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FOREWORD

The 14" volume of the Romanian Mathematical Contests booklet consists, as
usual, of two parts. In the first part we present the problems given at the district
and final round of the Romanian National Olympiad aiong with those given at the
selection tests for the Romanian Teams, junior and senior. We collected some of
the problems considered by the problem selection committee at different stages of’
the Olympiad.

The second part provides full solutions to the problems, with emphasis on those
given at the selection tests for the IMO. We hope that in this way we contribute to
the development of the so-called problem solving community in the world.

We thank the Ministry of Education and Research for permanent involvement
in supporting the Olympiads and the participation of our teams in international
events.

Special thanks are due to SOFTWIN, Volvo Romania, Medicover, and W BS —
sponsors of the Romanian IMO team. Thanks are also due to the “Sigma Founda-
tion” for constant support in the mathematical competitions. Many of the solutions
are student’s contribution. We thank them all.

Luminifa Stafi from “The Theta Foundation” helped the editor in the process
of producing this booklet.

Last, not least, we are grateful to the Board of the Institute of Mathematics
“Simion Stoilow” in Bucharest, for constant technical support in the Mathematical
Olympiads and involvement in the training seminars for students.

Bucharest, July 12th, 2007 Radu Gologan
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DISTRICT ROUND

March 5", 2007

7*" GRADE

Problem 1. Point O is the intersection of bisector lines of the sides of triangle
ABC. Denote by D the intersection of line AO with the segment BC. If OD =
BD =} - BC, find the angles of the triangle ABC.

Virginia and Vasile Ticid

Problem 2. A can contains blue and red stones. Someone invented the follow-
ing game: extracts successively stones untill, for the first time, the extracted blue
stones and the extracted red stones are in the same number. At one of the played
games one observes that, at the end, 10 stones were extracted and no 3 consecutive

extracted stones are of the same color. Prove that at that game the fifth and the
sixth stones have different colors.

Dinu Serbinescu

Problem 3. Let a and b be integers such that b > a > 2. Prove that if the
number a + k is prime with the number b + k for all k = 1,2,...,b — a, thena
and b are consecutive.

Aurel Barsan

Problem 4. Let n be a composite natural number. Prove that there are integers
k > 1and aj,as,...,ar > 1suchthat

1 1
a1+ag+---+ak='n-(a—+—-+'--+—>.

Petre Bitrinefu



6 PROPOSED PROBLEMS

8th GRADE

Problem 1. Consider the positive real numbers z, y, z, with the property that
2y = 22+l = 2L Prove that one of them is the average of the orther two.

Gheorghe Molea

Problem 2. A rectangle ABCD has AB = 2 and BC = /3. Point M is
on AD such that MD = 2 - AM and point N is the midpoint of AB. MP is
perpendicular to the rectangle’s plane and point Q is on the segment M P such
that the angle between planes (M PC) and (N PC) is 45°, and the angle between
plane (M PC) and (QNC) is 60°.

a) Prove that DN and C'M are perpendicular.

b) Prove that @ is the midpoint of M P.

Gheorghe Bumbicea

Problem 3. Eight consecutive natural numbers are partitioned into two classes,
each of four numbers. Prove that if the sum of the squares of the numbers in each
class is the same, then the sum of elements in each class is the same.

Adrian Stoica

Problem 4. All points on a circle are painted in green or yellow such that each
inscribed equilateral triangle has exactly two yellow vertices. Prove that one can
find an inscribed square which has at least three yellow vertices.

Vasile Pop

9" GRADE

Problem 1. Let k € N*. We will say a function f : N — N holds property
(P) if for any y € N the equation f(z) = y has exactly k solutions.
&) Show there exist infinitely many functions holding property (P).
b) Determine the monotone functions holding property (P).
¢) Determine if for k > 1 there exist monotone functions f : Q — Q holding
property (P).
Mihai Piticari

DISTRICT ROUND 7

Problem 2. Given triangle ABC and points M € (AB), N € (BC), P €
(CA),R€ (MN),S € (NP),T € (PM), such that
AM__B_N_Q_ MR NS _PT
MB  NC PA~ " RN SP TM
a) Prove that triangles ST R and ABC are similar.

b) Determine the value for parameter A which makes the area of triangle STR
minimal.

=1-) Xe(01).

Marian Teller

Problem 3. Determine the functions f : N* — N* for which
o? + f(y) divides f(z) +y

forall z,y € N*.

Adapted after Lucian Dragomir

Problem 4. Let u, v, w be coplanar vectors, each of module 1.

a) Prove that we can choose signs +, —, such that | u+ v + w| < 1.

b) Exhibit a triplet such that, no matter how we choose signs +, —, we get
|futviw|>1

10" GRADE

Problem 1. The real numbers a, b, c are such that a, b, c € (1,0) 0r a,b,c €
(0, 1). Prove that

log, be + logy ca +log, ab > 4(log,, c + log,. a + log,, b).
Cezar Lupu

Problem 2. The 2n squares composing a rectangle of dimension 2 x n are
painted with three colors. We say that a color has a cutting if on one of the columns
we have two squares of the same color. Find:

a) the number of coloring without cuttings;

b) the number of coloring with exactly one cutting.
Inoan Daniela



8 PROPOSED PROBLEMS
Problem 3. Let ABC a triangle with BC = a, CA = b, AB = c. For each
line A we denote by da, dp, dc the distances from A, B, C to A. Consider
E(A) = ad’ + bdy + cd%.

Prove that if the value of E(A) is minimal, then A contains the incenter of the
triangle.

Vasile Pop

Problem4. Let u,v,w be complex numbers of modulus 1. Prove that one can
choose signs + and — such that

|ftutvtw| <L

Dan Schwarz

11** GRADE

Problem 1. Let a € (0,1) and (an)n3>1 the sequence defined by 41 =
2,(1 — 22), for any n > 10, starting with zo € (0, 1).
Calculate lim /7 - ap.
n—oo

Farkas Csaba
Problem 2. Let A € M,,(R*). If A-*A = I,,, prove that:
a) Jtr (4)] < n;
b) for n odd, det(A2 — I,,) = 0.

Alin Gilitan

Problem 3. Consider the sequence (z,)n31 given by z, = v/n — [\/n]. De-
note by A the set of its limit points, that is, the set of z € R such that there is a
subsequence of (z,,), With limit z.

a) Prove that QN [0,1] C A.

b) Determine the set A.

Tiberiu Trif

Problem 4. Let A,B € M,(R) such that B> = I, and A> = AB + I,,.
n
Prove that det(A4) < (5’7‘@) .

Marius Cavachi

DISTRICT ROUND 9

12" GRADE

Problem 1. Given a group (G, %) and A, B nonempty subsets of GG, we define
Ax B = {axb)|)a € A))and)b € B}.

a) Prove that for n € N, n > 3, the group (Zn, +) can be written in the
torm Z, = A + B, where A and B are two nonempty subsets of Z,, such that
A#LpyB# Lpyand|ANB| = 1.

b) If (G, =) is finite, A. B are nonemply subsets of G anda € G \ (4 * B),
prove that the function f : A — G\ B given by f(z) = 27  a is well-defined
and one-to-one. Conclude that if {4| + |B| > |G|, then G = A % B.

Farkas Csaba

Problem 2. Consider two continuous functions f : [0,1] - Randg : [0, 1] —
(0, 00) such that f is non-decreasing. Prove that

t 1 t 1
/0 f(@)g(@)da - /0 g(@)dz < /0 g(@)dz - /0 f(2)g(w)da,

for any t € [0, 1].

Cezar Lupu

Problem 3. Find all continuous functions f : R — R which verity simultane-
ously the following two conditions:

a) the limit lim f(z) exists;

0
b) f(z) = [Z77 f(t)dt, forallz € R
Mihai Piticari

Problem 4. Let & be a field 2" with n € N* elements and consider the poly-
nomial f = X* + X + L. Prove that:

a) for even n, f is reducible in k[X|;

b) for odd n, f is irreducible in k[X].
Marian Andronache



FINAL ROUND

Pitesti, March 29", 2007

7** GRADE

Problem 1. If the side lengths a, b, and c of a triangle satisfy the conditions
a+b—c=2 and 2ab — c® = 4, show that the triangle is equilateral.

* % %

Problem 2. Consider atriangle ABC with aright angle at A, and AC = 24B.
Let P and Q be the midpoints of the sides AC and AB, respectively. Let further M
and N be two points on the side BC such that BM = CN = z, with 2z < BC.
Express z in terms of AB, if the area of M N PQ) is half the area of ABC.

* ok

Problem 3. Consider a triangle ABC with a right angle at 4, and AB < AC.
Let D he the point of the side AC for which ZACB = ZABD. Drop the altitude
DI in triangle BCD. If AC = BD + DE, what are the angles ABC and ACB?

Mircea Fianu

Problem 4. If mn and n are non-negative integer numbers such that m > 1 and

22m+1 > n?, show that 22m+1 > n2 4 7.
Radu Gologan

8" GRADE

Problem 1. Prove that the number 10'° cannot be written as a product of two

positive integers all of whose base-10 digits are different from zero.
Adrian Stoica

FINAL ROUND 11

Problem 2. A number of 2007 offices are assigned 6018 desks. Each office is
assigned at least one desk. All desks from any one office may be removed from
that office and reascribed to other offices to get an equal number of desks in each
office other than the one they have been removed from. What are the possible desk
ascriptions?

Severius Moldoveanu

Problem 3. a) If all sides of a triangle ABC have length less than 2, show that
the length of the altitude from A is less than /2 — BC>/4.

b) Show that the volume of a tetrahedron at most one edge of which has a
length greater than or equal to 2 is less than 1.

* % %

Problem 4. Let ABCD be a tetrahedron, and M a point in space such that
MA? + MB® + CD* = MB? + MC? + DA® = MC? + MD? + AB* =
MD? + MA? + BC?2. Show that M lies on the common perpendicular to the
lines AC and BD.

Vasile Pop

9" GRADE

Problem 1. Prove that, fora; € N, 1 <i<n+1, Gny1 = a;,n € N*if
the polynomial function

n n
P(z) =2* — (Zaf + 1)1‘ + Zaiai-ﬂ
i=1 i=1

admits an integer root, then, if n is a perfect square, so are both its roots.
T. Timfian

Problem 2. Let ABC be an acute-angled triangle, and M a point in its plane,
different from its vertices. Then, with the usual notations,

a b c g
mm+mﬁ+mm_ 0

if and only if M = H, the orthocenter of ABC.
Viorel Cornea, Dan Marinescu, and Vasile Pop
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Problem 3. Color white or black each band of width 1, determined by par-
titioning the plane with equidistant parallel lines, distanced 1 apart. Show that
one can place an equilateral triangle of side 100, such that its vertices share a
same color.

Radu Gologan

Problem 4. For f : X — X, denote fo(X) = X, fr+1(X) = f(fu(X)), for
all n € N. Also denote
Fao(X) = () £a(X).
neN
Prove that, if X is finite, then f(fo (X)) = f-o(-X). Does the result still hold
when X is infinite?
Dan Schwarz

10" GRADE

Problem 1. Let n be a positive integer. Prove that a complex number of abso-
lute value 1 is a solution to 2" + z + 1 = 0 if and only if n = 3m + 2 for some
posilive integer m.

Mihai Biluni

Problem 2. Solve the equation 22"+ + log,z = 271 in the set of real
numbers.
Lucian Dragomir

antl n—1

Problem 3. For what integer numbers n > 2is (n — 1) +(n+1)"

divi§ib]e byn™?
* % %

Problem 4. a) Let S be a finite set of numbers, andlet S+ S = {z +y :

x,y € S}. Show that
1S +51< 315051+ 1),

where | X| is the cardinal number (that is, the number of elements) of the set X

b) Given a positive integer m, let C (1) be the greatest positive integer k such
that, for some set S of . integers, every integer from 1 to k belongs to S or is a
sum of two not necessarily distinct elements of S. For instance, C(3) = 8 with
S = {1,3,4}. Show that 1n(m + 6)/4 < C(m) < m(m + 3)/2.

* % %

FINAL ROUND 13

11" GRADE

Problem 1. If A and B are 2-by-2 matrices with real numbers as entries, and
A’ + B?> = AB, prove that (AB — BA)? = 0,.
Marian Ionescu

Problem 2. Given two real numbers ¢ and b, a < b, in the image of a contin-
uous, real-valued function f on R, prove that the closed interval [a, b] is the image
under f of some interval I C R

* %k %

Problem 3. Given an integer number n > 2, let £~ be the set of all 22 =
(®1,...,%y) in R* with |21| + - -+ + |z,,| = 1. Determine the n-by-n matrices 4
with real numbers as entries such that zA € £"~! for all z € £"~1,

Vasile Pop

Problem 4. A P-function is a differentiable function f : R — R with a
continuous derivative ' on R such that f (z + f'(z)) = f(z) forall z in R.
a) Prove that the derivative of a P-function has at least one zero.
b) Provide an example of a non-constant P-function.
¢) Prove that a P-function whose derivative has at least two distinct zeros is
constant.
Dorin Andrica and Mihai Piticari

12* GRADE

Problem 1. Let C be the class of all differentiable functions f : [0,1] - R
with a continuous derivative f' on [0, 1], and f(0) = 0 and f(1) = 1. Determine
the minimum value the integral

1 P P
/0 (142" (/@) da

may assume as f runs through all of C, and find all functions in C that achieve this
minimum value.
* % %

Problem 2. Let f be a continuous, positive real-valued function on [0, 1].
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a) Given a positive integer number 7, prove that there exists a unique subdivi-
sion, 0 =ap < a1 < -+ < ap—q < ap = 1, 0f [0, 1] such that

ht1 1 /!
(%) / f(z)dz:—/ f(z)dz, k=0,...,n-1
ak nJo
b) For each positive integer number n, let
o _amittan
ap = —————,
n
where 0 = a9 < @y < +++ < an—1 < a, = 1 is the unique subdivision of

[0, 1] satisfying (). Prove that the sequence (@,)n31 is convergent and evaluate
its limit.
Ecole Polytechnique
Problem 3. Given a positive integer n, determine the rings R with the property
that z2"+1 = 1 forall z € R\ {0}.
Dorel Mihet

Problem 4. Given an integer number n > 3, let G be a subgroup of the
symmetric group S,, generated by n — 2 transpositions. Prove that, for each i

in{1,...,n},theset {¢(i) : o € G} has at most n — 1 elements.
* % %

SELECTION TESTS FOR THE BALKAN
AND INTERNATIONAL MATHEMATICAL OLYMPIADS

FIRST SELECTION TEST

Problem 1. At the vertices of a convex polygon with even number of sides sit
hunters, while in the interior of the polygon, and not lying on any of its diagonals,
sits a fox. Simultaneously, the hunters shoot at the fox, but the fox ducks in good
time, and the bullets go on, hitting sides of the polygon. Prove that at least one
side is not hit.

Latvian Textbook

" Problem 2. Let C(0;) and C(O-) be two circles, external to each other. Points
A, B, C lie on C(Oy), while points D, E, F lie on C(02), such that AD and BE
are external tangents to the two circles, while C'F is an internal common tangent.
The lines CO, and FO, meet the lines AB, respectively DE, al M, respectively

N. Show the line M N passes through the midpoint of the segment CF.
* %k %k

Problem 3. Any f : Q — R with the property below is constant
1£(2) = fW) < (¢~ 9)?, forall 2,y € Q.
* % %
Problem 4. Forn € N, n > 2, determine
n
maxH(l —x;), forz; € Ry, 1<i<n, fo =1

i=1 i=1

AMM
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SECOND SELECTION TEST

Problem 5. Let f(X) = X" + ap i X" 4o 4 X 4+ ag be a degree
12 3 polynomial with integer coefficients, ay, + an—p even, forallk = 1,2,...,
n — 1and qg also even. If f = gh, where 4 and h are polynomials with integer
coefficients, and the degree of ¢ at most the degree of h, and all coefficients of h
are odd, show that f has (at least) an integer root.

M. Andronache

Problem 6. Let ABC be a triangle. Its incircle is tangent 1o AB at E, while
its excircle relative to BC is tangentto AB at F. Let D be the point lying on side
BC for which the incircles of triangles ABD and ACD have equal radii. The
lines DE and DB meet a second time the circumcircle of triangle ADF at X and
Y. Show that XY || AB if and only if AB = AC.

O. Ganea

Problem 7. Find all sets A of at least two positive integers, such that for any
distinct z,y € A we also have (z + y)/(z, y) € A.
Adapted (rom Swiss Olympiad
Problem 8. Let X be the set of the 27 points {0,1}", n > 3, in the Eu-
clidean n-space (the vertices of the unit hypercube). Denote by M (n) the least
integer such that any subset Y C X, with M (n) elements or more, necessar-
ily contains an equilateral triangle (determined by points from V). Prove that
M(n) < [2"+!/n] + 1, and effectively compute M (3) and M (4).

Putnam Competition

THIRD SELECTION TEST

Problem 9. Let F be the set of all functions f:P(S) = R with the property
that, for any X, C S, we have f(X N Y) = min(f(X), f(Y")), where S is a
finite set. Determine

max |Im(f)].

BMO AND IMO SELECTION TESTS 17

Problem 10. Show that, for n,p positive integers, n > 4 and p > 4, the
proposition P (n, p) below is false
i—1—>2n:z-”f0rz4€]1§ z;>0,i=1 n iw»:n.
i:lzip/izl ' e T ,i:I '
(As a matter of fact, the propositions P(4,3) and P(3,4) are true, but hard Lo
prove!)

Dan Schwarz

Problem 11. Let a;, ¢ = 1,2,...,n, n > 3, be positive integers with their
greatest common divisor equal to 1, such that a; divides Yrja;foralj =
1,2,...,n. Prove that [T, a; divides (Y0, a;)"2.

(Also, provide an example showing that the exponent n.— 2 cannot be lowered).

AMM

Problem 12. Points M, N, P on the sides BC,CA, AB of triangle AABC
are such that triangle M N P is acute-angled. Denote by  the length of the shortest
altitude of ABC, and by X the length of the longest altitude of AM N P. Prove

thatz < 2X. .
BMO 2007 Short List — Bulgaria

« FOURTH SELECTION TEST

Problem 13. Prove that the function f : N — Z defined below is injective
fn) =n2%" _pl,
BMO 2007 Short List — Serbia
Problem 14. Let A; Ay A3 A4 A5 be a convex pentagon, such that
[A142A3] = [A2 A3 Ay] = [A3AgAs] = [AsAsA,] = [A5 A1 As).
Prove there exists a point M in the plane of the pentagon, such that
[A1M As] = [A; M As) = [AsM Aq) = [AsM As] = [As M Ay).

(XY Z]is the area of AXY 2). BMO 2007 Short List~ Moldova
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Problem 15. Consider the set E = {1,2,...,2n}. Prove that an element
¢ € E may belong to a subset A C E, with n elements, such that for any two
distinct elements of A, none divides the other, if and only if ¢ > n(2/3)¥+1,

where k is the exponent of 2 in the factorization of c.
Abouabdillah

Problem 16. i) Determine all infinite arithmetical sequences of positive inte-
gers, with the property: there exists N € N, such that for any p prime, p > N, the

p" term of the sequence is also a prime.
Adapted after M. Burtea

ii) Determine all polynomials f(X) € Z[X], with the property: there exists

N € N, such that for any p prime, p > N, | f(p)| is also a prime.
D. Schwarz

FIFTH SELECTION TEST - ALL GEOMETRY

Problem 17. The vertices of a convex polygon are lying on a circle of center
O. Prove that, for any triangulation of the polygon made by not self-intersecting
diagonals, the sum of the squares of distances, from O to the incenters of the

triangles in the triangulation, is the same.
AMM

Problem 18. Let ', ', I'c be three circles situated in the interior of triangle
ABC, such that each is tangent to the two other, I'4 is tangent to the sides AB
and AC, I'p is tangent to the sides BC and BA, while I'¢ is tangent to the sides
CAand CB. Let D be the tangency point of I's and I'c;, E be the tangency point
of I'c and I'4, and F be the tangency point of I'4 and I's. Prove that the lines

AD,BE,CF are concurrent.
AMM

Problem 19. Consider the convex pentagon ABCDE where AB = BC,
CD = DE, angles ZABC and ZCDE are supplementary, ZABC = 135°, and
the area of the pentagon is v/2.

a) Determine the length of BD.

BMO AND IMO SELECTION TESTS 19

b) Letting ZABC be variable within the initial conditions, determine the min-

imum length of BD.
Adapted from Belarus Olympiad

SIXTH SELECTION TEST

Problem 20. Let ABC D be a parallelogram with no angle equal to 60°. Find
all pairs of points E, F, in the plane of ABC D, such that triangles AEB and
BFC are isosceles, of basis AB, respectively BC, and triangle DEF is equi-
lateral.

V. Vornicu

Problem 21. The world-renowned marxist theorist Joric is obsessed with both
mathematics and social equalitarism. Therefore, for any positive integer n in its
decimal representation, he tries to partition its digits into two groups, such that the
difference between the sums of the digits in each group be as small as possible.
Joric calls this difference the defect of the number n. Determine the average value
of the defect (over all positive integers), that is, if we denote by d(n) the defect of
n, compute

lim &=l 9(k) .
n—oo n

1. Boreico

Problem 22. Three travel companies provide transportation between n cities,
such that each connection between a pair of cities is covered by one company
only. Prove that, for n > 11, there must exist a round-trip through some four
cities, using the services of a same company, while for n < 11 this is not anymore
necessarily true.

D. Schwarz

SEVENTH SELECTION TEST

Problem 23. Forn € N, n > 2, a;,b; € R, 1 < i < n, such that

Z“?:l’ Xn:b,?:l, and iu;bi=0,
=1

i=1 =1
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prove that
n

(8 (59 e

i=1
C.& T. Lupu
Problem 24. Let ABC be a triangle, let E, F' be the tangency points of the
incircle I'(1) to the sides AC, respectively AB, and let M be the midpoint of the
side BC. Let N = AM N EF, let y(M) be the circle of diameter BC, and let
X, Y be the other (than B, C) intersection points of B1, respectively C T, with .

Prove that
ove thal NX _AC

NY T 4B’
C. Pohoati
Problem 25. i) Prove that a real polynomial function f cannot be a sum of (at
most) deg f real periodical functions.
ii) For deg f = 1, show that f can effectively be construed as the sum of two
real periodical functions.
Adapted after V. Pop
iii) For deg f = 1, show that if f is the sum of two real periodical functions,
they must be unbounded in any interval (thus quite “wild”).
iv) Show that a real, not null, polynomial function f can effectively be con-
strued as the sum of deg f + 1 real periodical functions.
v) Exhibit a real function that cannot be construed as a (finite) sum of real
periodical functions.
D. Schwarz

SELECTION TESTS FOR
THE JUNIOR BALKAN MATHEMATICAL OLYMPIAD

FIRST SELECTION TEST

Problem 1. Let a and b be integer numbers. Show that there exists a unique
pair of integers z,y so that
(:c+2y—a)2+(2a:—y—b)g <L
Adrian Zahariuc

Problem 2. Consider a trapezoid ABCD with the bases AB and CD so that
the circles with the diameters 4D and BC are secant; denote by M and N their
common points. Prove that the intersection point of the diagonals AC and BD
belongs to the line M N.

Severius Moldoveanu

Problem 3. A rectangular cardboard is divided successively into smaller pieces
by a straight cut; at each step, only one single piece is divided in two. Find the
smallest number of cuts required in order to obtain — among others — 251 polygons
with 11 sides.

Marian Andronache

SECOND SELECTION TEST

Problem 4. Find all integers n, n > 4 such that [/n] + 1 divides n — 1 and
[vA) — 1 divides n + 1.

Marian Andronache
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Problem 5. Let ABCD be a convex quadrilateral. The incircle w; of triangle
ABD touches the sides AB, AD at points M, N respectively, while the incircle
w, of triangle C BD touches the sides C D, C B at points P, Q respectively. Given
that w; and wo are tangent, show that:

a) the quadrilateral ABC'D is circumscriptible;

b) the quadrilateral M N PQ is cyclic;

¢) the incircles of triangles ABC and ADC are tangent.

Vasile Pop

Problem 6. Let ABC be an acute-angled triangle with AB = AC. For any
point P inside the triangle ABC consider Lhe circle centered at A with radius AP
and let M and N be the intersection points of the sides AB and AC with the circle.
Determine the position of the point P so that M N + BP + CP is minimum.

Francisc Bozgan

THIRD SELECTION TEST

Problem 7. Let ABC be a triangle. Points M, N, P are given on the sides
AB,BC, C Arespectively so that CPM N is a parallelogram. Lines AN and M P
intersect at point R, lines BP and M N intersect at point S, while @ is the inter-
section point of the lines AN and BP. Show that S{M RQS] = S[NQP].

Mircea Lascu

Problem 8. Solve in positive integers the equation:

(2* +2)(y> + 3)(2* +4) = 60ayz.

Flavian Georgescu

Problem 9. Consider a n x n array divided into unit squares which are ran-
domly colored in black or white. Three of the four corner squares are colored in
while and the fourth is colored in black. Prove that (here exists a 2 x 2 square
which contains an odd number of white squares.

Livia Ilie

Problem 10. Suppose a, b, ¢ are positive real numbers satisfying:

L + ! + L 21
a+b+1 b+c+l cHat+tl”
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Show that
a+b+c>ab+bc+ ca.
Andrei Ciupan

FOURTH SELECTION TEST

Problem 11. Find all non-empty subsets A of the set {2,3,4,5,...} so that
for any n € A, bothn® + 4 and [\/n] + 1 also belong to A.

Lucian Turea

Problem 12. Circles w; and w, intersect at points 4 and B. A third circle ws,
which intersects w; at points D and E, is internally tangent to wy at point C' and
tangent to the line AB at point F', and lines DE and AB meet at point G. Let H
be the mirror image of F across G. Calculate the measure of the angle ZHCF.

Lucian Turea

Problem 13. Consider the numbers from 1 to 16. A solitaire game is played
in the following manner: the numbers are paired and each pair is replaced by
the greatest prime divisor of the sum of the numbers in that pair — for example,
(1,2);(3,4);(5,6);...;(15,16) produces the sequence 3,7,11,5,19,23,3,31. The
game continues similarly until one single number is left. Find the greatest possible
value of the number which ends the game.

Adrian Stoica

Problem 14. Determine all positive integers n which can be represented in
the form

n=[a,b] +[b,c + [c,a],

where a, b, ¢ are positive integers.
Note: [p, q] is the lowest common multiple of the integers p and q.

Adrian Zahariuc

FIFTH SELECTION TEST

Problem 15. Let p be a semicircle of diameter .4B. A parallel line to AB
intersects the semicircle in C and D so that points B and C lie on opposite sides
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of the line AD. The parallel line from C to AD meets p again at point E. Lines
BE and C D meet at point F and the parallel line from F to AD intersects AB at
point P. Prove that the line PC is tangent to the semicircle p.

Cosmin Pohoati

Problem 16. Prove that
2% +y° +2°
3
for any real numbers z,y,2z > 0.

3
> oyz+ Zll@ —y)ly - 2)(z - @),
Viorel Vajaitu

Problem 17. Eight persons attend a party, and each participant has at most
three others to whom he/she cannot speak. Show that the persons can be grouped

in 4 pairs so that each pair can converse.
Mihai Bilund

Problem 18. A set of points is called free if there is no equilateral triangle
whose vertices are among the points in the set. Show that any set of n points in the

lane c i free subset of at least ints.
plane contains a free subsel /n points Cain Popesca

SIXTH SELECTION TEST

Problem 19. A 8 x 8 square board is divided into 64 unit squares. A “skew-
diagonal” of the board is a set of 8 unit squares with the property that each row
or column of the board contains only one unit square of the set. Checkers are
placed in some of the unit squares so that each “skew-diagonal” has exactly 2
squares occupied by checkers. Prove that there exist two rows or two columns

which contain all the checkers.
¢ all the ch s Dinu Serbénescu

Problem 20. Let 1 < m < n be positive integers, and consider the set M =
{(z,y); 2,y € N*, 1 < =,y < n}. Determine the least value v(m, n) with the
property that for any subset P C M with | P| = v(m, n) there exist m+1 elements
A; = (z;,9:) € P,i=1,2,...,m + 1, for which the values z; are all distinct,

and y; are also all distinct. Vasile Pop

JUNIOR SELECTION TESTS 25

Problem 21. Let ABC be a triangle right-angled at A and let D be a point
on the side AC. Point E is the mirror image of A across BD and point F is the
intersection of the line CE with the perpendicular line from D to C'B. Show that
the lines AF, DFE and C'B are concurrent.

Dinu Serbinescu

Problem 22. An irrational number z, 0 < z < 1is called suitable if its first 4
decimals in the decimal representation are equal. Find the smallest positive integer
n such that any real number ¢, 0 < ¢ < 1 may be writlen as a sum of n distinct
suitable numbers.

Lucian Turea
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Problem 1. Let ABC'D be a convex quadrilateral with AB = BC = CD,
AC # BD, and let E be the intersection point of its diagonals. Prove that AE =
DE if and only if ZBAD + LADC = 120°.

Albania
Problem 2. Find all functions f : R — R such that
f(f(@) +y) = f(f(z) —y) +4f(z)y
forallz,y € R
Bulgaria

Problem 3. Find all positive integers n such that there exists a permutation o
of the set {1,2,...,n} for which

\/:(1) +1/0(2) +4/ - +/o(n) €Q

Problem 4. For a given positive integer n > 2, let Cy, C», C3 be the bound-
aries of three convex n-gons in the plane, such that all three sets C; N C»,C> N
C3, C3NCy, are finite. Find the maximum number of points of the set C;NC2NCs.

Turkey

Serbia

SHORTLISTED PROBLEMS FOR THE 2007 OLYMPIAD

JUNIORS

Problem 1. Show that 2007 cannot be represented as the sum of the squares
of four primes.

* ok

Problem 2. In a quadrilateral ABC D the bisectors of the angles ZA and ZC
meet in /, situated on the diagonal BD. Prove that:

a)AB-CD = AD - BC,

b) the bisectors of the angles ZB and ZD meet in a point situated on the
diagonal AC;

c) if the distances from I to the straight lines AB and BC are equal, then the
diagonals AC and BD are perpendicular.

Vasile Pop

Problem 3. Let ABC be atriangle, H be ts orthocenter, O be ts circumcenter
and M be the midpoint of the side BC. It is known that AC = 2AB = 2AH.
Prove that:

a) AC = 40M;

b) it is possible to construct a triangle with the segments AH, OM and BM.

Petre Simion

Problem 4. A square ABCD is folded in such a way that the point D coin-
cides with a point M situated on the side AB. Show that the folded area is at least
a quarter of the area of the square.

Dorina Zaharia
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Problem 5. Show that the (2n + 2)-digit number /44 ...44355...556,
(n 4’s and n 5’s) is an integer.

Petre Biitrinefu

Problem 6. A triangle ABC has AB = AC and m(£BAC) = 120°. A point

D is taken on [BC] such that %% = 2. Prove that BC - AD = AB>.

Adriana and Lucian Dragomir

Problem 7. a) Prove that there does not exist a pair («, b) of positive integers
such that 3a* + 223b% = 20072007.
b) Find all triples (a, b, k) of positive integers under the conditions:
i) 3a% + 223b* = 2007k?;
ii) a has exactly four positive divisors.

Adrian Turcanu

Problem 8. Let ABC be an acute angled triangle, w its circumcircle, and H,
O, I, G be the usual notations. Let H',0', I',G' be the reflections of these points
into BC'. Prove that:

a)H' € w;

b) O' € wif and only if m(ZA) = 30°

¢) I' € wif and only if m(ZA) = 60°;

d) G' € wif and only if 3bc = 4my, - M.

Vasile Pop

Problem 9. Consider a triangle ABC, D, M, N the midpoints of the sides
(BC), (AB), (AC) respectively and P the midpoint of (AD). The parallel from
the baricenter G to BC meets AB in E and AC in F.

a) Prove that the points A,GM N PF and GN N PE are collinear.

b) Prove that the straight lines EP, GN and D F are concurrent.

Romanta and Toan Ghigi

Problem 10. In a tetrahedron ABC), the vertex A is situated at equal dis-
tances from the sides of the triangle BC'D and ZBAC = ZBDC = 90°. Let 1
be the incenter of the triangle 3C' D and P be the orthogonal projection of I on
BC. Prove that:

a)BD-DC =2-BP-PC,
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b) Samc = BC
Secp  2-AP°

Problem 11. Prove that if in a tetrahedron the incircles of three faces are mu-

tually tangent then all the four incircles are mutually tangent.
* ok ok

Problem 12. Find the maximum value of the expression £ = x + 3y if

z,y € Rand 2 + y* < 22 + 6y.
Virginia and Vasile Tici

Problem 13. Letn > 2 be a positive integer and let z;,2», . .., Zn € [1,00)

such that
n

=1
Compute (z; — 1)(z2 — 1) ... (zn — 1).
Gheorghe Molea
Problem 14. Let a, b be positive integers such that d = (a,b) > 1.

a) Show that there exists a partition of N* into two nonempty sets A, B with
the property

(P): z€A=>z+acAandye B=>y+b€B.

b) Show that if (A4, B) is a partition of N* with the property (P), then, for
every z € N*, the numbers z and z + d are both in A orin B.
Vasile Pop

Problem15. Let a, b, ¢ > 0 bereal numbers such that a+b+c = 1. Prove that

Vab Vbc Vea 1 1 1 1

AN Andgy gt s+,

1—c+l——a+l—b\8<3+a+b+c)
Laura Molea and Gheorghe Molea

Problem 16. Let V ABC be a triangular pyramid and M be a variable point on
the small arc AB from the circumcircle C(O, R) of triangle ABC. Let VD, VE,
V F be the distances from V' to the straight lines M C, M A, M B respectively.
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Prove that
2 . R
max(VD? + VE* + VF?) =3 (vo2 + ~2—) .

Virginia and Vasile Tici

Problem 17. Let ABCDA'B'C'D' be a cube and M, N, P, Q be points on
the segments (A’ B), (B'C), (C' D), respectively (' A), such that Aﬂ'% = %’% =
DP _ AQ _ 4
PC = QD T K

a) Prove that the points M, N, P, Q are coplanar il and only if & = 1.

b) Find k if the angle between the straight line C' M and the plane AD B’ has
measure 15°.

Petre Simion

SENIORS

Problem 18. Let ABCD be arectangle and M, N be two points separated
from D by AB, respectively BC, such that M A = MB and NB = NC. Prove
that the triangle DM N is equilateral if and only if the triangles M/ AB and NBC

are equilateral.
* kK

Problem 19. The points A, B, C are inside the convex hexagon M NPQRS,
such that the triangles ABC, NAM, PQB and CRS are similar. Let X,Y,Z
be the midpoints of the segments [N P), [Q R], respectively [SM] and G, K, I the
baricenters of the triangles ABC, M PR, respectively NQS. Prove that:

a) if triangle ABC is equilateral then triangle G K I is equilateral;

b) triangles ABC and XY Z are similar if and only if triangle 4ABC is equi-

lateral.
Dana Heuberger

Problem 20. Letp € N, p > 2. Find all the increasing functions f : Z — Z
such that
1
fi(n) + fo(n) + -+ + fp(n) =pn+ 5p(p+1), V¥n€z,
where fp = fo fo-.-of.
S

k times Marin Ionescu

SHORTLISTED PROBLEMS FOR THE ROMANIAN OLYMPIAD 31

Problem 21. Prove that if a function f : R — R has lhe property

Y2 (+ky) - fz—ky) | <1, VneN, VeyeR
k=1

then f is constant.
Farcas Csaba
Problem 22. Prove that, for every real numbers a, b, c > 0,

a® +1 b2+l+c2+1
b+c at+c  a+b

>3.

Petre Biitrinetu
Problem 23. Prove thatif a, b, c € [0, 1] then
a b c 5
e I 2
T+bc Ttea 1+ab+“bcS 2’
Vasile Pop

Problem 24. Prove that if a;, as, ..., a, > 0 and a; +as+---+a, = 1then

(a2+as+-+an)’ (a1 +az+ - +ay)?
+ .
1+a 1+ as
+(al +tar 4 4a,_1)?  (n—1)?
1+an Z n¢1

ot

Trajan Timaian

Problem 25. Prove that, in every triangle,

b
Ly be  Aatbio

Ma My me T JZ L2t
Petre Bitrinetu
Problem 26. Prove that, for every real numbers a,byc> -1,

a*+2 b +2 + +2
b+c+1l a+c+l a+b+17"

Marin Ionescu
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Problem 27. Let n € N*. Solve in N* the equation

2]+ [Z] = [2+2+na].

Marcel Chiritd
Problem 28. Solve the system
z(3y +1) =y(y° +3)
y(32% + 1) = 2(22 4+ 3)
2(3z% + 1) = (2> + 3).
Marcel Chiritd

Problem 29. Find all the prime numbers p > 3 such that, forevery k € 1, 1’;—1
the number 1 + k(p — 1) is prime.
Adrian Stoica

Problem 30. Let 2, 22, 23 be complex distinct numbers, with |z;| = |z] =
|23]. Prove that the points of complex coordinate 21, 23, z3 are the vertices of an
equilateral triangle if and only if there exists k£ € R\ {1} such that

|kz1 + 22 + 23] = |k22 + 23 + 21| = |[kzzs + 21 + 22].
Marin Ionescu

Problem 31. A set M of real numbers fulfils:

)0 e M;

i) if z,y > 0 and logy (z + y) € M then 3* € M andlog,y € M.
Prove that 2308 ¢ M.

2007
Lucian Dragomir

Problem 32. Solve the equation 240 % 2602 = 2 cot 2g.

Traian Timaian
Problem 33. Prove that, in every triangle,

4R+7\> or
>4
( P ) + 4R+1 7
Cosmin Pohoati
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Problem 34. Let z be a complex number such that |z|, |2 — 2z + 2| and

|2* — 3z + 3| are at most 1. Prove that z = 1.
Virgil Nicula

Problem 35. Let z, 22, z3 be distinct complex numbers. Prove that the fol-
lowing properties are equivalent:

1) 21, 22, 23 are the vertices of an equilateral triangle;

ii) there exists A € C such that the polynomial (X — 21)(X — 22)(X —z3) — A
has a triple root.

Sever Moldoveanu, Constantin Buge

PUTNAM SENIORS
Problem 36. Prove that the sequence (a,)n>1 given by
an = {2} + {nV3}, Yn>1,

is divergent.
Alin Gilitan. Cezar Lupu

Problem 37. Prove that the sequence defined by ag = a, ay = b,ans1 =
Rl ES IS N*, where @ > 0, b > 0, 2 > 1, is convergent.

=1

ar T +all]

Marian lonescu

Problem 38. Suppose that a differentiable real function has a periodical non-
constant derivative f : R — R. Prove that f has at least posilive period.

Cristinel Mortici

Problem 39. Prove that, for every continuous function f : [0,1] — R,

;11/01 F(@)de +2 (/01 f(z)da:)z > 3/01 Fa)de- /01 of(2)da.

Cezar Lupu

Problem 40. a) Give an example of a function f : R — R which has lateral
limits in every point and f(R) = Q. :
b) Is there a function f : [0, 1] — R which has lateral limits in every point and

f(o,1)) =0, 1]n@?
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¢) Is it possible for the function from a) to be nonconstant on every interval?
Gabriel Dospinescu, Adrian Zahariuc
Problem 41. Find card {4 € M(N))|)det A # 0,477 € M,(N)}.

Cecilia Diaconescu, Pitegti

Problem 42. A function f : @ — R has the property: there exists « > 0 such
that [f(z) — f(y)] < |o — y|* forevery z,y € Q.
4) Prove that there exists an unique continuous function f : R — R such that
f() = f(z) foreveryz € Q.
b) Find all possible f in the case a > 1.
Atila Abdula
Problem 43. Let G be a finite group and p;, pa, . .. , p,, be distinct prime di-
visors of card (G)), such that for each p; there exists z;,y; in G with ord(z;) =
ord(y;) = p; and y; is not a power of ;.
Prove that n
cardG > 1+ [[(p} - 1).
i=1
Octavian Ganea
Problem 44. Let f : [0,1] — R De a concave function, with f(0) = 1.
Prove that
3/t ! 1
5[ er@a< [ f@aa-1,
2 Jo o 4
and find the cases of equality
Dan Marinescu, Viorel Cornea
Problem 45. Find all continuous functions f : R — R such that, for every
a,b,c,d,
b d b+d
/ F()dt + / fod= [ fea
a c a+tc
Romanta and Joan Ghiti
Problem 46. Let p be a prime number and 4 be an unitary ring with p> ele-
ments and less than p — 1 bilateral zero divisors. Prove that A is a field.
Alin Gilitan

PART TWO

SOLUTIONS



PROBLEMS AND SOLUTIONS

DISTRICT ROUND

7** GRADE

Problem 1. Point O is the intersection of bisector lines of the sides of triangle
ABC. Denote by D the intersection of line AO with the segment BC. If OD =
BD = % - BC, find the angles of the triangle ABC.

Solution. The following two cases are possible:

L. Triangle ABC is acute. Then O is an interior point of ABC. Denoting by
E the midpoint of DC, the triangle ODE is equilateral.

As a consequence, ZOEC = ZODB = 120° and ZOBC = ZOCB = 30°.
As triangle AOC is right and isosceles, we get ZOAC = ZOCA = 45°. In the
triangle AOB we have ZAOB = 150° and ZOAB = LOBA = 15°. Thus
ZABC = 45°, ZACB = 75° and ZBAC = 60°.

1L Triangle ABC is not acute. As line AO is incidental to the segment BC, A
is the obtuse angle of the triangle ABC. As above, we get ZOAC = LOCA =
45°, implying ZACB = LOCA — ZECO = 15°. As the triangle AOB is
isosceles with ZAOB = 30°, we get LZABO = ZBAO = 75°. As aconsequence
£BAC =120° and ZABC = 45°.

Problem 2. A can contains blue and red stones. Someone invented the fol-
lowing game: extracts succesively stones until, for the first time, the extracted
blue stones and the extracted red stones are in the same number. At one of the

played games one observes that, at the end, 10 stones were extracted and no 3
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consecutive extracted stones are of the same color. Prove that at that game the fifth

and the sixth stones have different colors.

Solution. WLOG, consider that the last stone is red. Then, the ninth is red also,
otherwise the extracting procedure had to be stopped before. The eighth stone has
to be blue, otherwise the last three will have the same color. The seventh is then
red, otherwise the game has to be over after six extractions. Now, if stones 5 and 6
are both red, we get 3 consecutive red, a contradiction. If stones 5 and 6 are both
blue, the game has to be over after four extractions, a contradiction again. Thus,

stones 5 and 6 have different colors.

Problem 3. Let a and b be integers such that b > a > 2. Prove that if the
number a + k is prime with the number b + k forall k = 1,2,...,b — a, thena

and b are consecutive.

Solution. Denoten = b—a. We have (a+k,b+k) = (a+k,b+k—a—k)=
(a+k,n) = 1,forany k = 1,2,...,n. Thesequencea +1,a+2,..;,a+n
contains n consecutive numbers, thus one of them is divisible by n.

The only possibility is n = 1, otherwise n implying that a and b are consecu-

tive.

Problem 4. Let n be a composite natural number. Prove that there are integers
k > 1land ay,as,...,ar > 1such that
1 1 1
ai+ar+--+ap=n-|{—+—+--+—).
a;  a ay
Solution. Take k to be the number of the proper divisors of n; as n is composite
wehave k > 1. Let 1 < a; < as < --- < ai be the proper divisors of n; then
ai‘ > (:‘—2 > > ﬁ are the same set of divisors, implying the result.

8" GRADE

Problem 1. Consider the positive real numbers x,y, z, with the property that
Ty = “—;"’—1 = %l Prove that one of them is the average of the other two.
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Solution. We have z = zy*+z—1and z = 2zy— 1. We getz(y* —2y+1) =
z(y —1)? = 0,50y = 1 because = # 0. From zy = =5 we obtain & = 25,
that is z the average of y and z.

Problem 2. A rectangle ABCD has AB = 2 and BC = V/3. Point M is
on AD such that MD = 2- AM and point N is the midpoint of AB. MP is
perpendicular to the rectangle’s plane and point @ is on the segment M P such
that the angle between planes (M PC) and (N PC) is 45°, and the angle between
planes (M PC) and (QNC) is 60°.

a) Prove that DN and CM are perpendicular.

b) Prove that @ is the midpoint of M P.

Solution. a) As AN = 1and DM = 2—‘3/5 we get % = % = %, that is
ZMCD = LADN implying DNLCM.

b) By the above, DN is perpendicular to the plane (PMC). Let T € CM N
DN and let R, S be the projections of T on CQ and on PC, respectively. By
the three perpendiculars theorem ZTRN = 60° and ZT'SN = 45°. Easy cal-
culations give CT = +/3,RC = # and MC = %@. As a consequence

TN = 1, giving TR = _1‘/_5 and TS = 1. Similarities ACRT ~ ACQM
and ACTS ~ ACMP imply QM = BT:MC — 8 yng M P = STMC — 28

thatis MQ = QP.

Problem 3. Eight consecutive natural numbers are partitioned into two classes,
each of four numbers. Prove that if the sum of the squares of the numbers in each

class is the same, then the sum of elements in each class is the same.

Solution. Leta,a+1,a+2,...,a+7 be the given eight numbers. The sum of
their squares is 8a® + 56a + 140, implying that the sum of squares of each class is
4a? +28a +70. Denote by X the class that contains a+7 and let a+i,a+3j,a+k
the other three of its elements. Then 3a® + 2a(i + j + k) + 4% + j2 + k* = 4a® +
28a+70—(a+7)? = 3a®+14a+21, thatis 2a(i+j+k—7) = 21— (i3 +52+k?).
Let us remark, at this point, that the problem consists in showing thati +j+k = 7.

Suppose that i+ j +k > 8. Then i? + j2 + k2 3 (440”5 64 5 91 giving
that the right side of the previous inequality is negative, a contradiction.
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Suppose i + j + k < 6. As 21 — (i + j2 + k?) is even, i% + j2 + k? is odd and
then 7 + j + k is odd. This implies that , 7, k is the triple 0,1,2 or 0,1,4 or 0,2,3.
In all cases 21 — (i% + j2 + k?) > 0 > 2a(i + j + k — 7), a contradiction.

Problem 4. All points on a circle are painted in green or yellow such that each
inscribed equilateral triangle has exactly two yellow vertices. Prove that one can
find an inscribed square which has at least three yellow vertices.

Solution. Let Aj A, ... A2 be aregular dodecagon inscribed in the given cir-
cle. Triangles A; A5 Ag, A2 AgA10, A3A7A11 and A4 AgA,2 are equilateral, so 8
vertices of the 12 are yellow. Consider the squares A; A4 A7 A9, A2 A5 AgA11 and
A3 AgAgAi2. By Dirichlet principle we get that at least one of the squares has at

least three vertices colored in yellow.

9** GRADE

Problem 1. Let k£ € N*. We will say a function f : N — N holds property
(P) if for any y € N the equation f(z) = y has exactly k solutions.

a) Show there exist infinitely many functions holding property (P).

b) Determine the monotone functions holding property (P).

c¢) Determine if for k > 1 there exist monotone functions f : Q — Q holding
property (P).

Solution. (D. Schwarz) a) Let o : N — N be one-to-one, and let f, : N -+ N
be defined through f,(z) = o(|£]). Obviously, functions f, hold property (P),
while the set of these functions is infinite (in fact not even countable).

b) Were f to be decreasing, the sequence (f(n))nxo will eventually become
stationary, in contradiction with (P). Therefore, we shall look for f monotonically
increasing. But then the first k values in (f(n))n3>0 have to be 0, the next k have
to be 1, and so on. The only possibility therefore remains f(z) = fia(z) = | £].

o) If f(z1) = f(z2) =y, T1 # 2, as between z; and z, there exist infinitely
many rational numbers z (for example taking arithmetical means), and f is mono-
tone, it follows f(z) = y for all these values z, in contradiction with (P), hence

no such functions do exist.
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Problem 2. Given triangle ABC and points M € (AB), N € (BC), P e
(CA),R e (MN),S € (NP),T € (PM), such that

AM BN CP MR NS PT

ME-NC-PA-™ RN SP-rm=!"h A€,

a) Prove that triangles ST R and ABC are similar.

b) Determine the value for parameter A which makes the area of trivangle STR
minimal.

Solution. a) Using bold letters to denote the vectors determined by segments

RT =RM + MT = uNM{»LMP
2-) 2-A !
hence
RT = 22X (NB + BM) + - (MA + AP)
PEDY PEDY .
After de rigueur computations, RT = pBC, TS = pAB, SR = pCA, so
RT, TS, SR are parallel respectively to BC, AB, CA, the triangles STR and
ABC are similar, and their similarity ratio is p = ﬁ'—i;— >0for A € (0,1).

b) Because the ratio of the areas of the two triangles is p?, the area of triangle
STR will be minimal when the value of p is minimal. From the formula for P
follows the equation (1 + p)A2 — (1 + p)A + 1 — 2p = 0. Its discriminant is
A =3(1+ p)(3p — 1), so the condition A > 0 (to warrant \’s existence) comes
top g (-1, %) therefore the minimal value of p is %, when A = .i—,

Problem 3. Determine the functions f : N* — N* for which
2% + f(y) divides f(z)2 +y
forallz,y € N*.

Solution. (D. Schwarz) Forz =y =1 we get

f@P+y _ FA)2+1 2
22+ fly) ~ 1+ £(1) _f(l)_1+1+f(1) €N,

therefore (1) = 1. Now, as 2 + f(y) divides f(z)? + y, it follows that

o+ f(y) < f@)? +y.
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Fory = 1, f(z)? — 2% > f(1) — 1 =0, therefore, for all z € N*,

® f(@) > =

Forz =1,wegetl+y > 1+ f(y), therefore, for all y € N*,

(2) fy) <y

Relations (1) and (2) together yield as unique solution f the identity function
id(n) = n, while divisibility is trivially fulfilled by 2% + f(y) = flx)? +y =
2% +y. .

Problem 4. Let u, v, w be coplanar vectors, each of module 1.

a) Prove that we can choose signs +, —, such that | tu v+ w| < 1.

b) Exhibit a triplet such that, no matter how we choose signs +, —, we get
|tutviw| >1

Solution. We will consider all vectors anchored at the origin O of a coordinates
system.

a) If for any two of the given vectors, be them x,y we have x = +y, the
conclusion is clear. We may thus assume, in the sequel, that this does not occur.

Solution 1. (B. Enescu) The endpoints of vectors u + v,u — v, —u — v and
—u + v make out a thombus of side 2. The radius 1 discs centered at these end-
points will evidently cover the circumference of the radius 1 circle centered at O,
therefore the endpoint of vector w is situated at a distance not larger than 1 from
one of these endpoints.

Solution 2. (M. Andronache) If the endpoints of the given vectors do not make
out an acute triangle, they will be lying on a hemicircle of the radius 1 circle
centered at O, and then, considering the opposite vector to the one with its endpoint
lying between the other two, its endpoint, together with the other two, will make
out an acute triangle. I;et then x,y, z represent u, v, w, respectively —u, v, w or
u, —v, w or u, v, —w, such that their endpoints make out an acute triangle XY Z.

Consider the vector h = x +y + z. We have

h-x,y-z)=(y+zy-2 =y -|z> =0
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and the related other relations, therefore h corresponds to the orthocenter H of
triangle XY Z. But then H € AXY Z, hence OH = |h| < 1.

In effect, a purely vectorial solution (with no geometrical justifications) can be
produced, but it will have to contain precise and detailed considerations, in order
to remedy the lack of the geometrical argument.

b) A possible example is given by u = (1,0), v = (0,1), w = (0, —1).

10" GRADE

Problem 1. The real numbers a, b, ¢ are such that a,b, ¢ € (1,00) ora,b,c €
(0,1). Prove that

log, bc + log,, ca + log, ab > 4(log,, ¢ + log,. a + log,, b).

Solution. Take a logarithmic basis d belonging to the same interval as a, b, c.
Taking logarithms in that base, the inequality becomes

y+z z4+z T+y 4z 4y 4z
—_—t—t— > — v >0
T y t3 Ty+z z+:c+r+y’ e

. z,z z
It will suffice to show that Z + 2> 4?+T,'

The last is equivalent to the arithmetic-harmonic inequality for 1/z,1/y.

Problem 2. The 2n squares composing a rectangle of dimension 2 x n are
painted with three colors. We say that a color has a cutting if on one of the columns
we have two squares of the same color. Find:

a) the number of coloring without cuttings;

b) the number of coloring with exactly one cutting.

Solution. a) Colors on the first row can be chosen in 3" ways. A coloring of
the rectangle corresponds to a coloring of the first row associated with the admitted
coloring of the second one. For each coloring of the first row we have 2™ colorings
that satisfy the condition for the second one; thus the number is 372" = 6™.

b) A coloring with a unique cutting corresponds to an arbitrary coloring of the
first row combined with choosing the columns containing the cutting and to the
coloring of the rest of the second row; thus in this case we have 3" - n - 2771 =
3n - 6"~ colorings.
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Problem 3. Let ABC a triangle with BC = a, CA = b, AB = c. For each
line A we denote by d4,dp,dc the distances from A, B, C to A. Consider

E(A) = ad? + bd} + cd.

Prove that if the value of E(A) is minimal, then A contains the incenter of the

triangle.

Solution. We show that if A does not contain I, the incenter, and A is the line
parallel to A that contains I, then E(A') < E(A). Denote by A1, By, C1, 11 the
projections of A, B, C, I onto A and by A, B', C" the projections of A, B, C onto
A’. We have

(da)? — (dy)? = AA? — AA” = (A} — A I}) — (AI* — A'I?) = AL} — AI

and the other similar ones. Define (M) = aM A? + bM B? + cMC?, where M

is a point in the plane. We get E(A) — E(A") = f(I;) — f(I). For an arbitrary

point O we have

F(M) = (DA — OBMY? + b(OB — OM)* + (OC — OM)?

= aOA? +bOEB? +c0C? 200 (aOA +b0B +cOC) + (a-+b+c)OM?
= aDA? + bOEB? + cOC? —20_1V}(a+b+c)5}+ (a+b+c)5ﬁ2
— aDA? + bOB2 + 002 — (a+b+ 6)5}24_ (a+b+ c)I_J\/}Z,

where we used O_} = i‘ﬁ(ﬁr—%ﬂ.

For O = I weobtain f(M) = (a+b+c)IM? +al A% + bIB* + cIC?, thus
E(A) - E(AY) = f(I) — f(I) = (a+ b+ )I2 > 0.

Problem 4. Let u, v, w be complex numbers of modulus 1. Prove that one can

choose signs + and — such that
|[tutvtw <L

Solution. Denote by capitals the points having complex coordinates the corre-
sponding small letter. Using the Sylvester formula, we get that u + v + w is the
complex coordinate of the orthocenter H of the triangle UVWV.

In case UVW is acute or right we take all signs to be + and this gives the

solution because H is interior to UVW, so interior to the circumcircle.
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In the other case, one angle is obtuse, say W. Then for v’ = —w, we get the
acute triangle UVW', reducing the problem to the first case.

11** GRADE

Problem 1. Let a € (0,1) and (a)n3>1 the sequence defined by zp.; =
zn(1 —23), for any n > 10, starting with zo € (0, 1).
Calculate lim /7 - ay,.
n—o00

Solution. (D. Schwarz) It is immediately established, through simple induc-
tion, that z, > 0. Now, 211 —zn = —23 < 0,50 (%n)nxo is strictly decreasing,
therefore convergent to nl-i—?olo T, = 713% Tp =1,s00 =1(1 - 1?), yielding [ = 0.

1 s . .
Define y, := ) and z, := y,zl, SO (Zn)nzg is strictly increasing, z; > 1, and

nlgréo 2p = 00. Since Ypi1 = yn(l + 3?.1?1)’ it follows
3 1

o—

Zn=1 " (m-17

Znyl =2Zn + 2+

Finally, we get

Zn —2n .z
3 =1, so lim = =2
n—oo slnn n—co n

This yields more than the asked result.

Remark. The limit can be also easily found using the Stolz-Cesaro lemma in
an obviuos way.

Problem 2. Let A € M,(R*). If A -*A = I,, prove that:
a) tr (4)| < n;
b) for n odd, det(A4? — I,) = 0.

Solution. a) Consider A € C a root of the polynomial det(A — XI,)=0(@
proper value of A). The system of equations AX = AX, where X is a column
complex matrix, has a non-zero solution. By complex conjugation and transposi-
tion, we get {X - 4 = XX, Multiplying both relations we obtain IXt4-A- X =
[AX - X. Because A-*A = I, and TX - X is a positive number, we get |A|? = 1
so Al =1.
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As tr(A) = Y ), the sum being taken over all the n proper values, including
multiplicities, the triangle inequality finishes the proof.

b) If n is odd, the characteristic polynomial has at least a real root. It has to be
1or-1,sodet(4 — I,) = 0 or det(A + I,) = 0, implying det(A%? - I,) =0.

Remark. An elementary solution can be also given. By matrix calculations, the
main diagonal of A - A contains sums of the form 3 a;, so obviously a4 <1

For the second part, the given property makes the equality det(A? - I,) =0
equivalent to det(*A — A) = 0. For odd 7, the system of linear equations (A -
A)X =0, with X column matrix, has the nontrivial solution X = ¢(1,-1,1,...,1),
implying that the determinant is zero.

Problem 3. Consider the sequence (,)n31 given by z, = v/n — [y/n]. De-
note by A the set of its limit points, that is, the set of z € R such that there is a
subsequence of (z,)n With limit z.

a) Prove that QN [0,1] C A.

b) Determine the set A.

Solution. We shall present a completely elementary solution, even if by taking
the subsequence T3,2 = n+/2 the Kroneker theorem gives the result.
a)Letr = 5 be an arbitrary rational number in [0,1], p,q € N, ¢ # 0. The
sequence (ny)y, given by ni = ¢*k* + 2pk is increasing and [y/mk] = gk. Thus
— Ji2k2 - 2p P
Tp, = VK2 + 20k —gh = ————= =~
q (l +4/1+ ff"z) q
b) We show that A = [0, 1]. Obviously 4 C [0, 1], and by a) we get that for any
r€[0,1]NQ anye > Oandanyn € N*, there is n > ng such that |z, — | <e.
We shall prove that any irrational & € (0, 1) is in A. Inductively we find (ni)k
such that |z, — | < #: forchosenny <ng <--- <ng,findr € Qn[0, 1] such
that |r — af < z_(kl_-HS and using the above remark with ng = ny ande = Tklm
there is ng41 > 1k With |2, — 7| < 5pepry- Then
|x"k+l - al < ‘x"k+l - TI + IT _O‘I < m

Obviously, Ii‘rtn T, = Q.
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Probl .
roblem 4. Let A, B € f/ln(lR) such that B2 = I, and 42 = AB + I,.
Prove that det(A) < (%ﬁ) X

Solution. Denote by (fy ) the Fibonacci sequence:
fo= o [¢* -2
7 ,

—1 . .
where ¢ = —"?5 By easy induction we obtain A* = fy A + fi_1 B for any odd

14k - ;
k. Then A =A+ f’}k‘Band making k — oo we get

1,
det (ﬁAk> — det(4 - B) € R.

On the other side, if we suppose that det A > ©™, we obtain

o () - o (2 (22)'

which is infinity when k tends to infinity.

Remarks. This is the best possible result: take B = I, and A = pI,,.

One easily obtains from the hypothesis AB = BA. Squaring the second re-
lation we get A* — 342 + I = 0. The equation t* — 32 + 1 = 0 has the golden

number as the root of maximal modulus. This concludes the problem.
12** GRADE

Problem 1. Given a group (G, *) and 4, B nonempty subsets of G, we define
Ax B ={axb)|)a € A))and)b € B}.

a) Prove that forn € N, n > 3, the group (Z,, +) can be written in the
form Z, = A + B, where A and B are two nonempty subsets of Z,, such that
A#ZnB#Z,and|ANB| = 1.

b) If (G, ) is finite, A, B are nonempty subsets of G and a € G \ (AxB)
prove that the function f : A — G\ B given by f(z) = 27! x a is well-defined
and one-to-one. Conclude that if | 4] + | B| > |G|, then G = A % B.
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Solution. a) We choose A = {0,1} and B = {1,2,...,n>1}. As0 =
it+niland BC A+ B,wegetZ,=A+B.

b) Suppose G \ (A * B) # Dandleta € G \ (A * B). Define f : A — G\B,
by f(z) =z ! *a.

Ifz—lxa=>b¢ B,thena = z*b € Ax B, in contradiction with the way we
picked a. So f is well defined. As f(z) = f(y) implies z7lxa =y ! xa, thatis
z =y, so f is injective and thus |A| < |G\ B|.

As a consequence |G| = |G \ B| + |B| > |A| + |B|, a contradiction. Thus
G=AxB.

Problem 2. Consider two continuous functions f : [0,1] = Rand g : [0,1] =
(0, 00) such that f is non-decreasing. Prove that

t 1 t 1
/U f(@)g(@)dz - /O 4(@)ds < /0 o(@)dz - /0 f(@)9(2)d,
forany t € [0,1].

Solution. Letk = fol g(z)dz > 0. Replacing, if necessary, g by g1 = 1g,we
may suppose that fol g(z)dz = 1.
Define F' : (0,1] = R by

po - J87 @tz
Jo 9(z)dz

F is obviously differentiable on (0, 1] and

F(®9(t) Jy 9(z)dz - 9(8) [y £ (@)g(x)dz

F'(t) =
(St ota)da)”
= £ fot g(z)dz — fot F(@)g(z)dz
=g(t) : (
(fo g(z)dz)
> g(t)i;(f(_t)-M So.

(fot g(z)dz)2

Thus F is non-decreasing. In particular, F(t) < F(1), as asked.
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Problem 3. Find all continuous functions f : R — R which verify simultane-
ously the following two conditions:
a) the limit lim f(z) exists;
T—00

b) f(2) = [51 f(t)dt, forallz € R

Solution. For a € R define inductively the sequence (an)n by ap = a, and,

for given ay,, choose an41 € [an +1,a, + 2] such that

an+2
[ 1@he = f(enm).
an+1

This can be done by the mean value theorem. Thus a,, — co.
As f(an) = ILm f(z) and f(an) = f(a) for any n € N, we have f(a) =
z—r00
lim f(z). Asaconsequence f is constant, and reciprocally, any constant function
00

verifies the given condition.

Problem 4. Let k be a field with 2" elements where n € N* and consider the
polynomial f = X* + X + 1. Prove that:

a) for even n, f is reducible in k[X];

b) for odd n , f is irreducible in k[ X].

Solution. a) As 3|2™ — 1, we can find & € k with ord(a) = 3 in the group
(k*,-). Then (@ — 1)(a®* + @ + 1) = 0, thus > + & + 1 = 0. We conclude
f=X?+X+a)(X?+ X +a+1).

b) Suppose there is a 8 € k with f(8) = 0. We have (8% + 8)% + (8% + B) +
1 =0, s0 (8% + B)® = 1 and, because 2" — 1 is not a multiple of 3, we have
B2+ pB+1=0. Thusf® = 1,thatis 3 = 1. Inturn 3 = O, thatis 1 = 0, a
contradiction. As a consequence f has no roots in k.

If f is reducible, f = (X2 + mX + n)(X? + pX + g) withm,n,p,q € k.
Identifying coefficients gives m +p = 0, n + ¢ + mp = 0, mg + np = 1 and
ng = 1. We easily obtainm = p,n + ¢ = p?, n + ¢ = p~*, from where p* = 1.
Thusp = 1,n = 1+ g,50 ¢* + ¢ + 1 = 0, an obvious contradiction.



PROBLEMS AND SOLUTIONS

FINAL ROUND

7" GRADE

Problem 1. If the side lengths a, b, and c of a triangle satisfy the conditions
a+b—c=2,and 2ab — ¢ = 4, show that the triangle is equilateral.

Solution. Take the square of ¢ = a + b — 2 and use ¢ = 2ab — 4 to get
a® +b* — da - 4b+8 = 0; thatis, (a — 2)2 + (b — 2)? = 0. This forces a = 2
and b= 2,50 ¢ =a + b — 2 = 2. The conclusion follows.

Problem 2. Consider a triangle ABC' with a right angleat A, and AC = 2AB.
Let P and Q be the midpoints of the sides AC and AB, respectively. Let further M/
and N be two points on the side BC such that BM = CN = z, with 2z < BC.
Express z in terms of AB, if the area of M N PQ is half the area of ABC.

Solution. Set AB = c. Then AC = 2cand BC = ¢v/5. Let y be the length
of the altitude from M in triangle BM @, and let z be the length of the altitude
from N in triangle CN P. Obvious, similarities yield y = 2z/v/5,and z = z//5.
Rewrite the condition on the area of M N PQ as

1
area(APQ) + area(BMQ) + area(CNP) = Earea(ABC)

to get ¢®/4 + cy/4 + cz/2 = ¢*/2. Finally, substitution of y = 2z//5 and
z=z/5 yields ¢ = ¢\/5/4.

Problem 3. Consider a triangle ABC with a right angleat A, and AB < AC.
Let D be the point of the side AC' for which ZACB = ZABD. Drop the altitude
DE in triangle BCD. If AC = BD + DE, what are the angles ABC and ACB?
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Solution. Triangles ABD and EC'D are similar, so AD - CD = BD - DE.
On the other hand, AD + CD = AC = BD + DE. Since AD < BD (from
the right triangle ABD), and CD > DE (from the right triangle C DE), the two
relations above yield AD = DE (equivalently, BD = CD). Consequently, the
line BD bisects the angle ABC, so the latter is 60°, and the angle at C is 30°.
(Equivalently, BD = CD shows that the angle at C'is equal to each of the angles
formed at B, and since the three add up to 90° the conclusion follows.)

Alternative solution. Reflect E through AC to get F. Notice that B, D, and
F are collinear, so ZBFC = 90°. Therefore, 4, B, C, F are cocyclic. Observe
further that AC = BD + DE = BD + DF — BF, to deduce that ABCF is an
isosceles trapezium, so ZACB = LAFB = /CBF. Since ZACB = ZABF,
by hypothesis, we are back in the situation at the end of the first solution, and we
can repeat that argument verbatin.

Problem 4. If m and n are non-negative integer numbers such that m > 1 and
22m+1 5 02 show that 22m+1 >n?47T.

Solution. Since m > 1, the conclusion holds for n = 0: 22m+1 _ n? =
2?m+1l > 8 > 7. Forn 2 1, write n = 2Pq with p and q non-negative integers,
and g odd (s0 ¢ > 1). Thus, 22m+1 _ p2 — 92p (220m-p)+1 _ ¢%). Since g > 1,
the condition 2™+ > n2 implies that p < m. The case p = m forces ¢ = 1,
50 22mHl _ 2 — 92m 5 16 5 7, Forp < m (thatis, p + 1 < m), recall that
¢ is odd to write g2 = 8r + 1 for some non-negative integer r, so 22m+1 _ p2 —
277 (8 (22(m—p-1) _ ) —1). Since m > p + 1, it follows that 22(m—p—1) _ ris
integer. In conjunction with 22m+1 > 12, this implies that 22(m~7=1) _p > 1 5o
22mH 2 5 7 92 5 7.

Alternative solution. We show that there are no integer solutions m > 1 and
n20t02" M =n? 4t kfork=0,1,... , 6. Notice that 22™+1 s not a perfect
square to rule out the case k = 0. For the remaining cases, notice that 22m+1 g
divisible by 8 for m > 1 and argue by contradiction. For k = 1,3, 5, the number
n should be odd, son? = 8M+1andk = 8M — 1 which is not the case. Finally,
for k = 2 or 6, the number n should be even, so k = 22™+1 _ n2 should be
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divisible by 4 which is not the case, either.

Remark. Notice that the equation 22™+* = n2 47 has integer solutions m > 1
and n > 0: for instance, m = 2andn = 5orm = 3andn = 11 orm = 7 and
n = 181.

8" GRADE

Problem 1. Prove that the number 10'° cannot be written as a product of two
p!

positive integers all of whose base-10 digits are different from zero.

Solution. Suppose, if possible, that 10'° can be written as a product of two
positive integers all of whose base-10 digits are different from zero. In particular,
neither factor is divisible by 10. Since 10'° = 21° . 510, this forces one of the

factors to be 2% = 1024 which contradicts the assumption.

Problem 2. A number of 2007 offices are assigned 6018 desks. Each office is
assigned at least one desk. All desks from any one office may be removed from
that office and reascribed to other offices to get an equal number of desks in each
office other than the one they have been removed from. What are the possible desk
ascriptions?

Solution. Since the average number of desks per office is 6018/2007 > 2,
some offices must be assigned at least 3 desks each.

’ We claim that no office may be assigned more than 3 desks. Indeed, were
some office assigned more than 3 desks, removal of all desks from another office
and their reassignment, whatsoever it be, would yield 2006 offices with at least 4
desks each — a total of at least 4 - 2006 = 8024 desks which is impossible.

In what follows, a k-office is an office which is assigned k desks — by hypoth-
esis, k > 1. Let n denote the number of k-offices. By the preceding, n; = 0 for
k > 4,s0n; +na+nz = 2007, and ny +2n,+3n3 = 6018. Hence 2n, +no = 3,
so either n; = 0 and n, = 3, in which case n3g = 2004, 0orn; = landns = 1,in
which case ng = 2005.

We now show that both fill in the bill. In the first case, remove the two desks

from any 2-office and assign the other two 2-offices one each to get a balanced
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arrangement; similarly, remove the three desks in any 3-office and assign the three
2-offices one each to get a balanced configuration.

In the second case, the one desk in the 1-office may be transferred to the 2-
office, and the two desks in the 2-office may be transferred to the 1-office — the
resulting arrangements are both balanced; finally, remove the three desks from any
3-office and ascribe two to the 1-office and one to the 2-office to get a balanced
configuration.

Problem 3. a) If all sides of a triangle ABC' have length less than 2, show that
the length of the altitude from A is less than /4 — BC?/4.

b) Show that the volume of a tetrahedron at most one edge of which has a
length greater than or equal to 2 is less than 1.

Solution. a) The length of the altitude from A does not exceed that of the
median from A whose square is (AB% + AC?)/2 — BC?/4 < 4 — BC?/4. The
conclusion follows.

b) Let AB denote the longest edge of the tetrahedron, and let a denote the
length of the edge C'D opposite AB. By hypothesis, triangles ACD and BCD
both have all sides of length less than 2; in particular, a < 2. The length of the
altitude from A in the tetrahedron does not exceed the length of the altitude from A
in triangle AC'D which by a) is less than \/m. With reference again to a),
the length of the altitude from B in triangle BC'D is less than \/4——az/4, so the
triangle has an area less than (a/8) \/m. Consequently, the volume of the
tetrahedron is less than a(16 —a?)/24 = 1— (2—a)(4+ (2—a)(4+a))/24 < 1.

Problem 4. Let ABCD be a tetrahedron, and M a point in space such that
MA? + MB? + CD? = MB? + MC? + DA? = MC? + MD? + AB? =
MD? 4 MA? + BC?. Show that M lies on the common perpendicular to the
lines AC and BD.

Solution. Note that AB? — AD* = MB? — MD? = CB? — CD? to deduce
that the points A, C' and M lie in a plane o perpendicular to the line BD. Similarly,
the points B, D and M lie in a plane 3 perpendicular to the line AC. The planes
a and 3 both contain the point M, and do not coincide, for the lines AC and BD
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are not parallel. Consequently, they meet along a line through M which is the

common perpendicular to the lines AC and BD.

9" GRADE

Problem 1. Prove that, fora; € N, 1 <i < n+1,any1 = a1, n € N*, if

the polynomial function

n n
P(z) =2° - (Za?+1)x+ QiGis1
i=1

=1

admits an integer root, then, if n is a perfect square, so are both its roots.

Solution. (Dan Schwarz ) Since P(z) is monic, and has integer coefficients, it
follows that its second root is also an integer. If we compute

n n
P(O) = i;a.-a,-ﬂ >0 ad PO)=-; ;mi —ai41)? <0,
then it follows that P(z) has a root in (0, 1], therefore P(1) = 0, which only
occurs when all a; are equal, a; = a,1 < i < n, when P(z) = (z — 1)(z — na?),
and the second root is na?, a perfect square when n is a perfect square.

Alternatively, without even having to show the second root is also an integer,
it is needed that

n 2 n
A= <Zaf +1) —4(Zaiai+l)
=1 =1

be a perfect square, and having same parity as (37 a? + 1)2, from having
(Xr,a? —1)2< A< (T8, a2 +3)2 follows a; = a, 1 < i < m, etc.

Remarks. Notice that, for a; € Z, having 2?:1 a;ai+1 # 0 is enough for the
first solution, as then P(—1) = 2 + % Yoimy (@i + aig1)? > 2, while P(0) # 0, so
again P(1) = 0, etc. In fact, knowing P(z) has an integer root allows solving it,
asthe case 307, aja;41 = 0 leads to one root 0, and the other being 7, a2 +1.
The second solution also works, as may be seen.
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Problem 2. Let ABC be an acute-angled triangle, and M a point in its plane,
different from its vertices. Then, with the usual notations,

a b c =
T MA+ 7= MB + TMC =0
ifand only if M = H, the orthocenter of ABC.

Solution. (Dan Schwarz) It is clear that if M is not interior to ABC, all three
vectors point to a same semiplane, therefore their sum cannot be 0 (this trivial

observation also accounts for the requirement that ABC be acute-angled). Rewrite

IZ ST
MA MB McC

and notice that this is equivalent to the three vectors forming a closed triangular
contour of sides a, b, ¢, therefore congruentto ABC. Denote A', B!, C', the feet of
cevians AM, BM, C M, respectively. Then ZAMB + ZACB = =, so quadrilat-
eral CA'M B' is cyclic, and similar. Therefore, ZCA'M = /AB'M = /BC' M
and ZCB'M = ZBA'M = £AC' M. But this can only happen when M is lying
on the same (oriented) side of the three altitudes through H, which in turn only
happens when M = H.

Conversely, when M = H, the reverse reasoning of the abgve leads to the fact
that the three vectors close their contour, therefore have sum 0 .

Alternative, more computational solutions are available.

Problem 3. Color white or black each band of width 1, determined by par-
titioning the plane with equidistant parallel lines, distanced 1 apart. Show that
one can place an equilateral triangle of side 100, such that its vertices share a

same color.

Solution. (Dan Schwarz) All that is needed is for the triangle to have a non-
integer altitude! If the coloring is monochromatic, the result is trivial. If not, place
the triangle with a side on a boundary line between white and black bands, pointing
towards the white. Then the apex will fall into a band which, if colored white,
allows sliding the triangle in the direction of its apex, with its base kept parallel

to the boundaries, to find a triangle with all white vertices, while if colored black,
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allows sliding the triangle in the opposite direction, to find a triangle with all black
vertices.
As the altitude is 50v/3 & 7, the result follows.

Remarks. As one can see, this method works for any triangle having at least
a non-integer altitude. On the other hand, for an equilateral triangle with integer
altitude h, consider a coloring made of alternating monochromatic black and white
groups of h bands. Then any equilateral triangle in the interior of a monochromatic
group will have its altitude lower than h, while an equilateral triangle spanning a
monochromatic group will have its altitude larger than h. Thus, the integer altitude

case is a relevant counter-example.

Problem 4. For f : X — X, denote fo(X) = X, fa41(X) = f(fn(X)), for
alln € N. Also denote

foo(X) = [ fa(X).

neN
Prove that, if X is finite, then f(foo(X)) = foo(X). Does the result still hold
when X is infinite?

Solution. It is clear that fn41(X) C fn(X), foralln € N. When X is finite,
the sequence (fn(X))nen will become stationary, and so foo(X) = fn(X) for
some n € N for which fp41(X) = fn(X), therefore f(foo (X)) = foo(X).

When X is infinite, if z € X belongs to a finite cycle C; = {z, f(z),...},
thenz € C; C foo(X) and f(C;) = Cq. If not, when we denote )

@) ={z} @) ={yeX; () =1}
@ = J ),

yef~"(z)
the sets f~™(z), n € N, are disjoint, and K6nig’s Infinity Lemma ! implies that,
if all sets f~"(z) are finite, but not empty, there exists an infinite path P, =
{z,z1 € f~Y(z),...,2n € f~™(x),...}, and then againz € P, C foo(X) and
f(Pz) = Pq, while if some f~"(z) = 0, then & & foo(X).

ISee, for example, [Reinhard Diestel — Graph Theory).
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It follows that, in order to have f(foo(X)) # foo(X), we need some z € X,
such that z does not belong to a finite cycle C;, and infinitely often f~"(z) is
infinite, while no infinite path P, exists. Also, f can be neither into, nor onto.
Clearly, f(foo(X)) C foo(X) always.

Forn € N, denote P,, = {g; p,q € N, n < p < ¢, g prime}, look at N*
as N* = 5; p € N, ¢ =1}, and take X' = P UN* andf(s) = %‘ It is
readily seen that f,(X) = P, UN", hence foo(X) = N*, and clearly f(N*) =
N* \ {1} # N, therefore the result for finite sets does not anymore necessarily
hold for infinite sets.

Remarks. The infinite sets result is counter-intuitive, as one would expect f to
invariate foo(X). Another, trivial, remark is that for infinite sets foo(X) may be
empty (e.g., f(n) = n + 1 on N), while for finite sets foo(X) # 0.

10" GRADE

Problem 1. Let n be a positive integer. Prove that a complex number of abso-
lute value 1 is a solution to 2™ + z + 1 = 0 if and only if n = 3m + 2 for some
positive integer m.

Solution. If n = 3m+2 for some positive integer m, then the complex number
cos(27/3) + isin(27/3) is clearly a solution of absolute value 1. Conversely, if z
is a solution of absolute value 1, thenso is 2 = 1/z. Hence 2" +z +1 =0 =
2™+ 2" + 1 which yields successively z*~2 = 1,22 + z + 1 = 0, 2% = 1 with

z # 1,s0n = 3m + 2 for some positive integer m.

Alternative solution. Let P(z) = 2" + z + 1 = 0. If P(w) = 0, |w| = 1, then
w = cosf + isinf, and so, using de Moivre’s formula, w” = cosnf + isinné.
Then 0 = (cosnf + cosf + 1) + i(sinné + siné), hence sin*nf = sin’4,
and cos®nf = cos?@ + 2cosf + 1, so cosf = —1. It follows w® = 1 and
w? +w+1=0, thereforew” = w?, son = 2 (mod 3).

Conversely, if n = 2 (mod 3), for w # 1, w root of unity of order 3, P(w) = 0.
In fact then P(z) = 2™ + z + 1 = (22 + z + 1)Q(z) for some Q (with integer
coefficients).
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Problem 2. Solve the equation 2"+ + logy & = 2°+! in the set of real

numbers.

Solution. Clearly, z must be positive. Rewrite the equation as log, = 2°+1 —
22"+ and notice that for > 0 the two members have opposite signs, unless
z = 1 in which case both vanish. Consequently, z = 1 is the unique solution of

the equation.

Alternative solution. As before, x must be positive. Add log, (z+ 1) both sides
to get 95™+e 4. log, (a? +z) = 2°*1 +log,(z + 1). Since t ~ 2t +log, ¢, t > 0,
is a strictly increasing function (it is the sum of two strictly increasing functions),
it follows that > + = z + 1 with z > 0; that is, = 1 which clearly is the

solution of the equation.

n+1

n—1

Problem 3. For what integer numbers n > 2is (n — 1)™ * + (n + 1)®

divisible by n™ ?

n+1 n—1 , P

+ (n+1)" " is divisible by n™
if and only if n is odd. Necessity follows from the fact that a; = 10 which is not

Solution. We show that a, = (n — 1)"

divisible by 22 = 4, and a,, = Mn + 2 for n even. Sufficiency is a consequence
of the following slight generalization: For any odd integer n > 1, n™ is the highest

power of n dividing a,,. To show this, write

n

a = Z(_l)k—lnk (”"'H) + Zﬂ:nk (nn_1> + M.

n k=1 k k=1 k '
since n is odd, the two terms corresponding to & = 0 cancel out, and the generic
exponent of —1 in the first expansion is £ — 1. Noting that the first term in the
second sum is exactly n™, we show that the other summands in both sums are all
divisible by n™*+1. To this end, we merely have to show that every prime factor of
n™*1 divides those summands to at least as high a power as it divides n"*1. So
let p > 3 be a prime factor of n (recall that n is odd, so p > 3), and let p* be the
highest power of p dividing n (so a > 1). Clearly, p*(**1) is the highest power of
p that divides n™+1.
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The generic term of the first sum is divided by p to at least as high a power as

pestscnen- (2] [3]3]-)

>ak+a(n+1)—ﬁ(1+l+l2+.”)
p P P
>ak+a(n+1)— ——

p—1

=a(n+1)+k<a—p+1)

>a(n+1) fork>1,a>1, andp > 3.

Consequently, each term in the first sum is divisible by n"+1.
For the generic term of the second sum, merely replace n + 1 by n — 1 in the
first three estimates above to see that p divides it to a (strictly) higher power than

k 1
ak+an—1) - — = D+k{la——) -
(n-1) o=+l + (a p—l) 2a

1
2&(n+1)+k(a~§) —2a forp>3.

For k > 4, note that k(e — 1/2) — 2a: > 2(@ — 1) > 0 to deduce that the
corresponding summands are all divisible by n™+1. Finally, for k = 1,2, 3, the
first term in the second sum is exactly n™, and the second and third are easily seen
to be divisible by n™*1. The conclusion follows.

Remark. Along the same lines, it can be shown that the number b, =
(n+1)"7 = (n -1

over, for even n > 2, n™ is the highest power of n that divides b,. Forn = 2,

is divisible by n™ if and only if n is even. More-
by =9 — 1 = 8 = 23. The latter fact is not at all accidental. It can be shown that
by is divisible by 2n™ for n = 2 (mod 4).

Problem 4. a) Let S be a finite set of numbers, and let S + S = {z+y:
z,y € S}. Show that

1
IS +51< 5181081 +1),

where | X| is the cardinal number (that is, the number of elements) of the set X.
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b) Given a positive integer m, let C(m) be the greatest positive integer k£ such
that, for some set S of m integers, every integer from 1 to & belongs to S or is a
sum of two not necessarily distinct elements of S. For instance, C(3) = 8 with
S = {1,3,4}. Show that m(m + 6)/4 < C(m) < m(m + 3)/2.

Solution. a) Clearly,

51

is-+si<is+ (1

1
) = 3181081+ ).
b) The number C/(m) is the greatest positive integer & such that {1,2,...,k} C
SU (S + S) for some set S of m integers. Since
ISUS+9)<ISI+1[S+S]|
1
<ISI+ 5151081+ 1) by a)
1
=3I181051+3),

it follows that C(m) < m(m + 3)/2. To get a lower bound for C(m), take a

positive integer ¢ < m, and

S={1,2,...,t}U{k+(k+1)t:k=1,2,...,m —t}.
Clearly, |S| = m, and
{1,2,...,(m=t+1)t+(m—t)+t}={L,2,...,m+(m+1)t—1*} C SU(S+5).

Maximizing the cardinality of the set on the left as ¢ runs through the positive
integers less than m, yields the best lower bound we can get this way. It is readily
checked that the maximum is [m(m + 6)/4] and is achieved for t = [(m+1)/2].
Consequently, C(m) > m(m +6)/4.

Remarks. 1) For 2 < m < 8, a different construction yields a better lower
bound: Take S = {1,3,...,2m — 3,2m — 2} and note that {1,...,4m — 4} C
SU(S+S),togetm(m +6)/4 < 4m — 4 < C(m).

2) Given ¢ > 0, our estimates yield 1/4 < C(m)/m? < 1/2 + ¢ for all
sufficiently large m. A more careful choice of the set S yields better asymptotic
bounds: 9/32 < C(m)/m? < 4/9 + ¢ for all sufficiently large m.
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11" GRADE

Problem 1. If A and B are 2-by-2 matrices with real numbers as entries, and
A? + B? = AB, prove that (AB — BA)® = 0,.

Solution. If € is a primitive third root of unity, then

|det(eA + B)|* = det(cA + B) det(¢ A + B)
= det(eA + B) det(¢A + B)
=det ((cA+ B)(€A + B))
= det (¢(AB — BA))
=2 det(AB — BA),

sodet(AB — BA) = 0. Since X2 — (trX) - X + (det X)-I, = 0, for any 2-by-2
matrix, and tr(AB — BA) = 0, the conclusion follows.

Problem 2. Given two real numbers a and b, a < b, in the image of a contin-
uous, real-valued function f on R, prove that the closed interval [a, b] is the image
under f of some interval I C R.

Solution. Since a and b lie in the image of f, a = f(a') and b = £(b')
for some a’,b' € R. Without loss of generality, we may and will assume that
a' <V.Theset A= {z:a' <z <V and f(z) = a} is non-empty (a’' € A) and
bounded from above by ¥'. Let o = sup A. By continuity, f(a) = a. The set
B ={z:ag<z <V and f(z) = b} is non-empty (b’ € B) and bounded from
below by a. Let # = inf B. By continuity, f(8) = b. We now show that the
closed interval [a, b] is the image of I = [a, §] under f. By the intermediate value
theorem, [a, 8] C f(I). To prove the reverse inclusion, suppose first that fl@z)<a
for some = € (a, B). Then f(z') = a for some &' € (z,8), and we would get a
contradiction with the choice of a. Similarly, were f(z) > b for some z € (o, B),
we would reach a contradiction with the choice of B. The conclusion follows.

Problem 3. Given an integer number n > 2, let *~! be the set of all z =
(Z1, .., 2n) in R™ with |z1] 4+ -+ + |n| = 1. Determine the n-by-n matrices A
with real numbers as entries such that z4 € £"~! for all z € Tn-1,
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Solution. Let A = (a;;) be an n-by-n matrix with real numbers as entries such
that zA € £~ forall z € ="~1. Foreachiin {1,...,n}, lete; be the row all of
whose entries are zero except the i-th which is 1. Since %(ei +ej) € £ forall
iand all j, the condition  (e; +e;)A € T~ yields Y, |aix + aji| = 2 forall
i and all §. In particular, |a; |+ - - +|ain| = 1 for all i, so each row has some non-
zero entry. On the other hand, for all i and all j with i # 7, %(e, —e;) € T,
and the condition }(e; — e;)A € Z" " yields Y_;_, |air — ajx| = 2 for all i and
all j with i # j. Hence, >_p—; (laix| + laji| = |aix = a;k|) = 0 for all  and all
j with i # j. Since each summand is non-negative, it follows that a;xa;r = 0,
k =1,...,n, for every pair of distinct indices ¢ and j. Recall now that each row
has some non-zero entry to infer that on each row and each column there must
be exactly one non-zero entry; by the preceding, this non-zero entry must be +1.
Consequently, the rows of A are a permutation of the +e;, ¢ = 1,...,n, with signs
chosen arbitrarily — a total of 2"n! such matrices. It is readily checked that any

such matrix satisfies the required condition.

Remarks. Let S™~! be the standard (n — 1)-sphere in R* with the Euclidean
norm ||z||> = (a? +--- +1€)1/2: S = {z:z € R",||z|» = 1}. To avoid
confusion, let E* denote R" with the Euclidean norm. The set £~ considered in
the problem is the || ||;-counterpartof S™~!: it is the standard (n—1)-spherein R"
with the norm [|z||; = |z1| + - - + |2zx|. For n = 1 the two spheres are the same,
but for n > 2 this is no longer the case: not only are they different as sets, but i
is smooth, strictly convex, with no particular features, while ¥n=1 is not: literally,
it has vertices, edges, faces etc. (it is just piecewise smooth) — for instance, ' is
the boundary of the square with vertices at (+1, 0) and (0, %1), £ is the boundary
of the octahedron with vertices at (+1,0,0), (0,£1,0) and (0,0, £1), and so on.
Note that the extremal points of the convex hull of S*~! (the Euclidean n-ball) are
all of S"~!, whereas the extremal points of the convex hull of £"~1 are located
at the +e; — and this is precisely what forced the result. The problem essentially
asks for a complete description of the linear transformations of R™ preserving the
|| ll1-norm: ||lzA||; = ||z||1 for all = in R". The answer shows that these trans-
formations are but a tiny fraction of their Euclidean counterparts: they form a

finite group embedded in the uncountable continuous group of orthogonal trans-
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formations (rotations and rotoinversions) of E*. Roughly speaking, the norm || ||,
deprives R™ of most of its Euclidean rotational symmetry. It brings in a rigidity the
Euclidean structure is unaware of. Not surprisingly, this rigidity reflects on the stiff
behaviour of || ||;-preserving linear transformations relative to subspaces spanned
by a finite number of the e;. For example, the subspace spanned by an e; is sent
onto that spanned by some e; — in contrast with the Euclidean case, where any
given 1-dimensional subspace may be mapped onto any prescribed 1-dimensional
subspace by some || [|o-preserving linear transformation (and there are uncount-
ably many ways for a 1-dimensional subspace to be prescribed). Finally. note that
the stiffness of || ||;-preserving linear transformations forces them to be simplicial
on T 1: vertices are mapped to vertices, edges to edges. faces to faces etc. At

the other extreme, we may consider the norm [l llv: forz = (a,... ,Tp) in R7,

[|z]loo = max{|z;| :i =1.... s} This time, the standard (n — 1)-sphere is the

set =1 consisting of those 2 with at least one coordinate +1; it is the boundary

of the n-cube with vertices at (£1,...,%£1). The corresponding problem can be
dealt with similarly.

Problem 4. A P-function is a differentiable function f:R = R with a
continuous derivative f’ on R such that f (z + f'(x)) = f(z) forallz in R

a) Prove that the derivative of a P-function has at least one zero.

b) Provide an example of a non-constant P-function.

c) Prove that a P-function whose derivative has at least two distinct zeros
is constant.

Solution. a) If f is a P-function, and f'(z) # 0 for some & € R, the mean
value theorem shows that f vanishes at some point £ between  and z + f'(z) :
0=f(z+f'(@) - f(z) = f'(2)f'(6).

b) Try a non-constant polynomial function f. Identification of coefficients
forces f(z) = -2 +pz + ¢, where p and q are two arbitrarily fixed real numbers.
This is not at all accidental. As shown in the comment that follows the solution,
every non-constant P-function whose derivative vanishes at a single point is of
this form.

c) Let f be a P-function. By a), the set Z = {z:zeRand f'(z) = 0} has at
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least one element. We now show that if it has more than one element, then it must
be all of R. The conclusion will follow. The proof is broken into three steps.

Step 1. If f' vanishes at some point a, then f'(z) > 0 forz < a,and f'(z) <0
for z > a. The argument is essentially the same in both cases, so we only deal with
the first one. We argue by reductio ad absurdum. Suppose f'(zo) < 0 for some
2o < aandleta = inf{z : £ > z¢ and f'(z) = 0} — clearly, this infimum exists.
By continuity of f', f'(e) = 0, and f'(z) < 0for 2o < & < a; in particular, f is
strictly monotonic (decreasing) on (o, «). Consider further the continuous, real-
valued function g : z — z+ f'(z), z € R, and note that g(z) < = forzp < z < a,
and g(a) = a. Since g(e) = a > o and g is continuous, g(z) > wo for z in
(w0, @), sufficiently close to a.. Consequently, for any such z, 7o < g(z) <z < a,
and f(g(z)) = f(z), which contradicts the strict monotonicity of f on (zo, @).

Step 2. If f' vanishes at two points @ and b, a < b, then f is constant on
[a,b]. By Step 1, f/(z) > 0for z < b, and f'(z) < 0 for z > a, so f’ vanishes
identically on [a, b]. Consequently, f is constant on [a, b].

We are now in a position to conclude the proof.

Step 3. If theset Z = {z : = € Rand f'(z) = 0} has more than one
element, then Z is all of R. By Step 2, Z is a non-degenerate interval, and f
is constant on Z: f(z) = c for all z in Z. We show that @ = inf Z = —o0 and
B = sup Z = +o0. Suppose, if possible, that @ > —oo. Then a is a member of
Z, by continuity of f’. Recall the function g from Step 1. By Step 1, f'(z) > 0
for z < a, so g(z) > x, f(x) is strictly monotonic (increasing), and f(z) < c for
x < a. Since f(z) is strictly monotonic for z < a, the conditions f(g(z)) = f(z)
and g(z) > z forcez < a < g(z). Since g(a) = a < f3, and g is continuous, it
follows that g(z) < 3 for < a, sufficiently close to a. Finally, take any such z
and recall that Z is an interval to conclude that g(z) € Z, so f(z) = f(g(z)) = ¢
— in contradiction with f(z) < c established above. Consequently, @ = —co. A

similar argument shows that § = +oc0.

Alternative solution. (Dan Schwarz) a) Let us define g(z) := z + f'(z). Sup-
posing f'(z) # 0 for some z € R, it follows g(z) # =, but f(z) = f(g(z)), so
Rolle’s Theorem implies the existence of ¢ € (z, g(z)) with f'(¢) = 0.
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Therefore, F := {z € R; f'(z) = 0} # 0. It is evident that f(z) = C, C real
constant, is a solution (and then F = R).

b) If we look for polynomial solutions of degree > 0, we readily find (identi-
fying coefficients) that the degree must be < 2, and all such solutions are of the
form f(z) = —2® + px + ¢, with p, g € R arbitrarily fixed.

¢) Let us first show that if | F| > 1, then F is a convex set, therefore a (closed,
as f' is continuous) interval. Let z; < z, with f'(z1) = f'(z2) = 0, and let
z € (21,2). Denotea = sup{z; z € [z1,z]NF} and b = inf{z; z € [z, z2]NF}
(clearly a,b € F, as f'is continuous). If a = b, then also = a € F. Supposing
a < b, it follows that f is strictly monotonical on [a, b]. Be f increasing, there exist
0<e<®%and0<d< %52 suchthata <a+e<band0< f'(a+e) <4,
soa<gla+e)=a+e+ fla+e) <a+e+d<bIfa+e=g(a+e),then
f'(a+€) =0, with a + € € (a,b) while otherwise, as f(a +¢) = f(g(a +¢)),
there exists ¢ € (a+¢,9(a+¢€)) C (a,b) with f'(¢) = 0, absurd, as (a, b) cannot
contain any more zeros of f'. Similarly, be f decreasing, one will work with b— ¢
and reach the same contradiction.

If now F = [a, B8], for z < a it follows g(z) > 3, because f is strictly mono-
tonical on (—oo, @] and constant on [a, 3], so we cannot have g(z) € (—o0, ]
and f(z) = f(g(z)) unless g(z) = z, thatis f'(z) = 0, absurd. So g(z) > 3, but
then f'(z) > B — a. Similarly, for z > f it follows f'(z) < a — 3. Therefore
|f'(z)] > B—aon(—o0,a)U (3, +00), while f'(z) = 0 on [a, 5], absurd, as f’
is continuous, and thus holds the Intermediate Value Property (Darboux).

If 7 = [a, +00), for z < «a it follows as above g(z) = z, so f'(z) = 0,
absurd, and similarly if 7 = (—o0, ], with z > S. It finally follows, as only
possibility, |[F| > 1is F = R, therefore f'(z) = 0 and so f(z) = C, C real
constant.

Remark. (Barbu Berceanu) As stated, the problem leaves open the case of a
non-constant P-function f whose derivative f' vanishes at a single point a. Our
purpose here is to settle the case. Recall the continuous, real-valued function g :
z +— z + f'(z), z € R, considered above. We shall prove that g(z) = —z + 2a
forallzinR, so f(z) = —2® + 2az +b,b € R, forallzin R.
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To begin with, note that f restricts injectively to either side of a. We now show
that g is an involution on R: g(g(z)) = « for all z in R. Clearly, this holds at
z = a. For ¢ # a, injectivity of f on either side of a shows that z and g(z) always
fall on opposite rays: either z < a < g(z) or g(z) < a < z. Consequently, z and
9(g(z)) always fall on the same ray. Since f(z) = f(9(z)) = f(g(g(x))), the
conclusion follows by injectivity of f on the ray containing both z and g(g(z)).

Next, we show that g is differentiable at any ¢ # a, and ¢'(z) = —1 for all
z # a. To this end, fix any such z and let 0 < h < |z — a|. Then

f@+h) - fx)

o@+h) ~g(@) _ h hop f(a)
h GG~ Fu@®)  Fle@)
9@+ h) — g(z)

o@)-z  _g@) -z

-4

" 9(9(2)) —g(z) T z—g(z) ~
and we are done; note that all quotients above make sense.
Finally, continuity at z = a yields g(z) = —z + 2a.
12" GRADE
Problem 1. Let C be the class of all differentiable functions f : [0,1] = R
with a continuous derivative f' on [0,1], and f(0) = 0 and f(1) = 1. Determine

1/2

the minimum value the integral fol (1+2%)"* (f'(z))” dz may assume as f runs

through all of C, and find all functions in C that achieve this minimum value.
Solution. Apply the Cauchy-Schwarz inequality to get
1
1=/0) - f0) = [ f'(ade
0
1
:/ (1+2) 7 (1 +2) " (@) do
0

(/01 (1+z‘2)“/2dz)1/2 (/01 (1422 (f’(z))zdz)

= (m (1 + \/i))l" (/01 (1+22)"? (f'(r))zdx) v

1/2

N
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Consequently,
1
/2 2 1
1+2)" (F @) de > ——,
/0 ) In (1+v72)

for all f € C. Equality holds if and only if f(z) = k (1 + 2?) /% that is,
f(z) =kln (z+ 1 +12) +ec.
The conditions f(0) = 0 and f(1) = 1 yield
1
T) = ————1
f@) In(1++2)

a function which clearly belongs to C.

n(z+ 1+22), 0<z<1,

Problem 2. Let f be a continuous, positive real-valued function on [0,1].
a) Given a positive integer number n, prove that there exists a unique subdivi-
sion,0=ap < a; < -+ < ap_; <ap=1,of [0,1] such that

k1 1
@ [T sede= 1 [ e k=0, n-1

b) For each positive integer number n, let

__a+tan
Gy = —————,

n
where 0 = a9 < a1 < -+ < @y_; < ap = 1is the unique subdivision of
[0, 1] satisfying (*). Prove that the sequence (@n)np1 is convergent and evaluate
its limit.

Solution. a)Let F : [0,1] — [0, 00),

T
F(z) = / f(t)de.
0
Rewrite (x) as
1
F(ar41) — Flax) = ;F(l), k=0,...,n-1,
to get

(%) F(a) = kF(l), k=0,...,n.

n
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Since f takes on positive values, F' is strictly increasing, so its restriction

F : [0,1] = [0, F(1)] is one-to-one and onto. Consequently,
ap=F7! (EF(l)) , k=0,...,m,
n

is the unique solution to (¥).
b) Given an integer n > 1, by part a),

ap=F7! (EF(I)), k=0,...,n,
n
S0 N i
‘ I, (k )_ 1 FQ) F“(—F(l)).
1 Ery) =
a"_n;F (nF( ) F(1) n ; n
Since N
P S s (o)
By (Gro
k=1
is a Riemann sum for F~1 : [0, F(1)] = [0, 1], it converges to

1
/m) Fi(t)dt = / zf(z)dz.
0 0

Jo af(@)dz
fol f(z)dz
Remark. As expected, (G, )n3>1 converges to the abscissa of the centroid of the

plane domain bounded by the lines z = 0,z = 1,y = 0 and the graph of the

Consequently, (@n)n>1 converges to

functiony = f(z).
Problem 3. Given a positive integer n, determine the rings R with the property

thatz2"+! = 1forallz € R\ {0}.

Solution. Clearly, R is of characteristic 2. If R = {0,1},then R = ,'which
obviously fulfills the required condition for any positi:e integer n. 1OtherWISe, for
anyz € R\ {0,1}, @ +1)™! = (z+1)”" =2 +1 =g~ +1, whence
l=z'z+1)+z+Lorz ' +z+1 =O;thatis,zz+z-2+-1 = 0. Now, let
z € R\{0,1}andy € R\{0,1,z}. Were z+y # L, then (z+y) +(z+y)+1= (21
whence zy + yz = 1. It would then follow that 2%y + zyz = T = TYT + YT’
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50 2%y = ya?, whence (z + 1)y = y(z + 1); that is, 2y = yz — a contradiction.
Consequently,y = 1+ z, and R = {0,1,z,1+z},ie, R = F,. This R satisfies
the condition in the statement if and only if 2 + 1 is divisible by 3, which is the
case if and only if n is odd. We conclude that R = F; forn even,and R = F, or
R =T, forn odd.

Remark. Several entrants derived commutativity from Jacobson’s celebrated
criterion: If for every element z of a ring, ™ = z for some integer n > 2, then the
ring is commutative. For R # F,, this forces exactly two more elements, z and
1+z,50 R=TFy.

Problem 4. Given an integer number n 2 3, let G be a subgroup of the
symmetric group S, generated by n — 2 transpositions. Prove that, for each i
in{1,...,n}, theset {o(i) : 0 € G} has at most n — 1 elements.

Solution. Associate with the group G a graph I onn vertices labeled 1, .. ., n,
by letting ij be an edge of I whenever (i, 7) is one of the n.— 2 generating transpo-
sitions. We thus get a graph with n vertices and n — 2 edges. Combinatorially, the
problem amounts to showing that such a graph is not connected — roughly speak-
ing, there are not enough edges to get from any one vertex to any other vertex. This
is a straightforward consequence of the well-known fact that any spanning tree of
a connected graph on n vertices has n — 1 edges. However, in what follows, we
provide a proof which does not resort to that argument. Proceed by induction on
n 2 3. Clearly, the conclusion holds for n = 3. Forn > 3, let ig be a vertex of
minimal degree. Then

n
ndegio < ) degi =2(n - 2),
i=1
so either degip = 0 — in which case we are done — or degig = 1. In the latter
case, the induced subgraph I' — 49 has n — 1 vertices and n — 3 edges. By the
induction hypothesis, I' — 4, has at least two components. Since degiy = 1, the

vertex 4 is adjoined to exactly one of those components. The conclusion follows.

Remarks. 1) If G is generated by the n — 2 transpositions (1,7), ¢ = 2,...,
n — 1 —thatis, G is the standard embedding of S,,_; in S, —, then each set of
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the form {0 (i) : 0 € G},i = 1,...,n — 1, has exactly n — 1 elements — the
largest possible cardinality; of course, {o(n):0 € G} ={n}.

2) The sets {o(i) : ¢ € G} are the orbits of the action of Gon{l,...,n}.
The conclusion is that the length of any orbit does not exceed n — 1. In particular,
G cannot act transitively on {1,...,n}: there exist i and j in {1,...,n} such that
j # (i), whatever o in G; that is, j cannot be reached from ¢ via a permutation in
G — combinatorially, the graph T associated with G has not enough edges to get

fromito j.

PROBLEMS AND SOLUTIONS
BMO AND IMO SELECTION TESTS

Problem 1. At the vertices of a convex polygon with even number of sides sit
hunters, while in the interior of the polygon, and not lying on any of its diagonals,
sits a fox. Simultaneously, the hunters shoot at the fox, but the fox ducks in good
time, and the bullets go on, hitting sides of the polygon. Prove that at least one
side is not hit.

Solution. (D. Schwarz) Let us use the Bow-tie Lemma from the 2006 IMO
Problem 6.

Given a convex polygon with even number of sides, call bow-tie the figure
formed by the two vertex-opposed triangles obtained by tracing two consecutive

“big” diagonals. The reunion of all bow-ties entirely covers the polygon.

Fix an oriented “big” diagonal. All interior points lying on “big” diagonals are
obviously covered by the bow-ties; consider then a point not lying on any “big”
diagonal, wlog situated to the left of the oriented diagonal. By anti-clockwise “ro-
tating” the diagonal through consecutive vertices, we will reach its initial position,
only that its orientation will be changed, so the point will now be situated to its
right. It means that somewhere in the process there has been a moment when the
point passed from the left to the right of the “rotating” diagonal — so at that time
it would have been contained within the bow-tie corresponding to those positions.

It means that the fox is contained in some bow-tie. Then the side of the bow-

tie’s triangle not containing the fox is not hit by any bullet.

Alternative solution. (T. Dumitrescu) Prolong the rays connecting the fox with
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the hunters to a length greater than any of the distances between fox and hunters,
and consider that circle having the fox as center. Also, consider the diametrically
opposite points of those occupied by the hunters, and flag them with the corre-
sponding hunter’s id. (No conflict arises, as the fox is not lying on any diagonal of
the polygon.) Assuming every side would be hit, it follows that each will be hit by
exactly one bullet, so hunters and flags must alternate on the circle. Consider a pair
hunter-flag, splitting the other hunters in £ on one semicircle, and  on the other.
But then we will have I flags on the semicircle of the k hunters (and conversely,
k flags on the semicircle of the ! hunters). The alternating condition then requires
that £ = [, so in all we must have k + [ + 1 = 2k + 1 hunters, but this is an odd
number, absurd.

Alternative solution. (Given by several contestants) Similar with the one above,
counting hunters and bullets on both sides of a diagonal (or a main diagonal), and

applying a similar parity argument. We leave details to the reader.

Remarks. Last minute info traces this problem (and more) to some issue of
[AMM]. Also, it has been used in the [Moldova 2007 Selection Tests], unbe-

knownst to the Romanian selectioners, but no harm was done.

Problem 2. Let C(O1) and C(O2) be two circles, external to each other. Points
A, B, C lie on C(O,), while points D, E. F lie on C(O,), such that AD and BE
are external tangents to the two circles, while C'F' is an internal common tangent.
The lines CO; and FO, meet the lines AB, respectively DE, at M, respectively
N. Show the line M N passes through the midpoint of the segment CF.

Solution. (C. Pohoatd) The conclusion is obvious if the radii of the two circles
are equal. In order for the solution to match a possible drawing, we will assume
the radius of C(O;) to be less than that of C(O,).

Let P = ADNBE, let X, Y be the points where the internal tangent CF meets
AD, respectively BE, and let X', 1" be the points where the parallel line through
N to XY meets AD, respectively BE. Notice the quadrilaterals O NX'D and
O, NEY" are cyclic, since each has a pair of right homological angles.

Therefore, ZO; X'N = £O,DN = LO,EN = ZLO,Y'N, hence triangle
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0, X'Y" is isosceles, therefore O, N, being altitude, is also median, so NX' =
NY'. Similarly, MX" = MY", for the corresponding construction. Taking
K =PNNXY,since XY || X'Y" || X"Y", it follows that M € PN, and K is
the midpoint of XY Since C(O;) is the incircle of triangle PXY", while C(0>) is
its excircle (relative to P), and their points C, respectively F', of contact with XY
are isotonic with respect to XY, it follows that K is the midpoint of C'F', which
solves the problem, since K € M N.

Alternatively, using Lemma 2 presented in the solution of Problem 24, one gets
that M lies on the median from P in triangle PXY’, and similarly NN, therefore
P, M, N are collinear with the midpoint K of XY, which is in the same time the
midpoint of CF.

Problem 3. Any f : Q — R with the property below is constant
1£(2) = f®)] < (z —y)*, forallz,y € Q

Solution. Leta < b, a,b € Q, andleta =29 < z; < --- < T, = bbean
equidistant division of the interval [a, b]. Then

n—1
S (F@rr) = flaw)

k=0

|f(a) = f(O)I =

n—1
< o (@rn) = Fai)l-
k=0

Since g1 — T = ”—;‘1 forall 0 < k < n, it follows that

[f(a) = fB)] < %, foralln € N*.

If f(a) # f(b), forn > ]—f-((ab);f}%ﬂ, we reach a contradiction.

Alternative solution. (D. Schwarz) Since clearly f is continuous on Q, one
can use the fact that a function, continuous on a dense subset of R (in the in-
duced topology), can be uniquely prolonged to a continuous function on R. Now
the given property also extends, since the function modulus is also continuous.
Therefore

L(Eg)::—;;(y)’ <lz—y|, forallz #y € R,
so f is differentiable on R, and its derivative is null, hence f is constant.
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Remarks. It is enough to have
[f(@) = f@W)I < (z —y)?, forallz,y € Q, withp R, p> 1.

Problem 4. Forn € N, n > 2, determine

n n
maxH(l —2;), forz; ERy, 1<i<n, sz =1
i=1 i=1

Solution. (D. Schwarz) Let us analyze E(z,y) = (1 — z)(1 — y), z,y >
0,22 +y®> = k*,0 < k < 1. Take x = ksinf, y = kcosd, 8 € [0, 3].
Now, z +y = k(sinf + cos6) = kv2sin(d + Z) = kv2cos(6 — I), and
zy = k?sinfcosh = %sinZﬁ = %2005(29 -5 = %cosZ(B — Z), hence
oy = k2 cos?(6 — 1) — &

Take u = cos(§ — §),sou € [%,1], and then E(z,y) = E(u) = k?2% -
V22 +1— % Its minimum value is reached for ug = k%/i > %, therefore

eforl < Elﬁ + (LIW - %) = % ie. k < 2(v2 1), the maximum value
for E(u) is reached for u = %, i.e. when 6 € {0, 7}, which means z or y being
zero;

o for k > 2(+/2 — 1), the maximum value for E(u) is reached foru = 1, i.e.
when 6 = 7, which means z = y.

Now, for 2 + y2 + 22 = 1, there will be two, wlog be them a2 + * < % <
(2(v/2 — 1))? (it comes to 288 < 289), so first case applies for 2% + 32 = k2,
k < 2(v/2 — 1) (case k = 0 is trivial), therefore the maximum value is reached
when one of the three variables is zero.

So, when

takes maximum value when all but two variables (be them z,y) are zero; then
E = E(z,y) = (1 — z)(1 — y), with 2> + y> = 1, and second case applies,

yielding max E = (1 — %)2, forz=y= .

Remarks. The result for n = 2, 22 + y? = k2, may be obtained through other
methods, e.g. by partial differentiation of E(z,y) = (1 — z)(1 —y). Also, an
alternative solution using Lagrange multipliers is available, but must be used with

“utmost care, as the maximum is to be obtained on the boundary.

SELECTION TESTS FOR THE 2007 BMO AND IMO 75

Problem 5. Let f(X) = X™ + ap-1 X" ! + .-+ + a1.X + ao be a degree
n > 3 polynomial with integer coefficients, ax + a,_x even, forallk = 1,2, ...,
n — 1 and ao also even. If f = gh, where g and h are polynomials with integer
coefficients, and the degree of g at most the degree of h, and all coefficients of h
are odd, show that f has (at least) an integer root.

Solution. Polynomials g and h are obviously monic. The condition on the
coefficients of f and h implies deg g > 0. hence m = degh < n. Considering the
relation f = gh in Z», one gets

(1) f1+i=_(}-(.\""+X"n‘l+.4.+_\'+i),

where fi = f + 1. Since the polynomial f; is reciprocal, applying the mapping
X — % into (1) yields

&) fH+XT =g (X" + XM X 4 1).
Summing relations (1) and (2) yields
Xt+i=gp- (X +X™ T4 4 X +1)
or
(xm =X 4 (X D) =g (X XM 4 X 1)

Therefore, the polynomial X" +X™14...4 X +1 is a divisor of the polynomial
Xn=m=111 hencem = n—1, because m = degh > deg g = n—m. Itfollows
that deg g = 1,i.e. f has (at least) an integer root.

Problem 6. Let ABC be a triangle. Its incircle is tangent to 4B at E, while
its excircle relative to BC is tangent to AB at F'. Let D be the point lying on side
BC for which the incircles of triangles ABD and ACD have equal radii. The
lines DE and D B meet a second time the circumcircle of triangle ADF at X and
Y. Show that XY || AB if and only if AB = AC.

Solution. Let us start with the following



76 SOLUTIONS

LEMMA. For a triangle ABC, where D is the point lying on side BC, such
that triangles ABD and ACD have incircles of equal radii, the relation AD* =

p(p — a) holds, where the usual notations in a triangle are used.

Proof. Let I, I, and I, be the centers of the incircles of triangles ABC, ABD
and ACD, letr,r; and 7> be their radii, and let D’ be the foot of the perpendicular
from I on BC. Since it is given that 71 = ro = p, we get 1 I, || BC. Let
now D1, D5 be the feet of the perpendiculars from Iy, 1> on BC. Then I, I, =
DD, = (BD'—BDy)+(CD'—=CDy) = a—(BD; +CDs) = a—(p1 — AD +
p2— AD) = a—p+ AD. On the other hand, rp = [ABC] = [ABD]+[ACD] =
p(p1 + p2) = p(p + AD), therefore & = ﬁ%. Finally, since I I> || BC, one

gets 2 = e=ptAD — 120 — _AD, 0 (a—p+ AD)(p + AD) = a- AD, or
AD? = p(p — a).

Thus AD? = p(p — a) = AF - AE, so AD is tangent to the circumcircle of
triangle DEF, hence ZADE = LAFD.

Now, from XY || AB, since the quadrilateral AY F'D is cyclic, and so
LAYD = ZADY = a, whence ZYXD = 2a. Then ABC = 2qa; but
ZLAFD = a, so ZFDB = /DFB = a, hence triangle BF'D is isosceles,
so BF = BD = p — c. It follows that D is the point of tangency of the ex-
circle with BC, hence AD is the Nagel line relative to BC. Since we have
AD? = p(p — a) < m2, and it is readily seen that AD > m, (where m, is
the median from A), it follows that equality occurs, i.e. AB = AC.

Conversely, from AB = AC, since, as proven, AD is tangent to the circumcir-
cleof triangle DEF, and AD L DB, it follows the circumcenter of triangle DEF
lies on DB, hence B is the midpoint of EF. Therefore ZBFD = /BDF =
LADE = £LBAY = /XY A, s0 XY || AB, since the quadrilaterals ADF'Y and
ADY X are cyclic.

Problem 7. Find all sets A of at least two positive integers, such that for any

distinct 7,y € A we also have (z +y)/(z,y) € A.

Solution. Let us denote f(z,y) = (z + y)/(z,y) and take a,b two distinct
elements in A.
If (a,b) = 1, then f(a,b) = a+b € A, and so a+2b € Aand 2a+b € A. Now,
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f(a,a+2b) = 2a+2b € A, unless 2 | a and, similarly, f(b, 2a+b) = 2a+2b € A,
unless 2 | b; but both cannot be true, so 2(a+b) € A. Then f(a+b,2(a+b)) = 3,
hence 3 € A, and let us take ¢ € A, (3,¢) = 1 (such c surely exists, as from
(a,b) = 1it follows (3,a) = 1 or (3,b) = 1). Inductively, we get ¢ + 3k € A
fork > 1,and for k = cm, m > 1, f(c,c+ 3cm) = 3m + 2 € A. Similarly,
ke+3 € Afork > 1,and fork = 3, f(3,3c+3) = c+ 2 € A. Then, for
c=3m+2,c+2=3m+4cAand, forc=3m+4,c+2=3m+6¢€ A
But then f(3,3m +6) =m+3 € Aform > 1.

It follows then that the possible sets are N*, N* \ {1}, N* \ {2}, N* \ {1,2}.

If (z,y) > 1 for all pairs of distinct elements z,3 € A, thentake 1 < a < b
to be the least two elements in A. Then f(a,b) = (a + b)/(a,b) < 2b/(a,b) <
2b/2 = b, hence (a + b)/(a, b) = a, therefore a[(a,b) — 1] = b,so a | b, (a,b) =
a, and s0 b = a(a — 1) with a > 2, providing the extra family of solutions
A={n,n(n-1)}forn > 2.

Assume now A # {a,b}; take ¢ > b to be the least such element. Then, as
above, f(a,c) < ¢,and f(a,c) = aleadsto ¢ = a(a—1) = b, absurd, so we must
have f(a,c) = b = a(a— 1), therefore a | ¢, (a,¢) = aandsoc = a(a® —a —1).
Butthen f(b,c) = (a—1)+(a®—a—1) = a*-2(as (a—1,a>—a—1) = 1), 50
a?~2 € A. As f(b,¢) < c, this means either a> —2 = aora®—2 = b = a(a—1),
both leading to a = 2, absurd.

Remarks. This problem is based on a Swiss problem, where the condition ,y
distinct was not present (in fact, it was explicitly not enforced). In turn, the Swiss
have borrowed it, in precisely that format, from an APMO examination paper of
the 2000’s. Then, for a € A, one has f(a,a) = 2 € A (which offers the solution
with one element A = {2}) and the proof is greatly simplified:

If 1 € A, then f(1,2) = 3 € A, so for A # {2} there is always a € A,
a > 2. Let’s take a to be the least with this property. If a is even, then f(2,a) =
1+a/2 < aand1+a/2 > 2, contradiction. Therefore a must be odd, and
then inductively a + 2k € 4, for k > 1. For k = ma, m > 1, it follows
f(a,(2m +1)a) = 2(m + 1) € A, and f(2,2(m + 1)) = m + 2 € A, therefore
the other possible sets are N* and N* \ {1}.
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Problem 8. Let X be the set of the 2" points {0,1}", n > 3, in the Eu-
clidean n-space (the vertices of the unit hypercube). Denote by M (n) the least
integer such that any subset Y C X, with M (n) elements or more, necessar-
ily contains an equilateral triangle (determined by points from Y). Prove that
M(n) < [27F!/n] + 1, and effectively compute M (3) and M (4).

Solution. (D. Schwarz) For p € X, consider S, to be the set of points ¢ at
distance 1 from p, i.e. differing from p in exactly one coordinate. Then |Sp| = n,
and all points in S, are equidistant (so it is a simplex of dimension n — 1). Each
point in X belongs to exactly n such sets Sy, so for a subset Y C X with [Y| >
2"+1 /n we have

> 1S, nY|=nlY]> 2",

PEX
only that there are 2" sets S, N'Y’, 50, by the pigeonhole principle, (at least) one
must contain at least 3 points, which will form an equilateral triangle contained
inY.

For n = 3, X is the unit cube, S, are triangles, and it is easily seen that
M (3) = 5 (while [23+1/3] + 1 = 6). For n = 4, X is the unit hypercube, S, are

tetrahedra, and considering the set with 8 elements

{(0,0,0,0),(0,0,1,1),(0,1,0,0), (0, 1,1, 1)} U
u{(1,1,1,1),(1,1,0,0),(1,0,1,1),(1,0,0,0)},

one gets that M (4) = |24+1/4] + 1 = 9, as prescribed by the formula.

o ko
Remarks. The case |Y| = 2" /n, requiring n = 2%, to yield |Y| = 22" —#+!
and allow for Y to intersect each S, in exactly 2 points, therefore containing no

equilateral triangle, could maybe be extrapolated from the case n = 4?!?

Problem 9. Let F be the set of all functions f : P(S) —+ R with the property
that, for any X,Y C S, we have f(X NY) = min(f(X), f(Y)), where S is a
finite set. Determine

max Im(f)].
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Solution. We will determine quite precisely the structure of such functions,
and prove in the process that I}lea}( [Im(f)| =1+19].

Let the values in Im(f) be ag < a; < --- < a, for some 0 <k -,
and take subsets S; C S of lowest cardinality such that £(Si) = a; (an application
of the extremal element principle). Clearly, the subsets S; are distinct, as f takes
distinct values on them.

For X C S there will thus exist 0 < z < k such that f(X) = ag, and so for
all 0 < j < z we have £(X N S;) = min(f(X), £(S;)) = min(az,a;) = aj =
f(S;). But X NS; C Sy, so the extremality of S; implies X N S; = S, i.e.
S;j C X, in particular S, C X. As 0 < z for any z, it follows that Sy C X for
any X, therefore So = . Also, for X = S;, therefore & = i, it follows S;CS;
forall 0 < j < i. Finally, for |X| = |S,], as S, C X, itfollows X = S, by
having the same cardinality, so the subsets S; are uniquely determined.

On the other hand, for ¥ > j > z we cannot have Sj € X, as then a; =
f(S;) =f(XnS;)= min(f(X), f(S;)) = min(az, a;) = a,, absurd.

The results above lead to ) = S CS C--C S CS,achainof1+k
subsets from P(S), starting with §. These subsets are uniquely determined, and in
turn they uniquely determine f, as f(X) = max{f(S;); S; C X}. As a chain in
P(S) can have at most 1 + | S| elements, it follows 0 < k < |S] and so [Im(f)| <
1+[S].

Conversely, for any chain in P(S), starting with 0, we can uniquely define a
function with the structure of the above (therefore establishing a one-to-one corre-
spondence between such functions and such chains — up to the actual values taken
by f). This shows that the value 1 + || (as well as any lower values) can be
reached for [Im(f)|.

Problem 10. Show that, for n,p positive integers, n > 4 and p > 4, the
proposition P(n, p) below is false
. n n
1
22

i=1 """

n
s forz; €R 2;>0,i=1,...,n, > z;=n.
i=1 i=1
(As a matter of fact, the propositions P(4,3) and P(3,4) are true, but hard to
prove!)
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Solution. Notice first that it is enough to find a set of values z; for n = 4

such that

L
E=d o

as then for any n > 4 we can extend this set of values by taking the extran — 4

<0
1

i=

ones to be equal to 1.

Now that we have reduced it to the case n = 4, it makes sense to look for
“simple” cases:

o some z; very small — it yields E > 0, no good;

o all z; equal — it yields common value 1, for which E = 0, no good;

o let’s then try taking the smallest three z; equal to some value 0 < z < 1; the
fourth one. denoted by y, willbe 1 <y < 4,y =4 — 3z.

Then E = 3/aP 4+ 1/y? — 3z” —yP = (1/27)[3 + (z/y)? — 3% — (zy)*] =
(1/27)[3 = (zy)?] + (1/y")[1 = 3(zy)”]-

It seems natural now to look for the maximum possible value for zy; it is not
difficult to see that zy = (1/3)(32)(4 — 3z) < (1/3)(2)* = 4/3 (by AM-GM),
with equality for 3z =4 — 3z,ie. ¢ =2/3and y = 2.

Then, as 4/3 > 1 and p > 4, we have (4/3)? > (4/3)' = 256/81 > 3, hence
E < 0 for the set of values (2/3,2/3,2/3,2 and 1 repeated n — 4 times).

Problem 11. Let a;, i = 1,2,...,n,n > 3, be positive integers with their
greatest common divisor equal to 1, such that a; divides Y 1| a; for all j =
1,2,...,n. Prove that [T, a; divides (31—, a;)" 2.

(Also, provide an example showing that the exponent n— 2 cannot be lowered.)

Solution. It is enough to prove that the exponent of a prime factor p in the
canonical factorization of [];_, a; is at most the exponent of p in the canonical
factorization of (3°I-; a;)"~2. For each i, let m; be the exponent of p in the
factorization of a;; finally, let m = max{m;;7 = 1.2,....n}, and j an index for
whichm = m;. As a; divides Y 1= a;. it follows that p™ also divides it, therefore
p™=2) divides (31, a;)"~2. On the other hand, at least one of the numbers a;,
be it ag, is not divisible by p. As p divides 3", a;, it follows that at least two of
its terms are not divisible by p, therefore the exponent of p in the factorization of
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[T, ai is at most m(n — 2). (Let us now take a; = 1, a3 = n — 1, and a; =n
for j = 3,...,n, satisfying problem’s requirements. Then ) -, a; = n(n — 1),
while [T%_; a; = n""2(n — 1). Asn andn — 1 are co-prime, it follows that the
exponent n — 2 cannot be lowered. Other examples may be found.)

Problem 12. Points M, N, P on the sides BC,C A, AB of triangle ABC are
such that triangle M NP is acute-angled. Denote by z the length of the shortest
altitude of AABC, and by X the length of the longest altitude of AM N P. Prove
that 7 < 2X.

Solution. (Greek Problem Selection Committee) Denote by H the orthocen-
ter of AMNP, and by A', B',C" its projections onto BC, C A, AB respectively.
Since AM NP is acute-angled, H lies in its interior, thus also in the interior of
AABC. Then

¢ <HA'+HB'+ HC' < HM + HN + HP < 2X,

as needed, where the first inequality holds by the (well-known) Lemma 1 below,
while the last one holds by (not so well-known) Lemma 2.

Clearly, equality may occur, for AABC equilateral, and AM N P its median
triangle. Other solutions, trigonometrical or otherwise, are available, but cannot
match the elegance of the above.

LEMMA 1. If H is any point in the interior or on the sides of a triangle
AABC, and A',B',C' are its projections onto BC,C A, AB respectively, then
z < HA'+ HB' + HC', where  is the shortest altitude of AABC.

Let x4, T, T, be the altitudes from A, B, C respectively. Then
HA'+ HB' + HC' S H_A'  HB' HC' _[BHC] [CHA] [AHB] _

z Z % @ "z~ [@Bo) T{aBc) Ao T ¢

hence the claimed result.

LEMMA 2. If MNP is an acute-angled triangle, and H is its orthocenter,
then HM + HN + HP < 2X, where X is the longest altitude of AM N P.

Letus assume ZM < ZN < ZP;then NP < PM < M N, and X equals the
altitude M M'. Thus, we need prove HM +HN +HP < 2M M, or equivalently
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HN + HP < HM + 2HM'. But the symmetrical point H' of H, with respect
to NP, lies on the circumcircle of AM N P, hence the relation is also equivalent
to H'N + H'P < H'M. Applying Ptolemy’s Theorem to the cyclic quadrilateral
H'NMP,wegetH'M-NP=H'N-MP+H'P-MN > HN-NP+H'P-NP,
therefore H'M > H'N + H'P, as wanted.

Problem 13. Prove that the function f : N — Z defined below is injective
f(n) =n? —nl.

Solution. Suppose f(z) = f(y), with > y. First we discuss the case y <
2007. Clearly, there are no solutions fory = 0 or y = 1, so assume y > 1. Denote
by vp(n) the exponent of the prime p in the factorization of n. For z!—y! = 22007 _

4?07, and ¢ a prime divisor of y, it must be that g divides . Thus v, (2!) > v, (y!),

hence vq (2! — y!) = v(y!). On the other hand, we have ¢°°7 | £2007 — 42007 5o
we must have 2007 < v,(y!). However, this is impossible, since
SOREIRSRE
== =4 < ——= <2007
) =[7]+ |5 i<
For the case y > 2007, every prime p < 2007 divides z! — y! = 72007 — 42007,

If ged(p — 1,2007) = 1, there exists a positive integer r such that 2007r =

1 (mod p — 1). Therefore, z = 22°07" = y?°07" = y (mod p) (from Fermat’s
Little Theorem),ie. p |z — y.

In particular, this holds for p = 23 and 101, hence z —y > 23 - 101 =
2323 > 2008. But then we have z! —y! > (z(z — 1)---(z — 2007) — 1)y! >
z(z — 1)--- (z — 2006) - 2007! > z2°°7 where the last inequality follows from

(z —k)(k+1) >z, fork=1,2,...,2006, a contradiction.

GENERALIZATION. (Idea of M. Dumitrescu) We will prove that f given by
f(n) = n* —nl, forinteger k > 1, is injective (for k = 1itis clear that 1! — 1! =
2! — 2! = 0, but this is the only possible case).

First prove that f(2k) < 0. We have (2k)! > 2-kF-k! > 2K.k* = (2k)*. Now,
if n > k, such that f(n) < 0, we have then f(n) — f(n+1) =n-n!—n* - [(1+
L)k —1] > 2(n!—nk) = —2f(n), since (1+£)* < (1+4)* < e < 3. Therefore,
f(n+1) <3f(n) <0,and f(n) — f(n + 1) > 0. By simple induction we have
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then that, forn > ng > k, such that f(no) < 0, it follows that f(n) < f(no),
hence f(n) is negative, strictly decreasing. .

Now, similarly with the first solution, assuming f(z) = f(y), forz >y > 1
and g prime divisor of y, we get k < v4(y!) < 743, soforg > it followsy > 2k,
and then, according to the above, we have f(z) < f(y).

The only possible case remains £ < y, y = 2™, m > 1, and, moreover,
even. Then, for z odd factor of z, if 2 < y, since z then divides z*, 2!, and ylit
follows it must divide y*, but as z is odd, and y = 2™, it follows z = 1. Then =
is also a power of 2, and > y implies then z > 2y > 2k. On the other hand,
if 2 > y, we again have £ > 2y > 2k. In both cases it follows f(z) < 0. But
either f(y) > 0 > f(z), orelse f(y) < 0, and then again, according to the above,
F@) < ().

Further results. (D. Schwarz) For p € N*, analyze the function f, : N — Z
defined by

fp(n) =nP —n!.

Analysis. One has f,(0) = —1, f,(1) = 0, for all p.

Forp = 1,0ne has f1(2) = 0, /1(3) = =3 < 0. fi(n) = n(l — (n — 1))
forn > 3, strictly decreasing thereafter, and f1(1) = f1(2); as we will see — the
only case of non-injectivity. We will therefore consider in the sequel p > 2.

Forp = 2,one has f»(2) =2, f2(3) = 3, f2(4) = -8 < 0.

LEMMA. For k € N*

(143) <e< (14 1)

Forn <p,p>3

1\? 1\7 p 1yP+1 pe
1+=) > (1+2) =2 (142
( n) /(+p) p+1(l+p) >p+1>2'
Then one has f,(n) = fp(n+1) =n-nl—nP[(1+ 1P -1 <n.nl~n? =

n*[(n — 1)! = nP~2] < n?[(n — 1)! = n""2] < 0, hence f,(n) < fp(n + 1), for
p > 2 (atlimit, f,(p) < fo(p + 1)).
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Forn>2p+1

(1+%)"<(1+n—1_.—1)"<(1+%)"<e<3.

Then f,(n)— fp(n+1) = n-n!—np[(l+%)”—1] = [(1+;i—1)n](n—1)-(n—l)!—
1+ (=DP[(1+2)P 1] > 3(n—1)-(n—1)!=3(n—1)P[(1+Lr)P - 1] =
3(fp(n = 1) = fp(n)) (atlimit f,(p+1) = fo(p+2) > 3(f,(p) — fo(p + 1))).

Finally, f,(2k) < 0, since (2p)! > 2-p? - p! > 27 . p? = (2p)P.

This shows there exist p < n, < ng < 2p such that fp strictly increasing to
Fp(nm), and decreasing from f,(n.n) (with possibly fp(n,, + 1) = fp(nm), then
strictly decreasing thereafter), and f,(no) < 0, but f,(ng — 1) > 0 (forp = 2,
m = p+1 = 3,and ng = 2p = 4). It would be worth estimating (asymptotically)
the values for n,, and no, as functions of p, probably needing Stirling’s formula.

As a corollary, for z > y > 1, 2 > no, one has f,(z) < f,(y)-

We will prove injectivity; assume now f,(z) = f,(y), > y > 1, and con-
sider ¢ a prime divisor of y. (It is trivial that for y = 0 or y = 1 one cannot have
fp(z) = fo(y).) Since then g divides y?, y! and z!, it follows that it divides 7,
hence z. If we denote by v,(z) the exponent of ¢ in the canonical factorisation of
z, thenp < vy (2P — yP) = v, (3! — y!) = v, (y!) = L2+ &+ < 25 by
Legendre’s formula), therefore y > (g — 1)p. For g > 3, this implies z > y > 2p,
hence, according to the above, f,(z) < f,(y). It remains the case ¢ = 2, when y
is a power of 2, y > p, and then = must be even. Then an odd divisor of z is either
larger than y, or else it must divide y?, hence it ecjuals 1,s0 z > 2p, hence again,
according to the above, f(z) < f,(y).

Alternatively, for n > p, such that f,(n) < 0, we have then fo(n) = fp(n +
1) =n-nl—nP[(1+ 1)P 1] > 2(n! - nP) = —2f,(n). Therefore f,(n + 1) <
3fp(n) <0, and fp(n) — fp(n + 1) > 0. By simple induction we have then that,
forn > ng > k, such that f,(no) < 0, it follows that f,(n) < fp(no), hence
f»(n) is negative, strictly decreasing, enough to prove injectivity.

Problem 14. Let A; Ay A3 A4 A5 be a convex pentagon, such that

[A1A2A3] = [Ag A Ag] = [A3 Ay As] = [AgAs Ay = [As Ay Ag).

SELECTION TESTS FOR THE 2007 BMO AND IMO 85

Prove there exists a point M in the plane of the pentagon, such that
[ALM Az] = [As M As] = [AsM Ayg] = [AdM A5] = [As M Ay].
([XY Z] is the area of AXY Z).

Solution. Since [A; A3 A3] = [A2435.44], we have A1 Ay || A2As. Similarly
are proven the relations A;_1 A1 || A;Ai41, where all indices are taken mod-
ulo 5. Denote by U the intersection of A; A3 and A, A4. Notice that U A4 || 4145
and UA; || AgAs. Thus A; A5 AU is a parallelogram, and A;U passes through
the midpoint H of A; A4. Denote by V' the midpoint of A Az. Since A; A; A3 A4
is a trapezoid, it is well-known that HU (i.e. AsU) passes through V. Let G be
the centroid of the pentagon. Notice that G lies on A5V, since the centroids of
Ay Az, A1 Ay, and As, all lie on A5 V. Similarly, the segments joining the vertices
A; with the midpoints of A;42.4;+3 will all pass through G.

We shall prove that G satisfies the requirement. Notice that [AsGAs] =
[AsGA3) (from A,V = A3V). Similarly, itis proven that [A;GA5] = [A2GA4] =
[A1GA4] = [A1GA3] = [A3G A45). Denote by S» this common value, by Sy the
common value of [A; A A3] = ---, and by St the area of the pentagon. It fol-
lows that [A,GA3] = St — [As A1 As] — [As AgAs] — [AsGAs] — [AsGA3] =
ST —28; —28;, therefore all [A;G A; 1] are equal, and thus G satisfies the desired
requirement.

It can further be proven that the point G is unique with the required property.

Alternative solution. (L. Turea) One knows that affine transformations pre-
serve collinearity of points, parallelness of lines, concurrence of lines, the property
of a point to be a centroid of others, ratios of areas (of triangles), and convexity. On
the other hand, one can find an affine transformation that maps the pentagon into
one with two equal diagonals, emanating from a same vertex, and making the an-
gle found in a regular pentagon.? Similar considerations with those in the solution

above lead to the fact that this pentagon must be regular,® whence a point like the

2Any three non collinear points can be mapped to any three other non collinear points, by a unique
affine transformation. An affine transformation is a map from the plane to itself, of the form (z,y) —
(az + by + ¢,dz + ey + f), with ae — bd # 0. See e.g. K. Kedlaya.

3See Theorem 3.5.3 from same K. Kedlaya.



86 SOLUTIONS

one we look for is obviously (and uniquely) the center of the pentagon. Then its
pre-image is the centroid of the original pentagon (thus also uniquely determined),
due to areas’ ratio preservation!

A yet another interesting alternative solution may exploit the fact that areas of
triangles are given by determinants on vertices’ coordinates!

Problem 15. Consider the set E = {1,2,...,2n}. Prove that an element
¢ € E may belong to a subset A C E, with n elements, such that for any two
distinct elements of A, none divides the other, if and only if ¢ > n(2/3)*+1,

where k is the exponent of 2 in the factorization of c.

Solution. (D. Schwarz) Such subsets A are antichains (relative to the partial
order given by division). A famous and well-known Erdds result states that size n
antichains are maximal. Recall that a maximal antichain must contain an element
each, having each odd from E as (maximal) odd factor. Therefore, for ¢ = 2*d,
with d odd, if 3¥+1d < 2n. we must have elements ¢, = 2¥3¢d for 0 < ¢ < k+1
(where ¢ = ¢, ko = k). But for s < t we need ks > ky, otherwise ¢s | ¢, hence
k=ko > k1 > --- > kjy1, which is clearly impossible in non-negative integers.

On the other hand, for 3¥*1d > 2n, let us consider those odds from E which
are divisible by d, hence of the form gd < 2n, with ¢ # 1 odd; let us take ky =
max{t; 3'qd < 2n} (obviously kg > 0, and 3*qd > 3*+1d > 2n, hence k, < k).
Take ky = k,c; = ¢ = 2%d, [ 2Fagd and the other elements of the form
d, = 2'r, where r from E, odd, not divisible by d, and ¢, = max{t; 2r < 2n}.
Clearly, the only thing to verify is that, for 1 < ¢ < ¢', ¢ | ¢’ implies that kg > kg,
otherwise ¢, | cg/; but then ¢' > 3¢ and 3%« +1qd < 3%« ¢'d < 2n, hence kg >
kg +1.

Problem 16. i) Determine all infinite arithmetical sequences of positive inte-
gers, with the property: there exists N' € N, such that for any p prime, p > N, the
™ term of the sequence is also a prime.

ii) Determine all polynomials f(X) € Z[X], with the property there exists
N € N, such that for any p prime, p > N, | f(p)| is also a prime.

Solution. i) For a its first term and 7 its ratio, the sequence is determined by
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the formula a,, = f(n) = rn+ (a —r). Whenr = 0, the sequence is the constant
a, an = a, for alln > 1, so any prime a will do.

Whenr > 0,denote p; = ap = a+ (p—1)r > 1+ (p— 1) = p, therefore
a, = p; being prime, we are allowed to iterate and take p,4; = a,,,forn > 1,

p > N, p prime. Simple induction yields
prn=(a—r)(1+r+ - +r"71) +pr™

Now, r = 1 gives p, = n(a — 1) + p, so when a = 1 it follows p, = p (so
the iteration stops after the first step), a, = n for all n > 1, and it is a suitable
sequence; while when a > 1, taking n = p yields p, = p(a — 1) + p = pa, which
cannot be a prime.

Finally, forr > 1, we get

_ m-1  a_le-D+@-Hr-Djr"-1)
p,,_(a.—r)r_1 +prt = 1 +p
andalsop < p; < - < p, < ---. Takep > N,p > r, 50 (p,7) = 1,

(p,7—1) =1,andsoforn = p—1wehavep,_, > pandp|pp_y,asp|r"~1-1,
from Fermat’s little Theorem. This is absurd, as all p,, are supposed to be prime.

Alternative solution. i) The case r = 0 is treated as above. For r > 0, if
a—r = 0, the need for f(p) = rpto be prime requires 7 = 1. Finally, fora—r # 0,
take ¢ prime with (g,7) = 1; then the equation rz + (@ — r) = 0( mod ¢) has a
solution zo = r~1(r — a), s0 (¢,%0) = 1. But (zo + mg)m3>1 contains infinitely
many primes (by Dirichlet’s Theorem), so by taking one such prime p, withp > N
and f(p) > ¢, we have ¢ | f(p), therefore f(p) cannot be prime.

One could therefore make the point of forbidding the use of Dirichlet’s The-
orem, as it is both not actually needed, and it offers a much too easy and rapid

way out.
ii) We will start by proving the following

LEMMA.* For f(X) € Z[X], deg(f) > 1, the set of prime divisors of
(1f(n))nen is infinite.

“Nastasescu, Nif, Brandiburu, Joifa — Culegere de probleme de Algebri.
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One can write f(X) = Xg(X) + £(0), deg(g) > 0. so g(X) = 0 has finitely
many solutions. For f(0) = 0, the result is trivial, as n | | f(n)|. For f(0) # 0,
then f(f(0)X) = f(0)[Xg(f(0)X) + 1] = f(0)h(X), with 2(0) = 1, and then
(n,|h(n)]) = 1, therefore (|h(n)|)nen cannot have a finite set of prime divisors.
hence neither (| f(n)])nen-

Now, for deg(f) = 0, f(X') = +£p. p prime, is a possibility. For deg(f) > 1,
if £(0) = 0 then f(X) = Xg(X), so |[f(p)] = plg(p)| needs be prime for all
p prime, p > N. But g(p) = %1 can only happen for finitely many p, unless
9(X) = £1, when f(X) = £.X, yet another possibility.

Finally, if f(0) # 0, take aprime ¢, ¢ > |f(0)|, such thatq | | f(n)| for some n,
as warranted by the Lemma. Then clearly (¢, n) = 1,as f(n) = ng(n)+ £(0), and
(¢,1£(0)]) = 1. Therefore, f(n + mq) = Mg+ f(n) is divisible by g, but in the
arithmetical sequence (n + mgq)nen there are infinitely many primes (Dirichlet’s
Theorem). On the other hand, f(X) = ¢ has finitely many solutions. Taking
p prime from the arithmetical sequence above, p > N, such that f(p) # +q, we
need | f(p)| to be prime. but ¢ | | f(p)|, absurd.

Alternarive solution. (Given by several contestants) ii) For p prime, p > N,
when |f(p)| = ¢ prime, if ¢ # p, then for m € N, one has p + mq > \. so
[/(p + mq)| must be a prime whenever p + mq is itself a prime, which occurs
infinitely often. according to Dirichlet’s Theorem. On the other hand, |f(p +
mq)| = .Mq + f(p)| = Mg, so one needs have | f(p + mq)| = ¢ in all those
cases, therefore f must be constant, f(.X) = %q. If |f(p)| = ¢ = p, forall p
prime. p > \, then one needs have f(\X) = £X.

It would be worth searching for a solution that makes no use of Dirichlet’s
Theorem.

Problem 17. The vertices of a convex polygon are lying on a circle of center
O. Prove that. for any triangulation of the polygon made by not self-intersecting
diagonals, the sum of the squares of distances, from O to the incenters of the

triangles in the triangulation, is the same.

Solution. Let A be a triangulation made by not self-intersecting diagonals, and
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let T' be a triangular cell in A. According to Euler’s Theorem, the distance d trom
O to the incenter of T is given by d*> = R? — 2Rr, where R is the circumradius of
T (equal to the radius of the given circle), while r is the inradius of T. Let z,y, 2
be the signed distances from O to the sides of T', where the sign of a distance to
a side is positive iff O lies in the same half-plane (determined by that side) as the
triangle T'. Carnot’s Theorem states that R + r = o + y + 2. It follows that

d*=R*-2R(x+y+:-R)=3R*-2R(z +y + 2).

We now sum over all 7" in A. Let s be any side of a triangle in A. If s is a diagonal
of the given polygon, then the distance from O to s occurs twice in the summation.
but with opposite signs, so the two terms cancel each other. If s is a side of the
given polygon, then the distance from O to s occurs once only in the summation
(its sign being positive or negative, depending on whether O and the polygon lie
on the same side of s or not). Denote by S the sum of the signed distances from O
to the sides of the polygon. Since the triangulation A always consists of the same
number of triangles (2 less than the number of sides), we conclude that the sum
of the squares of distances sought after only depends on R and S, therefore is the

same for any allowed triangulation.
Alternative solution. (A. Zahariuc) The following problem is known. 3

Given a cyclic quadrilateral, the sum of the inradii of the two triangles de-
termined by one diagonal is equal to the sum of the inradii of the two triangles
determined by the other diagonal.

Simple induction, in conjunction to Euler’s Theorem (stated above), extends

this result to proving the problem at hand.

Problem 18. Let "4, I'p, T'c be three circles situated in the interior of triangle
ABC, such that each is tangent to the two other, ', is tangent to the sides AB
and AC, T'p is tangent to the sides BC and B, while I'c: is tangent to the sides
CA and CB. Let D be the tangency point of I'g and I'c, E be the tangency point

5 The solution uses (and proves) the fact that the incenters of the four triangles are the vertices of a
rectangle. A trigonometrical solution is also readily available.
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of I'c and T4, and F be the tangency point of ' 4 and I'g. Prove that the lines
AD,BE, CF are concurrent.

Solution. Let U,V and W be the centers of the circles 4, I' g and I'c: respec-
tively. The pairs of lines EF and VW, FD and WU, and DE and UV meet at
X,Y and Z respectively (one or all three points may be at infinity, but the argu-
ment below works in those cases, t00). Menelaus’ Theorem applied to triangle
UVW and transversals EF X, FDY and DEZ yields that X,Y and Z are the
intersection points of the common external tangents to I'p and I'c, I'c and T4,
and I'4 and T'p respectively. By a Theorem of d’ Alembert and Monge, the points
X,Y and Z are collinear. Consequently, the pair of triangles ABC and DEF is
perspective, therefore the lines AD, BE and C'F are concurrent (by the converse
to Desargues’ Theorem).

Problem 19. Consider the convex pentagon ABCDE where AB = BC,
CD = DE, angles ZABC and ZCDE are supplementary, ZABC = 135°, and
the area of the pentagon is /2.

a) Determine the length of BD.

b) Letting ZABC be variable within the initial conditions, determine the min-

imum length of BD.

Solution. Tt is natural to consider the symmetrical point F to C, with re-
spect to BD. Triangles CBF, ABF,CDF,EDF are all isosceles. The an-
gle bisectors of ZABF and ZEDF meet at I{. Then ZKBD + /KDB =
$4ABC + }/CDE = Lr,50 ZBKD = L. Since B, DK are also the per-
pendicular bisectors of AF, respectively EF, it follows that also ZAFE = 1.
Therefore K is the midpoint of AE, since K is the circumcenter of triangle AFE.
A simple reading of the configuration yields the fact that the area of the pentagon

is exactly twice that of triangle B D, therefore

V3=KB-KD = (BDsin ZKDB)(BDsin ZKBD)
= BDsin %AABC cos %AABC = %BDZ sin ZABC,
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2v2
BD =\ #7750 > V2V2,

with equality when ZABC (and ZCDE) are right angles. For the first part, since
sin 135° = ¥2, it follows BD = 2.

or

Problem 20. Let ABCD be a parallelogram with no angle equal to 60°. Find
all pairs of points E, F, in the plane of ABCD, such that triangles AEB and
BFC are isosceles, of basis AB, respectively BC, and triangle DEF is equi-
lateral.

Solution. Take E and F such that triangles AEB and BFC are equilateral,
with interiors disjunct with ABCD. Then AD = BC = CF = BF, AE =
BE = AB = CD, and, denoting @ = ZBAD, /DAE = /FBE = /FCD =
a +60°, therefore triangles DAB, FBE and FC D are congruent (SAS), whence
DE = EF = FD, ie. triangle DEF is equilateral. Similarly, for E and F such
that triangles AEB and BFC are equilateral, with interiors intersecting ABC D.

On the other hand, when triangle DEF is equilateral, a rotation of angle +60°
will rotate the perpendicular bisector of AB, meeting the perpendicular bisector
of BC in exactly two points, be them F., F_, originating from points E.,E_.
But the triangles DE, F; and DE_F_ are clearly equilateral, and this accounts
for the two cases proven in the paragraph above, therefore no other cases, with
isosceles triangles AEB and BFC may exist anymore.

Problem 21. The world-renowned marxist theorist Joric is obsessed with both
mathematics and social equalitarism. Therefore, for any positive integer n, written
in decimal representation, he tries to partition its digits into two groups, such that
the absolute value of the difference between the sums of the digits in each group is
as small as possible. Joric calls this value the defect of the number n. Determine
the average value of the defect (over all positive integers), that is, if we denote by
4(n) the defect of n, compute

i ke 8F)

n—o0 n
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Solution. We claim the answer is % When the sum of the digits of n is even.
one has d(n) > 0, while when it is odd, one has §(n) > 1, since the defect has the
same parity with the sum of the digits. Since exactly “half” of the positive integers
have the sum of their digits even, respectively odd, the average of the defect is at
least .

Let o(n) = 0 if the sum of the digits of n is even, and o(n) = 1 if it is odd.
We will show that the set of those positive integers n for which §(n) # o(n) has

()

integers of at most V digits, containing exactly k digits equal to 1. Then the set of

zero density. There are exactly

the integers of at most N digits, containing less than 9 digits equal to 1, contains

8 N 8
ZQN‘k(k) <Y oV NE < 9V(9N)®
k=0

k=0
elements, hence its density is

lim (1%)\ S(ON)® = 0.

N—o0

Now, for a number n of NV digits, be them ordered by magnitude 9 > a; >
ay > ---2any 2 0,wehave (a) +az+---)— (a2 +as+---) = (a1 —a2) +
(as —aq) + -+ =ay — (a2 —az) — (ay —as) —---,hence 0 < §(n) < 9.

When n has k& > 9 digits 1, the same computation for the other N — k digits
yields a value v between 0 and 9, and we have enough digits | to compensate
and achieve §(n) = o(n). Putting together all these results provides the claimed
answer.

(As it can easily be seen, the result holds for any numeration basis.)

Problem 22. Three travel companies provide transportation between n cities,
such that each connection between a pair of cities is covered by one company
only. Prove that, for n > 11. there must exist a round-trip through some four
cities, using the services of a same company, while for n < 11 this is not anymore

necessarily true.
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Solution. In graph-theoretical language the problem amounts to considering
the following proposition (P), and proving that proposition (P) is true forn > 11,
while being false forn < 11:

Any 3-coloring of the edges of the complete graph K,, on n vertices contains
a monochromatic cycle of length 4 (4-cycle).

Itis clear that (P) is a hereditary property: if false for 1 = k, then is also false
for any n < k. Therefore, it is enough to exhibit a 3-coloring for Ko, with no
monochromatic cycle of length 4, in order to prove the second part of the assertion.
We will use a 3-coloring configuration for Kjy: ¢ denote the 9 vertices A, B;, C;
fori=1,2,3 and

e colorinred 4; 4y, 4543, A3A4; and 4,B,, 4;C;. B;C; fori = 1,2, 3;

e color in blue By B, BBy, B3By and B, 4,. 4,C., CyB; for (i.7, k) =
(1,2,3),(2,3,1) and (3,1, 2);

e color in yellow C,Cy, (2C3,C3Cy and C,A;. A, By, ByC; for (1.5, k) =
(1,2,3),(2,3,1) and (3,1,2).

Take a 10*" vertex \" and color in red X' B, in blue XCj, and in yellow X A4,

foré =1,2,3. This 3-coloring contains no monochromatic 4-cycle.

Al
yellow

On the other hand K1; has 55 edges. hence. by pigeonhole principle. any 3-
coloring will yield (at least) one color used for (at least) 19 edges. It will suffice to
prove that any graph with 19 edges on 11 vertices exhibits a 4-cycle.

_ *This is a very interesting configuration in its own: it is the largest such as K, contuns no
monochromatic cycles of any length larger than 3
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Let us denote by ex(n) the maximum number of edges a graph on n vertices
may have, without containing any 4-cycle (such a graph will be called extremal).
For example, trivially so, ex(0) = ex(1) = 0, ex(2) = 1, ex(3) = 3, ex(4) = 4.
Let us also denote by E(S,T') the number of crossing edges with ends in subsets
of vertices S and T'.

If we select a vertex v of degree d from an extremal graph on n vertices, let us
denote by N(v) the set of its d neighbors, and by R(v) the set of the remaining
n—d—1 vertices. Then E(v,v) = 0, E(v, N(v)) = d, E(v, R(v)) = 0. Counting
edges such as no 4-cycle could possibly occur forces E(N(v), N(v)) < L%J,
E(N(v),R(w)) €< n—d -1, E(R(v),R(v)) < ex(n — d — 1), whence the

majoration
ex(n) < d+| 4| +(n-d-Drex(n=d-1)= n-1+ [ 5| +extn=d-1=1,(@.

The function fy(d) is clearly decreasing in d while d < n — 2, therefore an upper
bound for f,(d) is given by the least guaranteed value for the highest degree d of

7
any vertex v of an extremal graph.

N(v)

7 Use the well-known fact that for a graph G = (V, E) the sum of vertices’ degrees equals twice
the number of edges
Z deg(v) = 2card(E)
veV

and an averaging argument
2card(E)

card(V)

max (deg(v)) >
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Let us prove that ex(6) = 7. Assuming ex(6) > 8, there will exist (at least)
a vertex v of degree d > %] = 3 (see above footnote). Then f5(3) = 5 +
[2] + ex(2) = 7, absurd. On the other hand, any configuration with 7 edges for
an extremal graph on 6 vertices will have to contain (at least) one triangle — the
one counted by [%J , since the degree d can be chosen to be no less than 3.

(There are, in fact, only four such possible configurations: one with a vertex
of (maximal) degree 5 (and two triangles), one with a vertex of (maximal) degree
4 (and two triangles), and two with two vertices of (maximal) degree 3 (one with
two triangles, one with only one).)

We claim that ex(11) < 18 (there exist in fact graphs on 11 vertices, with just
18 edges and with no 4-cycles, so ex(11) = 18, but this information is not actually
needed; also our method yields ex(10) = 16). Assume ex(11) > 19; then there
will exist (at least) a vertex v of degree d > [%127] = 4 (see above footnote). Then
the total number of edges is bound by fi;(4) = 10 + [4] +ex(6) = 19, but the
only configurations for ex(6) = 7 do not allow for the realization of all 19 edges,
as a triangle from R(v) cannot be connected with N (v) using full 3 edges, as this
would create a 4-cycle. Therefore, the claim is proven, and ex(11) < 19 implies

that a graph with 19 edges on 11 vertices will necessarily contain a 4-cycle.

Remarks. The difficulty of the problem would have been further increased if
one asked for the value of the threshold value 11, rather than offering it in its
statement.

The author acknowledges the literature, as one would expect, is full of similar
problems, this being a natural question to ask in extremal graph theory. However,
in the eye of the author, the present result, offering an exact answer to the pres-
ence of 4-cycles in 3-colorings of complete graphs, although difficult to reach, is
suitable as the difficult question for an IMO selection test.

A problem amounting to the fact that ex(16) < 36 was used in the Bulgarian
Mathematical Olympiad sometimes in the years 2000’ (the true value, using our
method, can be computed to be ex(16) = 33).

An upper bound of

ex(n) < [g(l + \/M)J
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is proven in [Aigner & Ziegler — Proofs from the Book], but is not tight enough to
yield ex(11) = 18 (it actually offers ex(11) < 20, while we need less than 19).
Computed for the problem mentioned above, it yields ex(16) < 35 (which is just
enough, suggesting that it might have been the recommended solution for it).

The fact that a 2-coloring of K3 does exist (K5 is the union of two disjunct
5-cycles), together with the result of ex(6) = 7, and the fact that I{g has 15 edges,
hence, by pigeonhole principle, any 2-coloring will yield (at least) one color used
for (at least) 8 edges, gives a novel proof to our problem posed in a 2005 JBMO-
selection test in Romania, further used the year after in Croatia.

Both the 2-coloring and the 3-coloring problems are stated, with very gross es-
timations for the threshold values (14 instead of the true 6 value for the 2-coloring;
80 instead of the true 11 value for the 3-coloring), in [Engel — Problem Solving
Strategies].

Finally, a calculation of ex(10) = 16, together with some extensive bibli-
ography (and a mention of ex(16) = 33), is to be found in the [1991 August-
September, AMM].

All these references are of no avail in solving the present problem, as the meth-

ods they use are inadequate for the question at hand.

Further Remarks. (Extremal Graph Theory) Denote by ex(n, H) the maximum
number of edges of a graph G (called extremal) on n vertices, not having as a
subgraph any of the graphs H € H. An edge-maximal graph G would be one such
that any added edge will make it contain some H € #H. Not all edge-maximal
graphs are extremal (e.g., a graph on 4 vertices, with 2 edges, not containing a Ps,
while ex(4, P3) = 3).

Some notable results:

o ex(n, (Py)isr) = ex(n, Py) < Z52n, with equality iff the connected com-
ponents of the extremal graph are K,.’s (Erdos, with difficult proof). If the extremal
graph is desired to be connected, results are published by various authors.

e ex(n, (Ci)kzr) < S5 (n — 1), with equality iff the extremal graph is made
of “leaves” which are I{,_;’s, connected in a “cactus”-like structure (Erd6s and

Gallai). In particular, ex(n, (Cy)r>3) = n — 1, where the extremal graphs are

SELECTION TESTS FOR THE 2007 BMO AND IMO 97

maximal acyclic graphs, viz. trees; ex(5, (Cr)kz4) = 6, ex(6, (Ciliza) = 7,
ex(9, (Cr)rza) = 12,ex(10, (Ci)rz4) = 13.

o ex(n, (Ki)kzr) = ex(n, K;) = t,—1(n) < =2, with equality iff r — 1
divides n (Turdn). In particular, ex(n, C3) = ex(n, K3) < %nz.

e ex(n, Cy) < [ (1 ++/4n = 3)] (Reiman), only known asymptotically. (For
n = ¢> + q+ 1, with ¢ a prime power exceeding 13, ex(n,Cy) = la(g +
1)? (Fiiredi).) In particular, ex(5,Cy) = 6, ex(6,C4) = 7, ex(10,Cy) = 16,
ex(11,Cy) = 18,ex(16,C4) = 33 (references in the [AMM] problem).

o Finally, the meta-theorem of extremal graph theory

lim ex(n, H) (n) ' = X(H) -2

n—o0 2 x(H) -1
(Erdds-Stone corollary). Therefore, for an odd cycle H, since x(H) = 3, the
limit is J, while for an even cycle H, since x(H) = 2, the limit is 0, whence the
“strange” difference between avoiding odd/even cycles.

Now, for a K, whose edges are 2-colored, K is the largest such that it may
contain no monochromatic cycle longer than 3 (example), while K must contain
a monochromatic Cy.

For a K, whose edges are 3-colored, K is the largest such that it may con-
tain no monochromatic cycle longer than 3 (example), while Kyo must contain a
monochromatic cycle longer than 3, but not necessarily a Cy (example), and K,
must contain a monochromatic Cy (the problem at hand). (The color spectrum for
the Ko needs be 15-15-15, 14-15-16 or 13-16-16.)

Problem 23. Forn € N, n > 2, a;,b; € R. 1 < i < n, such that

n n
dal=1, >bi=1,and ia,b; =0,
i=1 i=1

i=1
prove that
n 2 n 2
(Za,.) + <Zbi) <n.
i=1 i=1
Solution. (M. Andronache) The simplest, by far, solution avails itself of meth-
ods used to compute Fourier coefficients. Denote A := """ a; and B :=
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>, bi, then

n n
0< D (1 - da; — Bb)? = Y (14 A%a?+ B2b? —24a;~ 2Bbi+ 24 Bagh;)
i=1

i=1
= znjl +A22n:a? +Bzibf - ZAZn:a,- -~ Zan:b,- +2ABia.—b,~
i=1 i=1 i=1 =1 i=1 =1

=n+A*+ B2 - 247 - 2B? + 0=n — (42 + B?).
In fact, the inequality follows from an identity.

Alternative solution. (A. Zahariuc) With the notations from the solution above,
consider the vector 1 = (1,1,...,1). Denote by O the origin of a coordinates sys-
tem in R", and by P, Q, I the other ends (than O) of vectors a,b, 1. We now are
within a 3-dimensional subspace embedded in R”. Let J be the foot of the perpen-
dicular from I on the plane (OPQ), and P’, Q' be the feet of the perpendiculars
from J on the lines (OP), (OQ). From the 3-perpendiculars-theorem it follows
that IP' L OP" and IQ' L OQ' (also, of course, OP' 1 0Q").

Butthen A = (a,1) = OP', B = (b,1) = 0Q', OP™ + 0Q"* = P'Q” =
O0J% = OI* ~ I < OI* = ||1||? = n, therefore A? + B < n.

Alternative solution. (D. Schwarz) Let us present a solution in terms of linear

algebra. For a vector a = (ai,as,...,a,) given, with a; € R and lla)® =

Il

>n.a? = 1, and vectors x = (z1,22....,2,) with 2; € R and ||x|? :
Yy 2z} =1, together with (a, x) := Yoy ai = 0, find sup(X2 + A2), where
wedenoted A := 377 a;and X := YL 2. We claim sup(X2 + A2%) = n.

Cauchy-Schwartz inequality (C-S) yields 42 < [|a]|>n = nand X2 < [|x|?n =
n, with equality iff all coordinates are equal, to either % or —71;.

Applying variational methods. for A € R, [lx — Aa||> = 1+ A2 But
(C-Syyields [lx — Xa||* > (i, |2 — Aail)? > L(X2 @ — AY i a) =
+(X = XA4)2. Therefore, (n — A%)A2 — 24X\ + (n — X?) > 0forallA € R

When n = A2, occurring iff all a; are equal, to % or ——=, it follows X = 0,
50 X2 + A% = n, with two solutions x for n = 2, and infinitely many solutions x
forn > 2.

Whenn > A2, we need the discriminant A = (AX)? — (n — A)(n-X?) =
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n((X? + A%) — n) < 0, whence X2 + A2 < n. Equality in this case requires all
T; — Aa; equal, and this leads to

= 1<ig withe = +1
12 n 1th €
s RIS, )

therefore exactly two such solutions x.

T;=¢

(In fact, forn = 2, all possible, admissible, vectors x, only two in number
anyhow (!), yield equality X2 + 42 = 2.)

Another yet alternative solution, by Lagrange multipliers method, is also avail-
able (and not too taxing, provided the method is fully mastered). This provides all
information garnered in the above, including the exact expressions of the equa-
lity cases.

Remarks. Quite similar methods allow a generalization.
For aie = (ak1, a2, - .-,an) € R™, such that [|ay||> = 1, k = 1,2,...,m,
m < n,and (ay,a1) = 0 forall k # [, if we denote 4y, := Yn | ki, then
m

Z;li <n.
k=1

For m = n one even gets true equality, and this in turn implies Y-, _, Arar; = 1,
foralli =1,2....,n.

Also, under the notations above, one can prove that, for a # 0 and b # 0, one

2 x) (2 k) (2, )|
() + (@) < (e o) - e

When (a, b) = 0, this comes to

(D) + Gy < e

and for |[a]| = ||b|| = 1, this is (a,x)? + (b,x)? < [|x]|.
Finally, for x = 1, it comes to (a,1)* + (b,1)? < n.ie.

n 2 n 2
(Z a;) + ( b,-) <n.
i i=1

i=1

has
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Back to the result above, since

a 2 b 2 a b
—X) +(—,X) = 2| — X ), X I
<Ilall > <Ilbll > ~ <|IaI| ><IIbII > ’
simple computations yield
1
{a,x)(b;x)| < 5(llall - Ibll + [{a, b)) - lIxII?,
also true for a = 0 or b = 0, a related inequality, generalizing Cauchy-Schwartz.

Problem 24. Let ABC be a triangle, let E, F' be the tangency points of the
incircle I'(I) to the sides AC, respectively AB, and let A be the midpoint of the
side BC. Let N = AM N EF, let v(M) be the circle of diameter BC, and let
X, Y be the other (than B, C) intersection points of BI, respectively CI, with .
Prove that

NX _4C
NY — AB’

Solution. We will assume AB < AC, so the solution matches a possible draw-

ing. Let T = EF N BC (for AB = AC.T = 00). and D the tangency point of T

to BC. We will start with a couple of lemmata.

LEMMA 1. In the configuration described above, for X' = BIN EF, one has
BX' 1 CX'

Proof. The fact that B effectively intersects EF follows from ZDFE =
3(£ABC + £BAC) = %r — 1ZACB < i, and BI L DF (similarly, CI
effectively intersects EF').

The division (T'BDC) is harmonic, and triangles BF X' and BDX' are con-
gruent, therefore ZT'X'B = ZDX'B, which is equivalentto BX' L CX' (simi-
larly, for Y' = CIN EF,onehas CY’' L BY").

LEMMA 2. In the configuration described above, one has N = DI N EF.

Proof. 1t is enough to prove that NI L BC. Let d be the line through A,
parallel to BC. Since the pencil A(BM C'o0) is harmonic, it follows the division
(FNEZ) is harmonic, where Z = d N EF. Therefore N lies on the polar of Z
relative to circle T', and as N € EF (the polar of A), it follows that AZ is the
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polar of N relative to circle I', hence NI L d, so NI L BC. In conclusion, since
DI 1L BC,onehas N € DI.

It follows, according to Lemma 1, that X = X' and Y = Y, therefore X,Y €
EF. Since the division (T'BDC) is harmonic, it follows that D lies on the polar
p of T relative to circle . But TM L p,so BC L p, and since DI L BC, it
follows that p is, in fact, DI.

Now, according to Lemma 2, it follows that D, I, N are collinear. Since DN is
the polar, it means the division (T'Y' N X) is harmonic, thus the pencil D(TY N X)
is harmonic. But DT' L DN, so DN is the angle bisector of ZX DY, hence

NX DX sinZDYX
NY T DY T sinZDXY'
As quadrilaterals BDIY and CDIX are cyclic (since pairs of opposing angles
are right angles), it follows that %AABC = £DBI = /DYI = }/DYX
(triangles CDY and CEY are congruent), so ZDYX = ZABC. Similarly,
£DXY = LACB. Therefore,
NX DX _sinZDYX _ sinZABC _ AC
NY DY sinZDXY sinZACB AB’

This concludes our solution.

Remarks. Lemma 2 above could also be used towards an alternative solution
to Problem 2, as foreseen in the corresponding write-up, providing a projective
alternative to its synthetic solution.

Problem 25. i) Prove that a real polynomial function f cannot be a sum of (at
most) deg f real periodical functions.

ii) For deg f = 1, show that f can effectively be represented as the sum of two
real periodical functions.

iii) For deg f = 1, show that if f is the sum of two real periodical functions,
they must be unbounded in any interval.

iv) Show that a real, not null, polynomial function f can effectively be repre-
sented as the sum of deg f + 1 real periodical functions.

v) Exhibit a real function that cannot be represented as a (finite) sum of real
periodical functions.
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Solution. For any f € F(R) := {¢; ¢ : R > R}, and any a € R*, define
the operator A, : F(R) — F(R) through A, f(z) := f(z + a) — f(z), for all
z € R. The operator A, is clearly linear.

i) We will start by proving a couple of lemmata.
LEMMA 1. For p periodical of period t, so is Agp.

Proof. A simple computation yields A,p(z+1t) = p((z+1t)+a)—p(z+t) =
p((z +a) +t) = p(z +1t) = p(z + a) - p(z) = Lap(2).

LEMMA 2. For f € R[X|, degf > 1, then A, f € RX], and deg Ao f =
deg f— 1.

Proof. Let f(z) = :Z;Of arz® € R[X]. Then the coefficient of z9¢&/ in
A, f is 0, while the coefficient of 296 /=1 is (deg f)aaqeg s # 0.
A nice formula (provable by induction) is

deg f

a 3
Auf =3 7Y,
k=1

also yielding the claimed result.

Assume f = ZLI pi, with p; periodical of period t;, i = 1,2,...,k. We
will prove by induction that then deg f < k. For k = 1 this is trivial, since a
periodical polynomial can only be constant (or the null polynomial). For & >
1, Ay f = f;ll Ay, pi, where Ay, p; is periodical of period t;, according to
Lemma 1. The induction hypothesis yields deg A;, f < k — 1, but degAs, f =
deg f — 1, according to Lemma 2, hence deg f < k.

ii) We urge the reader to adapt the approach presented below, as clearly point
iv) generalizes point ii). This is readily done for deg f = 1, and, in fact, will help

understanding the method taken.

iii) Assume f = p; + p2, with p; periodical of period ¢;, i = 1,2. Some
classical result (Dirichlet, Kronecker, Weyl) states that, for A ¢ Q, the sequence
({nA})nz1 is dense in (0,1). Now, if A = & € @ so & = 2, ie. mit; =
naty = t, then ¢ is a common period for py, p2, hence for f, absurd. Therefore
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A & Q so for any € > O there exist infinitely many n such that {n\} < =
and for each such n there exists an integer my, such that [nt; — myts| < . But
then consider an interval I, and zo € I such that [z — €,29 +¢] C I. We
have |p1 (2o + mnt2)| = |p1(zo + maty — nt1)] = |p1(z,)], with z,, € I, and
[p2(z0 + mnt2)| = |p2(z0)|-

Therefore, | f (2o +mnts)| < |p1(zo+mnts)|+|p2(zo+mats)| = |p1(2,)|+
[p2(z0)]. Since (zg + Mnts)nz1 is unbounded, so must be (p1(,))n>1, there-
fore py, and, of course, p, too, are unbounded on I. As such, they are of course
discontinuous at any real value!

This part is meant to help intuition, and revive erudition, towards solving the
following point. One may be reminded of the “wild” solutions to the Cauchy
functional equation F'(z +y) = F(z) + F(y), first found by Hamel, and thus be
led to considerations like those in the sequel.

iv) We will start with

LEMMA. Assume that h;, i = 1,2,...,n + 1, are positive real numbers, and
that we can express ¢ = 27:11 qi(z), with g; periodical, admitting as periods all
hj, j # 4. Then f(z) = Y }_ ara® € RX] can be expressed f = E;};l pj.
with p; periodical of period h;.

Proof. Any monomial axz*, with 0 < k < n, will be a sum of terms made of
products of g;(z)’s, homogeneous of degree k, hence never containing all n + 1
¢i()’s. But each such term is periodical of periods h; of index not present in that
term. We will then addition it towards a function p; (z), of index least among those
not present in it, so p; will be periodical of period ;. At the end of this process,
we get f = 27:11 pj, as required.

Consider a Hamel basis H of R/Q, and a partition of it into deg f + 1 non-

empty classes
deg f+1

H= U ’H".
i=1
The sets (), linearly generated by H;, only overlap over 0, hence any z € R
can be written uniquely as = )" z;, with z; € (H;), therefore z;, regarded as
function of z, is periodical of any period h; € H;, j # i, since then = + h; =
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(zj+hj)+3 ., vi- Taking g; (z) := x;, the conditions of the lemma are fulfilled.
whence the result.

Alternatively, we can avoid using Hamel bases, using instead the equivalence
relation relative to an additive subgroup H of R, generated by deg f + 1 elements,

for example
n+1 i1
H=Q27] = {Zrﬂm; reQ 1 sisn+1}.
i=1

Take h; = 25711 < i < n+ 1. Since the polynomial X! — 2 is irreducible in
Q[X] (Eisenstein’s criterium), and 27 is a root for it, it follows that h;, 1 < i <
n+1, are linearly independentover Q. Defining z = y iffz —y € H, x is trivially
seen as being an equivalence relation over R. Consider the equivalence classes of
R/ =, and {&;z € R} a system of representants. Thenz = £ + Z;’:’ll 7izhi,
with 7;, € Q uniquely determined. Define q1(2) := & + 71,6, ¢:(2) = 7izhi,
for 2 < i < n+ 1. Clearly, ¢;(z + hj) = gi(z), for any j # 1, so the conditions
of the lemma are fulfilled, whence the result.

Another way is to inductively find h;, each linearly independent over Q with
the previously taken ones, possible since @ is countable, while R is not. Now
build H as being generated by the h;, and proceed as above.

v) We claim that exp(z) := €” is such a function. Assume it can be expressed
asexp = Y. pi» With p; periodical of period ¢;, and n minimal with this prop-
erty. Then, as in the solution for point i), since A¢, exp = (et — 1) exp, we have
exp = Y00 gi, with g; == (et — 1)7! Ay, p; periodical of period ¢; (according
to Lemma 1), contradicting the minimality of n.

(Notice that over C this isn’t true anymore, as exp(z) is periodical of pe-

riod 27i.)
In fact, for f = Y &, p;,» with p; periodical of period t;, denoting by [n] :=
{1,2,...,n},and by T; any integer multiple of ¢;, simple induction yields
3 (—1)|J|f(a; + ZT,-) =0.
JCln) jed

This offers another example: consider the characteristic function X, taking value 0

SELECTION TESTS FOR THE 2007 BMO AND IMO 105

over all reals. except xo(a) = 1. Then the equation above (for T; = t;) cannot

hold, since, for z = a, all the terms in the equation are equal to 0, except x, (a) =1.

Alternative solution. (E.Dobriban) v) We will prove that any real function f
such that zli.xgo f(z) = C, C aconstant, and f # C, is such a function (then y,
is shown to be such, and also functions like f(z) = L for 2 # 0, while £(0) is
arbitrary). Take such a function, that can be expressed as f = Y"1 | p;, with p;
periodical of period t;, and n minimal (over all such functions) with this property.
Clearly n > 1, since n = 1 would mean f is periodical, while lim f(z) = C for
a periodical function forces it to be constant: f = C, contrudri;;iogn. Then, as in
the solution for point i), A, f = Z?:_ll Ay, pi, with Ay, p; periodical of period ¢;
(according to Lemma 1). Now, Ean;o A, f(z) = z11411010 flx+t,) — IIETC}Q flz) =
C — C = 0, s0, by the minimality of n, we need have A; f = 0. But then
f(z +ta) = f(x), so f periodic, hence, by the remark above, f would be forced
to be constant: f = C, contradiction. (Obviously, the same is true for the case
.El}r_ﬂ{x)f(l‘) =C,etc.)

Alternative solution. (A. Zahariuc) iv) The following is kind of a reciprocal
for Lemma 1.

LEMMA 1. For p periodical of period t, and a € R*, incommensurable with

t, there exists a function q periodical of period t, such that p = A,q.

Proof. Consider the set H = {ka + It; k,l € Z}. Clearly, H is closed to
addition and subtraction (i.e. H is an additive subgroup of R), and for an element
of H, its representation is unique. Consider the equivalence classes of R/H, and
{#; 2 € R} a system of representants. Then z = & + kya + lt, with k,,l, € Z
uniquely determined. Define ¢(%) arbitrarily, and prolong g to all R by g(z) =
q(& + kza + I5t) = q(@ + kea) = q(&) + Xhg' p(& + ka) for k, > 0, or
q(z) — Z: p(Z + ka) for k, < 0. Clearly, g(z +t) = g(z), since Z+i=2and
kst = ks, and also g(x +a) — g(z) = p(x), since Z + @ = £ and keja =k +1,
hence Ayq = p.

Now, for A, f = S| p;, with p; periodical of period ¢;, such that a is in-
commensurable with all t;, i = 1,2,...,n, apply Lemma 1’ to find functions
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g¢; periodical of period ¢;, such that p; = A,g;. Since the operator A, is lin-
ear, we have 0 = A, f — S0 pi = Aaf — 301 Aagi = Ao(f = ey @)
hence q,+1 := f — Y iy ¢ is periodical of period tp,41 := a, and therefore
f =" g, with g; periodical of period ¢;.

The same induction argument warrants the possibility to choose, at any step,
incommensurable (with any predefined countable set) values, acting as periods for

the periodical functions considered.

Remarks. The combination of these two alternative solutions with the method
presented at point i) offers a powerful tool for determining other exhibits for point
v). For example, the function f(z) = In(|z|) for 2 # 0, while f(0) is arbi-
trary, is acceptable, since A; f(z) = In(|z + 1[) — In(|z]) = In(|]1 + %l) and
so lim A, f(z) = 0, therefore A; f is acceptable, which in turn forces f to be
acc;;t:ble. Same for the function f(z) = In(1 + |z|).

> (-1)1J‘f(z + ZT,) =0.

JC[n) jeJ

The equation

is seen to be fulfilled by real polynomial functions f of degree at most n — 1,
providing further support to points i) and iv), and suggesting how to look for a

function at point v). For n = 2. the equation writes as
flx+A+B)+ f(a) = f(x + A) + f(z + B),

reminiscent of Cauchy’s equation, and of Hamel’s “wild” solutions, useful for
finding the ideas behind solving points ii) and iv).

It is interesting, and educational, how parts i) and iv) complement each other:
a term made of [] ¢;(z), with all indices present, does not follow to be periodical,
inducing the need of (at least) deg f + 1 such ¢;(z)’s, which is counterbalanced
by the proof that indeed (at least) deg f + 1 periodical functions are required.

The result of the problem leads to the statement:

The linear space R[X), of rcul polynomial functions, is a subspace of the one
spanned by the periodical real functions, which, in turn, is a proper subspace of

F(R), the linear space of all real functions.

PROBLEMS AND SOLUTIONS

JUNIOR BMO SELECTION TESTS

Problem 1. Let a and b be integer numbers. Show that there exists a unique
pair of integers z, y so that

(z+2y—a)’+(2z—y-b)>< 1L
Solution. Solving for a and b the system of equations

{ TH+2y—a=s

2e—y—-b=t,
one has
_(a+2b)+(s+2t)
=
(2a—b)+ (25— 1)
y=—~——5—.

Restating the claim, one has to prove that there exists a unique pair of integers
s,t € Z with s>+¢* < 150 that both numbers (a+2b) + (s+2t), (2a—b)+(2s—t)
are divisible by 5.

Notice that (a + 2b) + (s + 2t) + 2[(2a — b) + (25 — t)] = 5(a + s), s0

2€LSy€el.

Since s>+¢% < 1 4 (s,¢) € {(0,0),(1,0),(0,1), (~1,0), (0, 1)}, it follows
that (a+2b) + (s +2t) € {a+2b—2,a+2b—1,a+2b,a+ 2b+ l,a+2b+2},
so there is exactly one pair (s, t) with 5 | (a + 2b) + (s + 2t), as needed.
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Problem 2. Consider a trapezoid ABC'D with the bases AB and CD so that
the circles with the diameters AD and BC are secant; denote by M and N their
common points. Prove that the intersection point of the diagonals AC' and BD
belongs to the line M N.

Solution. Let @ be the intersection point of the diagonals, T" the second point
of intersection of the line AC with the circle C; of diameter AD and S the second
point of intersection of the line BD with the circle C of diameter BC. Then
LATD = £BSC = 90°, so DT and SC meet in the orthocenter H of the
triangle DQC'. Denote by Cj the circle DCT'S.

The radical axis of the circles Cy, C is M N, the radical axis of the circles
C1,Cy is DT. while the pair of circles C2, C3 has SC' as radical axis, hence the
radical center of the three circles is H.

The line segment M N is the common chord of the circles C; and Cs, thus
perpendicular to the line passing through the centers, which is in fact the middle
line of the trapezoid. As H € MN, then M H||DC, and since QH||DC the
conclusion follows.

Problem 3. A rectangular cardboard is divided successively into smaller pieces
by a straight cut; at each step, only one single piece is divided in two. Find the
smallest number of cuts required in order to obtain — among others — 251 poly-

gons with 11 sides.

Solution. Let n be the required number. We claim that n = 2007.

With 7 cuts, from the given rectangular.piece one can obtain an 11-sided poly-
gon and some triangles. From a triangle,with 8 cuts one can get an 11-sided poly-
eon and some extra pieces, sufficiently enough to continue the same procedure.
Hence. using 7 + 8 - 250 = 2007 cuts one can obtain the 251 requested 1 1-sided
polygons.

Denote by k the number of pieces left at the end which are not 11-sided poly-
cons and notice that each has at least 3 sides. Now, observe that with each cut the
number of pieces increases by 1 and total the number of vertices increases with
at most 4 — actually, with 2, 3 or 4, according to the number of existent vertices

through which the cutting line passes.
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Thenn = k+250and 4n+4 > v > 11-251+ 3k, where v is the total number
of vertices of all polygons at the end. Hence 4n + 4 > 11 - 251 + 3(n — 250) =
2011 + 3n, so n > 2007, as claimed.

Problem 4. Find all integers n, n > 4 such that [\/n] + 1 divides n — 1 and
[v/n] — 1 dividesn + 1.

Solution. Let m = [y/n]. Since n > 4, thenm > 2 is an integer. We have
m? <n< (m+1)%s0m? <n<m?+2m.

Setn = m? +k, k=0,1,2,...,2m. Fromm — 1 | m® + k — 1 we get
m —1| k. Onthe otherhandk < 2(m + 1), thusk =0ork=m + 1.

Ifk =0, fromm — 1| m? + 1 followsm — 1| 2,s0m = 2 or m = 3, hence
n=4orn=09.

Ifk=m+1thenm—1|m*+m+2=m?>-14+m—-1+4,som—1|4.
We obtainm = 2,3 or 5, hencen = 7,13 or 31.

Therefore,n € {4,7,9,13,31}.

Problem 5. Let ABC'D be a convex quadrilateral. The incircle wq of triangle
ABD touches the sides AB, AD at points M, N respectively, while the incircle
wy of triangle C BD touches the sides C D, CB at points P, Q respectively. Given
that w; and w; are tangent, show that:

a) the quadrilateral ABC'D is circumscriptible;

b) the quadrilateral M N PQ is cyclic;

c) the incircles of triangles ABC and ADC are tangent.

Solution. Let T € BD be the tangency point of the incircles of the triangles
ABD and CBD. Notice that BM = BT = BN and DN = DT = DM.

a) We have AB+CD = AM+MB+CP+PD = AN+BQ+CQ+DN =
AD + BC, so the quadrilateral ABCD is circumscriptible.

b) Triangles AM N, DN P, CQP, BQM are isosceles, so ZQMN+/NPQ =
360° ~ (LAMN + ZBMQ + ZQPC + ZNPC) = 360° — 2(4-180° — 4 —
B — C — D) = 180°, hence the quadrilateral M N PQ is cyclic.

c) Let U be the point where the side AC touches the incircle of triangle ABC.
Since AB — BC = AD — DC, then AU = ABTAC=BC _ AD+AC-DC 4
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U is also the tangency point of the side AC' with the incircle of triangle ADC,

as needed.

Problem 6. Let ABC be an acute-angled triangle with AB = AC. For any
point P inside the triangle ABC consider the circle centered at 4 with radius AP
and let M and N be the intersection points of the sides AB and AC' with the circle.
Determine the position of the point P so that A/ N + BP + CP is minimum.

Solution. For a fixed point P inside the given triangle consider the point Q
on the bisector line of BC so that AQ = AP. The parallel line d from Q to BC'
separates the arc M N and the side BC, so D meets the line segment [BP] at a
point, say S. The triangle’s inequality gives SP 4+ PC > SC, so BP + PC >
BS + SC. On the other hand, with an argument frequently refer to as Heron’s
problem we have BS + SC > BQ + QC, so BP + PC is minimum if P = Q.

Let T be the midpoint of the segment M N. Notice that triangle AMQ is
isosceles and M T is an altitude in this triangle, hence MT = QZ, where Z is the
foot of the altitude from @ onto AC. Then MN + BQ + QC = 2(MT + CQ) =
2(CQ + QZ) is minimum when CZ LAC. Consequently, the required point is
the orthocenter of the triangle ABC, which belongs to the interior of the triangle,

since it is an acute-angled one.

Problem 7. Let ABC be a triangle. Points M, N, P are given on the sides
AB,BC, C A respectively so that CPM N is a parallelogram. Lines AN and M P
intersect at point R, lines BP and M N intersect at point S, while Q is the inter-
section point of the lines AN and BP. Show that S{M RQS] = S[NQP).

Solution. Let k = 4Y. Using Thales Theorem, M P||BC yields 45 = k,
while M N||AC implies 42 = k. On the other hand, $& = ££ = k.
Setting S = area[M N P], we have

areal MSP] _ MS _ RP _ areaNPR]

S ~ MN  PM S
hence area[M SP] = area[ N PR]. Subtracting areal RPQ)] from both sides of the

latter equality we get the conclusion.
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Problem 8. Solve in positive integers the equation:
(2% +2)(y® + 3) (2% + 4) = 60zyz.

Solution. Atfirst, notice that (z—1)(z—2) > Oforallz € N, (y—1)(y—3) >
0ify € N\ {2} and (2 — 1)(z — 4) > 0 when z € N\ {2,3}. In other words,
ify # 2and 2z ¢ {2,3}, then2® +2 > 2z,9° + 3 > 3y and 2% + 4 > 4z.
Multiplying the above inequalities yields (z2 + 2)(y* + 3)(2% + 4) > 60zyz, so
in all three inequalities the equality must occur. Until now we have the solutions:

(z,9,2)=(1,1,1),(1,1,4),(1,3,1),(2,1,1),(2,3,1),(2,1,4),(1,3,4), (2, 3,4).

We claim the there are no more solutions. For this, we will show that if z = 2 or
z = 3 ory = 2, there are no integers satisfying the given equation.

The quadratic residues modulo 5 are 0, 1, 4, so 5 do not divide neither 22 + 2
nor y2 + 3. Since 5 divides 60 zyz, it follows that 5 divides 22 + 4, hence z €
{5k £ 1|k € Z}. As aconsequence, z # 2 and z # 3.

If y = 2, the equation rewrites as 1202z = 7(z? + 2)(22 + 4), from which we
may notice that 8 divides (z2 + 2)(z% + 4). If z, z are even integers, then 22 + 2
is even and z? + 4 is divisible by 4, but 4 { 2% + 2 and 16 } 22 + 4, so the power
of 2 in the right-hand side is at most 4, while in the left hand-side is at least 5,
a contradiction. If only one of the numbers z and z is even, the contradiction is
reached similarly. Hence y # 2 and the only solutions of the equation are the ones
previously obtained.

Problem 9. Consider a n x n array divided into unit squares which are ran-
domly colored in black or white. Three of the four corner squares are colored in
white and the fourth is colored in black. Prove that there exists a 2 x 2 square
which contains an odd number of white squares.

Solution. Assign the number 0 to each white square and the number 1 to each
black square. The claim is achieved if we prove the existence of a 2 x 2 square
with an odd sum of the 4 numbers inside.

Assume the contrary, so each sum of the 4 numbers inside a 2 x 2 square is

even. Summing over all squares we get an even number S. Notice that each square
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not sharing a common side with the given array occurs 4 times in S, the squares
with only a common side occurs twice, while the 4 squares in the corners only
once. But in the four corners there are three 0’s and one 1, so the sum S is even, a
contradiction.

Remark. The given array may have a rectangular form, and the above solution
requires no alteration. However, this remark can easily lead to alternative solutions
using induction. Here is a sketch: choose a row with 0 and 1 at endpoints and call it
the first row. Suppose that the number below 0 is also 0; arguing by contradiction,
we notice that all “doubletons” formed vertically from the first two rows have equal
numbers inside, so the second row — which starts with 0 — ends with 1. Deleting
the first row of the given rectangular array, the claim is reached by induction. The

same line of reasoning is applied to the case when below 0 the number is 1.

Problem 10. Suppose a, b, ¢ are positive real numbers satisfying:

1 1 1
>1.
a+b+1 +b+c+1 +c+a+1 z

Show that
a+b+c>ab+bec+ca.

Solution. The Cauchy-Schwarz inequality gives
(a+b+1)(a+bd+c%) 2 (a+b+o)?,

SO

a+b+c? 1
> > 1.
Z(a+b+c)2 /§a+b+l z

cyc
Then
22a+2a2 >(@+b+0o)? =Za2+22ab,
cyc cye cye cye

and the claim follows immediately.

Problem 11. Find all non-empty subsets A of the set {2,3,4,5,...} so that
for any n € A, both n? + 4 and [/n] + 1 also belong to A.
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Solution. We claim that A = {2,3,4,5,...}.

Let m be the smallest element of the set A. Since [\/Tﬂ +1 € A, we have
m < [ym] + 1 < v/m + 1, which gives m = 2.

Notice that [v/n? +4] = nforalln > 2. Indeed,n® < n? +4 < (n+1)* =
n? + 2n + 1, for all n > 2. Using both hypothesis, we have

neA=n’+4ed=>[Vn2+4+1ed=>n+le A
The conclusion follows by induction.

Problem 12. Circles w; and w, intersect at points A and B. A third circle w3,
which intersects w; at points D and E, is internally tangent to w, at point C' and
tangent to the line AB at point F', and lines DE and AB meet at point G. Let H
be the mirror image of F' across G. Calculate the measure of the angle ZHCF.

Solution. Line AB is the radical axis of the circles w; and ws, and line DE is
the radical axis of the circles w; and ws, hence point G is the radical center of the
three circles. Since the radical axis of the circles w3 and w, is the tangent line at C
to these circles, it follows that the tangents from G to w — 3 are GF and GC. Then
GF = GC and GH = GF, so the triangle HCF is right-angled at C. Therefore,
LHCF =90°.

Problem 13. Consider the numbers from 1 to 16. A solitaire game is played
in the following manner: the numbers are paired and each pair is replaced by
the greatest prime divisor of the sum of the numbers in that pair — for example,
(1,2);(3,4); (5,6);...; (15,16) produces the sequence 3,7,11,5,19,23,3,31. The
game continues similarly until one single number is left. Find the greatest possible
value of the number which ends the game.

Solution. Let aQb be the greatest prime divisor of a + b.

At first, notice that from the initial 16 numbers we obtain 8 primes. The largest
prime that can be obtained is 31 = 15Q16; if this number occurs, the second
largest can be 23 = 11012. Otherwise, 29 may occurs twice, from 16913 and
15914, followed by 19 — or lower.

From the stage when we are left with 8 primes, and after pairing them we get
4 primes. If a prime is obtained from two odd primes a and b, then aQb < ﬂzi.
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If else, at least one is 2 and let p be the other. The number p + 2 is prime only if
p € {3,11,17,29}. Therefore, if p and ¢ are prime with p < ¢, then pQgq < ¢ + 2.

We will prove the the largest number which can end the game is 19. One
example to obtain it is exhibit below:

(1,8); (2,7); (9,16); (10, 15); (3, 14); (4, 13); (5, 12); (6, 11)
- 3,3,5,5,17,17,17,17
(3,3); (5,5); (17,17); (17,17) — 3,5,17,17
(3,5); (A7,17) = 2,17
(2,17) = 19.

Now, we have to show that the game cannot end with a number strictly greater
than 19. Since from the second stage the number cannot increase with more than
2, and since 3192 = 11, we derive that the game will end with a prime p < 31.
Suppose by contradiction that p € {23,29, 31}.

If p = 29, as 29 is not sum of two primes, then p is obtained from two of 29.
In the previous stage four 29’s are needed, then in the second stage eight 29’s are
required, in contradiction with an initial observation. Moreover, we have obtained
a stronger result: 29 cannot end the game and cannot occur even in the last pair,
since after 2 steps at most one 29 may occur.

Suppose that p = 31. Two cases are possible: 31 = 2029 or 31 = 31931. The
latter result forbids the first case, while the second case requires that the last four
numbers are 31,31,31,31 or 31,31,29,2. But among the 8 primes obtained after the
first step we have at most two 29’s or one 31, not enough to produce three 31’s or
two 31’s and one 29.

Assume that p = 23. Again two cases are possible: 23 = 29017 or 23 =
23023. The first case is impossible as shown above, while the second case is al-
lowed if the last four primes are 23,23,23,23 or 29,17,23,23. If all primes are 23,
the previous step has eight numbers with the average of 23, which is a contradic-
tion with

8-23<1+2+4+3+---+16=8-17.
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The second case lead similarly to contradiction, since 29 requires two 29’s and the
pair of 23’s are given by four numbers with the sum 4 - 23:

2:290+4-23=150<1+2+---+16=136.
The solution is now complete.

Problem 14. Determine all positive integers n which can be represented in
the form

n = [a,b] + [b,c] + [c, a],
where a, b, ¢ are positive integers.

Note: [p, q] is the lowest common multiple of the integers p and g.

Solution. Any integer which can be represented as described in the problem
will be called good.

Setting b = ¢ = 1 yields [a,b] + [b,c] + [c,a] = a+1+a = 2a + 1, hence
any odd integer is good.

Notice that [2z, 2y] = 2 - [z, y]. Therefore, if n can be represented as [a, b] +
[b, c]+[c, a], then 2n writes as [2a, 2b]+(2b, 2¢]+[2¢, 2a) = 2([a, b]+[b, J+]c, a]),
thus all integers with are not powers of 2 are good.

We claim that all numbers of the form 2*, k € N are not good. For k& = 0
and k = 1 this is obvious, as [a,b] + [b,c] + [c,a] > 1+ 1+1=3. Ifk > 2,
suppose by contradiction that there exist a, b, ¢ as needed. Let a = 24 - a;,b =
2B.py,c= 20'61, where a, by, c; are odd. Without loss of generality, assume that
A> B > C.Then2* = [a,b]+[b, c]+[c,a] = 24-(lag, 1] +[a1, 1)) +28-[br, 1]
Dividing by 28,k > B yields 2"~ = 24~B . (a1, b1] + [a1, ¢1]) + [b1, c1]. But
[a1,b1] + [a1, c1] is even and [by, ¢1] is odd, contradiction.

Problem 15. Let p be a semicircle of diameter AB. A parallel line to AB
intersects the semicircle in C and D so that points B and C lie on opposite sides
of the line AD. The parallel line from C to AD meets p again at point E Lines
BE and CD meet at point F and the parallel line from F to AD intersects AB at
point P. Prove that the line PC is tangent to the semicircle p.
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Solution. A “special” position occurs when ZCAB = 60°, when C = E =
F. In this case the claim is obvious.

Consider the case ZCAB > 60°, where E belongs to the small arc Crﬁ and
F lie on the segment CD. Notice that ZPFC = ZADC = £BCD, hence the
trapezoid PBFC is isosceles. On the other hand, as CD||AB and CE||AD, it
follows that the arcs AC, BD, DE are equal. Then ZEFC = CE+B/5 =
CE+DE = CD = £P'CD, where P' € PC, C € (PP"). The last equality
proves the conclusion.

Slight changes in notations are required for the case ZCAB < 60°.

Problem 16. Prove that

2% 4+ 48 + 28

X2 s e+ 3w -0 - 2)(z - 2,

for any real numbers z,y, 2z > 0.
Solution. Letp = |(z — y)(y — 2)(z — z)|. Recall the identities:
P+ +28 —3ayz= (@ +y+2) (@ +y? + 22 —zy —yz — z2)
and
&y + 2 gy - 2o = @ -y + -2+ (-2
Using AM-GM inequality, we have
1) 12+y2+z2'—zy—yz—zz2%3p2.

On the other hand, since |z —y| < z +y,|ly — 2| S y+zand |z — z| < z +z, it
follows that
2Az+y+z2)2lz—yl+|y—2+]z—z|

Applying again the AM-GM inequality gives
@ 2Az+y+2) >39p.

and the claim follows from the inequalities (1) and (2).
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Problem 17. Eight persons attend a party, and each participant has at most
three others to whom he/she cannot speak. Show that the persons can be grouped

in 4 pairs so that each pair can converse.

Solution. Consider an arbitrary grouping in pairs. A pair in which the persons
cannot speak will be called “bad”. If there are bad pairs, we prove that some
changes can be made to decrease to number of bad pairs. Applying this at most 4
times exhibit a grouping with no bad pairs, and we are done.

‘Label the pairs 4, B,C, D and the persons in pair X by X; and X;. Two
persons that cannot converse are called “enemies”, otherwise “friends”. Assume '
that A is a bad pair. Beside A, the person A, has at most two other enemies. Two
cases arise:

a) If the other enemies of A, belong to the same pair — call it B, then 4; has
at least a friend among Cj, C2, D1, Ds.

Choose C} as a friend of A; and swap A; with Cs. The new pairs A and C are
good, and the claim is satisfied.

b) If not, in at least one of the pairs B, C, D there are only friends of A;. Wlog,
say that this pair is B. One of the persons in this pair must be a friend of A; call
this person B;. Now swap A; with By and the new pairs A and B are good, as
desired.

Remark. Consider the graph with vertices in the eight persons and edges cor-
responding to each pair of friends. The degree of each vertex is at least 4, so,
according to Dirac’s theorem there exists a hamiltonian cycle. Taking 4 edges

with no common endpoint from this cycle, we get 4 good pairs, as needed.

Problem 18. A set of points is called free if there is no equilateral triangle
whose vertices are among the points in the set. Show that any set of n points in the
plane contains a free subset of at least 1/n points.

Solution. Given a set X of n points in the plane, consider a maximal free
subset Y made of m elements, hence such that any point in X \ Y completes
an equilateral triangle with (at least) a pair of points from Y. (Any X contains

free subsets, since any subset with 1 or 2 elements is obviously free.) But for any
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pair of points from Y there exist only two points in the plane which complete an
equilateral triangle, so

n-—msz(m

2), thatis n < m?, orm > v/n.

One checks the validity of this result for small values (1, 2, 3) of n, too (while the

coplanarity restriction is obvious).

Problem 19. A 8 x 8 square board is divided into 64 unit squares. A “skew-
diagonal” of the board is a set of 8 unit squares with the property that each row
or column of the board contains only one unit square of the set. Checkers are
placed in some of the unit squares so that each “skew-diagonal” has exactly 2
squares occupied by checkers. Prove that there exist two rows or two columns

which contain all the checkers.

Solution. Label the rows from 1 to 8 and the columns from 1 to 8. The unit
square which lies on the row ¢ and the column j will be referred as (, 7).

On the skew-diagonal {(i,%) | ¢ = 1,2,...,8} there are exactly 2 squares
in which checkers were placed; wlog, assume that the squares are (1,1),(2,2).
Looking at the 6 x 6 sub-array @ determined by the rows 3-8 and the columns
3-8, we see that any “skew-diagonal” of @, togheter with (1,1), (2,2), is a skew-
diagonal of the initial array. In view of the given conditions, no checkers are
placed in the squares of Q. Now take any skew-diagonal of @ with the squares
(2,1),(1,2); this is a skew-diagonal of the initial array, and the two checkers are
placed inside (2, 1), (1, 2).

Up to the point, we know that checkers are placed in the squares on the rows
1-2 or on the columns 1-2. Suppose by way of contradiction that there exist a
square located on the first two rows — say (¢,m),% = 1,2,m > 3 — and a square
on the first two columns — say (s, j),j = 1,2, s > 3 — that hold checkers. Then
squares (¢,m), (s,7), (3 — 7,3 — j) belongs to a skew-diagonal, contradiction.

Problem 20. Let 1 < m < n be positive integers, and consider the set M =
{(z,y);z,y € N*, 1 < z,y < n}. Determine the least value v(m,n) with the
property that for any subset P C M with | P| = v(m, n) there exist m+1 elements
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A; = (z3,y;) € P,i=1,2,...,m + 1, for which the values z; are all distinct,
and y; are also all distinct.

Solution. We claim v(m,n) = mn + 1.

Partition M into n sets P, = {(z,y);n|z+y—k}, k = 1,2,...,n. The
pigeonhole principle now forces (at least) m + 1 elements from P, be them A; =
(z:,y:), to belong to a same Py.. Now, if we assume z; = z;, then from z; + y; —
k = z; +y; — k (mod n) it follows n | y; — y;, but as y;,y; € {1,2,...,n}, it
follows y; = y;, ie. A; = Aj.

Conversely, mn + 1 is the least cardinality of P to warrant the claimed result;
for |[P| = mn, one can pick P = {(z,);1 < z < m,1 < y < n}; then any
m + 1 elements from P, be them A; = (z,y;), will share at least one z; = z;

(pigeonhole principle again).

Problem 21. Let ABC be a triangle right-angled at 4 and let D be a point
on the side AC. Point E is the mirror image of A across BD and point F' is the
intersection of the line CE with the perpendicular line from D to C'B. Show that
the lines AF, DE and CB are concurrent.

Solution. Line BC meet DF, AE at points T, G respectively. Using Ceva’s
theorem, it suffices to prove that

since only one or all points D, F, G lies on the sides of the triangle AEC.
Observe that ZBAD = Z/BED = /BTD = 90°, so points 4,C, E,T, D
lies on the circle of diameter BD. Then ZFDE = /TBE "% a and ZTDC =
LABC ™ B. Moreover, DE = DA and AB = BE. The law of sinuses gives
FE DE DC FC
sina _ snZEFD’ smZCFD ~ sng’
and since sin ZEFD = sin ZCFD we have
(1) CF _DC sing,
FE DA sina
On the other hand,
EG BE BA AG

sina  sinZEGB _ sinZAGB _ sinp’
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hence
EG _sina
@ GA ™ sing’
Multiplying the inequalities (1) and (2) concludes the proof.

Alternative solution. Let H be the intersection point of the lines DF and AE.
The claim is equivalent to % = %—g, in other words the pairs of points A, E and
@G, H are harmonical conjugates.

Since I is the midpoint of the segment AE, the claim reduces to IG - TH =
IA%

The segment AJ is an altitude in the right-angled triangle ABD, so AI* =
ID-IB.

Angles ZHTB and ZHIB are right, so the points H, T, I, B are cocyclic. It
follows that ZDHT = £IBG and further, ADHI ~ AIBG. Hence 12 = 1¢,
soID -IB = IH - IG. the conclusion is now obvious.

Problem 22. An irrational number z, 0 < z < 1is called suitable if its first 4
decimals in the decimal representation are equal. Find the smallest positive integer
n such that any real number t, 0 < ¢ < 1 may be written as a sum of 7 distinct

suitable numbers.

Solution. At first, we look for a lower margin of . The number 0,1111 can
be written as a sum of n distinct suitable numbers, all starting with 0,0000.. .,
therefore lower than 0.0001. Hence if 0.1111 = a; + as + - - - + ap, with a; <
0.0001, then 0.1111 < n - 0.0001, or n > 1111. Thus n is at least 1112.

We claim that 1112 is the requested number. Let ¢ € (0,1) be a real number.
If t > 0.1111, choose a suitable number of the form y = 0.zzzz... so that
y < t < y + 0.1111. The other suitable numbers will have the form 0,0000.. .,
so they are different from y. We have 0 < ¢t —y < 0,1111. Because 0 < % <
0.1111

115 < 0.0001, the first four decimals of the number u = ﬁ% are all equal to 0.

Choose an irrational number e, small enough not to change the first four decimals

of the numbers u + e,u + 2e,...,u + 1111e, and such that all —plusy +u + e
— are left irrationals. Then

1111-1112-
t—y = (u+e)+ (u+2e)+(u+3e)+-- -+ (u+11lle)+ (u - ——~2——e) .
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As previously stated, number e was selected so that all summands are irra-
tional, suitable numbers with the first four decimals 0 and paiwisely distinct — in
other words, different from the last one. Consequently,

t = (y+u+e)+(u+2e)+(u+3e)+- -+ (ut+1llle)+ (u— w) .

2

The number y + u + e starts with 0.zzzz, while the others with 0.0000, so
they are suitable. Since ¢ is now represented as required, the proof is concluded.



PROBLEMS AND SOLUTIONS

BALKAN MATHEMATICAL OLYMPIAD

Problem 1. Let ABCD be a convex quadrilateral with AB = BC = CD,
AC # BD, and let E be the intersection point of its diagonals. Prove that AE =
DE if and only if ZBAD + ZADC = 120°.

Solution. (Official) Let us first denote ZBAC = £BCA = o, ZCBD =
ZCDB = f. Assume AE = DE. The triangles BAE and CDE have two
pairs of equal sides, and their angles ZAEB and ZDEC are also equal (to o + 3,
as vertex opposite). By a simple argument, the angles ZABE and ZDCE are
then equal or supplementary, so either 2a + 8 = a + 23, or (2o + f) + (o +
243) = 180°. From the first one, we get o = 3, so ZBAD = ZCDA, hence
AC = BD, contradiction. From the second one, we get & + 8 = 60°. Then
/BAD + Z/ADC = (a + LEAD) + (8 + LEDA) = 2(a + ) = 120°.

Conversely, assume ZBAD + ZADC = 120°. Let S = ABN DC. We
have ZAEB = a + 3, and also ZAEB = LEAD + ZEDA, hence 2ZAEB =
/BAD + ZCDA = 120°, therefore ZAEB = 60°. But ZASD = 60° also,
hence the quadrilateral SBEC is cyclic, so ZBSE = Z/BCA = o = ZSAE,
therefore EA = ES. Similarly, ED = ES,so AE = DE.

Problem 2. Find all functions f : R — R such that
(@) +y) = f(f(z) —y) +4f(x)y
forallz,y € R

Solution. (N.Pipar) The identically null function f = 0 is a solution of the

equation.
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For y = f(z) one gets f(2f(z)) = f(0) + 4f(z)>. Replacing y by 2f(y) —
f(z) one gets f(2f(z) — 2f(v)) = f(2f(y)) - 4f(2)(2f(y) - f(2)) = F(0) +
4f()* - 4f(2)2f (v) - f(2)) = £(0) + (2f () — 2f (v)).

When there exists 2o with f(zq) # 0, then for any z € R one has

z z
T = 2f(f($o) + W) - 2f(f(10) - 8_}'—(2-0))’
hence f(z) = 2% + £(0).

Alternative solution. (A.Zahariuc) Let A = Imf. We start with the following
LEMMA. f = 0or A — A = R (Minkowski difference).

Proof. If f is not identically null, then there exists zo € R such that f(z¢) #
0. We have f(f(zo0) +y) — f(f(z0) — y) = 4f(z0)y, for any y € R, and as
4f(zo)y is onto as a mapping in y, it follows that any real number may be written
as f(B) — f(a), thatis A — A =R

As the identically null function trivially fulfills the equation, we are left with
f #0. Let g(t) = f(t) — t*. It immediately follows g(f(z) +y) = g(f(z) — y).
50 g(y) = g(2f(z) — y), forall z,y € R. Accordingto A — A = R, there exist
a,f € Rsuch that f(8) — f(a) = }t, for any ¢, and then g(0) = g(2f(a)) =
9(2f(8)—2f()) = g(t), therefore g is constant. It follows that f (z) = 22+ £(0),
readily checked as solutions.

Problem 3. Find all positive integers n such that there exists a permutation o
of the set {1,2,...,n} for which

\/0(1) +1/o@+/+ Vo) eQ

Solution. (Official, adapted) Let us denote, fork = 1,2,...,n,

Ek=\/cr(k)+\/n(k+l)+v-~-+ a(n).

It immediately follows that we need have E;, € N*, because the square root of an
integer is either integer, or irrational. Now, let us denote, fork = 1,2,...,n,

Nk=\/n+\/n+\/~~~+\/ﬁ,




124 SOLUTIONS

where n — k + 1 square root signs are used. It may easily be proven (through
simple induction, or otherwise) that B, < N, < /n+1,fork =1,2,...,n.

Letp> < n < (p+1)% hence y/n4+1 < p+2. Forp > 1 we have
p> =1 € {1,2,...,n}, and p> — 1 not a perfect square, therefore p> — 1 =
o(m), for some m < n. Butthenp < Ep, < p+ 2,50 E,, = p+ 1, hence
p* =1+ Epy1 = p* +2p+ L, thatis Epyy = 2p+2 > p+2 > /n+1, absurd
(unlessm = n —1and 1 = o(n), when p?> = o(l), for some ! < n — 1, and an
even easier similar contradiction is obtained).

It follows the only possibility remains p = 1, hence n € {1,2, 3}, for which it

is trivial to check that the sole solutions are n = 1, with \/I =1,and n = 3, with

Ve+VB+vi=2

Problem 4. For a given positive integer n > 2, let C;, C2, C3 be the bound-
aries of three convex n-gons in the plane, such that all three sets C; N Ca,
Cy N C3,C3 N C4, are finite. Find the maximum number of points of the set
CiNnC>NCs.

Solution. (A.Zahariuc) We claim the answer is [%"J

Let V = C; N Co N Cs, [V| = m. Let P be the polygon of vertices V, and
P be the polygon of boundary C, k = 1,2, 3. It is readily seen that P turns to
be convex, with any three of its vertices non-collinear. It is clear that every side
of P is included in one side of some Py, (and one only). Let a; be the number of
sides of P included in sides of Py. It follows a; + a2 + az = m. Let us count the
vertices of P. On one hand, they are exactly n, while on the other hand, there are
exactly ay. sides of Py including sides of P, and for each of the remaining m — 2a;,
vertices of P, a side each containing the corresponding vertex (these sides being
always different). It follows that aj, + (m — 2a;) < n, hence m — ay, < n. By
summation over k follows 3m — (a1 + a2 + a3) < 3n, hence 2m < 3n, that is
m < |3

Let us build a model in order to prove the bound found in the above is best. We
will present the case n even; the odd case is similar. Let n = 2/. We start with a
convex polygon P with 3/ sides. We index its sides, sequentially, with 1,2, ..., 3.
For each k£ € {1,2,3} we choose P to be the polygon determined by the ! sides
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of P, indexed = k modulo 3, and other more [ lines “tangent” to P at its remaining
1 vertices.

Remarks. This solution may be readily extended to intersecting boundaries of
P > 2 convex n-gons in the plane, pairwise finite. The answer is [;;’%J which,
for p = 2 is (almost) trivial, for p = 3 is the contest problem, while for p > 3 it
makes a complete extension. Let us notice that asymptotically, for p growing to
infinity, the answer is n. It is remarkable that the boundaries of n + 1 n-gons may .

intersect in as many points as n + 1.
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