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A1 We change to cylindrical coordinates, i.e., we putr =
√

x2 + y2. Then the given inequality is equivalent to

r2 + z2 + 8 ≤ 6r,

or

(r − 3)2 + z2 ≤ 1.

This defines a solid of revolution (a solid torus); the
area being rotated is the disc(x − 3)2 + z2 ≤ 1 in
thexz-plane. By Pappus’s theorem, the volume of this
equals the area of this disc, which isπ, times the dis-
tance through which the center of mass is being rotated,
which is(2π)3. That is, the total volume is6π2.

A2 Suppose on the contrary that the setB of values of
n for which Bob has a winning strategy is finite; for
convenience, we includen = 0 in B, and writeB =
{b1, . . . , bm}. Then for every nonnegative integern not
in B, Alice must have some move on a heap ofn stones
leading to a position in which the second player wins.
That is, every nonnegative integer not inB can be writ-
ten asb+p−1 for someb ∈ B and some primep. How-
ever, there are numerous ways to show that this cannot
happen.

First solution: Let t be any integer bigger than all of
theb ∈ B. Then it is easy to write downt consecutive
composite integers, e.g.,(t+1)!+2, . . . , (t+1)!+t+1.
Taken = (t + 1)! + t; then for eachb ∈ B, n − b + 1
is one of the composite integers we just wrote down.

Second solution: Let p1, . . . , p2m be any prime num-
bers; then by the Chinese remainder theorem, there ex-
ists a positive integerx such that

x − b1 ≡ −1 (mod p1pm+1)

. . .

x − bn ≡ −1 (mod pmp2m).

For eachb ∈ B, the unique integerp such thatx =
b + p − 1 is divisible by at least two primes, and so
cannot itself be prime.

Third solution: (by Catalin Zara) Putb1 = 0, and take
n = (b2 − 1) · · · (bm − 1); thenn is composite because
3, 8 ∈ B, and for any nonzerob ∈ B, n − bi + 1 is
divisible by but not equal tobi − 1. (One could also
taken = b2 · · · bm − 1, so thatn− bi +1 is divisible by
bi.)

A3 We first observe that given any sequence of integers
x1, x2, . . . satisfying a recursion

xk = f(xk−1, . . . , xk−n) (k > n),

wheren is fixed andf is a fixed polynomial ofn vari-
ables with integer coefficients, for any positive integer
N , the sequence moduloN is eventually periodic. This
is simply because there are only finitely many possible
sequences ofn consecutive values moduloN , and once
such a sequence is repeated, every subsequent value is
repeated as well.

We next observe that if one can rewrite the same recur-
sion as

xk−n = g(xk−n+1, . . . , xk) (k > n),

whereg is also a polynomial with integer coefficients,
then the sequence extends uniquely to a doubly infinite
sequence. . . , x−1, x0, x1, . . . which is fully periodic
modulo anyN . That is the case in the situation at hand,
because we can rewrite the given recursion as

xk−2005 = xk+1 − xk.

It thus suffices to find 2005 consecutive terms divisible
by N in the doubly infinite sequence, for any fixedN
(so in particular forN = 2006). Running the recursion
backwards, we easily find

x1 = x0 = · · · = x−2004 = 1

x−2005 = · · · = x−4009 = 0,

yielding the desired result.

A4 First solution: By the linearity of expectation, the av-
erage number of local maxima is equal to the sum of
the probability of having a local maximum atk over
k = 1, . . . , n. Fork = 1, this probability is 1/2: given
the pair{π(1), π(2)}, it is equally likely thatπ(1) or
π(2) is bigger. Similarly, fork = n, the probability is
1/2. For1 < k < n, the probability is 1/3: given the
pair{π(k− 1), π(k), π(k + 1)}, it is equally likely that
any of the three is the largest. Thus the average number
of local maxima is

2 · 1

2
+ (n − 2) · 1

3
=

n + 1

3
.

Second solution: Another way to apply the linear-
ity of expectation is to compute the probability that
i ∈ {1, . . . , n} occurs as a local maximum. The most
efficient way to do this is to imagine the permutation as
consisting of the symbols1, . . . , n, ∗ written in a circle
in some order. The numberi occurs as a local maxi-
mum if the two symbols it is adjacent to both belong to
the set{∗, 1, . . . , i−1}. There arei(i−1) pairs of such
symbols andn(n−1) pairs in total, so the probability of
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i occurring as a local maximum isi(i− 1)/(n(n− 1)),
and the average number of local maxima is

n
∑

i=1

i(i − 1)

n(n − 1)
=

2

n(n − 1)

n
∑

i=1

(

i

2

)

=
2

n(n − 1)

(

n + 1

3

)

=
n + 1

3
.

One can obtain a similar (if slightly more intricate) so-
lution inductively, by removing the known local maxi-
mumn and splitting into two shorter sequences.

Remark: The usual term for a local maximum in this
sense is apeak. The complete distribution for the num-
ber of peaks is known; Richard Stanley suggests the ref-
erence: F. N. David and D. E. Barton,Combinatorial
Chance, Hafner, New York, 1962, p. 162 and subse-
quent.

A5 Since the desired expression involves symmetric func-
tions of a1, . . . , an, we start by finding a polynomial
with a1, . . . , an as roots. Note that

1 ± i tan θ = e±iθ sec θ

so that

1 + i tan θ = e2iθ(1 − i tan θ).

Consequently, if we putω = e2inθ, then the polynomial

Qn(x) = (1 + ix)n − ω(1 − ix)n

has among its rootsa1, . . . , an. Since these are distinct
andQn has degreen, these must be exactly the roots.

If we write

Qn(x) = cnxn + · · · + c1x + c0,

then a1 + · · · + an = −cn−1/cn and a1 · · · an =
−c0/cn, so the ratio we are seeking iscn−1/c0. By
inspection,

cn−1 = nin−1 − ωn(−i)n−1 = nin−1(1 − ω)

c0 = 1 − ω

so

a1 + · · · + an

a1 · · ·an
=

{

n n ≡ 1 (mod 4)

−n n ≡ 3 (mod 4).

Remark: The same argument shows that the ratio be-
tween any twoodd elementary symmetric functions of
a1, . . . , an is independent ofθ.

A6 First solution: (by Daniel Kane) The probability is
1 − 35

12π2 . We start with some notation and simplifi-
cations. For simplicity, we assume without loss of gen-
erality that the circle has radius 1. LetE denote the

expected value of a random variable over all choices of
P, Q, R. Write [XY Z] for the area of triangleXY Z.

If P, Q, R, S are the four points, we may ignore the case
where three of them are collinear, as this occurs with
probability zero. Then the only way they can fail to
form the vertices of a convex quadrilateral is if one of
them lies inside the triangle formed by the other three.
There are four such configurations, depending on which
point lies inside the triangle, and they are mutually ex-
clusive. Hence the desired probability is 1 minus four
times the probability thatS lies inside trianglePQR.
That latter probability is simplyE([PQR]) divided by
the area of the disc.

Let O denote the center of the circle, and letP ′, Q′, R′

be the projections ofP, Q, R onto the circle fromO.
We can write

[PQR] = ±[OPQ] ± [OQR] ± [ORP ]

for a suitable choice of signs, determined as follows. If
the pointsP ′, Q′, R′ lie on no semicircle, then all of the
signs are positive. IfP ′, Q′, R′ lie on a semicircle in
that order andQ lies inside the triangleOPR, then the
sign on[OPR] is positive and the others are negative.
If P ′, Q′, R′ lie on a semicircle in that order andQ lies
outside the triangleOPR, then the sign on[OPR] is
negative and the others are positive.

We first calculate

E([OPQ] + [OQR] + [ORP ]) = 3E([OPQ]).

Write r1 = OP, r2 = OQ, θ = ∠POQ, so that

[OPQ] =
1

2
r1r2(sin θ).

The distribution ofr1 is given by2r1 on [0, 1] (e.g.,
by the change of variable formula to polar coordinates),
and similarly forr2. The distribution ofθ is uniform on
[0, π]. These three distributions are independent; hence

E([OPQ])

=
1

2

(∫ 1

0

2r2 dr

)2(
1

π

∫ π

0

sin(θ) dθ

)

=
4

9π
,

and

E([OPQ] + [OQR] + [ORP ]) =
4

3π
.

We now treat the case whereP ′, Q′, R′ lie on a semicir-
cle in that order. Putθ1 = ∠POQ andθ2 = ∠QOR;
then the distribution ofθ1, θ2 is uniform on the region

0 ≤ θ1, 0 ≤ θ2, θ1 + θ2 ≤ π.

In particular, the distribution onθ = θ1 + θ2 is 2θ
π2 on

[0, π]. PutrP = OP, rQ = OQ, rR = OR. Again, the



3

distribution onrP is given by2rP on [0, 1], and simi-
larly for rQ, rR; these are independent from each other
and from the joint distribution ofθ1, θ2. Write E′(X)
for the expectation of a random variableX restricted to
this part of the domain.

Let χ be the random variable with value 1 ifQ is inside
triangleOPR and 0 otherwise. We now compute

E′([OPR])

=
1

2

(∫ 1

0

2r2 dr

)2(∫ π

0

2θ

π2
sin(θ) dθ

)

=
4

9π
E′(χ[OPR])

= E′(2[OPR]2/θ)

=
1

2

(∫ 1

0

2r3 dr

)2(∫ π

0

2θ

π2
θ−1 sin2(θ) dθ

)

=
1

8π
.

Also recall that given any triangleXY Z, if T is chosen
uniformly at random insideXY Z, the expectation of
[TXY ] is the area of triangle bounded byXY and the
centroid ofXY Z, namely1

3 [XY Z].

Let χ be the random variable with value 1 ifQ is inside
triangleOPR and 0 otherwise. Then

E′([OPQ] + [OQR] + [ORP ] − [PQR])

= 2E′(χ([OPQ] + [OQR]) + 2E′((1 − χ)[OPR])

= 2E′(
2

3
χ[OPR]) + 2E′([OPR]) − 2E′(χ[OPR])

= 2E′([OPR]) − 2

3
E′(χ[OPR]) =

29

36π
.

Finally, note that the case whenP ′, Q′, R′ lie on a semi-
circle in some order occurs with probability3/4. (The
case where they lie on a semicircle proceeding clock-
wise fromP ′ to its antipode has probability 1/4; this
case and its two analogues are exclusive and exhaus-
tive.) Hence

E([PQR])

= E([OPQ] + [OQR] + [ORP ])

− 3

4
E′([OPQ] + [OQR] + [ORP ] − [PQR])

=
4

3π
− 29

48π
=

35

48π
,

so the original probability is

1 − 4E([PQR])

π
= 1 − 35

12π2
.

Second solution: (by David Savitt) As in the first so-
lution, it suffices to check that forP, Q, R chosen uni-
formly at random in the disc,E([PQR]) = 35

48π . Draw

the linesPQ, QR, RP , which with probability 1 di-
vide the interior of the circle into seven regions. Put
a = [PQR], let b1, b2, b3 denote the areas of the three
other regions sharing a side with the triangle, and let
c1, c2, c3 denote the areas of the other three regions.
Put A = E(a), B = E(b1), C = E(c1), so that
A + 3B + 3C = π.

Note thatc1 + c2 + c3 + a is the area of the region
in which we can choose a fourth pointS so that the
quadrilateralPQRS fails to be convex. By comparing
expectations, we have3C + A = 4A, soA = C and
4A + 3B = π.

We will computeB + 2A = B + 2C, which is the ex-
pected area of the part of the circle cut off by a chord
through two random pointsD, E, on the side of the
chord not containing a third random pointF . Let h be
the distance from the centerO of the circle to the line
DE. We now determine the distribution ofh.

Putr = OD; the distribution ofr is 2r on [0, 1]. With-
out loss of generality, supposeO is the origin andD
lies on the positivex-axis. For fixedr, the distribution
of h runs over[0, r], and can be computed as the area
of the infinitesimal region in whichE can be chosen so
the chord throughDE has distance toO betweenh and
h + dh, divided byπ. This region splits into two sym-
metric pieces, one of which lies between chords making
angles ofarcsin(h/r) andarcsin((h + dh)/r) with the
x-axis. The angle between these isdθ = dh/(r2 − h2).
Draw the chord throughD at distanceh to O, and let
L1, L2 be the lengths of the parts on opposite sides of
D; then the area we are looking for is12 (L2

1 + L2
2)dθ.

Since

{L1, L2} =
√

1 − h2 ±
√

r2 − h2,

the area we are seeking (after doubling) is

2
1 + r2 − 2h2

√
r2 − h2

.

Dividing by π, then integrating overr, we compute the
distribution ofh to be

1

π

∫ 1

h

2
1 + r2 − 2h2

√
r2 − h2

2r dr

=
16

3π
(1 − h2)3/2.

We now return to computingB + 2A. Let A(h) de-
note the smaller of the two areas of the disc cut off by
a chord at distanceh. The chance that the third point
is in the smaller (resp. larger) portion isA(h)/π (resp.
1−A(h)/π), and then the area we are trying to compute
is π − A(h) (resp.A(h)). Using the distribution onh,
and the fact that

A(h) = 2

∫ 1

h

√

1 − h2 dh

=
π

2
− arcsin(h) − h

√

1 − h2,
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we find

B + 2A

=
2

π

∫ 1

0

A(h)(π − A(h))
16

3π
(1 − h2)3/2 dh

=
35 + 24π2

72π
.

Since4A + 3B = π, we solve to obtainA = 35
48π as in

the first solution.

Third solution: (by Noam Elkies) Again, we reduce
to computing the average area of a triangle formed
by three random pointsA, B, C inside a unit cir-
cle. Let O be the center of the circle, and putc =
max{OA, OB, OC}; then the probability thatc ≤ r
is (r2)3, so the distribution ofc is 6c5 dc on [0, 1].

Givenc, the expectation of[ABC] is equal toc2 times
X , the expected area of a triangle formed by two ran-
dom pointsP, Q in a circle and a fixed pointR on
the boundary. We introduce polar coordinates centered
at R, in which the circle is given byr = 2 sin θ for
θ ∈ [0, π]. The distribution of a random point in that
circle is 1

π r dr dθ over θ ∈ [0, π] andr ∈ [0, 2 sin θ].
If (r, θ) and(r′, θ′) are the two random points, then the
area is1

2rr′ sin |θ − θ′|.
Performing the integrals overr andr′ first, we find

X =
32

9π2

∫ π

0

∫ π

0

sin3 θ sin3 θ′ sin |θ − θ′| dθ′ dθ

=
64

9π2

∫ π

0

∫ θ

0

sin3 θ sin3 θ′ sin(θ − θ′) dθ′ dθ.

This integral is unpleasant but straightforward; it yields
X = 35/(36π), and E([PQR]) =

∫ 1

0 6c7X dc =
35/(48π), giving the desired result.

Remark: This is one of the oldest problems in geo-
metric probability; it is an instance of Sylvester’s four-
point problem, which nowadays is usually solved us-
ing a device known as Crofton’s formula. We defer to
http://mathworld.wolfram.com/ for further
discussion.

B1 The “curve”x3+3xy+y3−1 = 0 is actually reducible,
because the left side factors as

(x + y − 1)(x2 − xy + y2 + x + y + 1).

Moreover, the second factor is

1

2
((x + 1)2 + (y + 1)2 + (x − y)2),

so it only vanishes at(−1,−1). Thus the curve in ques-
tion consists of the single point(−1,−1) together with
the linex + y = 1. To form a triangle with three points
on this curve, one of its vertices must be(−1,−1). The
other two vertices lie on the linex + y = 1, so the

length of the altitude from(−1,−1) is the distance from
(−1,−1) to (1/2, 1/2), or3

√
2/2. The area of an equi-

lateral triangle of heighth is h2
√

3/3, so the desired
area is3

√
3/2.

Remark: The factorization used above is a special case
of the fact that

x3 + y3 + z3 − 3xyz

= (x + y + z)(x + ωy + ω2z)(x + ω2y + ωz),

whereω denotes a primitive cube root of unity. That
fact in turn follows from the evaluation of the determi-
nant of thecirculant matrix





x y z
z x y
y z x





by reading off the eigenvalues of the eigenvectors
(1, ωi, ω2i) for i = 0, 1, 2.

B2 Let{x} = x − ⌊x⌋ denote the fractional part ofx. For
i = 0, . . . , n, putsi = x1 + · · · + xi (so thats0 = 0).
Sort the numbers{s0}, . . . , {sn} into ascending order,
and call the resultt0, . . . , tn. Since0 = t0 ≤ · · · ≤
tn < 1, the differences

t1 − t0, . . . , tn − tn−1, 1 − tn

are nonnegative and add up to 1. Hence (as in the pi-
geonhole principle) one of these differences is no more
than1/(n + 1); if it is anything other than1 − tn, it
equals±({si} − {sj}) for some0 ≤ i < j ≤ n. Put
S = {xi+1, . . . , xj} andm = ⌊si⌋ − ⌊sj⌋; then

∣

∣

∣

∣

∣

m +
∑

s∈S

s

∣

∣

∣

∣

∣

= |m + sj − si|

= |{sj} − {si}|

≤ 1

n + 1
,

as desired. In case1 − tn ≤ 1/(n + 1), we takeS =
{x1, . . . , xn} and m = −⌈sn⌉, and again obtain the
desired conclusion.

B3 The maximum is
(

n
2

)

+ 1, achieved for instance by a
convexn-gon: besides the trivial partition (in which all
of the points are in one part), each linear partition oc-
curs by drawing a line crossing a unique pair of edges.

First solution: We will prove thatLS =
(

n
2

)

+1 in any
configuration in which no two of the lines joining points
of S are parallel. This suffices to imply the maximum
in all configurations: given a maximal configuration,
we may vary the points slightly to get another maximal
configuration in which our hypothesis is satisfied. For
convenience, we assumen ≥ 3, as the casesn = 1, 2
are easy.
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Let P be the line at infinity in the real projective plane;
i.e., P is the set of possible directions of lines in the
plane, viewed as a circle. Remove the directions corre-
sponding to lines through two points ofS; this leaves
behind

(

n
2

)

intervals.

Given a direction in one of the intervals, consider the
set of linear partitions achieved by lines parallel to that
direction. Note that the resulting collection of partitions
depends only on the interval. Then note that the collec-
tions associated to adjacent intervals differ in only one
element.

The trivial partition that puts all ofS on one side is
in every such collection. We now observe that for any
other linear partition{A, B}, the set of intervals to
which{A, B} is:

(a) a consecutive block of intervals, but

(b) not all of them.

For (a), note that ifℓ1, ℓ2 are nonparallel lines achieving
the same partition, then we can rotate around their point
of intersection to achieve all of the intermediate direc-
tions on one side or the other. For (b), the casen = 3
is evident; to reduce the general case to this case, take
pointsP, Q, R such thatP lies on the opposite side of
the partition fromQ andR.

It follows now that that each linear partition, except for
the trivial one, occurs in exactly one place as the parti-
tion associated to some interval but not to its immediate
counterclockwise neighbor. In other words, the num-
ber of linear partitions is one more than the number of
intervals, or

(

n
2

)

+ 1 as desired.

Second solution: We prove the upper bound by induc-
tion on n. Choose a pointP in the convex hull ofS.
PutS′ = S \ {P}; by the induction hypothesis, there
are at most

(

n−1
2

)

+ 1 linear partitions ofS′. Note that
each linear partition ofS restricts to a linear partition
of S′. Moreover, if two linear partitions ofS restrict to
the same linear partition ofS′, then that partition ofS′

is achieved by a line throughP .

By rotating a line throughP , we see that there are at
mostn − 1 partitions ofS′ achieved by lines through
P : namely, the partition only changes when the rotating
line passes through one of the points ofS. This yields
the desired result.

Third solution: (by Noam Elkies) We enlarge the plane
to a projective plane by adding a line at infinity, then
apply the polar duality map centered at one of the points
O ∈ S. This turns the rest ofS into a setS′ of n − 1
lines in the dual projective plane. LetO′ be the point
in the dual plane corresponding to the original line at
infinity; it does not lie on any of the lines inS′.

Let ℓ be a line in the original plane, corresponding to a
pointP in the dual plane. If we form the linear partition
induced byℓ, then the points ofS \ {O} lying in the
same part asO correspond to the lines ofS′ which cross

the segmentO′P . If we consider the dual affine plane
as being divided into regions by the lines ofS′, then the
lines ofS′ crossing the segmentO′P are determined by
which regionP lies in.

Thus our original maximum is equal to the maximum
number of regions into whichn−1 lines divide an affine
plane. By induction onn, this number is easily seen to
be1 +

(

n
2

)

.

Remark: Given a finite setS of points inRn, a non-
Radon partition of S is a pair(A, B) of complementary
subsets that can be separated by a hyperplane.Radon’s
theorem states that if#S ≥ n+2, then not every(A, B)
is a non-Radon partition. The result of this problem has
been greatly extended, especially within the context of
matroid theory and oriented matroid theory. Richard
Stanley suggests the following references: T. H. Bry-
lawski, A combinatorial perspective on the Radon con-
vexity theorem,Geom. Ded. 5 (1976), 459-466; and T.
Zaslavsky, Extremal arrangements of hyperplanes,Ann.
N. Y. Acad. Sci. 440 (1985), 69-87.

B4 The maximum is2k, achieved for instance by the sub-
space

{(x1, . . . , xn) ∈ Rn : x1 = · · · = xn−k = 0}.

First solution: More generally, we show that any affine
k-dimensional plane inRn can contain at most2k

points inZ. The proof is by induction onk + n; the
casek = n = 0 is clearly true.

Suppose thatV is ak-plane inRn. Denote the hyper-
planes{xn = 0} and{xn = 1} by V0 andV1, respec-
tively. If V ∩ V0 andV ∩ V1 are each at most(k − 1)-
dimensional, thenV ∩V0∩Z andV ∩V1∩Z each have
cardinality at most2k−1 by the induction assumption,
and henceV ∩ Z has at most2k elements. Otherwise,
if V ∩ V0 or V ∩ V1 is k-dimensional, thenV ⊂ V0

or V ⊂ V1; now apply the induction hypothesis onV ,
viewed as a subset ofRn−1 by dropping the last coor-
dinate.

Second solution: Let S be a subset ofZ contained in
a k-dimensional subspace ofV . This is equivalent to
asking that anyt1, . . . , tk+1 ∈ S satisfy a nontrivial
linear dependencec1t1 + · · · + ck+1tk+1 = 0 with
c1, . . . , ck+1 ∈ R. Sincet1, . . . , tk+1 ∈ Qn, given
such a dependence we can always find another one with
c1, . . . , ck+1 ∈ Q; then by clearing denominators, we
can find one withc1, . . . , ck+1 ∈ Z and not all having a
common factor.

Let F2 denote the field of two elements, and letS ⊆ Fn
2

be the reductions modulo 2 of the points ofS. Then any
t1, . . . , tk+1 ∈ S satisfy a nontrivial linear dependence,
because we can take the dependence from the end of
the previous paragraph and reduce modulo 2. HenceS
is contained in ak-dimensional subspace ofF2n , and
the latter has cardinality exactly2k. ThusS has at most
2k elements, as doesS.
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Variant (suggested by David Savitt): ifS containedk +
1 linearly independent elements, the(k +1)×n matrix
formed by these would have a nonvanishing maximal
minor. The lift of that minor back toR would also not
vanish, soS would containk + 1 linearly independent
elements.

Third solution: (by Catalin Zara) LetV be a k-
dimensional subspace. Form the matrix whose rows are
the elements ofV ∩Z; by construction, it has row rank
at mostk. It thus also has column rank at mostk; in
particular, we can choosek coordinates such that each
point of V ∩ Z is determined by thosek of its coordi-
nates. Since each coordinate of a point inZ can only
take two values,V ∩ Z can have at most2k elements.

Remark: The proposers probably did not
realize that this problem appeared online
about three months before the exam, at
http://www.artofproblemsolving.com/
Forum/viewtopic.php?t=105991. (It may
very well have also appeared even earlier.)

B5 The answer is1/16. We have

∫ 1

0

x2f(x) dx −
∫ 1

0

xf(x)2 dx

=

∫ 1

0

(x3/4 − x(f(x) − x/2)2) dx

≤
∫ 1

0

x3/4 dx = 1/16,

with equality whenf(x) = x/2.

B6 First solution: We start with some easy upper and
lower bounds onan. We writeO(f(n)) andΩ(f(n))
for functionsg(n) such thatf(n)/g(n) andg(n)/f(n),
respectively, are bounded above. Sincean is a non-
decreasing sequence,an+1 − an is bounded above, so
an = O(n). That meansa−1/k

n = Ω(n−1/k), so

an = Ω

(

n
∑

i=1

i−1/k

)

= Ω(n(k−1)/k).

In fact, all we will need is thatan → ∞ asn → ∞.

By Taylor’s theorem with remainder, for1 < m < 2
andx > 0,

|(1 + x)m − 1 − mx| ≤ m(m − 1)

2
x2.

Taking m = (k + 1)/k and x = an+1/an = 1 +

a
−(k+1)/k
n , we obtain

∣

∣

∣

∣

a
(k+1)/k
n+1 − a(k+1)/k

n − k + 1

k

∣

∣

∣

∣

≤ k + 1

2k2
a−(k+1)/k

n .

In particular,

lim
n→∞

a
(k+1)/k
n+1 − a(k+1)/k

n =
k + 1

k
.

In general, ifxn is a sequence withlimn→∞ xn = c,
then also

lim
n→∞

1

n

n
∑

i=1

xi = c

by Cesaro’s lemma. Explicitly, for anyǫ > 0, we can
find N such that|xn − c| ≤ ǫ/2 for n ≥ N , and then

∣

∣

∣

∣

∣

c − 1

n

n
∑

i=1

xi

∣

∣

∣

∣

∣

≤ n − N

n

ǫ

2
+

N

n

∣

∣

∣

∣

∣

N
∑

i=1

(c − xi)

∣

∣

∣

∣

∣

;

for n large, the right side is smaller thanǫ.

In our case, we deduce that

lim
n→∞

a
(k+1)/k
n

n
=

k + 1

k

and so

lim
n→∞

ak+1
n

nk
=

(

k + 1

k

)k

,

as desired.

Remark: The use of Cesaro’s lemma above is the spe-
cial casebn = n of theCesaro-Stolz theorem: if an, bn

are sequences such thatbn is positive, strictly increas-
ing, and unbounded, and

lim
n→∞

an+1 − an

bn+1 − bn
= L,

then

lim
n→∞

an

bn
= L.

Second solution: In this solution, rather than applying
Taylor’s theorem with remainder to(1 + x)m for 1 <
m < 2 andx > 0, we only apply convexity to deduce
that(1 + x)m ≥ 1 + mx. This gives

a
(k+1)/k
n+1 − a(k+1)/k

n ≥ k + 1

k
,

and so

a(k+1)/k
n ≥ k + 1

k
n + c

for somec ∈ R. In particular,

lim inf
n→∞

a
(k+1)/k
n

n
≥ k + 1

k

and so

lim inf
n→∞

an

nk/(k+1)
≥
(

k + 1

k

)k/(k+1)

.



7

But turning this around, the fact that

an+1 − an

= a−1/k
n

≤
(

k + 1

k

)−1/(k+1)

n−1/(k+1)(1 + o(1)),

whereo(1) denotes a function tending to 0 asn → ∞,
yields

an

≤
(

k + 1

k

)−1/(k+1) n
∑

i=1

i−1/(k+1)(1 + o(1))

=
k + 1

k

(

k + 1

k

)−1/(k+1)

nk/(k+1)(1 + o(1))

=

(

k + 1

k

)k/(k+1)

nk/(k+1)(1 + o(1)),

so

lim sup
n→∞

an

nk/(k+1)
≤
(

k + 1

k

)k/(k+1)

and this completes the proof.

Third solution: We argue thatan → ∞ as in the first
solution. Writebn = an − Lnk/(k+1), for a value ofL
to be determined later. We have

bn+1

= bn + a−1/k
n − L((n + 1)k/(k+1) − nk/(k+1))

= e1 + e2,

where

e1 = bn + a−1/k
n − L−1/kn−1/(k+1)

e2 = L((n + 1)k/(k+1) − nk/(k+1))

− L−1/kn−1/(k+1).

We first estimatee1. For−1 < m < 0, by the convexity
of (1 + x)m and(1 + x)1−m, we have

1 + mx ≤ (1 + x)m

≤ 1 + mx(1 + x)m−1.

Hence

−1

k
L−(k+1)/kn−1bn ≤ e1 − bn

≤ −1

k
bna−(k+1)/k

n .

Note that both bounds have sign opposite tobn; more-
over, by the boundan = Ω(n(k−1)/k), both bounds
have absolutely value strictly less than that ofbn for n
sufficiently large. Consequently, forn large,

|e1| ≤ |bn|.
We now work one2. By Taylor’s theorem with remain-
der applied to(1 + x)m for x > 0 and0 < m < 1,

1 + mx ≥ (1 + x)m

≥ 1 + mx +
m(m − 1)

2
x2.

The “main term” of L((n + 1)k/(k+1) − nk/(k+1))
is L k

k+1n−1/(k+1). To make this coincide with

L−1/kn−1/(k+1), we take

L =

(

k + 1

k

)k/(k+1)

.

We then find that

|e2| = O(n−2),

and becausebn+1 = e1 + e2, we have|bn+1| ≤ |bn| +
|e2|. Hence

|bn| = O

(

n
∑

i=1

i−2

)

= O(1),

and so

lim
n→∞

ak+1
n

nk
= Lk+1 =

(

k + 1

k

)k

.

Remark: The casek = 2 appeared on the 2004 Roma-
nian Olympiad (district level).

Remark: One can make a similar argument for any se-
quence given byan+1 = an + f(an), whenf is ade-
creasing function.

Remark: Richard Stanley suggests a heuristic for de-
termining the asymptotic behavior of sequences of this
type: replace the given recursion

an+1 − an = a−1/k
n

by the differential equation

y′ = y−1/k

and determine the asymptotics of the latter.


