REAL ANALYSIS EXAM: PART I (SPRING 1999)

Do all five problems.

- 1. Write the Fourier series of the function $f(x) = x^2$ on the interval $[-\pi, \pi]$, and use it to compute $\sum_{n=1}^{\infty} n^{-2}$.
- 2. Let B be a Banach space and $L: B \to B$ be a linear (but not necessarily bounded) operator such that $||Lx|| \ge ||x||$ for all $x \in B$. Let $f: B \to \mathbf{R}$ be a bounded linear functional. Prove that there is a bounded linear functional $g: B \to \mathbf{R}$ such that g(L(x)) = f(x) for all $x \in B$.
- 3. Let $\mathbf{T} = \mathbf{R}/2\pi\mathbf{Z}$ be the circle group. Let $k \in \mathcal{L}^1(\mathbf{T})$ and let \mathbf{K} be the integral operator on $\mathcal{L}^2(\mathbf{T})$ defined by

$$\mathbf{K}: f \mapsto \frac{1}{2\pi} \int_{t \in \mathbf{T}} k(x-t) f(t) dt$$

- (a) Prove that \mathbf{K} is a compact operator (i.e., that the image of the unit ball under \mathbf{K} has compact closure.)
- (b) Find the eigenvalues and the corresponding eigenfunctions of **K**. Hint: use Fourier series.
- 4. If $f \in \mathcal{L}^1(\mathbf{R})$, let M_f denote the Hardy-Littlewood maximal function of f:

$$M_f(x) = \sup_{h>0} \frac{1}{2h} \int_{x-h}^{x+h} |f(t)| dt$$

Prove that

$$\mu\{x: M_f(x) > \lambda\} \le C \frac{\|f\|_1}{\lambda}$$

where $||f||_1$ is the \mathcal{L}^1 norm of f and C is a fixed constant.

5. Let $F:[0,1]\to \mathbf{R}$ be a continuous function. The arclength L of the graph of F is defined to be

$$\sup \sum_{i=1}^{n} \sqrt{|\Delta x_i|^2 + |\Delta y_i|^2}$$

where $\Delta x_i = x_i - x_{i-1}$ and $\Delta y_i = F(x_i) - F(x_{i-1})$, and where the supremum is taken over all partitions $0 = x_0 \le x_1 \le \cdots \le x_n = 1$.

In this problem, F is increasing, F(0) = 0, and F(1) = 1.

- (a) Prove that $\sqrt{2} \le L \le 2$.
- (b) Let μ be the measure such that $\mu((a,b]) = F(b) F(a)$. Suppose μ is singular with respect to Lebesgue measure. Prove that L = 2.

REAL ANALYSIS EXAM: PART II (SPRING 1999)

Do all five problems.

1. Let S be the set of real numbers $x \in [0,1]$ such that for every $\epsilon > 0$, there is a rational number p/q with

$$\left| x - \frac{p}{q} \right| < \frac{\epsilon}{q^3}$$

- (a) Prove that S is uncountable.
- (b) Prove that S has measure 0.
- 2. Let X be a compact Hausdorff space and J be an ideal in C(X), the space of continuous real-valued functions on X. Assume that for each point $x \in X$, there is a function $f \in J$ such that $f(x) \neq 0$. Prove that J = C(X).
- 3. Suppose $f:[0,1]\to \mathbf{R}$ is a function such that

$$\limsup_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right| < \infty$$

for almost every x. Prove that for each $\epsilon > 0$, there is a Lipschitz function $g : [0,1] \to \mathbf{R}$ such that

$$\{x: f(x) \neq g(x)\}$$
 has Lebesgue measure $< \epsilon$.

NOTE: You may use (without proof) the following fact. If $S \subset \mathbf{R}$ and $h: S \to \mathbf{R}$ is Lipschitz, then there is a Lipschitz function $H: \mathbf{R} \to \mathbf{R}$ such that H(x) = h(x) for all $x \in S$.

- 4. Let X and Y be Hilbert spaces and $L: X \to Y$ be a linear operator. Prove that the following two conditions are equivalent:
 - (a) The image $L(\mathbf{B})$ of the unit ball in X has compact closure in Y,
 - (b) There is a sequence of bounded linear maps $L_n: X \to Y$ such that the image $L_n(X)$ is finite dimensional and such that $||L_n L|| \to 0$. (Here $||\cdot||$ is the operator norm.)
- 5. Let f be a continuous real-valued function on [0,1] and let g(y) be the number of points x such that f(x) = y. Prove that if g is in \mathcal{L}^1 , then f has bounded variation.