 1, . . a ,  m + n - 1) there are at least 3 mutually prime 
elements. 

Solution I When n 2 4, we consider the set 

M =  {m, m + l ,  m+2, ..*, m+n-I}.  

If 2 I m, thenm+l ,  m+2, m+3 are mutually prime; 
If 2 [ m, thenm, m + l ,  m+2 are mutually prime. 
Therefore, in every n-element subset of M, there are at least 3 

mutually prime elements. Hence there exists f(n> and 

f(n> < n. 

Let T, = { t  I t < n + l  and2  I t o r  3 I t } ,  then T, is a subset of 
, n + 1 }. But any 3 elements in T, are not mutually prime, { 2 , 3 , 

thus f(n> 21 Tn I +  1. 
By the inclusion and exclusion principle, we have 

n + l  n + l  n + l  
I Tn I = [I]+ [TI- [TI- 

Thus 

n + l  n + l  n + l  
f(n) 2 [I]+ [ 71- [ 7]+ 1. 

Therefore 

(1) 
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f(7) > 6, f(8) > 7, f(9) > 8. 

Now we prove that f(6) = 5. 
Let X I ,  x2 , x3 , x4 , x5 be 5 numbers in {m, m + l ,  .-, m+5). If 

among these 5 numbers there are 3 odds, then they are mutually 
prime. If there are 2 odds among these 5 numbers, then the other 
three numbers are even, say x1 , x2 , x3 , and the 2 odds are x4 , x5. 
When l < i < j < 3 ,  I xi-xj I E (2 ,  4). Thus amongxl , x2, x3 there 
is at most one which is divisible by 3,  and at most one which is 
divisible by 5. Therefore, there is at least one which is neither 
divisible by 3 nor by 5 , say, 3 1x3 and 5 1x3. Then x3 , x4 , x5 are 
mutually prime. This is to say, among these 5 numbers there are 3 
elements which are mutually prime, i. e. f(6) = 5. 

On the other hand, {m, m + l ,  .-, m+n) = {m, m + l ,  .-, m+ 
n- 1) U {m+ n )  implies that 

f<n+ 1) < f(n> + 1. 

Since f(6) = 5 , we have 

f(4) = 4, f(5) = 5, f(7) = 6, f(8) = 7, f(9) = 8. 

Thus when 4 < n < 9, 

n + l  n + l  n + l  
f(n> = [TI+ [3]- [ 7 ] + 1 .  (2) 

In the following we will prove that ( 2 )  holds for all n by 

Suppose that equation (2) holds for all n < K (K > 9). In the case 
mat hema tical induct ion. 

when n = K + 1, since 

{m, m + l ,  ..*, m+K) = {m, m + l ,  m+K-6) U 
{m+K-5, m + K - 4 ,  m+K-3, m+K-2, m+K-1, m+K), 

equation (2) holds for n = 6, n = K - 5 , we have 

f(K + 1) < f(K - 5) + f(6) - 1 
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(3) 

By (1) and (3) we obtain that equation (2) holds for n = k + 1. 
Consequently, for any n 4, we have 

n + l  n + l  n + l  
f(n> = [ TI+ [ 71- [ 7]+ 1. 

Solution I[ At first, we verify that equations f(4) = 4, f(5) = 5, 

Whenn-4, consider{m, m+l ,  m+2, m+3}. Ifmisodd, then 
m, m + l ,  m+2aremutuallyprime. Ifmiseven, thenm+l,  m+2, 
m +3 are mutually prime. Thus f(4) < 4. But from the set { m, m+l  , 
m + 2 , m + 3) choose a 3-element subset consisting of two evens and 
one odd we know these three numbers are not mutually prime, which 
implies that f(4) = 4. 

Whenn= 5, consider{m, m + l ,  m+2,  m+3 ,  m+4}. I fmis  
even, thenm, m+2, m+4 are all even. Then any 3 numbers from the 
4-element subset {m, m + l ,  m+2, m+4} are not mutually prime, so 
f(5) > 4. But from the 5-element universal set we can find out 3 
numbers which are mutually prime. Thus f(5) = 5. 

Whenn = 6, the elements of the set {m, m + l ,  m + 2 ,  m + 3 ,  
m+4,  m+ 5) are 3 odd and 3 even. If we choose a 4-element subset 
consisting of 3 evens and 1 odd, then among the subset there are no 3 
numbers which are mutually prime. Thus f(6) > 4. Consider the 
5-element subset, if among these 5 elements there are 3 odds, then 
these 3 numbers must be mutually prime. If these 5 elements are 3 
evens and 2 odds, then among these 3 evens, there is at most one 
number which is divisible by 3 , and there is at most one number which 
is divisible by 5. Hence among these 3 evens there is one number 
which is neither divisible by 3 nor 5. The even number and the other 2 
odds are mutually prime, which implies that f(6) = 5. 

When n > 6, set T, = { t I t < n+ 1 and 2 I t or 3 I t}. Then T, is 
a subset of { 2, 3, . . a ,  n + 1) , and any 3 elements in T, are not 

f(6) = 5 hold. 
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mutually prime. So 

n + l  n + l  n + l  
f(d2.I Tn 1+1= [l]+[T]-[T]+l 

A s u m e n = 6 K + r , K > l ,  r=O,  1, 2,  3, 4, 5,  then 

n + l  n + l  n + l  [TI+ [TI- [ T l + l  

r + l  r + l  r + l  
= 4K+ [TI+ [31- [?]+I. 

It is easy to verity that 

r = 0,  1, 2, 3, 

If r = 0,  1, 2,  3, we can divide n = 6K+rnumbers into K groups: 

{m, m + l ,  ..*, m+5},  {m+6,  m+7, ..*, m + l l } ,  ..*, 
{m+6(K - 1) m+6K - 5, ..*) m+6K - 1) 

and left withrnumbersm+6K, . . a ,  m+6K+r-11. h o n g 4 K + r + l  
numbers, there are at least 4K + 1 numbers which are contained in the 
above K groups. Thus there is at least one group which contains 5 
numbers. Since f(6) = 5, there are 3 numbers which are mutually 
prime. 

If r = 4 , 5 , we can prove similarly that there are 3 numbers which 

are mutually prime. Hence, f(n> = 

2005 (Jiangxi) 

In M C ,  AB > AC,  I is a tangent line of the circumscribed 
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circle of M C ,  passing through A. The circle, centered at A 
with radius AC, intersects AB at D, and line I at E, F (see the 
diagram). Prove that lines DE , DF pass through the incenter and 
a escenter of M C  respectively. 

(Remark : The circle which is tangent 
to one side of a triangle and two other 
extended sides is called an escribed circle. 
The center of an escribed circle is called 
an escenter). B 

Proof First, prove that DE passes through the incenter of M C .  
In fact, if we join DE, DC and draw the bisector of LBA C, the 
bisector intersects DE, D C at I, G respectively. Join IC. From 
AD =AC, we get AG 1 DC and ID = IC. 

1 
2 

Since D, C, Elie on a circle with centerA, /LAC = -1DAC = 

LIEC. SoA, I, C, Eare on the same circle, andLCIE =/CAE = 

LAB C. But LCIE = 2 1  E D ,  thus L ICD = lLAB C. 
2 

F A E We get LAIC = LIGC+LICG 

and LACI = 'LACB, 2 6 , 
; \ \  \ I  

', \', so I is the incenter of M C .  
'41, Secondly, DF passes through an escenter 

of AABC. In fact, the extension of FD intersects the bisector of the 
exterior angle of LAB C at II. Join III , BI1 , BI. By (1) , I is the 
incenter, we get L I B I l  = 90" = L E D I l .  So D ,  B ,  I1 , I are on the 
same circle. 

L I B I l  = L B D I l  = 9 0 " - L A D I  In view of 
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SOA, I, II are on the same line. Furthermore, II is the escenter 
of AABC outside BC. 

@@@ Assume that positive numbersa, b, c ,  x, y,  zsatisfycy+bz =a ;  
a z  + cx = b and b x  + ay = c. Find the minimum value of the 

x2 Y2 22 
function f(x, y,  z )  = - +-+-. 

1+x l + Y  l + z  

Solution By assumption, b(az + cx - b) + c(bx + ay - c )  - a(cy + 
b 2 + 2 - , 2  

bz-a) = O ,  i.e. 2bcx+a2-b'-2 = 0 ,  wegetx= 

the similar reason, y = 

. For 
2bc 

2 + @ - 2  and z = 
2ac 2ab 

a2 + 2 - b2 

Since a ,  b, c, x, y,  z are positive, by the above three 
expressions, we know b2 + 2 > a2 , a2 + 2 > b2 and a2 +b2 > 2. Thus 
there is an acute triangle AB C with the lengths of its sides a , b, c. So 
x = cosA, y = cos B and z = cos C. The problem is now changed to 
finding the minimum value of the function 

cos2A cos2 B cos2 c 
1 + cosA' 1 + cosB+ 1 + cosC' 

~ ( c o s A ,  COSB, COSC) = 

Set u = cotA, v = cot B ,  w = cot C, then u ,  v ,  w E Rf, uv + 
vw+wu = 1, u 2 + 1  = (u+v)(u+w), v2+1 = (u+v)(v+w) and 
w2+1= (u+w)(v+w). 

U2 

U2 - - 
u 2 + 1  

I+- - - cos2A 

1 + cosA - U m ( d u 2 f l f U )  
We get 
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&- -  u3 - 1 +'). 
2 L + v  u+w 

2.-- ~ +'). 
1 + c o s c  2 i u + w  v+w 

cos2 B 2 v3  1 
By a similar argument, 2.-- - +') 

1 + c o s B  2 L + v  v+w 

cos2 c 2 w 3  1 

Hence f u2 + v2+ w2- - +- 
=u2 + v2+w2- - (u2 -uv + v2 )  2 ' 1  

+ (v2- vw + w2 >+ (u2 - uw2+ w2 > j 
1 1 
2 2 

= -(uv+vw+uw> = - 9  

the equality sign is valid if and only if u = v = w, i. e. a = b = c ,  x = 

y = z = - - ,  
1 
2 

so 

@& For each positive integer, define a function 

if n is the square of an integer, lol - 

, if n is not the square of an integer. f(n)=i L&l 
(Here [x] denotes the maximum integer not exceeding x ,  and 

{x}= x- [x]. ) Find the value of xf(K>. 200 

k= 1 

Solution For arbitrary a ,  K E Nf , if K 2  < a < (K + 1>2 , we set 
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a = k2 +m, m = 1 ,  2 ,  . . a ,  2 k ,  

& = k + O , O < O < l ,  

2k+O 2k 
0<--- < 1 ,  

m 
For 

, then 
2k 2k+O 

if there exists an integer t between - and - 
m m 

2k 2k+O 
-<t<-. 
m m 

On one hand 2k < mt , thus 2k + 1 < mt. On the other hand, 

mt < 2k + O< 2k + 1 ,  a contradiction. 

Thus 

26 2k 
;=I z 

Next, we calculate [ -1. Draw a 2k X 2k table, and put a star 

* at each place in the i-th row where it is a multiple of i. Then in this 

row there are [ 71 stars and the total number of stars in the table is 

5 [ 71. On the other hand, in j-th column, if j has T ( j )  positive 

factors, then there are T ( j )  stars in this column. Thus the total 
,=l  

26 2k 26 
2k 

number of stars is T ( j )  and [ T] = T( j ) .  
j = l  ;=I z j = l  

For example: 
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1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

a g 3 5 6 6 7 8 6 9 8 8 8 1 0 7 1 0 1 0  

Thus 

a=l k = l  j=l 

=n[T(I) + T(2)]+ (n -  1)[T(3) + T(4)I 

+ ... + [T(2n- 1) + T(2n)l (2) 

1 6’ 15 

From (2), c f(K) = c (16 - k) [ T(2K - 1) + T(2k) 1. (3) 

, 15. It is easy to see that 
k= 1 k= 1 

Set Uk = T(2K-1) +T(2K), K = 1, 2, 
ak takes the following values. 

256 15 

Therefore, c f(k) = c (16 - k>ak = 783. (4) 
k= 1 k= 1 

Note that f(256) = f(162> = 0 by definition. When K E 
(241, 242, . . a ,  255}, denotek = 1 5 2 + r ( 1 6 < r < 3 0 ) ,  then 



... 
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r r r 30 1 31 

31 d m + 1 5  30 
<--2. -< < - 9  l < - <  

Thus 

200 256 

Therefore, c f ( K )  = 783 - c f(K) = 783 - 15 = 768. 
k= 1 k=U)l 

73 

(5) 
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The Competition Committee consisted of the following: Xu 
Yichao, Li Shenghong, Shen Wenxuan, Chen Yonggao, Su Chun, 
Leng Gangsong, Huang Yumin , Huang Xuanguo . 

First Day 
8:OO- 12:30 January 15, 2003 

-.=--is ~2 Suppose points I and H are the incenter and orthocenter of an acute 
triangle AB C respectively, and points B1 and Cl are the midpoints 
of sides AC and AB respectively. It is known that ray B1 I intersects 
side AB at B2 (B2 # B )  and ray Cl I intersects the extension of AC 
at C, : B2 C, and B C intersect at K and A1 is the circumcenter of 
ABHC. Prove that three points A,  I and A1 are collinear if and 
only if the areas of ABKB2 andACKC2 are equal. (posed by Shen 
Wenxuan) A 

Proof First, we will prove that 
three points A, I and A1 are 
collinear H LBAC = 60". 

As shown in the figure, assume 
that 0 is the circumcenter of 
AAB C. We join BO and CO , then 

\ 
\ 

L B H C  = 180" - LBAC , ' A, 

L B A l  C = 2(180" - L B H C )  = 2LBAC. 

Hence, LBAC = 60"HLBAC + L B A l  C = 180" 

H A1 is on the circumcircle 00 of AAB C 

H Al andAA1 coincide (becauseA1 is on the perpendicular 
bisector of BC. ) 

H Three points A, I and Al are collinear. 

Secondly, we will prove S~JKB = SacKcz#LBAC = 60". 
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Construct IP 1 A B  at point P ,  and IQ 1 AC at Q ,  then 

1 1 
SMB,B, = -IP * A B 2 + - - I Q * A B l .  2 2 

1 Note that 

therefore 

Assume IP = r ,  where r is the radius of the inscribed circle of 
U B C .  Then IQ = r. Furthermore set BC = a, C A  = b a n d A B  = c,  

then r = 

SMB,B, = 2 A B 1  AB2 s i n A ,  

IP AB2 + IQ AB1 = AB1 AB2 sin A. 

2sMBC 
a+b+c' 

b ~ S A A B C  2AB1 s i n A  = h, = FromAB1 = - and 9 2 C 

2sMBC we have A B 2  (2syc -2 2sAABc ] = b a + + c ,  
a+b+c 

so 

Similarly, 

bc 
a+b+c' 

AB2 = 

bc 
a+c-bb' 

AC2 = 

Hence , sABKB, = SACKC, 

H SAABC = SMB,C, 

bc bc 
a+b-c  a + c - b  

H bc = 

H a 2 = b 2 + 2 - b c  

H L B A C  = 60" (By the law of cosines). 

Therefore, the proposition is true. 

@@& Suppose a set S satisfies the following conditions: 
(1) every element in S is a positive integer and not greater than 

100 ; 
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(2) for any two different elements a and b in S, there is an 
element c in S such that the greatest common divisor of a and 
c is equal to 1 , and the greatest common divisor of b and c is 
also 1; and 

(3) for any two different elements a and b in S, there is an 
element d ,  which is different from a and b, such that the 
greatest common divisor of a and d ,  and that of b and d are 
greater than 1. 
Find the maximum number of elements in S. (posed by Yao 
Jiangang) 

Solution The maximum number of elements is 72. 
A positive integer not greater than 100 can be written as 

n = 2"1 . 3% . 5"3 . 7"4 . 11% . q, 

where q is a positive integer and not divisible by 2 , 3 , 5 , 7 and 11 , and 
a1 , a2 , a3 , a4 and a5 are nonnegative integers. 

We pick out those positive integers n with just one or two nonzero 
among a1 , a2 , a3 , a4 and a5 to form set S. In this case, S contains 50 
even numbers (2 , 4, , 98 and 100) except the following seven: 2 X 
3 x 5 ,  2 2 X 3 X 5 ,  2 X 3 2 X 5 ,  2 X 3 X 7 ,  2 2 X 3 X 7 ,  2 X 5 X 7 a n d 2 X  
3 X 11 , 17 odd numbers that are multiples of three ( i. e. 3 X 1 , 3 X 
3 , , 3 X 33) , 7 odd numbers with the least prime divisor 5 ( i. e. 
5x1, 5x5, 5 x 7 ,  5x11, 5 x 1 3 ,  5X17and5X19) ,  4oddnumbers 
with the least prime divisor 7 ( i. e. 7 X 1, 7 X 7, 7 X 11 and 7 X 13), 
and the prime number 11. 

Consequently, S contains (50 - 7) + 17 + 7 + 4 + 1 = 72 numbers 
tot ally. 

In what follows, we will prove that S constructed above satisfies 
the given condition. 

Obviously, it satisfies condition (1). 
For condition (2) , we note that, at most, four prime divisors 

among 2, 3, 5, 7 and 11 will occur in [a, b]. We write the prime 
which does not occur, as p. Obviously, p E S and 
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Hence, we take c = p. 
For condition (3) , we take the least prime divisor of a as p and 

the one of b as q when (a, b) = 1. It is easy to see that p # q and p, 
q E ( 2 ,  3, 4, 7, 11). Hencepq E S, and 

(pq, a )  > p  > 1 and (pq, b) > q> 1. 

Being coprime to each other for a and b ensures that pq is different 
from a and b. Thus we take d = pq. 

When ( a  , b) = e > 1 , we take p as the least prim divisor of e ,  and 
q as the smallest prime number satisfying q / [a, b]. It is easy to see 
t h a t p f q ,  a n d p a n d q E  (2, 3, 5,  7, 11). Hencepq E S, and 

(pq, a ) > ( p ,  a )  = p > 1 ,  

(pq, b) > (p, b) = p >  1. 

q !  [a, b] ensures that pq is different from a and b. Thus, we take 
d = pq. 

In what follows, we prove that the number of elements in S, 
which satisfies the conditions described in the problem, will not be 
greater than 72. 

Obviously , 1 @ S. For arbitrary two prime numbers p and q which 
are both greater than 10, since the least number which is not prime to 
neither p nor q is pq, it must be greater than 100. So we know, 
according to condition (3) , that there is at most one among 21 prime 
numbers between 10 and 100 (11 , 13 , . . a ,  89 , 97) , occurring in S. We 
write the set consisting of all natural numbers not greater than 100 
except 1 and the above-mentioned 21 prime numbers as T, and there 
are 78 numbers in the set. We can conclude that there are at least 7 
numbers in Ta re  not in S. Thus S contains at most 78 - 7 + 1 = 72 
elements. 

(9 When a prime number p is greater than 10 and belongs to S, 
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every number in S can only have 2 , 3 , 5 , 7 and p as its least prime 
divisor. By condition (2) , we have the following conclusions. 
0 If 7p  E S, because (2  X 3 X 5, 22 X 3 X 5, 2 X 32 X 5, 7p) 

contains all the least prime divisors, we know from condition (2) that 
2 X 3 X 5 ,  22X3X5and2X32X5donotbelongtoS. If7p@S, noting 
2 X 7p  > 100, but p E S, so from condition (2) we know that 7 X 1, 
7 X7, 7 X 11 and 7 X 13 do not belong to S. 
0 If5p E S, the112X3X7and2~ X 3 X 7 d o n o t  belong toS. If 

5p @ S, then 5 X 1 and 5 X 5 do not belong to S. 
0 2 X 5 X 7 and 3p do not belong to S at the same time. 
@ 2 X 3p  and 5 X 7 do not belong to S at the same time. 
0 If 5p, 7p  @ S, then5 X 7  @ S. 
Whenp = 11 or 13, from 0, 0, 0 and @, we can get at least 

3 , 2, 1 and 1 numbers in Trespectively which do not belong to S, and 
in total 7 numbers. When p = 17 or 19, from 0, 0 and 0, we can 
get at least 4 , 2 and 1 numbers in T respectively , which do not belong 
to S and in total 7 numbers. When p > 20 , from 0 , 0 and 0 , there 
are at least 4 , 2 and 1 numbers in T respectively , which do not belong 
to S and in total 7 numbers also. 

(ii) If there is no prime number greater than 10 belonging to S, 
then the least prime numbers in S can only be 2 , 3 , 5 and 7. Hence , 
each of the following 7 pairs of numbers can not belong to S at the 
same time: 

( 3 , 2 X 5 X 7 ) ,  ( 5 , 2 X 3 X 7 ) ,  ( 7 , 2 X 3 X 5 ) ,  ( 2 X 3 , 5 X 7 ) ,  

( 2 x 5 ,  3 X 7 ) ,  ( 2 x 7 ,  3 X 5 ) ,  ( 2 2 X 7 ,  3 2 X 5 ) .  

Thus, there are at least 7 numbers in T that are not in S. 
Consequently, the answer for this problem is 72. 

@& Given a positive integer n, find the least positive number A such 
+ cos 0, is not greater than A provided that cos 01 + cos 02 + 
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n). (posed by Huang Yumin) 

When n = 2, we can prove 

2 4 3  cos el + cos e2 < - , 
3 0 

and when 01 = e2 = arctan&, the equality holds. 
In fact, 

3 a m  +cos~e2+~cose1  . cose2<-, 4 

+ 1 
that is, 

1 + tan2el 1 + tan2e2 

0 
From tan el tan 0, = 2, we get 

2 + tan2 el + tan2 e2 
5 + tan2 el + tan2 e2 0 w  

that is, 36(5+x) < 196+28x++, 

Obviously, @ W x - 8x+ 16 = (x- 4>2 > 0. 

2 4 3  
3 .  

Hence, A = - 

When n > 3 , there is no loss of generality in supposing 0, > 0, 
> > en, then 

tan 01 tan O2 tan e, > 2&. 
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1 
2 

Since cos 0, =2/- < 1 - -sin2ei , so 

, we have 
8 

tan2 02 tan2 03 
From tan2el > 

that is, 

1 8 + tan2 02 tan2& > 
cos2 el tan282 tan2e3 ’ 

tan 02 tan 03 

2/8 + tan2 02 tan2 e3 
cosel G 

Hence 

cos e2 + cos e3 + cos el 
r 1 1 

Note that 

8cos202 cos2O3 + sin2& sin2e3 > 1 
1 ~8 + tan2 02 tan2 03 > 

= (1 + tan2 e2 ) (1 + tan2 0, ) 

Htan2 02 + tan2 03 < 7. 

cos2e, cos2e3 

Thus, we get that, when @ holds, 

cos el + cos e2 + cos e3 < 2. 

If @ does not hold, then tan2 0, + tan2 0, > 7, 

... 
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hence 

so 

7 
2 

tan2 el > tan2e2 > - , 

Thus cos el + cos e2 +cos e3 < @+ 3 1 < 2,  

that is, 0 holds too. 
Hence we can get 

cos el + cos e2 + cos e3 + ... + cos en < - I. 
On the other hand, if we take 0, = 0, = m.0 = 0, = a > 0, a- 0, 

then 

iT 
Obviously, 0, - - , thus 

2 

cos el + cos e2 + cos e3 + ... + cos en - - I. 
Consequently, we get A = n- 1. 

Second Day 
8:OO-12: 30 January 16, 2003 

@.$@ Find all ternary positive integer groups (a, m, n> satisfying a > 2 
and m > 2 such that an + 203 is a multiple of a" + 1. (posed by 
Chen Yonggao) 

(i) In the case when n < m, from an + 203 > a" + 1, we have 
Solution We will discuss the following three cases for n and m. 

202 > a" - an > an ( a  - 1) > a(a  - 1). 

Therefore , 2<a<14.  
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Whena = 2, we can taken to be 1, 2, .-, 7. 
Whena = 3, we can taken to be 1, 2, 3 and 4. 
Whena = 4, we can taken to be 1, 2 and 3. 
W h e n 5 < a < 6 ,  w e c a n t a k e n t o b e l  and2.  
W h e n 7 < a <  14, n = 1. 
From a" + 1 I an + 203 , we can deduce that the solutions are (2, 

2, 0, (2, 3,  2) and(5, 2, 1). 
(ii) In the case when n = m, a" +1 I 202. Since 202 has only four 

divisors 1, 2, 101 and202, bu ta>2,  m > 2 a n d a m + l > 5 ,  SOU" = 

100 or 201. Since m > 2, therefore the solution is (10, 2, 2). 
(iii) In the case when n > m, from a" + 1 I 203(a" + 1) , we have 

U" + 1 I an + 203 - (203~" + 203) 

a" + 1 I ~ " ( d - "  - 203). that is, 

Since (a" + 1, a") = 1, so 

a m + l  I ~"-"-203. 

0 Ifan-"<203, t h e n s e t n - m = s > l ,  wehavea"+l 1203- 
as. Hence 

203-as > ~ " + 1 ,  

202 > as +a" > a" +a 

=a(arn--l + 1) > a(a+ l) ,  

thus 2 < a < 13. 

Using the same orgument as in Case ( i )  , we show that the 
solutions for ( a ,  m, s) are: 

(2, 2, 3),  (2, 6,  3),  (2, 4, 4), (2, 3,  5),  (2, 2, 7), 

(3, 2, l),  (4, 2, 2), (5, 2, 3) and(8, 2, 1). 

Hence, ( a ,  m, n)  are 

(2, 2, 5),  (2, 6,  9> ,  (2, 4, 8>, (2, 3,  8> ,  (2, 2, 9> ,  

(3, 2, 3),  (4, 2, 4), (5, 2, 5) and(8, 2, 3). 
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@ If an-" = 203, then a = 203 and n-m = 1, and the solution is 

(203, m, m + l > ,  7 x 2 2 .  

~ I f a n - " > 2 0 3 , s e t n - m = s > 1 ,  thena"+l I as-203. 
Since as -203 >a" + 1, so s > m. By 

a" + 1 I as + 203~" = (as-" + 203)~" 

- - ( an-2m + 203)~" , 
and (a"+l, a") = 1, 

we have a" + 1 I an-'" + 203. 

Now s > mWn - m > mWn > 2mWn - 2m > 0. In this case, the 
solutions can only be derived from the preceding solutions, that is, 
from ( a ,  m, n) - ( a ,  m, n+2m) -. .a- ( a ,  m, n+2Km) , and each 
solution derived also satisfies a" + 1 I an + 203. 

Summarizing what described above, we obtair all solutions ( a ,  m, 
n) to be: 

(2, 2, 4K+1), (2, 3, 6K+2), (2, 4, 8K+8), (2, 6, 12K+9), 

(3, 2, 4K+3), (4, 2, 4K+4), (5, 2, 4K+1), (8, 2, 4K+3), 

(10, 2, 4K+2) and(203, m, (2K+l)m+l) ,  

where K is any nonnegative integer, and m > 2 is an integer. 

$$&& A certain company wants to employ one secretary. Ten personsapply. 
The manager decides to interview them one by one according to 
the order of their applications. The first 3 applicants should not 
be employed. From the fourth onward an applicant will be 
compared with the preceding ones. If he exceeds in ability all the 
procedings applicants, he will be employed. Otherwise he will 
not, and the interview goes on. If the preceding nine persons are 
not employed, the last one will be employed. 

Suppose that the 10 persons are different from each other in 
ability, and we can arrange them according to their ability rating 
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from superior to inferior, such as lst,  2nd, . . a ,  10th. Obviously, 
whether an applicant will be eventually employed by the company 
depends on the order of the applications. As it is known, there are 
lo !  such permutations in all. Now denote by Ak the number of the 
permutations such that the applicant with the k t h  ability rating is 

employed and the probability for him to be employed is -. (posed 

by Su Chun) 

following properties: 

Ak 
lo !  

Prove that under the policy given by the manager, we have the 

(1)Al >A2 >. .*>As =A, =Ale. 
(2) The probability for the company to employ one of the 

persons with the ability among the three is over 70% , and to employ 
one of the persons with the ability among the bottom three is not over 
10%. (provided by Su Chun) 

Proof We denote by a the ability rating of the applicant with 
the highest ability among the first three interviews. Obviously, a<8. 
Now we denote by Ak ( a )  the set of permutations for which the person 
with the k t h  ability rating is employed and we denote the 
corresponding number of permutations by I Ak ( a )  1 .  

(1) It is easy to see that, when a = 1 , a definite result is to give 
up the first nine persons and to employ the last interviewee. Now the 
chance is equal for every person except the one who has the highest 
ability rating. It is not difficult to see that 

I &(I) I=3X8! := r l ,  k = 2 ,  3, ..*, 10, 

where “ :=” denotes “writter as”. 
When 2 < a < 8, a person who is placed K-th in ability rating will 

have no chance to be employed for a < K < 10 , and the chance is equal 
for 1 < K < a. 

In fact, a person with the a-th ability rating is among the first 
three interviews and there are three ways to choose one out of the 
three interviews. Those people with their ability rating from the 1-st 
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to ( a  - 1)-th are among the later seven interviews, and the first one 
having the highest ability rating among them is employed. There are 
C7-I ( a  -2) ! ways of such arrangement. The other 10-a persons may 
be arranged arbitrarily on the remainder positions, and we have (10- 
a )  ! ways of arrangement. Hence, we have 

The result above shows : 

A s = A g = A l o = r l  = 3 x 8 ! > 0 ;  

Ah = r1 + c r, ,  k = 2, . . a ,  7; 
8 

a = k t l  

8 

and A1 = cr,. 
a=2 

From 0 and 0, we obtain 

A2 >A3 >..*>& =A9 =A10 > O ;  

and from 0 and 0, we obtain 

A1 -A2 = r 2  - r1 = 3 X 7 X 8! - 3 X 8! > 0. 

Consequently, (1) is proved. 
(2) From 0, we know 

0 

0 

0 

So the probability for the company to employ one of the bottom 

From 0 and 0, we can show that 
three is equal to 10%. 

9 9 

a=2 a=2 

(9-a)(lO-a) 
=3X7!): 

a=2 a-1 
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(8-s)(9-s) 
=3X7!): 

S l  S 

12 
5 56+21+10+5+-+l+- 

24 2 
=3 X 7 !  x 9 5  - > 3 X 7 !  x 9 5  - 

35 3 

8 

A2 =r1+ cru 
a=3 

12 
5 = 3 X 8 ! + 3 X 7 ! X  21+10+5+-+ l+-  

87 

8 

A3 =r1+ cru 
a=4 

12 
5 = 3 X 8 ! + 3 X 7 ! X  10+5+-+ l+ -  

24 2 
35 3 

= 3 ~ 7 !  X 2 6 - > 3 X 7 ! X 2 6 - = 8 0 X 7 ! .  

Therefore , 
A i + & + &  >287+143+80 

l o !  720 

510 17 
720 24 

- ~ = - > 70%. - 

That is, the probability for the company to employ one of the top 
three, is greater than 70%. 

Suppose a ,  b ,  c and d are positive real numbers satisfying ab + 
cd = 1 and Pi (xi , yi> ( i  = 1 , 2 , 3, 4) are four points on the unit 
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circle which has the origin as its center. Prove that: 
( a ~ i + b ~ 2 + ~ ~ 3 + d ~ 4 ) ~ + ( a x 4 + b x 3 + c x : 2 + d x 1 ) ~  < 

2 (y + -1. 2+& (posed by Li Shenghong) 
cd 

Proof I Set u = ayl +by2, v = cy3 +dy4,  u1 = ax4 +bx3 and vl = 

cx2 + d x l  . Then 

u2 < (ayl    by^)^ + (ax1 - b x ~ ) ~  

that is X l X 2  - 0 a2 + b2 - u2 
YlY2 < 2ab 

2 + & - V ?  
2cd 

YlY2 -x1x2 < 0 

0 + 0, we get 

that is u2 V ?  a2+@ 2 + d 2  
ab cd ab cd 
-+- < -+-* 

v2 u? 2+& a’+@ 
Similarly -+-<- +-. 

cd ab cd ab 

By Cauchy’s inequality, we have 

(u  + d 2  + (u1 + V l  >2 

u2 v2 < (ab+cd)  ( a b  -+- c d )  + ( a b + c d )  [:+:I 
= -+-+-+p- u2 212 u? v? a2+b2 + -1. 2 + d 2  

ab cd ab ab cd 
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Proof II By Cauchy’s inequality, we can show 

(aYl +by2 +CY3 +dY4)2 

a b d 
= -Y? b + L Y 5  +CY?  d +-Y$ C +2(y1y2  +y3y4) .  

Similarly, (ax4 + bx3 + cx2 + d x l  ) 2  

a b C d 
a d C 

< T X $  +-x? +-xi +-x? +2(XIX2 + X 3 X 4 ) .  

So we subtract the right-hand side (RHS) from the left-hand side 
(LHS) in the original inequality and get 

d a 2  b 2  c 
-x4 b + - x3  a + -x; d + -x? C + 2x1 x2 + 2x3x4 - 

a 2  b 2  c 2  d 2  a b 
b a d C b a 

X I  - -XI - -x3 - -x4 - -y$ - -y? - -- - - 

c 2  d -Y2 d --Y? C +2(XIX2 + x 3 x 4  +y1y2 + y 3 y 4 )  

< - 2XIX2 - 2X3X4 - 2Yl Y2 - 2Y3Y4 + 
2(XIX2 + x 3 x 4  +YlY2 +Y3Y4) 

= 0. 

The proposition is proved. 
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2004 ChinaMathematical Olympiad and 19th Mathematics Winter 
Camp(for secondary school students) was held on January 6 - 11 in 
Macao, and was hosted by Education and Youth Affair Bureau of 
Macao Special Administrative Region of PRC. 

The Competition Committee consisted of the following: Chen 
Yonggao, Liang Yingde, Huang Yumin, Li Shenghong, Yu 
Hongbing, Li Weigu, Qin Hourong, Xiong Bin, Wang Jianwei, and 
Xu Jiangxiong. 

First Day 
8 : 30 - 13 : 00 January 8, 2004 

Let EFGH , ADCD and El Fl GI HI be three convex quadrilaterals, 
satisfying: (a) Points E ,  F ,  G and H lie on sides AB , BC , CD 

and DA , respectively, and - - ~ ~ = 1 ; (b) points 

A, B ,  C and D lie on sides H l E l ,  El FI , FIGI and GIHI, 
respectively, andElF1 / / E F ,  FIGI / / E ,  GIHI //GH, HIEI // 

= A ,  find the expression of ~ in terms of A. El A HE. suppose- 
AH1 

AE BF CG DH 
E B  FC GD HA 

Fl C 
CG1 

(posed by Xiong Bin) 

BE BF Solution (1) If EF // AC, then 

-~ so ~ - DG using condition ( a ) .  Then 
HA GC 

HG //AC, giving EIFl // AC // HlGl. That FI C 
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FlC E1A 
CG1 AH1 

- A. means - - - - - 

91 

T 
t\, 
; i  i 
1 1 '  (2) If EF is not parallel to AC, extend 

! I  
CF BE 
FB EA \ I  I 

\ I  I \ I  

\ I  I 
,I I "I 

Menelaus' Theorem, we have - - 

1 using 
AT CG D H  AT 
~ =1, and then ~ ~ 

condition (a) .  By the inverse of Menelaus' 
Theorem, we know that points T, H and G are collinear. Suppose 
lines TF and TG meet line El HI at M and N respectively. As EB1 // 

B ' ' I  

GI TC GD HA = E; C 

BA AD 
EA A H  

EF, we get E1A = - AM. In the same way, we get H1A = - 

AN. Then EiA AM AB AH 
T A P A N  A E  AD' 

.-.- - 0 

AM EQ AAEC - AABC AE AD 
AN QH a A H C - A A D C * A B * A H '  

On the other hand, ~ = - = ~ 

~ 

0 
In the 

EIA EQ AB AH AABC .--- From 0, 0 we get - - - - 

H ~ A  -QH *AE AD m c .  
same way , 

FlC E1A 
CG1 AH1 

so - A. - 

Let c be a positive integer, and a number sequence XI , x 2  , 
satisfy x1 = c and 

where [x] denotes the largest integer not greater than x. 
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Determine the expression of x, in terms of n and c. (posed by 
Huang Yumin) 

Solution Obviously, X, = xnp1 + [ 2(xn-A - ''1 for n 2 2. Let a, 

, n = 1, 2, . . a ,  where A is a (n+ l ) ( n + 2 >  
2 

Let u, = A 

nonnegative integer. Since 

= u,, f o r n 2 2 ,  ( n  + 1) (n+ 2) 
2 

=A 

the sequence {u,} satisfies 0. 
Let y, = n ,  n = 1, 2,  ..a. Since 

r 9 1  

the sequence {y,} satisfies 0 too. 
Le tz ,= [ (  n + 2>2 ] , n = l , 2 ,  ..a. Thenwehave, f o r n = 2 m  

a n d m 2  1, 

=[+(m+l) = (m+1>2 = z,. 1 
For n = 2m+ 1 andm 2 1, 
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So, the sequence {y,} satisfies 0 too. 
For any nonnegative integer A, let v, = u, + y, = A 

( n  + 1) (n+2)  + n ,  2 

2 
W, = u,+z, = A *  9 

n = 1, 2, . a * .  

Obviously, both {v,} and {w,} satisfy 0. 
Sinceul = 3A, y1 = 1, z1 = [$1= 2, then for3 I a1 we have 

a1 

6 
a, = - (n+ l>(n+2> .  

a1 -1 
6 

F o r q  = l(mod 3), a, = ~ ( n  + l ) ( n  + 2) + n. For a1 = 

a1 -2 
6 

a, = ~ 

In summary, 

x, = - (n+ l ) (n+2)+1 ,  forc=l(mod3);  

x, = -(n+ 1)(n+2)  + n+ 1, for c = 2(mod 3); 

c-1 
6 

c-2 
6 

c-3 
6 

x, = -(n+ l ) ( n  + 2) + [ ( n  :2)2]+ 1, for c = O(mod 3). 
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@@ Let M be a set consisting of n points in the plane, and satisfying: 
(1) there exist 7 points in M which constitute the vertices of a 
convex heptagon; (2) if for any 5 points in M which constitute 
the vertices of a convex pentagon, then there is a point in M 
which lies in the interior of the pentagon. 
Find the minimum value of n. (posed by Leng Gangsong) 

Solution First, we prove that n > 11. Suppose a convex heptagon 
has its vertices in M given by A I A ~ A ~ A A ~ A ~ A ~ .  Using Condition 
(l), we get that there exists one point PI belonging to M in the 
interior of convex pentagon A1A2A3A4A5. Connecting PIAl and 
P1A5, we obtain that there exists one point P2 in convex pentagon 
Al P1A5&A7 so that P2 belongs to Mand is different from PI. Then, 
there are at least 5 points in {Al , A2 , A3 , A4 , A5 , A6 , A7 } which do 
not lie on line PI P2. By the Pigeon Hole Principle, there exist at least 
3 points on one side of line PI P2 , and these 3 points together with PI 
and P2 constitute a convex pentagon which contains at least one point 
P3 belonging to M. 

Now, we have three lines PI P2 , P2P3 and P3P1 , which form a 
triangle APl P2 P3. Let x1 denote the half-plane on one side of line 
PI P2 which is opposite to APl P2 P3 and contains no points on PI P2. 
In a similar way, we define x2 and x3. Areas XI , x2 and x3 cover the 
entire plane except APl P2 P3. By the Pigeon Hole Principle, there is 
one area of x1 , x2 and x3 which contains at least 3 points belonging to 
{A1 , A2 , A3 , A, A5 , A6 , A7} , Without loss of generality, we 
assume that the area x1 contains points Al , A2 , A3 , then there exists 
one point P4 belonging to M within the convex pentagon constituted by 
A1 , A2, A3, PI and P2. So, n > 11. 

Now, we give an example to illustrate that 
n =11 is attainable. As seen in the figure, set M 
consists of integral pointsAl , A2 , A3 , A4 , A5 , 
&, A7, and four integral points within the 
heptagon A1A2A3A4A5&A7. Obviously, M 
satisfies Condition (1). We are going to 
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prove that M also satisfies Condition ( 2 ) .  
By reduction to absurdity, assume that there is a convex pentagon 

with its vertices belonging to M which contains no point of M in its 
interior. Then among such pentagons there must be one, denoted by 
ABCDE,  which has the least area, since the value of the area of a 

polygon with integral vertices is always in the form of ?(n  E N). 

There are only 4 cases concerning the odd/even property of the 
xycoordinate of a integral point: (odd, even) , (even, odd) , (odd, 
odd) , (even, even). So there must be two vertices among A,  B, C,  
D ,  E which have the same odd/even property, and the midpoint of 
the segment formed by these two vertices, say P, is also an integral 
point and belongs to M. By definition, P is not in the interior of 
pentagon ABCDE, then it must be on one side of the pentagon. 
Assume that P is on the side A B  , then it must be the midpoint of A B  , 
and PBCDE is a convex pentagon with strictly less area than that of 
ABCDE. 

2 

So, the minimum value of n is 11. 

Second Day 
8 : 30 - 13 : 00 January 9, 2004 

--. a - For a given real number a and a positive integer n ,  prove that: 

(1) there exists exactly one sequence of real numbers xo , x1 , . . a ,  

x, , x,+1 , such that 

( 2 )  the sequence xo , x1 , 
I a 1 ,  i = 0, 1, . . a ,  n + l .  (posed by Liang Yingde) 

, x, , x,+1 in (1) satisfies I xi I < 
Solution (1) Proof of existence: From xi+l = 2xi + 2 d  - 2a3 - 
xi-I, i = 1, 2 ,  . . a ,  n andxo = 0,  we get that xiis a polynomial of x1 
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with degree 3i-1 and real coefficients, for 1 < i <  n+ 1. Specifically, 
xn+l is a polynomial of XI with degree 3" and real coefficients. As 3" is 
an odd number, there exists a real number x1 such that xn+l = 0. Then 
from this XI and xo = 0 we can calculate xi. The sequence xo , XI , , 
xn , xn+l obtained in this way satisfies the required condition. 

Proof of uniqueness: Suppose there are two sequences wo, 
WI .-, wn wn+l and vo , vl , . . a ,  v, , v,+l , both of which satisfy 

1 1 
Condition (1). Then-(wi+l +wi-l) = wi+w?-u3 and-(vi+l + 

2 2 
~ i - 1 )  = ~ l i  + v?- u3. Thus, 

1 
2 
- (wi+l - Vi+l + wi-1 - Vi-1) 

= (wi -v i ) (1  +w:+wivi +v:>. 

Iwi -v i  I <  Iwi -v i  I(l+w:+wi vi + v : >  

Suppose I wio - vi0 I is the greatest. Then 

0 0  

1 1 < y I Wi0+l - vi0+1 I + I wio-l - "io-l I 

<Iwi -v i  I .  
So, either I wi - vi I = 0 or (l+w: +wi vi +v: ) = 0, that is, 

either I wi - vi I = 0 or w: +v: + (wi +vi )2 = 0. However it must 

be I wi -v i  I = 0. Since I wi -via I is the greatest. Then 
I wi - vi I = 0 for every i = 1 , 2 , , n. This completed the proof of 
(1). 

0 0  

0 0  

(2) Suppose that I xio I is the greatest. Then we have 

I"io I +  I"io 13 = I"io I(1+ I"io 1 2 )  

1 1 
< y ~ x i o + l  I + ~ I ~ ~ ~ - ~  I+ 1 4 3  
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%&@ For a given positive integer n > 2, suppose positive integers 

ai(i =1, 2,  . . a ,  n> satisfy a1 < al < < a, and c - < 1. 

Prove that, for any real number x , the following inequality 
holds, 

" 1  
;=I ai 

(posed by Li Shenghong) 
n r  

1 Solution For 2 > al (al - 1) , from c - < 1 we have 
;=I ai 

For 2 < al (al - 1>, using the Cauchy Inequality, we have 

Further, for positive integers a1 < a1 < < a,, we have ai+l > 
ai + 1 and 

2a; 2a; 
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1 
- 

1 < 
( U i  - + I 2  +2 (%+I -y 12+2' 

for i = 1, 2,  . . a ,  n-1. So 

%!&B Prove that every positive integer n ,  except a finite number of 
them, can be represented as a sum of 2 004 positive integers: n = 

a1 + a2 + + a20049 where 1 < a1 < a2 < < a20049 and 
ai I ai+l , i = 1 , 2, . . a ,  2 003. (posed by Chen Yonggao) 

Solution We are going to prove a more general result: For any 
positive integer r > 2, there exists N ( r )  E N such that for every n > 
N ( r )  , there are positive integers al , a2 , , a, satisfying 

n = a1 +a2 + +a,, 1 < a1 < a2 < 
<a,, ai I U i + l ,  i = 1, 2,  . . a ,  r-1. 

F o r r =  2, we haven= l + n - 1 ,  thenN(2) = 3. 
Suppose it is true for r = K ,  then for r = K + 1 let N(K + 1) = 

4N(K)3.  For any positive integer n = 2"(21 + 1) > N(K + 1) = 

4N(K)3 , we have either 2" > 2N(K)2 or 21 + 1 > 2N(K). 
If 2" > 2N(K)2 , there exists an even positive integer 2t < a such 

that 22t > N(K>2 , then 2t + 1 > N(K). By induction we get positive 
integers bl , b2 , , bk such that 



2005 China Mathematical Olympiad and 20th Mathematics Winter 
Camp was held on January 20 - 25 in Zhengzhou, Henan Province, 
and was hosted by Olympiad Committee of CMS, the editorial 
deboard of (( Zhong Xue Sheng Shu Li Hua ( % '& & H f i )  )) and 
Zhengzhou Foreign Language School. 

The Competition Committee consisted of the following: Xiong 
Bin, Chen Yonggao, Leng Gangsong, Li Shenghong, Su Chun, 
Wang Jianwei, Wu Xihuan, Ye Zhonghao, Zhang Zhengjie, Zhu 
Huawei. 
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First Day 
8 : 00 - 12 : 30 January 22, 2005 

Let 0, E --, - , i = 1, 2, 3, 4. Prove that there existsx E ( 2" 2") 
R such that the following two inequalities 

cos2 el C O S ~  e2 - (sin el sin e2 - x ) 2  > 0,  

C O S ~  0, C O S ~  e, - (sin 0, sin 0, - d2 > 0, 

0 
0 

hold simultaneously if and only if 

(posed by Li Shenghong) 

sin 01 sin e2 - cos el cos 0, < x < sin 0, sin 0, + cos 0, cos e2 , @ 

sin 0, sin 0, - cos 0, cos 0, < x < sin 0, sin 0, + cos 0, cos 0, , 0 
respectively. It is easy to show that there exists x E Rsuch that @ and 
0 hold simultaneously if and only if 

sin el sin 0, + cos el cos 0, - sin 0, sin 0, + cos 0, cos 0, > 0, @ 

sin 0, sin 0, + cos 0, cos 0, - sin el sin 0, + cos 0, cos 0, > 0. 0 
On the other hand, using sin2a = 1 - cos2a, we can simplify 0 

Proof Clearly, 0 and 0 are equivalent to 

into 

cos2el cos2e2 + 2c0s el cos e2 cos e, cos e, + cos2e3 cos2e4 

- sin2 el sin2 e2 + 2sin el sin e2 sin 0, sin 0, - sin2 0, sin2 e, > 0,  

(cos el cos 0, + cos 0, cos 04>2 - (sin 0, sin 0, - sin e, sin e4)2 > 0. 

(sin el sin 0, + cos el cos 0, - sin 0, sin 0, + cos e, cos e,) . 

or 

That is, 
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(sin 0, sin 0, + cos 0, cos 0, - sin el sin 0, + cos el cos 0,) 0. @ 

If there exists x E R such that @I and 0 hold simultaneously, 
then from @ and 0 we can get @ immediately. It follows that 0 
holds. 

Conversely, if 0 holds, or equivalently @ holds, but @ and 0 
do not hold, then we have 

sin el sin e2 + cos el cos 0, - sin 0, sin 0, + cos 0, cos 0, < 0,  

sin 0, sin 0, + cos 0, cos 0, - sin 0, sin 0, + cos 0, cos 0, < 0. 

and 

Adding the last two equations, we obtain 

2(c0s el cos e2 + cos e3 cos e4) < 0, 

which contradicts to the fact ei E (- , i = 1, 2, 3, 4. So @ 
2 2  

and 0 hold simultaneously. Hence there existsx E Rsuch that @I and 
0 hold simultaneously. 

@ A circle intersects sides B C ,  C A ,  A B  of A B  C at two points for 
each side in the following order: {Dl , D2 } , {El , E2 } and {FI , 
F2 } . Line segments D1 El and D2 E2 intersect at point L , El Fl and 
E2D2 intersect at point M,FlDl and F2E2 intersect at point N. 
Prove that A L , B M and CN are concurrent. (posed by Ye 
Zhonghao) 

Proof Through point L draw perpendicular lines to A B  and to AC,  
the feet are L’ and L” respectively. Let L L A B  = a1 , L L A C  = a2 , 
L L F z A  = a3 , a n d L L E I A  = a4. We have 

sin a1 LL’ L F 2  sin a3 

sin a2 LL” = L E ~  sin a4. 
0 - 

~~ - 

Draw line segments DlF2 and D2El (see Figure 1). Since A L  
DlF2 c/) ALDzEl  we get 
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Figure 1 Figure 2 

0 

Draw line segments D2F1 and D1 E2 (see Figure 2). By using the 
sine rule we obtain 

sin a3 D2F1 
sin a4 D1 E2 ' 

- - -  - 

Substituting 0 and 0 into 0, we have 

sin al DlF2 D2F1 
sin a2 D2El DIE2' 

.- -- - 

0 

0 

Similarly, write L B M C  = PI, L M B A  = 8 ,  L N C A  = Yl,  
L N C B  = Y2 , and we get 

sins ElD2 E2D1 
sins E2F1 ElF2 ' 
s h y l  FIE2 F2El 
sin Y2 F2D1 FlD2' 

.- -- - 

.- - ~- - 

Multipling 0, 0 and @, we obtain 

0 

@ 

sin al sinpl sin y1 
sin a2 s i n 8  sin y2 

.-- - 1. .- 
Finally, according to the inverse of Ceva's Theorem, we know A 

L, BM and CN have a common point. 
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a As seen in Figure 3, a circular pool is divided into 2n ( n  5) 
‘grids’ . Two grids are said to be neighbors if they have a 
common side or an arc. It is easy to see that every grid has three 
neighbors. 

4n + 1 frogs jump into the pool. It is difficult for frogs to be 
quiet together. Whenever there is a grid where at least three 
frogs live together, sooner or later there must be three frogs in 
the grid jumping out simultaneously into the three neighboring 
grids respectively. Show that after a few times, the distribution 
of frogs in the pool will become uniform. 

Here “uniform” means, for every grid of the pool, either 
the grid itself or each of the three neighboring grids has at least 
one frog. (posed by Su Chun) 

Proof We call an event that there are three 
frogs in the same grid simultaneously jumping 
into three different neighboring grids “ an 
eruption ”. A grid is said to be “ in 
equilibrium” if there are frogs in it or there 
are frogs in all its three neighbors. 

It is easy to see that a grid will be in 
equilibrium after a frog jumps into the grid. Infact, frogs in this grid 
never move if there is no eruption. So, the grid is in equilibrium. If 
an eruption occurs, then there is at least one frog in each of its three 
neighbors. Further, it will be in equilibrium provided no eruption in 
each of its three neighbors. However, no matter which neighbor 
erupts, there will be frogs jumping into the grid, and there are frogs 
in it, so it will remain in equilibrium. 

According to the above discussion, it suffices to prove that for 
any grid sooner or latter there is a frog jumping into it. 

Given any grid, say Grid A. We call the sector in which the grid 
is situated Sector 1 , and Grid B, for the other grid in Sector 1 (as 
shown in Figure 4). We have to prove that sooner or latter there are 
frogs jumping into Grid A. 

Figure 3 



104 Mathematical Olympiad in China 

Figure 4 

Number the remaining sectors 2 to n in the clockwise direction. 
At first we show that sooner or latter there are frogs jumping into 
Sector 1. Suppose that in Sector 1 there are no frogs coming. Then 
there are no frogs crossing the wall between Sector 1 and Sector n. 
Consider the sum of the squares of the labeling numbers of sectors 
having frogs. Since there is no frog entering Sector 1 (especially, 
there is no frog crossing the wall between Sector 1 and Sector n)  , it is 
only possible that three frogs jumping from some Sector K (3 < K < 
n- 1) into Sector K - 1 , K ,  and K + 1 , respectively. So the change in 
the sum of the square numbers is 

( K - l ) 2  + K 2  + ( K + 1 ) 2  -3K2 = 2. 

That is increasing by 2. On the one hand, since frogs cannot stop 
jumping because there is at least one grid in which there are at least 
three frogs, hence the increasing of the sum does not stop. On the 
other hand, the sum cannot increase forever (it cannot be greater 
than (4n+ l > n 2 >  , a contradiction. Therefore, sooner or latter there 
are frogs that cross the wall between sector 1 and sector n, and enter 
Sector 1. 

Next, we prove that sooner or latter there are three frogs 
jumping into Sector 1. If there are at most two frogs jumping into 
Sector 1 , then they do not jumpout , and the above sum of the square 
numbers decreases at most twice (it happens only when two frogs 
cross the wall between Sector 1 and Sector n). And after that the sum 
increases continuously, again a contradiction. Hence, sooner or latter 
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there are three frogs that jump into sector 1. 
If among these three frogs some are in Grid A, then there are 

already frogs jumping into Grid A. Otherwise, these three frogs are 
all in Grid B , thus an eruption happens in Grid B and there is one frog 
that jumps into GridA. 

Second Day 
8:OO-12:30 January23, 2005 

21 
16 

--. - Let {a,} be a sequence such that al = - and 

Let m be a positive integer and m 2. Prove that for n < m, 
0 

(posed by Zhu Huawei) 
Proof By Equation 0, we have 

3 2%, = 3 2n--la,-l +T. 

S e t b n = 2 " a , , n = l , 2 ,  .-,then 

21 
8 

Sincebl = 2al = -, 

b, + - 3 8 = 3"-1 (b1+%)= 3", 

it follows that 
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Therefore, in order to prove Equation 0, it suffices to prove 
that 

or equivalently , 

n 
At first, we estimate the upper bound of 1 - - By using 

m+l' 
Bernoulli's inequality, we get 

so that 

1 

( 1 + i l r n  

n 

(Note: By the mean inequality, we can also have the same result: 

n (1--) n "  . 1 . 1 .  .... 1 ( m+l m + 1 '-y-' 

mn m 1--)+mn-m] n 
( m + 1  

mn 1 

Since m 2,  in view of the binomial formula, we obtain 
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1 5 1 9  
m m2 2 2m 4 

> -. 
It follows that 

or 
z_. 
112 1- -<($ )  n . 

m+l 

Hence, if we want to prove Equation 8, we only need to prove 
that 

that is, 

- 

Set ($1 112 = t ,  then 0 < t < 1 , and Equation 0 now becomes 

t(m-tm-l) < m - I ,  

or 

( t  - 1 )  [m - (trn-l + + + I ) ]  < 0. 

The above inequality clearly holds, so does the initial inequality. 

$2&% There are 5 points in a rectangle AB C D  (including its boundary) 
with unit area such that any three of them are not collinear. Find 

the minimun number of triangles with areas no more than - and 

vertexes chosen from these 5 points. (posed by Leng Gangsong) 

1 
4 

Solution At first, we give a lemma without proof. 
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Lemma The area of a triangle inscribed in a rectangle is no more than 
half of the area of the rectangle. 

In the rectangle A B  CD if there are 3 points such that the area of 

the triangle with these points as the vertices is no more than - , then 

these 3 points are called a good triple or good. 
Denote E ,  F, H and G the midpoints of A B  , CD , BC and AD , 

respectively, and 0 the intersection of line segments EF and GH. EF 
and GH divide the rectangle A B C D  into 4 small rectangles, it follows 
that there exists certain small rectangle, say A E O G ,  in which there 
are at least two points (say, M and N) out of those 5 points, see 
Figure 5. 

(1) If there is no more than one given 
point in the rectangle OHCF, consider any 
given point X which is different from M and 
Nand not in the rectangle OHCF. It is easy A 

to verify that triple ( M ,  N, X )  is either in 
rectangle A B  HG , or in rectangle AEFD. By 
the above lemma ( M ,  N, X )  is good. Since there are at lease two such 
points X, we have at least two such good triples. 

(2) If there exist at least two given points in rectangle OHCF , we 
suppose that P and Q are the given points in rectangle OHCF. Consider 
the final given point R. If R is in the rectangle OFDG, then ( M ,  N ,  
R )  is in the rectangle AEFD, and ( P ,  Q, R )  is in the rectangle 
GHCD. So they are all good. It follows that there are at least two 
good triples. Similarly, when point R is in the rectangle EBHO there 
are at least two good triples too. If point R is in the rectangle OHCF 
or the rectangle AECG , suppose that R is in the rectangle OHC F. 
Consider the smallest convex polygon containing the 5 points M, N, 
P, Q and R. The polygon must be contained in the convex hexagon 
AEHCFG (see Figure 6). But the area 

1 
4 

B 
E 

Figure 5 

1 1 3  SAEHCM; = 1 - - - - = - 
8 8 4 '  
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We divide the case into three subcases as 

i) Suppose the convex polygon generated 

(no loss of generality) say MNPQR (as seen 
in Figure 7). In this case 

follows. 

B 
by M, N, P, Q and R is a convex pentagon, N' 

E 

Figure 6 

A 

3 
SMQR + SAMNQ + SANPQ < 7 9 

it follows that there is at least one good triple among ( M ,  Q, R )  , ( M ,  
N, Q) and (N, P, Q). Moreover, ( P ,  Q, R )  is clearly good for it is 
in the rectangle OHCF. Thus there are at least two good triples. 

R 

Figure 7 Figure 8 

ii) If the convex polygon generated by M, N, P, Q and R is a 
convex quadrilateral, say A1A2A3A4, and the fifth point is A5 (as 
seen in Figure 8) where Ai E { M ,  N, P ,  Q, R }  ( i  = 1, 2, 3, 4, 5). 
Draw line segments A5Ai ( i  = 1 , 2 , 3 , 4) , then 

3 
4 S ~ A ~ A ~ A ,  + S~A,A,A, + S~A,A,A, + SAA,A~A, = SAA,~,PSA, < -. 

Therefore, there are at least two good triples among (A1 , A2 , 
A5),  (A2, A3, A5),  (A3, A4, A5) and(&, A4, As). 

Figure 9 Figure 10 
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iii) If the convex polygon generated by M, N, P, Q and R is a 
triangle, say aAlA2A3 , and the remaining two points are & and A5 
(as seen in Figure 9 > ,  whereAi E {M, N, P ,  Q, R }  (i = 1, 2, 3, 4, 
5). Draw line segmentsA4Ai(i = 1, 2,  3),  then 

3 
S ~ A ~ A ~ A ~  + S ~ A ~ A ~ A ~  + S~A,A,A, = S ~ A ~ A ~ A ~  < 7. 

Therefore, there is at least one good triple among (Al , A2 , A4) , 
(A2 , A3 , &) and (A1 , A3 , &). Similarly, A5 with two of A1 , A2 
andA3 constitutes a good triple. Consequently, in this case there are 
at least two good triples. 

Thus, in any case there are at least two good triples among these 
5 points. 

In the following we will give some examples to show that the 
number of good triples may be just two. Pick a point Mon the side AD 
of the rectangle AB CD and a point N on the side AB such that AN : 
NB =AM : M D  = 2 : 3 ( as shown in Figure 10). Then among 5 
pointsM, N, B, CandD there are just two good triples. In fact, ( B ,  
C, D> is clearly not good. Suppose that a triple containing exactly one 
of two points M and N, say M. Let E be the midpoint of AD , then 

It follows that ( M ,  B, D> is not good. Thus 

Hence ( M ,  B, C) and ( M ,  C, D> are not good. If a tripe does 
contain two points M and N, then 

SAMNC = 1 - SANBC - SAMCD - SAAMN 
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1 1  
5 4  

So ( M ,  N, C) is not good. But SAMNB = SAMND = - < -, thus 

among the triples there are only two good triples ( M ,  N, B )  and ( M ,  

Consequently, the minimun number of triangles with area not 
N, 0). 

1 
4 

great than - is 2. 

*--* =B Find all non-negative integer solutions (x, y, z ,  w) of the 
following equation 

2" . 3Y - 5" . 7" = 1. 

(posed by Chen Yonggao) 

Case 1 : y = 0. The equation to be solved becomes 
Solution Since 5" 7" + 1 is even,we have x > 1. 

2" - 5" . 7" = 1. 

If z # 0,  then 2" = l(mod 5). It follows that 4 I x. Thus 3 I 2" - 

If z = 0,  then 
1, which contradicts to 2" - 5" 7" = 1. 

2" -7" = 1. 

When x = 1 , 2 , 3 , a direct computation shows that (x, w) = (1 , 

When x > 4, 7" =-l(mod 16). By direct computation we know 

Consequently, when y = 0 all non-negative integer solutions of 

0) , (3, 1) are the solutions. 

that this is impossible. 

the equation are 

(x, y ,  z ,  w) = (1, 0,  0 ,  O ) ,  (3, 0, 0 ,  1). 

Case 2 : y > 0 and x = 1. Thus the equation to be solved becomes 
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2 . 3 ~  -5". 7" = 1. 

Hence-5" *7"=l(mod3), i .e . ,  (-1)"=-l(mod3). It follows 
that z is odd. 
Thus 

2 3Y = l(mod 5). 

So y = 1 (mod 4). 
When w # 0, we have 2 3Y = l(mod 7). Thus y = 4(mod 6),  

which contradicts to the fact y = 1 (mod 4). Hence w = 0 and 

2 3y-5" = 1. 

Wheny = 1, we have z = 1. If y > 2, then 5" =- l (mod9),  
which implies z = 3(mod 6). Thus 53 + 1 I 5" + 1, so 7 I 5" + 1, which 
contradicts to 5" + 1 = 2 33'. Hence in this case we have only one 
solution 

(x, y, z ,  w) = (1, 1, 1, 0). 

Case 3 : y > 0 and x > 2. Thus 

5" 7" =- l(mod 4),  and 5" 7" =- l(mod 3). 

That is, 

(-1)" =-l(mod4), and(--)" =-l(mod3). 

Thus z and w are odd. It follows that 

2"*3Y= 5"*7"+1=35+1=4(rnod8) .  

Hence, x = 2, and 

4 3Y - 5" 7" = 1 (where z and w are odd). 

Thus, 

4 3Y = l(mod5),  and4 3Y = l(mod7). 

From the above two congruencies we have y = 2(mod 12). 
Se ty=  12m+2, m>O, then 

5" . 7" = 4 . 3Y - 1 = (2 .36"+l - 1)(2 .36"+l + 1). 

Since 

0 
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0 

If m> 1 , by Equation 0 we have 5" =-1(mod9) , and from Case 

If m = 0,  then y = 2, z = 1 andw= 1. Thus in this case, we have 
2 we know that this is impossible. 

only one solution 

(x, y ,  z ,  w) = (2, 2, 1, 1). 

(x, y ,  z ,  w) = (1, 0,  0 ,  O ) ,  (3, 0, 0 ,  l ) ,  

(1, 1, 1, O ) ,  (2, 2, 1, 1). 

Consequently, all non-negative integer solutions are 

2006 China Mathematical Olympiad and 21 th Mathematics Winter 
Camp was held on January 10 - 15 in Fuzhou, Fujian Province, and 
was hosted by Olympiad Committee of CMS and Fuzhou No. 1 middle 
school. 

The Competition Committee consisted of the following: Li 
Shenghong, Li Yonggao, Xiong Bin, Leng Gangsong, Li Weigu, 
Wang Jianwei, Zhu Huawei, Lin Chang, Luo Wei, Ji Chungang. 

First Day 
8:OO- 12:30 January 12, 2006 

Suppose that the real numbers al , a2 , , a, satisfy al + a2 + 
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+a, = 0. Prove 
-1 n 

maxa! < - C (ai - ai+l >2. (posed by Zhu Huawei) 
l< i<n  3 ;=I 

Solution It is sufficient to prove that: For every K E { 1 , 2 , .-, n} , 
we have 

i= 1 i=l i= 1 

-1 -1 n(n - 1 )  ( 2 n  - 1 )  
6 i= 1 

< Xi2  C &  = [ i=l I [ i=l 1 
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&-* %.s Suppose that positive integers al , a 2 ,  . . a ,  a2 006 (some of them 

a1 a2 

a2 a3 
may be equal) satisfy the condition: any two of - , - , , 

a2 005 

a2 006 
~ are unequal. At least how many different numbers are 

there in { a1 , a2 , , a2 006 } ? (posed by Chen Yonggao) 
Solution The answer is: there are at least 46 different numbers in 

With 45 different positive integers we can only get 45 X 44 + 1 = 

1 981 fractions. So there are more than 45 different numbers in { al , 

, p46 be 46 different prime. Set 

a29 ' " 9  a 2 0 0 6 ) .  

a29 "') a 2 0 0 6 ) .  

On the other hand, let pl  , p2 , 
a1 9 a29 "*, a2006 to be: 

a1 a2 

a2 a3 
Then the 2 006 positive numbers satisfy that any two of - , - , , 

a2 005 

a2 006 
~ are unequal. 

So the answer is 46. 

Suppose positive integers m, n ,  K satisfy mn = K 2  + K + 3. Prove 
that at least one of the following Diophantine equations 

2 + 119 = 4m and xz + 11y2 = 4n 

has a solution (x, y )  with x, y being odd numbers. (posed by Li 
Weigu) 

Solution First, we prove a lemma. 
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Lemma The following Diophantine equation 

2+11$ = 4m 0 
has a solution (XO , yo) , such that either xo , yo are odd numbers or 

0 
Proof of the lemma: Consider the expression x+ (2K+l)y, where 

xo , yo are even numbers with xo = (2K + l)yo (modm). 

& x, yareintegers, andO<x<2&,O<y<- .  
2 

6 + 1 > m such expressions. So 

there exist integers XI , x 2  E [O, 2 &I , y1 , y2 E [0, I] , such 

that(x1, y l ) f ( x 2 ,  yz),and 

There are ([2 f i ]  + 1) 

& 
“ 2 1  1 

XI + (2K + l )yl  = x 2  + (2K + l)y2 (mod m) , 

where x = XI - x 2  9 y = y2 - y1. 

This means 

2 = (2K + I ) ~ $  =- l l y2  (mod m) , 
2 +y2 = tm. that is, 

2 + 1ly2 < 4m+-m 11 < 7m. 
4 

so 1 < t < 6 .  

A m  is an odd number, obviously the equations 2 + 113 = 2m, 

(1) If 2 + l l y2  = m, thenxo = 2x, yo = 2y is a solution of 0 

(2) If 2 + l l y2  = 4m, then xo = x, yo = y is a solution of 0 

and 2 + l l y2  = 6m have no integer solution. 

satisfying 0. 
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satisfying 0. 
(3) If 2 + 119 = 3m, then (x& 1 1 ~ ) ~  + 11(xT y>2 = 32 4m. 
First, assume that3 /m. Ifx+O(mod3), y+O(mod3), andx+ 

y(mod 3) , then 

0 x- l l y  X + Y  xo = ~ 9 Y o = T  3 

is a solution of 0 satisfying 0. 
If x = y + O(mod 3) ,  then 

is a solution of 0 satisfying 0. 
Now suppose 3/m. Then 0 and 0 are still integer solutions of 

0. If equation 0 has an even integer solution xo = 2x1 , yo = 2yl , 
then 

$ + 1ly: = m W 36m = (5x1 & l l y l  >2 + 11(5y1 7 XI >2. 

Since one of XI , y1 is even and the other is odd, so 5x1 & l l y l  , 
5yl Txl are odd numbers. 

5x1 - l l y l  
3 

5 ~ 1  +XI is a 
3 

If x = y(mod 3),  then xo = 9 Yo = 

solution of 0 satisfying 0. 
5x1 +11y1 

3 
5 ~ 1  -XI is a 

3 
If XI + y1 (mod 3) , then xo = 9 Yo = 

solution of 0 satisfying 0. 
(4) If 2 + l l y 2  = 5m, then 52 4m = ( 3 x 7 1 1 ~ ) ~  + 1 1 ( 3 y & ~ ) ~ .  
When 5 1 m, if 

x =& l(mod 5) , y =T 2(mod 5) , 
or x =& 2(mod 5) , y =& l(mod 5) , 

then 

@ 3~ - l l y  3Y+X 
xo = , Y O = T  5 



118 Mathematical Olympiad in China 

is a solution of 0 satisfying 0. 

1 (mod 5) then 
If x =& l(mod 5),  y =& 2(mod 5) , or x =& 2(mod 5) , y =T 

0 3x+ l l y  3y-x 
xo = 9 y 0 = 5  5 

is a solution of 0 satisfying 0. 

Equation 0 has an even integer solution xo = 2x1 , yo = 2yl , then 

d + lly: = m, XI + y1 (mod 2) , 

When 5/m, then @and 0 are still are integer solutions of 0. If 

and we have lOOm = (XI T 33y1 >2 + l l(y1 & 3x1 >2. 

Ifx1 = y l  =O(mod5), orxl =&l(mod5), y1 =&2(mod5), or 

XI =& 2(mod 5), y1 =T l(mod 5) 

is a solution of 0 satisfying 0. XI -33Y1 YI +3x1 
thenxo = , Y o =  5 

is a solution of 0 satisfying 0. 
The lemma is proved. 
From the lemma, if 0 has a solution (x, y) with x, y being odd 

numbers, then it has a solution (xo , yo) with xo , yo being even 
numbers satifying 0. 

Let I = 2K + 1 , the solution of the quadratic equation 

mx2+Zyox+nyi-1 = o .  @ 

-1~o+JFyi!-4mnyi!+4m - ~ y ~ & x ~  . So Equation @ - - 1s x = 
2m 2m 

has at least an integer solution XI , i. e. 



China Mathematical Olympiad 2006 119 

mxf + ~ y o x l +  ny8 - 1 = 0. 8 
This indicates that x1 is an odd number. Now, from 8, it follows 

that 

(2nyO + 1x1 >2 + IIZ+ = 4n. 

This means 2 + 119 = 4n has a solution (x, y> with x, y being 
odd numbers, where x = 2ny0 + Zxl y = XI. 

Second Day 
8:OO- 12:30 January 13, 2006 

.=.- s3 Let a A B C  be a right-angled triangle with L A C B  = 90". The 

inscribed circle OOof A A B C  is tangent to BC, CA , AB at D ,  E ,  
Frespectively. AD intersects @Oat P, L B P C  = 90". Prove that 
A E  + A P  = PD. (posed by Xiong Bin) 

Proof Let A E  = AF = x, BD 

= m, PD = n. 

90" = L P B  C + L P C  B , then 

= B F = y ,  C D = C E = z , A P  EA& 

_--- B 
_/--- 

\ \  ___---  ___---  SinceLACP + L P C B  = " \ D L  
\ \  \, 
;---- 

L A C P  = L P B C .  
Let Q be a point on the line AD, such that LAQC = LACP = 

Let OQ = I ,  then by the intersecting chord theorem and the 
L P B  C. Then P , B , Q ,  C are concyclic. 

tangent secant theorem, it follows that 

y z  = n l ,  

2 = m(m+n>. 

AC AP 
AQ AC 

As A A C P  c/) A A Q C ,  we have - = -. So 

( ~ + z 2 ) ~  = m(m+n+I>. 0 
In Rt A A C D  and Rt A A C B  , using the Pythagorean theorem, we 
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( x + + ) ~  +2 = ( r n + d 2 ,  

(y+z)2  + ( z + x ) 2  = (x+yY)2. 

0-0: 2 +2zx  = ml,  

0 

= (m+d2  = ( x  2 Y z  
z2 +2zx  

@ X  0 together with 0, we get 2 + 
+ z > ~  +2, i.e. 

-- 2 y  - 2 z ( x + z ) .  
z + 2 x  

2XY From 0, x + z  = - 
y +z' 

From @ and 8, we have 

X 42 
- 

z + 2 x  y+z '  

8 

2 x z  Also from 0, y + z =  ~ . Substituting into @ and eliminating 
X - z  

Y + z ,  we abtain 

3 2  - 2 x z - 2 2  = 0,  

z ,  y = (22/?+5)z. Together with 0, it giving the solution x = ~ 

implies 

.J?+1 
3 

z. 
2(47+ 1) 

3 
m+n = 
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z. So x+m = n ,  i. e.  z ,  n=- From 0, m =  - - - .J?+l 2 - .J?+l 
m + n  6 2 

AE+AP = PD. 

@ A sequence of real numbers {a,} satisfies the condition that a1 = 

, K = 1, 2 ,  ..a. 

1 1 
- 9  ak+l +- 2 2 - ak 

Prove the following inequality: 

n 
n 

(posed by Li Shenghong) 
1 
2 

Proof First, weuseinduction toprovethato<%<-, n = l ,  2 ,  ..a. 

When n = 1, it is obvious. 

Nowsupposeitistrueforn ( n > l > ,  i . e .  O<a,<-. 

1 
Let f ( x >  =-x+- 

2 - x  

1 
2 

. Then f ( x >  is a decreasing 

function. So 
1 

1 
6 an+l =f(a,> > f  - = - > o ,  

i. e.  it is true for n+ 1. 
Back to the problem, it is sufficient to prove: 

n n 
( a ,  +a2 +...+a, 2(a1 +a2 + ... +a,> 
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Let f<x) = In - - 1 for x E 0 . Then f<x) is a concave (: 1 (4 )  
1 
2 

function, i .  e.  for every 0 < xl ,  x2 < -, we have f[e] < 

2 
In fact, 

is equivalent to 

w (XI -x22>2 > 0. 

So f<x> is a concave function. 
Using Jenson’s Inequality, It follows that 

x1 +x2 +.-+x, f(x1) + f ( x 2 )  +-.+f(x,) 
9 

n 

n 
so (a1 +a2 + ... +a, 

On the other hand, by using Cauchy’s Inequality, we have 

i=l 
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i = l  i = l  

so 

123 

l I n  

Let X be a set of 56 elements. Find the least positive integer n 
such that for any 15 subsets of X, if the union of every 7 sets of 
these subsets contains at least n elements, then there exist 3 of the 
15 subsets whose intersection is nonempty. (posed by Leng 
Gangsong) 

First, we prove that n = 41 satisfies the condition. 
Suppose there exist 15 subsets of X, the union of every 7 of these 

15 subsets contains at least 41 elements, and there exists no 3 of the 15 
subsets whose intersection is nonempty . 

Since every element of X can only belong 2 of the 15 subsets, we 
can suppose that every element of X belongs to exactly 2 of the 15 
subsets. Otherwise we can add a few more elements to some sets of 
the 15 subsets, and the condition still holds. 

By the Pigeonhole Principle, there is a set of the 15 subsets 

(suppose it is A) , such that I A I > ['"!"I+ 1 = 8. Let the other 14 15 
sets be A1 , A,, .-, A14. 

The union of every 7 sets of A1 , A2 , , A14 contains at least 41 
elements. So the total number y < 41CT4. 

Solution The minimum value of n is 41. 
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We use another way to compute the value of y. 
For a E X, if a @ A, then a belongs to exactly 2 sets of A1 , 

A2 , , A14. So a is counted C74 - C72 times. If a E A, then a belongs 
to only one set of A1 , A2 , . . a ,  A14. So a is counted CT4 - CT3 times. It 
follows that 

41c74<~<(56-1A I)(C74-C72)+IA I (C74-C73) 

=56(C74 - C72) - I A I (C73 - C72) 

<56(C74 - C72) - S(C73 - C72) 9 

that is, 196 < 195 , a contradiction. 
Next, we prove n 41. 
I fn<40 ,  supposeX= (1, 2, .-, 56). let 

Ai = {i, i + 7 ,  i+14, i+21, i+28, i+35, i+42, i+49) ,  

i =1, 2, . . a ,  7, 

Bj = { j ,  j + 8 ,  j + 1 6 ,  j+24 ,  j + 3 2 ,  j + 4 0 ,  j + 4 8 ) ,  

j =1, 2, . a * ,  8. 

It is easy to see that 

IAi1-8 ( i = l ,  2, ..*) 7),  IAi n A j I = O ( l < i < j < 7 ) ,  

I B j I = 7 ( j = i ,  2, -., s), n B j I = o ( i < i < j < 8 ) ,  

IAi n B j l =  1 ( l < i < 7 ,  l < j < S ) .  

For every 3 of the 15 subsets, there are 2 sets both being Ai, or 
both being Bj. So the intersection of the 3 sets is empty. 

But for every 7 of the 15 subsets, for example, 

Ai Ai Ai Bj, Bj2 Bj ( s + t  = 7), 
1 2  t 

we have 

IAil U Ai2 U U Ais U Bj, U Bj2 U U Bj, I 
= Mi1 I +  Mi2 I+-.+ 1 %  I +  lBjl I +  lBj2 I+-.+ lBjt  I--t 



... 
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= 8 ~ +  7t - st  = 8 ~ +  7(7 - S> - ~ ( 7 -  S> 

= ( ~ - 3 3 ) ~ + 4 0 > 4 0 .  

So n > 41. 
There fore the answer is 41. 
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China Girls’ Mathematical 
Olympiad 

T h e  China Girls’ Mathematical Olympiad, organized by the China 
Mathematical Olympiad Committee, is held in August every year. 
Participants from Russia, Philippine, Hong Kong, Macau and the 
mainland are invited to take part in the competition. The 
competition lasts for 2 days, and there are 4 problems to be 
completed within 4 hours each day. 

2002 (zhl-i,Guarrgdong) 

The 1st China Girls’ Mathematical Olympiad was held on August 15 - 
19, 2002 in Zhuhai, Guangdong Province. 

The Competition Committee consisted of the following: Pan 
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Chengbiao , Qiu Zonghu, Li Shenghong , Xiong Bin, Wu Weichao , 
Qian Zhanwang and Qi Jianxin. 

First Day 
8:OO- 12:OO August 16, 2002 

@@@ Find all positive integers n such that 20n + 2 can divide 2 003n + 

Solution It is easy to see that n is an even number. Let n = 2m, 
then from 

2 002. (posed by Wu Weichao) 

40m+ 2 12 003 X 2m+2 002 

20m + 1 I 2 003m + 1 001. we can get 

But 2003m+1001 = 100(20m+l)+3m+901, 

so 20m+1 I3m+901. 

3m + 901 
20m+1 

And when = 1, 2, 3 ,  4, m is not a positive integer. 

Therefore , 
3m + 901 
20m + 1 

2 5, 

896 
97 

m<-<10. 

Hence m < 9. But after checking one by one form = 1 , 2, 3 , , 

Therefore, there is no positive integer n satisfying the condition. 
9 ,  we know that20m+1[ 3m+901 form = 1, 2, 3, . . a ,  9. 

@& 3 n ( n is a positive integer) girl students took part in a summer 
camp. There were three girl students to be on duty every day. 
When the summer camp ended, it was found that any two of the 
3 n  girl students had just one time to be on duty on the same day. 
(1 ) When n = 3 , is there any arrangement satisfying the 

requirement above? Prove your conclusion. 
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(2) Prove that rz is an odd number. (posed by Liu Jiangfeng) 
Solution (1) When n = 3, there is an arrangement satisfying the 
requirement. Now the concrete arrangement is given as follows 
(Denote the nine girl students by 1 , 2 , , 9) : 

(2) We take arbitrarily one girl student. Since she is on duty just 
one time with every one of other girl students, and three people are 
on duty every day. So all other girl students can be paired up two by 
two. Hence 

2 I3n- 1, 

therefore rz is an odd number. 
Remark Problem (1) is an open-ended problem. It asks whether 
there is an arrangement satisfying the requirement of the problem. If 
an arrangements exists, we must construct a concrete example (see the 
example we have given). If not, we will prove it. ( I t  is usually 
proved by contradiction. ) 

@ $  Find all positive integers K such that , for any positive numbers a , 
b and c satisfying the inequality K (ab  + bc + ca 1 > 5(a2 + b2 + 
2), there must exist a triangle with a , b and c as the length of 
its three sides respectively. (posed by Qian Zhangwang) 

Analysis First, we try to determine the range of K. Then by 
assumption that K is a positive integer, we may get the values for K. 
Afterward, we check that K can take really these values. 
Solution From(a-b)2+(b-cc)2+(c-ua)2 2.0, weget 

a 2 + b 2 + 2  >ub+bc+ca,  

so K > 5. Hence K > 6. 
Since there is no triangle with length of its sides to be 1, 1, 2 
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respectively, by the assumption in the problem, we have 

K ( l x l + l x 2 + l x 2 ~ < 5 ~ l ~ + l ~ + 2 ~ ~ ,  

that is, K < 6. 

no harm in assuming a < b < c. 

We will prove that K = 6 satisfies the requirement below. There is 

Since 6(ab  + bc + ca)  > 5(a2 + b2 + c?) , 
so 52 -6(a+b)c+5a2 +5b2 - 6 ~ b  < O ,  

A =  [ 6 ( a + b ) 1 2  - 4  5(5a2 +5@ - 6 d )  

=64[ab-  ( ~ - b ) ~ ]  

( a  + bI2  
4 

<64ab < 64 

=16(a + bI2.  

=a+b. 

Hence, there exists a triangle with a , b , and c being the length 
of three sides. 

Circles 0 1 and 0 2  interest at two points B and C , and BC is the 
diameter of circle 0 1 . Construct a tangent line of circle 0 1 at C 
and interesting circle O2 at another point A. We join A B  to 
intersect circle 01 at point E ,  then join C E  and extend it to 
intersect circle 0 2  at point F.  Assume H is an arbitrary point on 
line segment A F .  We join H E  and extend it to intersect circle 
01 at point G ,  and then join B G  and extend it to intersect the 
extend line of A C  at point D. Prove: 

(posed by Xiong Bin) A H  AC 
H F  CD' 

- 
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A H  AC A H  AC Analysis To prove ~ = ~ , we need only to prove ~ = ~ 

H F  CD A F  A D '  
that is, 

A H  * A D  = AC O A F .  

First, we try to prove M H E  c/) a A B D  
and then using the tangent secant theorem, 
we can prove the result. 
Proof Since BC is the diameter of 0 0 1 

and ACD is a tangent line, so BC 1 A D  , L A C B  = 90". Hence AB is 
the diameter of 0 0 2 .  

1. 

Also, L B E C  = 90", that is, A B  1 FC,  so 

L F A B  = / C A B .  

Join CG, then CG 1 BD. Hence 

L A D B  = L B C G  = / B E G  = L A E H ,  

therefore M H E  c/) M B D .  

Thus 
A H  A B  
AE =AD' 

that is, A H * A D = A B * A E .  

By the tangent secant theorem, we can get 

AC2 = A E * A B ,  
A H  * A D  = AC2 = AC O A F ,  so 

A H  AC 
AF =AD' 

A H  AC 
H F  CD' 

- We can get 

Second Day 
8:OO- 12:OO August 17, 2002 

@!@ Assume PI , P2 , .-, P, ( n  2) is an arbitrary permutation for 
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1, 2,  . . a ,  n. Prove that 

1 n -1  + >- 
Pn-2 + pn-1 pn-1+ pn n + 2' 

1 1 1 + ... + 
PI +p2 ' p 2  +p3 

(posed by Qiu Zonghu) 
Proof By Cauchy's inequality, we can get 

[(PI +P2)+ (P2 +P3)+"'+ (Pn-I +Pi%)]* 

1 1 1 + ... + 
PI +p2 ' p 2  +p3 pn-1 +pn 

Therefore 

$$@@ Find all pairs of positive integers ( x ,  y )  satisfying xY = y-y. 

Solution If x = 1, theny = 1. If y = 1, thenx = 1. 
(posed by Pan Chengbiao) 

I f x = y ,  t h e n x Y = l , s o x = y = l .  
We will discuss the circumstances when x > y 2 2 below. By 

assumption 

so 

Y 
1<(5) =yx- -2Y,  

x > 2y, and y I x. 
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Assume x = ky then k > 3, and 

kY = y<k-2>Y. 

Therefore k =ykP2. 

Since y > 2 , so 9” > 2k-2. By mathematical induction or the 
binomial theorem, it is easy to prove that when k > 5 , 2’ > 4k. Hence 
k can only be 3 or 4. 

When x = 9, y = 3, we have k = 3. When y = 2, x = 8, we have 

Therefore, all pairs of positive integers to be found are (1 , 1) , 
k = 4. 

(9, 3) and (8, 2). 

@@& An acute triangle A B C has three heights A D ,  BE and CF 
respectively. Prove that the perimeter of triangle DEF is not 
over half of the perimeter of triangle 
ABC. (posed by Qi Jianxin) 

Analysis To prove 

1 DE + EF + DF < ( A B  + BC + C A  ) , 
B n c 

we need only to prove 

DE + DF < BC,  

EF + DF < A B ,  

EF + DE < AC. 

Proof Since L A D B  = L A E B  = 90°, so four points A ,  B , D and E 
are concyclic, and furthermore, AB is the diameter. Hence, by the 
sine rule, we can get 

= A B = c ,  DE 
sin L D A E  

so DE = csinLDAE. 

In addition, L D A C  + L D C A  = 90°, therefore, 
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DE = ccos C. 

Similarly, we can get DF = b cos B. 

Therefore , DE+DF = ccosC+bcosB 

= (2RsinC)cosC+ (2RsinB)cosB 

= R  (sin 2C + sin 2B) 

=2Rsin ( B  + C)cos ( B  - C) 

=2RsinA cos ( B  - C) 

=acos(B--)<a, 

where R is the radius of the circumcircle of A A B C .  
That is, DE +DF < a. 

Similarly, DE +EF < b and EF +DF < c. 

1 
Therefore, DE +DF +EF < 2 ( a  +b+ c ) .  

Assume that Al , A 2 ,  . . a ,  A8 are eight points taken arbitrarily 
on a plane. For a directed line 1 taken arbitrarily on the plane, 
assume that projections of Al , A2 , .-, A8 on the line are P I  , 
P 2 ,  . . a ,  P8 respectively. If the eight projections are pairwise 
disjoint, they can be arranged as Pil  , Pi , , Pi8 according to 
the direction of line 1 .  Thus we get one permutation for 1, 
2, . . a ,  8, namely, i l ,  i 2 ,  .-, is. In the figure, this 
permutation is 2, 1, 8, 3, 7,  4, 6, 5. Assume that after these 
eight points are projected to every directed line on the plane, we 
get the number of different 
permutations as N8 = N(A1 , 
A2 , , A8 ). Find the maximal 
value of N8. (posed by Su 
Chun) 

Solution (1) For two parallel and 

................................................................................... ... 
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directed lines with the same direction, the order of projections of A1 , 
A2 , , A8 must be the same. So, we need only to discuss all directed 
lines passing through a fixed point 0. 

(2) If a directed line taken is perpendicular to a line joining two 
given points, then the projections of these two points must coincide, 
and a corresponding permutation will not be produced. When the 
directed lines taken are not perpendicular to any line joining two given 
points, any two projections of A1 , A2 , . . a ,  A8 must not coincide. 
Hence there is a corresponding permutation. 

(3) Suppose that the number of lines through point 0 and 
perpendicular to a line joining two given points is K. Then K < Ci  = 

28. Then there arise 2K directed lines placed anticlockwise. Assume 
that they are in order of I1  , 12 , . . a ,  12k. For an arbitrary directed line 
1 (different to I1  , . . a ,  I2k ) , there must be two consecutive directed 
lines Zj and Zj+ 1 such that Zj , Z , Zj+ 1 are placed anticlockwise. It is 
obvious that for given j , the corresponding permutations obtained 
from such Z must be the same. 

, 12k , 
if we cannot find j such that both Zj , Z , Z j+ 1 and Zj , I’ , Zj+l satisfy 
(3). Then there must be j so that 1’, Z j  , I are placed anticlockwise. 
Assume that Zj is perpendicular to the line joining Aj, and Aj , it is 
obvious that the orders of the projections of points Aj, and Aj on the 
directed lines Z and I’ must be different, so the corresponding 
permutations must also be different. 

(5) It follows from (3) and (4) that the number of different 
permutations is 2K. Note that K = 

(4) For any two directed lines 1 and I’ different from I1 , 

is obtainable, so N8 = 56. 

2003 (Wuhan, Hubei) 

The 2nd China Girls’ Mathematical Olympiad was held on August 25 - 
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29 , 2003 in Wuhan, Hubei Province, and was hosted jointly by CMO 
Committee, Wuhan Education Bureau, Wuhan Iron and Steel 
Company Limited (WISCO) , and the No. 3 Middle School of WISCO. 

The Competition Committee consisted of the following: Chen 
Yonggao, Qian Zhanwang, Li Shenghong, Xiong Bin, Leng 
Gangsong, Li Weigu, Feng Zuming, and Zhang Zhenjie. 

First Day 
8 : 30 - 12 : 30 August 27, 2003 

@B Let ABC be a triangle. Points D and E are on sides A B  and A C ,  
A D  
A B  

respectively, and point F is on line segment DE. Let ~ = x, 

DF 
- = y, - = z. Prove that A E  
AC D E  
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-= There are 47 students in a classroom with seats arranged in 
6 rows X 8  columns, and the seat in the i-th row and j-th 
column is denoted by ( i , j )  . Now, an adjustment is made for 
students’ seats in the new school term. For a student with the 
original seat ( i , j )  , if his/her new seat is ( m , n )  , we say that 
the student is moved by [a, b] = [i - m, j - n] and define the 
position value of the student asa+b. Let S denote the sum of the 
position values of all the students. Determine the difference 
between the greatest and smallest possible values of S. (posed by 
Chen Yonggao) 

Solution Add a virtual student A so that every seat is occupied by 
exactly one student. Denote S’ the sum of the position values in this 
situation. Notice that an exchange of two students occupying the 
adjacent seats will not change the value of S’. Every student can 
return to his/her original seat by a finite number of such exchanges of 
adjacent students. Then S’ = 0. Since S’ = S + U A  + b~ , where U A  + 
b~ is the position value of student A, then we have S is the greatest 
when student A occupies seat (1 , 1) , and S is the smallest when A 
occupies seat (6, 8). So the difference between the greatest and the 
smallest possible values of S is 14. 

@& As shown in the figure, quadrilateral ABCD is inscribed in a 
circle with AC as its diameter , BD 1 AC , and E the intersection 
of AC and BD. Extend line segment DA and BA through A to F 
and G respectively, such that DG // 
BF. Extend GF to H such that CH 1 
GH. Prove that points B, E, F and H 
lie on one circle. ( posed by Liu 

Solution As shown in the figure, connect 
BH, EF and CG. SinceABAFwAGAD, 
we have C 

G 

H 

Jiangfeng) B 
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FA DA 
A B  - AG' 
~-~ 

Furthermore, L U B E  c/) A A C D ,  then 

A B  - AC 
EA-DA'  

0 

0 

Multiplying 0 by 0, we get ~ FA - ~ then A F A E  c/) ACAG 
EA - AG 

a s L F A E  = L C A G ,  and thusLFEA = LCGA.  

and H lie on one circle. So, 
As is known that L C B  G = L C H G  = 90" , then points B , C , G 

L B H F  + L B E F  = L B H C  + 90" + L B E F  

= / B E  + 90" + L B E F  

=LFEA + 90" + L B E F  = 180". 

That means that points B , E, F and H lie on one circle. 

@@@ (1) Prove that there exist five nonnegative real numbers a , b , 
c ,  d and e with their sum equal to 1 such that for any 
arrangement of these numbers around a circle, there are 
always two neighboring numbers with their product not less 

than -. 1 
9 

(2) Prove that for any five nonnegative real numbers with their 
sum equal to 1 , it is always possible to arrange them around a 
circle such that there are two neighboring numbers with their 

product not greater than -. (posed by Qian Zhanwang) 
1 
9 

1 Solution (1) Let a = b = c = -, d = e = 0,  it is easy to see that, 
3 

when arrange them around a circle, we can always get two 

neighboring numbers of -, and their product is -. 

(2) For any five nonnegative real numbers a ,  b ,  c ,  d and e 

1 1 
3 9 
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with their sum equal to 1, without loss of 
generality , we assume that a > b > c > d > 
e > 0. Arrange these numbers around a 
circle in such a way as seen in the figure, 
we are going to prove that this arrangement 
meet the condition. 

Sincea+b+c+d+e= 1, we havea+ 
3d<1 ,  and 

d 

u*3d<(-) a+3d  < T ,  1 thenad<-. 1 
12 

Furthermore, a + b + c < l ,  thenb+c<l-u<l-- ,  b + c  i.e. 
2 

1 
4 9 (b+ c)2 < -. Since ce < ae  < ad and bd < bc , 2 b + c < j - .  Sobc< 

then any neighboring numbers in this arrangement have their product 
1 
9 less than -. 

Second Day 
8:30- 12:30 August 28, 2003 

*s= zz= Let {a,}T be a sequence of real numbers such that al = 2, adl = 

1 1 
2 0032003 ai 

a ~ - u , + l , f o r n = l , 2 ,  ..a. Provethatl-  <-+ 

< 1. (posed by Li Shenghong) 1 - + ... + - 
a2 a2 003 

Solution We have adl - 1 = a, (a,  - 1) , and then 1 -  - 

aTtt1-1 

l .  so, 1 
a,-1 a, 
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It is easy to see that { a, } is strictly monotonic increasing, so 
a2004 > 1, and that means 

1 < 1. 
1 1  - +- + ... + - 
a1 a2 a2 003 

In order to prove the left inequality, we only need to prove that 

By induction, we have a,tl = *a1 + 1 and 

This completes the proof. 

a2004 - 1 > 2 0032003. 

a1 >n"(n > 1). 

Let n > 2 be an integer. Find the largest real number A such that 
the inequality 

holds for any positive integers a1 , a2, . . a ,  a, satisfying a1 < 
a2 <..a < a,. (posed by Leng Gangsong) 

n-1 
2 

Solution F o r a i = i ,  i = l ,  2 ,  . . a ,  n,wehaveA<(n-2)+-= 

2n-4 
n--3 

2n-4 
n-1 

Now, we are going to prove that a; > ~ (a1 + a2 + ... + 
a,-l) +2a, for any positive integers a l  , a2 , 
a2 < ... < a,. 

, a, satisfying a1 < 

Sinceak<a,-(n--R), K = l ,  2 ,  . . a ,  n-1, a,>n, thenwehave 
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That is, a, 2 > 2 n - 4  , n--l (al + a2 + + a,-l) + 2a,. So the largest 

2n- 4 value of h is - n - 1 '  

Let the sides of a scalene triangle A A B C  be A B  = c ,  BC = a ,  
C A  =b, D ,  E ,  F be points on B C ,  C A ,  A B ,  such that A D ,  
B E ,  CF are angle bisectors of the triangle, respectively. Assume 
that DE = DF. Prove that 

a -  b C (1)- - -+-* 
b+c c+a a f b '  

(2) L s A C  > 90". 

pi, 
I '\ 

I 

(posed by Xiong Bin) B D c 
Solution Using the sine rule, we have that 

s inLAFD AD AD s i n L A E D  
s inLFAD FD E D  s i n L F A D '  

- - - 

then sin L A F D  = sin L A  E D. So, either L A  FD = L A  E D or 

If L A F D  = L A E D  , then a A D F  Z a A D E ,  and we get A F  = 

A E .  Then M F  Z M E ,  and L A F I  = L A E I .  So a A F C  Z 
U E B ,  then AC = A B .  It contradicts the condition given. So 
L A F D  + L A E  D = 180", and points A ,  F, D and E lie on one 
circle. 

Then L D E C  = L D F A  > L A B C .  Extend C A  through A to point 
P such that 

L A F D  + L A E D  = 180". 

L D P C  = L B ,  thenPC = PE+CE. 0 
Since L B F D  = L P E D  and FD = E D ,  we have that A B F D  Z 

Furthermore, APC D c/) A B C A ,  A P E D ,  then PE = BF = - a +b' 
ac 

PC CD then - = -. So BC C A  

0 ba 1 U2 P C = a * -  .-=- 
b+c b b+c' 



China Girls' Mathematical Olympiad 2003 141 

b 
- a2 ac a From 0 and @ we get- = -+* then- - -+ b+c a + b  c+a' b+c c+a 

C - 
a +b' 

This completes the proof of (1). 
As to the proof of (2) , we have from (1) that 

a(a  + b) ( a  + c )  = b(b+a) (b+ c )  + c(c+ a )  ( c+  b) 

a2(a+b+c) = @(a+b+c)  + 2 ( a + b + c )  +abc 

>@ (a+ b+ c )  + 2 ( a  + b+ c). 

Then a2 > @ + 2 , and that means L B A C  > 90". 

Let rz be a positive integer, and S, be the set of all positive 
integer divisors of rz (including 1 and itself). Prove that at most 
half of the elements in S, have their last digits equal to 3. (posed 
by Feng Zuming) 

Solution We are going to consider the following three cases. 
(1) If 5 I r z ,  let d l  , d2,  . . a ,  d,  be the elements in S, with their 

last digits equal to 3, then 5 d 1 ,  5d2 , .-, 5 d ,  are elements in S, 

with their last digits equal to 5 .  So m < - I S, I . The statement is true 

in this case. 
(2) If 5 [ rz and the last digit of every prime divisor of rz is either 

1 or 9,  the last digit of any element in S, is either 1 or 9. The 
statement is also true in this case. 

(3) If 5 1 rz and there exists a prime divisor p in S, such that the 
last digit of p is either 3 or 7. Let n = p'q , where q and I are positive 
integers and p is prime to q ,  and let S,  = { a1 , a2 , , ak } be the set 
of all positive integer divisors of q .  Then the elements in S, can be 
written in the following way: 

1 
2 

a l ,  a l p ,  a l p 2 ,  .-, alp ' ,  

a2,  a z p ,  a2p2,  .-, a2pr ,  

ah,  akp ,  akp2 ,  ..., akp'. 

................................. 
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jaspz+’ I < r ,  

(aspz-’ I = r ,  
For any di = aspz  E S, , we choose ei = thenei E 

S, and we call ei the partner of di . If the last digit of di is 3 , then 
that of its partner ei is not, since that of p is either 3 or 7. If di and 
dj in S, are different, and their last digits are both 3, then their 
partners ei and ej are also different. Otherwise, suppose ei = 

ej =aspz , we may assume that { di , di } = {aspz-’ , aspz+’ } , then 
di  = d j p 2 .  As the last digit of p is 3 or 7, then that of p 2  is always 9, 
and that means the last digits of di and dj cannot be the same. It 
leads to a contradiction. 

We then see that every di E S, with its last digit equal to 3 has a 
partner ei E S, with its last digit not equal to 3 , and different di has 
different partner. That means that at most half of the elements in S, 
have their last digits equal to 3. This completes the proof. 

The 3rd China Girls’ Mathematical Olympiad was held on August 10 - 
15, 2004 in Nanchang, Jiangxi Province, China, and was hosted 
jointly by CMO Committee, Jiangxi Mathematical Society and 
Nanchang No. 2 middle school. 

The Competition Committee consisted of the following: Tao 
Pingsheng, Su Chun, Chen Yonggao, Xiong Bin, Li Shenghong, Li 
Weigu, Shi qiyan, Yuan Hanhui and Feng Zuming. 

First Day 
8:OO- 12:OO August 12, 2004 

@@@ We say a positive integer rz is “good” if there is a permutation 
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( a l ,  a2, . . a ,  a,) of 1, 2, . . a ,  rz such thatak+Kis a perfect 
square for all 1 < K < n. Determine all the good numbers in the 
set { 11, 13, 15, 17, 19). (posed by Su Chun) 

Solution The good numbers are 13, 15, 17 and 19. However 11 is 
not. 

Note that for 1 < K < 11, 4 + K is a perfect square if and only if 
K = 5. Likewise, 11 + K  is a perfect square if and only if K = 5. Hence 
11 is not good. 

Note that 13 is good because 

K :  1 2 3  4 5 6 7 8 9 1 0 1 1 1 2 1 3 ,  
ah: 8 2 13 12  11 10 9 1 7 6 5 4 3. 

Similarly, 15, 17 and 19 are good because 

K :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15, 
ah: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1; 

K :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17, 
ah: 3 7 6 5 4 10 2 17 16 15 14 13 12 11 1 9 8; 
K :  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19, 

ah: 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 19 18 17. 

&p& %% Let a ,  b and c be positive real numbers. Determine the 

minimum value of 

- 8c (posed by Li Shenghong) a + 3 c  4b 
a + 2 b + c + a + b + 2 c  a +b+3c' 

Solution The answer is 12&- 17. Set 

x = a+2b+c,  I r: 1 ::%::I; 
. .  It is easy to see thatz-y = candx-y = b-c, givingx-y = 

b - h - y ) ,  o r b = x + z - 2 y .  Wenote thata+3c=2y-x.  By the 
AM-GM Inequality, it follows that 
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8c - a+3c 4b 
a+2b+c+a+b+2c a+b+3c 

Y X z Y 
- - -17+2 -+4-+4-+8 - 

X Y Y z 

2- 17 + 2 & + 2 & T  =- 17 + 1 2 a .  

2 y  4 x  42 8 y  
The equality holds if and only if - = - and - = - , or 4 2  = 

" Y  Y z  
2y2 = 2. Hence the equality holds if and only if 

a + b+ 2c = JZ(a + 2b+ C )  , 
a+b+3c = 2(a+2b+c).  

Solving the above system of equations for b and c in terms of a 
gives 

b = ( 1  + f i > a ,  

c = (4+3&)a. 

We conclude that 

8c - a+3c 4b 
a+2b+c+a+b+2c a+b+3c 

has minimum value 1 2 a - 1 7  if and only if (a, b ,  c)  = ( a ,  ( l + f i ) a ,  

(4+3.JZ)a).  

@3 Let ABC be an obtuse triangle inscribed in a circle of radius 1. 
Prove that triangle A B  C can be covered by an isosceles right- 

angled triangle with hypotenuse f i  + 1.  (posed by Leng 
Gangsong) 

Solution Without loss of generality, we 
may assume that L C  > 90". Since L A  + 
L B  <90", we may assume without loss of A 0 e D  
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generality that L A  < 45". 
We can then construct a semicircle w with A B  as its diameter 

such that point C lies inside w. Let 0 be the center of w .  ThenAO = 

BO. Construct rays AT and OE such that LBAT = L B O E  = 45" with 
E lying on w .  Let 1 be the line tangent to w at E, and let 1 meet rays 
AT and A B  at F and D respectively. It is not difficult to see that 
triangle AFD is an isosceles right-angled triangle, with L F  = 90", 

that covers triangle ABC. It suffices to show that A D  <&+ 1. Note 
that 

AD=AO+OD=AO+&OE=(&+~)AO. 

Applying the sine rule to triangle ABC gives A B  = 2sinC< 2, or 

A0 < 1. It follows that A D  <&+ 1 , as desired. 

A deck of 32 cards has 2 different jokers each of which is 
numbered 0. There are 10 red cards numbered 1 through 10 and 
similarly for blue and green cards. One chooses a number of 
cards from the deck. If a card in hand is numbered K ,  then the 
value of the card is 2' , and the value of the hand is the sum of 
the values of cards in hand. Determine the number of hands 
having the value 2004. (posed by Tao Pingsheng) 

Remark The answer of the problem is 1 0032 = 1 006 009. We 
provide two approaches as follows. 
Solution I For each hand h having the value 2004, let j h  , i h  , 
b h  and g h  denote the total values of jokers, red, blue, and green 
cards in hand. Then ( j h  , i h  , b h , g h  ) is an ordered quadruples of 
nonnegative integers such that 

j ,  +% +bh  +g, = 2 004, ( * >  

where 0 < j ,  < 2 and i h  , b h  and g h  are even. Note that 2 004 < 
2 048 =211 , each even nonnegative integer e less than 2 004 can be 
written uniquely in the form of 
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whereai = 0 or 1 for 1 < i < 10. (This is basically the binary 
representation of e . > Hence each ordered quadruple of nonnegative 
integers ( j h  , rh , bh , gh)  satisfying equation ( * > can be mapped one- 
to-one and onto a hand having the value 2 004. It suffices to count the 
number of ordered quadruples of nonnegative integers in equation 
( * > that satisfy the conditions. Since i h  , b h  and g h  are even, j h  is 
also even. Set j h  = 2 j ,  rh = 2r ,  bh = 2b, and gh = 2g. It suffices to 
count the number of ordered quadruples ( j  , I , b , g> of nonnegative 
integers such that 

j + r + b + g  = 1002, ( ** > 
with j = 0 or 1. We consider two cases. 

In the first case, we assume that j = 0. Then r+b+g = 1 002 has 

(' ","") = Oo4 Oo3 ordered triples ( I ,  b , g >  of nonnegative 2 
1004 1 003 integers such that r + b + g = 1 002 , that is, there are 

ordered quadruples (0,  I ,  b , g> of nonnegative integers satisfying 
equation ( ** > . 

In the second case, we assume that j = 2. Then r+ b+ g = 1 001 

has (' Oo3) = Oo3 Oo2 ordered triples ( I  , b , g> of nonnegative 
2 2 

1003 1 002 
2 integers such that r + b = g = 1 001 , that is, there are 

ordered quadruples ( 1 , I , b , g> of nonnegative integers satisfying 
equation ( ** > . Therefore, the answer for the problem is 

1004 1003 + 1003 1002 = 10032. 
2 2 

Solution I[ For a particular hand, a card in hand numbered K 
contributes either 0 or 2' points to the value of the hand. We consider 
the following generating function 
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f(..) = (1 + 2' )2 [ (1 + 2 ) (1 + g2 ) (1 + 2' )13. 
That is, if a, denotes the number of hands having a value rz , then 
a, =[x,]f(x) , where [x,] h ( x )  denotes the coefficients of x n  in 
the expansion of the polynomial h ( x ) .  We compute a2004 = 

[xz 004]f(x>. Note that 

Since 2 004 < 2" , we have [x2004I f (x )  = [x2004Ig(x) 9 where 

Note that 

It follows that for any positive integer K ,  

[x~:zK]~(x) = 1+3+5+. .*+(2K+l)  = ( / ~ + 1 ) ~ .  

In particular, a2004 = [x2004]g(x) = 1 0032. 

Second Day 
8:OO- 12:OO August 13, 2004 

@@& Determine the maximum value of constant A such that 

u+v+w>A, 
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where u , v and w are positive real numbers with u 6  + v&+ 

w& > 1. (posed by Chen Yonggao) 

Remark The maximum value of A is&. It is not difficult to see that 

a for u = v = w = - , u 6 +  &+ 6 = 1 and u + v+ w = a. 3 

Hence the maximum value of A is less than or equal to a. It suffices 

toshow thatu+v+w>&. 
Solution I By the AM-GM inequality and the given condition, we 
have 

or 
uv+vw+wu>l. 

(u-  v)2 + (v-w)2 + (w-u)2 > 0 ,  

u2 + z? +a? > uv + vw + wu > 1 ,  

(u+v+w)2 = u2+z? +a? +2(uv+vw+wu) 2 3 ,  

Since 

it follows that 

a or u + v + w >&. The equality holds if and only if u = v = w = -. 3 

Solution I[ By the AM-GM inequality and then by Cauchy's 
Inequality, we have 

(u  + v + w) = ("+;+")3 3(u+v+w) 9 

>3uvw(u+v+w) 

= (uvw + vwu + wu v )  (u  + v + w) 
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>(u4/Gi+v&+wz/uu)2 = 1, 

which implies that u+v+w>&. The equality hold if and only if u = 

Solution a 
condition reads 

Set x =&, y =6, and z =&. Then the given 

Z X  Note that u = -, v = g, and w = E. By the AM-GM Y z X 

inequality, we have 

2(u+v+w) = (=+=)+(:+:)+(:+y) 
Y z  

>2x + 2y + 22 , 
o r u + v + w > x + y + z .  As shown in Solution I , we have ( x +  

y + ~ ) ~  >3(xy+yz+zr)>3.  H e n c e ( ~ + v + w ) ~  > ( x + y + ~ > ~  > 
3 ,  or u+v+w >&, and the equality holds if and only if x = y = z ,  

that is, u = v = w = - 3 '  
& 

Given an acute triangle ABC with 0 as its circumcenter. Line 
A0 and side BC meet at D. Points E and F are on sides AB and 
AC respectively, such that points A, E ,  D and F are on a 
circle. Prove that the length of the projection of line segment EF 

the positions of E and F. (posed 
by Xiong Bin) 

Solution Let M and N be the feet 
of the perpendiculars from D to lines 
A B and AC respectively. Let Eo , 
F o ,  MO and NO be the feet of the 

on side BC does not depend on A 

C 
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perpendiculars from E, F, M and N to side B C respectively. It 
suffices to show that EoFo = MONO. Without loss of generality, we 
may assume that E lies on line segment BM. Then L A E D  < 90". 
Since A ,  E, D, F are concyclic, L D F C  = L A E D  < 90", and so F 
lies on line segment A N .  It follows that we need only to consider the 
figure above. It suffices to show that EoMo = FoNo. Note that 
EoMo =EM cosLB and Fo No = FNcos LC.  We need only to show 
that EMcosLB = FNcosLC, or 

-- EM cosLC 
FN cosLB' 

- (1) 

Since LME D = L A  E D = L D F  C = L N F D ,  the right-angled 
triangles E M 0  and FNO are similar, which implies that 

EM MD 
FN ND' 

- (2) 

In the right-angled triangles A M 0  and A N O ,  MD = AD 
sinLDAM =ADsin LOAB and N D = A D  sin LDAN = AD 
sinLOAC. Substitute these equations into equation (2) and we have 

~- EM sinLOAB 
FN sinLOAC' 

- (3) 

Since 0 is the circumcenter of triangle A B C ,  LAOB = 2LCand 
LOAB = LOBA = 90"-LC, and so sinLOAB = sin(90"-LC) = 

cos LC.  Likewise, sin LOAC = cos L B .  Substitute the last two 
equations into equation (3) and we get the desired equation (1). 

Let p and q be two coprime positive integers, and let rz be a 
nonnegative integer. Determine the number of integers that can 
be written in the form ip + j q ,  where i and j are nonnegative 
integers with i + j  < n. (posed by Li Weigu) 

S ( p ,  q, n) = { ip + jq  I i and j are nonnegative integers with i + 
Solution Define a set 
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j < n} .  

elements in set X. The answer of the problem is 
Lets, = I  S ( p ,  q ,  n> I , where I X I denotes the number of 

( * >  

where r = max{p, q} .  

Now we establish the equation ( * > . Without loss of generality, 
we assume that r = p > q. It is easy to see that so = I S ( p ,  q, 0) I = 

I { 0) I = 1 satisfying equation ( * > . Note that 

S ( p ,  q, n>\S(p, q, n - 1 )  c { i p  + ( n - i > q  I i = 0 ,  1 ,  ..., n}.  

ip+(n- i i )q= ( i+q>p+(n-p - i i )q ,  

Note also that 

with 
( i + q ) + ( n - p - i i )  = n+q-p<n-- l .  

Hence number ip + ( n - i > q  belongs to both sets S ( p ,  q ,  n> and 
S ( p ,  q, n-  1 )  if and only if n- p - i > 0,  or i < n- p.  Therefore, 

{ ip+(n- i i )q  I i =  n - p + l ,  n - p + 2 ,  . . a ,  n } ,  if n > p ,  
if n < p.  = i  { ip+(n- i i )q  I i = o ,  1 ,  . . a ,  n } ,  

It implies that 

if n > p ,  
if n < p.  

If n < p ,  we conclude that 
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(n+ 1) ( n  + 2) 
2 = 1 + 2 + - . + ( n + l )  = 

In particular, spP1 = p ( p  + '). If n p, we conclude that 2 

s, = sp-1 + ( s p  - sp-1) + ... + (s, - ) 

Remark If p = 4, then 
S ( p ,  q, n) = S ( p ,  p ,  n )  = { ( i  + j ) p  I i and j are nonnegative 

integers with i + j < n}. 
It is easy to see that I S ( p ,  p ,  n )  I is equal to the number of 

ordered triples of nonnegative integers (i, j ,  K) such that i+j+K = n,  

(n+ l> (n  + 2) 
2 

which implies that I S ( P ,  P, n)  I = 

When the unit squares at the four corners are removed from a 
three by three square, the resulting shape is called a cross. 
What is the maximum number of non-overlapping crosses placed 
within the boundary of a 10 X 11 chessboard? ( Each cross 
covers exactly five unit squares on the board. ) (posed by Feng 
Zuming) 

Solution The answer is 15. 
We first show that it is impossible to place 16 crosses within the 

boundary of a 10 X 11 chessboard. We approach indirectly by assuming 
that we could place 16 crosses. 

The centers of the crosses (denoted by * ) must lie in the 8 X 9 
subboard in the middle. We tile this central board by three 8 X 3 
boards, and label these three boards (a) , (b) and (c) , from left to 
right. We consider the number of centers placed in the three boards. 

It is easy to see that in a 2 X 3 board or a 3 X 3 board, we can 
place at most two centers. 
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Note that we can place at most two centers on each 3 X 3 subboard: 

* 

* 

We can tile a 8 X 3 board one 2 X 3 board sandwiched by two 3 X 3 
boards. Hence we can place at most 6 centers on a 8 X 3 board, with 
each two centers placed on each subboard. Since there are two centers 
placed in the middle 2 X 3 subboard, no centers can be places in the 
third and sixth row of the 8 X 3 board. We can only have the 
following two symmetric distributions. 
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Therefore, there are 16 centers placed in board (a> , (b) and (c) , 
with each board holding at most 6 centers. Hence at least one of the three 
boards must contain 6 centers. We consider the following cases. 
Case I Board (b) has 6 centers. By symmetry, we can assume that 
the following scheme for placing the centers (see left-hand side 
diagram in the following figure). It is not difficult to see that no 
centers can be placed on the third and the seventh columns of the 8 X 

9 board. Then it is easy to see that we can place at most 4 centers in 
board (a> or (c) , which implies that we can place at most 4+6 +4 = 

14 centers on the 8 X 9 board. It contradicts the assumption. 
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Case I[ Both boards (a> and (c) have six centers. By symmetry, 
we discuss with the right-hand side diagram in the following figure. In 
this case there is no centers can be placed in the forth and the sixth 
columns of the 8 X 9 board, which implies that board (b) can hold at 
most 3 centers, and so the 8 X 9 board can hold at most 6 + 3 + 6 = 15 
centers, which is again a contradiction. 
Case Exactly one of the boards (a> and (c) has six centers. In 
this case we assume that (a> contains 6 centers and board (c) contains 
at most 5 centers. Then no center can be placed in the fourth column 
of the 8 X 9 board. It follows that board (b )  contains at most 4 

centers. Hence there are at most 6 + 4 + 5 = 15 centers on the 8 X 9 
board, which is again a contradiction. 

Combining the above argument , we conclude that it is impossible 
to place 16 centers on a 8 X 9 board. 

We complete our solution by providing two different ways to 
place 15 centers on the board. 

or 

Remark The example shown on the right-hand side comes from 
the fact that the crosses can tile the whole plane without any gaps. 
The example shown on the left-hand side shows that it is possible to 
have holes ( or gaps) between the crosses for this particular 
problem , which makes the other approaches for this problem 
difficult . 
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2005 (Changchun, Jilin) 

The 4th China Girls' Mathematical Olympiad was held on August 10 - 
15, 2005 in Changchun, Jilin Province, China, and was hosted by 
CMO Committee. 

The Competition Committee consisted of the following: Wang Jie 
(the president) , Zhu Huawei, Chen Yonggao, Su Chun, Xiong Bin, 
Feng Zuming, Zhang Tongjun, Feng Yuefeng, Ye Zhonghao and 
Yuan Hanhui. 

First Day 
8:OO- 12:OO August 12, 2005 

a@@ As shown in the following figure, point P lies on the circumcicle 
of triangle A B C .  Lines A B  and CP meet at E ,  and lines A C  and 
BP meet at F .  The perpendicular bisector of line segment A B  
meets line segment A C  at K ,  and the perpendicular bisector of 
line segment A C  meets line segment A B  at 1. Prove that 

CE AJ JE (posed by Ye Zhonghao) (m) = A K * K F .  

Solution Set L s A C  = X. By the given condition, we have 
A K  = BK and A J = CJ , and so L A B K  = L A C J  = x and L E J C  = 

L B K F  = 2x. Note also that L E  CJ = A 

L A C P  - L A C J  = L A C P  - x. In triangle 
A B F ,  we have L A F B  = 180" - L A B P  - 
L A B F  = 180" - L A B P  - x. Since A , B , 
P ,  C are concyclic, we have L A C P  = 

180"-LABP. Combining with the above E F 
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equation, we conclude that L B F K  = L B F A  = L A C P  -x = L E C J .  
Thus, in triangles CEJ and FBK, we have L C J E  = L B K F  and 
L E C J  = L B F K .  So the two triangles are similar. It follows that 

CE CJ EJ 
FB F K - E '  
-- -- - 

Consequently, we have 

as desired. 

%@@ Find all ordered triples ( x ,  y ,  z>  of real numbers such that 

]5 (x f$ )=  1 2 ( y + y ) =  1 13(z+-) ,  1 
z (posed by Zhu Huawei) 

L y + y z + z x  = 1. 
1 2  1 2 Remark The solutions are (7, 7, 1) and (-7, -7, -1). 

Assume that ( x  , y , z>  is a solution of the given system. Clearly, xyz  
# 0. If x > 0 , then by the first given equation, we have y > 0 and z > 
0. Ifx<O, thenitisclearthaty<Oandz<O,andso(-x,  - y ,  - 
z> is a solution of the given system. 
Solution There are angles A ,  B, and C in the interval (O", 180") 
such that 

A B C 
2 2 2 x = tan-, y = tan-, z = tan-. 

By the addition and subtraction formulas, the second equation in 
the given system becomes 

A B  B C  C A  1 = tan- tan- + tan- tan- +tan- tan- 2 2  2 2  2 2  

A B  C ' + ' ( I  - t a n A  tan'), =tan- tan- + tan- tan- 2 2  2 2  2 2 

implying that 
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A +  ") (I -tan- tan- = 0. 1 -tan- tan- ( 2 2 A 2 2  ")  
A B  
2 2  Note that tan- tan- = xy # 1, otherwise z(x+y> = 0, implying 

= 1, or C A + B  
z = 0, which is impossible. Therefore, tan - tan - 2 2 

+ - = 90". In other words, A ,  B, C are the angles of a C 
2 2 

triangle. Let ABC denote that triangle. 
We rewrite the first equation in the given system as 

Note that, by the double-angle formula, we have 

A 
. A A sinA A - s i n y  cos- = - 

tan y tan y 
2A 2 2 '  x2+1 tan - + I  s e 2 -  2 2 

A 
~- - - -- - 

X 

and analogously for the expressions of y and z .  We conclude that 

sinA sinB sinC 
5 12 13 

- -- - 

By the sine rule, the sides of triangle ABC are in ratio 5 : 12 : 13 
5 -, or 5 12 X with sinA = -, sin B = - and sin C = 1. Hence ~ - 

13 13 x2+1 26 

5 2  -26x + 5 = 0,  implying that x = 5 or x = -. Likewise, we have 

y = - or y = - , and z = 1. Substituting z = 1 into the second equation 

in the given system leads to xy + x + y  = 1 , implying that (x, y ,  z> = 

(+, $, 1) is the only solution with x > 0. Hence (7, 3, 1) and 

- 

1 
5 

3 2 
2 3 

1 2  

1) are the solutions of the problem. 1 (-7, -- 3 '  
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@@ Determine if there exists a 
convex polyhedron such 
that 
(1) it has 12 edges, 6 faces 

and 8 vertices; 
(2) it has 4 faces with each 

pair of them sharing a 
common edge of the 
polyhedron. (posed by 
Su Chun) 

Solution The answer is yes, 
as shown in the figure. 

@@$ Determine all positive real numbers a such that there exists a 
positive integer rz and sets A1 , A2, . . a ,  A ,  satisfying the 
following conditions : 
(1) every set Ai has infinitely many elements; 
(2) every pair of distinct sets Ai and Aj do not share any 

(3) the union of sets Al , A2 , . . a ,  A ,  is the set of all integers; 
(4) for every set Ai , the positive difference of any pair of 

elements in A i is at least a ' . (posed by Yuan Hanhui) 
Solution The answer of the problem is the set of all positive real 
numbers less than 2. We consider two cases. 
Case I We assume that 0 < a < 2. Then there is a positive rz such 
that 2"-' > an. We define A, = { m I m is a multiple of 2"-' } and 

common element ; 

Ai = { 2"lm I m is an odd integer} , 
for 1 < i < n - 1. Then Al , A 2 ,  , A ,  is a partition of the set of 
positive integers satisfying the conditions of the problem. 
Case I[ 2. We claim that no such partition 
exists. To prove by contradiction, we assume on the contrary that 
A1 , A2 , . . a ,  A ,  is a partition satisfying the conditions of the 

We assume that a 
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problem. Let N = (1, 2, . . a ,  2"). For every i with 1 < i <  n, let 
Bi =Ai n N. We assume that Bi = {bl , b2 , - a ,  bm} with bl < 
b2 < < bm. We have 

2" > bm - bl = (bm - bm-l>+ (bm-1 - bm-2 

+ . a * +  (bZ-bl)> ( ~ ~ - 1 ) 2 ~ ,  

implyingthatm-l<2"-i, 0rrn<2"-~. SinceAl, A2, . . a ,  A, i s a  
partition, Bi n Bj  = 0 for 1 < i < j < n and N = B1 U B2 U U 
B,. It follows that 

which is impossible. Hence our assumption was wrong and such a 
partition does not exist for every positive integer n. 

Second Day 
8:OO- 12:OO August 13, 2005 

&@ Let x and y be positive real numbers w i t h 2  +y3 = x-y. Prove 

Solution In view of 2 + y3 > 0,  it suffices to show that 
(2 + 4y2) (X - y ) < 2  +y3. Expanding the left-hand side of the last 
inequality and canceling the like terms we obtain 4xy2 < 2 y  + 5 9 .  

By the AM-GM inequality, we have 2 y  + 5y3 > 2 &xy2 > 4xy2. 

that 2 + 4 3  < 1. (posed by Xiong Bin) 

An integer n is called good if n > 3 and there are n lattice points 
P I  , P2 , .-, P ,  in the coordinate plane satisfying the following 
conditions: If line segment PiPj has a rational length, then there 
is pk such that both line segments PiPk and PjPk have irrational 
lengths; and if line segment PiPj has an irrational length, then 
there is pk such that both line segments PiPk and PjPk have 
rational lengths. 
(1) Determine the minimum good number. 
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(2) Determine if 2005 is a good number. 
(Apoint in the coordinate plane is a lattice point if both of its 
coordinate are integers. ) (posed by Feng Zuming) 

Solution We claim that the minimum good number is 5, and that 
2 005 is good. 

We say PiPj  is rational (irrational) if segment PiPj has a 
rational (an irrational) length. We say an ordered triple (Pi  , Pj , Pk)  
of lattice points to be good with 1 < i < j < n and 1 < K < n if PiPj 
is rational (irrational) and both PiPk and PjPk are irrational 
(rational). In the figure shown below, if PiPj is rational (irrational) 
then Pi and Pj  are connected by darkened solid (regular solid) line 
segment. 

It is not difficult to see that n = 3 is not a good number. Note that 
n = 4 is also not a good number. Assume on the contrary that there 
are lattice points P I  , P2 , P3 , P4 satisfying the conditions of the 
problem. Without loss of generality, we assume that P I  P2 is rational 
and ( P I  , P 2 ,  P3 ) is good. Then ( P 2 ,  P 3 ,  P4 1 must be good. 
Neither ( P 2 ,  P 4 ,  P I )  nor ( P 2 ,  P 4 ,  P31 is good, violating the 
condition of the problem. Hence our assumption was wrong and n = 4 
is not a good number. 

For n = 5, we define the set 

s5 = {PI = (0, 01, P2 = (1, 01, P3 = (5, 31, 

P4 = (8, 71, P5 = (0, 71). 

It is not difficult to see that all triples ( P i  , Pj , P k )  are good. 
Hence n = 5 is minimum good number. 
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Consider the sets 

A = { ( 1 ,  0) 9 ( 2 ,  0) 9 ..*, (669, 0) } 9 

B = { ( l ,  1 1 ,  ( 2 ,  1 1 ,  ..*, (668, I ) } ,  

C = { ( l ,  2 1 ,  ( 2 ,  2 1 ,  ..*, (668, 2 ) ) .  

We claim that the 2 005 points in the set S2005 = A U B U C 
satisfies the conditions of the problem. Consider a pair of distinct 
points Pi = (xi  , yi and Pj = (x j  , y j  in the set S2005. If either 
xi =xj or yi = y j  , then clearly PiPj is rational. Otherwise, either 
~ x i - x j ~ = l o r 2 ,  or l y i - y j I = l o r 2 ,  orboth. Hence IPiPjI2  
can be written in the form of either n2 + 1 or n2 + 4 for some positive 
integer n.  For a pair of positive integers n and m with n > m, we 
have n2 - m2 > n2 - ( n  - 1 l2 = 2n - 1. It follows that for a positive 
integer n , n2 + 1  and n2 +4 are not squares of an integer. We conclude 
that ( P i  , Pj is rational if and only if line PiPj is parallel to one of 
the axes. 

If PiPj is rational with yi = yj  , then we set Pk = ( X k  , Y k  1, with 
X k  # xi , X k  # xj and yk # y i .  (We can do so because there are 668 
distinct x values and three distinct y values. ) Then ( P i ,  Pj , pk is 
good. In exactly the same way, we can deal with the case when PiPj 
is rational with xi = x j .  

If PiPj is irrational, then xi # xj and yi # y j .  We set pk = 

(xi  , yj  1. Then ( P i  , Pj , Pk is good. Therefore, set S2 005 satisfies 
the conditions of the problem and n = 2 005 is good. 
Remark Set S6 = S5 U {P6 = ( - 2 4 ,  0 ) )  and S7 = s6 U {P7 = 

(- 24,  7) }. It is not difficult to see that both 6 and 7 are good. For 
every positive integer n > 8 , we can easily generalize the construction 
of part ( 2 )  to show that n is good. Hence all integers greater than 4 
are good. 

@if& Let m and n be positive integers with m > n > 2. Set S = 

( 1 ,  2 ,  .-, m}, a n d T =  { a l ,  a2, .-, a,} is a subset of S such 
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that every number in S is not divisible by any two distinct 
numbers in T. Prove that 

l+-+...+-<T* 1 1 m+n 
a1 a2 an 

(posed by Zhang Tongjun) 
Solution For every i with 1 < i < n, we define set 

Si = { b  I b is an element in S and is divisible by a i } .  

There are [El elements in Si. Since every element in S is not 

divisible by any two distinct elements in T, it follows that Si n S j  = 

0 for 1 < i < j  < n. Thus 

2[3= PISiI< ISI=m.  
,=1 i=l 

Note that < [El+ 1. It follows that 
ai 

So the desired result is obtained. 

@@ Given an a X b rectangle with a > b > 0,  determine the minimum 
length of a square that covers the rectangle. (A square covers the 
rectangle if each point in the rectangle lies inside the square.) 
(posed by Chen Yonggao) 

Solution Let R denote the rectangle, and let S denote the square 
with minimum length that covers R . Let s denote the length of a side 
of S. We claim that R is inscribed in S, that is, the vertices of R lie 
on the sides of S. We also claim that R can only be inscribed in two 
ways, as shown below. Let S1 ( S 2  1 denote the square shown on the 
left-hand side (right-hand side). For S2 , the sides of R are parallel to 
the diagonals of S 2 .  It easy to see that s = a if S = SI. 
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.lZ(u+b) if S = S2. Taking the It is not difficult to see that s = 2 

b, ] , we conclude that minimum value of ( U ,  

Now we prove our claim that these are only two ways. Let R = 

ABCD and S = XYZW. Without loss of generality, we place XY 
horizontally. By the minimality of S, we can assume that at least one 
vertex, say A , of R lies on one side of S , say WX (see the left-hand 
side figure shown below). If neither B nor D lies on the sides of S, 
we can then slide R down (vertically) , so that one of them, say B lies 
on side XY (see the middle figure shown below). If neither C or D 
lies on the sides of S , then we can apply an enlargement, centered at 
X with scale less than 1 , to S such that the image of S still covers R . 
This violates the minimality of S. Hence at least one of C and D lies 
on the sides of S, that is, three consecutive vertices of R lie on the 
sides of S (see the right-hand side figure shown below). Without loss 
of generality, we assume that they are A ,  B and C. If any of these 
three vertices coincide with any of the vertices of S, then we clearly 
have S = S1. Hence we may assume that A , B and C are on sides 
WX, X Y  and YZ, respectively. By symmetry, we may also assume 
thatAB = u > b = B C .  

If D does not lie on line segment ZW, then we can slide R up a 
bit so both B and D lie in the interior of S (see the left-hand slide 



China Girls’ Mathematical Olympiad 2005 165 

z w, 

figure shown below). Let 0 be the center of R .  We can then rotate 
R around 0 with a small angle so that all four vertices lie inside S 
(see the middle figure shown below). It is easy to see that we can use 
a smaller square to cover R (by applying an enlargement centered at 
0 with a scale less that 1) , violating the minimality of S. Thus our 
assumption was wrong, and D must lie on side ZW (see the right- 
hand side figure shown below) , which is the case when S = S2. 

x 
We finish our proof that if S = S2,  then the sides of R are 

parallel to the diagonals of S 2 .  By symmetry, it suffices to show that 
A X  = X B .  It is not difficult to see that L X A B  = L Y B C  = L Z C D  
= L W D A .  So triangles ABX,  BCY, CDZ and DAW are similar. Set 
A X  = ux  and X B  = uy. Then B Y  = bx and C Y  = by. Also, DW = bx 
and WA = by. Hence by + u x  = WA + A X  = W X  = X Y  = X B  + 
B Y  =uy+bx,  implyingthat(u-b)x= (u-b)y, o r x = y ,  asdesired. 
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The Competition Committee consisted of the following: Pan 
Chenbiao , Fan Xianling, Li Shenghong , Leng Gangsong, Xiong Bin, 
Feng Zhigang, Wang Haiming and Zhao Dun. 

First Day 
8 : 00 - 12 : 00 December 4, 2002 

~2 -.=--is Find all positive integers rz such that 

n4 - 4n3 + 22n2 - 36n + 18 

is a perfect square. (posed by Pan Chengbiao) 
Solution We write 

A = n4 -4n3 +22n2 -36n+18 

= (n2 - 2 ~ 2 ) ~  + 18(n2 - 2n) + 18. 

Let n2 - 2n = x, A = 9 , where y is a nonnegative integer. Then 

( ~ + 9 ) ~  -63 = y2. 

That is, (x+9-y ) (x+9+y)  = 63. 

It can only be (x+9-y, x+9+y) = (1, 63) , (3, 21) or (7, 9). 
We obtain, respectively, (x, y) = (23, 31), (3, 9) or (-1, 1). But 
only when x = 3 and - 1, n2 -2n = x has solutions in positive integers 
and we get n = 1 or 3. 

Remark We can also deal with this problem by using inequality. 
Therefore, n = 1 or 3 satisfies the condition. 

@ Suppose 0 is the circumcenter of an acute triangle A A B C ,  P is 

A a point inside A A O B ,  and D, E ,  F are 
the projections of P on three sides B C ,  
C A ,  A B  of A A B C  respectively. Prove 
that a parallelogram with FE and FD as 
adjacent sides lies inside A A B C .  (posed 
by Leng Gangsong) 
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Proof As shown in the figure, we construct a parallelogram DEFG 
with FE and FD as adjacent sides. To prove the proposition to be 
true, we need only to prove that L F E G  < L F E C ,  and L F D G  < 
L F D C .  It is equivalent to proving: LBFD < L B A C ,  and L A F E  < 
L A B C .  

In fact, we construct OH with OH 1 B C ,  and H is the foot of 
the perpendicular. From PD 1 BC and PF 1 A B  , we know that four 
points B, F, P and D are concyclic. Thus L B F D  = LBPD. But 
L P B D  >LOB H , hence 90" - L P B D  < 90" - L O B  H , and that is, 
L B P D  < L B O H .  Moreover, 0 is the circumcenter of A A B C ,  so 

L B O H  = - 1 B O C  = L B A C .  Therefore, L B F D  = LBPD < 
L B O H  = L B A C ,  that is, L B F D  < L B A C .  

Similarly, we can prove that L A F E  < L A B  C. Therefore, the 
proposition holds. 
Remark If 0 is not the circumcenter of A A B C ,  but the incenter or 
orthocenter, does the conclusion given in the problem still hold? The 
reader may wish to think over it. 

1 
2 

@@& Consider a square on the complex plane. The complex numbers 
corresponding to its four vertices are the four roots of some 
equation of the fourth degree with one unknown and integer 
coefficients x4 + p x 3  +qx2 +rx+s  = 0. Find the minimum value 
of the area of such square. (posed by Xiong Bin) 

Solution Suppose the complex number corresponding to the center 
of the square is a .  Then after translating the origin of the complex 
plane to a ,  the vertices of the square distribute evenly on the 
circumference. That is, they are the solutions of equation ( x - u ) ~  = 

b,  where b is a complex number. Hence, 

x 4 + p x 3 + q x 2 + m + s =  ( x - a ) 2 - b  

=x4 - 4 m 3  + 6 a 2 2  - 4a3 x + a4 - b. 

Comparing the coefficients of terms for x with the same degree, 
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P 
4 

we know that - a = -, and it is a rational number. Combining 

further t h a t - 4 ~ ~  = r is  an integer, we can see that a is an integer. So 
by using the fact that s = a4 - b is an integer, we can show that b is 
also an integer. 

The above discussion makes clear of a fact that the four numbers 
corresponding to the four vertices of this square are roots of integer 
coefficients equation ( x  - a>4 = b. Hence, the radius of its 
circumcircle ( = m) is not less that 1 .  Therefore, the area of this 

square is not less than = 2. But the four roots of the equation 
x4 =1  are corresponding to the four vertices of a square on the complex 
plane. Hence, the minimm value of the area of the square is 2. 
Remark By using the method above, we can prove: If the 
corresponding complex numbers of vertices of a regular n-gon are n 
complex roots of some equation with integer coefficients xn + 
an-1x-' + + a0 = 0, then the minimum value of the area of a 

n 2 x  regular n-gon is -sin -. 
2 n  

.=.- Assume that n is a positive integer, and A1 , A2, , An+l are n+ 
1 nonempty subsets of the set { 1 , 2, . . a ,  n )  . Prove that there are 
two disjoint and nonempty subsets { il , i2, . . a ,  ib ) and 
{ j l  , j 2  , ..*, j, ) such that 

Ai IJ Ai IJ IJ Aik = Aj, IJ Aj, IJ IJ Aj 112 . 
(posed by Zhao Dun) 

When n = 1 , A1 = A2 = { 1)  , the proposition holds. 
Suppose it holds for n . We consider the case of n + 1. 
Suppose A1 , A2 , .-, An+2 are nonempty subsets of { 1 ,  2,  . . a ,  

n + l ) .  Let& = A i \ { n + l ) ,  i =  1 ,  2,.-, n+2. We willprove the 
following cases. 

Case I There exist 1 < i <  j < n+2 such that Bi = Bj  = 0, 

Proof I We prove by induction for n .  
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then Ai = Aj = { n + 1 } . The proposition is proven. 
There exists only one i such that Bi = 0. There is no 

loss of generality in supposing Bn+2 = 0, and that ~ S A , + ~  = { n + 1 } . 
Now by the inductive assumption, for { 1, 2,  . . a ,  n + 1 } , there exist 
two disjoint subsets { il , , ik } and { j l  , 

0 
U Aj . Then C and 

D differ at the most by the element n + 1. (This can be shown by 0 
and the definition of Bi. ) In this case, we can make the proposition 
to hold true by putting&+2 into C or D. 

Case Ill , Bnfl are nonempty 
subsets of { 1 , 2 , , rz } . By the inductive assumption, we show that , 
for { 1, 2,  . . a ,  n + 1 } , there exist disjoint subsets { il , . . a ,  ik } and 
{jl , . . a ,  j , }  such that 

Case II 

, j ,  } such that 

Bil u ... u Bik = Bj,  u ... u Bj,. 

We write C = Ail U U Aik, D = Aj, U 
112 

No Bi is empty. Now B1 , B 2 ,  

Bil u ... u Bik = Bj, u ... u Bj 112 . 0 
In addition, B2, B3, . . a ,  Bn+2 are also nonempty subsets of 

{ 1 , 2 , , rz } . By the inductive assumption, we can show that, for 
(2 ,  3, .-, n + 2 } , there exist disjoint subsets { r1, . . a ,  r u }  and 
{ t l  , . . a ,  t o }  such that 

Brl U U Br, = Btl U U Bto- 0 
Again, we write C= Ail U U Aik, D = Aj, U U Aj 112 , and 

write E = A,, U U Ate. By using 0 , 0 and 
the definition of Bi , we see that C and D differ at the most by the 
element n+ 1, and so do E and F. If C = D or E = F, then the 
proposition holds. Hence we need only to consider the case when C # 
D and E # F. There is no loss of generality in supposing C = D U 
{ n + l } ,  but E = F\{n+l}.  Now C U E = D U F. After 
amalgamating the sets occurred repeatedly in C and E, as well as in D 
and F, we get two subsets {PI, . . a ,  p,} and { q l ,  . . a ,  q y }  of (1, 
2,  

U AT, , F = A,, U 

, n + 2 } such that 
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Ap, u ... u Ap, = A,, u ... u A p y 9  

where G = Ap, U U Ap, = C U E, H = 4, U U 4 = D U F. 
Now, if { P I  , . . a ,  p ,  } n (41 ,  . . a ,  qy } = 0, then the proposition 

holds. If there is i E { P I ,  . . a ,  p,} n (41 ,  . . a ,  q y } ,  we write C = 

{A,, , , At0 } . And there is no loss of generality in assuming that 
Ai does not belong to c andEat the same time, and it does not belong 
to B and F at the same time too. Hence there are only two 
possibilities. 

(a) Ai E c andAi E F.  If there are two sets in c containing n+ 
1, then we take away set Ai from the left side in @I. Now since all 
elements except n + l  in Ai belong to E (in view of a), and there are 
two sets on the left side in @I containing n+ l .  Thus after taking away 
Ai, the number of elements in G does not reduce and @I is still an 
equality. In the same way, if there are two sets in containing n + 1, 
then we take away Ai from the right side in @I, and @I still holds. 

Of course, if there is only one set in c and F containing n + 1, 
then after taking away Ai from both sides in @I, it remains to be an 
equality. (Now, by 0 and 8, we can see that the two sides of @I will 
not become empty sets. ) 

(b) Ai E B and Ai E E ,  then n+ 1 @ Ai. Now after taking away 
Ai from both sides in @I, the resulting expression is still an equality. 

In view of the above operation, we have a method to make the 
two sets of subscripts { pl  , , qy } in @I disjoint. 
Therefore the proposition holds for n + 1. 

As a consequence of what is described above, we show that the 
proposition holds. 
Proof II Here we need to use a fact from linear algebra that n + 1 
vectors in the n-dimensional linear space are linearly dependent. 

If element i is in set Aj , we write it as 1, otherwise write it as 0. 
Then Aj corresponds to an n-dimensional vector, which is nonzero 
and contains 0 and 1. We write aj = (ajl , a j ,  , . . a ,  a j , ) ,  where 

Y 

N 

N 

{Ail 9 ..*) A i k } )  D = {Aj, 9 ..*) Aj 112 } ,  E = {Arl ,  . a * ,  Ary} ,  F = 

, p ,  } and { q1 , 
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Since a1 , a2 , .-, an+l are n + 1 vectors in the n-dimensional 
space, so there exists a group of real numbers, not every one of them 
to be zero, x1 , x2 , . . a ,  xn+l such that 

Hence, for { 1 , 2,  . . a ,  n + 1 } , there exist two disjoint and 
nonempty subsets { il , .-, ik } and { j l  , .-, j , }  such that 

wherexi, , . . a ,  xik >0 ,  yjl = ( -x j1  >, . . a ,  yjm = ( -x j  ) > O  ( Here, 
it is essential to put the terms with coefficients greater than zero in 0 
to one side, and those with coefficients less than zero to another 
side). 

m 

We conclude that 

Ail IJ Ai2 IJ IJ Aik = Aj, IJ IJ Aj m . 0 
In fact, if element a (1 < a < n)  belongs to the left side in 0, 

then the a-th component of the sum of the vectors from the left side 
in @ must be greater than zero. Thus it makes the a-th component of 
the sum of the vectors from the right side in @ to be greater than 
zero. Hence, there is aj, , and its a-th component is 1 , that is, a E 
Aj,. Conversely, it is also true, that is, 0 holds. 

Therefore, the original proposition holds. 
Remark Proof II is easy and fundamental. But it needs to use some 
knowledge of linear algebra. Although such knowledge is elementary, 
but it is not faught in the middle schools. In Proof I , after taking 
away n+ 1 and obtaining conclusion by using inductive assumption, we 
may not put n+ 1 back simply. Professor Pan Chengbiao obtains this 
proof after putting in a lot of hard work. 
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Second Day 
8 : 00 - 12 : 00 December 5, 2002 

@@& In a given trapezium A B C D ,  A D I B C .  Suppose E is a variable 
point on A B ,  0, and 0, are circumcenters of A A E D  and A B E C  
respectively. Prove that the length of 010, is a fixed value. 
(posed by Leng Gangsong) 

E ---__ 

B LZl 0 2  c 

Proof As shown in the figure, we join 
E01 and E02, then LAEOl = 90" - 
L A D E ,  /BE02 = 90"-LBCE. Hence 

LO1 EO2 = L A D E  + LECB. 

Since A D / / B C ,  through E constructing a 
line parallel to AD, we can prove L D  E C = L A D  E + L B  CE , so 
LOlE02 = LDEC.  

Further , by the sine rule , we can show 

DE 201EsinA OIE 
E C  202EsinB 02E' 

- - -- - 

Thus A D E C  c/) AOl E02. Therefore 

1 
-~ 01 E 

- 
0102 OIE 
DC D E  201EsinA - 2sinA' 

- 

, which is a fixed value. The proposition is proven. 
DC 

so0102 =zA 
Remark It is natural to think that the distance between the 

1 
projections of 0, and 0, on A B  is -AB , which is a fixed value. Thus 

2 
we need only to prove the included angle between 010, and A B  is a 
fixed value. This is an idea for another method to prove the problem. 
The reader may wish to try it. 

Assume that rz is a given positive integer. Find all of the integer 
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groups (a1 , a2 , 
(1) a1 +a2+. .*+an 2.’; 
(2) a: +a; +...+a: < n3 +I. 
(posed by Pan Chengbiao) 

, a,) satisfying the conditions: 

Solution Suppose ( a l ,  a2, . . a ,  a,) is an integer group which 
satisfies the conditions. Then by Cauchy’s inequality we have 

0 

Combininga: + . .a+& < 2 +1, we see that it can only bea: +-+ 
If it is the former, then by the condition for Cauchy’s inequality 

= a,. This requires 
= 

1 
a ~ + . . . + a ~ ~ - ( ~ l + . . . + a , ) ~  2.’. 

n 

& = 2 or.: + . . a + &  = 2 +I. 

to take the equality sign, we can obtain a1 = 

a: =n2,  1 < i <  n. Combining al +..a +a, 2 n2 ,  we have al = 

a, = n. 
If it is the latter, then let bi = ai - n ,  then we have 

n n 

g+b;+ . -+b:  = x a : - 2 n x a i + n 3  
i = l  i = l  

= 2 n 3 + 1 - 2 n x a i < 1 .  
i = l  

Thus @ can only be 0 or 1 , and there is at the most one among g , 
@, . . a ,  b“, to be 1. If g ,  . . a ,  b2, all are zero, thenai = n ,  x u :  = 

n3 #n3 + 1. It leads to a contradiction. If there is just one among 

n 

i = l  

g ,  . . a ,  g t o b e l ,  t h e n x a ? = n 3 & 2 n + l # n 3 + 1 .  Again, itleads 
i = l  

to a contradiction. 

( n ,  .-, n). 
Consequently, we obtain that it can only be (al ,  . . a ,  a,) = 

@$@ Assume that a ,  P are two roots of the equation 2 - x- 1 = 0. Let 

an- p” 
a, = ~ , n = 1, 2,  ..a. 

a-P  
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(1) Prove that for any positive integer n , we have an+2 = an+l + 
(2) Find all positive integers a and b ,  a < b, satisfying that b 

divides a, - 2n an for any positive integer n. (posed by Li 
Shenghong) 

a n  - 

Solution (1) Noting a+p = 1 and ap =- 1, we have 

#+2-P+2= (a+P)(an+l -P+l) -ap(a”-p”) 

= (#+I -P+l) + (an-p”). 

Dividing two sides by a - p, we have a n f 2  = anfl + a,. 
(2) Byassumption, wehaveblal --a, tha t i s ,b I1-2~.  Butb) 

a ,  so b = 2a - 1. Moreover, for an arbitrary positive integer n , we 
have 

b I a, - 2nan , b I an+l - 2(n + 1 )an+’ , b I an+2 - 2(n + 2)anf2. 

Combining an+2 = an+l + a, and b = 2a - 1 an odd number, we 
have 

b I ( n  + 2)anf2 - ( n  + l)an+l - nun. 

But ( b ,  a )  = 1, SO 

bl (n+2)a2- (n+l )a-nn .  0 

bl (n+3>a2- (n+2>a-  ( n + l > .  0 
Taking n as n + 1 in 0, we have 

Subtracting the right side of 0 from the same side of 0, we have 

bl a2 - a -  1, 

2a - 1 I 2a2 - 2a - 2. 

that is, 2 a - 1 1 2  -a-1, 

so 

But 2a2 = a (mod 2a - 1). 

Therefore 2 a - l ~ - a - 2 , 2 a - l ~ - 2 2 a - 4 .  

so 2a-11-5, 2a-1 = 101-5. 
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But 2a - 1 = 1 implies b = a ,  a contradiction. So 2a - 1 = 5, a = 

3 andb = 5. 
We will prove in the following that when a = 3 and b = 5, for any 

positive integer rz , we have b I a, - 2nan , that is 5 I a, - 2n X 3". 
W h e n n = l ,  2,sinceal =1, a 2 = a + ~ = l , w e h a v e a l - 2 X 3 =  

- 5 ,  a2 - 2 X 2 X 32 =- 35. So, when n = 1, 2, we have 
5 I a, - 2n x 3,. 

Assume that , when n = K , K + 1 , this conclusion is true , that is , 
51ak-2kX3', 51~k+l -2(k+1) X3'+'. 

Hence 51 ( a k + l  +ah) - 2 ? ~ X 3 ~ - 2 ( K + 1 ) 3 ~ + ~ .  

That is, 5 I Uk+2 -2 x 3k(K +3(K+ l)), 

5 I Uk+2 - 2 x 3k x (4K + 3). so 

To prove 5 I ah f2  - 2(K + 2) X 3kf2 , we need only to prove 

2(K +2) X 3k+2 = 2 X (4K +3) X 3'(mod 5). 0 
It is equivalent to9(K+2) =4K+3, that is, 5K+15=0 (mod 5). 

Obviously the latter holds, Hence 0 holds. Thus the conclusion holds 
forn = K+2. 

Consequertly, we show that ( a ,  b) = (3, 5) satisfying the 
conditions. 
Remark A sequence of numbers {a ,  } occurring in the problem is a 
Fibonacci sequence. This problem came from a discussion with regard 
to the properties of Fibonacci sequence. Problems concerning 
Fibonacci sequence often appear in mathematical contests. 

@'@ Assume that S = (a1 , a2 , . . a ,  a,) consists of 0 and 1 and is the 
longest sequence of number, which satisfies the following 
condition: Every two sections of successive 5 terms in the 
sequence of numbers S are different, i. e. , for arbitrary 1 < i < 
j < n - 4, (ai , ai+l , ai+2 , ai+3 , ai+4) and (aj  , aj+l , aj+2 , 
aj+3 , aj+4) are different. Prove that the first four terms and the 
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last four terms in the sequence are the same. (posed by Feng 
Zhigang) 

Proof Noting that S is the longest sequence of numbers satisfying 
the condition. Hence, if we add a term, 0 or 1, after the last term of 
S ,  there will occur two identical sections of successive 5 terms in S, 
and that is, there exist i # j such that 

( U i  , Ui+l , ... , Ui+4) = ( G - 3  , a,-2 , ... , a, , 0) , 
( U j  , Uj+l , ... , Uj+4)  = (an-3 , a,-2 , ..., a, , 1). 

If (a1 , a2 , a3 , a,) # ( ~ ~ - 3  , an-2 , a,-1 , a,) , then 

l < i ,  j < n - 3 ,  i # j ,  

and ( U i  , Ui+l , ai+2 9 Ui+3) = ( U j  , U j + l ,  aj+2 , U j + 3 )  

- 
- ( 4 - 3  9 4 - 2  9 4 - 1  9 a,). 

Now, consider ai-1 , aj-1 and an-4, among which there must be 
two identical terms. This causes two sections with successive 5 terms 
respectively in S to be identical. It leads to a contradiction. 

Remark Note that there are at the most 32 different sections of 
successive 5 terms (consisting of 0 and 1). According to this, we 
know that the length for S is less than or equal to 36. The reader may 
wish to try to construct one such S with length 36 and satisfying the 
requirements. 

Therefore, the proposition holds. 

2003 (Urumqi, ~injiang) 

The 3rd (2003) China Western Mathematical Olympiad was held on 
September 25 - 30 , 2003 in Urumqi, Xinjiang, China, and was hosted 
by the Research Center of Education of Urumqi. 

The Competition Committee consisted of the following: Chen 
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Yong-gao, Li Sheng-hong, Qiu Zong-hu, Leng Gang-song, Xiong 
Bin, Feng Zhi-gang , Zhang Zheng- jie . 

First Day 
9 : 30 - 13 : 30 September 27, 2003 

@@@ Put numbers 1, 2, 3, 4, 5, 6, 7 and 8 at the vertices of a cube, 
such that the sum of any three numbers on any face is not less 
than 10. Find the minimum sum of the four numbers on a face. 
(posed by Qiu Zonghu) 

J----------. 

la .’8 

Solution Suppose that the four numbers on a 
face of the cube isal , a2 , a3 , a4 such that their 
sum reaches the minimum and a1 < a2 < a3 < 
a4. Since the maximum sum of any three 
numbers less than 5 is 9,  we have a4 > 6, and 
thenal +a2 +a3 +a4 > 16. 

the minimum sum of the four numbers on a face is 16. 

5 
’ 

As seen in the figure, we have 2 + 3 + 5 + 6 = 16, and that means 

2-1 

@B Let a1 , a2 , .-, a2, be real numbers with c (ai+l - ai)2 = 1. 
i =  1 

Find the maximum value of (a,+l + an+2 + + a2,) - (a1 + 
a2 + + a,). (posed by Leng Gangsong) 

Solution First, for n = 1, we have (a2 - a1 >2 = 1, a2 - a1 =+ 1. 
Then the maximum value of a2 - al is 1. 

Secondly, forn>2,1etx1 = a l ,  xi+l = a i f l - a i ,  i = l ,  2, . . a ,  

2n-1. Then c d  = 1, andab = X I  +.-+xb, K = 1, 2, . . a ,  2n. 

Using Cauchy’s Inequality, we have 

2n 

i = 2  

b,+l +a,+2 + - . + a 2 n )  - (a1 +a2 +-.+a,) 

= n(x1+ ... + x,) + nx,+1+ ( n  - 1)xn+2 + ... + x2, 

-[nx1 +(n-1)x2++.-+xn1 



The equality holds when 

K = 1, 2, . . a ,  n. 

So the maximum value of (a,+l + an+2 + m - + a 2 , )  - 

Remark The first, second and third problems in this competition 
are all concerning with finding the maximum or minimum values. A 
solution of such a kind of problems usually involves two steps: First, 
get an upper bound or a lower bound of the problem using given 
conditions and well-known inequalities. Secondly, show that such an 
upper bound or lower bound is attainable, and then is the maximum or 
minimum value we are looking for. 

@& Let rz be a given positive integer. Find the least positive integer 
u, , such that for any positive integer d , the number of integers 
divisible by d in every u, consecutive positive odd numbers is not 
less than the number of integers divisible by d in 1, 3, 5,  . . a ,  

2n - 1. (posed by Chen Yonggao) 
Solution The correct answer is u, = 2n - 1. The proof is given in 
the following. 

( 1) u, > 2n- 1. As u1 = 1 , we only need to consider n > 2. Since 
the number of integers divisible by 2n- 1 in 1, 3, 5,  , 2n- 1 is 1 and 
tha t in2 (n+ l ) - l ,  2 (n+2)-1 ,  . . a ,  2(n+2n-2) -1 isO,  then 
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u, >2n- 1. 
(2) u, < 2n- 1. We only need to consider the case when 2 1 d and 

1 < d < 2n - 1. For any 2n - 1 consecutive positive odd numbers: 
2 ( a + l ) - 1 , 2 ( a + 2 ) - 1 1 ,  .-, 2 ( a + 2 n - 1 ) - 1 1 ,  let s and t be 
positive integers such that 

(2s - l)d < 2n - 1 < (2s + l)d, 

(2t - l)d <2(a + 1) - 1 < (2t + 1)d. 

Then the number of integers divisible by d in 1, 3 ,  5, 

(2(t+s) - 1))d = (2t- l )d+ (2s- l )d+d 

, 2n - 1 
is s, and 

<2(a + 1) - 1 + 2n - 1 + 2n - 1 

=2(a + 2n - 1) - 1. 

That means u, < 2n - 1. 
Remark The key to the solution lies in finding out the fact that the 
number of integers divisible by 2n - 1 in 2n - 2 consecutive positive 
odd numbers2(n+l)-l, 2(n+2)-1, .-, 2(n+2n-2)-1 is0, then 
u, > 2n - 1. The remaining is to prove that u, < 2n - 1. 

Suppose the sum of distances from any point P in a convex 
quadrilateral ABCD to lines A B ,  B C ,  CD and D A  is constant. 
Prove that ABCD is a parallelogram. (posed by Xiong Bin) 

Let d ( P ,  0 denote the distance from point P to line 1 .  Solution 
We first prove the following lemma. 

Let LSAT = abe a given angle 
and P a moving point in LSAT. If the sum of 

Lemma 

1 ,  
I 1  
1 1  

distances from P to lines AS and A T  is a 

segment BC with points B and C on AS and A T  
constant number m ,  then the trace of P is a ,/'Q'i,, 

, \  
I '  

Further, if m respectively , and A B  = AC = ~ sin a' 
a point Q lies inside AABC, then the sum of S T 
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distances from Q to lines AS and AT is less than m , and i t  is greater 
than m i f  Q lies outside AABC. 

m 
sin a 

Proof of Lemma For AB = AC = - and P on B C ,  We have 

1 1 
SAPAB + SAPAC = SAABC i. e. -AB d ( P ,  AB) + TAC d ( P ,  2 

AC) = AB AC sin a. Then d ( P ,  AB) + d ( P ,  AC) = m. If 

point Q lies inside A A B  C, SAQAB + SAQAC < SUBC , then d(Q, 
AB) + d(Q, AC) < m. If Q lies outside AABC , SAQAB + SAQAC > 
SAABC, then d(Q, AB) + d(Q, AC) > m. The proof of Lemma is 
complete. 

2 

We now consider the following two cases: 
(1) Neither pair of the opposite 

is 
parallel. We may assume that sides BC 
and AD meet at point F and sides B A  
and C D  meet at point E. Through 

that the sum of distances from any point on ZI to A B  and C D  is 
constant and the sum of distances from any point on 12 to BC and AD 
is also constant. As seen in the second figure, for any point Q in area 
S, using the given condition and the lemma, we have 

E 
,\ 

I \  , %  sides of the quadrilateral A B C D  

--.. -. --. .. -. ljl. -. 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ >  ’ F  

point P draw segments ZI and 12 such C 

d ( P ,  AB) + d ( P ,  BC) + d ( P ,  CD) + d ( P ,  DA) 

It leads to a contradiction. 
(2) The quadrilateral ABCD is a trapezoid. In the same way, we 

This completes the proof. 
can also show that it will lead to a contradiction. 
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Second Day 
9 : 30 - 13 : 30 September 28, 2003 

@@& Let K be a given positive integer and {a, } a number sequence with 
a. = 0 and 

U,+l = Ka, +&2 - 1>a: + 1 , n = 0,  1, 2, ..a. 

Prove that every term of the sequence {a, } is an integer and 

Solution We have - 2Ka,~,+~ + a: - 1 = 0 and - 

2Kan+lan+2 +:+I - 1 = 0. Subtracting the first expression from the 
second onet we obtain 

2K I a2, for all n.  (posed by Zhang Zhenjie) 

2 a:+2 - a, - 2Ka,+1 an+2 + 2Ka,a,+1 

= (a,+2 -a,> (a,+2 +a, - 2KU,+l) = 0. 

Since {a,} is strictly monotonic increasing, then 

an+2 = 2KU,+l -a,. 0 
From a0 = 0,  a1 = 1 and 0, we get that every term of {a,} is an 

integer. 
Furthermore, from 0 we have 

2K I an+2 - a,. 0 
From2K I a0 and 0, we get2K I a,, n = 1, 2, ..a. 

Remark Apparently, the recursive relation in {an} is nonlinear. 
Actually it is not. When we encounter a problem involving a nonlinear 
sequence, the first thing to do is to linearize and to simplify the problem. 
Specifically, if it has an expression with radical terms, try to eliminate 
these terms to get a linear recursive expression of order 2. 

.=!=?-?s %SF Suppose the convex quadrilateral ABCD has an inscribed circle. 
The circle touches AB, BC, CD, D A  at Al , B1, Cl , D1 
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respectively. Let points E, F, G, 
H be the midpoints of A1 B1 , B1 CI , 
CIDI , DlAl respectively. Prove 
that quadrilateral EFGH is a 
rectangle if and only if ABCD is a 
cyclic quadrilateral. (posed by Feng 
Zhigang) 

A 

Solution 
point I be the center of the inscribed circle of ABCD. Since H is the 
midpoint of DIAl and lines AA1 , AD1 are the two tangent lines 
through A to the circle, then point H lies on the line segment AZ and 
A l l  A1 D1 . From ID1 1 AD1 and using the proportional theorem for 
similar triangles we get that IH LA = ID: = r 2 ,  where I is the radius 
of the inscribed circle. In the same way, we get that IE IB = r 2 .  
Then IE IB = IH LA, and that means points A, H, E, B lie on one 
circle, so LEHI = L A B  E. Similarly, we obtain that L I H G  = 

LADG, LIFE = LCBE,  L I F G  = LCDG. Adding these four 
equations, we get thatLEHG+LEFG = LABC+LADC, and that 
means A, B, C, D lie on one circle if and only if E, F, G, H lie on 
one circle. Notice that quadrilateral EFGH is a parallelogram as E, 
F, G, H are the midpoints of the sides of quadrilateral A1 B1 CI D1 
respectively. So E, F, G, H lie on one circle if and only if EFGH is a 
rectangle. This completes the proof. 

As seen in the figure, let 

= 1. , x5 be nonnegative real numbers with c ~ 

5 1  
;=I 1+xi 

@&@ Let XI , x2 , 
5 

Prove that c - < 1. (posed by Li Shenghong) 
;=I 4 + 2  

1-yi . , i = l ,  2,  . . a ,  5, thenxi=-, z = 1 ,  Solution Let y .  - - 1 
z - l + x i  Y i  

i = l  

We have 
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5 5 

< 1  ;=I 5yi 2 - 2yi + 1 

< 5  
5 1 - 5 ~ ;  + 5 ~ i  
;=I 5yi - 2yi + 1 

3yi + 1 

-Y? +Yi 

)< 5 w 5 ( - l + 5  i = l  Y? - 2Yi + 1 

< 10. 3yi + 1 

Furthermore , 

5 
4 

= - x ( 3 + 5 )  = 10. 

This completes the proof. 

Arrange 1 650 students in 22 rows by 75 columns. It is known 
that for any two columns, the number of occasions that two 
students in the same row are of the same sex does not exceed 11. 
Prove that the number of boy students does not exceed 928. 
(posed by Feng Zhigang) 

Solution Let ai be the number of boy students in the ith row, then 
the number of girl students in this row is 75 - ai. By the given 

condition, we have c CC; + 1 < 11 X 0 5 .  That is, c (a? - 

75ai) <- 30 525, implying c (2ai - 75)2  < 1 650. Using Cauchy’s 

Inequality, we have 

22 22 

r = l  ,= 1 
22 

,=l  

22 22 

[ c (2ai - 75>12 < 2 2 c  (2ai - 75)2  < 36 300. 
i= 1 i= 1 
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22 22 

Then c (2ai - 75) < 191, and c ai < 19' + 650 < 921. That 
i= 1 i= 1 

means the number of boy students does not exceed 928. 
Remark This problem was derived from a more general one: Given 
a rectangular matrix with rz rows and m colums and consisting of 
elements + 1 and - 1 , if for any two colums, the sum of products of 
two elements in the same row is less than or equal to 0,  find an upper 
bound of the number of elements + 1 in the matrix. In our problem, 
n =22 as there are 22 teams attending the competition, and there is an 
upper bound less than 928 when m = 75 as the competition date is 
September 28. 

2004 (Yinchuan, Ningxia) 

The 4th (2004) China Western Mathematical Olympiad was held on 
September 25 - 30, 2003 in Yinchuan, Ningxia, China, and was 
hosted by Ningxia Mathematical Society and Ningxia Changqing 
Yinchuan senior high school. 

The Competition Committee consisted of the following: Xiong 
Bin, Wang Haiming , Xu Wanyi, Liu Shixiong , Wang Jianwei, Zhang 
Zhengjie, Wu Weichao, Feng Zhigang and Feng Yuefeng. 

First Day 
8 : 00 - 12 : 00 September 27, 2004 

@@ Find all integersn, such that n4 +6n3 +l ln2  +3n+31 is a perfect 

Solution SupposeA = n4 +6n3 +l ln2  +3n+31 is a perfect square, 
it means that A = (n2 + 3n + 1>2 - 3(n - 10) is a perfect square. 

If n > 10, then A < (n2 + 3n + 1>2, thus A < (n2 + 3 d 2 .  

square. (posed by Xu Wanyi) 
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Therefore 

(n2 + 3 ? ~ + 1 ) ~  - (n2 +3n)2 < 3n-30, 

or 

2n2 +3n+31< 0,  

which is impossible. 
If n = 10, thenA = (lo2 +3 X 10+1)2 = 1312 is a perfect square. 
If n< 10, thenA> (n2 + 3 ~ ~ + 1 ) ~ .  
Case I n <- 3 or 0 < n < 10. Then n2 + 3n > 0. Thus 

A >  (n2 + 3 ~ ~ + 2 ) ~ .  

That is, 

2n2 +9n-27<0,  

or 

Therefore, n=-6, -5, -4, -3, 0 ,  1, 2. For these values of n, 
the corresponding values of A are 409, 166, 67, 40, 31, 52, 145. All 
of them are not perfect squares. 

n =- 2, - 1. Then A = 37, 34 respectively, none of 
them is a perfect square. 

Case II 

Hence, only when n = 10, A is a perfect square. 

@@ Let ABCD be a convex quadrilateral, 11 and I2 be the incenters of 
A A B  C and ADBC respectively. The line II I2 intersects the lines 
AB and DC at the points E and F respectively. Suppose lines AB 
and DC intersect at P ,  and PE = PF. Prove that the points A, B ,  
C, D are concyclic. (posed by Liu Shixiong) 

Draw line segments I l B ,  IIC, I2B and IzC, as shown in Solution 
the figure. 

Since PE = PF,  we have L P E F  = L P F E .  
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But 

L P E F  = L I z I I B - / E B I l  = L I ~ I I B - L I I B C ,  

and 

L P F E  = / I 1  IzC-LFCIz = / I 1  I2C-LI2CB. 

Therefore, L I 2 I 1 B - L I 1 B C  = L I I I ~ C - L I ~ C B ,  or 

LI2IIB+LI2CB = L I 1  I2C+LIIBC. 

On the other hand, L I ~ I I B  + 
L1211B +L12CB = x ,  and points I1 , 
LIzCB + / I 1  IzC+LIlBC = 2x. Thus 

12, C ,  B are concyclic. I1 , ’\ 
P Since L B I l  C = L B I 2  C ,  we have A E B  

L I1 BC + L I1 CB = L I2 BC + 1 1 2  CB , 
and 

L A B C + L A C B  = L D B C + L D C B .  

Hence, L B A C  = L B D C ,  and the points A ,  B ,  C, D are 
concyclic. 

@$!$ Find all real numbers K , such that the inequality 

a3 +b3 +2  +d3 + 1 > K(a+b+c+d) 

holds for anya, b,  c ,  d E [- 1, +m>. (posed by Xu Wanyi) 
3 
4 

1 1 1 3 
2 8 4 

Solution I f a = b = c = d = - 1 ,  then-3>K*(-4). HenceK>-. 

I f a = b = c = d = - ,  then4*-+l>K* ( 4 . ~ ) .  ThuskG-, 

3 
4 and so K = -. 

Now we want to prove that the inequality 
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holds for anya, b,  c ,  d E [-1, +m>. 

At first, weprovetha t42+1>3x,  x E  [-1, +m>. 

In fact, from (x + 1) (2x - 1>2 > 0,  we have 4 2  + 1 > 3x, x E 
[- 1 , + 00). Therefore 

4a3 +1 >.a, 

4b3 + 1 > 3b, 

4 2  +1>3c,  

4d3 + 1 > 3d. 
By adding the above 4 inequalities together, we get the inequality 

(1). 
3 
4 Thus, the real number we want to find is K = -. 

Remark To prove an inequality of the above type, it is natural that 
we prove an in equality for each variable separately and then add 
them together. 

@$$$ Let n E N (the set of positive integers) , and d(n) be the number 
of positive divisors of n. Next, p(n> denotes the number of 
integers in the closed interval [l , n] which are co-prime with n. 

Find all non-negative integers c ,  such that there exists n E N 
satisfying 

d(n) + p(n> = n+ c. 

For such c ,  find all rz satisfying the above equation. (posed 

Solution We denote the set of positive divisors of rz by A, and the 
set of integers in the closed interval [l , n] which are co-prime with rz 

by B. Since there is only one number 1 E A n B among 1 , 2 , , n , we 
get d(n) + p(n> < n + 1. Thus c = 0 or 1. 

(1) If c = 0,  then d(n) + p(n> = n implies that there exists only 
one number among 1, 2,  . . a ,  n which is not contained inA U B. If rz 

is even, and n > 8, then all of n- 2 and n - 4 are not contained in A U 

by Feng Zhigang) 
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B. In this case, rz does not satisfy the equation. If rz is odd, then 
when rz is a prime or 1 , d ( n )  + p(n> = n+ 1 (which will be discussed 
in case ( 2 )  below). When rz is a composite number, we can write n = 

p q  , where p and q are odd and 1 < p < q. If q 5 , then 2 p  and 4 p  are 
not contained inA U B, so rz does not satisfy the equation. 

From the above discussion, we find that 

d ( n )  + p(n> = n 

when either n < 8 and rz is even, or n < 9 and rz is an odd composite 
number. 

By direct verification of all the solutions of the above equation, rz 

can only be 6, 8 and 9. 
( 2 )  I f c =  1, thend(n)+dn) = n+limplies that amongl, 2 ,  . . a ,  

n every number belongs to A U B. It is easy to find that this time n = 1 and 
primes can satisfy the required condition. For the case when rz is even (not 
prime) , by the same argument as above we have n< 4 (consider n-2 ) . If 
rz is an odd composite number, write n = p q  , where p and q are odd and 
3 < p  < q,  then 2 p  @ A U B, a contradiction. By direct calculation we find 
that only n = 4 satisfies the condition. 

Therefore, the solutions of the equation d ( n )  + p(n> = n + 1 are 
n = 1, 4 or primes. 
Remark A n B = (1) is clear, thusc< 1. When rz is a prime, it is 
easy to see that d ( n )  + p ( d  = n+l .  When rz is a composite number, 
for any composite number rz which is large enough it is easy to find 
sufficiently many composite numbers less than rz such that they are 
neither divisors of rz nor coprime with n. In this case d ( n )  + p(n> # 
n +c ( c  = 0 or 1). The general case of this problem is to remove the 
restriction of c being non-negative. 

Second Day 
8 : 00 - 12 : 00 September 28, 2005 

@&@ The sequence {a, } satisfies a1 = a2 = 1 and 
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+a,, n =  1, 2, ..a. 

1 
an+2 = ~ %+I 

Find a2 004. (posed by Wu Weichao) 
Solution According to the assumption we have 

an+2an+1 -an+1a, = 1. 

Thus, {U,+~U,} is an arithmetic progression with first term 1 and 
common difference 1. Hence 

an+lan = n ,  n = 1, 2, ..a. 

a ,  , n = 1, 2, ..a. Consequently, n + l  - n + l  - n + l  so an+2 = ~ - ~ - ~ n n %+I - 

2 003 2003 2001 
a2 004 = m a 2  002 = 2002 m a 2  000 

2003 2001 3 
2 002 

=... = ~ . ~ 2 000 ... --a 2 2  

- 3 5 2 003 
2 4 ... 2 002' 

- 

%$@@ All the grids of an m X n chessboard ( m > 3 , n > 3 ) are colored 
either red or blue. Two adjacent grids (with a common side) are 
called a good couple if they are of different colors. Suppose that 
there are S good couples, explain how to determine whether S is 
odd or even. Does it depend on certain specific color grids? 
(Reasoning is required. ) (posed by Feng Yuefeng) 

Solution I Classify all grids into three parts: the grids at the four 
corners, the grids along the borderlines ( not including four 
corners) , and the other grids. Fill all red grids with label number 1 , 
all blue grids with label number - 1. Denote the label numbers filled 
in the grids in the first part by a , b , c and d, in the second part by 
XI 9 x 2  9 ... , XZmf2-8 , and in the third part by y1 , y2 , , 
~ ( ~ - 2 ) ( - 2 ) .  For any two adjacent grids we write a label number 



China Western Mathematical Olympiad 2004 191 

which is the product of two label numbers of the two grids on their 
common edge. Let H be the product of all label numbers on 
common edges. 

There are 2 adjacent girds for every grid in the first part, thus its 
label number appears twice in H. There are 3 adjacent grids for every 
grid in the second part, thus its label number appears three times in 
H. There are 4 adjacent grids for every grid in the third part, thus its 
label number appears four times in H. Therefore, 

If XI x2 "'X2&2-8 = 1, then H = 1, and in this case there are 
even good couples. If XI x2 .-x2&24 =- 1, then H =- 1, and in this 
case there are odd good couples. It shows that whether S is even or 
odd is determined by colors of the grids in the second part. Moreover, 
when there are odd blue grids among the grids in the second part , S is 
odd. Otherwise S is even. 
Solution I[ Classify all grids into three parts: the grids at the four 
corners, the grids along the borderlines (not containing four 
corners) , and the other grids. 

If all grids are red, then S = 0, which is even. If there are blue 
grids we pick any one of them, say A, and change A into a red one. 
We call this changing a transformation. 

(1) A is a grid in the first part. Suppose that there are K red grids 
and 2 - K blue grids among A's two adjacent grids. After changing A 
into a red one, the number of good couples increases by 2 - K - K = 

2 - 2K. It follows that the parity even or odd of S is unchanged. 
( 2 )  A is a grid in the second part. Suppose that there are p red 

grids and 3 - p blue grids among A's three adjacent grids. After 
changing A into a red one , the number of good couples increases by 
3 -p - p = 3 - 2p. It follows that the parity of S is changed. 

(3) A is a grid in the third part. Suppose that there are q red 
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grids and 4 - q blue grids among A’s four adjacent grids. After 
changing A into a red one , the number of good couples increases by 
4 -q - q = 4 - 2q. It follows that the parity of S is unchanged. 

If there are still blue grids on the chessboard after above 
transformation, we continue doing the transformation over and over again 
until no blue grid left on the chessboard. Now S is changed into 0. 

Clearly, S changes its parity odd times if there are odd blue grids 
among the second part of grids. Similarly, S changes its parity even 
times if there are even blue grids among the second part of grids. It 
implies that the parity of S is determined by the coloring of the second 
part of grids. When there exist odd blue grids among the second part 
of grids, S is odd. When there exist even blue grids among the second 
part of grids, S is even. 
Remark In Solution I the method of evaluation is used, and in 
Solution II the method of transformation is used. These two methods 
are used quite often in solving this kind of problems. 

Let 1 be the perimeter of an acute triangle AAB C which is not 
equilateral, P a variable point inside AABC , and D , E and F be 
projections of P on B C ,  C A  and A B  respectively. 

Prove that 

2(AF+BD+cE)  = I ,  

if and only if P is collinear with the incenter and circumcenter of 
AABC. (posed by Xiong Bin) 

Solution Denote the lengths of three 
sides of AABC by BC = a, CA = band 
AB = c respectively. No loss of 
generality, we can suppose b # c. We 
choose a rectangular coordinate system 
(see the figure) , then we haveA(m, n)  , 
B(0, O ) ,  C(a, 0) andP(x,  y) .  

Y h  * 

,’ (+,Y) 

‘, 
C(a, 0)  

SinceAF2 - BF2 = A P 2  - BP2, it follows that 
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AF2 - ( c - A F ) ~  = AP2 - BP2. 

Therefore 

2c AF - 2 = (x-m)2 + ( y -  n)2 -2 - y2 ,  

and 
m2 +n2 -2mx-2ny c AF= + y. 2c 

On the other hand, from 

CE2-Ap=pc2--Ap2, 

we have 

CE2 - (b -CE)2  = PC2 -AP2. 

Thus 

2b . CE - b2 = ( x  - a )  + y2 - ( x  - m) - ( y - n)  , 
2 m + 2 n y - m 2 - n 2 - 2 m + a 2  b + y. 2b CE= 

1 
2 Since AF + BD + CE = - , we get 

2mx +2ny -m2 - n2 - 2 m  +a2 
+$+x+ 2b 

m2 +n2 -2mx-2ny 
2c 

b l  +- = -, 
2 2  

that is, 

Since b # c and n # 0,  point P is on a fixed straight line. Since the 
condition 2(AF + BD + CE) = 1 is satisfied for both incenter and 
circumcenter , we complete the proof. 
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A Remark The method we used above is 
analytic. Another solution using a purely 
geometric method is as follows: construct 
projections of the incenter, circumcenter of 
A A B C  and point P on the three sides of 
A A B C  respectively, we can get the result by 
means of proportional segments (see the 
figure). 

2 

C 

a Suppose that a, b, c are positive real numbers, prove that 

a b C 3 4 3  1<  d m + d $ q ? + d m  < 2. 
(posed by Wang Jianwei) 

4 2 a2 
a2 b2 2 Solution Setx=- ,  y = - ,  z = - ,  thenx, y,  zER+andxyz=  

1. It suffices to prove that 

Without loss of generality, we assume that x < y < z. Set A = 

1 
A xy, we havez = -, A <  1. Thus 

1 Let u = ( O ,  &a], andx = a i f  

and only if u = ~ l+la. Hence 
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=I + ( I  -A)u2 +2u. 

Set f(u> = (1 -A)u2 + 2u + 1 , we see that f(u) is an increasing 

function on u E ] , which implies that 

Now set a= v, we get 

2005 (Chengdu, Sichuan) 

The 5 th (2005) China Western Mathematical Olympiad was held on 

... 



196 Mathematical Olympiad in China 

November 3 - 11, 2005 in Chengdu, Sichuan, China, and was 
hosted by Sichuan Mathematical Society and Chengdu No. 7 middle 
school. 

The Competition Committee consisted of the following: Li 
Shenghong, Tang Xianjiang, Leng Gangsong, Li Weigu, Zhu 
Huawei , Weng Kaiqing , Tang Lihua and Bian hongping . 

First Day 
8 : 00 - 12 : 00 November 5, 2005 

a Assume that C? Oo5 +p2 Oo5 can be expressed as a polynomial in a+ 

Band ap. Find the sum of the coefficients of the polynomial. 
(posed by Zhu Huawei) 

In the expansion of a’+@, let a+p= 1 and ap= 1. We Solution I 
get the sum of coefficients s k  = ak+pk.  Since 

<a+p><ak- l+Pk- l )  

= ( a k + p k )  + a p ( ~ r ~ - ~ + p ~ - ~ ) ,  

we get s k  = s&l -s&2. 

Thus s k  = S ,  and { s k  } is a periodic sequence with period 6 and 

Solution I[ Set a+p= 1 and ap = 1 in the expansion of ak+@. The 
sum of the coefficients is s k  = a k + p k .  Since a, pare solutions of the 

s2005 = s1 = 1. 

x x x x equation2 - X + I  = 0,  a =  cos-+ i sin-, p= cos-- i sin-. 3 3 3 3 
Therefore 

) k  
x .  cos--  I sin- 3 a k + p k =  ( C O S T +  i sin- ; ) k + (  3 

= ( C O S T +  k x  i k x  

k x  =2cos -. 3 
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Let K = 2 005, we have S k  = 1. 

As shown in the diagram, P A ,  PB are two tangent lines of a 
circle from a point P outside the circle, and A , B are the contact 
points. PD is a secant line, and it intersects the circle at C and 
D. B F parallels P A  and meets the lines A C  , AD at E ,  F 
respectively. Prove that BE = BF. 
(posed by Leng Gangrong) 

Proof Join B C ,  B A  and BD, then 
L A B C  = / P A C  = LE. Thus A A B C  c/) 

D BC A C  
B E  A B  a A E B  and - = - , that is, 

A B  BC 
A C  ' 

BE = 

Since L A B F  = L P A B  = L A D B  , we have A A B F  c/) A A D B .  
B F  A B  Therefore - = - , that is, BD AD 

A B  BD 
A D  ' 

B F  = 0 

On the other hand, since A P B C  c/) A P D B  and A P C A  c/) A P A D  , 
we get 

BC PC A C  PC and- = -. B D - P B  A D  P A  
_- -  

Since P A  = P B  , we have 

0 

BC BD 
A C  A D  Thus-=-. B y O ,  O a n d 0 ,  wehaveBE=BF.  

@& Let S = { 1, 2,  . . a ,  2 005). If there is at least one prime number 
in any subset of S consisting of rz pairwise coprime numbers, find 
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the minimum value of n.  (posed by Tang Lihua) 
Solution First we prove n > 16. In fact, let 

& = (1, 22, 32, 52, . a * ,  412, 432}, 

where the members in A0 , other than 1 , are the squares of prime 
numbers not greater than 43. Then & C S, I & I = 15 and the 
numbers in & are pairwise coprime but & contains no prime number. 
Thus n > 16. 

Next we show that for arbitrary A C S with n = I A I = 16 , if the 
numbers in A are pairwise coprime, then A must contain a prime 
number. 

In fact, if A contains no prime number, denoteA = { al , a2 , , 
a16 ; a1 < a2 < 

(1) If 1 @ A, then a1 , a2 , . . a ,  a16 are composite number. Since 
(ai , a j )  = 1 (1 < i < j < 16) , the prime factors of ai and aj are 
pairwise distinct. Let pi  be the smallest prime factor of ai. We may 
assume that p l  < p2 < 

< a16 }. Then there are two possibilities. 

< P I 6  , then 

U I  > p f  > 22 a2 > p$ > 32 a15 > pf5 > 472 > 2 005 

it leads to a contradiction. 
, a15 are composite numbers. 

By the same assumption and argument of (1) , we have al > p f  > 22 , 
a2 > p$ > 32 , .-, a15 > pf5 > 472 > 2 005. Again, it leads to a 
contradiction. 

From (1) and (2) , A contains at least one prime number, i. e. 
when n = IAl = 16, the conclusion is true. Thus, the minimum 
number of n is 16. 

(2) If 1 E A, let a16 = 1 , a1 , a2 , 

@&@ It is given that real numbers x1 , x2, . . a ,  xn ( n  > 2) satisfy 

I pxil>l, lxil<l ( i = l ,  2,  . . a ,  n). Provethatthereexists 

a positive integer K such that I 5 xi - 5 xi I < 1. (posed by 

Leng Gangsong) 

i=l 

i=l i=Wl 
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n k n 

n 

g(n> = C X i .  
i = l  

Then I g(l) - g(0) I = 2 I XI I < 2 ,  

Ig(K+I)-g(K)I = 2 1 x ~ + l I < 2 ,  K = I ,  2 ,  .-, n - 2 ,  

Ig(n>-g(n--)I=21X~2=,<2.  

I g(K+l) -g(K) I < 2. 

So for each 0 < K < n- 1, 

0 
If the conclusion is not true, by the condition for each K ,  O <  K <  

0 
If thereisani, O<i<n-1, such thatg(i)g(i+l)<O, wemay 

assume that g ( i) > 0 and g ( i + 1 ) < 0. By 0, g ( i) > 1 and g ( i + 1 ) < 
- 1. Thus I g(i + 1) - g(i> I > 2. This contradicts 0. Thus g(O), 
g(l), .-, g(n> have the same sign. But g(0) + g(n> = 0. The 
contradiction implies that the conclusion is true. 

n ,  we have 
I g(K) I > 1. 

Second Day 
8 : 00 - 12 : 00 November 6, 2005 

@&f@ The circles O1 and O2 meet at points A and B. The line D C  

passes through 0, , intersects the circle O1 at D and is a tangent 
to the circle O2 at C .  Also, C A  is a tangent to the circle O1 at 
A .  The secant AE of the circle O1 is perpendicular to D C .  AF is 
perpendicular to and meets DE at F. 

Prove that BD bisects the line 
segment AF. ( posed by Bian 
Hongping) 

Proof Let AE intersect DC at point H ,  
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and AF intersect BD at point G. Join AB, BC, BH, BE, CE and 
GH. By symmetry, CE is also a tangent line of the circle 01 and H is 
the midpoint of AE. 

Since L H C B  = L B A C  andLBAC = L B E H ,  we haveLHCB = 

L H E B .  Thus H, B, C, E lie on the same circle, and L B H C  = 

L B E C .  

From L B E C  = L B D E ,  

we get L B H C  = L B D E .  

Since AF 1 DE , we have 

LAGB = - L B D E .  2 

0 

0 

By 0, 0 and 0, LAGB = L A H B .  Therefore A ,  G ,  H ,  B lie 
on the same circle, andLAHG = LABG = L A E D .  Thus G H I D E .  
Since H is the midpoint of AE, G is the midpoint of AF. 

@@ In an isoseles right angled triangle A A B  C , CA = CB = 1, and P 
is an arbitrary point on the perimeter of A A B  C. Find the 
maximum value of P A  P B  PC. (posed by Li Weigu) 

(1) In the first diagram, if P E A C ,  we 

have P A  PC < 7 and PB <&. Thus P A  

P B  P C  < -. The equality is not valid, 

since the two equality signs cannot be valid at the same time. 

Therefore P A  P B  PC < T .  

Solution A 1 

A B ./z 
4 

& 

(2) In the second diagram, if P E A B  , writeAP = x E [o, &] , 
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then 

f(x) = PA2 PB2 PC2 

=&fi-x)2(1+2 -fix>. A P B 

Note that g ' ( t )  = 2t - 3t2 = t ( 2  - 3t) .  Thus g ( t )  is increasing on 
1 [ 0,  $1 and f<x> < g( 3) = i. Therefore PA P B  PC < ~ = 

2 f i  

1 f i  2/z The equality is valid if and only if t = - andx = -. So P is the 4 '  2 2 
midpoint of AB. 

%g .=7& Given real numbers a , b , c , satisfying a + b + c = 1 , prove that 

10(a3 +b3 +2> -9(a5 +b5 +2> > 1. (posed by Li Shenghong) 

Since X u 3  = 1 - 311(a + b ) ,  X u 5  = 1 - 511(a + Solution 

b ) [ C a 2  + C 4  
therefore, the original inequality holds 

w l o [ 1 - 3 I I ~ n + ~ ~ l - 9 [ 1 - 5 I I ~ a + ~ ~ ~ ~ a ~ +  Cub)]> 1 
w45II(a + b) ( C u2 + C ab)  > 3 0 m a  + b) 

w3(Ca2+ C a b )  2 2  = 2 ( C a )  - - 2 ( C a 2 + 2 C a b )  

wZa2 > C a b .  

From u2 +@ > 2ab,  @ + 2 > 2bc and 2 + u2 > 2ac ,  we have 

2 C a 2  > 2 C a b ,  i. e. , X u 2  > Cab. Therefore the original 

inequality holds. 

There are rz new students. Suppose that there are two students 
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who know each other in every three students and there are two 
students who do not know each other in every four students. Find 
the maximum value of n.  (posed by Tang Lihua) 

Solution The maximum value of n is 8. A A 

When n = 8, the example shown in the 
diagram satisfies the requirements, where Al , 
A2 , . . a ,  As represent 8 students. The line 
segment between Ai and Aj means Ai and Aj 
know each other. 

Next, if n students satisfy the conditions, we want to show that 
n< 8. To do this, we first prove that the following two cases are 
impossible. 

(1) If someone A knows at least 6 persons, denoted by B1 , 
B2 , , B6. By Ramsey’s theorem, there exist 3 persons among them 
who do not know each other. This contradicts that there are two who 
know each other in every three students, or that there exist 3 people 
they know each other. A and the three persons form a group of four 
persons such that every two of them know each other. A 
contradiction. 

(2) If some one A knows at most n - 5 persons, then in the 
remaining there are at least 4 persons, none of whom knows A.  Thus 
every two of the four persons know each other, a contradiction. 

When n 10, one of (1) and (2) must occur. So such n does not 
satisfy the requirements. 

If n = 9, in order to avoid (1) and (2 )  , each person knows 
exactly 5 other persons. Thus the number of pairs knowing each other 

is ~ @ N. This contradiction implies n < 8. Thus the maximum 

value of n is 8. 

A 

2 



In ternat ional Mathematical 
Olympiad 

T h e  international Mathematical Olympiad, founded in 1959, is one 
of the most competitiw and highly intellectual activities in the 
world. Till now, there are more than 90 countries and areas that 
take part in it. IMO, hosted by each participating country in turn, is 
held in mid-July ewry year. The competition lasts for 2 days, and 
there are 3 problems to be completed within 4.5 hours each day. 
Each question is 7 marks which total up to 42 marks. The full 
score for a team is 252 marks. About half of the participants will be 
awarded a medal, where 1/12 will be awarded a gold medal. The 
numbers of gold, silver, and bronze medals awarded are in the 
ratio of 1 : 2 : 3 approximately. In the case when a participant 
provides a better solution than the official answer, a special award 
is given. 

All participating countries are required to send a delegation 
consisting of a leader, a deputy leader and 6 contestants. The 
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problems are contributed by the participating countries and are 
later selected carefully by the host country for submission to the 
international jury set up by the host country. The host country does 
not provide any question. Then the problems are translated in 
working languages and the team leaders will translate them into 
there own languages. 

The answer scripts of each participating team will be marked 
by the team leader and the deputy leader. The team leader will 
later present them to the coordinators for assessment. If there is 
any dispute, the matter will be settled by the jury. The jury is 
formed by the various team leaders and an appointed chairman by 
the host country. The jury is responsible for deciding the final 6 
problems, finalizing the marking standard, ensuring the accuracy 
of the translation of the problems, standardizing replies to written 
queries raised by participants during the competition, 
synchronizing differences in marking between the leaders and the 
coordinators and deciding on the cut-off points for the medals 
depending on the contestants’ results as the difficulties of 
problems each year are different. 

2003 (Tokyo, Japan) 

The 44th IMO (International Mathematical Olympiad) was hosted by 
Japan in Tokyo during July 7 - 19 in 2003 

The leader of Chinese IMO 2003 team was Prof. Li Shenghong 
who was from Zhejiang University and the deputy leader was Feng 
Zhigang who was from Shanghai High School. In IMO 2003, China 
came second among the nations, with two golds, one silver. Here are 
the results: 
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36 points 

Fu Yunhao 

Wang Wei 

gold medal Xiang Zhen 

35 points Fang Jiacong gold medal 

Wan Xin 

28 points Zhou You silver medal 

the High School Attached to 
Tsinghua University 

the High School Attached to 
Hunan Normal University 

the First High School of 
Changsha, Hunan 

the Affiliated High School of 
South China Normal University 

Sichuan Pengzhou Middle School 

No. 3 High School of WISCO (a 
second-year student) 

I 

33 points gold medal 

First Day 
9:OO - 13:30 July 13, 2003 

-.=--is ~2 Let A be a subset of the set S = { 1 , 2, , 1 000 000) containing 
exactly 101 elements. Prove that there exist numbers t l  , t 2  , . . a ,  

t100 in S such that the sets 

Aj = {x+tj I x E A} f o r j  = 1, 2,  . . a ,  100 

are pairwise disjoint. 
Solution Consider the set D = {x-y I x, y E A}. There are at most 
101 X 100 + 1 = 10 101 elements in D. Two sets Ai and Aj have 
nonempty intersection if and only if ti - t j  is in D. So we need to 
choose the 100 elements in such a way that the difference for any two 
elements is not in D. 

Now select these elements by induction. Choose one element 
arbitrarily from S. Assume that K elements, K < 99, are already 
chosen. An element x in S that is already chosen prevents us from 
selecting any element from the set x + D, where x + D = { x + y I y E 
D } .  Thus after K elements are chosen, at most 10 l O l k  < 999 999 
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elements in S are forbidden. Hence we can select one more element. 
Remark The size I S I = lo6 is unnecessarily large. The following 
statement is true: 

, n}  and m is a positive 

integer such that n > (m - 1) (( t)+l) ,  thenthereexisttl, . . a ,  t,E 

SsuchthatthesetsAj= { x + t j I x E A ) f o r j = l ,  . . a ,  marepairwise 
disjoint. 

If A is a K -element subset of S = { 1 , 2 , 

@B Determine all pairs of positive integers (a, b)  such that 

U2 

2ab2 - b3 + 1 

is a positive integer. 
Solution I Let (a, b)  be a pair of positive integers satisfying the 

> 0,  we have 2ab2 - b3 + 1 > 0 or U2 condition. Since K = 
2ab2 - b3 + 1 

b 1  b 
2 2b2 2 a > - - ~ , and hence a > -. Using this, we infer from K > 1, or 

u2 >b2 (2a - b)  + 1 , that u2 > @ (2a - b) > 0. Hence 

a > b o r 2 a =  b. 0 
Now consider the two solutions al , a2 of the equation 

a2 - 2Kb2a + K(b3 - 1) = 0 0 
for any fixed positive integers K and b ,  and assume that one of them is 
an integer. Then the other is also an integer because a1 +a2 = 2Kb2. 
We may assume that al > a 2 ,  and we have al > Kb2 > 0. 

Furthermore, since ala2 = K(b3 - 1) , we get 

b 
2 Together with 0, we conclude that a2 = 0 or a2 = - ( in the latter 
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case b must be even). 

If a2 = 0,  t hend  - 1 = 0 ,  and henceq = 2K andb = 1. 

b b2 b4 b 
2 4 2 2  Ifa2 =-, thenK=-andal =---. 

Therefore the only possibilities are 

( a ,  b) = (21, 1 )  , ( I ,  21) or (8z4 - I ,  21) 

for some positive integer 1. All of these pairs satisfy the 
condition. 

207 

given 

Solution I[ 
be even. 

Let 

If b = 1 ,  it follows from the given condition that a must 

= K. If b > 1 , then there are two solutions to U2 

2 d 2  - b3 + 1 
the equation 0 and one of them is a positive integer. Thus the 
discriminant a of the equation 0 is a perfect square, that is a = 

4k2b4 -4Md - 1)  is a perfect square. 
Note that, if b > 2 , we have 

( 2 K b 2 - b - 0 2  <a< (2Kb2-b+1)2. 0 
The proof is given as follows, 

a - ( 2 / ~ b ~ - b - l ) ~  = 4Kb2-b'-2b+4K-1 

=(4K- l ) (b2+1)-2b  

>2(4K - 1)b - 2b > 0 

( 2 l ~ b ~ - - b + l ) ~ - A =  4Kb2-44K-(b-1)2 

=4K(b2 - 1)  - (b -  1>2 

>(4K-l)(b2-1)  > O ,  

this completes the proof of 0. 
Since a is a perfect square, it follows from 0 that 

a = 4K2b4 - 4K(d - 1)  = (2Kb2 - b y .  
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Then 4k = b2 , and hence b must be even. Let b = 21. We have 

Therefore the only possibilities are 
k = Z 2 .  Together with 0, we have a = 1 or 8Z4 - 1. 

( a ,  b) = (21, 1) , ( I ,  21) or (8z4 - I ,  21) 

for some positive integer 1. All of these pairs satisfy the given 
condition. 

A convex hexagon is given in which any two opposite sides have 
the following property: the distance between their midpoints is 

fi times the sum of their lengths. Prove that all the angles of the 2 
hexagon are equal. 

sides: A B  and DE, BC and EF, CD and FA.  ) 

Lemma Consider a triangle PQR with LQPR>60". Let L be the 

midpoint of QR . Then PL< 2 QR . The equality holds if and only if 

the triangle PQR is equilateral. 

(A convex hexagon ABCDEF has three pairs of opposite 

Proof I We first prove the following lemma. 

43- 

, 1 ,' 

,' ;'p 
Let S be the point such that the ,,/' ; 

, triangle QRS is equilateral, where I// I 

1 

I 1 

I 

the points P and S lie in the same Q \, L , , /R  

half-plane bounded by the line Q R .  
Then the point P lies inside the circumcircle ( including the 
circumference of the circle) of the triangle QRS , which lies inside the 

circle with center L and radius -QR. 

5 
I 

'.___-,' 

J3 
2 

%'P 
,,' (I \ \ \  

lemma. 
The main diagonals of a convex 

hexagon form a triangle though the 

,' I , 
, \  

D N E 
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triangle can be degenerated. Thus we may choose two of these three 
diagonals that form an angle greater than or equal to 60". Without loss 
of generality, we may assume that the diagonals AD and B E  of the 
given hexagon ABCDEF satisfy LAPB > 60", where P is the 
intersection of these two diagonals. Then, using the lemma, we 
obtain 

where M and N are the midpoints of A B  and DE respectively. Thus 
it follows from the lemma that the triangles ABP and DEP are 
equilateral. 

Therefore the diagonal CF forms an angle greater than or equal 
to 60" with one of the diagonals AD and BE. Without loss of 
generality, we may assume that LAQF > 60", where Q is the 
intersection of AD and CF. Arguing in the same way as above, we 
infer that the triangles AQF and CQD are equilateral. This implies 
that L B R C  = 60", where R is the intersection of BE and CF. Using 
the same argument as above for the third time, we obtain that the 
triangles BCR and EFR are equilateral. 
This completes the proof. 
Proof II Let ABCDEF be the given c - + 
hexagon and let a = AB , b = BC, , f = 
+ 
FA. 

Let M and N be the midpoints of the 
sides A B  and DE respectively. We have 

.\ d /  
D N E  

- 1  1 1 IWV = -a+b+c+-dandIWV =--a- f-e--d. 
2 2 2 2 

Thus we obtain - 
0 1 

2 
IWV = -(b+c-e- f). 

From the given property, we have 
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0 

Set x = a-d, y = c - f ,  z = e-b. From 0 and 0, we obtain 

I Y - z l  >43lxl.  0 

I Z - X I  >&I Y I 9 0 
I X - Y l  > 4 3 l z l .  0 

Similarly, we see that 

Note that 

0 w I y 1 2 - 2 y * z +  1z12 >3Ix I2,  

@wIz12-2z.x+ 1xp>31y12, 

0 w I x 1 2 - 2 x *  y+ Iy12 >31z12. 

- I XI  2 - I y 12 - I z 12 - 2y z -  22 x- 2x y > 0, 

By adding up the last three inequalities, we obtain 

or- Ix+y+z12 2 0 .  Thusx+y+z  = Oand the equality holds in 
every inequality above. Hence we conclude that 

x+y+z = 0,  

I y - z l = & I x l , a / / d / / x ,  

Iz-xI  = & l Y l ,  c / /  f / /  Y, 

I x - y l = & l z l  , e / / b / / z .  - 
Suppose that P Q R  is the triangle such that PQ = 

+ 
QR = 

RP = z. We may assume LQPR >60", without loss of generality. Let 

L be the midpoint of QR.  Then PL = - 1  z -XI  = - 1  yI = -QR. It 

follows from the lemma in Proof I that the triangle PQR is 
equilateral. Thus we have L A B C  = L B C D  = = L F A B  = 120". 

1 43 43 
2 2 2 
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Second Day 
9:OO - 13:30 July 14, 2003 

.$-z zg.g~ Let ABCD be an inscribed quadrilateral. Let P, Q and R be the 
feet of the perpendiculars from D to the lines BC, C A  and AB 
respectively. Show that PQ = Q R  if and only if the bisectors of 
L A B C  andLADC meet on AC. 

@ Proof By Simson’s Theorem, we know that 
P , Q , R are collinear . Moreover, since L D P C  

Q , C are concyclic and so L D C A  = L D P Q  = 

concyclic, we have L D A  C = DRP. Therefore 
A D C A  c/) A D P R .  

a n d L D Q C  are right angles, the points D, P, 

L D P R .  Similarly, since D ,  Q, R , A are C P  

Q ,  

Likewise, A D A  B c/) A D Q P  and A D B  C c/) ADRQ.  Then 

D A  B A  Thus PQ = QR if and only if ~ = -. DC B C  

Now the bisectors of the angles ABC and ADC divide AC in the 
B A  D A  
B C  D C  ratios of - and - respectively. This completes the proof. 

a Let rz be a positive integer and X I  , x2 , . . a ,  xn be real numbers 
with x1 < x2 < 
(a) Prove that 

< xn. 

(b) Show that the equality holds if and only if x1 , x2 , , xn is 



212 Mathematical Olympiad in China 

an arithmetic sequence. 
Proof (a) Since both sides of the inequality are invariant when we 
subtract the same number from all ki s , we may assume without loss of 

generality that Cxi = 0. 
i = l  

We have 

By the Cauchy-Schwarz inequality, we have 

On the other hand, we have 

Therefore 

; = I  j - 1  

(b) If the equality holds, then there exists a real number k , such 
that xi = K(2i - n - 1>, which means that x l ,  x 2  , .-, xn is an 
arithmetic sequence. 

On the other hand, suppose that XI , x 2  , . . a ,  xn is an arithmetic 
sequence with common difference d. Then we have 

xi = d .  -((22-n-l)+- XI + x n  
2 2 .  

d .  Subtract from everyxi, we obtainxi = -(2z-n-l) and 2 2 
n C xi = 0,  from which the equality follows. 

i = l  
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@&jB Let p be a prime number. Prove that there exists a prime number 
q such that for every integer n ,  the number np - p  is not divisible 

Proof Since ~ = l + p + p 2  +.-+pP-l = p + l  (modp2 ), we 

can get a prime divisor q of such that q + 1 (mod p 2 ) .  This q 

is what we wanted. The proof is given as follows. 
Assume that there exists an integer rz such that np = p (mod q> . 

Then we have np = pp = 1 (mod q> by the definition of q. On the 
other hand, from Fermat's little Theorem, n e l  = 1 (mod q> , because 
q is a prime. Since p 2  I q- 1 , we have gcd(p2 , q- 1 )  I p ,  which leads 
to np = 1 (mod q> . Hence we have p = 1 (mod q> . However, this 
implies 1 + p + +pP-l = p (mod q> . From the definition of q, we 

p - 1  have0 = = 1 +p+.-+pp-' = p (mod q ) ,  but this leads to P--1 
a contradiction. 

by 4. 
p p - 1  
P--1 

p - 1  
P--1 

2 

2004 (Athens, Greece) 

The 45 th IMO (International Mathematical Olympiad) was hosted by 
Greece in Athens during July 4 - 18 in 2004. 84 countries and 486 
contestants participated. 45 gold medals, 78 silver medals, and 120 
bronze medals were awarded. 

The leader of Chinese IM02004 team was Chen Yonggao, deputy 
leader was Xiong Bin, observers were Wu Jianping, Wang Shuguo. In 
IM02004, China came first among the nations with six golds. Here 
are the results: 
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41 points 

38 points 

37 points 

35 points 

35 points 

34 points 

Mathematical Olympiad in China 

gold medal 

gold medal 

gold medal 

gold medal 

gold medal 

gold medal 

Huang Zhiyi 

Zhu Qingsan 

Li Xianyin 

Lin Yuncheng 

Peng Minyu 

Yang Shiwu 

the High School Attached to 
South China Normal University 

the High School Attached to 
South China Normal University 

the High School Attached to 
Hunan Normal University 

Shanghai High School 

No. 1 High School of 
Yingtan, Jiangxi 

Hubei Huanggang High 
School 

First Day 
9:OO - 13:30 July 12, 2004 

Let A B  C be an acute-angled triangle with A B  # AC.  The circle 
with diameter B C intersects the sides A B  and A C at M and N 
respectively. Denote by 0 the midpoint of the side BC. The 
bisectors of the angles B A C  andMON intersect at R. Prove that 
the circumcircles of the triangles BMR and CNR have a common 
point lying on the side BC. 

Solution We first show that the points A, M, R ,  N are concyclic. 
Since ABC is an acute-angled triangle, M and N are on the line 
segments A B  and A C  respectively. Let R1 be the point such that the 
points A,  M, R1 , N are concyclic, where R1 is on the ray AR. Since 
AR1 bisects L B A C  , we have RIM = R1 N. Since M and N lie on the 
circle with centre 0, we have OM = ON. It follows from OM = ON 
andRIM = RIN that R1 is on the bisector of L M O N .  Since A B  # 
A C  , the bisectors of the angles BAC and MON intersect at the unique 
point R ,  and so R1 = R ,  or A,  M, R ,  N are concyclic. 

Let the bisector of L B A C  meet BC at K. Since the points B ,  C ,  
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N, Mare concyclic , LMB C = LANM. Moreover, since A, M, R , N 
are concyclic, LANM = LMRA. This implies LMBK = LMRA. 
Therefore, the points B, M, R ,  K are concyclic. Using the same 
argument as above, we obtain that C, N, R,  K are concyclic. This 
completes the solution. 

@B Find all polynomials P ( x )  with real coefficients, which satisfy 
the equation 

P(a-b )  +P(b-c )  + P ( c - a )  = 2P(a+b+c) 

for all real numbers a ,  b, c such that ab + k + wz = 0. 
Solution Let P ( x )  satisfy the given equation. 

I f a = b = c = O ,  thenP(0) = O .  

If b = c = 0,  then P(- a )  = P ( a )  for all real a. 

Hence P ( x )  is even. Without loss of generality, we may assume 
that 

P ( x )  = a,x2n + ... + a1 2 , a, # 0. 

2 If b = 2a,  c =--a, we have that 3 

( $I2 - 2( $) ' ] a2  = 0 for all a E R. Then all coefficients of the 

polynomial with variable a are 0. 
If n > 3 ,  it follows from 86 = 262 144 > 235 298 = 2 X 76 that 

( + ) 2 n  > ( + ) 6  > 2. This implies 

1 + (+ ) 2n + ($ ) 2n - 2 (?) 7 2n > 0. 
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Hence n < 2. Let P ( x )  = ax4 +px2 , with a, p E R. 
We now show that P ( x )  = ax4 +px2 satisfies the given equation. 
Let a ,  b ,  c be real numbers satisfying ab + k + wz = 0. Then 

( ~ - b ) ~  + ( b - ~ ) ~  + ( c - u ) ~  - 2 ( a + b + ~ ) ~  

=C (a4 -4u3b+6a2b2 -4ub3 +b4)  -2(a2 +b2 +C2)2 

=C (a4 -4u3b+6a2b2 -4ub3 +b4)  - 

=C (-4u3b+2a2b2 -4ab3)  

= - 4 2  (ab + wz) - 4b2 (k + ab) - 4 2  (wz + k) + 
2(a2b2 +b22 + 2 a 9  

=4a2 bc + 4@ cu + 4 2 a b  + 2a2 b2 + 2@ 2 + 2 2 a 2  

=2(ab + bc + C U > ~  = 0,  

(a -b )2  +(b -c )2  + ( c - u ) ~  - 2 ( ~ + b + ~ ) ~  

=C (a2 -2ab+b2) - 2 C a 2  - 4 4 u b  

= 0. 

Hence P ( x )  = ax4 +b2 satisfies the given equation. 

@& Define a hook to be a figure made up of six unit squares as shown 
in the diagram or any of the figures obtained by 
applying rotations and reflections to this figure. 

Determine all m X n rectangles that can be 
covered with hooks so that 

the rectangle is covered without gaps and 

.no part of a hook covers area outside the rectangle. 
without overlaps; 

Solution I m and rz should be the positive integers and should satisfy 
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one of the following conditions: (1) 3 I m and4 I n (or vice versa) ; (2) one 
of m and rz is divisible by 12 and one is not less than 7. 

A figure is obtained by applying rotations and reflections to 
another figure. We regard the two figures as equivalent. 

Label the six unit squares of the hook as shown below. The 
shaded square must belong to another hook, and it is adjacent to only 
one square of this other hook.. Then the only 
possibility of the shaded square is 1 or 6. 

(9 If it is 6 , two hooks form a 3 X 4 rectangle. We 
call it 0. 

(ii) If it is 1, there are two cases. 
It is easy to see that the shaded square cannot 

be covered in the first diagram as shown below. 
Hence the latter is true. We call it 0. 

Thus, in a tessellation, all hooks are matched 

There are 12 squares in 0 and 0. Hence 12 I mn. 

pJ 
into pairs. Each pair forms 0 or 0. 0 

0 
Now we consider three cases, separately. 
(1) 3 I m and 4 I n (or vice versa) 
Without loss of generality, we may assume m = 3 q  and n = 4%. 

Thenmono rectangles of the type 0 form a n q  X rectangle. Since 
two hooks cover a 3 X 4 rectangle, an m X n rectangle can be covered 
with hooks. 

(2) 12 I m or 12 I n. Without loss of generality, we may assume 
12 I m. 

If 3 I n or 4 I n, the question reduces to (1). 
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Assume that rz is not divisible by 3 nor by 4. If a tessellation 
exists, then there is at least one of 0 and 0 in it, so n > 3. Hence 
n 2 5  because 3 X n and 4 X n. Since the square at the corners can 
belong to either 0 or 0, it follows from n > 5 that the squares at the 
adjacent corners cannot belong to the same type 0 or 0. Hence n > 
6. Since rz is not divisible by 3 and 4, n > 7. 

We now show that if n > 7 and rz is not divisible by 3 and 4, a 
tessellation exists. 

If n= 1 (mod 3 ) , then n = 4+3t ( t E N" ). Together with (1) , 
we have that if 12 I m, an m X 3t, rectangle and an m X 4 rectangle can 
be covered with hooks. So the problem can be solved. 

If n = 2 (mod 3 ) , n = 8 + 3t ( t  E N" >. Together with (1) , we 
have that if 12 I m, each of m X 8 and m X 3t rectangles can be covered 
with hooks. The problem is solved. 

(3) 12 I m, but neithermnor rz is divisible by 4. Now 2 I m, 2 I n. 
We may assume without loss of generality that m = 6 q  , n = 2% , 
neither q nor is divisible by 2. We will prove that if these 
conditions are satisfied, an m X n rectangle cannot be covered with 
hooks. 

Consider coloring the columns of an m X n matrix with black and 
white colors alternately. Then the number of the black squares equals 
that of the white ones. One 0 always covers 6 black squares. A 
horizontal 0 always covers 6 black squares. A vertical 0 covers 
either 8 black squares and 4 white ones, or 4 black squares and 8 white 
ones. Since the number of the black squares equals that of the white 
ones, the number of 0 is the same in the preceding two cases. Hence 
the total number of a vertical 0 is even. Using the same argument as 
above (coloring the rows alternately) , we obtain that the total 
number of a horizontal 0 is even. 

Consider classifying the squares of the m X n rectangle into 4 types 
marked 1, 2, 3, and 4 as shown below. The number of squares of 

each type is equal to mn. 4 
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From the two diagrams, 

a C 

a C 

C a 

we obtain that the number of a and c covered by 0 is the same, so is 
for b and d. Hence the number of squares of type 1 covered by 0 
equals that of type 3. 

(9 ( i i )  ( i i i )  (i.) 

The number of squares of type 1 covered by (i) or (ii) equals that 
of type 3. The difference between the number of squares of type 1 and 
type 3 covered by (iii) or (iv) is 2. There are two cases: the number 
of squares of type 1 is 2 more than that of type 3, or vice versa. Since 
the number of squares of type 1 equals that of type 3 in the rectangle, 
the frey nancy of the two cases is the same. Hence the total number of 
(iii) and (iv) is even. 



220 Mathematical Olympiad in China 

Consider classifying the squares of the m X n rectangle as shown 
below. 

Similarly, the total number of (i) and (ii) is even. Then the number 
of 0 is even. So there is an ever number of 0 and 0. Hence 24 I m X n,  
contrary to the assumption that neither m nor rz is divisible by 4. 
Solution I[ m and rz should be the positive integers and should 
satisfy one of the following conditions: (1) 3 I m and 4 I n (or vice 
versa); (2) 12 I m, n # 1, 2, 5 (or vice versa). 

Consider a covering of an m X n rectangle satisfying the 
conditions. For any hook A, there is a unique hook B covering the 
“inner” square of A with one of its “tailend” squares. In turn, the 
“inner” square of B must be covered by an “tailend” square of A. 
Thus, in a tessellation, all hooks are matched into pairs. There are 
only two possibilities to place B so that it does not overlap with A and 
no gap occurs. In one case, A and B form a 3 X 4 rectangle; in the 
other , their union is an octagonal shape, with sides of length 3 , 2 , 1 , 
2,  3, 2 ,  1, 2 respectively. 

So an m X n rectangle can be covered with hooks if and only if it 
can be covered with the 12-square tiles described above. Suppose that 
such a tessellation exists; then mn is divisible by 12. We now show that 
one of m and rz is divisible by 4. 

Assume on the contrary that this is not the case. Then m and rz 

are both even, because mn is divisible by 4. Imagine that the rectangle 
is divided into unit squares, with the rows and columns labeled 1 , . . a ,  

m and 1 , , n. Write 1 in the square (i, j )  if exactly one of i andj  is 
divisible by 4, and 2,  if i and j are both divisible by 4. Since the 
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number of squares in each row and column is even, the sum of all 
numbers written is also even. Now, it is easy to check that a 3 X 4 
rectangle always covers numbers with sum 3 or 7; and the other 
12-square shape always covers numbers with sum 5 or 7. 
Consequently, the total number of 12-square shapes is even. But then 
mn is divisible by 24 , and hence by 8 , contrary to the assumption that 
m and rz are not divisible by 4. 

Notice also that neither m nor rz can be 1 , 2 or 5 (any attempt to 
place tiles along a side of length 1, 2 or 5 fails). We infer that if a 
tessellation is possible, then one of m and rz is divisible by 3, one is 
divisible by4, andm, n @ (1, 2, 5). 

Conversely, we shall prove that if these conditions are satisfied, 
then a tessellation is possible (using only 3 X 4 rectangles). The result 
is immediate if 3 divides m and 4 divides rz (or vice versa). Let m be 
divisible by 12 and n @ (1, 2,  5) (or vice versa). Without loss of 
generality, we may assume that neither 3 nor 4 divides n. Then n > 7. 
In addition, between n-4 and n-8 , at least one can be divisible by 3. 
Hence the rectangle can be partitioned into m X 3 and m X 4 rectangles, 
which are easy to cover, in fact with only 3 X 4 tiles again. 

Second Day 
9:OO - 13:OO July 13, 2004 

Let n > 3 be an integer. Let tl , t 2 ,  . . a ,  tn be positive real 
numbers such that 

Show that t i  , t j  , t k  are the lengths of the sides of a triangle for 
alli,  j ,  K w i t h l < i < j < K < n .  
Solution Assume on the contrary that there exist three numbers 
among tl , t2 , . . a ,  tn that do not form the sides of a triangle. Without 
loss of generality, we may assume that these three numbers are t l  , t 2  , 
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t 3 ,  andt l+tz<tg .  One has 

=4-+- t 3  t l + t 2  +n2 -4. (1) 
t l + t 2  t 3  

t 3  1 ( ~ - 1 ) ( 4 ~ - 1 )  2.. , thenx>l ,  and4~+--5 = Ifx=- 

Together with (1) , we obtain that 

t l + t 2  X X 

1 
( t l +  + tn> (G + + ;)> 5 + n 2  - 4 = n 2  + I ,  

a contradiction. This completes the proof. 
Remark By the AM-GM inequality, 

1 1  4 which is the same as - + - > - 
t l  t 2  t l + t 2 '  

@&!& In a convex quadrilateral AB C D  , the diagnal BD bisects neither 
the angle A B C nor the angle C D  A. The point P lies inside 
AB C D  and satisfies 
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L P B C  = LDBA andLPDC = LBDA. 

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP. 
Solution I (i) Necessity. 

Assume that ABCD is a cyclic quadrilateral. Let the circle r be 
the circumcircle of quadrilateral ABCD. Extend BP and DP beyond P 
to meet the circle r at X and Y respectively. 

Since DB does not bisect L A B C  and P lies inside ABCD, it 
follows from L P B C  = LDBA that @ = m, D # X, and the points 
D and X lie in the same half-plane bounded by the line AC. Hence 
DX I A C .  Similarly, B # Y and BY // AC. 

The points D, X, A, C, B, Y lie on the circle r, as mentioned 
above. So the points D and X, the points A and C, the points B and Y 
are symmetrical with respect to the perpendicular bisector 1 of A C  
respectively. 

Since P = DY n BX , then P is on the line I ,  or AP = CP. This 
completes the proof of the necessity. 

(ii) Sufficiency. 
Lemma. Let 1 be a fixed line and A ,  B ,  C be fixed points such 

that A and B , C lie in the different half-planes bounded by the line 1 .  
Assume that the point X lies on the line 1 .  Let a ( X >  be the smallest 
angle of rotation from the line XA to the line 1 anticlockwise. Let 
P(x> be the smallest angle of rotation from the line xc to the line XB 
anticlockwise. If a ( X >  = P(X> , then X is called a good point. Prove 
that there are at most two good points. 

Proof of the lemma 
We set up a coordinate system with the line 1 as the z axis and 

LetA(a, b ) ,  B (c ,  d ) ,  C(e, f), X(x, 0). ThenA = a+bi ,  B = 

the perpendicular of 1 as the y-axis. 

c+d i ,  C =  e+f i ,  a n d X =  x. Hence 

A--=a-x+bi ,  

(a - x + bi) (cos a(X> + isin a(X>) 

= (a - x) cos a(X> - bsin a(X> + [(a - x) sin a(X> + bcos a(X>]i. 
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Rotate the line XA by a(X> anticlockwise, coinciding with 1. So 

( a  - x) cos a(X) + bcos a(X> = 0 (1) 

Moreover, since XC = e-x+fi ,  XB = c-x+di, thenXCafter 
+ - + 

being rotated by p(X> anticlockwise becomes 

( e - x + fi) ( cos p( X> + isin p( X> ) 

= (e - x) cos p(X) - fsin p(X> + [ ( e - x) sin p(X> + fcos p(X>] i - 
which is parallel to X B .  Thus, 

(c-x)[(e-x)sinB(X) +fcosp(X>] - d[(e-x)cosp(X) - 

fsinp(X>] = 0, 

and 

[<c-x>(e-x)  +dflsinP(X> 

+[(c-x)f-d(e-x)]cosp(X) = 0. (2) 

Since sin 0 and cos 0 are not 0 at the same time, so 

X is a good point H a(X> = p(X> H the simultaneous equations 
(1)(2) 

inuand v .  

( a - x ) u + b v  = 0,  
[ ( c -  x)(e- x) + df]u+ [ ( c  - x)f- d(e- x)]v = O 

have the non-zevo solutions 

Hb[(c-x)(e-x) +df] +(a-x)[(c-x)f-d(e-x)] = O 

H ( b + d -  f>2 + ( a f  + cf- k -be -ad - f d ) x  

+ke+bdf +ade-acf = 0. 

Let g ( x )  = ( b  + d - f>2 + ( a f  + cf - k - be - ad - d x  + 
k e  +M f + ade - ac f .  If b+d- f = 0,  it follows from b # 0 that d # 
f. Hence BC and 1 are not parallel. Let BC intersect 1 at T( t ,  0). We 
have that p(T) = 0 and a ( T )  > 0. Hence T is not a good point. This 
implies g(t> # 0 , so the equation g ( x )  = 0 has at most two solutions. 
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Hence there are at most two good points. 
This completes the proof of the lemma. 
Let the points A,  B, C ,  D be arranged clockwise andAP = CP. 

Let D * be the point such that A,  D * , C ,  B are concyclic, where D * 
lies on the ray BD. Since AP = CP and BD bisects neither L A B C  nor 
L A D C ,  BP intersects the perpendicular bisector of A C  at the unique 
point P. 

Let D* R be the ray satisfying L C D  * R = LAD * B and P * = 

Together with ( i ) , we have that P* A = P* C ,  or P* is the 
intersection point of 1 and the perpendicular bisector of AC , so P * = 

P. It follows from L C D  * R = LAD * B that LAD * B = L C D  * P. 
Replace I ,  A,  B, C by BD, A,  C ,  P. Then B ,  D, D* are good 

points. SinceB # D and B # D* , D = D* . Hence A, B, C ,  D is 
concyclic. 

D* R n BP. 

This completes the proof of the sufficiency. 
Combining (i) and (ii) , we obtain that the conclusion is true. 

Solution I[ We may assume without loss of 
generality that P lies in the rectangles A B  C and 
BCD. 

Assume that the quadrilateral A B C D  is 
cyclic. Let the lines BP and DP meet A C  at K B 

and L respectively. It follows from the given 
equalities and L A C B  = L A D B  , L A B D  = L A C D  that the triangles 
D A B ,  DLC and CKB are similar. This implies LDLC = L C K B  , so 
L P L K  = L P K L .  Hence PK = PL. 

It follows from L B D A  = LPDC that L A D L  = LBDC. Since 
L D A L  = LDBC , the triangles ADL and BDC are similar. Hence 

A 

A L - A D - K C  
BC - BD - BE’ 

yielding AL = KC. It follows from LDLC = L C K B  that /ALP = 

L C K P .  Moreover, since PK = PL and AL = KC,  the triangles ALP 
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A and GYP are congruent. Hence AP = CP. 
Conversely, assume that AP = CP. Let the 

circumcircle of the triangle BCP meet the lines 
CD and DP again at X and Y respectively. 

It follows from LADB = L P D X  and 
L A B D  = L P B  C = L P X C  that the triangles 
ADB and PDX are similar. Hence 

B 

Y 

A D  BD 
P D  - X D  
~-~ 

Since L A D P  = LADB + L B D P  = L P D X  + L B D P  = L B D X ,  the 
triangles ADP and BDX are similar. Theref ore, 

BX BD X D  
A P = A D = P D '  (1) 

Since the points P, C ,  X ,  Y are concyclic, L D P  C = L D X Y  and 
L D C P  = L D Y X .  Hence the triangles DP C and DXY are similar. 
Thus , 

Y X X D  
CP PD' 
_- -  - ( 2 )  

Since AP = CP,  it follows from (1) and ( 2 )  that BX = YX. Hence 

LADB + L A B D  = 180" - L B A D .  The above equality means that 
A B C D  is a cyclic quadrilateral. 

consecutive digits in its decimal representation are of different parity. 
Find all positive integers n such that n has a multiple which is 

alternating. 
Solution 1 Lemma 1 If k is a positive integer , then there exist 0 
< a1 , a2 , .-, a2&9 such that a1 , a3 , . . a ,  a2k-1 are odd integers, 
a2 , a4 , 

L D C B  = LXYB = LXB Y = L X P Y  = L P D X  + L P X D  = 

*--* 2:- -- We call a positive integer alternating if every two 

, a2k are even integers, and 
22k+1 I a1 a2-aa2k ( The decimal representation ) 
Proof of Lemma 1 by mathemations induction. 
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If K = 1, it follows from8 I 16 that the proposition is true. 
Assume that if K = n - 1 , the proposition is true. 
When K = n ,  let a1 a2 .-a2-2 = 22n-1 t by the inductive hypothesis. 

The problem reduces to proving that there exist 1 < a,  b < 9 with a 
odd and b even such that 22"t1 I a b X  +22"-1 t , or 8 I a b X  52n-2 + 
2t, or 8 I ab+ 2t in view of 52n-2 = 1 (m od 8). 

It follows from 81 12+4 ,  81 14+2 ,  81 1 6 + 0  and 8150+6 that 
the Lemma 1 is true. 

Lemma 2 If k is a positive integer, then there exists an 
alternative number a1 a2.-a2k with an even number 2k of digits such 
that a2k is odd and 52k I a l  a2.-a2k,  where a l  can be 0 ,  but a2#0. 

Proof of Lemma 2 by mathematical induction. 
If K = 1, it follows from25 I 25 that the proposition is true. 
Assume that if K = n-1 , the proposition is true, or there exists an 

alternative multiple of a1 a2 .-a2-2 satisfying 52n-2 I a1 a2 .-a2-2. 

When K = n ,  let a1 a2 .-a2-2 = t 52n-2. The problem reduces to 
proving that there exist 0 < a , b < 9 with a even and b odd such that 
52" I a b X  

Since 22n-2 is coprime to 25 , there exist 0 < ab < 25 such that 
25 I ab X 22n-2 + t. If b is odd, between ab and ab + 50, at least one 
satisfies that the highest-valued digit is even. If b is even, between 
ab +25 and ab + 75 , at least one satisfies that the highest-valued digit 
is even. 

+ t 52n-2, or 25 I a b X  22n-2 + t. 

This completes the proof of Lemma 2. 
Let n = 2a5Pt , where t is coprime to 10 and a, BE N. Assume that 

a > 2 and p> 1. Let 1 be an arbitrary multiple of n. The last decimal 
digit is 0, and the digit in tens is even. Hence these n do not satisfy 
the required condition. 
0 When a = p = 0, consider 21, 2 121, 212 121, . . a ,  

2 121.-21 ,.-. There must exist two of them congruent modulo n. 

Without loss of generality, we may assume that t l >  t 2  , and 

Y 
nrm6er k of 21 
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2 121.-21 = 2 121.-21 (mod n). 
Y Y  
tamzber tl of 21 nmzber t2  of 21 

Then 
2 121.-21 OO.-O = O  (mod n) 
Y - 

nrm6er t1-t2 of 21 tamzber 22, of 0 

Hence 
2 121.-21 = 0 (mod n ) ,  
Y 

nrm6er t1-t2 of 21 

because rz is coprime to 10. 
Now these positive integers rz satisfy the required condition. 
@ When ,G' = 0 and a > 1, it follows from Lemma 1 that there 

exists an alternative number a1 a2 .-a2k satisfying that 2" I a1 a2 . - a 2 k .  

Consider 

a1 a2 .**a2k , ala2 .**a2kal a2 .**a2k , , 

There must exist two of them congruent modulo t. Without loss of 
generality, we may assume that t 1 > t 2  , and 

Since t is coprime to 10, a1a2...a2k...a1a2...a2k = 0 (mod t) .  
Moreover, since t is coprime to 2, 

Y 
mrm6er t1*2 of saiarF 

which is alternating. 
0 When a = 0 , ,G' > 1 , it follows from lemma 2 that there exists 

an alternative multiple a1 a2 .-a2k satisfying 5p I a1 a2 .-a2k with a2k odd. 
Using the same argument as in 0 , we obtain that there exist t 1 > t 2 

satisfying t I a1a2...a2k...a1a2...a2k. Since t is coprime to 5, 
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5't I U l  a 2  "'U2k"'Ul a 2  "'U2k. In addition, U l  a 2  "'U2k "'Ul a 2  "'U2k is 
Y Y 

mmzber t1-t2 of seniarr mmzber t1-t2 of LwAOns 

alternating, and the last decimal digit a2k  is odd. 
@I When a = 1 and ,8> 1 , it follows from 0 that there exists an 

alternative number a1 a 2  "'a2k ...a1 a 2  "'a2k satisfying that a2k  is odd and 

which is alternating. 
In conclusion, if n is not divisible by 20, then these positive 

integers n satisfy the required condition. 
Solution I[ n should be the positive integers and should satisfy 
that n is not divisible by 20. 

(1) Assume that 20 I n. Select a multiple of n arbitrarily. Denote 
( a k a & l  ...al , where a k  # 0. We have 20 I ( a k a & l  .-al Hence 
a1 =0, 2 I (UkU&l" 'u2)10 .  This implies that a 2  is even. Therefore, 
( a k a & l  ...a1 > l o  is not alternating. 

(2) We will prove that if n is a positive integer and is not 
divisible by 20, then n must have a multiple which is alternating. 

We will show three lemmas as follows. Then we divide the proof 
into four cases. 

Lemma 1 If the positive integer n is coprime to 10, then for any 

5't I Hence 2 5't I a1a2"'a2k" 'a1a2"'a2ko  

1 E N ,  there exists K E N  such that 

Y 

nrm6er m of 1 

There must exist two of them congruent modulo n. Without loss of 
generality, we may assume that 
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x, = xt (mod n> , s > t 1. 

Then n I x, - xt. Moreover, since x, - xt = xFt 10t(zfl) and n is 
coprime to 10 , n I xSpt , s - t > 0 and xSpt is a positive integer. This 
completes the proof of Lemma 1. 

For any m E N, there always exists an alternative 
number s, with m digits such that i t s  f i r s t  digit can be 0 ,  and i t s  last 
decimal digit i s  5 ,  and 5" I s,. 

Proof of Lemma 2 by inductive construction. Start with s1 = 5. 
Suppose that s, = (%awl .-a1 > l o  is alternating, where a1 = 5 and a, 
can be 0. In addition, 5" I s,. Lets, = 5". Denote 

Lemma 2 

(0 ,  2 ,  4, 6 ,  8 } ,  when a, is odd, 
(1, 3, 5 ,  7, 9 } ,  whenamiseven. 

Any two of them in A are not congruent modulo 5 ,  and 2" is 
coprime to 5. So any two of the numbers in { 2"x I x E A} are not 
congruent modulo 5. Select x E A such that 2"x =- 1 (mod 5 ) .  Then 
5 I 2"x + 1. Let s+l = (mma,l ...a1 > l o .  Then s+l is an alternative 
number wi thm+l  digits, whereal = 5 ,  and its first digit can be 0. In 
addition, s+l = x10" + s, = 5"(2"x + 1) is a multiple of 5*'. This 
completes the proof of Lemma 2. 

Lemma 3 For any integer m E N, there a l m y s  exists an 
alternative number t ,  with m digits such that i t s  last decimal digit i s  
2 ,  and 

A = {  

2 k f 3  2 2 k f 1  I I  t 2 k f l 9  2 I I  t 2 k f 2 .  

Proof of Lemma 3 by inductive construction. Start with tl = 2. Suppose 
that t2&1 = (a2&1a2k.-al>lo is alternating, where a1 = 2 ,  and 
22kt1 1 1  tzk+l. It follows from the property of the alternative numbers 
that a2el  = a1 = 0 (mod 

Denote A = { 1 , 3 , 5 , 7 } . Any two of them in A are not congruent 
modulo 8, and 52kf1  is coprime to 8. So any two numbers of 
{ 52e1x I x E A} are not congruent modulo 8. Now diride the four 
numbers in { 52kf1  x I x E A} by 8 respectively. The original sentence 

2) .  
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means the 4 numbers are divisible by 8. Since 52&1x with x EA is odd, 
the remainders are 1, 3, 5, 7. 

Let t 2&1= 22&1 I with I odd. Select x E A such that 52&1x = 
- I + 4 (mod 8). Then 22 1 1  52&1x + I .  Let t 2&2 = ( m 2 & l  .-a1 ) lo .  

Then t2&2 is alternating with2k+2 digits. In addition, a1 = 2 and t 2 ~ 2  

= X1O2&' + t 2 k + l =  22&1 ( 52&1 X + I ) .  
Since 22 1 1  52&1 x + I ,  we have 22&3 1 1  t 2 k f 2 .  

Moreover, suppose that t 2&2 = (aze2  ...a1 ) 10 , where a1 = 2, and 

22kt3 1 1  t2&2. Let t2&3 = (4a2&2 ...a1 ) l o .  Then t 2&3 is an alternating 

number with 2k + 3 digits, and t2k+3 = 5 2&2 22w + t 2 k f 2 .  

Since 22kf3 1 1  t2&2 , we have 22kt3 1 1  t2&3. This completes the proof 

Next, we discuss the four cases. 
(1) If n is coprime to 10, it follows from Lemma 1 that there exists 

k E N" such that 10 101..*101 is a multiple of n. The conclusion is 

equivalent to selecting I = 1 in Lemma 1. 
(2) If n is not divisible by 5, and n is divisible by 2, let n = 2"no 

such that no is not divisible by 2 , then is coprime to 10. Select q > 
m with ~ T Q  even. It follows from Lemma 3 that there exists an 
alternative number t ,  = (ho .-a1 > l o  with q digits, where a1 = 2. In 

addition, 2"of1 1 1  tmo. Hence 2" I t ,  . It follows from Lemma 1 that 

there exists k E N" such that 

of Lemma 3. 

- 
n m z b e r k o f l  

1...1 oo...o 1 - 1 oo...o - 1 oo...o - 
tamzber mo-1 of 0 tamzber mo-1 of 0 nrm6er mo-1 of 0 

Y 
t a m z b e r k o f l  

is a multiple of no. Let 

Then P is alternating, and 
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nrm6er k of 1 

can be divisible by 2"no, or n I P. 
(3) If n is divisible by 5, and n is not divisible by 2, let n = 5"no 

such that no is not divisible by 5, then is coprime to 10. Select q > 
m w i t h q  even. It follows from Lemma 2 that there exist an alternative 
number s, = (a ,  ...a1)10 w i t h q  digits, whereal = 5 and% can be 

0. In addition, 5"o I s, . Hence 5" I s, . Using the same argument as 

(2), there exists an alternative number P such that 5"no I P and the 
last decimal digit a1 = 5. 

(4) If n is divisible by 10, and n is not divisible by 20, let n = 10% 
with odd, then satisfies the assumption in case(1) or in case (3). 
It follows from (1) and (3) that there exists ( a k . * * a l ) l O  an alternative 
multiple of or 5. Now Let P = (ah ...a1 0)Io. Then 
P is an alternative multiple of n. 

In conclusion, n should be a positive integer and should not be 
divisible by 20. 

, where a1 = 1 

2005 (Merida, Mexico) 

The 46th IMO (International Mathematical Olympiad) was hosted by 
MQida in Mexico during July 8 - 18 in 2005. 92 countries and 513 
contestants participated. 

The leader of Chinese IM02005 team was Xiong Bin who was from 
East China Normal University, deputy leader was Wang Jianwei who 
was from University of Science and Technology of China, observer was 
Chen Jinhui who was from the High School Attached to Fudan 
University. In IM02005, China came first among the nations with total 
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points of 235. Here are the results: 

Ren Qingchun 

Diao Hansheng 

Luo Ye 

Shao Xuancheng 

Kang Jiayin 

Zhao Tongyuan 

Yaohua Middle School, 
Tianjin 

the Second Middle School 
attached to East China Normal 
University 

the High School Attached to 
Jiangxi Normal University 

High School Affiliated to 
Fudan University 

Shenzhen Middle School 

No. 2 Middle School of 
Shijiazhuang, Hebei 

42 points 

42 points 

42 points 

42 points 

35 points 

32 points 

First Day 
9:OO - 13:30 July 13, 2005 

ints are chosen on the sides of an equilat 

233 

gold medal 

gold medal 

gold medal 

gold medal 

gold medal 

silver medal 

ral triangle ABC: 
A1 , A2 on BC , B1 , B2 on CA , and Cl , C, on AB. These points 
are the vertices of a convex hexagon A1 A2 B1 B2 CI C, with sides of 
equal length. Prove that the lines AlB2, BIG and CIA2 are 
concurrent. (proposed by Romania, average score 2.61. ) 

Solution (posed by Diao Hansheng) 
Assume AlA2 = d, and AB = a. Construct an equilateral triangle 

&Bo CO with side of length a - d. Points A’, B’ , C’ are chosen on the 
sides of triangle A,BoCo such that A ’Co = A2C, B ’A0 = &A, and 
C’BO = C,B. 

Therefore , 
A’Bo = a-d--A’& = BC-A1A2-A2C= BA1. 

Similarly, 
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B’Co = BIG, C’AO = CIA. 

Since 

LB1 CA2 = LB’CoA’,LB2ACI 

=LB’A~C’,LC,BA~ = LC’B~A’, 

thus 

ACBlA2 Z ACOB’A’, aAB2C1 Z aAoB’C’, 

AC,BAl Z ABOC’A’, 

which implies that B’C’ = C’A’ = A’B ’ = d and triangle A’B ’C’ is 
equilateral. 

so 

LAB2C1 = LAoB’C’ = 180°-LC’B’A’-LA’B’Co 

=12Oo-LA’B’Co, 

LciBzBi = LBlAzAi. 

In view of B2 Cl = B1 B2 = A2 B1 = AlA2 = d ,  triangles Cl B2 B1 
and B1 B2Al are congruent, implying that B1 Cl = Al B1. Together 
with CI C, = A1 C, , we show that C, B1 is the perpendicular bisector of 
AlC1 and C,B1 is the height of triangle AIBICl on side AICl. 
Similarly, CIA2 and A1 B2 are the altitudes of triangle Al B1 Cl to the 
sides Al B1 and B1 Cl respectively. 

Therefore the lines A1 B2 , B1 C2 and CIA2 are concurrent. 

&-* -a Let a1 , a2 , be a sequence of ..itegers with infin,,ely many 
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positive terms and infinitely many negative terms. Suppose that 
for each positive integer n , the numbers al , a2 , , a, leave n 
different remainders on division by n. Prove that each integer 
occurs exactly once in the sequence. ( proposed by Holland, 
average score 3.05. ) 

Solution (posed by Ren Qingchun) 
First we will show that every positive integer will occur at most 

once in the sequence. Note that if ai = aj  = K ( i  < j ) ,  then two 
numbers among a1 , a2 , , aj , say ai , a j  , are congruent modulo j , 
which is impossible. 

Let Xk , yk be the greatest and the smallest number among a1 , 

without lose of generality , ai = X k  , aj  = yk , ai - a j  = 1 > K , then i, 
j < K < 1. Therefore two numbers among al , a2 , , aj  , say ai , aj  , 
are congruent modulo 1 ,  which is impossible. 

Now we will show that for every integer t (Yk  < t < X k ) ,  there 
exists an integer s(l < s < K) such that a, = t. For, if al , a 2 ,  . . a ,  

ak E { u E Z I yk < u < Xk , u # t }  , then the sequence has X k  - yk 

different values at most. Note that X k  - yk < K - 1 < K. Therefore two 

numbers among a1 , a2 , ..*, Uk have the same value, which is a 
contradiction to the above argument. 

Now for any integer m, since there are infinity many negative and 
positive numbers in the sequence, it is trivial to see that there exists a 
positive integer p such that up > I m 1 .  By a similar argument, there 
exists a positive integer q such that a4 <- I m I . Denote r = max{ p ,  q }  , 
then x ,  > I m I , y ,  <-I m I , i. e. y ,  < m < X k .  The above arguments 
lead us to conclude that there exists a positive integer s such that a, = 

m. We conclude that every number must appear exactly once in the 
sequence. 

a2 9 "', ak respectively. Then Xk - yk < k - 1. For if X k  - yk > k, 

@@!$ Let x ,  y and z be positive real numbers such that xyz > 1. Prove 
that 
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' -' > 0. (proposed 2-2 
+ 

by Korea(R. 0. >> 
Solution (posed by Kang Jiayin) 

We shall prove 

0 

So we only need to prove 0 in the case when xyz = 1. 
Since 

2 2 = x 5 + 4 + 2  = c 2 +xyz($ + 
x4 =c x4+y3z+yz3 

- 

22) 

1, 
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the left hand side of 0 holds. 
While 

n 

by the AM-GM inequality, 

x 4  + x 4  + y3z + yz3 2 4 2 y z  , 
x4 +y3z+y3z+y22  24xy2z,  

x 4  + yz3 + yz3 + y22  24xyz2 , 
y3z+yz3 3 y 2 2  , 

the summation of the above four inequalities leads to 

Therefore 

X2 - 2 c 2+$+2  - =s4+y3:+yz3 

This is just the right hand side of inequality 0. 
Comments Boreico Iurie from Moldova won a special prize for his 
outstanding solution. Observe that 

2 -2 2-2 
2+$+2-2(2++2+2) 

Therefore 
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>O. 

Second Day 
9:30 - 13:30 July 14, 2005 

@$@ Consider the sequence al , a2 , defined by 

~ , = 2 " + 3 " + 6 " - l ( n = l ,  2, ..*). 

Determine all positive integers that are relatively prime to every 
term of the sequence. (proposed by Poland) 

First, we will prove the following result: for a fixed prime p ( p  > 5) , 
Solution (posed by Luo Ye) 

2PP2 + 3PP2 + 6PP2 - 1 = 0 (mod p ) .  0 
Since p isaprimeno less than 5,  (2, p )  = 1, (3, p )  = 1, and(6, 

p )  = 1. By Fermat's little theorem, we have 

2P-I = 1 (mod p )  ,3P-' = 1 (mod p ) ,  6P-I = 1 (mod p ) .  

Therefore 

3*2P-1+2*3P-1+6P-1 = 3 + 2 + 1  = 6  (modp),  

i. e. 

6 2PP2 + 6  3PP2 + 6  6PP2 = 6 (mod p ) .  

Simplifying gives 

2PP2 + 3PP2 + 6PP2 - 1 = 0 (mod p ) .  

So 0 holds, and ap2 = 2PP2 + 3PP2 + 6PP2 - 1 = 0 (mod p ) .  

It is trivial that al = 10 and a2 = 48. 
For any integer rz greater than 1, it has a prime factor p. If 
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p E (2 ,  3 ) ,  then(n, az)>l.  I fp2.5,  then(n, a,z)>l. Therefore 
we can claim that every integer greater than 1 does not match the 
condition. 

Since 1 is co-prime to every other positive integer, 1 is the only 
number satisfying the condition. 

Let ABCD be a given convex quadrilateral with sides BC and 
AD equal in length and not parallel. Let E and F be interior 
points of the sides BC and AD respectively such that B E  = DF. 
The lines AC and BD meet at P, the lines BD and EF meet at 
Q, the lines EF and AC meet at R . Consider all triangles PQR 
as E and F vary. Show that the circumcircles of these triangles 
have a common point other than P. (proposed by Poland) 

Solution (posed by Zhao Tongyuan) 
Since BC and AD are not parallel, the circumcircles of triangle 

APD and BPC are not tangent to each other. Otherwise, construct a 
common tangent line 93’ through tangent point P, then 

L D P S  = L D A P , L B P S ’  = L B C P .  

It follows from the equality L D P S  = L B P S  ’ that L D A P  = 

L B C P .  ThenAD // BC, which is in contradiction with the condition. 
Let the second common point of the circumcirles of triangles BCP 

and DAP be 0, which is fixed. With loss of generality, let 0 be an 
interior point of triangle DPC. We will prove that the circumcirle of 
triangle PQR passes through 0 as E and F vary. 

Connect the lines OA, OB, OC, OD, OE, OF, OP, OQ, OR , 
as show in the figure. Since B, C, 0, P and 0, P, A ,  D are 
concyclic, then 

L O B C  = L O P C ,  LOPC = LADO*LOBC = LADO. 

Similarly, LOCB = L D P O  = L D A O .  
Together with AD = BC,  we get A O B C  Z AODA. So 

OB = OD,LOBE = LODF. 
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Note that BE = DF, so the triangles OBE and ODF are 
congruent, giving OE = OF and OB = OD. 

The equalities LFOE = / F O B  + L B O E  = L B O F  + LFOD = 

/ B O D  imply that the triangles BOD and FOE are similar. This means 
L E F O  = L B D O ,  i.e. LQFO = LQDO,  so the points Q ,  F ,  D, 0 
are concyclic. Therefore 

LRQo = L F D O .  

Since 0, P ,  A ,  D are concyclic, we have LFDO = LAD0 = 

LRPO,  so LRQo = LRPO. We conclude that the points 0 , R , P , 
and Q are concyclic, i. e. the circumcircle of PQR passes through 0. 

In a mathematical competition 6 problems were posed to the 

contestants. Each pair of problems was solved by more than - of 

the contestants. Nobody solved all 6 problems. Show that there 
are at least 2 contestants who each solved exactly 5 problems. 
(proposed by Romania) 

Assume there were rz contestants C1, C, , , C, , and the six 

Let S =  {(CbiPi, P j )  I l<K<n ,  l < i < j < 6 ,  Cbsolved both 

Now we will count I S I . 
Let xij be the number of contestants having solved both Pi and P j  

2 
5 

Solution (posed by Shao Xuancheng) 

problems were PI , P 2 ,  P 3 ,  P4, Ps , Pg. 

Pi and P j  } . 

2n + '. Theref ore > TnHxG ~ (1 < i < j < 6). By hypothesis, xG 2 
5 
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If the number of contestants who solved exactly five problems 
was at most one, by hypothesis, no contestants has solved all 
problems, so the other contestants each solved four problems at most. 

Let al , a2 , . . a ,  a, be the number of problems solved by 
contestants C1 , C, , . . a ,  C, respectively. Without loss of generality, 
we can assume that 5 > a1 > a2 > > a, > 0. 

If 4 > al , then 4 > a k ( l <  K < 4), 

this is in contradiction with 0. Therefore al = 5, 4 > a2 > > a,. 
It is trivial that n > 2. If a, < 3,  then 

This is also in contradiction with 0. So a, > 4, i. e. a2 = a3 = 

a, = 4. 
Assume, without loss of generality, that the five problems Cl 

solved were PI , P2 , P3 , P4 , Ps , and the number of contestants who 
solved the problem Pj (1 < j < 6) was bj (1 < j < 6). Then 

= 

bl+b2+"'+bfj =a1 +U2+" '+U,  

=5 + 4(n - 1) = 4n + 1. 0 

Consider 
j = 2  j = 2  

0 

Since the problem PI has been solved by bl contestants, and one of 
them solved five problems and the others solved four problems, 

Combining 0 and 0 we obtain 
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2n which can be rewritten as bl > -. 3 

0 2n 
3 Similarly, bk > -, for K = 1, 2,  3 ,  4,5. 

Consider 
6 

- 2 n + l ,  cxj6>c7- j = l  j = l  
2 n + 1  @ 

By a similar argument, since exactly b6 contestants solved P6, and 
each of these contestants solved four problems, we have 

6 c X j 6  = 3b6. 
j = l  

0 

Together with @ and 0 we obtain 

3b6 >22n+1, 

@ 2n+ 1 which we can rewrite as b6 > ~ 3 .  

If n + 0 (mod 3 )  , then 2. is not an integer. By 0 we obtain 3 

which implies 

8 

Together with @ and 8 we obtain 

2n+ 1 
3 

bl +bz + . .a  +b6 > 6 - = 4n+2 ,  

which is in contradiction with 0. 
2n 2n Therefore n = 0 (mod 3 )  , and @ implies b6 > -. Since b6 and - 3 3 

are both integers, 
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Together with 0 and @ we obtain 

0 

Compare with 0, the 0 should be an equality, so are 0 and @. 

2n 2n 
3 3  bl+b2+"'+b6 > 5 * - + - + 1  = 4 n + 1 .  

Hence 

Consider 

c xij > c = 2(2n+1) = 4n+2. 
l<Kj<S l<KSS 5 @ 

Since one contestant solved PI ,  P 2 ,  P 3 ,  P4 , P5, whereas b6 
contestants solved exactly three problems of PI , P2, P3, P4, P 5 ,  and 
n - 1-b6 contestants solved exactly four problems of PI , P2 , P3 , P4, 
P5 , we have 

=6n+4-3b6 = 4n+1 ,  

which is in contradiction with @. This completes the proof. 

2006 (Ljubljana, Slovenia) 

The 47th IMO (International Mathematical Olympiad) was hosted by 
Slovenia in Ljubljana during July 6 - 18 in 2006. 

The leader of Chinese IMD 2006 team was Li Shenghong who was 
from Zhejiang University and deputy leader was Leng Gangsong who 
was from Shanghai University. The Chinese IM02006 team came first 
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among the nations with 6 golds. Here are the results of the six 
contestants : 

Shen Caili 

No. 1 Middle School Attached to Liu Zhiyu Central China Normal University 

Zhejiang Zhenhai High School 37 points gold medal 

Deng Yu Shenzhen Senior High School 35 points gold medal 

the Affiliated High School of Jin Long 
Northeast Normal University 

Ren Qingchun Yaohua Middle School , Tianjin 34 points gold medal I I  
Gan Wenyin I No. 3 High School of WISCO 31 points gold medal I I  

First Day 
9:OO - 13:30 July 12, 2006 

@&@ Let ABC be a triangle with incentre I .  A point P in the interior 
of the triangle satisfies 

L P B A  + L P C A  = L P B C + L P C B .  

Show that AP AI , and that the equality holds if and only if P = I. 
Solution Since L P B A  + L P C A  = L P B  C + L P C B  , we get 

2 ( L P B C + L P C B )  = L P B C + L P C B  + L P B A + L P C A  

= L A B C + L A C B ,  

i .e .  L P B C + L P C B  = i ( L A B C + L A C B )  = 9 0 " - y L B A C ,  1 

L B P C  = 9 0 " + 2  L B A C .  

1 
2 On the other hand L B I C  = 90" + - L B A C .  Hence L B P C  = 
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L B I C ,  B, C,  I, P are concyclic. 
It is easy to show that the middle point M of arc BC is the center 

of circumcircle of triangle BIC. This is because M is also the point 
where A I  intersects the circumcircle of triangle ABC. Furthermore, 

so MI=MB. " c 

From triangle APM, AP + PM > AM = 

Therefore AP > AI. The equality holds if 
and only if P lies on the line segment AI, that is A 

I = P .  

AI +IM = AI +IMP. 

Let P be a regular 2006-gon. A diagonal of P is said to be good if 
its endpoints divide the perimeter of P into two parts, each 
consists of an odd number of the sides of P. The sides of P are by 
definition good. 

Suppose P is partitioned into triangles by 2003 diagonals, no 
two of which have a common point in the interior of P. Find the 
maximum number of isosceles triangles having two good sides 
that could appear in such a configuration. 

Solution Let ABC be a triangle in the partition. Here are AB denotes 
the part of the perimeter of P outside the triangle and between points A 
and B, and similarly for arcBC and arcCA. Let a , b and c be the number 
of sides on arcAB, arcBC, arc CA respectively. Note that a +b + c = 

2006. By parity check, if an isosceles triangle having two good sides, these 
sides must be two e q d  sides. 

We call such isosceles triangles good. 
Let one of the good triangles be A B  C with A B  = A C ,  Also, 

inscribe our polygon into a circle. 
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If there is another good triangle in arcAB, the two equal good 
sides cut off an even number of sides in arcAB. Since there is an odd 
number of sides in arcAB , there must be one side not belonging to any 
good triangle. The same holds for arcAC. 

So every good triangle corresponds to at least two sides of P. 
Hence there are no more than 2 006/2 = 1 003 good triangles. 

And this bound can be achieved. Let P = AlA2A3 .*.A2 006. Draw 
diagonals between AIA2&1(1< K < 1 002) and &&IA2&3 (1 < K < 
1 001). This gives us the required 1 003 good triangles. 

@@& Determine the least real number M such that the inequality 

I &(a2 - b2) +k(b2 - 2 )  + wz(2 -a2> I < M a 2  +b2 + 2 > 2  

holds for all real numbers a , b and c .  
Solution Factorizes the left side of the above inequality and the 
problem is reduced to finding the smallest number M that satisfies the 
inequality 

I (a-b>(b-cC)(c-ua)(a+b+c) I<M(a2 +b2 + 2 > 2 .  

L e t x =  ( a - b ) ,  y =  ( b - c ) ,  z =  (c -a) ,  ands= (a+b+c). Then 
the inequality becomes 

with the property that x + y + z = 0. 
Since x+y+z = 0, without loss of generality, we can suppose x , 

y to have the same sign and both positive (otherwise we can replace 
a ,  b ,  c by - a ,  - b ,  -c>. 

Now, for any fixed x + y = 2m, let x = y = m, so z =- 2m, the 
left side gets greater and the right gets smaller and the inequality still 
holds. 
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(2 +y2 +2 +.?>2 2 ((x+ d2 + 2 + .q2 
=(6m2 + s ~ ) ~ ,  

By the AM-GM inequality, 

(6m2 +.?>2 = (2m2 +2m2 +2m2 + s ~ > ~  

3 ( 4 J W > 2  = 161/21 m3sl 

16f iM1 m3Sl 2 I 2m3S~ 9 so 

247 

i.e. M>- 9 4 3  
16 ' 

The conditions for the equality can now be stated as x = y, 
2m2 =.?, or restated as2b=a+c, ( c - d 2  = lSb2. Settingb= 1 yields 
a=1--1/2, 3 c=1+T1/2 .  3 

2 

We can conclude that M = @ is indeed the smallest constant 16 
satisfying the inequality, with the equality for any triple (a, b, c> 

proportional to (I - y 1/2, 1 , 1 + y 1/2) up to permutation. 3 3 

Second Day 
9:OO - 13:30 July 13, 2006 

Determine all pairs ( x ,  y >  of integers such that 

1 + 2" + 2-1 = y2. 

Solution It is easy to show that x 2 0. Since (- y>2 = y2 , we only 
need to find all solutions with y > 0. 

I fx=O, theny=&2;  
Now y is odd, let y = 2n+l .  Then2"(2"+' +1> = 4n(n+l> .  It 

is clear that there is no solution forx  = 1, 2. 
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4n 
2" 

~ s s u m e x > 2 .  ~ince(2",  2"+' +I> = 1, ( n ,  n+l> = I, -or  

4(n + l) are integers. 
2" 

Casel:  Le t4n=a*2" ,  thena2 *2"+4a=8*2"+4.  Ityields2"= 

4(1 - a )  > 8, so a = 1 , 2. In both cases we get a contradiction. 

Case 2: Let 4(n+ 1) = a 2", then a2 2" -4a = 8 2" +4. It yields 

2" = 4(1+a) 2 8 ,  sou = 1, 2,  or 3. It is easy to check that onlya = 

3 is good. So x = 4 , and y2 = 529. 

a2 -8 

a2 -8 

Thus we have the complete list of solutions ( x ,  y ) :  (0, 2) ,  
(0, -2) ,  (4, 23), (4, -23). 

%&@ Let P ( x )  be a polynomial of degree n > 1 with integer 
coefficients and let k be a positive integer. Consider the 
polynomial Q(x)  = P(P(.-  P ( P ( x ) >  .->>, where P occurs k 
times. Prove that there are at most rz integers t such that 
Q(t> = t .  

Solution The claim is obvious if every integer fixed point of Q is a 
fixed point of P itself. In the sequel, assume that this is not the case. 
Take any integer xo such that Q(xo> = xo and P(x0)  # X O .  Define 
inductively xi+l = P(x i>  for i = 0, 1, 2,  ..., then x k  = X O .  

It is evident that 

u - v I P(u> - P(v> , for distinct integers u , v .  (1) 

(Indeed, if P ( x )  = c a i x i  then each u - v  I ai(ui -vi>. ) Therefore 

each term in the chain of (nonzero) differences 

X O - X l ,  x l -x29 ' " 9  x&l-xk,  x k - X k + l ,  (2) 

is a divisor of the next one; and since X k  - Xk+I = x0 - x1 , all these 
differences have equal absolute values. Take xm = min(xl , , X k )  , 
this means that x-1 - xm =- ( x ,  - ~ 4 1 ) .  Thus X-1 = X+I 

(# xm>. 
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It follows that consecutive differences in the sequence ( 2 )  have 
opposite signs. Consequently, xo, x1 , x2, is an alternating 
sequence of two distinct values. In other words, every integer fixed 
point of Q is a fixed point of the polynomial P ( P ( x > > .  Our task is to 
prove that there are at most n such points. 

Let a be one of them so that b = P ( a )  # a (we have assumed that 
such an a exists). Then a = P(b).  Take any other integer fixed point 
a of P ( P ( x > >  and let P(a> = ,G’, so that P(p> = a. The numbers a and 
b’ need not be distinct ( a  can be a fixed point of P> , but each of a , b’ 
is different from each of a , b.  Applying property (1) to the four 
pairsof integers ( a ,  a ) ,  (b ’ ,  b ) ,  ( a ,  b ) ,  (b ’ ,  a ) ,  we get that the 
numbers a -a and ,h- b divide each other , and also a- b and ,h- a divide 
each other. Consequently 

a-b  =+ (p-a) ,  a-a  =+ (P-b). (3) 

Suppose we have a plus sign in both instances: a - b = ,G- a and a - 

a =p- b. Subtracting yields a - b = b - a,  a contradiction, as a # b. 
Therefore at least one equality in (3) holds with a minus sign. This 
means that a + p = a + b; equivalently a + b - a - P(a> = 0. 

Denote a +b by C. We have shown that every integer fixed point 
of Q other that a and b is a root of the polynomial F(x) = C - x - 
P ( x ) .  This is of course true for a and b as well. Since P has degree 
n > 1 , the polynomial F has the same degree. So it cannot have more 
than n roots. Hence the result. 

GB Assign to each side b of a convex polygon P the maximum area 
of a triangle that has b as a side and is contained in P. Show that 
the sum of the areas assigned to the sides of P is at least twice the 
area of P. 

Solution Every convex (212) -gon , of area S ,  has a side and a vertex 
that jointly span a triangle of area not less than S / n .  

Proof of the lemma 
By main diagonals of the (2n)-gon we shall mean those which 
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partition the (2n)-gon into two polygons with equally many sides. 
For any side b of the (2n)-gon, denote by &, the triangle AB P where 
A ,  B are the endpoints of b and P is the intersection point of the 
main diagonals AA ’ , BB ’. We claim that the union of triangles &, , 
taken over all sides, covers the whole polygon. 

To show this, choose any side AB and consider the main diagonal 
AA ’ as a directed line segment. Let X be any point in the polygon, 
not on any main diagonal. For definiteness, let X lie on the left side 
of the ray AA ’. Consider the sequence of main diagonals AA ’ , BB ’ , 
GC’, are consecutive vertices, situated to the 
right of AA ’. 

The n-th item in this sequence is the diagonal A ’A (i. e. AA ’ 
reversed), having X on its right side. So there are two successive 
vertices K , L in the sequence A , B , C , before A’ such that X still 
lies to the left of KK ’ but to the right of LL ’. This means that X is in 
the triangle & , where I ’ = K ’L ’. We can apply the analogous 
reasoning to points X on the right of AA ’ (points lying on the main 
diagonals can be safely ignored). Thus indeed the triangles &, for all 
b jointly cover the whole polygon. 

The sum of their areas is no less than S. So we can find two 
opposite sides, say b = A B  and b’ = A’B ’ (with AA ’ , BB ’ being main 
diagonals) such that [ &, ] + [ &,/ ]>S /n  , where [.-] stands for the 
area of a region. Let AA ’ and BB ’ intersect at P. Assume without loss 
of generality that P B  > P B  ’. 

, where A ,  B, C,  

Then 

[ A B A ’ ]  = [ A B P ]  + [PBA’]  > [ A B P ]  + [ P A  ’B ’1 
=[&,I +Cab’] > S / n ,  

proving the lemma. 
Now, let P be any convex polygon, of area S, with m sides 

al , . . a ,  a,. Let Si be the area of the greatest triangle in P with side 
ai. Suppose, contrary to the assertion, that 



International Mathematical Olympiad 2006 251 

Then there exist rational numbers q1 , 
qi >Si/S for each i. 

, qm. 

Write qi = ki/n; so cki = 2n. Partition each side ai of P into ki 
equal segments, creating a convex (2n)-gon of area S (with some 
angles of size 180") , to which we apply the lemma. Accordingly, this 
induced polygon has a side b and a vertex H spanning a triangle T of 
area [TI > S/n. If b is a portion of a side ai of P ,  then the triangle 
W with base ai and summit H has area 

, qm such that c qi = 2 and 

Let rz be a common denominator of the m fractions q1 , 

[ W ] = k i * [ T ] > k i * S / n = q i * S > S i ,  

in contradiction with the definition of Si. This completes the proof. 
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