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Introduction

This booklet contains a short presentation of the most important
mathematical competitions devoted to high school students in Romania
during the year 1937. As it was explained in our previous book - RMC 1996
- the main mathematical competition in Romania is The National
Mathematical Olympiad (N.M.O.).

In 1997 the final round of the 48" N M.O. was organized by the
Ministry of Education in the City of Suceava. The City of Suceava is
located in the north of Moldavia, the eastern land of Romania, and it is very
rich in history, arts, monuments and etnography. It was in the Middle Ages
the capltal of Moldavia and in the present days it is the residence of the
romanian part of Bucovina.

The 48™ N.M.O. was also partially supported by The Romanian
- Society for Mathematical Sciences and Theta Foundation.

Let say a few words about the competition. The number of
participants to the final round was 620. The age of partxc1pants was from 13
to 19. Only the students from 7™ grade to the 12" grade are called to take
part to the final round and they are selected from the participants to the
preliminary district rounds. Each problem was worth 7 pomts and a half of
paﬂ;mpants was awarded w1th ﬁrst second and third pnzes in the rate 1:2:3.

: Number of First Second Third

Forms participants rize prize prize

VII 118 9 20 - 30 -
VIII 130 11 23 - 33
IX 99 - 8 19 23
X 99 8 16 . 26
X1 91 8 15 24
XII 83 8 13 22
Total 620 52 106 158

The matrix of scores for each form was the following :
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For more information we add the four examinations for the
selection of the representative team for the 38" IM.O.

In these examinations were called only 25 students, having the best
results in the N.M.O. examination. Finally, the six members of the team for
the 38" L.M.O. were selected by adding the points in these four exminations.

In the last part of this booklet we present a short selection of
representative problems used in the annual competition of the magazine
Gazeta Matematicd in september 1996. This competition is organized every
year, in the autumn, for those students which have obtained the best resuits
in the past academic year, in all national and international mathematical
competitions. Also are called the best problem solveres they of the
specified magazine. It is the oldest mathematical competition for students in
Romania. :



SECTION 1

THE 487 NATIONAL MATHEMATICAL OLYMPIAD
THE FINAL ROUND, SUCEAVA, MARCH 24-30™", 1957
PROPOSED PROBLEMS
7" Form
7.1. Let n, = abcabe and n, = 21662 be numbers represenied in the

decimal system, witha # 0 and 4 # 0.
a) Prove that ‘/Z cannot be an integer.

b) Find all positive integers n, and n, such that \/n, +n, is an
integer number.
c¢) From all the pairs (n,_.nz) such that ./n,n, 1is an integer find

those for which 1/n,n, has the greatest possible value.

7.2. Let a # 0 be a natural number. Prove that a is a perfect square

if and only if for every beN* there exists ceN* such that a + bc is a perfect
- square. -

7.3. The triangle ABC has ZACB=30°, BC =4cm and AB=3cm.
Compute the altitudes of the triangle. '

7.4. The quadrilateral ABCD has two parallel sides. Let M and N be
the midpoints of {DC] and [BC], and P the common point of the lines AM

and DN. If M = % , prove that ABCD is a parallelogram.

AP
8" Form

8.1. Let k be an integer number and P(X) be the polynomial
P(X)=X"" - X" + X' = 3kX +3k +1.
Prove that : a) the polynomial has no integer root ;



b) the numbers P(n) and P(n) + 3 are relatively prime, for every
integer n. _
8.2. Let x, y, z be positive real numbers such that xyz =1.
x9+y9 y9+ZD Z9+x9
Py +

>22.
X +x3y3+yo yd +)’3ZJ+Z° 2 42°% + 1

Prove that

8.3. ABCDA'B'C'D' is a rectangular parallelepiped with
AA'=2AB=8a, E is the midpoint of (AB) and M is the point of (DD') for

which DM =a(l +;A9) .
AC

a) Find the position of the point. F on the segment (AA") for which

the sum CF + FM has the minimum possible value.
b) Taking F as above, compute the measure of the angle of the

planes (D, E, F) and (D, B', C).
¢) Knowing that the straight lines AC' and FD are perpendicular,
compute the volume of the parallelepiped ABCDA'B'C'D)'.

8.4. Let S be a point outside of the plane of the parallelogram
ABCD, such that the triangles SAB, SBC, SCD and SAD are equivalent.

a) Prove that ABCD is a rhombus.

b) If the distance from S to the plane (4, B, C, D)is 12, BD =30
and AC =40, compute the distance from the projection of the point S on
the plane (A, B, C, D) to the plane (S, B, O). :

9™ Form

9.1. Let C,C,,...,.C,(n 2.3) be circles having a common point M,
Three straight lines passing through M intersect again the circles in
ALA,..,A;B,B,,...,.B, and X,,X;,...,X, respectively. Prove that if

AA, =AA =.=A_A and BB, =B,B, =..=B_B, then
| | XX, =X,X,=.=X_X, .

9.2. Find the image of the function f:R - R,

3+2sinx
fx)=
() Jl+cosx+—;/1—00sx

)

10



93. Let g, b, ¢, d € Raad f:Ro R, f(x)zax“rbx; +cx+d,

such that f{2)+ f{(5) <7 < f(3)+ f(4) . Prove that thete exists u, v € R such
that u+v=7 and f{u)+f(v)=7.

9.4.Leta, b, c,d e R and the sets A = {x eR;x? +alxl +b= 03 and

B= {x eR;[xr +c[x}+d = 0} Prove that if the set A{1B has exactly three

elements.then a cannot be an integer.

10" Form -

10.1. Let f:NxN—> N be a function which fulfils the conditions:
' f(O,y) =y+1,VyeN,
f(x+1,0)= f(x,1),Vx eN,
Fle+Ly+1)= f(x F(x+1,5)) ¥(x,5) eNxN,
Compute 'f(3,1997).

, 10 2. Let n23 be an integer and x be a real number such that the num-
bers x, x° and x" have the same fractional parts. Prove that x is an integer.

10.3. Let d,, d, be two straight lines and A, be a point on d,. For
every n € N let B, be the projection of A, on d, and A,,, be the projection of
B, on dy. Prove that there exists two segments [A'A"] c d, and [B'B"]c d,

of lengths 0,001 and a natural number N such that A, e[A’A”} and
B, e[B'B"] foreveryn2 N.

10.4. Let a,,a,,...,a, be complex numbers such that

2€C, |z|<1 = fa_z" +a,_z"" +,..+a,z+aolsl .

Prove that ,aJSl and 'ao +a,+..+a, —(n+1)ak|5n for every k eé,_n.

i1



11" Form

11.1. Let p = 2 be a natural number and A:(aU) be a square

matrix of order n, with integer elements. Prove that for every permutation
oesS, there exists a function a:{1,2,...,n} - {O,l} such that by replacing the

elements a,,,a ;- a,,), from the matrix A with

a iy +EW,a gy, +6(2)..a,,80n)
respectively, the determinant of the new matrix is not divisible by p.

11.2. Let A be a square matrix of odd order (at least 3), with
integer odd elements. Prove that if A is invertible then it is not possible that
all the minors of the elements of a row have the same modulus.

11.3. Let I be the set of all the differentiable functions f:R — R,
which have the property f (x) > f (x +sin x), VxeR.

a) Prove that I contains also nonconstant functions.
b) Prove that if fe S then the set of the solutions of the equation

f'(x)=0 in infinite.

11.4. Let f,g:R = R be two bijective continuous functions such

that f(g~l (x)) Jrg(f'1 (x)) =2x,Vx eR. Prove that if there exists xo€R such
that f(xo) = g(xo) ,then f=g.

12



1EF orm

12.1. Let @ € C\ Q be such that the set A = {a +ba‘a,b GZ} isa

ring with respect ;o the usual operations in C. Prove that if A has exactly 4
invertible elements then A =Z[{}. :

12.2. Prove that for every continuous function f :{——1,1] — R takes

place the inequality j’_xl f (x)dx > —;—( f : f(x)dx) 2 J-;( j. _ll xf(x)dx)z .

When takes place the equality ? _
12.3. Let K be a finite field, n € N, n > 2, f € X[X] an irreducible
polynomial of degree n and g the product of all the nonconstant polynomials

- of K{X] which ha've'the degrees less than n. Prove that fdivides g — 1.

12.4. Let the sequence ( £f ) of functions f : [0;1]—> R be such

neN

that f; is continuous and f

(x)=fx——1-—dt Vx E[O’l] Vx eN. Prove
+ 0 1+f:'(t) » s V- .

that for every x e[();l] the sequence ( £ (x))ﬁ“ is convergent and compute
its limit. :

Note: The authors of the problems from this section are the
followings : Adrian Ghioca (7.1 and 9.4), Bogdan Enescu (1.2), Mircea
Fianu (7.3), Stefan Smarandache (8.1), Mircea Becheanu (8.2 and 11.1),
George Turcitu (8.3), Dana Radu (8.4), Dinu Serbdnescu (9.1), lon Chegcd
{9.2), Cristinel Mortici (9.3), Cdlin Burdugel (10.1), Laurentiu Panaitopol
(10.2), Vasile Pop (10.3), Radu Gologan (10.4), Mihai Piticari and Dan

‘Popescu (11.2 and 124), Florica Vomicescu and loan Raga (11.3),

Marian Andronache and Ion Savu (11.4 and 12.3), Marcel Tena (12.1,
Dorian Popa (12.2).

13



SOLUTIONS

7.1. Let n, = abcabc and n, =d00d be numbers represented in the
decimal system, witha#Oand d # 0.
a) Prove that ‘frz cannot be an integer.

b) Find all positive integers n, and n, such that n +n, is an
integer number.

c) From all the pairs (n,,nz) such that m is an integer find
those for which M has the greatest possible value.

Solution. a) n, =1001-abc=7-11-13-abc. If n, is a square then
abc must be divisible by 7, 11, and 13, and therefore divisible by
7-11-13=1001, which is impossible. .

b) n, +n, =1001(;1b_c+d) is a square if and only if abe +d =1001
which happens if and only if @ = 9, b = 9 and ¢, d are digits such that
c+d=11.

¢) n,-n, =1001° -abc-d , so abc-d is a square not greater than
999.9=8991. The greatest square less than 8991 is 94°, but
94* =2? .47 =4.2209 cannot be written in the form abc-d. Since
93* = 3? .31* =9.961, the required pairis (961,9).

7.2. Let a # 0 be a natural number. Prove that a is a perfect square
if and only if for every beN* there exists ceN* such that a + bc is a perfect
square.

Solution.If a=k* ,k eN* and b e N* then one cantake c =2k +b.

For the converse let us choose b=a' and ceN* such that
a+bc=é(l+a<r) is a square. Since a and 1 + ac are relatively prime, it

follows that a is a square.
7.3. The triangle ABC has LACB =30°, BC =4cm and AB=3cm.

Compute the altitudes of the triangle.

14



Solution. Let BB be the altitude form B. It follows that

BB =2cm,B'C= 24/3cm and B'A= Y5cm . Since B'A<B'C, there are

gossnble two cases.
Case 1 : A=A, E(B C). In this case the area of the triangle is

% BB -AC= 2\/5 - «/g cm” and the altitudes of the triangle are

A i
‘ ' AAl = &J%_ﬁ cm, BB' =2 cm and
2(243 -5)
3 |
Case 2 : A=A, such that B’ €(A,C). Now

B ¢ the area is 23/—3‘ +4/5cm?® and the altitudes
become :

2ﬁ+f 2243445

AA = , BB'=2¢m and CC' = 3

B’

.CC = cm.

cm.

7.4. The quadrilateral ABCD has two pafallel sides. Let M and N be
the midpoints of [DC] and [BC], and P the common point of the lines AM

and DN. If M = —}I , prove that ABCD is a parallelogram.

AP.
‘Solution. As the problem emphasizes on AM, we must study two
cases : , ’ ‘ '
‘Case 1: AD || BC. ‘ A
Let Q be the midpoint of DN. It follows that

QM || BC|| AD,
OM=~NC=1BC and
27

om=22. 4p=L4p,
PA 4

whence AD=BRC and therefore ABCD is a parallelogram.

15



Case 2 : AB||CD. Let R be the midpoint of AM.
In the trapezoid ABCM :

RN = -1—(A3+CM) ~Lapilen.
2 2 4

OI; the other hand :
PM 2 2 4

It follows that %AB +—41ICD = %CD , whence AB = CD.

8.1. Let k be an integer number and P(X) be the polynomial
P(X)=X"" - X" + X* = 3kX + 3k +1.

Prove that :
a) the polynomial has no integer root ;

b) the numbers P(n) and P(n) + 3 are relatively prime, for every
integer n.

Solution. a) If P has an integer root than P(X)=(X-r)-Q(X),
where O is a polynomial with integer coefficients. This leads to '
P(-1)=(-1-r)Q(-1) =6k +2,
P(0) =(-rQ(0) = 3k +1,
P)=(1-r)e()=2.
The numbers —1—r,—r and 1—-r are consecutive, so one of them
must be divisible by 3. This comes into contradiction with the fact that

Q(—l), Q(O), Q(l) are integers and none of the numbers P(—i) , P(O),
P(1) is disible by 3.
b) The g.c.d. of P(n) and P(n) + 3 can be only 1 or 3. But
P(n)=n'°°" v(n—l)-n(n+1)—3k(n—l)+n’ +1,
3 is a divisor of (n-1)n(n+l) and of 3k(n—1) and 3 is not a divisor of

n* +1 (consider the remainders of n(mod3)). It follows that P(n) is not
divisible by 3, whence the g.c.d. is 1.

16



8.2. Let x, y, z be positive real numbers such that xyz =1.

9 9 9 9 9 9
x +y y +z 2 +x
rove that + + >2.
P X4+ 4y Y4Vt )+

Solution. 1t is easy to check that

2+y 5 2x’y3(x’+y3)
) 3.3 s =Xty ——3 3.3, .6 2
X +x'y +y X +xy +y
2x3y’(x3+y’) 1
24y ——— L= x4y
’ 32y 3( v)

This gives z-———j—+—X9—— —Z—ijz—z—-Bxyz—Z because
g ®+x°y +y° 3 3 ’ -

' -3mn=TATr - o) =(T4) 5 Tx-5) 20,

8.3. ABCDA'B'C'D' is- a rectangular parallelepiped with
AA'=2AB=28a, E is the midpoint of (AB) and M is the point of (DD') for

' ' AD
hich DM = (1+--).
wimc a AC

a) Find the position of the point. F on the segment (AA’) for which
the sum CF + FM has the minimum possible value.-

b) Taking F as above, compute the measure of the angle of the
planes (D, E, F) and (D, B', C).

c) Knowing that the straight lines AC' and FD are perpendicular,
compute the volume of the paralielepiped ABCDA'B'C'D'.

D Al ¢ Solution. a) “Unfolding” the parallelepiped
so that the half-lines {AC and (AD become
opposite, we see that F must be the

\-L\ common point of AA’ and CM. -
D A c Weget:
AF =DM é—g--a(1+AD)~ AC =
CD AC/) AC+AD

17



AE -AF —1— the D' A

b) Since —=——=—,
AA" AB 4 5
triangles AEF and AA'B are similar, C
therefore JLAEF =/AA'B=/FAB' = F
=90°-LEAB', whence EF1AB'. Also A A
'q'-\
EF1AD (because ADL{A,E,F)), so D <

the planes (D, £, F) and (D,B,C) are  © B

perpendicular.
) EFL1{A,B,C",D) and AC'LFD lead to AC'L(D,E,F). Fron

CC'1DE it follows that ACLIDE, therefore triangles ADE and BAC ar
similar.
AE
Thus —1‘—1—1-)—2—,AD2 =AB-AE=8a",AD=2+42a and th
AB BC

required volume is 4a 242a-8a = 64424’ .

8.4. Let S be a point outside of the plane of the parallelogran
ABCD, such that the triangles SAB, SBC, SCD and SAD are equivalent.

a) Prove that ABCD is a thombus.

b) If the distance from S to the plane (A, B, C, D) is 12, BD =3(
and AC =40, compute the distance from the projection of the point § o1
the plane (A, B, C, D) to the plane (S, B, C).

Solution. a) Let O be the projection of S on the plane (A, B, C, D).

From the equality of the distances d(S, BC) = d(.S" ,AD) anc

d(S, AB) = d(S,CD) follow the equalities :

d(0, BC) = d(0,AD) and
d(0,AB) = d(0,CD),
therefore O is the common point of
the diagonals of the parallelogram.

Denote :
d(0, BC) = d(0,AD) =m,

d(0,AB)=d(0,CD) =n

18



and SO = h. This gives §,,., = AB-2n=BC-2n and, from the hypothesis

ABn? +h' = BCYm* +h* | so AB*.-n'+AB'.h* = BC'.m' +BC* - h*,

whence AB = BC. .
b) It is a common place that the required distance is the aititude

from O of the triangle SOM, where M is the projection of O on BC. Since

0B-0C . . 50-OM
—— =12, it follows that d(0,(5,8,C)) =~ =612 .

OM =

9.1. Let C,,C,,...,C, (n 2 3) be circles having a common point M.

Three straight lines passing through M intersect again the circles in
ALA,...A;B,B,,...B, and X, X,,..,X, respectively. Prove that if

AA, =AA =..=A_A and BB, =B,B, =.=B_B, then
XX, =X,X,=.=X_X..

Solution. The problem
clearly reduces to the
following: if three circles
have a common point M and
they determine congruent
segments on two straight lines
passing through M, then they
determine congruent segments
on every straight line which
pass through M.

Denote by :

(v, [Mn,], (M)
the diameters of the three
circles and by N the

19



midpoint of the segment [M,M_‘J. Using the rectangular trapezoid
M,AAM, one gets NA,1MA, ; analogously NB,IMB, and therefore

N = M,, so M, is the midpoint of [M;M,]. Since the second common points
of any straight line which passcs through M, with the three circles are the
projections of M|, M, and M, on this line, the conclusion follows.

9.2. Find the image of the function f:R — R,

f(t): 3+25inx
J \ﬁ+cosx +\/l—cosx '

Solution. Clearly f(R)z f([0,27r]). The formula of the function

can be written : f(x)= 3+2sinx .
ﬁ( cosizr— +sin—§—)
2
1+2(sin—;—+cos§) 1' .
For xe[O,n]: f(x)= = ,

x ', X t
J—Z_( cos—+sm—)
2 2

vs;here t= \/5 (cos—;£+sin %) = 25in(-;— +§—) describes the interval {\[2— ;2} .

The function g:[\/r2—;2]—>R,g(t)= is increasing and for

+7
every y e[g \/5 ;g(Z)] the equation Sl = y has a solution in [Jf ;2},

whence f([0,7])= ([f 2]) [3‘/— > }

2
5- 2(sin % - COs %) 5.
For xe[rz,Zx], f(x)= =21 ,

J—Z—(sini—cosi) “
2 2




where u = V2] (sin % —cos f—) = 25in(§— %) describes the interval (ﬁ ;2} .

4

The function h:[ﬁﬂ] -3 R, h(u) = >
u

is decreasing and for

every y e[h(«/f);h(Z}} the equation =y has a solution in {«/5 ;2},

therefore f ([fr,flfr]) = [h(Z);h(ﬁ )] = {%,%@J . It follows that :
o2l = Ao A)ur(mas) <[ 33|

9.3. Let a, b, c, d € Rand f:R—>R, f(x)=ax’+bx" +cx+d,
such that f(2)+ f(S) <7< f(3)+ f(4) . Prove that there exists u, v € R such
that u+v=7 and f(u)+f(v)="7.

Solution. The conclu_sioh asks to prove that the equation
f(x)+ f(7-x) =17 has a real solution.

Let g(x) = f(x)+ f(7—x) —-7. It easy to see that g (x) ia a
polynomial function whose degree is at most 2. Since g(2) < 0 and g (3) > 0,

- it follows that the equation g (x) = O has at least a real solution.

94.1eta, b, c,d € R and the sets A = {x eR;x? +a'x|+b = 0} and
B= {x eR;[x]z +c[x] +d = O} . Prove that if the set A(1B has exactly three

elements then g cannot be an integer. :

Solution. We see that A = {x eR;ixI = por lxl = q} , Where p, g are
the real roots of the equation x* +ax+b=0.If A(B has thrée elements
then A must have at least three elements, which leads to the follbwing cases:

1) A has three elements. Then ¢ =0, p> 0, b = 0, a = —p and
A= {— 2:0; p} c B, therefore d = 0 and the equation y* +cy=0 has the
solutions —c and 0.

These two solutions must be [p] > 0 and [-p] < 0, so {p] = 0,
P € {0; 1) and a = —p is not an integer.

21



2) A has four elements. Then p>0,9>0,p# g, a=~ (p + q) and
A= {—P, P,—q,Q} . Since B must contain one of the sets {p;—-p} and

{q;—q} , it follows that the equation y* +cy+d =0 must have as solutions
the integers m < 0 and n > 0, wi;ence B=[m;m +1)U{n;n+1). Suppose
p €B and - p € B (son=[p] and m =[-p])).

If p is an integer then m=-n-p and [q] =p or {—q] =p,
therefore g # p cannot be an integer and neither is a = —-(p + q) .

If p is not an integer then n =[p},m :~[p]—1 and [q]z{p] or
{—q]:—[p]—l. If g is not an integer then the last two equalities are
equivalent so A(1B has either two or four elements, and if g is an integer
then, again, a = —(p+q) is not an integer.

10.1. Let f:NxN — N be a function which fulfils the conditions:
f(O,y)=y+1,\7’y eN, '
f(x+1,0)= f(x,1), vx eN,
fxr+Ly+1)= fx, f(x+1,5)) ¥(x.y) eNxN.

Compute f (3,1 997) .
Solution. Going step by step we get :

o £(1,0)= £(0.1) =2 (1) = £(0. A(1.0))= £(0.2) = 3;

F(12) = £(0, £(1.1) = £(0,3) = 4 and, using mathematical induction,

’ f (1, x) =x+2 forevery natural x,

because f(l,x + 1) = f(O, f(l,x)) =1 +f(1,x) .
° f20)=f(L1) =3, A2.1) = £(1. (2.0)) = £(1.3) = 5;

f(2,2) = f(l, f(2,1)) =f (1, )= 7 and, using mathematical induction,

f(2,x) =2x+3 forevery natural x,

because f(Z,x +1) = f(l,f(2,x)) =2 +f(2,x) .



o Tor ¥ = L. /r(‘;\) = f‘(z‘\/‘('g‘_k 1)) =73 ’3_/(3,3 1) <o the seguence
((, } , a, = {3, n) satisfies the recurrence relation a, = 34 2a | forevery
Fl",,»ﬂ A °
421 This leads to : a, =3+2a, =3 p2(342a, ,)=H10201 27030 2, '
~Ate2+2) 423420, ) == Fr+202% 042 ) e, =
=2 1) 42n-5=2"" -

so [(3, 1997) =y = 210 -3,
10 2. L et n>3 be an integer and x be a real number such that the pum-
bers x, X 2 and x" have the same fracticnal pam Prove Lhat x is an intcger.
First solution. We know that 2 =x+k and x" =x+/ for some
mtcgexs k, 1. It follows that :
P=x+ke=k+D)x+k, x'= = (k+1)x* +kx =(2k+Dx+k" +k

and, using mathematical induction, x? =a,x+b, for every integer p 2 2,

where a,, b, are integers and a,,, =a, + b,.b,,=ka,.

Since x is real, and x*—x—k =0, the discriminant A=1+4k is
non-negative, whence k > 0 (k is an integer).
If k = O then x” = x, 50 X is an integer.
Ifk>1thena,>1forp23and x" =a,x+ b, = x+k implies that
+\/Z\' .
+ is rational. Tn this case A must be an odd perfect square, §0 x = ——r== 18

(_,

an integer.
1 :t:/_é_ , where A=1+4k and

L

Second solution. Let, as above, x =

k > 0 is an integer. Then :

e ?};[(1+C:A+C:A2 +CSA ) eVA(C+CoA +CIN )| =ak /A

1 4 1 3 ~5 A2 ’
‘where a:-——(l+C’A+C A2+...) and b—_———(cuc»mc A+.) are
2l Ll n 2}\ n El "

rational.

20+1 —
s that b = L ot A ().

Since " =x+[=



if b:% then C,+CiA+CA+..=2""=C'+C +C3+... |

whence A =1 and x€{0;1}.

1+4/A |
2 18

If +/A is rational then A is odd perfect square and x =

an integer.

10.3. Let d,, d, be two straight lines and A, be a point on d,. For
every n € N let B, be the projection of A, on d, and A,,, be the projection of
B, on d,. Prove that there exists two segments [A'A"] cd, and [B’B”] cd,

of lengths 0,001 and a natural number N such that A E[A A”} and
B, e[B B"] forevery n 2 N.

Solution. 1f d, || d, then A, = A, and B, = B, for every n. The
conclusion is reached in this case taking A’, A” e d, such that A’A"= 0,001
and Aye(A'A"), taking B', B" € d, such that Bye(B'B"") and B'B"= 0,001, and
taking N =0.

If d, is not parallel to d,, let AB (A€ d,, Be d,) be the common
perpendicular of d; and d, (if d,Nd, = {0} then A=B=0)and o 5(0,32’-]

be the measure of the angle between d, and d,. It follows that
[BB,,] =pr, [AA"] and [AAM,] =pr, [BB"] , §O
AA,, = BB, cosa = AA, cos’ a
and BB, = AA
whence  AA = AA cos"" @ and BB, = BB, cos™ a for every n.
The inequalities AA cos’" @ <0,0005 and BB, cos* a <0,0005
are fulfiled if

2
cosa = BB, cos’ a, for every n,

0,0005 0, 0005} P

A, slog .. BB for =

n>M= max{logm,a 5

and if 7> 1, for a=§
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Now the conclusion is obtained taking A’, A”e d, such that
AA'=AA"= 0,005, taking B'. B"€ d, such that BB'= BB"= 0,005 and taking

4 T
N =[M]+1 for az#> or N=1 for a=_5.

10.4. Let a,,q,,...,a, be complex numbers such that

zeC, |z|<1 = '._lz"'+...+a,z+a0| <1.

Prove that !%ISl and ]ao +a,+..+a, -—(n+l)n,i <n forevery & €0,n.
Solution. Let p{z)=a,z" +a,_z"" 4'»...+alz-i-a0 and ¢,/ €0,n be
the roots of order n +1 of the unity. Since

s Ar _217r) ( 2km 2k7r)'
Zs‘ Z(cos +isin =D, cosn_,_l+xsmn+l =

+1 =0

( 2kr . zm)"‘
1-1cos +isin
_ n+1 n+1

- ( 2k . 2](71’) =0,
1-| cos——+isin—— '
n+1 +1

1fk is not divisible by n+1 and Za, =1+1+..+1 =n+1 if k is divisible by
=0
n+1times

n +1, it follows that Z p( ) (n +1)a for every k 66,_n. This shows

3as)

30 la__k‘si for every k ef)_,;.
For the second part notice that

Zsj" p(gj) = gsj’p(e‘,) ~-p)=(n+1a_, - ga]
and lzgfﬁ(%) (n+1)aM —ia'

J=0
every k €0,n.

l51+1+ Al=n+1,
\_.W____J
n+1 times

that (n+1)! ,_,1 sp

<n for

< i‘ sj’p(b‘,)l <n, therefore
J=1
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11.1. Let p > 2 be a natural number and Az(au) be a square

matrix of order n, with integer elements. Prove that for every permutation
oeS, there exists a function &: {1,2,.'..,n} —> {O,i} such that by replacing the

i from the matrix A with

: A, (1), a oyt 5(2),....a0(","8(n)
respectively, the determinant of the new matrix is not divisible by p.
Solution. We will use induction over n. For n =1 it comes to the
fact that at least one of the integers a and a +1 is not divisible by p, which is
obvious.

clements Qg2 Boaars=» By

Suppose now that o €S ,, and 5(1} 5{2}, 5(3), ce s(n + 1) have been
chosen such that the cofactor 4, of a_, is not divisible by p.

1

For the matrix A’ thus obtained we have :

detA’=a 8 ), + ianén .

=1

i f
Since (au(m +1)5“ =aa(m§“’ +4, is not congruent (mod p) with a_, &, it

follows that at least one of the numbers detA’ and 8, + detA’ is not O(mod p)

- 50 &(1) can be chosen accordingly.

11.2. Let A be a square matrix of odd order (at least 3), with
integer odd elements. Prove that if A is invertible then it is not possible that
all the minors of the elements of a row have the same modulus. -

Solution. Let A= (al.,) and &, be the cofactor of a;;in A.

11, js2n+1
If, for some i, every |5, | is d then d # 0. Taking some k # i we get

241

> a,6,=0 and, after dividing by d, #a, ta,, *...4a,,,, =0, which is
J=1 .
impossible because all g, are odd.

11.3. Let J be the set of all the differentiable functions f:R — R,
which have the property f (x} 2 f (x +sin x}, VxeR.

a) Prove that 3 contains also nonconstant functions.

26



b) Prove that if feJ then the set of the solutions of the equation
£'{x)=0 in infinite.

Solution 2) We notice that thtf function u:R — R,u(x) =x+sinx
is increasing, ZikxSx<x+sinx<a+2kmr for x G{Zkﬂ;ﬁ+2k7’[] and
2r+2kr2xzx+sinx 2w +2kn for x e{zz+2k7t; w2 +2k7r]. ‘This shows

that any nonconstant differentiable function which is decreasing on the
intervals {2k7r;7r+2k7r] and increasing on the intervals [7r+2k7z;27r +2k7r]

would do (for instance “cos”). ‘

b) Let ¢:R—>R, g(x)z (x)-—f(x +sin x) . Obviounsly g(kn} =0
and g > 0, so kx are minimum points for g. It follows that g (kﬂ')
whence f ’(kﬁ}— f '(kn‘)~(1 + cosknf) =0, therefore f’ (Kﬂ') =0 for every
integer k.

11.4. Let f,g:R— R be two bijective continucus functions such
that f (g" (t)} +g(f - (x)) =2x,Vx €R . Prove that if there exists x,€R such
that f(xo) = g(xo) ,then f=g.

Solution. Let h= fog™. Then h is bijective, continuous and

h(x)+h"‘(x)= 2x,Vx € R . Since a bijective continuous function is strictly .

monotonic, its inverse has the same type of monotony and the functmn
x> 2x is increasing, it follows that A is strictly increasing,

Suppose now that there exists aeR such that h( )¢ a and denote
by r the difference a - h(a) . From h(a} +h™ (a) =2a we get h™ (a) =a+r,
whence h(a + r) =a . In the same way h(a + r) +h (a + r) = 2(a + r) implies
Ha+2r) = a+r and, using mathematical induction :

h(a +rzr) =q +(n —l)r forevery neN.

Also h(a - r) +h"“(a - r) = Z(a - r) and A” (a - r) =a (because
h(:!) =a-r) shows that h(a - r) =g-2r; using again mathematical
induction onc obtains h(rz - nr) =q- (n + 1)r forevery neN.

Thus A{a+nr)=a+{n—-")r forevery integer n.



Take now the integer n such that a+nr <x,<a+ (n + l)r (the case
7<0 can be treated in the same way).It follows that h(xo) < h[a +(n+ l)r] =
=a+nr <X, in contradiction with A(x,)=x,. This shows that h{a)=a

for every aeR.

12.1. Let @ € C\ Q be such that the set A={a+bala,b e} isa

ring with respect to the usual operations in C. Prove that if A has exactly 4
invertible elements then A = Z[i]. :

Solution. 1t is a well known result that if a multiplicative group GcC
has n elements then G = {z eCz" =1}, so the group U(A) is {1,-1, i~i}.

. . i—u
Therefore i =u+va for some integers u, v whence o = —— , v # 0. From
v

& e A it follows that a’=a+ba for some integers a, b, whence

2 _ :
“ > l—gzﬁi=a——b—u-+2i. This shows that b=—2—u—’ and
y y v v y
2
u'-1 bu 1 , 4
a=7+—v_=2(—b —‘;?], so v* 6{1;4}.

If v’ = 4 then 4a = —(b’ +1) , which is impossible, therefore v* = 1
 and {m +na,m,n EZ} = {m tnfi- u);}n,n EZ} c Z[i].
' \ Conversely, every complex number p +qi(p,q GZ) can be written

in the form_p+qu+q(i—-u)=mina, so Z[ilc A.

12.2. Prove that for every continuous function Fi[-11] >R takes

place the inequality J: f (x)dx 2 —;—( f _ll f (x)dx) 1 +§UL xf (x)dx) 2 .

When takes place the equality ?
Solution. If f is even the incquality becomes

L! f {x}dx 2 (j‘: f(x)dx) 2

and if fis odd it becomes || £*(x)dr23( [ sf(x)ax) -
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These inequalities can be obtained from the Cauchy-Buniakowski

inequality: : U(:f( x) g x)de < j01f2(x)dx. J-Olg2(x)dx

taking g(x) =1 and g(:c)z x.

If f is a continuous function let f,(x)=——— and

ﬂ(x%ﬁf)—;l(—"ﬂ

. The given inequality becomes :
[ F O+ £+ 2£@ ) 2

Z—I—U_ll(fl(x)+f2(x))dx)z +3(J" (‘Jqfl(x)-i-xf (x))dx)z

or ['f1 (e + [ A} @axz ([ A(x cu) +3( [ (%) )2, which is true

because f, is even and f, is odd.

The equality takes place if and only if the Cauchy-Buniakowski
relation becomes an equality, that is if and only if f=A1g for some real A,

which means ﬁ(x) =a and f,(x) =bx for some reals a and b. Therefore
the equality takes place if and only if fis a linear function.

12.3. Let X be a finite field, n € N, n > 2, f € K[X] an irreducible
polynomial of degree n and g the product of all the nonconstant polynomials

of X[X] which have the degrees less than n. Prove that f divides g ~ 1.
Solution. Let L= {h € K[X]]degh <n -—1} and denote by A ®h,

the remainder of the division of h h, by f. It is easy to check that (L,+,®)
is a commutative ring. Since f is irreductible then ( f,h)=1 for every
hel h#0, so there exists u,v EK[X] such that uf +vh=1, whence
h®v, =1, where v, is the remainder of v(mod f). Thus (L,+,®) is a field.

Let p and g be the cardinals of K* and L* respectively. From the
fact that the product of the non-nil elements of a finite field is ~1 it follows
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that 4 @1, ®..0h Oh ®...®h; = -1, where h,,...,h are the constant

p+1

non-zero polinomials of K[X} . This shows that. f‘hlh7 whgtl=—g+l.
12.4. Let the sequence ( £ )"eN of functions f, : [O;l] —> R be such

-1
ﬁ—mdt,Vx 6{031], VxeN. Prove

that for every x E[O;l} .the sequence ( £, (:c))aeN is convergent and compute

that f, is continuous and f, “(:c):jox

its limit.
Solution. Let us firstly find the probable limit. This should be a

continuous funstion f :[0;1] - [O; oo) such that f ('c) = J‘X-—1~—-—~dt , whence

o1+ £(r)

fis differentiable, f( )— 0 and f ’( )(1 +f (x ) =

Therefore f —i——— X SO f x)~ ¥1+2x-1.
Let us now prove that 111_1’13 fu( ) =f (x) for every x E[O;l] .
if x €[0;1) then : |

|£.0)- £0)
J’(1+f_1(t) /)¢ , I, (1+, (t))(+f(t))d

S.,L lf;m(t)—f(f)ldt:xlﬁ-l tx - t;)lv
- 1(‘1)‘f( )IStl

for some t, E[O t ] and, using mathematical induction,

l_ﬂ(x)—f(x)ls:czlt,...t,_, fo(t,)—f(t,)l,

where 05 <t _, <...<t, <x.
This shows that |f,(x)=f(x)|<x" sup|f£ (1) £(x)], whence
1€[0;1]

|f(x) Fx)|=

fn-2(t2) ‘f(tz)l

for some t,€ [0; x]. In thc same way

&iﬂ £, (n) = f(x) in this case.

If x=1,let £>0and a e(o;-g] _.
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since | £0)- 70 <] 1 A0 - 0=
-_-Ll—a!ﬁ_,(:)—f(t)ldt +L;{f;_,(r)—f(t)idt Sjol—n,j‘;_l(r)-—f(t)‘dt +2a,

{because If,q(t)’sl and ]f(t)]sn and yﬂj‘:ﬂ'ﬁ_l(t)uf(t)!d;=0 it
fn_1(1)~f(1)|<5 for every

follows that there exists N(g)eMN such that
n2N(g), which ends the proof.
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SECTION 2
SELECTION EXAMINATIONS FOR THE 38™ LM.O.

PROPOSED PROBLEMS
The first round, Suceava, 1997, March 28"

Problem 1. We are given in the plane a line A and three circles
having their centres in the points A, B, C, all tangent to A and pairwise
externally tangent to one another. Prove that the triangle ABC has an obtuse
angle and find all possible values of this angle. ‘

~ . Mircea Becheanu
Problem 2. Find the number of sets containing 9 positive integers

A= {al,az,...,ag}

with the following property : for any positive integer 7, n < 500, there exist
a subset B, B < A, such that
Zb =n.

beB

' Bogdan Enescu and Dan Ismailescu

Problem 3. Let n, n > 4, be an integer number and M be a n-set of
points in the plane, every three points being non collinear and not all of
them being on the same circle. Find all real functions f:M - R, such that
for ziny circle C containing at least three M-points, the following equality

holds :

: Dorel Mihet

Problem 4. Let ABC be a triangle, D be a point on the side BC and

@ be the circumcircle of the triangle ABC. Let 3, & be the circles tangent

to @, AD, BD and @, AD, DC respectively. Show that 23 and C are tangent if
and only if

g £ BAD = £ CAD.

n [N
LT s

Dan Brénzei
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{'he second round, Bucharest, 1997, April 19™

Problem 5. Let VA|A,...A, be a pyramid, where n 2 4. A plane I
intersects the edges VA, VA,, ...; VA, in the points B;, B,, ..., B,
respectively such that the polygons AA4;... A, and B\B,... B, are similar.
Show that the plane I is parallel to the plane contaning the base A,4,... 4.

Laurentiu Pana:topol

Problem 6. Let A be the set of positive integers represented by the
form a® +2b%, where a, b are integer numbers and b # O Show thatifpisa
prime number and p’ € A, then pe A. ST

Marcel Tena

Problem 7. Let p be a prime number, p 2 5, and % be a digit in the
p-adic representation of positive integers. Find the maximal length of a non
constant arithmetic progression whose terms do not contain the digit & in

their p-adic representation.
Marian Andronache and fon Savu

Problem 8. Let p, g, r be pairwise distinct prime numbers and A be
the set of positive integers, P
A= {p“qbrc 0<a,bcs 5}. A

Find the least number n such that any n-set B, B c A, contains distinct
elements x and y such that x is a divizor of y.

N I e
Y

loan Tomescu

- The third round, Bucharest, 1997, May 16™

Problem 9. Let ABCDEF be a convex hexagon. The lines AB and
EF, EF and CD, CD and AB intersect in the points P, O, K respectively. The
lines BC and DE, DE and FA, FA and BC intersect in the point S, T, U

AB CD FEF BC DE FA

respectively. Show that if :’E = ‘I;Q— = EI‘; then i ﬁ?

Remus Nicoard

Problem 10. Let P be the set of the points of the euclidean plane I1

and D be the set of the lines of the same plane. Find, with proof, whether
there exists a bijective function f:P — D such that for arbitrary three
collinear points A, B, C the lines F{A), f(B), F{C) be either parallel or

concurrent.
' Gefry Barad
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Problem 11. Find the fuactions f:R — {().oo) such that

Ft+y2) = At = y7) + A20),
for all real numbers x and y.
Laurentiu Panaitopol
Problem 12. Let n be an integer number, n > 2, and
P(X)=X"+a,_ X"+ .+a,X+1
be a polynomial with positive integer coefficients. Suppose that a, =a,
forallk, k=1, 2, ..., n — 1. Prove that there emst infinitely many paxrs of

positive integers (r y) such that xl P( and y} P(x)
Remus Nicoard

The fourth round, Bucharest, 1997, Viay 7

Problem 13. Let P(X), Q(X) be monic irreducible polynomials in
the ring Q [X]. Suppose that P(X) and Q(X) have roots « and f, respectively
and that g+ is a rational number. Prove that the polynomial
P(X)2 —Q(X)2 has a rational root.

‘ Bogdan Enescu

Problem 14. Let @ be an integer number, a > 1. Show that the set
of positive integers

{a:’+a—l,a3+a2 -1,...,a"" +a" ——1,...}
contains an infinite subset of pairwisely coprime numbers.
Mircea Becheanu

Problems 15. The vertices of a regular dodecagon are colored
either blue or red. Find the number of all possible colorings which do not

contain monochromatic subpolygons.
Vasile Pop

Problem 16.Let I' be a circle and AB be a line which do not
intersect I'. For any point P, Pe T, let P’ be the second intersection point of
the line AP with I" and f (P) be the second intersection point of the line BF
with T. In this way one defines the point sequence P=F,P,....0,,..

where P, = f(Pn). Show that if k is a positive integer such that B = P,

then for any point 0 = Q,, the property @, =, also holds.
Gheorghe Eckstein
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SOLUTIONS

Problem 1. We are given in the plane a line A and three circles

having their centres in the points A, B, C, all tangent to A and pairwise
externally tangent to one another. Prove that the triangle ABC has an obtuse

angle and find all possible values of this angle.

Solution. Let us note the rays of the three circles by a, b, ¢
respectivelly and let A’, B', €' be the projections of the centres A, B, C on

the line A. Suppose ¢ <a, c <b. Then :

A'szJ(a+b)2 ~{b-a) =24ab, B'C' =24bc and A'C'=2ac.

Trom the equality A’B' = A’C' + C'B', follows :

) Vab=+ac ++be,

which is equivalent with

A 0 B

ab

(2) T |
(JE + JE)’
From the cosine theorem in the triangle ABC we deduce :
3 c C(a+b+c)-ab
cosC =
@ (@ +0)

It is easy to see that £C is obtuse because we have the equivalences :



cosC <0 e cla +b+c) <ab<:>r_{(\/;1_+ «/’}—7)2 —2\[(;,; +C:l < ('( \fr; - «/r’:) <>
=c <2«/§5<:>c <2(\[C:C.T+\ﬁ;g) @,/Z <2(~Jr;+~\/7)').

The measure of ZC is given by (3), under the form :
2ab

cosC=1-

Equivalently, we obtain :

C [
4) I a—
2 (a + c)(b + C)
C A
Because g- < C <, follows —;—f < —2— < z . Hence, it is sufficient to {ind the

. . ., C . _
maximum of the function sin’ PR given by the above formula (4).

This formula may be written under the form :
C 1 1

. 2 — -
S T xc bte ( CJ( q’
|1+ 1+
. a b " a b/

and the actual problem is to find the maximum of the product

i)

Je

Ve
Demote = =x, —==y. Then P=(l+x"){1+y*), with the
oe Yo, 2 (1))
supplementary conditions x+y=1, and x, y 2 0.

Using Calculus the problem is rather simple. We shall solve it by
elementary methods. Note uv=p . Then:

P=l+x*+y +x’y’ =2-2xy+x'y’ =p’ =2p+2,

, _
x+ 1 . . . .
r,)y) sz. The trinomial function P=p’ —=2p+2 is a

L

where pzxys(

decreasing function on the interval (OZ . Hence it takes minimal value for
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] 25
p=—"and then PZE' 'The conclusion is : for x = y, or a = b we oblain

4

N 16
C  =2arcsin—.
25

max

' 1 16
Therefore, the possible vatues for LC are LC & (—7—2 arcsin——:‘.
2 25

Problem 2. Find the number of sets containing 9 positive integers
A= {al,az,...,qg}

with the following property : for any positive integer n, n < 500, there exist
a subset B, B c A, such that
' Zb =n.

. beB
Solution. First, we observe that such a set A exists : using the
binary representation of numbers and the set

A=@z?vwf}

it is possible to represent by sums of the elements of subsets B C A all the
aumbers n, n < 2° =1 =511,

On the other hand, a set A with 9 elements has 2° —1 =511 distinct
nonempty sets.

Hence, it is useful to construct a set A as the problem asks in such a

way that “most of the distinct” subsets B, B — A, have distinct sums, Zb .
. . . beB

For example, if A contains the elements x, y, z such that x =y+z,

for any subsets BU{x} and BU{y, z} give ris_c to the same sum. Hence, the

number of sums obtained from the subsets of such a set A is at most :
511-2° =447
Because we have to obtain 500 different sums, such a set A can’t be

taken into consideration .
In the same way it can be proven that an element of A can’t be the

sum of three or four elements of A.
To construct a set A as the problem claims it is obvicusly necessary

to suppose that 1A and 2€A. From 3 = 1 + 2, it follows 3 ¢ A, and
therefore 4eA. Using the numbers 1, 2, 4 we can obtain by summing the
aumbers which do not exceed 2° —1=7. Hence 8 € A. Using the numbers
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1, 2, 4, 8 we can obtain by summing all the numbers 1, 2, 3,4, ..., 15, and
therefore 16eA . Using 1,2,4,8,16 we can obtainall the numbers 1,2,3....,31.
But, in this case, 31 =1+2+4+8+16. Because 31 it is the sum of §
elements from A, it is possible to have 31 € A. This means that the sixth
element of A can be some number of the form 32 — a, where a = 0.

The set {1,2,4.8,16, 32 ~a} gives rise by summing to the elements
of distinct subscts to the following numbers :

1,2,3,4,...,31,32 —a, 32 -a+1,...,63—a

Therefore, the next element of A is a number of the form
64 —~a—b, where b 2 0. The set {1,2, 4,8,16,32 ~ 0,64 —a - b} gives rise to
the numbers 1,2,3,...,63—a,64~-a—-b,04 —a—-b+1,...,127-2a—-b . Hence
the next element of A hastobe 128 -2a-b —-c¢, c 2 0.

The last step of this procedure add to the sct A the element

256-4a-2b-c—-d. v
In this way, we have obtained that the nine elements of A are :
A={1,2,4,8,16,32-4,64-a~b,128 - 2a-b-c, 256 —4a-2b - c - d}
where a, b, ¢, d are positive integers and the sums obtained from A are
L2,..., 511-8a—-4b-2¢c—d.
From the condition 511 -8a~4b-2c—d = 500, it follows
8a+4b+2c+d <11,

Thus, the number of the sets is the number of systems (a, b, ¢, d)
for which 8a+4b+2c+d <11. It is easy to count them, using the cases

a=0anda=1. When a =0, it is possible to have b = 2 (0 solutions), b =1
(20 solutions) or b = 0 (42 solutions). When a =1, b =0 and 2c+d <3
gives rise to 6 solutions. We obtain in all 74 solutions.

Problem 3. Let n, n 2 4, be an integer number and M be a n-set of
points in the plane, every three points being non collinear and not all of
them being on the same circle. Find all real functions j:M — R, such that

for any circle C containing at least three M-points, the following equality

holds :
> 1(p)=0

PecNM
Solution. Let A, B be distinct points in the set M and let C, ; be ihe
set of circles determined by the points A, B and other points of M. By the
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hypothesis the points of M are not on the same circle and therefore Cy p has

at least two elements.
Let k be the cardinality of C, 5, k > 2. For any circle &, Ce Cs,

one has f(C)= D f(P)=0.
PeC
It is obvious that the sum Z @) =0is given by :
CL,, '

0= 2 fle)= éf(P) +(e=1)(F(4)+ £(B)).

CeC,,
Then the sum Z f(P) and f(A)+ f(B) have different signs, for
PeM

any points A, B. Suppose that Z f(P) >0. Let M= {A,,Ag,-'-,A.w} be a

PeM
description of the set M. Because

f(A,)+f(A,)so7f(A2)+f(4,)s0,..,,f(A,)+f(A,)so
it follows 3’ £(4)<0 and therefore Y £(P) = 0.

PeM

We shall prove now that fis the zero function. Suppose that there
exists a point A, AeM, such that f(A)>0. Then, for two different points B,

C one bas f(A)+f(B)= £(A)+£(C)=0. This gives f(B)<0,f(C)<0
and hence. f(B)+ f(C) <0 . This is a contradiction.

Problem 4. Let ABC be a triangle, D be a point on the side BC and
© be the circumcircle of the triangle ABC. Let 3, & be the circles tangent
to 0, AD, BD and O, AD, DC respectively. Show that 3 and € are tan gent if
and only if 4 _ '
£ BAD = £ CAD.

Solution. Let DX, DY be the bisector lines of the angles £ ADB,
ZADC respectively. The idea of the solution is the following : we are
looking for the centers K, L of the circles 3, € respectively such that 3 and
C be tangent to the circle O. - '

' Then let M, N be the projections of the point on the segments BD,
AD respectively and let k£ = KM = KN be the radius of the circle 3.
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Then 3 and © are tangent if and only i
(1) OK=R-k.
Letus denote LADB=2a and /KDO=4

" Considering the length x = DN = DM
as a variable length of the problemr

we get DK = and k = xtgo .

cosa
Then the equality (1) becomes

[¢9) OK =R-xtga .
Aplying the cosine theorem in the
triangle AODK we obtain :

OK’ =DK* + DO* -2DK -DOcos f§ <> ‘

X

) 2
<:>(R—xtga)2=( ) +DO* =2—=—.DO-cos 3.
cosa cosa

The last equality can be written under the form :
) x* +2Ax+DO* -R* =0.
Rsin @ ~ DOcos
= p , (3).
cos

where A

Using a similar technique for the point L, we obtain the equality :
2" Y +2uy+D0O* -R* =0,
where

, Rcos @ — DOsin
@) u= , b
sma

and DP = y. We observe that in this case the angles «, £ must be repiaced

" by 90°~a and 90°-f, respectively:

Now, the condition for the circles 8, C to be tangent is : x = y.
It means that the equations (2) and (2') have a common root. But this
condition is equivalent with A =y . In this way, the following equality is
obtained: Rcos2a = DO sin(ﬂ - a). Let observe that f— a = ZADO.
Hence, by the sine theorem in the triangle AADO we obtain :
Rcos2a = Rsin LDAO .
Let H denote the foot of the altitude from A in the triangle AABC.

)

Then cos2a=sinZHAD. It follows that ZHAD = £DAQ. Taking into
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account that the lines AH and AO are isogonal conjugates in the vertex A it
follows that AD is the bisector line of the angle £BAC.
Second solution. Let If be A .
the intersection point of the line
AD and the circle @. Like in the
previous solution, let M, N be the
tangent points of the circle 3 with
BD, AD, respectively and let P, Q
be the poius of the circle € with
DC and AD. We apply the B
Cassey’s theorem for the circles
B, C, E and 3, where the points B,
C, E are considered as degenerate
circles. In this way we obtain :
BE-CM +CE-BM = BC-EN .
By applying once again Cassey’s theorem for the circles B, C, E and C, we
obtain

BE-CP+CE-BP =BC-EQ.
The circles 3 and C are tangent iff N and Q coincide. By the above
_ relations, this conditions is equivalent with :
\ BE(CM - CN) = CE(BN - BM) <> (BE - CE)MN =0.
it follows BE = CE, and this condition is equivalent with ZBAE = ZCAE.

Remark : After using the problem in the examination, the jury
found out the sm:ulanty of this problem with the problem IND-4, submitted
to the jury of the 33" IMO in Moskow.

Let us recall this problem, but in the present notations. The circles
O, B, C are related to each other as follows : the circles 3 and C are
externally tangent to one another at a point N and both these circles are
internally tangent to the circle ©. Points A, B, C are located on the circle O
as follows: BC is a direct common tangent to the pair of circles 3 and C
and line NA is the transverse common tangent at N to 8 and C, with N and
A lying on the same side of the line BC. Prove that N is the incenter of the
triangle ABC.

Now, using the solution of our problem, it is not difficult to solve
the above problem.
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Problem 5. Let VAA,...A, be a pyramid, where n > 4. A plane I’
intersects the edges VA,, VA,, ..., VA, in the points B,, B,, ..., B
respectively such that the polygons A|A,... A, and B\B,... B, are similar
Show that the plane IT is paralle] to the plane contaning the base A4,A,... A,.

Solution. We shall use a preliminary result given under the form of
the following :

Lema: Let VABC be a triangular
pyramid and let A', B, C' be poiats
located on the edges VA, VB, VC
respectively. Then, the following equality
holds :

vol(VABC) VA VB VC

vol(VA'B'C') VA" VB VC'

Proof: Let O, O’ be the projections of the points 4, A’ respectively
on the plane containing the points V, B, C. Using the fact that AO and A'O'
are parallel lines we have :
0A VA
L O0A VA
Therefore, the ratio of volumes can be obtained as follows :

1 | |
vol(VABC)  35wc"40  40.VB.VC.sin(£BVC)

vol(VA'B'C") _:1): Sy A A'0'-VB'-VC' -sin(£BVC)
_VA VB VC
VA' VB VC'’

Tumning back to our problem, let us denote the ratio %‘lzx,,,

{
Vi=12,..,n and let X be the ratio of similitude of the two polygons
AjA;...A, and B,B,...B,. Using the similarity of the triangles A, A4, and

S
BB .B, we obtain —=2 = K*  and using the lemmma we obtain :
[ g 4 g
EH‘B}
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vol(VA,4,4,)

—— T = XX X,

vol(VB].BjBk) s

Let H, h be the lengths ‘of the altitudes from V in the pyramids VA A;.. A,

and VB,B,...B,, respectively. Then
vol(VAA4,) H s

vol(VBB,B,) h Swss

Therefore, for any distinct elements i, j, k € {1,'2, ..., n}, one has
H
xxx, = K'—.
[ M 1 h
Using the fact that n 2 4, it is easy to see that x, =x, =...=x .

Remark. The result of the problem does not remain valid for
triangular pyramids. It is easy to construct a section B,B,B; such that the
base triangles A;A,A; and B|B,B; are similar, without the parallel plans. If,
in addition, we suppose the pyramid VA,AA; regular, then the result
remains valid.

Problem 6. Let A be the set of positive integers represented by the
form a® +2b°, where a, b are integer numbers and b # 0. Show that if p is a
prime number and p® € A, then p € A.

Solution. It is obvious that p > 2 ; indeed 4¢A. Because p is an odd
number, it follows from p* =a* +2b* that a is an odd number, b an even

number and (a,b) =1. From the decomposition :

(p—a)(p+a) =2b,
we obtain the equalities : :
(1) p—a=2"A , p+a=2"B,
where A, B are odd numbers, m>1, n>1 and m + n is an odd number.
By adding the equalities (1) we obtain :
2p=2"A+2"B=2"""C,
where C is again an odd number. It follows that min{m, n} = 1 and if one of

the two exponents is 1, the other one is an even number. We may consider
{wo cases :
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First case : m=1,n=2r with r>1. It follows that p—-a =24,
p+a=2"B and therefore

pl—a’=2""AB=2b".

From this we deduce 22’A.B =b*. It is easy to see, using the
equalities (1) that (A, B) =1. Hence A and B are perfect squares : A=aq’,
B=f*. Using (1) we obtain :

2y p-a=2a® , p+a=2"p
Adding the equalities (2), it follows :
2p=2(a’ +27" ") and p=a’+2{27f)’.

The conclusion follows, from the above equality.

Second case. n=1m=2s with s21. Then p-a=2"4,
p+a=2B and therefore _

pl-a*=2b"=2""4B. _
In the same way we obtain 6’ =2°AB, A=a’, B= /" and finally
p=pf +2( "“a)z.

Remark. The problem arises from the well-known fact : the ring of
algebraic integers Z{iﬁ] = {a +bi\/—2—]a,b EZ} is an euclidian ring with
respect to the norm

Ma+biv2)=a® +267.
It is known that the units of the ring Z[i\/i] are +1. If p is a prime integer
. number which is not in the set A then p is an irreducible, and hence a prime,
element in the ring Z{zﬁ ] . Indeed, from

p= (a +biﬁ)(c+ di«/i)
we obtain by applying the norm : |

N(p)=p' = (ax2 +2b’)(c2 +2d2>.

Using the factoriality of the ring Z, we get a’ +2b% =1 or.c> +2d* =1.
It follows that, for example, a +biﬁ = 1 aad p is irreducible.
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Now, let p* = a’ +2b2=(a +biﬁ)(a—bix/5). Using the property
of p to be prime, it follows p'a+bi«/_2_ or pla~bi~/§. This is a

contradiction, because p |aand p | b ='a =pa,, b=pb,, and p=a; +2b].

Problem 7. Let p be a prime number, p 2 5, and & be a digit in the
p-adic representation of positive integers. Find the maximal length of a non
constant arithmetic progression whose terms do not contain the digit k in
their p-adic representation.

Solution. We shall prove that an arithmetic progression whose
terms do not contain the digit k contains at most p — 1 in the case k # 0 and
at most p terms in the case k = 0.

For any positive integer N we shall use the notation

N=nn_...nn,
for the p-adic representation of N.
Let g,a+r,a +2r,...,a%(p— l)r be an arithmetic progression and let

a=aa,,...aa,r=rr,_..nr, be the corresponding p-adic representations.

-1
Let 7; be the first non-zero digit in the p-adic representation of r, counting
from right to the left. Then the digits j of the terms of the progressicn are
respectively : '

¢} a,,a,+r,a,+2¢,....a,+{p-1),,

all digits being taken modulo p. Observe that the above sequence is a
complete residue system modulo p. It follows that the digit kK must appear in
the sequence.

If £ = 0O, the failure can be caused if the number of digits in the
representation of g is less than j. In this case we are forced to consider in the
sequence (1) a; = 0 and then we obtain the longer sequence of digits :

(2) a;=0,r,27, ..., p-1) r;, pr;.

This is once again a sequence of digits in which the digit zero

appears in the representation of the number a + pr .

The conclusion is : the greatest number of terms is p—-1 for £&=1,2, ...
..., p~1 and p for k = 0. To complete the proof, we remark that the

maximum can be realized in each case.
For 2<k < p-1 the progression

k+Lk+2,....p-1Lpp+l... p+k-1
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has p—1 terms ;
for k = 1 the progression
2p2p+{p-1)2p+2p-1),...2p+(p-2)(p-1)
has also p—1 terms. Finally, for k =0, ihe progression
Li+p142p,..1+(p-1p
has p terms. It is easy to construct the p-adic representation of the terms of
those progressions.

Problem 8. Let p, g, 7 be pairwisely distinct prime numbers and A
be the set of positive integers, ‘

A= {p“qbrc 0<abes 5}.

Find the least number 7 such that any n-set B,BC A, contains distinct
elements x and y such that x is a divizor of y.

Solution. Let L be the set ordered triples (a, b, ¢) where
0<a,b,c<5. Lis itself an ordered set under the relation :

“(a,b,c) < (a b,,c ) iff aga,b<b,c<c”

12722

It is obvious that p°g’r ‘lp" g”r® iff (a,b,c)<{a’,b’,¢'). Thex, our
problem is equivalent with'the following : find the number of elements of a
maximal subset W, W < L, such that any two elements of W are not
comparable and then add to W an extraelement x.

In this way, the set Wu{x} has the required property and it is
minimal with this property. We shall call such a set W an antichain.

A subset V, < L such that for any (g, b, ¢) € Vthe sum a+b+c is
the constant k is obviously an antichain of L. Geometrically, Vk is the
jntersection set of the laticial points from the curbe

C= {(a,b,c}la,b,c eNand0<ab,c< 5}
with the plane P, given by the equation a+b+c=k, where 1 <k < 4. For

instance V; contains three points
, =(1,0,0),, =(0,1,0) and e, =(0,0,1)

which are the unjtary vectors of a base in R’.
The antichain V, contains six points, which can be obtained in the

following way : for any (g, b, ¢) € V, the points :
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{a,b, c) +e, = (a +1, 5, C)
(a',b.c) +e, = (a,b +1, c)

T (5,0,5)
(@bc)te, =(abecrl) : \
are the points of V,. Observe that in :

©,0,5)

this way the elements of V, are not . (5,50)
uniquely generated and then add to W (0.0.1) SNt

an extraclement x. In this way, the set " TN x0Np)

¥ {x} has the required property and (0,0,0) (10.0) (5.0,0)

it is minimal with this property.

The set Vg has 27 elements and it is easy to count them : we have 3
ordered triples of the form (0, b, c) ; 4 triples of the form (1, b, ¢) ; 5 triples
of the form (2, b, ¢) ; 6 triples of the form (3, b, ¢) ; 5 triples of the form
(4, b, ¢) and finally 4 triples of the form (5, b, c), for which a+b+c=8.
The total number is 3+4+5+6+5+4 =27 triples.-

On the other hand, there exist a partition of the set L with 27 chains
such that every chain has a unique representative from the set V. In this
way, every s=t with 27 +1 = 28 elements, contains at least two elements
which belong tc a chain and hence, these two elements are comparable.

The required partition can be obtained as follows. The set

Ay ={(a,b) e N*|0<a,bs5)
can be partitioned in six chains : A,, 4,, A;, A,, As, Ac. That means :

(1,5) (2,5) 3,5) (4,5)

0.5) ooy, 4 ={00.0 D, (05, (15)..... (5.5}
0 fowimii i A A ={L0) (1Y), (14). (24),.... (54)}
:22 ﬁj 4, ={(2,0).(2.1).....(23).(33).....(5.3)}
o a A={B962.62).(42)(52)
oot--d-- 4 ~osols A ={(4.0),(40).(51)}

(1,0) O) (3 0) (4 ,0)

A, ={(50)}.
From the chains 4, A, , A; we obtain the new chains A, 4, jrAs;
by adding as a third component the number j JE€ {0,1,2,3,4,5} ;

le. A, = {(a,b, ])I (a,b) EAX}, etc. In this way we obtain 18 chains, which

are orizonthal lines in the cube (see figure).
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For each element {(a, b) ,
from the chains A, As, Ag We / 9
. . P . el RESC
obtain a chain A, 5 in L by adding Ais : '
to (a, b) as a third component, all /

the numbers j, j € {012,345} © A,

T
o t=lonilosiss) A f :’
isa vertical line in the cube. In this 411 /’/\‘
way we obtain 5+ 3 +1 =9 chains. 4 “~ ;
. 2

1“120

So, the total number of chains is 18 +9 = 27. This finishes the proof.

Problem 9. Let ABCDEF be a convex hexagon. The lines AB anc
EF, EF and CD, CD and AB intersect in the points P, Q, R respectively
The lines BC and DE, DE and FA, FA and BC intersect in the point S, T, U

) . AB CD EF BC DE FA
respectively. Show that if —=——=—— then ——=-——="—"r".
PR RQ QF us ST 71U

R4

Solution 1 (the author’s solution).
This solution is founded on a very
interesting idea : using the given
notations we shall prove that the
hypothesis

) AB CD EF U
PR RQ QP [E7aN
is equivalent with the following TN D
assertion : for every point X interior to o Figure 1
the given hexagon ABCDEF, the sum of the areas '
S(XAB)+S(XCD)+S(XEF)
is constant. Then the sum of the areas
S(XBC)+ S(XDE)+ S(XFA)

is also constant, and by the above equivalence and the symmetry of th
problem with respect of the choise of three sides, the result comes to b

proved.
Let & be the common value of the ratio (1) and let X, L, M be th

projections of the point X on the lines PR, PQ, QP respectively. Then w
obtain that : ’
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S(XAB)+ S(XCD)+S(XEF) = kS(PQR) .
Reciprocally, let us suppose that S(XAB)+S(XCD}+S(XEF) =4 is a

constant, for any X. By expressing the areas, we obtain
2) AB- XK +CD-XL+EF-XM =24
is also constant, for any X.
So we are led to the following lemma :
Lemma. Let YOZ be an angle and a, b, p be positive real numbers.
The loci of the points X which are interior to the angle YOZ and such that
a-d(X,0Y)+b-d(X,0Z)=p
is a segment MN where M €0Y and N €0Z . (Here, d(X, OY) represent
the distance from the point X to the line OY).
Z , Proof. Take the points A, B on
/ the line OY, OZ respectively such that
OA = a and OB = b and let Xy, X; be the
projections of the point X on the lines 0Y,
OZ respectively. Then it follows that

S(0AX)+5(0BX) = Lg- :

A Xy y  isa constant. Because
Figure 2 .
5(0AX)+S(OBX) = S(0AXB) = S(OAB)+S(ABX),
follows that S(ABX) is constant, and therefore d(X, AB) is constant. Then the

result is: the loci of the points X is a segment MN parallel to the segment AB.
We come back to the problem in the following way : take the

points G, H on the segments RP and RQ respectively such that RG = AB and

RH = CD. Then the condition (2) is equivalent with the condition : f
S(XGR)+S(XHR) +S(XFE) =22,

for any point X interior to the hexagon. ‘1t is also equivalent with the

condition: :
S(XHG)+S(XFE)=2A~S(GHR),
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that is a constant, for any X. By applying
twice the lemma, it follows that £F and
GH, FG and EH are parallel. Therefore,
the quadrilater EFGH is a parallelogram.
Using the similitnde of the triangles
ARPQ and ARGH we obtain :

RG_RH GH _AB _CD FEF

RP RQ PQ:’PR RQ QP
An alternative solution.
Consider the point M such that the segments AM and FE, BM and

CD are equal and parallel in the same time. Such a point M exists because

- - - :
the vectors PR,RQand QP define the triangle PRQ and hence

Figure 3

- 3> -
PR+ RO+ QP =0 . Therefore

- = o
kAB+kCD+kEF =0 .

implies succesively :

, R
Figure 4
- > - - =S -

AB+CD+EF =0=> AB+ BU+ MA =0
Then the triangles PRQ and ABM are similar and the quadrilaterals
AMEF and BCDM are parallelograms. The triangles EMD and TUS have
parallel sides and therefore they are similar. We obtain the ratio :

MD DE EM
us ST TU
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BC DE AF
us ST TU

Using MD = BC and EM = AF, we obtain

Problem 10. Let P be the set of the points of the euclidean plane 11
and D be the set of the lines of the same plane. Find, with proof, whether
there exists a bijective function f:P — D such that for arbitrary three

collinear points A, B, C the lines F(A), f(B),f(C) are either parallel or

concurrent.
Gefry Barad

Solution. We shall prove that such a function doesn’t exist. Let us
suppose contrary, that the required bijective function f:P>D ex1sts Flrst
we shall prove the following :

Lemma : If the lines d,, d,, d; have a common point M and
d;=f(By), BieP, i = 1, 2, 3, then the points B,, B,, B; are collinear. Indeed,
if B,B,B; is a triangle then the image of any point C, Ce B, Bj, i # j, is a line
d = f(C) through M. It is clear that any point C of the plane is collinear with
two different points C;, C, belonging to the sides B;B; of the triangle.

Figure 1

Then, for any point C of the plane its image must be a line d = f (C)
through M. This contradicts the supposition that the map fis onto.

In the same way it can be proved that if the lines d,, d,, d; are
parallel and d; = f (B,), then the points B, B, , B, are collinear. From the
above two results it follows that f defines a bijection between the points of a
line d and the lines of a pencil of lines through a point or a pencil of parallel
lines (hence, a pencil of lines).
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d . x M
Figure 2

Let us consider two parallel lines d, d' such that the images of the»
points Bed are the lines of a pencil P of parallel hnes The images of the

points B'e d' are the lines of a pencil 7. .
If 7 is a pencil of lines through a point M then it contains a line p
belonging to the pencil P, pe P. It follows that p is the image of a point

belonging to d and of another point belonging to d ; this is a contradiction.
Therefore P is also a pencil of parallel lines.

d N £
\\ i/ i
d" | > f4)
/4 |

Pn

Figure 3

Now, let " be a line which intersects d and such that the images of
the points belonging to " are a pencil P of lines through a point. For any

line 6, | ", the images of the points of & are a pencil IT of lines through a
point. The pencils 7 and IT have a common line / and hence ! = B) where

Bed'n 6 this is a contradiction,

Problem 11. Find the functions f:R — [0,0) such that
S +y7)= 12 =)+ f(29),

for all real numbers x and y.
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Solution. For x = y = ) we obtain £0) = 0. For x = 0 we obtain

f(y‘) = f(— y’) ; hence fis an even function and it is sufficient to find it for

positive numbers. Let a, b positive real numbers. Then the algebraic system
-y =a and 2xy=b

has always real solutions. It is sufficient, for proving this, to observe that the

solution can be obtained as the intersection point of two hyperbolas: one is

reported to the axis and the other to its asymptotes. '
Taking a solution (x, y) of the above system, one obtains

x'+y' =+/a’ +b* . Then, forany a, b > 0, the function fsatisfies
fla)+£(0)= Yo" +57).

Let g:{0,%0)— [0,%0) be defined g(a)=f(1/c;). Then g(a2)+g(b2)=

™~

= g(a2 +b2), for any a, beR. For x>0, y > 0 and by taking a = \/;,bz J;
we obtain g(x+ y) = g(x)+ g( y) , for all positive numbers x, y. Using Cauchy
equation we obtain g{x) = kx and f(x)=kx’, for all x > 0.

Problem 12. Let n be an integer number, n > 2, and
PX)=X"+a, X" '+.+a,X+1

be a polynomial with positive integer coefficients. Suppose that a,=a,,
forallk, k=1, 2, ..., n — 1. Prove that there exist infinitely many pairs of
positive integers (x, y) such that x! P(y) and yl P(x).

Solution. Observe that the pair (1, P(1)) verifies the conditions :

1] P(P(1)) and P(1) | P(1).
Suppose that only a finite number of pairs (x, y) verify the

condition. Then it is possible to consider the ordered pair (x, y) with x < y
and such that y has the greatest value. In this conditions, we shall prove that

P
the pair (y,ﬂJ also verifies the hypothesis.
x

. Py) . . : :
Firstly, because x | P(y) the number “18 an integer. It is obvious
X

P P
that Ml P(y). We have to prove only that y | P(M) .
x

*
-~
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From y| P(x),ie. y| x"+a, _x"" t..+a,x+1 it follows that x and y
are coprime numbers. Hence, there exists a solution z of the congruence
xXz= l(mod y) . From P(y) = l(mod y) we obtain

A22) < o) = o).

X

Using the property of P to be a reciprocal polynomial we also have :
1
x"P(——) = P{x).
Y=
From y | P(x) follows : x"P(l) = O(mod y) , and hence P(z) = O(mod y) .In
X

P(y)

this way the pair (y, ] verifies the condition. Moreover :

P(y)zj" +1>y* > xy

P(y)

and therefore —=~ > y This contradicts the maximality of y in the pair (x,y).
X

Problem 13. Let P(X), Q(X) be monic irreducible polynomials in
the ring Q [X]. Suppose that P(X) and Q(X) have roots ¢ and B, respectively
and that a+f is a rational number. Prove that the polynomial
P(X)* -0(X)’ has a rational root.

" Solution. Let us denote o +f=q,9€Q.

Then P(a)=P(g-pf)=0. It follows that S is a root of the

polynomial P(q-X). The polynomials P(g - X) and Q(X) have rational
coefficients,are irreducible and have the common root B. Therefore they
differ by a rational multiplicative constant :

P(q - X) = cQ(X).

Taking into account that the polynomials P and Q are monic, it follows ¢ =

- 11, depending on the parity of deg P. From the equality

P(q-X) = +0(X)
we obtain
Pg-X) =10 (X)..
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is a root

UJ

N
Then, it is obvious that, P* (q—%j = 3Q? (g} . This proves that

t9 [y

of the polynomial P? (X) -0 (X}

Problem 14. Let a be an integer number, @ > 1. Show that the set
of positive integers
{a2 +a-1,a’+a*-1,...,a™" +a"'-—l,...}
contains an infinite subset of pairwisely coprime numbers. ~
Solution. We shall indicate how to produce an infinite set of
pairwisely coprime numbers from the given set.
Firstly we observe that
(a_’ +a-1,a’ +a’ ~1) =1,
and, more generally, any two conssecutive numbers from the given set are
coprime. Hence, there exists in the set two coprime numbers. Suppose that :
a* +a* -1, a™" +a™ -1,....,a"" +a™ -1

are pairwisely coprime numbers and let ¥ be then: product :

£
N=]1l +am -1).
i=1

0 - . ' .
The numbers a = 1, g, az, ..., a’ are distinct integers and then, using the

pigeonhole principle, there exist distinct exponents {, j, i > j, such that
a =a’ {mod N)
Then N | a (@7 -1). It is easy to see that NV and a are copnme numbers
(using the definition of N). It follows that
(N, a7 +d7-1)=1.
Alremanve solution. Let P be the set of all prime divisors of the
number N and let » be the product :

n=11{r-1).

peP

As before, it is easy to see that (p, a) = 1, for any peP From the
Fermat’s theorem we obtain a” = 1(mod p), Vp € P and therefore

aM +a" ~1 *a(modp} VpeP.

This proves that a*' +a* —1 and N are coprime numbers.
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A second alternative solution. Like in the first solution (a, N) = |
and then, using Euler’s theorem obtain :

a™™ = l(mod N) and

a®™ g gr = a(mod N) .

qp( N)+l

This proves that a +a®™ —1 and N are coprime numbers.

Problems 15. The vertices of a regular dodecagon are coloured
either blue or red. Find the number of all possible colourings which it does
not contain monochromatic subpolygons.

Solution. Firstly, we observe that it is sufficient to take into account
only equilateral triangles and squares ; indeed, if the dodecagon do not
contain monochromatic equilateral triangles, then do not contain
monochromatic regular hexagons too.

Let us denote the vertices of the dodecagon by the numbers 1,2,3,...,

» 12. The dodecagon contains the equilateral triangles T, = {1, 5, 9},
T={2, 6, 10}, T;={3, 7, 11}, T, = {4, 8, 12} and the squares P,={1,4,7,10},
P,=1{2,5,8, 11}, P;= {3, 6, 9, 12}. The families of subsets {T}, T, T3, Ty}
and {P,, P,, P;} are both partitions of the set {1, 2, 3, ..., 12} of vertices of

the dodecagon. :
To obtain a colouring without monochromatic triangles it is

sufficient to take care to assign two colours to the vertices of every triangle.
The number of such colouring of a triangle T; is 2° — 2 = 6. Because we
have 4 triangles, taking into account all possible combinations, we obtain
6" = 1296 colounngs without monochromatic triangles.

It is possible that a colouring without monochromatic triangles
contains a monochromatic square. Let S; be the set of colourings without
monochromatic triangles for which the squareP; is monochromatic, i= 1,2,3.
So, we are going to find the cardinality | S, U S, U §; |. By the inclusion-
exclusion principle, we have the formula :

[$108, 0S8 [ =8 |+]Sa]+]S5| =SS |~]Sin S|~
=185 S3 |+ | Sin SN S

In order to obtain the cardinal number | S; |, observe thqt every
square P; has its vertices in the four different triangles Ty, 75, T3, 7. If the
vertices of P; have the same colour, say red, then in every triangle the two
resting vertices can have the combinations {blue, blue}, {blue, red} or

{red, blue}.
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[he total number of such combinations is 3 and it is necessary ic
connt twice, for the case of P; - vertices coloured in blue.

Then | S, |=23"= 162.

In the same way, [ S; " S;]= 34 and | 5, A Sin S| =6.

Then the required number is 1296-3-162 +3-34 - 6 = 906

Problem 16.Let [ be a circle and AB be a line which does not
infersect I, For any point P, Pe T, let P’ be the second intersection point of
the line AP with I and £ (P) be the second intersection point of the line BP'
with I". In this way one defines the point sequence P=pF P, . P

nye e

where P = f(R, ) Show that if & is a positive integer such that By =P,
then for any point Q =, the property Oy =@, also holds.

First solution. Let O be the centre and R be the radius of I';ie.
U= G(O, i\?) The function P> P’ corresponds to the inversion with

respect to the circle T, 26(/1;40142 ———}E?> and the function P’ f(P)

corresponds  to  the inversion  with respect  to  the circle

I, = G(B; VOB’ ~ R;). Note that by taking 0" = pr,;0 we get :

AB< AO'+0'B=+0A* ~00" +JOB —00” <\JOA* - & ++JOB* — §?
and

AB>

40"~ 0'B=Noa* ~00" - /o' —00" > oa~k - Jos - & |

So €, and C, have two common points C and D.

c d) ' Nl
Figure 1 Figure 2
Consider now an inversion of center €. This inversion transforms
the circle T into a circle " and the circles ', and T',, which are orthogonal
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toT" into the straight lines d{ , d; which are orthogonal to 1"'; that is  d!
and o, pass through the center of "',

The inversion also transforms A and B into A’ and 3, the
reflections of C in d] and d,, therefore the straight lines AP and BP
become circles symetrical about ] and d, . This shows that the functions
Pr>P'and P'+> f(P) become the reflections in d{ and d], so the
function f becomes the rotation about the center of C’ of angle 24(d! ,d! ).

The assumption Py = P, is translated now inte k£(d! ,d, )eZx and
obviously, this condition does not depend of the position of P,

Second solution. Consider the projective transformation I which
throws AB at infinity ; 3 transforms I into an ellipse & Take now an affine
transformation ~# which transforms ¢into a circle I,

The transformation 7 =403 p e’
is projective, throws AB at infinity and a g(P)
transforms the circle I into a circle I, ,‘z?/

The straight lines which pass
through A and B become straight lines
which are parallel to fixed directions a
and b and the function f becomes a
function g which assigns to every Pe’

the point g(P)e C’ such that PP'|ja, P'e C' and P'g(P) || b. This shows that

M
the oriented arc Pg(P) is twice the oriented angle Z(a, b), so g is a

Pl
Figure 3

rotation about the center of the circle I"". The proof can now be finished like
in the previous solution.

Advanced alternative solution. The union of T and the line A is a
plane cubic curve X. It is known that for a fixed point O, O€X, there exists a
group structure G on X defined as follows : for any points A, B on X, C
= A*B is the third intersection point of the line | = [,z with X and A+B is the
third intersection point of X with the line I’ = /. (see figure 4).
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, = A*B

¢ 4+8 Figure 4

It is easy to verify that the composition law is commutative and the
point O is the zero element. It is not easy to verify the associativity and the
main fact that by changing the point O with another point O, the two
groups such obtained are isomorphic. ”

In this new context, our problem claims that :

P+nA=P.

Obviously, this is equivalent with the property : the point A is a
torsion element of the group G. It is evident that this property does not
depend on P.



SECTION III

The annual competition of the journal “Gazeta Matematicii”,
September 1997

The 7" and the 3" Forms
First day

1. Five integers have the following property : if we add in different
ways four of these numbers we obtain the numbers 21, 25, 28 and 30.
Find the five numbers.

2. We are given 21 distinct numbers selected from the set

{1,2,3, ..., 2046}.
Show that there exists three numbers, say a, b, c, among the selected
numbers such that
be <2a® < dbc. :

3. A rectangular sheet of dimensions 12 x 10 is cut with a pair of
scissors inte two parts having equal areas. Show that the length of the
cutting is at least 10.

Second day
4. Let a, b, c be positive numbers. Prove the inequality :
bc ca ab a’ b ¢

5 + += <1s—; + +-5 .
a”+2bc b"+2ca b +2ab a”+2bc b +2ac ¢ +2ab
" 5. Let ABC be an equilateral triangle. A line divides the triangle
into two parts having the same perimeter and areas S, S,. Show that :

7 8 9
-—_ S — —_—
9 S, 7
6. Let ABCD be a square and M be a point on the side AD such that
AM -
——=—. Let P be the intersection point of the line MB with the circle
MD ‘

circumscribed to the square. Show that the line PC passes through the
midpoint of the side AD.

? The solutions of the problems from this section are available in
Gazeta Matematicd, vol. 101 (1996), no. 10, pp. 476-496.
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The 9" and the 10™ Forms
i'irst day

1. Let ABCD be a convex quadrilateral and M, N, P, Q be points on
the segments AB, CD, AD, BC respectively such that :

AM DN AP BQ
——=——=x and —=——=y,
MB NC PO QC
Show that if ] is the intersection point of the segments MN and PQ then
Pl MI
—=xand —=y.
109 IN

2. Find all polynomial functions fR—R with integers coefficients
which are bijective and such that

f2(x) = f(xz) ~2f(x)+a forall xeR.
3. Let AjA,... A, be a convex polygon and I be a circle interior to
the polygon. Let ¢, be the length of the tangent from the point A; to "and p

be the semiperimeter of the polygon. Show that zt 2p.
=1

Second day

4. Find positive integers n such that

Jrx-1+4/x=2+4.+fx-n <x,
forall x > n. :

5. Let ABC be a triangle and M be a point in the plane but not on
the sides of the triangle. A}, B,, C, are the intersection points of the incircle
with the sides BC, CA, AB respectively and A,, B,, C, are the intersection
poiats of the incircle with the line A\M, BiM, C,M respectively, such that
A# Ay, Bi# B,, C,# C,. Prove that the lines AA,, BB,, CC, are concurrent.

6. We are given a triangle ABC such that

a I,

—=—=72

b 1

a

where I, [, are the bisector segments of the angles A, B respectively. Find
the angles of the triangle ABC.

3
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The 11" and the 12" Forms
First day :
1. Let a, b be positive rcal numbers. Show that the sequence
(_x")"20 defined by :

2 2
X +X
n n-1 N
—, Vn 21, is convergent.
X, +x

Xo=a,x,=bx =

n-1
2. Let f:[0,a] > R be a derivable function, with a continuous
' 2

a
derivative, such that f'(0) >0 and f(a)= f(0)+—. Show that there exists
o]

a convergent sequence (x") Lo Such that f ’(xn) =(n+1)x_. Then find the
n
limit limx_.
" 3. Let A be a real nonsingular squarc matrix of dimcnsions n x n
and let f, : M,(R) — R be the function

f(X) = iﬁ:bﬁxv ,

: =1 j=1
where B = (bb.) is the matrix B= AA‘. Show that :

(i) if XeM,(R) and f,(X-X') =0 then X =0, ;
ii) for all matrices X,¥ € M_(R),

(fA(XY))2 sz(X-X')-fA(Y'-i’).

Second day

4. Let P(X) be a rational polynomial,
P(X)=aX’ +bX*+cX +d,

X
and let x, x;, x3 be the roots of . Show that if —~ is a rational number
X
« 72
different from O and 1, then all the roots of P(X) are rational numbers.
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5. Let (x") o be a real sequence given by the conditions : x5 > 0,

2+x
2L for all n20. Show that (xn) 20 is a convergent

2+x a

nz

x>0and x_, =
n

sequence.
6. Prove that there exists an unique function f:[1,00) = [0,00) such

that :

ef(x) - f(x)

———+x, forall x>1.
x
Show that this function satifies the conditions :
b) The sequence a, = f(1)+ f(2)+...+f{n) - Inn! is bounded.

¢) lim 2( f(x)-1nx) = 0.

Xy
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