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Abstract. This book has no equal. The priceless treasures of elementary geometry are
nowhere else exposed in so complete and at the same time transparent form. The short
solutions take barely 1.5 − 2 times more space than the formulations, while still remaining
complete, with no gaps whatsoever, although many of the problems are quite difficult. Only
this enabled the author to squeeze about 2000 problems on plane geometry in the book of
volume of ca 600 pages thus embracing practically all the known problems and theorems of
elementary geometry.

The book contains non-standard geometric problems of a level higher than that of the
problems usually offered at high school. The collection consists of two parts. It is based on
three Russian editions of Prasolov’s books on plane geometry.

The text is considerably modified for the English edition. Many new problems are added
and detailed structuring in accordance with the methods of solution is adopted.

The book is addressed to high school students, teachers of mathematics, mathematical
clubs, and college students.
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Editor’s preface

The enormous number of problems and theorems of elementary geometry was considered
too wide to grasp in full even in the last century. Even nowadays the stream of new problems
is still wide. (The majority of these problems, however, are either well-forgotten old ones or
those recently pirated from a neighbouring country.)

Any attempt to collect an encyclopedia of all the problems seems to be doomed to failure
for many reasons.

First of all, this is an impossible task because of the huge number of the problems, an
enormity too vast to grasp. Second, even if this might have been possible, the book would
be terribly overloaded, and therefore of no interest to anybody.

However, in the book Problems in plane geometry followed by Problems in solid geometry

this task is successfully perfomed.
In the process of writing the book the author used the books and magazines published

in the last century as well as modern ones. The reader can judge the completeness of the
book by, for instance, the fact that American Mathematical Monthly yearly1 publishes, as
“new”, 1–2 problems already published in the Russian editions of this book.

The book turned out to be of interest to a vast audience: about 400 000 copies of the
first edition of each of the Parts (Parts 1 and 2 — Plane and Part 3 — Solid) were sold;
the second edition, published 5 years later, had an even larger circulation, the total over
1 000 000 copies. The 3rd edition of Problems in Plane Geometry was issued in 1996 and
the latest one in 2001.

The readers’ interest is partly occasioned by a well-thought classification system.

The collection consists of three parts.
Part 1 covers classical subjects of plane geometry. It contains nearly 1000 problems with

complete solutions and over 100 problems to be solved on one’s own. Still more will be added
for the English version of the book.

Part 2 includes more recent topics, geometric transformations and problems more suitable
for contests and for use in mathematical clubs. The problems cover cuttings, colorings, the
pigeonhole (or Dirichlet’s) principle, induction, and so on.

Part 3 is devoted to solid geometry.

A rather detailed table of contents serves as a guide in the sea of geometric problems. It
helps the experts to easily find what they need while the uninitiated can quickly learn what
exactly is that they are interested in in geometry. Splitting the book into small sections (5
to 10 problems in each) made the book of interest to the readers of various levels.

FOR THE ENGLISH VERSION of the book about 150 new problems are already added
and several hundred more of elementary and intermideate level problems will be added to
make the number of more elementary problems sufficient to use the book in the ordinary
school: the Russian editions are best suited for coaching for a mathematical Olympiad than
for a regular class work: the level of difficulty increases rather fast.

Problems in each section are ordered difficulty-wise. The first problems of the sections
are simple; they are a match for many. Here are some examples:

1Here are a few samples: v. 96, n. 5, 1989, p. 429–431 (here the main idea of the solution is the
right illustration — precisely the picture from the back cover of the 1st Russian edition of Problems in Solid

Geometry, Fig. to Problem 13.22); v. 96, n. 6, p. 527, Probl. E3192 corresponds to Problems 5.31 and
18.20 of Problems in Plane Geometry — with their two absolutely different solutions, the one to Problem
5.31, unknown to AMM, is even more interesting.
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Plane 1.1. The bases of a trapezoid are a and b. Find the length of the segment that
the diagonals of the trapezoid intersept on the trapezoid’s midline.

Plane 1.52. Let AA1 and BB1 be the altitudes of △ABC. Prove that △A1B1C is
similar to △ABC. What is the similarity coefficient?

Plane 2.1. A line segment connects vertex A of an acute △ABC with the center O of
the circumscribed circle. The altitude AH is dropped from A. Prove that ∠BAH = ∠OAC.

Plane 6.1. Prove that if the center of the circle inscribed in a quadrilateral coincides with
the intersection point of the quadrilateral’s diagonals, then the quadrilateral is a rhombus.

Solid 1. Arrange 6 match sticks to get 4 equilateral triangles with side length equal to
the length of a stick.

Solid 1.1. Consider the cube ABCDA1B1C1D1 with side length a. Find the angle and
the distance between the lines A1B and AC1.

Solid 6.1. Is it true that in every tetrahedron the heights meet at one point?
The above problems are not difficult. The last problems in the sections are a challenge

for the specialists in geometry. It is important that the passage from simple problems to
complicated ones is not too long; there are no boring and dull long sequences of simple
similar problems. (In the Russian edition these sequences are, perhaps, too short, so more
problems are added.)

The final problems of the sections are usually borrowed from scientific journals. Here are
some examples:

Plane 10.20. Prove that la + lb +mc ≤
√

3p, where la, lb are the lengths of the bisectors
of the angles ∠A and ∠B of the triangle △ABC, mc is the length of the median of the side
AB, and p is the semiperimeter.

Plane 19.55. Let O be the center of the circle inscribed in △ABC, K the Lemoine’s
point, P and Q Brocard’s points. Prove that P and Q belong to the circle with diameter
KO and that OP = OQ.

Plane 22.29. The numbers α1, . . . , αn, whose sum is equal to (n−2)π, satisfy inequalities
0 < αi < 2π. Prove that there exists an n-gon A1 . . . An with the angles α1, . . . , αn at the
vertices A1, . . . , An, respectively.

Plane 24.12. Prove that for any n there exists a circle on which there lie precisely n
points with integer coordinates.

Solid 4.48. Consider several arcs of great circles on a sphere with the sum of their angle
measures < π. Prove that there exists a plane that passes through the center of the sphere
but does not intersect any of these arcs.

Solid 14.22. Prove that if the centers of the escribed spheres of a tetrahedron belong
to the circumscribed sphere, then the tetrahedron’s faces are equal.

Solid 15.34. In space, consider 4 points not in one plane. How many various parallelip-
ipeds with vertices in these points are there?

From the Author’s preface

The book underwent extensive revision. The solutions to many of the problems were
rewritten and about 600 new problems were added, particularly those concerning the ge-
ometry of the triangle. I was greatly influenced in the process by the second edition of the
book by I. F. Sharygin Problems on Geometry. Plane geometry, Nauka, Moscow,1986 and a
wonderful and undeservedly forgotten book by D. Efremov New Geometry of the Triangle,
Matezis, Odessa, 1902.

The present book can be used not only as a source of optional problems for students
but also as a self-guide for those who wish (or have no other choice but) to study geometry
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independently. Detailed headings are provided for the reader’s convenience. Problems in the
two parts of Plane are spread over 29 Chapters, each Chapter comprising 6 to 14 sections.
The classification is based on the methods used to solve geometric problems. The purpose of
the division is basically to help the reader find his/her bearings in this large array of problems.
Otherwise the huge number of problems might be somewhat depressingly overwhelming.

Advice and comments given by Academician A. V. Pogorelov, and Professors A. M. Abramov,
A. Yu. Vaintrob, N. B. Vasiliev, N. P. Dolbilin, and S. Yu. Orevkov were a great help to me
in preparing the first Soviet edition. I wish to express my sincere gratitude to all of them.

To save space, sections with background only contain the material directly pertinent to
the respective chapter. It is collected just to remind the reader of notations. Therefore, the
basic elements of a triangle are only defined in chapter 5, while in chapter 1 we assume that
their definition is known. For the reader’s convenience, cross references in this translation
are facilitated by a very detailed index.





Chapter 1. SIMILAR TRIANGLES

Background

1) Triangle ABC is said to be similar to triangle A1B1C1 (we write △ABC ∼ △A1B1C1)
if and only if one of the following equivalent conditions is satisfied:

a) AB : BC : CA = A1B1 : B1C1 : C1A1;
b) AB : BC = A1B1 : B1C1 and ∠ABC = ∠A1B1C1;
c) ∠ABC = ∠A1B1C1 and ∠BAC = ∠B1A1C1.
2) Triangles AB1C1 and AB2C2 cut off from an angle with vertex A by parallel lines are

similar and AB1 : AB2 = AC1 : AC2 (here points B1 and B2 lie on one leg of the angle and
C1 and C2 on the other leg).

3) A midline of a triangle is the line connecting the midpoints of two of the triangle’s
sides. The midline is parallel to the third side and its length is equal to a half length of the
third side.

The midline of a trapezoid is the line connecting the midpoints of the trapezoid’s sides.
This line is parallel to the bases of the trapezoid and its length is equal to the halfsum of
their lengths.

4) The ratio of the areas of similar triangles is equal to the square of the similarity
coefficient, i.e., to the squared ratio of the lengths of respective sides. This follows, for
example, from the formula SABC = 1

2
AB · AC sin ∠A.

5) Polygons A1A2 . . . An and B1B2 . . . Bn are called similar if A1A2 : A2A3 : · · · : AnA1 =
B1B2 : B2B3 : · · · : BnB1 and the angles at the vertices A1, . . . , An are equal to the angles
at the vertices B1, . . . , Bn, respectively.

The ratio of the respective diagonals of similar polygons is equal to the similarity coeffi-
cient. For the circumscribed similar polygons, the ratio of the radii of the inscribed circles
is also equal to the similarity coefficient.

Introductory problems

1. Consider heights AA1 and BB1 in acute triangle ABC. Prove that A1C · BC =
B1C · AC.

2. Consider height CH in right triangle ABC with right angle ∠C. Prove that AC2 =
AB · AH and CH2 = AH · BH.

3. Prove that the medians of a triangle meet at one point and this point divides each
median in the ratio of 2 : 1 counting from the vertex.

4. On side BC of △ABC point A1 is taken so that BA1 : A1C = 2 : 1. What is the
ratio in which median CC1 divides segment AA1?

5. Square PQRS is inscribed into △ABC so that vertices P and Q lie on sides AB and
AC and vertices R and S lie on BC. Express the length of the square’s side through a and
ha.

§1. Line segments intercepted by parallel lines

1.1. Let the lengths of bases AD and BC of trapezoid ABCD be a and b (a > b).

15
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a) Find the length of the segment that the diagonals intercept on the midline.
b) Find the length of segment MN whose endpoints divide AB and CD in the ratio of

AM : MB = DN : NC = p : q.
1.2. Prove that the midpoints of the sides of an arbitrary quadrilateral are vertices of

a parallelogram. For what quadrilaterals this parallelogram is a rectangle, a rhombus, a
square?

1.3. Points A1 and B1 divide sides BC and AC of △ABC in the ratios BA1 : A1C = 1 : p
and AB1 : B1C = 1 : q, respectively. In what ratio is AA1 divided by BB1?

1.4. Straight lines AA1 and BB1 pass through point P of median CC1 in △ABC (A1

and B1 lie on sides BC and CA, respectively). Prove that A1B1 ‖ AB.
1.5. The straight line which connects the intersection point P of the diagonals in quadri-

lateral ABCD with the intersection point Q of the lines AB and CD bisects side AD. Prove
that it also bisects BC.

1.6. A point P is taken on side AD of parallelogram ABCD so that AP : AD = 1 : n;
let Q be the intersection point of AC and BP . Prove that AQ : AC = 1 : (n + 1).

1.7. The vertices of parallelogram A1B1C1D1 lie on the sides of parallelogram ABCD
(point A1 lies on AB, B1 on BC, etc.). Prove that the centers of the two parallelograms
coincide.

1.8. Point K lies on diagonal BD of parallelogram ABCD. Straight line AK intersects
lines BC and CD at points L and M , respectively. Prove that AK2 = LK · KM .

1.9. One of the diagonals of a quadrilateral inscribed in a circle is a diameter of the
circle. Prove that (the lengths of) the projections of the opposite sides of the quadrilateral
on the other diagonal are equal.

1.10. Point E on base AD of trapezoid ABCD is such that AE = BC. Segments CA
and CE intersect diagonal BD at O and P , respectively. Prove that if BO = PD, then
AD2 = BC2 + AD · BC.

1.11. On a circle centered at O, points A and B single out an arc of 60◦. Point M
belongs to this arc. Prove that the straight line passing through the midpoints of MA and
OB is perpendicular to that passing through the midpoints of MB and OA.

1.12. a) Points A, B, and C lie on one straight line; points A1, B1, and C1 lie on another
straight line. Prove that if AB1 ‖ BA1 and AC1 ‖ CA1, then BC1 ‖ CB1.

b) Points A, B, and C lie on one straight line and A1, B1, and C1 are such that AB1 ‖
BA1, AC1 ‖ CA1, and BC1 ‖ CB1. Prove that A1, B1 and C1 lie on one line.

1.13. In △ABC bisectors AA1 and BB1 are drawn. Prove that the distance from any
point M of A1B1 to line AB is equal to the sum of distances from M to AC and BC.

1.14. Let M and N be the midpoints of sides AD and BC in rectangle ABCD. Point
P lies on the extension of DC beyond D; point Q is the intersection point of PM and AC.
Prove that ∠QNM = ∠MNP .

1.15. Points K and L are taken on the extensions of the bases AD and BC of trapezoid
ABCD beyond A and C, respectively. Line segment KL intersects sides AB and CD at M
and N , respectively; KL intersects diagonals AC and BD at O and P , respectively. Prove
that if KM = NL, then KO = PL.

1.16. Points P , Q, R, and S on sides AB, BC, CD and DA, respectively, of convex
quadrilateral ABCD are such that BP : AB = CR : CD = α and AS : AD = BQ : BC = β.
Prove that PR and QS are divided by their intersection point in the ratios β : (1 − β) and
α : (1 − α), respectively.
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§2. The ratio of sides of similar triangles

1.17. a) In △ABC bisector BD of the external or internal angle ∠B is drawn. Prove
that AD : DC = AB : BC.

b) Prove that the center O of the circle inscribed in △ABC divides the bisector AA1 in
the ratio of AO : OA1 = (b + c) : a, where a, b and c are the lengths of the triangle’s sides.

1.18. The lengths of two sides of a triangle are equal to a while the length of the third
side is equal to b. Calculate the radius of the circumscribed circle.

1.19. A straight line passing through vertex A of square ABCD intersects side CD at
E and line BC at F . Prove that 1

AE2 + 1
AF 2 = 1

AB2 .
1.20. Given points B2 and C2 on heights BB1 and CC1 of △ABC such that AB2C =

AC2B = 90◦, prove that AB2 = AC2.
1.21. A circle is inscribed in trapezoid ABCD (BC ‖ AD). The circle is tangent to sides

AB and CD at K and L, respectively, and to bases AD and BC at M and N , respectively.
a) Let Q be the intersection point of BM and AN . Prove that KQ ‖ AD.
b) Prove that AK · KB = CL · LD.
1.22. Perpendiculars AM and AN are dropped to sides BC and CD of parallelogram

ABCD (or to their extensions). Prove that △MAN ∼ △ABC.
1.23. Straight line l intersects sides AB and AD of parallelogram ABCD at E and F ,

respectively. Let G be the intersection point of l with diagonal AC. Prove that AB
AE

+ AD
AF

=
AC
AG

.
1.24. Let AC be the longer of the diagonals in parallelogram ABCD. Perpendiculars

CE and CF are dropped from C to the extensions of sides AB and AD, respectively. Prove
that AB · AE + AD · AF = AC2.

1.25. Angles α and β of △ABC are related as 3α + 2β = 180◦. Prove that a2 + bc = c2.
1.26. The endpoints of segments AB and CD are gliding along the sides of a given angle,

so that straight lines AB and CD are moving parallelly (i.e., each line moves parallelly to
itself) and segments AB and CD intersect at a point, M . Prove that the value of AM ·BM

CM ·DM
is

a constant.
1.27. Through an arbitrary point P on side AC of △ABC straight lines are drawn

parallelly to the triangle’s medians AK and CL. The lines intersect BC and AB at E and
F , respectively. Prove that AK and CL divide EF into three equal parts.

1.28. Point P lies on the bisector of an angle with vertex C. A line passing through P
intercepts segments of lengths a and b on the angle’s legs. Prove that the value of 1

a
+ 1

b
does

not depend on the choice of the line.
1.29. A semicircle is constructed outwards on side BC of an equilateral triangle ABC

as on the diameter. Given points K and L that divide the semicircle into three equal arcs,
prove that lines AK and AL divide BC into three equal parts.

1.30. Point O is the center of the circle inscribed in △ABC. On sides AC and BC
points M and K, respectively, are selected so that BK · AB = BO2 and AM · AB = AO2.
Prove that M , O and K lie on one straight line.

1.31. Equally oriented similar triangles AMN , NBM and MNC are constructed on
segment MN (Fig. 1).

Prove that △ABC is similar to all these triangles and the center of its curcumscribed
circle is equidistant from M and N .

1.32. Line segment BE divides △ABC into two similar triangles, their similarity ratio
being equal to

√
3.

Find the angles of △ABC.
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Figure 1 (1.31)

§3. The ratio of the areas of similar triangles

1.33. A point E is taken on side AC of △ABC. Through E pass straight lines DE
and EF parallel to sides BC and AB, respectively; D and E are points on AB and BC,
respectively. Prove that SBDEF = 2

√
SADE · SEFG.

1.34. Points M and N are taken on sides AB and CD, respectively, of trapezoid ABCD
so that segment MN is parallel to the bases and divides the area of the trapezoid in halves.
Find the length of MN if BC = a and AD = b.

1.35. Let Q be a point inside △ABC. Three straight lines are pass through Q par-
allelly to the sides of the triangle. The lines divide the triangle into six parts, three of
which are triangles of areas S1, S2 and S3. Prove that the area of △ABC is equal to
(√

S1 +
√

S2 +
√

S3

)2
.

1.36. Prove that the area of a triangle whose sides are equal to the medians of a triangle
of area S is equal to 3

4
S.

1.37. a) Prove that the area of the quadrilateral formed by the midpoints of the sides of
convex quadrilateral ABCD is half that of ABCD.

b) Prove that if the diagonals of a convex quadrilateral are equal, then its area is the
product of the lengths of the segments which connect the midpoints of its opposite sides.

1.38. Point O lying inside a convex quadrilateral of area S is reflected symmetrically
through the midpoints of its sides. Find the area of the quadrilateral with its vertices in the
images of O under the reflections.

§4. Auxiliary equal triangles

1.39. In right triangle ABC with right angle ∠C, points D and E divide leg BC of into
three equal parts. Prove that if BC = 3AC, then ∠AEC + ∠ADC + ∠ABC = 90◦.

1.40. Let K be the midpoint of side AB of square ABCD and let point L divide diagonal
AC in the ratio of AL : LC = 3 : 1. Prove that ∠KLD is a right angle.

1.41. In square ABCD straight lines l1 and l2 pass through vertex A. The lines intersect
the square’s sides. Perpendiculars BB1, BB2, DD1, and DD2 are dropped to these lines.
Prove that segments B1B2 and D1D2 are equal and perpendicular to each other.

1.42. Consider an isosceles right triangle ABC with CD = CE and points D and E on
sides CA and CB, respectively. Extensions of perpendiculars dropped from D and C to AE
intersect the hypotenuse AB at K and L. Prove that KL = LB.

1.43. Consider an inscribed quadrilateral ABCD. The lengths of sides AB, BC, CD,
and DA are a, b, c, and d, respectively. Rectangles are constructed outwards on the sides of



§5. THE TRIANGLE DETERMINED BY THE BASES OF THE HEIGHTS 19

the quadrilateral; the sizes of the rectangles are a × c, b × d, c × a and d × b, respectively.
Prove that the centers of the rectangles are vertices of a rectangle.

1.44. Hexagon ABCDEF is inscribed in a circle of radius R centered at O; let AB =
CD = EF = R. Prove that the intersection points, other than O, of the pairs of circles
circumscribed about △BOC, △DOE and △FOA are the vertices of an equilateral triangle
with side R.

* * *

1.45. Equilateral triangles BCK and DCL are constructed outwards on sides BC and
CD of parallelogram ABCD. Prove that AKL is an equilateral triangle.

1.46. Squares are constructed outwards on the sides of a parallelogram. Prove that their
centers form a square.

1.47. Isosceles triangles with angles 2α, 2β and 2γ at vertices A′, B′ and C ′ are con-
structed outwards on the sides of triangle ABC; let α +β + γ = 180◦. Prove that the angles
of △A′B′C ′ are equal to α, β and γ.

1.48. On the sides of △ABC as on bases, isosceles similar triangles AB1C and AC1B
are constructed outwards and an isosceles triangle BA1C is constructed inwards. Prove that
AB1A1C1 is a parallelogram.

1.49. a) On sides AB and AC of △ABC equilateral triangles ABC1 and AB1C are
constructed outwards; let ∠C1 = ∠B1 = 90◦, ∠ABC1 = ∠ACB1 = ϕ; let M be the
midpoint of BC. Prove that MB1 = MC1 and ∠B1MC1 = 2ϕ.

b) Equilateral triangles are constructed outwards on the sides of △ABC. Prove that the
centers of the triangles constructed form an equilateral triangle whose center coincides with
the intersection point of the medians of △ABC.

1.50. Isosceles triangles AC1B and AB1C with an angle ϕ at the vertex are constructed
outwards on the unequal sides AB and AC of a scalene triangle △ABC.

a) Let M be a point on median AA1 (or on its extension), let M be equidistant from B1

and C1. Prove that ∠B1MC1 = ϕ.
b) Let O be a point of the midperpendicular to segment BC, let O be equidistant from

B1 and C1. Prove that ∠B1OC = 180◦ − ϕ.
1.51. Similar rhombuses are constructed outwards on the sides of a convex rectangle

ABCD, so that their acute angles (equal to α) are adjacent to vertices A and C. Prove
that the segments which connect the centers of opposite rhombuses are equal and the angle
between them is equal to α.

§5. The triangle determined by the bases of the heights

1.52. Let AA1 and BB1 be heights of △ABC. Prove that △A1B1C ∼ △ABC. What
is the similarity coefficient?

1.53. Height CH is dropped from vertex C of acute triangle ABC and perpendiculars
HM and HN are dropped to sides BC and AC, respectively. Prove that △MNC ∼ △ABC.

1.54. In △ABC heights BB1 and CC1 are drawn.
a) Prove that the tangent at A to the circumscribed circle is parallel to B1C1.
b) Prove that B1C1 ⊥ OA, where O is the center of the circumscribed circle.
1.55. Points A1, B1 and C1 are taken on the sides of an acute triangle ABC so that

segments AA1, BB1 and CC1 meet at H. Prove that AH · A1H = BH · B1H = CH · C1H
if and only if H is the intersection point of the heights of △ABC.

1.56. a) Prove that heights AA1, BB1 and CC1 of acute triangle ABC bisect the angles
of △A1B1C1.
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b) Points C1, A1 and B1 are taken on sides AB, BC and CA, respectively, of acute triangle
ABC. Prove that if ∠B1A1C = ∠BA1C1, ∠A1B1C = ∠AB1C1 and ∠A1C1B = ∠AC1B1,
then points A1, B1 and C1 are the bases of the heights of △ABC.

1.57. Heights AA1, BB1 and CC1 are drawn in acute triangle ABC. Prove that the
point symmetric to A1 through AC lies on B1C1.

1.58. In acute triangle ABC, heights AA1, BB1 and CC1 are drawn. Prove that if
A1B1 ‖ AB and B1C1 ‖ BC, then A1C1 ‖ AC.

1.59. Let p be the semiperimeter of acute triangle ABC and q the semiperimeter of the
triangle formed by the bases of the heights of △ABC. Prove that p : q = R : r, where R
and r are the radii of the circumscribed and the inscribed circles, respectively, of △ABC.

§6. Similar figures

1.60. A circle of radius r is inscribed in a triangle. The straight lines tangent to the
circle and parallel to the sides of the triangle are drawn; the lines cut three small triangles
off the triangle. Let r1, r2 and r3 be the radii of the circles inscribed in the small triangles.
Prove that r1 + r2 + r3 = r.

1.61. Given △ABC, draw two straight lines x and y such that the sum of lengths of
the segments MXM and MYM drawn parallel to x and y from a point M on AC to their
intersections with sides AB and BC is equal to 1 for any M .

1.62. In an isosceles triangle ABC perpendicular HE is dropped from the midpoint of
base BC to side AC. Let O be the midpoint of HE. Prove that lines AO and BE are
perpendicular to each other.

1.63. Prove that projections of the base of a triangle’s height to the sides between which
it lies and on the other two heights lie on the same straight line.

1.64. Point B lies on segment AC; semicircles S1, S2, and S3 are constructed on one side
of AC, as on diameter. Let D be a point on S3 such that BD ⊥ AC. A common tangent
line to S1 and S2 touches these semicircles at F and E, respectively.

a) Prove that EF is parallel to the tangent to S3 passing through D.
b) Prove that BFDE is a rectangle.
1.65. Perpendiculars MQ and MP are dropped from an arbitrary point M of the circle

circumscribed about rectangle ABCD to the rectangle’s two opposite sides; the perpendic-
ulars MR and MT are dropped to the extensions of the other two sides. Prove that lines
PR ⊥ QT and the intersection point of PR and QT belongs to a diagonal of ABCD.

1.66. Two circles enclose non-intersecting areas. Common tangent lines to the two
circles, one external and one internal, are drawn. Consider two straight lines each of which
passes through the tangent points on one of the circles. Prove that the intersection point of
the lines lies on the straight line that connects the centers of the circles.

Problems for independent study

1.67. The (length of the) base of an isosceles triangle is a quarter of its perimeter. From
an arbitrary point on the base straight lines are drawn parallel to the sides of the triangle.
How many times is the perimeter of the triangle greater than that of the parallelogram?

1.68. The diagonals of a trapezoid are mutually perpendicular. The intersection point
divides the diagonals into segments. Prove that the product of the lengths of the trapezoid’s
bases is equal to the sum of the products of the lengths of the segments of one diagonal and
those of another diagonal.

1.69. A straight line is drawn through the center of a unit square. Calculate the sum of
the squared distances between the four vertices of the square and the line.
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1.70. Points A1, B1 and C1 are symmetric to the center of the circumscribed circle of
△ABC through the triangle’s sides. Prove that △ABC = △A1B1C1.

1.71. Prove that if ∠BAC = 2∠ABC, then BC2 = (AC + AB)AC.
1.72. Consider points A, B, C and D on a line l. Through A, B and through C, D

parallel straight lines are drawn. Prove that the diagonals of the parallelograms thus formed
(or their extensions) intersect l at two points that do not depend on parallel lines but depend
on points A, B, C, D only.

1.73. In △ABC bisector AD and midline A1C1 are drawn. They intersect at K. Prove
that 2A1K = |b − c|.

1.74. Points M and N are taken on sides AD and CD of parallelogram ABCD such
that MN ‖ AC. Prove that SABM = SCBN .

1.75. On diagonal AC of parallelogram ABCD points P and Q are taken so that
AP = CQ. Let M be such that PM ‖ AD and QM ‖ AB. Prove that M lies on diagonal
BD.

1.76. Consider a trapezoid with bases AD and BC. Extensions of the sides of ABCD
meet at point O. Segment EF is parallel to the bases and passes through the intersection
point of the diagonals. The endpoints of EF lie on AB and CD. Prove that AE : CF =
AO : CO.

1.77. Three straight lines parallel to the sides of the given triangle cut three triangles off
it leaving an equilateral hexagon. Find the length of the side of the hexagon if the lengths
of the triangle’s sides are a, b and c.

1.78. Three straight lines parallel to the sides of a triangle meet at one point, the sides
of the triangle cutting off the line segments of length x each. Find x if the lengths of the
triangle’s sides are a, b and c.

1.79. Point P lies inside △ABC and ∠ABP = ∠ACP . On straight lines AB and AC,
points C1 and B1 are taken so that BC1 : CB1 = CP : BP . Prove that one of the diagonals
of the parallelogram whose two sides lie on lines BP and CP and two other sides (or their
extensions) pass through B1 and C1 is parallel to BC.

Solutions

1.1. a) Let P and Q be the midpoints of AB and CD; let K and L be the intersection
points of PQ with the diagonals AC and BD, respectively. Then PL = a

2
and PK = 1

2
b

and so KL = PL − PK = 1
2
(a − b).

b) Take point F on AD such that BF ‖ CD. Let E be the intersection point of MN
with BF . Then

MN = ME + EN =

q · AF

p + q
+ b =

q(a − b) + (p + q)b

p + q
=

qa + pb

p + q
.

1.2. Consider quadrilateral ABCD. Let K, L, M and N be the midpoints of sides AB,
BC, CD and DA, respectively. Then KL = MN = 1

2
AC and KL ‖ MN , that is KLMN is

a parallelogram. It becomes clear now that KLMN is a rectangle if the diagonals AC and
BD are perpendicular, a rhombus if AC = BD, and a square if AC and BD are of equal
length and perpendicular to each other.

1.3. Denote the intersection point of AA1 with BB1 by O. In △B1BC draw segment
A1A2 so that A1A2 ‖ BB1. Then B1C

B1A2
= 1 + p and so AO : OA1 = AB1 : B1A2 = B1C :

qB1A2 = (1 + p) : q.
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1.4. Let A2 be the midpoint of A1B. Then CA1 : A1A2 = CP : PC1 and A1A2 : A1B =
1 : 2. So CA1 : A1B = CP : 2PC1. Similarly, CB1 : B1A = CP : 2PC1 = CA1 : A1B.

1.5. Point P lies on the median QM of △AQD (or on its extension). It is easy to
verify that the solution of Problem 1.4 remains correct also for the case when P lies on the
extension of the median. Consequently, BC ‖ AD.

1.6. We have AQ : QC = AP : BC = 1 : n because △AQP ∼ △CQB. So AC =
AQ + QC = (n + 1)AQ.

1.7. The center of A1B1C1D1 being the midpoint of B1D1 belongs to the line segment
which connects the midpoints of AB and CD. Similarly, it belongs to the segment which
connects the midpoints of BC and AD. The intersection point of the segments is the center
of ABCD.

1.8. Clearly, AK : KM = BK : KD = LK : AK, that is AK2 = LK · KM .
1.9. Let AC be the diameter of the circle circumscribed about ABCD. Drop perpen-

diculars AA1 and CC1 to BD (Fig. 2).

Figure 2 (Sol. 1.9)

We must prove that BA1 = DC1. Drop perpendicular OP from the center O of the
circumscribed circle to BD. Clearly, P is the midpoint of BD. Lines AA1, OP and CC1 are
parallel to each other and AO = OC. So A1P = PC1 and, since P is the midpoint of BD,
it follows that BA1 = DC1.

1.10. We see that BO : OD = DP : PB = k, because BO =PD. Let BC = 1. Then
AD = k and ED = 1

k
. So k = AD = AE + ED = 1 + 1

k
, that is k2 = 1 + k. Finally, observe

that k2 = AD2 and 1 + k = BC2 + BC · AD.
1.11. Let C, D, E and F be the midpoints of sides AO, OB, BM and MA, respectively,

of quadrilateral AOMB. Since AB = MO = R, where R is the radius of the given circle,
CDEF is a rhombus by Problem 1.2. Hence, CE ⊥ DF .

1.12. a) If the lines containing the given points are parallel, then the assertion of the
problem is obviously true. We assume that the lines meet at O. Then OA : OB = OB1 : OA1

and OC : OA = OA1 : OC1. Hence, OC : OB = OB1 : OC1 and so BC1 ‖ CB1 (the ratios
of the segment should be assumed to be oriented).

b) Let AB1 and CA1 meet at D, let CB1 and AC1 meet at E. Then CA1 : A1D = CB :
BA = EC1 : C1A. Since △CB1D ∼ △EB1A, points A1, B1 and C1 lie on the same line.

1.13. A point that lies on the bisector of an angle is equidistant from the angle’s legs.
Let a be the distance from point A1 to lines AC and AB, let b be the distance from point B1

to lines AB and BC. Further, let A1M : B1M = p : q, where p + q = 1. Then the distances
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from point M to lines AC and BC are equal to qa and pb, respectively. On the other hand,
by Problem 1.1 b) the distance from point M to line AB is equal to qa + pb.

1.14. Let the line that passes through the center O of the given rectangle parallel to BC
intersect line segment QN at point K (Fig. 3).

Figure 3 (Sol. 1.14)

Since MO ‖ PC, it follows that QM : MP = QO : OC and, since KO ‖ BC, it follows
that QO : OC = QK : KN . Therefore, QM : MP = QK : KN , i.e., KM ‖ NP . Hence,
∠MNP = ∠KMO = ∠QNM .

1.15. Let us draw through point M line EF so that EF ‖ CD (points E and F lie on
lines BC and AD). Then PL : PK = BL : KD and OK : OL = KA : CL = KA : KF =
BL : EL. Since KD = EL, we have PL : PK = OK : OL and, therefore, PL = OK.

1.16. Consider parallelogram ABCD1. We may assume that points D and D1 do not
coincide (otherwise the statement of the problem is obvious). On sides AD1 and CD1 take
points S1 and R1, respectively, so that SS1 ‖ DD1 and RR1 ‖ DD1. Let segments PR1 and
QS1 meet at N ; let N1 and N2 be the intersection points of the line that passes through N
parallel to DD1 with segments PR and QS, respectively.

Then
−−→
N1N = β

−−→
RR1 = αβ

−−→
DD1 and

−−→
N2N = α

−−→
SS1 = αβ

−−→
DD1. Hence, segments PR and

QS meet at N1 = N2. Clearly, PN1 : PR = PN : PR1 = β and QN2 : QS = α.

Remark. If α = β, there is a simpler solution. Since BP : BA = BQ : BC = α, it
follows that PQ ‖ AC and PQ : AC = α. Similarly, RS ‖ AC and RS : AC = 1 − α.
Therefore, segments PR and QS are divided by their intersection point in the ratio of
α : (1 − α).

1.17. a) From vertices A and C drop perpendiculars AK and CL to line BD. Since
∠CBL = ∠ABK and ∠CDL = ∠KDA, we see that △BLC ∼ △BKA and △CLD ∼
△AKD. Therefore, AD : DC = AK : CL = AB : BC.

b) Taking into account that BA1 : A1C = BA : AC and BA1 + A1C = BC we get
BA1 = ac

b+c
. Since BO is the bisector of triangle ABA1, it follows that AO : OA1 = AB :

BA1 = (b + c) : a.
1.18. Let O be the center of the circumscribed circle of isosceles triangle ABC, let B1

be the midpoint of base AC and A1 the midpoint of the lateral side BC. Since △BOA1 ∼
△BCB1, it follows that BO : BA1 = BC : BB1 and, therefore, R = BO = a2√

4a2−b2
.



24 CHAPTER 1. SIMILAR TRIANGLES

1.19. If ∠EAD = ϕ, then AE = AD
cos ϕ

= AB
cos ϕ

and AF = AB
sin ϕ

. Therefore,

1

AE2
+

1

AF 2
=

cos2 ϕ + sin2 ϕ

AB2
=

1

AB2
.

1.20. It is easy to verify that AB2
2 = AB1 · AC = AC1 · AB = AC2

2 .
1.21. a) Since BQ : QM = BN : AM = BK : AK, we have: KQ ‖ AM .
b) Let O be the center of the inscribed circle. Since ∠CBA + ∠BAD = 180◦, it follows

that ∠ABO + ∠BAO = 90◦. Therefore, △AKO ∼ △OKB, i.e., AK : KO = OK : KB.
Consequently, AK ·KB = KO2 = R2, where R is the radius of the inscribed circle. Similarly,
CL · LD = R2.

1.22. If angle ∠ABC is obtuse (resp. acute), then angle ∠MAN is also obtuse (resp.
acute). Moreover, the legs of these angles are mutually perpendicular. Therefore, ∠ABC =
∠MAN . Right triangles ABM and ADN have equal angles ∠ABM = ∠ADN , therefore,
AM : AN = AB : AD = AB : CB, i.e., △ABC ∼ △MAN .

1.23. On diagonal AC, take points D′ and B′ such that BB′ ‖ l and DD′ ‖ l. Then
AB : AE = AB′ : AG and AD : AF = AD′ : AG. Since the sides of triangles ABB′

and CDD′ are pairwise parallel and AB = CD, these triangles are equal and AB′ = CD′.
Therefore,

AB

AE
+

AD

AF
=

AB′

AG
+

AD′

AG
=

CD′ + AD′

AG
=

AC

AG
.

1.24. Let us drop from vertex B perpendicular BG to AC (Fig. 4).

Figure 4 (Sol. 1.24)

Since triangles ABG and ACE are similar, AC ·AG = AE ·AB. Lines AF and CB are
parallel, consequently, ∠GCB = ∠CAF . We also infer that right triangles CBG and ACF
are similar and, therefore, AC · CG = AF · BC. Summing the equalities obtained we get

AC · (AG + CG) = AE · AB + AF · BC.

Since AG + CG = AC, we get the equality desired.
1.25. Since α + β = 90◦ − 1

2
α, it follows that γ = 180◦ − α − β = 90◦ + 1

2
α. Therefore,

it is possible to find point D on side AB so that ∠ACD = 90◦ − 1
2
α, i.e., AC = AD. Then

△ABC ∼ △CBD and, therefore, BC : BD = AB : CB, i.e., a2 = c(c − b).
1.26. As segments AB and CD move, triangle AMC is being replaced by another triangle

similar to the initial one. Therefore, the quantity AM
CM

remains a constant. Analogously, BM
DM

remains a constant.
1.27. Let medians meet at O; denote the intersection points of median AK with lines

FP and FE by Q and M , respectively; denote the intersection points of median CL with
lines EP and FE by R and N , respectively (Fig. 5).

Clearly, FM : FE = FQ : FP = LO : LC = 1 : 3, i.e., FM = 1
3
FE. Similarly,

EN = 1
3
FE.
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Figure 5 (Sol. 1.27)

1.28. Let A and B be the intersection points of the given line with the angle’s legs.
On segments AC and BC, take points K and L, respectively, so that PK ‖ BC and
PL ‖ AC. Since △AKP ∼ △PLB, it follows that AK : KP = PL : LB and, therefore,
(a − p)(b − p) = p2, where p = PK = PL. Hence, 1

a
+ 1

b
= 1

p
.

1.29. Denote the midpoint of side BC by O and the intersection points of AK and AL
with side BC by P and Q, respectively. We may assume that BP < BQ. Triangle LCO
is an equilateral one and LC ‖ AB. Therefore, △ABQ ∼ △LCQ, i.e., BQ : QC = AB :
LC = 2 : 1. Hence, BC = BQ + QC = 3QC. Similarly, BC = 3BP .

1.30. Since BK : BO = BO : AB and ∠KBO = ∠ABO, it follows that △KOB ∼
△OAB. Hence, ∠KOB = ∠OAB. Similarly, ∠AOM = ∠ABO. Therefore,

∠KOM = ∠KOB + ∠BOA + ∠AOM = ∠OAB + ∠BOA + ∠ABO = 180◦,

i.e., points K, O and M lie on one line.
1.31. Since ∠AMN = ∠MNC and ∠BMN = ∠MNA, we see that ∠AMB = ∠ANC.

Moreover, AM : AN = NB : NM = BM : CN . Hence, △AMB ∼ △ANC and, therefore,
∠MAB = ∠NAC. Consequently, ∠BAC = ∠MAN . For the other angles the proof is
similar.

Let points B1 and C1 be symmetric to B and C, respectively, through the midperpen-
dicular to segment MN . Since AM : NB = MN : BM = MC : NC, it follows that
MA · MC1 = AM · NC = NB · MC = MB1 · MC. Therefore, point A lies on the circle
circumscribed about trapezoid BB1CC1.

1.32. Since ∠AEB+∠BEC = 180◦, angles ∠AEB and ∠BEC cannot be different angles
of similar triangles ABE and BEC, i.e., the angles are equal and BE is a perpendicular.

Two cases are possible: either ∠ABE = ∠CBE or ∠ABE = ∠BCE. The first case
should be discarded because in this case △ABE = △CBE.

In the second case we have ∠ABC = ∠ABE + ∠CBE = ∠ABE + ∠BAE = 90◦. In
right triangle ABC the ratio of the legs’ lengths is equal to 1 :

√
3; hence, the angles of

triangle ABC are equal to 90◦, 60◦, 30◦.

1.33. We have SBDEF

2SADE
= SBDE

SADE
= DB

AD
= EF

AD
=

√

SEFC

SADE
. Hence,

SBDEF = 2
√

SADE · SEFC .

1.34. Let MN = x; let E be the intersection point of lines AB and CD. Triangles
EBC, EMN and EAD are similar, hence, SEBC : SEMN : SEAD = a2 : x2 : b2. Since
SEMN − SEBC = SMBCN = SMADN = SEAD − SEMN , it follows that x2 − a2 = b2 − x2, i.e.,
x2 = 1

2
(a2 + b2).
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1.35. Through point Q inside triangle ABC draw lines DE, FG and HI parallel to BC,
CA and AB, respectively, so that points F and H would lie on side BC, points E and I on
side AC, points D and G on side AB (Fig. 6).

Figure 6 (Sol. 1.35)

Set S = SABC , S1 = SGDQ, S2 = SIEQ, S3 = SHFQ. Then

√

S1

S
+

√

S2

S
+

√

S3

S
=

GQ

AC
+

IE

AC
+

FQ

AC
=

AI + IE + EC

AC
= 1,

i.e., S = (
√

S1 +
√

S2 +
√

S3)
2.

1.36. Let M be the intersection point of the medians of triangle ABC; let point A1 be
symmetric to M through the midpoint of segment BC. The ratio of the lengths of sides
of triangle CMA1 to the lengths of the corresponding medians of triangle ABC is to 2 : 3.
Therefore, the area to be found is equal to 9

4
SCMA1 . Clearly, SCMA1 = 1

3
S (cf. the solution

of Problem 4.1).
1.37. Let E, F , G and H be the midpoints of sides AB, BC, CD and DA, respectively.
a) Clearly, SAEH + SCFG = 1

4
SABD + 1

4
SCBD = 1

4
SABCD. Analogously, SBEF + SDGH =

1
4
SABCD; hence, SEFGH = SABCD − 1

4
SABCD − 1

4
SABCD = 1

2
SABCD.

b) Since AC = BD, it follows that EFGH is a rhombus (Problem 1.2). By heading a)
we have SABCD = 2SEFGH = EG · FH.

1.38. Let E, F , G and H be the midpoints of sides of quadrilateral ABCD; let points
E1, F1, G1 and H1 be symmetric to point O through these points, respectively. Since EF
is the midline of triangle E1OF1, we see that SE1OF1 = 4SEOF . Similarly, SF1OG1 = 4SFOG,
SG1OH1 = 4SGOH , SH1OE1 = 4SHOE. Hence, SE1F1G1H1 = 4SEFGH . By Problem 1.37 a)
SABCD = 2SEFGH . Hence, SE1F1G1H1 = 2SABCD = 2S.

1.39. First solution. Let us consider square BCMN and divide its side MN by points
P and Q into three equal parts (Fig. 7).

Then △ABC = △PDQ and △ACD = △PMA. Hence, triangle △PAD is an isosceles
right triangle and ∠ABC + ∠ADC = ∠PDQ + ∠ADC = 45◦.

Second solution. Since DE = 1, EA =
√

2, EB = 2, AD =
√

5 and BA =
√

10,
it follows that DE : AE = EA : EB = AD : BA and △DEA ∼ △AEB. Therefore,
∠ABC = ∠EAD. Moreover, ∠AEC = ∠CAE = 45◦. Hence,

∠ABC + ∠ADC + ∠AEC = (∠EAD + ∠CAE) + ∠ADC

= ∠CAD + ∠ADC = 90◦.
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Figure 7 (Sol. 1.39)

1.40. From point L drop perpendiculars LM and LN on AB and AD, respectively.
Then KM = MB = ND and KL = LB = DL and, therefore, right triangles KML and
DNL are equal. Hence, ∠DLK = ∠NLM = 90◦.

1.41. Since D1A = B1B,AD2 = BB2 and ∠D1AD2 = ∠B1BB2, it follows that
△D1AD2 = △B1BB2. Sides AD1 and BB1 (and also AD2 and BB2) of these triangles
are perpendicular and, therefore, B1B2 ⊥ D1D2.

1.42. On the extension of segment AC beyond point C take point M so that CM = CE
(Fig. 8).

Figure 8 (Sol. 1.42)

Then under the rotation with center C through an angle of 90◦ triangle ACE turns into
triangle BCM . Therefore, line MB is perpendicular to line AE; hence, it is parallel to line
CL. Since MC = CE = DC and lines DK, CL and MB are parallel, KL = LB.

1.43. Let rectangles ABC1D1 and A2BCD2 be constructed on sides AB and BC; let
P , Q, R and S be the centers of rectangles constructed on sides AB, BC, CD and DA,
respectively. Since ∠ABC + ∠ADC = 180◦, it follows that △ADC = △A2BC1 and, there-
fore, △RDS = △PBQ and RS = PQ. Similarly, QR = PS. Therefore, PQRS is a
parallelogram such that one of triangles RDS and PBQ is constructed on its sides outwards
and on the other side inwards; a similar statement holds for triangles QCR and SAP as
well. Therefore, ∠PQR + ∠RSP = ∠BQC + ∠DSA = 180◦ because ∠PQB = ∠RSD and
∠RQC = ∠PSA. It follows that PQRS is a rectangle.

1.44. Let K, L and M be the intersection points of the circumscribed circles of triangles
FOA and BOC, BOC and DOE, DOE and FOA, respectively; 2α, 2β and 2γ the angles
at the vertices of isosceles triangles BOC, DOE and FOA, respectively (Fig. 9).
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Figure 9 (Sol. 1.44)

Point K lies on arc ⌣ OB of the circumscribed circle of the isosceles triangle BOC and,
therefore, ∠OKB = 90◦ + α. Similarly, ∠OKA = 90◦ + γ. Since α + β + γ = 90◦, it follows
that ∠AKB = 90◦ + β. Inside equilateral triangle AOB there exists a unique point K that
serves as the vertex of the angles that subtend its sides and are equal to the given angles.

Similar arguments for a point L inside triangle COD show that △OKB = △CLO.
Now, let us prove that △KOL = △OKB. Indeed, ∠COL = ∠KBO; hence, ∠KOB +

∠COL = 180◦ − ∠OKB = 90◦ − α and, therefore, ∠KOL = 2α + (90◦ − α) = 90◦ + α =
∠OKB. It follows that KL = OB = R. Similarly, LM = MK = R.

1.45. Let ∠A = α. It is easy to verify that both angles ∠KCL and ∠ADL are equal to
240◦ − α (or 120◦ + α). Since KC = BC = AD and CL = DL, it follows that △KCL =
△ADL and, therefore, KL = AL. Similarly, KL = AK.

1.46. Let P , Q and R be the centers of the squares constructed on sides DA, AB and
BC, respectively, in parallelogram ABCD with an acute angle of α at vertex A. It is easy
to verify that ∠PAQ = 90◦ + α = ∠RBQ; hence, △PAQ = △RBQ. Sides AQ and BQ of
these triangles are perpendicular, hence, PQ ⊥ QR.

1.47. First, observe that the sum of the angles at vertices A, B and C of hexagon
AB′CA′BC ′ is equal to 360◦ because by the hypothesis the sum of its angles at the other
vertices is equal to 360◦. On side AC ′, construct outwards triangle △AC ′P equal to triangle
△BC ′A′ (Fig. 10).

Figure 10 (Sol. 1.47)

Then △AB′P = △CB′A′ because AB′ = CB′, AP = CA′ and

∠PAB′ = 360◦ − ∠PAC ′ − ∠C ′AB′ = 360◦ − ∠A′BC ′ − ∠C ′AB′ = ∠A′CB′.

Hence, △C ′B′A′ = △C ′B′P and, therefore, 2∠A′B′C ′ = ∠PB′A′ = ∠AB′C because
∠PB′A = ∠A′B′C.
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1.48. Since BA : BC = BC1 : BA1 and ∠ABC = ∠C1BA1, it follows that △ABC ∼
△C1BA1. Similarly, △ABC ∼ △B1A1C. Since BA1 = A1C, it follows that △C1BA1 =
△B1A1C. Therefore, AC1 = C1B = B1A1 and AB1 = B1C = C1A1. It is also clear that
quadrilateral AB1A1C1 is a convex one.

1.49. a) Let P and Q be the midpoints of sides AB and AC. Then MP = 1
2
AC = QB1,

MQ = 1
2
AB = PC1 and ∠C1PM = ∠C1PB + ∠BPM = ∠B1QC + ∠CQM = ∠B1QM .

Hence, △MQB1 = △C1PM and, therefore, MC1 = MB1. Moreover,

∠PMC1 + ∠QMB1 = ∠QB1M + ∠QMB1 = 180◦ − ∠MQB1

and
∠MQB1 = ∠A + ∠CQB1 = ∠A + (180◦ − 2ϕ).

Therefore, ∠B1MC1 = ∠PMQ+2ϕ−∠A = 2ϕ. (The case when ∠C1PB +∠BPM > 180◦

is analogously treated.)
b) On sides AB and AC, take points B′ and C ′, respectively, such that AB′ : AB = AC ′ :

AC = 2 : 3. The midpoint M of segment B′C ′ coincides with the intersection point of the
medians of triangle ABC. On sides AB′ and AC ′, construct outwards right triangles AB′C1

and AB1C
′ with angle ϕ = 60◦ as in heading a). Then B1 and C1 are the centers of right

triangles constructed on sides AB and AC; on the other hand, by heading a), MB1 = MC1

and ∠B1MC1 = 120◦.

Remark. Statements of headings a) and b) remain true for triangles constructed in-
wards, as well.

1.50. a) Let B′ be the intersection point of line AC and the perpendicular to line AB1

erected from point B1; define point C ′ similarly. Since AB′ : AC ′ = AC1 : AB1 = AB : AC,
it follows that B′C ′ ‖ BC. If N is the midpoint of segment B′C ′, then, as follows from
Problem 1.49, NC1 = NB1 (i.e., N = M) and ∠B1NC1 = 2∠AB′B1 = 180◦−2∠CAB1 = ϕ.

b) On side BC construct outwards isosceles triangle BA1C with angle 360◦−2ϕ at vertex
A1 (if ϕ < 90◦ construct inwards a triangle with angle 2ϕ). Since the sum of the angles at
the vertices of the three constructed isosceles triangles is equal to 360◦, it follows that the
angles of triangle A1B1C1 are equal to 180◦−ϕ, 1

2
ϕ and 1

2
ϕ (cf. Problem 1.47). In particular,

this triangle is an isosceles one, hence, A1 = O.
1.51. Let O1, O2, O3 and O4 be the centers of rhombuses constructed on sides AB, BC,

CA and DA, respectively; let M be the midpoint of diagonal AC. Then MO1 = MO2 and
∠O1MO2 = α (cf. Problem 1.49). Similarly, MO3 = MO4 and ∠O3MO4 = α. Therefore,
under the rotation through an angle of α about point M triangle △O1MO3 turns into
△O2MO4.

1.52. Since A1C = AC| cos C| , B1C = BC| cos C| and angle ∠C is the common angle
of triangles ABC and A1B1C, these triangles are similar; the similarity coefficient is equal
to | cos C|.

1.53. Since points M and N lie on the circle with diameter CH, it follows that ∠CMN =
∠CHN and since AC ⊥ HN , we see that ∠CHN = ∠A. Similarly, ∠CNM = ∠B.

1.54. a) Let l be the tangent to the circumscribed circle at point A. Then ∠(l, AB) =
∠(AC,CB) = ∠(C1B1, AC1) and, therefore, l ‖ B1C1.

b) Since OA ⊥ l and l ‖ B1C1, it follows that OA ⊥ B1C1.
1.55. If AA1, BB1 and CC1 are heights, then right triangles AA1C and BB1C have

equal angles at vertex C and, therefore, are similar. It follows that △A1BH ∼ △B1AH,
consequently, AH · A1H = BH · B1H. Similarly, BH · B1H = CH · C1H.

If AH · A1H = BH · B1H = CH · C1H, then △A1BH ∼ △B1AH; hence, ∠BA1H =
∠AB1H = ϕ. Thus, ∠CA1H = ∠CB1H = 180◦ − ϕ.
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Similarly, ∠AC1H = ∠CA1H = 180◦ − ϕ and ∠AC1H = ∠AB1H = ϕ. Hence, ϕ = 90◦,
i.e., AA1, BB1 and CC1 are heights.

1.56. a) By Problem 1.52 ∠C1A1B = ∠CA1B1 = ∠A. Since AA1 ⊥ BC, it follows that
∠C1A1A = ∠B1A1A. The proof of the fact that rays B1B and C1C are the bisectors of
angles A1B1C1 and A1C1B1 is similar.

b) Lines AB, BC and CA are the bisectors of the outer angles of triangle A1B1C1, hence,
A1A is the bisector of angle ∠B1A1C1 and, therefore, AA1 ⊥ BC. For lines BB1 and CC1

the proof is similar.
1.57. From the result of Problem 1.56 a) it follows that the symmetry through line AC

sends line B1A1 into line B1C1.
1.58. By Problem 1.52 ∠B1A1C = ∠BAC. Since A1B1 ‖ AB, it follows that ∠B1A1C =

∠ABC. Hence, ∠BAC = ∠ABC. Similarly, since B1C1 ‖ BC, it follows that ∠ABC =
∠BCA. Therefore, triangle ABC is an equilateral one and A1C1 ‖ AC.

1.59. Let O be the center of the circumscribed circle of triangle ABC. Since OA ⊥ B1C1

(cf. Problem 1.54 b), it follows that SAOC1 + SAOB1 = 1
2
(R · B1C1). Similar arguments for

vertices B and C show that SABC = qR. On the other hand, SABC = pr.
1.60. The perimeter of the triangle cut off by the line parallel to side BC is equal to

the sum of distances from point A to the tangent points of the inscribed circle with sides
AB and AC; therefore, the sum of perimeters of small triangles is equal to the perimeter
of triangle ABC, i.e., P1 + P2 + P3 = P . The similarity of triangles implies that ri

r
= Pi

P
.

Summing these equalities for all the i we get the statement desired.
1.61. Let M = A. Then XA = A; hence, AYA = 1. Similarly, CXC = 1. Let us

prove that y = AYA and x = CXC are the desired lines. On side BC, take point D so that
AB ‖ MD, see Fig. 11. Let E be the intersection point of lines CXC and MD. Then,
XMM + YMM = XCE + YMM . Since △ABC ∼ △MDC, it follows that CE = YMM .
Therefore, CE = YMM . Hence, XMM + YMM = XCE + CE = XCC = 1.

Figure 11 (Sol. 1.61)

1.62. Let D be the midpoint of segment BH. Since △BHA ∼ △HEA, it follows that
AD : AO = AB : AH and ∠DAH = ∠OAE. Hence, ∠DAO = ∠BAH and, therefore,
△DAO ∼ △BAH and ∠DOA = ∠BAH = 90◦.

1.63. Let AA1, BB1 and CC1 be heights of triangle ABC. Let us drop from point B1

perpendiculars B1K and B1N to sides AB and BC, respectively, and perpendiculars B1L and
B1M to heights AA1 and CC1, respectively. Since KB1 : C1C = AB1 : AC = LB1 : A1C,
it follows that △KLB1 ∼ △C1A1C and, therefore, KL ‖ C1A1. Similarly, MN ‖ C1A1.
Moreover, KN ‖ C1A1 (cf. Problem 1.53). It follows that points K, L, M and N lie on one
line.

1.64. a) Let O be the midpoint of AC, let O1 be the midpoint of AB and O2 the midpoint
of BC. Assume that AB ≤ BC. Through point O1 draw line O1K parallel to EF (point K
lies on segment EO2). Let us prove that right triangles DBO and O1KO2 are equal. Indeed,
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O1O2 = DO = 1
2
AC and BO = KO2 = 1

2
(BC − AB). Since triangles DBO and O1KO2

are equal, we see that ∠BOD = ∠O1O2E, i.e., line DO is parallel to EO2 and the tangent
drawn through point D is parallel to line EF .

b) Since the angles between the diameter AC and the tangents to the circles at points F ,
D, E are equal, it follows that ∠FAB = ∠DAC = ∠EBC and ∠FBA + ∠DCA = ∠ECB,
i.e., F lies on line segment AD and E lies on line segment DC. Moreover, ∠AFB =
∠BEC = ∠ADC = 90◦ and, therefore, FDEB is a rectangle.

1.65. Let MQ and MP be perpendiculars dropped on sides AD and BC, let MR and
MT be perpendiculars dropped on the extensions of sides AB and CD (Fig. 12). Denote
by M1 and P1 the other intersection points of lines RT and QP with the circle.

Figure 12 (Sol. 1.65)

Since TM1 = RM = AQ and TM1 ‖ AQ, it follows that AM1 ‖ TQ. Similarly, AP1 ‖
RP . Since ∠M1AP1 = 90◦, it follows that RP ⊥ TQ.

Denote the intersection points of lines TQ and RP , M1A and RP , P1A and TQ by E,
F , G, respectively. To prove that point E lies on line AC, it suffices to prove that rectangles
AFEG and AM1CP1 are similar. Since ∠ARF = ∠AM1R = ∠M1TG = ∠M1CT , we
may denote the values of these angles by the same letter α. We have: AF = RA sin α =
M1A sin2 α and AG = M1T sin α = M1C sin2 α. Therefore, rectangles AFEG and AM1CP1

are similar.
1.66. Denote the centers of the circles by O1 and O2. The outer tangent is tangent to

the first circle at point K and to the other circle at point L; the inner tangent is tangent to
the first circle at point M and to the other circle at point N (Fig. 13).

Figure 13 (Sol. 1.66)

Let lines KM and LN intersect line O1O2 at points P1 and P2, respectively. We have
to prove that P1 = P2. Let us consider points A, D1, D2 — the intersection points of KL
with MN , KM with O1A, and LN with O2A, respectively. Since ∠O1AM +∠NAO2 = 90◦,
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right triangles O1MA and ANO2 are similar; we also see that AO2 ‖ KM and AO1 ‖ LN .
Since these lines are parallel, AD1 : D1O1 = O2P1 : P1O1 and D2O2 : AD2 = O2P2 : P2O1.
The similarity of quadrilaterals AKO1M and O2NAL yields AD1 : D1O1 = D2O2 : AD2.
Therefore, O2P1 : P1O1 = O2P2 : P2O1, i.e., P1 = P2.



CHAPTER 2. INSCRIBED ANGLES

Background

1. Angle ∠ABC whose vertex lies on a circle and legs intersect this circle is called
inscribed in the circle. Let O be the center of the circle. Then

∠ABC =

{

1
2
∠AOC if points B and O lie on one side of AC

180◦ − 1
2
∠AOC otherwise.

The most important and most often used corollary of this fact is that equal chords subtend
angles that either are equal or the sum of the angles is equal to 180◦.

2. The value of the angle between chord AB and the tangent to the circle that passes
through point A is equal to half the angle value of arc ⌣ AB.

3. The angle values of arcs confined between parallel chords are equal.
4. As we have already said, if two angles subtend the same chord, either they are equal

or the sum of their values is 180◦. In order not to consider various variants of the positions
of points on the circle let us introduce the notion of an oriented angle between lines. The
value of the oriented angle between lines AB and CD (notation: ∠(AB,CD)) is the value
of the angle by which we have to rotate line AB counterclockwise in order for it to become
parallel to line CD. The angles that differ by n · 180◦ are considered equal.

Notice that, generally, the oriented angle between lines CD and AB is not equal to the
oriented angle between lines AB and CD (the sum of ∠(AB,CD) and ∠(CD,AB) is equal
to 180◦ which, according to our convention, is the same as 0◦).

It is easy to verify the following properties of the oriented angles:
a) ∠(AB,BC) = −∠(BC,AB);
b) ∠(AB,CD) + ∠(CD,EF ) = ∠(AB,EF );
c) points A, B, C, D not on one line lie on one circle if and only if ∠(AB,BC) =

∠(AD,DC). (To prove this property we have to consider two cases: points B and D lie on
one side of AC; points B and D lie on different sides of AC.)

Introductory problems

1. a) From point A lying outside a circle rays AB and AC come out and intersect the
circle. Prove that the value of angle ∠BAC is equal to half the difference of the angle
measures of the arcs of the circle confined inside this angle.

b) The vertex of angle ∠BAC lies inside a circle. Prove that the value of angle ∠BAC is
equal to half the sum of angle measures of the arcs of the circle confined inside angle ∠BAC
and inside the angle symmetric to it through vertex A.

2. From point P inside acute angle ∠BAC perpendiculars PC1 and PB1 are dropped
on lines AB and AC. Prove that ∠C1AP = ∠C1B1P .

3. Prove that all the angles formed by the sides and diagonals of a regular n-gon are
integer multiples of 180◦

n
.

4. The center of an inscribed circle of triangle ABC is symmetric through side AB to
the center of the circumscribed circle. Find the angles of triangle ABC.

33
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5. The bisector of the exterior angle at vertex C of triangle ABC intersects the circum-
scribed circle at point D. Prove that AD = BD.

§1. Angles that subtend equal arcs

2.1. Vertex A of an acute triangle ABC is connected by a segment with the center O of
the circumscribed circle. From vertex A height AH is drawn. Prove that ∠BAH = ∠OAC.

2.2. Two circles intersect at points M and K. Lines AB and CD are drawn through M
and K, respectively; they intersect the first circle at points A and C, the second circle at
points B and D, respectively. Prove that AC ‖ BD.

2.3. From an arbitrary point M inside a given angle with vertex A perpendiculars MP
and MQ are dropped to the sides of the angle. From point A perpendicular AK is dropped
on segment PQ. Prove that ∠PAK = ∠MAQ.

2.4. a) The continuation of the bisector of angle ∠B of triangle ABC intersects the
circumscribed circle at point M ; O is the center of the inscribed circle, Ob is the center of
the escribed circle tangent to AC. Prove that points A, C, O and Ob lie on a circle centered
at M .

b) Point O inside triangle ABC is such that lines AO, BO and CO pass through the
centers of the circumscribed circles of triangles BCO, ACO and ABO, respectively. Prove
that O is the center of the inscribed circle of triangle ABC.

2.5. Vertices A and B of right triangle ABC with right angle ∠C slide along the sides
of a right angle with vertex P . Prove that in doing so point C moves along a line segment.

2.6. Diagonal AC of square ABCD coincides with the hypothenuse of right triangle
ACK, so that points B and K lie on one side of line AC. Prove that

BK =
|AK − CK|√

2
and DK =

AK + CK√
2

.

2.7. In triangle ABC medians AA1 and BB1 are drawn. Prove that if ∠CAA1 =
∠CBB1, then AC = BC.

2.8. Each angle of triangle ABC is smaller than 120◦. Prove that inside △ABC there
exists a point that serves as the vertex for three angles each of value 120◦ and subtending
the side of the triangle different from the sides subtended by the other angles.

2.9. A circle is divided into equal arcs by n diameters. Prove that the bases of the
perpendiculars dropped from an arbitrary point M inside the circle to these diameters are
vertices of a regular n-gon.

2.10. Points A, B, M and N on a circle are given. From point M chords MA1 and MB1

perpendicular to lines NB and NA, respectively, are drawn. Prove that AA1 ‖ BB1.
2.11. Polygon ABCDEF is an inscribed one; AB ‖ DE and BC ‖ EF . Prove that

CD ‖ AF .
2.12. Polygon A1A2 . . . A2n as an inscribed one. We know that all the pairs of its opposite

sides except one are parallel. Prove that for any odd n the remaining pair of sides is also
parallel and for any even n the lengths of the exceptional sides are equal.

2.13. Consider triangle ABC. Prove that there exist two families of equilateral triangles
whose sides (or extensions of the sides) pass through points A, B and C. Prove also that
the centers of triangles from these families lie on two concentric circles.
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§2. The value of an angle between two chords

The following fact helps to solve problems from this section. Let A, B, C, D be points
on a circle situated in the order indicated. Then

∠(AC,BD) =
⌣ AB+ ⌣ CD

2
and ∠(AB,CD) =

| ⌣ AD− ⌣ CB|
2

.

To prove this, we have to draw a chord parallel to another chord through the endpoint of
one of the chords.

2.14. Points A, B, C, D in the indicated order are given on a circle. Let M be the
midpoint of arc ⌣ AB. Denote the intersection points of chords MC and MD with chord
AB by E and K. Prove that KECD is an inscribed quadrilateral.

2.15. Concider an equilateral triangle. A circle with the radius equal to the triangle’s
height rolls along a side of the triangle. Prove that the angle measure of the arc cut off the
circle by the sides of the triangle is always equal to 60◦.

2.16. The diagonals of an isosceles trapezoid ABCD with lateral side AB intersect at
point P . Prove that the center O of the inscribed circle lies on the inscribed circle of triangle
APB.

2.17. Points A, B, C, D in the indicated order are given on a circle; points A1, B1, C1

and D1 are the midpoints of arcs ⌣ AB, ⌣ BC, ⌣ CD and ⌣ DA, respectively. Prove
that A1C1 ⊥ B1D1.

2.18. Point P inside triangle ABC is taken so that ∠BPC = ∠A + 60◦, ∠APC =
∠B + 60◦ and ∠APB = ∠C + 60◦. Lines AP , BP and CP intersect the circumscribed
circle of triangle ABC at points A′, B′ and C ′, respectively. Prove that triangle A′B′C ′ is
an equilateral one.

2.19. Points A, C1, B, A1, C, B1 in the indicated order are taken on a circle.
a) Prove that if lines AA1, BB1 and CC1 are the bisectors of the angles of triangle ABC,

then they are the heights of triangle A1B1C1.
b) Prove that if lines AA1, BB1 and CC1 are the heights of triangle ABC, then they are

the bisectors of the angles of triangle A1B1C1.
2.20. Triangles T1 and T2 are inscribed in a circle so that the vertices of triangle T2

are the midpoints of the arcs into which the circle is divided by the vertices of triangle T1.
Prove that in the hexagon which is the intersection of triangles T1 and T2 the diagonals that
connect the opposite vertices are parallel to the sides of triangle T1 and meet at one point.

§3. The angle between a tangent and a chord

2.21. Two circles intersect in points P and Q. Through point A on the first circle lines
AP and AQ are drawn. The lines intersect the second circle in points B and C. Prove that
the tangent at A to the first circle is parallel to line BC.

2.22. Circles S1 and S2 intersect at points A and P . Tangent AB to circle S1 is drawn
through point A, and line CD parallel to AB is drawn through point P (points B and C lie
on S2, point D on S1). Prove that ABCD is a parallelogram.

2.23. The tangent at point A to the inscribed circle of triangle ABC intersects line BC
at point E; let AD be the bisector of triangle ABC. Prove that AE = ED.

2.24. Circles S1 and S2 intersect at point A. Through point A a line that intersects S1

at point B and S2 at point C is drawn. Through points C and B tangents to the circles are
drawn; the tangents intersect at point D. Prove that angle ∠BDC does not depend on the
choice of the line that passes through A.

2.25. Two circles intersect at points A and B. Through point A tangents AM and AN ,
where M and N are points of the respective circles, are drawn. Prove that:
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a) ∠ABN + ∠MAN = 180◦;

b) BM
BN

=
(

AM
AN

)2
.

2.26. Inside square ABCD a point P is taken so that triangle ABP is an equilateral
one. Prove that ∠PCD = 15◦.

2.27. Two circles are internally tangent at point M . Let AB be the chord of the greater
circle which is tangent to the smaller circle at point T . Prove that MT is the bisector of
angle AMB.

2.28. Through point M inside circle S chord AB is drawn; perpendiculars MP and MQ
are dropped from point M to the tangents that pass through points A and B respectively.
Prove that the value of 1

PM
+ 1

QM
does not depend on the choice of the chord that passes

through point M .
2.29. Circle S1 is tangent to sides of angle ABC at points A and C. Circle S2 is tangent

to line AC at point C and passes through point B, circle S2 intersects circle S1 at point M .
Prove that line AM divides segment BC in halves.

2.30. Circle S is tangent to circles S1 and S2 at points A1 and A2; let B be a point of
circle S, let K1 and K2 be the other intersection points of lines A1B and A2B with circles S1

and S2, respectively. Prove that if line K1K2 is tangent to circle S1, then it is also tangent
to circle S2.

§4. Relations between the values of an angle and the lengths of the arc and
chord associated with the angle

2.31. Isosceles trapezoids ABCD and A1B1C1D1 with parallel respective sides are in-
scribed in a circle. Prove that AC = A1C1.

2.32. From point M that moves along a circle perpendiculars MP and MQ are dropped
on diameters AB and CD, respectively. Prove that the length of segment PQ does not
depend on the position of point M .

2.33. In triangle ABC, angle ∠B is equal to 60◦; bisectors AD and CE intersect at
point O. Prove that OD = OE.

2.34. In triangle ABC the angles at vertices B and C are equal to 40◦; let BD be the
bisector of angle B. Prove that BD + DA = BC.

2.35. On chord AB of circle S centered at O a point C is taken. The circumscribed
circle of triangle AOC intersects circle S at point D. Prove that BC = CD.

2.36. Vertices A and B of an equilateral triangle ABC lie on circle S, vertex C lies
inside this circle. Point D lies on circle S and BD = AB. Line CD intersects S at point E.
Prove that the length of segment EC is equal to the radius of circle S.

2.37. Along a fixed circle another circle whose radius is half that of the fixed one rolls
on the inside without gliding. What is the trajectory of a fixed point K of the rolling circle?

§5. Four points on one circle

2.38. From an arbitrary point M on leg BC of right triangle ABC perpendicular MN
is dropped on hypothenuse AP . Prove that ∠MAN = ∠MCN .

2.39. The diagonals of trapezoid ABCD with bases AD and BC intersect at point O;
points B′ and C ′ are symmetric through the bisector of angle ∠BOC to vertices B and C,
respectively. Prove that ∠C ′AC = ∠B′DB.

2.40. The extensions of sides AB and CD of the inscribed quadrilateral ABCD meet at
point P ; the extensions of sides BC and AD meet at point Q. Prove that the intersection
points of the bisectors of angles ∠AQB and ∠BPC with the sides of the quadrilateral are
vertices of a rhombus.
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2.41. The inscribed circle of triangle ABC is tangent to sides AB and AC at points M
and N , respectively. Let P be the intersection point of line MN with the bisector (or its
extension) of angle ∠B. Prove that:

a) ∠BPC = 90◦;
b) SABP : SABC = 1 : 2.
2.42. Inside quadrilateral ABCD a point M is taken so that ABMD is a parallelogram.

Prove that if ∠CBM = ∠CDM , then ∠ACD = ∠BCM .
2.43. Lines AP , BP and CP intersect the circumscribed circle of triangle ABC at

points A1, B1 and C1, respectively. On lines BC, CA and AB points A2, B2 and C2,
respectively, are taken so that ∠(PA2, BC) = ∠(PB2, CA) = ∠(PC2, AB). Prove that
△A2B2C2 ∼ △A1B1C1.

2.44. About an equilateral triangle APQ a rectangular ABCD is circumscribed so that
points P and Q lie on sides BC and CD, respectively; P ′ and Q′ are the midpoints of sides
AP and AQ, respectively. Prove that triangles BQ′C and CP ′D are equilateral ones.

2.45. Prove that if for inscribed quadrilateral ABCD the equality CD = AD + BC
holds, then the intersection point of the bisectors of angles ∠A and ∠B lies on side CD.

2.46. Diagonals AC and CE of a regular hexagon ABCDEF are divided by points M
and N , respectively, so that AM : AC = CN : CE = λ. Find λ if it is known that points
B, M and N lie on a line.

2.47. The corresponding sides of triangles ABC and A1B1C1 are parallel and sides AB
and A1B1 lie on one line. Prove that the line that connects the intersection points of the
circumscribed circles of triangles A1BC and AB1C contains point C1.

2.48. In triangle ABC heights AA1, BB1 and CC1 are drawn. Line KL is parallel to
CC1; points K and L lie on lines BC and B1C1, respectively. Prove that the center of the
circumscribed circle of triangle A1KL lies on line AC.

2.49. Through the intersection point O of the bisectors of triangle ABC line MN is
drawn perpendicularly to CO so that M and N lie on sides AC and BC, respectively.
Lines AO and BO intersect the circumscribed circle of triangle ABC at points A′ and B′,
respectively. Prove that the intersection point of lines A′N and B′M lies on the circumscribed
circle.

§6. The inscribed angle and similar triangles

2.50. Points A, B, C and D on a circle are given. Lines AB and CD intersect at point
M . Prove that

AC · AD

AM
=

BC · BD

BM
.

2.51. Points A, B and C on a circle are given; the distance BC is greater than the
distance from point B to line l tangent to the circle at point A. Line AC intersects the line
drawn through point B parallelly to l at point D. Prove that AB2 = AC · AD.

2.52. Line l is tangent to the circle of diameter AB at point C; points M and N are the
projections of points A and B on line l, respectively, and D is the projection of point C on
AB. Prove that CD2 = AM · BN .

2.53. In triangle ABC, height AH is drawn and from vertices B and C perpendiculars
BB1 and CC1 are dropped on the line that passes through point A. Prove that △ABC ∼
△HB1C1.

2.54. On arc ⌣ BC of the circle circumscribed about equilateral triangle ABC, point
P is taken. Segments AP and BC intersect at point Q. Prove that

1

PQ
=

1

PB
+

1

PC
.
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2.55. On sides BC and CD of square ABCD points E and F are taken so that ∠EAF =
45◦. Segments AE and AF intersect diagonal BD at points P and Q, respectively. Prove
that SAEF

SAPQ
= 2.

2.56. A line that passes through vertex C of equilateral triangle ABC intersects base
AB at point M and the circumscribed circle at point N . Prove that

CM · CN = AC2 and
CM

CN
=

AM · BM

AN · BN
.

2.57. Consider parallelogram ABCD with an acute angle at vertex A. On rays AB and
CB points H and K, respectively, are marked so that CH = BC and AK = AB. Prove
that:

a) DH = DK;
b) △DKH ∼ △ABK.
2.58. a) The legs of an angle with vertex C are tangent to a circle at points A and B.

From point P on the circle perpendiculars PA1, PB1 and PC1 are dropped on lines BC,
CA and AB, respectively. Prove that PC2

1 = PA1 · PB1.
b) From point O of the inscribed circle of triangle ABC perpendiculars OA′, OB′, OC ′

are dropped on the sides of triangle ABC opposite to vertices A, B and C, respectively, and
perpendiculars OA′′, OB′′, OC ′′ are dropped to the sides of the triangle with vertices at the
tangent points. Prove that

OA′ · OB′ · OC ′ = OA′′ · OB′′ · OC ′′.

2.59. Pentagon ABCDE is inscribed in a circle. Distances from point E to lines AB,
BC and CD are equal to a, b and c, respectively. Find the distance from point E to line
AD.

2.60. In triangle ABC, heights AA1, BB1 and CC1 are drawn; B2 and C2 are the
midpoints of heights BB1 and CC1, respectively. Prove that △A1B2C2 ∼ △ABC.

2.61. On heights of triangle ABC points A1, B1 and C1 that divide them in the ratio
2 : 1 counting from the vertex are taken. Prove that △A1B1C1 ∼ △ABC.

2.62. Circle S1 with diameter AB intersects circle S2 centered at A at points C and
D. Through point B a line is drawn; it intersects S2 at point M that lies inside S1 and it
intersects S1 at point N . Prove that MN2 = CN · ND.

2.63. Through the midpoint C of an arbitrary chord AB on a circle chords KL and MN
are drawn so that points K and M lie on one side of AB. Segments KN and ML intersect
AB at points Q and P , respectively. Prove that PC = QC.

2.64. a) A circle that passes through point C intersects sides BC and AC of triangle
ABC at points A1 and B1, respectively, and it intersects the circumscribed circle of triangle
ABC at point M . Prove that △AB1M ∼ △BA1M .

b) On rays AC and BC segments AA1 and BB1 equal to the semiperimeter of triangle
ABC are drawn. Let M be a point on the circumscribed circle such that CM ‖ A1B1. Prove
that ∠CMO = 90◦, where O is the center of the inscribed circle.

§7. The bisector divides an arc in halves

2.65. In triangle ABC, sides AC and BC are not equal. Prove that the bisector of angle
∠C divides the angle between the median and the height drawn from this vertex in halves
if and only if ∠C = 90◦.

2.66. It is known that in a triangle the median, the bisector and the height drawn from
vertex C divide the angle ∠C into four equal parts. Find the angles of this triangle.

2.67. Prove that in triangle ABC bisector AE lies between median AM and height AH.
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2.68. Given triangle ABC; on its side AB point P is chosen; lines PM and PN parallel
to AC and BC, respectively, are drawn through P so that points M and N lie on sides BC
and AC, respectively; let Q be the intersection point of the circumscribed circles of triangles
APN and BPM . Prove that all lines PQ pass through a fixed point.

2.69. The continuation of bisector AD of acute triangle ABC inersects the circumscribed
circle at point E. Perpendiculars DP and DQ are dropped on sides AB and AC from point
D. Prove that SABC = SAPEQ.

§8. An inscribed quadrilateral with perpendicular diagonals

In this section ABCD is an inscribed quadrilateral whose diagonals intersect at a right
angle. We will also adopt the following notations: O is the center of the circumscribed circle
of quadrilateral ABCD and P is the intersection point of its diagonals.

2.70. Prove that the broken line AOC divides ABCD into two parts whose areas are
equal.

2.71. The radius of the circumscribed circle of quadrilateral ABCD is equal to R.
a) Find AP 2 + BP 2 + CP 2 + DP 2.
b) Find the sum of squared lengths of the sides of ABCD.
2.72. Find the sum of squared lengths of the diagonals of ABCD if the length of segment

OP and the radius of the circumscribed circle R are known.
2.73. From vertices A and B perpendiculars to CD that intersect lines BD and AC at

points K and L, respectively, are drawn. Prove that AKLB is a rhombus.
2.74. Prove that the area of quadrilateral ABCD is equal to 1

2
(AB · CD + BC · AD).

2.75. Prove that the distance from point O to side AB is equal to half the length of side
CD.

2.76. Prove that the line drawn through point P perpendicularly to BC divides side
AD in halves.

2.77. Prove that the midpoints of the sides of quadrilateral ABCD and the projections
of point P on the sides lie on one circle.

2.78. a) Through vertices A, B, C and D tangents to the circumscribed circle are drawn.
Prove that the quadrilateral formed by them is an inscribed one.

b) Quadrilateral KLMN is simultaneously inscribed and circumscribed; A and B are
the tangent points of the inscribed circle with sides KL and LM , respectively. Prove that
AK · BM = r2, where r is the radius of the inscribed circle.

§9. Three circumscribed circles intersect at one point

2.79. On sides of triangle ABC triangles ABC ′, AB′C and A′BC are constructed
outwards so that the sum of the angles at vertices A′, B′ and C ′ is a multiple of 180◦. Prove
that the circumscribed circles of the constructed triangles intersect at one point.

2.80. a) On sides (or their extensions) BC, CA and AB of triangle ABC points A1, B1

and C1 distinct from the vertices of the triangle are taken (one point on one side). Prove
that the circumscribed circles of triangles AB1C1, A1BC1 and A1B1C intersect at one point.

b) Points A1, B1 and C1 move along lines BC, CA and AB, respectively, so that all
triangles A1B1C1 are similar and equally oriented. Prove that the intersection point of the
circumscribed circles of triangles AB1C1, A1BC1 and A1B1C remains fixed in the process.

2.81. On sides BC, CA and AB of triangle ABC points A1, B1 and C1 are taken.
Prove that if triangles A1B1C1 and ABC are similar and have opposite orientations, then
circumscribed circles of triangles AB1C1, ABC1 and A1B1C pass through the center of the
circumscribed circle of triangle ABC.
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2.82. Points A′, B′ and C ′ are symmetric to a point P relative sides BC, CA and AB,
respectively, of triangle ABC.

a) The circumscribed circles of triangles AB′C ′, A′BC ′, A′B′C and ABC have a common
point;

b) the circumscribed circles of triangles A′BC, AB′C, ABC ′ and A′B′C ′ have a common
point Q;

c) Let I, J , K and O be the centers of the circumscribed circles of triangles A′BC, AB′C,
ABC ′ and A′B′C ′, respectively. Prove that QI : OI = QJ : OJ = QK : OK.

§10. Michel’s point

2.83. Four lines form four triangles. Prove that
a) The circumscribed circles of these triangles have a common point. (Michel’s point.)
b) The centers of the circumscribed circles of these triangles lie on one circle that passes

through Michel’s point.
2.84. A line intersects sides (or their extensions) AB, BC and CA of triangle ABC at

points C1, B1 and A1, respectively; let O, Oa, Ob and Oc be the centers of the circumscribed
circles of triangles ABC, AB1C1, A1BC1 and A1B1C, respectively; let H, Ha, Hb and Hc be
the respective orthocenters of these triangles. Prove that

a) △OaObOc ∼ △ABC.
b) the midperpendiculars to segments OH, OaHa, ObHb and OcHc meet at one point.
2.85. Quadrilateral ABCD is an inscribed one. Prove that Michel’s point of lines that

contain its sides lies on the segment that connects the intersection points of the extensions
of the sides.

2.86. Points A, B, C and D lie on a circle centered at O. Lines AB and CD intersect
at point E and the circumscribed circles of triangles AEC and BED ilntersect at points E
and P . Prove that

a) points A, D, P and O lie on one circle;
b) ∠EPO = 90◦.
2.87. Given four lines prove that the projections of Michel’s point to these lines lie on

one line.

See also Problem 19.45.

§11. Miscellaneous problems

2.88. In triangle ABC height AH is drawn; let O be the center of the circumscribed
circle. Prove that ∠OAH = |∠B − ∠C|.

2.89. Let H be the intersection point of the heights of triangle ABC; let AA′ be a
diameter of its circumscribed circle. Prove that segment A′H divides side BC in halves.

2.90. Through vertices A and B of triangle ABC two parallel lines are drawn and lines
m and n are symmetric to them through the bisectors of the corresponding angles. Prove
that the intersection point of lines m and n lies on the circumscribed circle of triangle ABC.

2.91. a) Lines tangent to circle S at points B and C are drawn from point A. Prove
that the center of the inscribed circle of triangle ABC and the center of its escribed circle
tangent to side BC lie on circle S.

b) Prove that the circle that passes through vertices B and C of any triangle ABC and
the center O of its inscribed circle intercepts on lines AB and AC chords of equal length.

2.92. On sides AC and BC of triangle ABC squares ACA1A2 and BCB1B2 are con-
structed outwards. Prove that lines A1B, A2B2 and AB1 meet at one point.
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2.93. Circles S1 and S2 intersect at points A and B so that the tangents to S1 at these
points are radii of S2. On the inner arc of S1 a point C is taken; straight lines connect it
with points A and B. Prove that the second intersection points of these lines with S2 are
the endpoints of a diameter.

2.94. From the center O of a circle the perpendicular OA is dropped to line l. On l,
points B and C are taken so that AB = AC. Through points B and C two sections are
drawn one of which intersects the circle at points P and Q and the other one at points M
and N . Lines PM and QN intersect line l at points R and S, respectively. Prove that
AR = AS.

Problems for independent study

2.95. In triangle ABC heights AA1 and BB1 are drawn; let M be the midpoint of side
AB. Prove that MA1 = MB1.

2.96. In convex quadrilateral ABCD angles ∠A and ∠C are right ones. Prove that
AC = BD sin ABC.

2.97. Diagonals AD, BE and CF of an inscribed hexagon ABCDEF meet at one point.
Prove that AB · CD · EF = BC · DE · AF .

2.98. In a convex quadrilateral AB = BC = CD, let M be the intersection point of
diagonals, K is the intersection point of bisectors of angles ∠A and ∠D. Prove that points
A, M , K and D lie on one circle.

2.99. Circles centered at O1 and O2 intersect at points A and B. Line O1A intersects
the circle centered at O2 at point N . Prove that points O1, O2, B and N lie on one circle.

2.100. Circles S1 and S2 intersect at points A and B. Line MN is tangent to circle S1

at point M and to S2 at point N . Let A be the intersection point of the circles, which is
more distant from line MN . Prove that ∠O1AO2 = 2∠MAN .

2.101. Given quadrilateral ABCD inscribed in a circle and such that AB = BC, prove
that SABCD = 1

2
(DA+CD) ·hb, where hb is the height of triangle ABD dropped from vertex

B.
2.102. Quadrilateral ABCD is an inscribed one and AC is the bisector of angle ∠DAB.

Prove that AC · BD = AD · DC + AB · BC.
2.103. In right triangle ABC, bisector CM and height CH are drawn from the vertex

of the right angle ∠C. Let HD and HE be bisectors of triangles AHC and CHB. Prove
that points C, D, H, E and M lie on one circle.

2.104. Two circles pass through the vertex of an angle and a point on its bisector. Prove
that the segments cut by them on the sides of the angle are equal.

2.105. Triangle BHC, where H is the orthocenter of triangle ABC is complemented to
the parallelogram BHCD. Prove that ∠BAD = ∠CAH.

2.106. Outside equilateral triangle ABC but inside angle ∠BAC, point M is taken so
that ∠CMA = 30◦ and ∠BMA = α. What is the value of angle ∠ABM?

2.107. Prove that if the inscribed quadrilateral with perpendicular diagonals is also a
circumscribed one, then it is symmetric with respect to one of its diagonals.

Solutions

2.1. Let us draw diameter AD. Then ∠CDA = ∠CBA; hence, ∠BAH = ∠DAC
because ∠BHA = ∠ACD = 90◦.

2.2. Let us make use of the properties of oriented angles:

∠(AC,CK) = ∠(AM,MK) = ∠(BM,MK) = ∠(BD,DK) = ∠(BD,CK),
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i.e., AC ‖ BD.
2.3. Points P and Q lie on the circle with diameter AM . Therefore, ∠QMA = ∠QPA

as angles that intersect the same arc. Triangles PAK and MAQ are right ones, therefore,
∠PAK = ∠MAQ.

2.4. a) Since

∠AOM = ∠BAO + ∠ABO =
∠A + ∠B

2
and

∠OAM = ∠OAC + ∠CAM =
∠A

2
+ ∠CBM =

∠A + ∠B

2
,

we have MA = MO. Similarly, MC = MO.
Since triangle OAOb is a right one and ∠AOM = ∠MAO = ϕ, it follows that ∠MAOb =

∠MObA = 90◦ − ϕ and, therefore, MA = MOb. Similarly, MC = MOb.
b) Let P be the center of the circumscribed circle of triangle ACO. Then

∠COP =
180◦ − ∠CPO

2
= 90◦ − ∠OAC.

Hence, ∠BOC = 90◦ + ∠OAC. Similarly, ∠BOC = 90◦ + ∠OAB and, therefore, ∠OAB =
∠OAC. We similarly establish that point O lies on the bisectors of angles ∠B and ∠C.

2.5. Points P and C lie on the circle with diameter AB, and, therefore, ∠APC = ∠ABC,
i.e., the value of angle ∠APC is a constant.

Remark. A similar statement is true for any triangle ABC whose vertices are moving
along the legs of angle ∠MPN equal to 180◦ − ∠C.

2.6. Points B, D and K lie on the circle with diameter AC. Let, for definiteness sake,
∠KCA = ϕ ≤ 45◦. Then

BK = AC sin(45◦ − ϕ) =
AC(cos ϕ − sin ϕ)√

2

and

DK = AC sin(45◦ + ϕ) =
AC(cos ϕ + sin ϕ)√

2
.

Clearly, AC cos ϕ = CK and AC sin ϕ = AK.
2.7. Since ∠B1AA1 = ∠A1BB1, it follows that points A, B, A1 and B1 lie on one circle.

Parallel lines AB and A1B1 intercept on it equal chords AB1 and BA1. Hence, AC = BC.
2.8. On side BC of triangle ABC construct outwards an equilateral triangle A1BC.

Let P be the intersection point of line AA1 with the circumscribed circle of triangle A1BC.
Then point P lies inside triangle ABC and

∠APC = 180◦ − ∠A1PC = 180◦ − ∠A1BC = 120◦.

Similarly, ∠APB = 120◦.
2.9. The bases of perpendiculars dropped from point M on the diameters lie on the circle

S with diameter OM (where O is the center of the initial circle). The intersection points
of the given diameters with circle S distinct from O divide the circle into n arcs. Since the
angles 180◦

n
intersect all the circles that do not contain point O, the angle measure of each of

these arcs is equal to 360◦

n
. Therefore, the angle measure of the arc on which point O lies is

equal to 360◦ − (n − 1) · 360◦

n
= 360◦

n
. Thus, the bases of the perpendiculars divide the circle

S into n equal arcs.
2.10. Clearly,

∠(AA1, BB1) = ∠(AA1, AB1) + ∠(AB1, BB1) = ∠(MA1,MB1) + ∠(AN,BN).
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Since MA1 ⊥ BN and MB1 ⊥ AN , it follows that

∠(MA1,MB1) = ∠(BN,AN) = −∠(AN,BN).

Therefore, ∠(AA1, BB1) = 0◦, i.e., AA1 ‖ BB1.
2.11. Since AB ‖ DE, it follows that ∠ACE = ∠BFD and since BC ‖ EF , it follows

that ∠CAE = ∠BDF . Triangles ACE and BDF have two pairs of equal angles and,
therefore, their third angles are also equal. The equality of these angles implies the equality
of arcs ⌣ AC and ⌣ DF , i.e., chords CD and AF are parallel.

2.12. Let us carry out the proof by induction on n. For the quadrilateral the statement
is obvious; for the hexagon it had been proved in the preceding problem. Assume that the
statement is proved for the 2(n − 1)-gon; let us prove the statement for the 2n-gon. Let
A1 . . . A2n be a 2n-gon in which A1A2 ‖ An+1An+2, . . . , An−1An ‖ A2n−1A2n. Let us consider
2(n − 1)-gon A1A2 . . . An−1An+1 . . . A2n−1. By the inductive hypothesis for n odd we have
An−1An+1 = A2n−1A1, and for n even we have An−1An+1 ‖ A2n−1A1.

Let us consider triangles An−1AnAn+1 and A2n−1A2nA1. Let n be even. Then vectors
{An−1An} and {A2n−1A2n}, as well as {An−1An+1} and {A2n−1A1} are parallel and directed
towards each other; hence, ∠AnAn−1An+1 = ∠A1A2n−1A2n and AnAn+1 = A2nA1 as chords
that cut equal arcs, as required.

Let n be odd. Then An−1An+1 = A2n−1A1, i.e., A1An−1 ‖ An+1A2n−1. In hexagon
An−1AnAn+1A2n−1A2nA1 we have A1An−1 ‖ An+1A2n−1 and An−1An ‖ A2n−1A2n; hence,
thanks to the preceding problem AnAn+1 ‖ A2nA1, as required.

2.13. Let lines FG, GE and EF pass through points A, B and C, respectively, so that
triangle EFG is an equilateral one, i.e.,

∠(GE,EF ) = ∠(EF,FG) = ∠FG,GE) = ±60◦.

Then

∠(BE,EC) = ∠(CF, FA) = ∠(AG,GB) = ±60◦.

Selecting one of the signs we get three circles SE, SF and SG on which points E, F and G
should lie. Any point E of circle SE uniquely determines triangle EFG.

Let O be the center of triangle EFG; let P , R and Q be the intersection points of lines
OE, OF and OG with the corresponding circles SE, SF and SG. Let us prove that P , Q and
R are the centers of equilateral triangles constructed on sides of triangle ABC (outwards for
one family and inwards for the other one), and point O lies on the circumscribed circle of
triangle PQR.

Clearly,

∠(CB,BP ) = ∠(CE,EP ) = ∠(EF,EO) = ∓30◦

and

∠(BP,CP ) = ∠(BE,EC) = ∠(GE,EF ) = ±60◦.

Hence,

∠(CB,CP ) = ∠(CB,BP ) + ∠(BP,CP ) = ±30◦.

Therefore, P is the center of an equilateral triangle with side AB.
For points Q and R the proof is similar. Triangle PQR is an equilateral one and its

center coincides with the intersection point of medians of triangle ABC (cf. Problem 1.49
b)). As is not difficult to verify,

∠(PR,RQ) = ∓60◦ = ∠(OE,OG) = ∠(OP,OQ),

i.e., point O lies on the circumscribed circle of triangle PQR.
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2.14. Clearly,

2(∠KEC + ∠KDC) = (⌣ MB+ ⌣ AC) + (⌣ MB+ ⌣ BC) = 360◦,

since ⌣ MB =⌣ AM .
2.15. Denote the angle measure of the arc intercepted on the circle by the sides of

triangle ABC by α. Denote the angle measure of the arc intercepted by the extensions of
the sides of the triangle on the circle by α′. Then 1

2
(α + α′) = ∠BAC = 60◦. But α = α′

because these arcs are symmetric through the line that passes through the center of the circle
parallel to side BC. Hence, α = α′ = 60◦.

2.16. Since ∠APB = 1
2
(⌣ AB+ ⌣ CD) = ∠AOB, point O lies on the circumscribed

circle of triangle APB.
2.17. Let O be the point where lines A1C1 and B1D1 meet; let α, β, γ and δ be angle

measures of arcs AB, BC, CD and DA. Then

∠A1OB1 =
⌣ A1B+ ⌣ BB1+ ⌣ C1D+ ⌣ DD1

2
=

α + β + γ + δ

4
= 90◦.

2.18. By summing up the equalities we get

⌣ C ′A+ ⌣ CA′ = 2(180◦ − ∠APC) = 240◦ − 2∠B and ⌣ AB′+ ⌣ BA′ = 240◦ − 2∠C.

Then by subtracting from their sum the equality ⌣ BA′+ ⌣ CA′ = 2∠A we get

⌣ C ′B′ =⌣ C ′A+ ⌣ AB′ = 480◦ − 2(∠A + ∠B + ∠C) = 120◦.

Similarly, ⌣ B′A′ =⌣ C ′A′ = 120◦.
2.19. a) Let us prove, for example, that AA1 ⊥ C1B1. Let M be the intersection point

of these segments. Then

∠AMB1 =
⌣ AB1+ ⌣ A1B+ ⌣ BC1

2
= ∠ABB1 + ∠A1AB + ∠BCC1 =

∠B + ∠A + ∠C

2
= 90◦.

b) Let M1 and M2 be the intersection points of segments AA1 with BC and BB1 with AC.
Right triangles AM1C and BM2C have a common angle ∠C; hence, ∠B1BC = ∠A1AC.
Consequently, ⌣ B1C =⌣ A1C and ∠B1C1C = ∠A1C1C, i.e., CC1 is the bisector of angle
∠A1C1B1.

2.20. Denote the vertices of triangle T1 by A, B and C; denote the midpoints of arcs
⌣ BC, ⌣ CA, ⌣ AB by A1, B1, C1, respectively. Then T2 = A1B1C1. Lines AA1, BB1,
CC1 are the bisectors of triangle T1; hence, they meet at one point, O. Let lines AB and
C1B1 intersect at point K. It suffices to verify that KO ‖ AC. In triangle AB1O, line B1C1

is a bisector and height, hence, this triangle is an isosceles one. Therefore, triangle AKO is
also an isosceles one. Lines KO and AC are parallel, since ∠KOA = ∠KAO = ∠OAC.

2.21. Let l be tangent to the first circle at point A. Then ∠(l, AP ) = ∠(AQ,PQ) =
∠(BC,PB), hence, l ‖ BC.

2.22. Since

∠(AB,AD) = ∠(AP,PD) = ∠(AB,BC),

we have BC ‖ AD.
2.23. Let, for definiteness, point E lie on ray BC. Then ∠ABC = ∠EAC and

∠ADE = ∠ABC + ∠BAD = ∠EAC + ∠CAD = ∠DAE.
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2.24. Let P be the other intersection point of the circles. Then ∠(AB,DB) = ∠(PA,PB)
and ∠(DC,AC) = ∠(PC, PA). By summing these equalities we get

∠(DC,DB) = ∠(PC, PB) = ∠(PC,CA) + ∠(BA,PB).

The latter two angles subtend constant arcs.
2.25. a) Since ∠MAB = ∠BNA, the sum of angles ∠ABN and ∠MAN is equal to the

sum of the angles of triangle ABN .
b) Since ∠BAM = ∠BNA and ∠BAN = ∠BMA, it follows that △AMB ∼ △NAB

and, therefore, AM : NA = MB : AB and AM : NA = AB : NB. By multiplying these
equalities we get the desired statement.

2.26. Point P lies on the circle of radius BC with center B and line DC is tangent to
this circle at point C. Hence, ∠PCD = 1

2
∠PBC = 15◦.

2.27. Let A1 and B1 be intersection points of lines MA and MB, respectively, with
the smaller circle. Since M is the center of homothety of the circles, A1B1 ‖ AB. Hence,
∠A1MT = ∠A1TA = ∠B1A1T = ∠B1MT .

2.28. Let ϕ be the angle between chord AB and the tangent that passes through one of
the chord’s endpoints. Then AB = 2R sin ϕ, where R is the radius of circle S. Moreover,
PM = AM sin ϕ and QM = BM sin ϕ. Hence,

1

PM
+

1

QM
=

(

AM + BM

sin ϕ

)

AM · BM =
2R

AM · BM
.

The value AM · BM does not depend on the choice of chord AB.
2.29. Let line AM intersect circle S2 at point D. Then ∠MDC = ∠MCA = ∠MAB;

hence, CD ‖ AB. Further, ∠CAM = ∠MCB = ∠MDB; hence, AC ‖ BD. Therefore,
ABCD is a parallelogram and its diagonal AD divides diagonal BC in halves.

2.30. Let us draw line l1 tangent to S1 at point A1. Line K1K2 is tangent to S1 if and
only if ∠(K1K2, K1A1) = ∠(K1A1, l1). It is also clear that

∠(K1A1, l1) = ∠(A1B, l1) = ∠(A2B,A1A2).

Similarly, line K1K2 is tangent to S2 if and only if ∠(K1K2, K2A2) = ∠(A1B,A1A2). It
remains to observe that if ∠(K1K2, K1A1) = ∠(A2B,A1A2), then

∠(K1K2, K2A2) = ∠(K1K2, A2B) =

∠(K1K2, A1B) + ∠(A1B,A1A2) + ∠(A1A2, A2B) = ∠(A1B,A1A2).

2.31. Equal angles ABC and A1B1C1 intersect chords AC and A1C1, hence, AC = A1C1.
2.32. Let us denote the center of the circle by O. Points P and Q lie on the circle with

diameter OM , i.e., points O, P , Q and M lie on a circle of radius 1
2
R. Moreover, either

∠POQ = ∠AOD or ∠POQ = ∠BOD = 180◦ − ∠AOD, i.e., the length of chord PQ is a
constant.

2.33. Since ∠AOC = 90◦ + 1
2
∠B (cf. Problem 5.3), it follows that

∠EBD + ∠EOD = 90◦ +
3

2
∠B = 180◦

and, therefore, quadrilateral BEOD is an inscribed one. Equal angles ∠EBO and ∠OBD
subtend chords EO and OD, hence, EO = OD.

2.34. On the extension of segment BD beyond point D take a point Q such that
∠ACQ = 40◦. Let P be the intersection point of lines AB and QC. Then ∠BPC = 60◦

and D is the intersection point of the bisectors of angles of triangle BCP . By Problem 2.33
AD = DQ. Moreover, ∠BQC = ∠BCQ = 80◦. Therefore, BC = BD + DQ = BD + DA.
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2.35. It suffices to verify that the exterior angle ACD of triangle BCD is twice greater
than the angle at vertex B. Clearly, ∠ACD = ∠AOD = 2∠ABD.

2.36. Let O be the center of circle S. Point B is the center of the circumscribed circle
of triangle ACD, hence, ∠CDA = 1

2
∠ABC = 30◦ and, therefore, ∠EOA = 2∠EDA = 60◦,

i.e., triangle EOA is an equilateral one. Moreover, ∠AEC = ∠AED = ∠AOB = 2∠AOC;
hence, point E is the center of the circumscribed circle of triangle AOC. Therefore, EC =
EO.

2.37. Let us consider two positions of the moving circle: at the first moment, when
point K just gets to the fixed circle (the tangent point of the circles at this moment will be
denoted by K1) and at some other (second) moment.

Let O be the center of the fixed circle, O1 and O2 be the positions of the center of
the moving circle at the first and the second moments, respectively, K2 be the position of
point K at the second moment. Let A be the tangent point of the circles at the second
moment. Since the moving circle rolls without gliding, the length of arc ⌣ K1A is equal to
the length of arc ⌣ K2A. Since the radius of the moving circle is one half of the radius of
the fixed circle, ∠K2O2A = 2∠K1OA. Point O lies on the moving circle, hence, ∠K2OA =
1
2
∠K2O2A = ∠K1OA, i.e., points K2, K1 and O lie on one line.

The trajectory of point K is the diameter of the fixed circle.
2.38. Points N and C lie on the circle with diameter AM . Angles ∠MAN and ∠MCN

subtend the same arc and therefore, are equal.
2.39. The symmetry through the bisector of angle ∠BOC sends lines AC and DB into

each other and, therefore, we have to prove that ∠C ′AB′ = ∠B′DC ′. Since BO = B′O,
CO = C ′O and AO : DO = CO : BO, it follows that AO · B′O = DO · C ′O, i.e., the
quadrilateral AC ′B′D is an inscribed one and ∠C ′AB′ = ∠B′DC ′.

2.40. Denote the intersection points and angles as indicated on Fig. 14.

Figure 14 (Sol. 2.40)

It suffices to verify that x = 90◦. The angles of quadrilateral BMRN are equal to
180◦ − ϕ, α + ϕ, β + ϕ and x, hence, the equality x = 90◦ is equivalent to the equality
(2α+ϕ)+(2β+ϕ) = 180◦. It remains to notice that 2α+ϕ = ∠BAD and 2β+ϕ = ∠BCD.

2.41. a) It suffices to prove that if P1 is the point on the bisector (or its extension)
of angle ∠B that serves as the vertex of an angle of 90◦ that subtends segment BC, then
P1 lies on line MN . Points P1 and N lie on the circle with diameter CO, where O is the
intersection point of bisectors, hence,

∠(P1N,NC) = ∠(P1O,OC) =
1

2
(180◦ − ∠A) = ∠(MN,NC).
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b) Since ∠BPC = 90◦, it follows that BP = BC · cos ∠B
2

; hence,

SABP : SABC =

(

BP · sin ∠B

2

)

: (BC sin B) = 1 : 2.

2.42. Take point N so that BN ‖ MC and NC ‖ BM . Then NA ‖ CD, ∠NCB =
∠CBM = ∠CDM = ∠NAB, i.e., points A, B, N and C lie on one circle. Hence, ∠ACD =
∠NAC = ∠NBC = ∠BCM .

2.43. Points A2, B2, C and P lie on one circle, hence,

∠(A2B2, B2P ) = ∠(A2C,CP ) = ∠(BC,CP ).

Similarly, ∠(B2P,B2C2) = ∠(AP,AB). Therefore,

∠(A2B2, B2C2) = ∠(BC,CP ) + ∠(AP,AB) = ∠(B1B,B1C1) + ∠(A1B1, B1B)

= ∠(A1B1, B1C1).

We similarly verify that all the other angles of triangles A1B1C1 and A2B2C2 are either equal
or their sum is equal to 180◦; therefore, these triangles are similar (cf. Problem 5.42).

2.44. Points Q′ and C lie on the circle with diameter PQ, hence, ∠Q′CQ = ∠Q′PQ =
30◦. Therefore, ∠BCQ′ = 60◦. Similarly, ∠CBQ′ = 60◦ and, therefore, triangle BQ′C is
equilateral one. By similar reasons triangle CP ′D is an equilateral one.

2.45. Let ∠BAD = 2α and ∠CBA = 2β; for definiteness we will assume that α ≥ β.
On side CD take point E so that DE = DA. Then CE = CD − AD = CB. The angle at
vertex C of an isosceles triangle BCE is equal to 180◦ − 2α; hence, ∠CBE = α. Similarly,
∠DAE = β. The bisector of angle B intersects CD at a point F . Since ∠FBA = β =
∠AED, quadrilateral ABFE is an inscribed one and, therefore, ∠FAE = ∠FBE = α − β.
It follows that ∠FAD = β + (α − β) = α, i.e., AF is the bisector of angle ∠A.

2.46. Since ED = CB, EN = CM and ∠DEC = ∠BCA = 30◦ (Fig. 15), it follows
that △EDN = △CBM . Let ∠MBC = ∠NDE = α, ∠BMC = ∠END = β.

Figure 15 (Sol. 2.46)

It is clear that ∠DNC = 180◦−β. Considering triangle BNC we get ∠BNC = 90◦−α.
Since α + β = 180◦ − 30◦ = 150◦, it follows that

∠DNB = ∠DNC + ∠CNB = (180◦ − β) + (90◦ − α) = 270◦ − (α + β) = 120◦.

Therefore, points B, O, N and D, where O is the center of the hexagon, lie on one circle.
Moreover, CO = CB = CD, i.e., C is the center of this circle, hence, λ = CN : CE = CB :
CA = 1 :

√
3.

2.47. Let D be the other intersection point of the circumscribed circles of triangles
A1BC and AB1C. Then ∠(AC,CD) = ∠(AB1, B1D) and ∠(DC,CB) = ∠(DA1, A1B).
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Hence,

∠(A1C1, C1B1) = ∠(AC,CB) = ∠(AC,CD) + ∠(DC,CB)

= ∠(AB1, B1D) + ∠(DA1, A1B) = ∠(A1D,DB1),

i.e., points A1, B1, C1 and D lie on one circle. Therefore, ∠(A1C1, C1B) = ∠(A1B1, B1D) =
∠(AC,CD). Taking into account that A1C1 ‖ AC, we get the desired statement.

2.48. Let point M be symmetric to point A1 through line AC. By Problem 1.57 point
M lies on line B1C1. Therefore,

∠(LM,MA1) = ∠(C1B1) = ∠(C1C,CB) = ∠(LK,KA1),

i.e., point M lies on the circumscribed circle of triangle A1KL. It follows that the center of
this circle lies on line AC — the midperpendicular to segment A1M .

2.49. Let PQ be the diameter perpendicular to AB and such that Q and C lie on one
side of AB; let L be the intersection point of line QO with the circumscribed circle; let M ′

and N ′ be the intersection points of lines LB′ and LA′ with sides AC and BC, respectively.
It suffices to verify that M ′ = M and N ′ = N .

Since ⌣ PA+ ⌣ AB′+ ⌣ B′Q = 180◦, it follows that ⌣ B′Q = ∠A and, there-
fore, ∠B′LQ = ∠M ′AO. Hence, quadrilateral AM ′OL is an inscribed one and ∠M ′OA =
∠M ′LA = 1

2
∠B. Therefore, ∠CMO = 1

2
(∠A + ∠B), i.e., M ′ = M . Similarly, N ′ = N .

2.50. Since △ADM ∼ △CBM and △ACM ∼ △DBM , it follows that AD : CB =
DM : BM and AC : DB = AM : DM . It remains to multiply these equalities.

2.51. Let D1 be the intersection point of line BD with the circle distinct from point B.
Then ⌣ AB =⌣ AD1; hence, ∠ACB = ∠AD1B = ∠ABD1. Triangles ACB and ABD
have a common angle, ∠A, and, moreover, ∠ACB = ∠ABD; hence, △ACB ∼ △ABD.
Therefore, AB : AC = AD : AB.

2.52. Let O be the center of the circle. Since ∠MAC = ∠ACO = ∠CAO, it follows
that △AMC = △ADC. Similarly, △CDB = △CNB. Since △ACD ∼ △CDB, it follows
that CD2 = AD · DB = AM · NB.

2.53. Points B1 and H lie on the circle with diameter AB, hence,

∠(AB,BC) = ∠(AB,BH) = ∠(AB1, B1H) = ∠(B1C1, B1H).

Similarly, ∠(AC,BC) = ∠(B1C1, C1H).
2.54. On an extension of segment BP beyond point P take point D such that PD = CP .

Then triangle CDP is an equilateral one and CD ‖ QP . Therefore, BP : PQ = BD : DC =
(BP + CP ) : CP , i.e., 1

PQ
= 1

CP
+ 1

BP
.

2.55. Segment QE subtends angles of 45◦ with vertices at points A and B, hence,
quadrilateral ABEQ is an inscribed one. Since ∠ABE = 90◦, it follows that ∠AQE = 90◦.
Therefore, triangle AQE is an isosceles right triangle and AE

AQ
=

√
2. Similarly, AF

AP
=

√
2.

2.56. Since ∠ANC = ∠ABC = ∠CAB, it follows that △CAM ∼ △CNA and, there-
fore, CA : CM = CN : CA, i.e., CM · CN = AC2 and AM : NA = CM : CA. Similarly,
BM : NB = CM : CB. Therefore,

AM · BM

AN · BN
=

CM2

CA2
=

CM2

CM · CN
=

CM

CN
.

2.57. Since AK = AB = CD, AD = BC = CH and ∠KAD = ∠DCH, it follows that
△ADK = △CHD and DK = DH. Let us show that points A, K, H, C and D lie on one
circle. Let us circumscribe the circle about triangle ADC. Draw chord CK1 in this circle
parallel to AD and chord AH1 parallel to DC. Then K1A = DC and H1C = AD. Hence,
K1 = K and H1 = H, i.e., the constructed circle passes through points K and H and angles
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∠KAH and ∠KDH are equal because they subtend the same arc. Moreover, as we have
already proved, KDH is an isosceles triangle.

2.58. a) ∠PBA1 = ∠PAC1 and ∠PBC1 = ∠PAB1 and, therefore, right triangles PBA1

and PAC1, PAB1 and PBC1 are similar, i.e., PA1 : PB = PC1 : PA and PB1 : PA = PC1 :
PB. By multiplying these equalities we get PA1 · PB1 = PC2

1 .
b) According to heading a)

OA′′ =
√

OB′ · OC ′, OB′′ =
√

OA′ · OC ′, OC ′′ =
√

OA′ · OB′.

By multiplying these equalities we get the desired statement.
2.59. Let K, L, M and N be the bases of perpendiculars dropped from point E to lines

AB, BC, CD and DA, respectively. Points K and N lie on the circle with diameter AE,
hence, ∠(EK,KN) = ∠(EA,AN). Similarly, ∠(EL,LM) = ∠(EC,CM) = ∠(EA,AN)
and, therefore, ∠(EK,KN) = ∠(EL,LM). Similarly, ∠(EN,NK) = ∠(EM,ML) and
∠(KE,EN) = ∠(LE,EM). It follows that △EKN ∼ △ELM and, therefore, EK : EN =
EL : EM , i.e., EN = EK·EM

EL
= ac

b
.

2.60. Let H be the intersection point of heights, M the midpoint of side BC. Points
A1, B2 and C2 lie on the circle with diameter MH, hence, ∠(B2A1, A1C2) = ∠(B2M,MC2) =
∠(AC,AB). Moreover, ∠(A1B2, B2C2) = ∠(A1H,HC2) = ∠(BC,AB) and ∠(A1C2, C2B2) =
∠(BC,AC).

2.61. Let M be the intersection point of medians, H the intersection point of heights
of triangle ABC. Points A1, B1 and C1 are the projections of point M on the heights
and, therefore, these points lie on the circle with diameter MH. Hence, ∠(A1B1, B1C1) =
∠(AH,HC) = ∠(BC,AB). By writing similar equalities for the other angles we get the
desired statement.

2.62. Let lines BM and DN meet S2 at points L and C1, respectively. Let us prove that
lines DC1 and CN are symmetric through line AN . Since BN ⊥ NA, it suffices to verify
that ∠CNB = ∠BND. But arcs ⌣ CB and ⌣ BD are equal. Arcs ⌣ C1M and ⌣ CL
are symmetric through line AN , hence, they are equal and, therefore, ∠MDC1 = ∠CML.
Besides, ∠CNM = ∠MND. Thus, △MCN ∼ △DMN , i.e., CN : MN = MN : DN .

2.63. Let us drop from point Q perpendiculars QK1 and QN1 to KL and NM , respec-
tively, and from point P perpendiculars PM1 and PL1 to NM and KL, respectively. Clearly,
QC
PC

= QK1

PL1
= QN1

PM1
, i.e., QC2

PC2 = QK1·QN1

PL1·PM1
. Since ∠KNC = ∠MLC and ∠NKC = ∠LMC, it

follows that QN1 : PL1 = QN : PL and QK1 : PM1 = QK : PM . Therefore,

QC2

PC2
=

QK · QN

PL · PM
=

AQ · QB

PB · AP
=

(AC − QC) · (AC + QC)

(AC − PC) · (AC + PC)
=

AC2 − QC2

AC2 − PC2
.

This implies that QC = PC.
2.64. a) Since ∠CAM = ∠CBM and ∠CB1M = ∠CA1M , it follows that ∠B1AM =

∠A1BM and ∠AB1M = ∠BA1M .
b) Let M1 be a point of the circle S with diameter CO such that CM1 ‖ A1B1; let M2

be an intersection point of circle S with the circumscribed circle of triangle ABC; let A2

and B2 be the tangent points of of the inscribed circle with sides BC and AC, respectively.
It suffices to verify that M1 = M2. By Problem a) △AB2M2 ∼ △BA2M2, hence, B2M2 :
A2M2 = AB2 : BA2. Since CA1 = p − b − BA2 and CB1 = AB2, it follows that

B2M1

A2M1

=
sin B2CM1

sin A2CM1

=
sin CA1B1

sin CB1A1

=
CB1

CA1

=
AB2

BA2

.

On arc ⌣ A2CB2 of circle S, there exists a unique point X for which B2X : A2X = k
(Problem 7.14), hence, M1 = M2.
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2.65. Let O be the center of the circumscribed circle of the triangle, M the midpoint
of side AB, H the base of height CH, D the midpoint of the arc on which point C does
not lie and with endpoints A and B. Since OD ‖ CH, it follows that ∠DCH = ∠MDC.
The bisector divides the angle between the median and the height in halves if and only if
∠MCD = ∠DCH = ∠MDC = ∠ODC = ∠OCD, i.e., M = O and AB is the diameter of
the circle.

2.66. Let α = ∠A < ∠B. By the preceding problem ∠C = 90◦. Median CM divides
triangle ABC into two isosceles triangles. Since ∠ACM = ∠A = α, ∠MCB = 3α, it follows
that α + 3α = 90◦, i.e., α = 22.5◦. Therefore, ∠A = 22.5◦, ∠B = 67.5◦, ∠C = 90◦.

2.67. Let D be a point at which line AE intersects the circumscribed circle. Point D is
the midpoint of arc ⌣ BC. Therefore, MD ‖ AH, moreover, points A and D lie on different
sides of line MH. It follows that point E lies on segment MH.

2.68. Clearly,

∠(AQ,QP ) = ∠(AN,NP ) = ∠(PM,MB) = ∠(QP,QB).

Therefore, point Q lies on the circle such that segment AB subtends an angle of 2∠(AC,CB)
with vertex at Q and line QP divides arc ⌣ AB of this circle in halves.

2.69. Points P and Q lie on the circle with diameter AD; this circle intersects side BC
at point F . (Observe that F does not coincide with D if AB 6= AC.) Clearly,

∠(FC,CE) = ∠(BA,AE) = ∠(DA,AQ) = ∠(DF,FQ), i.e., EC ‖ FQ.

Similarly, BE ‖ FP . To complete the proof it suffices to notice that the areas of triangles
adjacent to the lateral sides of the trapezoid are equal.

2.70. Let ∠AOB = α and ∠COD = β. Then α
2

+ β
2

= ∠ADP + ∠PAD = 90◦. Since
2SAOB = R2 sin α and 2SCOD = R2 sin β, where R is the radius of the circumscribed circle,
it follows that SAOB = SCOD. Similarly, SBOC = SAOD.

2.71. Let ∠AOB = 2α and ∠COD = 2β. Then α+β = ∠ADP +∠PAD = 90◦. Hence,

(AP 2 + BP 2) + (CP 2 + DP 2) = AB2 + CD2 = 4R2(sin2 α + cos2 α) = 4R2.

Similarly, BC2 + AD2 = 4R2.
2.72. Let M be the midpoint of AC, N the midpoint of BD. We have AM2 = AO2 −

OM2 and BN2 = BO2 − ON2; hence,

AC2 + BD2 = 4(R2 − OM2) + 4(R2 − ON2) = 8R2 − 4(OM2 + ON2) = 8R2 − 4OP 2

since OM2 + ON2 = OP 2.
2.73. The correspondiong legs of acute angles ∠BLP and ∠BDC are perpendicular,

hence, the angles are equal.
Therefore, ∠BLP = ∠BDC = ∠BAP . Moreover, AK ‖ BL and AL ⊥ BK. It follows

that AKLB is a rhombus.
2.74. In the circumscribed circle take a point D′ so that DD′ ‖ AC. Since DD′ ⊥ BD,

it follows that BD′ is a diameter and, therefore, ∠D′AB = ∠D′CB = 90◦. Hence,

SABCD = SABCD =
1

2
(AD′ · AB + BC · CD′) =

1

2
(AB · CD + BC · AD).

2.75. Let us draw diameter AE. Since ∠BEA = ∠BCP and ∠ABE = ∠BPC = 90◦,
it follows that ∠EAB = ∠CBP . The angles that intersect chords EB and CD are equal,
hence, EB = CD. Since ∠EBA = 90◦, the distance from point O to AB is equal to 1

2
EB.

2.76. Let the perpendicular dropped from point P to BC intersect BC at point H and
AD at point M (Fig. 16).
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Figure 16 (Sol. 2.76)

Therefore, ∠BDA = ∠BCA = ∠BPH = ∠MPD. Since angles MDP and MPD are
equal, MP is a median of right triangle APD. Indeed,

∠APM = 90◦ − ∠MPD = 90◦ − ∠MDP = ∠PAM,

i.e., AM = PM = MD.
2.77. The midpoints of the sides of quadrilateral ABCD are vertices of a rectangle (cf.

Problem 1.2), hence, they lie on one circle. Let K and L be the midpoints of sides AB and
CD, let M be the intersection point of lines KP and CD. By Problem 2.76 PM ⊥ CD;
hence, M is the projection of point P on side CD and point M lies on the circle with
diameter KL.

For the other projections the proof is similar.
2.78. a) It is worth to observe that since points A, B, C and D divide the circle into arcs

smaller than 180◦ each, then the quadrilateral constructed contains this circle. The angle
ϕ between the tangents drawn through points A and B is equal to 180◦ − ∠AOB and the
angle ψ between the tangents drawn through points C and D is equal to 180◦ − ∠COD.
Since ∠AOB + ∠COD = 180◦, it follows that ϕ + ψ = 180◦.

Remark. Conversely, the equality ϕ + ψ = 180◦ implies that ∠AOB + ∠COD = 180◦,
i.e., AC ⊥ BD.

b) Let O be the center of the inscribed circle. Since ∠AKO + ∠BMO = 90◦, it follows
that ∠AKO = ∠BOM and △AKO ∼ △BOM . Therefore, AK · BM = BO · AO = r2.

2.79. First, let us suppose that the circumscribed circles of triangles A′BC and AB′C
are not tangent to each other and P is their common point distinct from C. Then

∠(PA,PB) = ∠(PA,PC) + ∠(PC, PB)

= ∠(B′A,B′C) + ∠(A′C,A′B) = ∠(C ′A,C ′B),

i.e., point P lies on the circumscribed circle of triangle ABC ′.
If the the circumscribed circles of triangles A′BC and AB′C are tangent to each other,

i.e., P = C, then our arguments require an insignificant modifications: instead of line PC
we have to take the common tangent.

2.80. a) By applying the statement of Problem 2.79 to triangles AB1C1, A1BC1 and
A1B1C constructed on the sides of triangle A1B1C1 we get the desired statement.

b) Let P be the intersection point of the indicated circles. Let us prove that the value
of the angle ∠(AP,PC) is a constant. Since

∠(AP,PC) = ∠(AP,AB) + ∠(AB,BC) + ∠(BC,PC)
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and angle ∠(AB,BC) is a constant, it remains to verify that the sum ∠(AP,AB)+∠(BC,PC)
is a constant. Clearly,

∠(AP,AB) + ∠(BC,CP ) = ∠(AP,AC1) + ∠(CA1, CP ) =
∠(B1P,B1C1) + ∠(B1A1, B1P ) = ∠(B1A1, B1C1)

and the value of the latter angle is constant by hypothesis.
We similarly prove that the values of angles ∠(AP,PB) and ∠(BP,PC) are constants.

Hence, point P remains fixed.
2.81. As follows from Problem 2.80 b) it suffices to carry out the proof for one such

triangle A1B1C1 only; for instance, for the triangle with vertices in the midpoints of sides
of triangle ABC. Let H be the intersection point of heights of triangle A1B1C1, i.e., the
center of the circumscribed circle of triangle ABC. Since A1H ⊥ B1C1 and B1H ⊥ A1C1,
it follows that ∠(A1H,HB1) = ∠(B1C1, A1C1) = ∠(A1C,CB1), i.e., point H lies on the
circumscribed circle of triangle A1B1C.

A similar argument shows that point H lies on the circumscribed circles of triangles
A1BC1 and AB1C1.

2.82. a) Let X be the intersection point of the circumscribed circles of triangles ABC
and AB′C ′. Then

∠(XB′, XC) = ∠(XB′, XA) + ∠(XA,XC) = ∠(C ′B′, C ′A) + ∠(BA,BC).

Since AC ′ = AP = AB′, triangle C ′AB′ is an isosceles one and ∠C ′AB′ = 2∠A; hence,
∠(C ′B′, C ′A) = ∠A − 90◦. Therefore,

∠(XB′, XC) = ∠A − 90◦ + ∠B = 90◦ − ∠C = ∠(A′B′, A′C),

i.e., point X lies on the circumscribed circle of triangle A′B′C. For the circumscribed circle
of triangle A′BC ′ the proof is similar.

b) Let X be the intersection point of the circumscribed circles of triangles A′B′C ′ and
A′BC. Let us prove that X lies on the circumscribed circle of triangle ABC ′. Clearly,

∠(XB,XC ′) = ∠(XB,XA′) + ∠(XA′, XC ′) = ∠(CB,CA′) + ∠(B′A′, B′C ′).

Let A1, B1 and C1 be the midpoints of segments PA′, PB′ and PC ′. Then

∠(CB,CA′) = ∠(CP,CA1) = ∠(B1P,B1A1),∠(B′A′, B′C ′) = ∠(B1A1, B1C1)

and

∠(AB,AC ′) = ∠(AP,AC1) = ∠(B1P,B1C1).

It follows that ∠(XB,XC ′) = ∠(AB,AC ′).
We similarly prove that point X lies on the circumscribed circle of triangle AB′C.
c) Since QA′ is the common chord of circles centered at O and I, it follows that QA′ ⊥ OI.

Similarly, QB′ ⊥ OJ and QC ⊥ IJ . Therefore, sides of angles OJI and B′QC, as well as
sides of angles OIJ and A′QC, are mutually perpendicular, hence, sin OJI = sin B′QC and
sin OIJ = sin A′QC. Therefore, OI : OJ = sin OJI : sin OIJ = sin B′QC : sin A′QC. It is
also clear that

QI

QJ
=

sin QJI

sin QIJ
=

sin(1
2
QJC)

sin(1
2
QIC)

=
sin QB′C

sin QA′C
.

Taking into account that sinB′QC : sin QB′C = B′C : QC and sin A′QC : sin QA′C =
A′C : QC we get

OI

OJ
:

QI

QJ
=

B′C

QC
:
A′C

QC
= 1.
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2.83. a) The conditions of the problem imply that no three lines meet at one point. Let
lines AB, AC and BC intersect the fourth line at points D, E, and F , respectively (Fig.
17).

Figure 17 (Sol. 2.83)

Denote by P the intersection point of circumscribed circles of triangles ABC and CEF
distinct from point C. Let us prove that point P belongs to the circumscribed circle of
triangle BDF . For this it suffices to verify that ∠(BP,PF ) = ∠(BD,DF ). Clearly,

∠(BP,PF ) = ∠(BP,PC) + ∠(PC, PF ) = ∠(BA,AC) + ∠(EC,EF )

= ∠(BD,AC) + ∠(AC,DF ) = ∠(BD,DF ).

We similarly prove that point P belongs to the circumscribed circle of triangle ADE.
b) Let us make use of notations of Fig. 17. Thanks to heading a), the circumscribed

circles of triangles ABC, ADE and BDF pass through point P and, therefore, we can
consider them as the circumscribed circles of triangles ABP , ADP and BDP respectively.
Therefore, their centers lie on a circle that passes through point P (cf. Problem 5.86).

We similarly prove that the centers of any of the three of given circles lie on a circle that
passes through point P . It follows that all the four centers lie on a circle that passes through
point P .

2.84. a) Let P be Michel’s point for lines AB, BC, CA and A1B1. The angles between
rays PA, PB, PC and the tangents to circles Sa, Sb, Sc are equal to ∠(PB1, B1A) =
∠(PC1, C1A), ∠(PC1, C1B) = ∠(PA1, A1B), ∠(PA1, A1C) = ∠(PB1, B1C), respectively.
Since ∠(PC1, C1A) = ∠(PC1, C1B) = ∠(PA1, A1C) = ϕ, it follows that after a rotation
through an angle of ϕ about point P lines PA, PB and PC turn into the tangents to circles
Sa, Sb and Sc, respectively, and, therefore, after a rotation through an angle of 90◦−ϕ these
lines turn into lines POa, POb and POc respectively. Moreover,

POa

PA
=

POb

PB
=

POc

PC
=

1

2
sin ϕ.

Therefore, the composition of the rotation through an angle of 90◦ − ϕ and the homothety
(see ???) with center P and coefficient 1

2
sin ϕ sends triangle ABC to OaObOc.

b) The transformation considered in the solution of heading a) sends the center O of the
circumscribed circle of triangle ABC into the center O′ of the circumscribed circle of triangle
OaObOc and the orthocenter H of triangle ABC to orthocenter H ′ of triangle OaObOc. Let
us complement triangle OO′H ′ to parallelogram OO′H ′M . Since OH

OM
= OH

O′H′
= 2 sin ϕ and

∠HOM = ∠(HO,O′H ′) = 90◦ − ϕ, it follows that MH = MO, i.e., point M lies on the
midperpendicular of segment OH. It remains to notice that for the inscribed quadrilateral
OOaObOc point M is uniquely determined: taking instead of point O any of the points Oa,
Ob or Oc we get the same point M (cf. Problem 13.33).

2.85. We may assume that rays AB and DC meet at point E and rays BC and AD
meet at point F . Let P be the intersection point of circumscribed circles of triangles BCE
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and CDF . Then ∠CPE = ∠ABC and ∠CPF = ∠ADC. Hence, ∠CPE + ∠CPF = 180◦,
i.e., point P lies on segment EF .

2.86. a) Since

∠(AP,PD) = ∠(AP,PE) + ∠(PE, PD) =

∠(AC,CD) + ∠(AB,BD) + ∠(AO,OD),

points A, P , D and O lie on one circle.
b) Clearly,

∠(EP, PO) = ∠(EP, PA) + ∠(PA,PO) = ∠(DC,CA) + ∠(DA,DO) = 90◦,

because the arcs intersected by these angles constitute a half of the circle.
2.87. Let us make use of notations of Fig. 17. The projections of point P on lines CA

and CB coincide with its projection to CE and CF , respectively. Therefore, Simson’s lines
of point P relative triangles ABC and CEF coincide (cf. Problem 5.85 a).

2.88. Let point A′ be symmetric to point A through the midperpendicular to segment
BC. Then ∠OAH = 1

2
∠AOA′ = ∠ABA′ = |∠B − ∠C|.

2.89. Since AA′ is a diameter, A′C ⊥ AC; hence, BH ‖ A′C. Similarly, CH ‖ A′B.
Therefore, BA′CH is a parallelogram.

2.90. Let l be a line parallel to the two given lines, D the intersection point of lines m
and n. Then

∠(AD,DB) = ∠(m,AB) + ∠(AB, n) = ∠(AC, l) + ∠(l, CB) = ∠(AC,CB)

and, therefore, point D lies on the circumscribed circle of triangle ABC.
2.91. a) Let O be the midpoint of the arc of circle S that lies inside triangle ABC.

Then ∠CBO = ∠BCO and due to a property of the angle between a tangent and a chord,
∠BCO = ∠ABO. Therefore, BO is the bisector of angle ABC, i.e., O is the center of the
inscribed circle of triangle ABC. We similarly prove that the midpoint of the arc of circle S
that lies outside triangle ABC is the center of its escribed circle.

b) We have to prove that the center of the considered circle S lies on the bisector of angle
BAC. Let D be the intersection point of the bisector of the angle with the circumscribed
circle of triangle ABC. Then DB = DO = DC (cf. Problem 2.4 a), i.e., D is the center of
circle S.

2.92. If angle ∠C is a right one, then the solution of the problem is obvious: C is the
intersection point of lines A1B, A2B2, AB1. If ∠C 6= 90◦, then the circumscribed circles of
squares ACA1A2 and BCB1B2 have in addition to C one more common point, C1. Then

∠(AC1, A2C1) = ∠(A2C1, A1C1) = ∠(A1C1, C1C) = ∠(C1C,C1B1)
= ∠(C1B1, C1B2) = ∠(C1B2, C1B) = 45◦

(or −45◦; it is only important that all the angles are of the same sign). Hence, ∠(AC,C1B1) =
4 · 45◦ = 180◦, i.e., line AB1 passes through point C1.

Similarly, A2B2 and A1B pass through point C1.
2.93. Let P and O be the centers of circles S1 and S2, respectively; let α = ∠APC,

β = ∠BPC; lines AC and BC intersect S2 at points K and L, respectively. Since ∠OAP =
∠OBP = 90◦, it follows that ∠AOB = 180◦ − α − β. Furthermore,

∠LOB = 180◦ − 2∠LBO = 2∠CBP = 180◦ − β.

Similarly, ∠KOA = 180◦ − α. Therefore,

∠LOK = ∠LOB + ∠KOA − ∠AOB = 180◦,
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i.e., KL is a diameter.
2.94. Let us consider points M ′, P ′, Q′ and R′ symmetric to points M , P , Q and R,

respectively, through line OA. Since point C is symmetric to point B through OA, it follows
that line P ′Q′ passes through point C. The following equalities are easy to verify:

∠(CS,NS) = ∠(Q′Q,NQ) = ∠(Q′P,NP ′) = ∠(CP ′, NP ′);

∠(CR′, P ′R′) = ∠(MM ′, P ′M ′) = ∠(MN,P ′N) = ∠(CN,P ′N).

From these equalities we deduce that points C, N , P ′, S and R′ lie on one circle. But points
S, R′ and C lie on one line, therefore, S = R′.





CHAPTER 3. CIRCLES

Background

1. A line that has exactly one common point with a circle is called a line tangent to
the circle. Through any point A outside the circle exactly two tangents to the circle can be
drawn.

Let B and C be the tangent points and O the center of the circle. Then:
a) AB = AC;
b) ∠BAO = ∠CAO;
c) OB ⊥ AB.
(Sometimes the word “tangent” is applied not to the whole line AB but to the segment

AB. Then property a), for example, is formulated as: the tangents to one circle drawn from
one point are equal.)

2. Let lines l1 and l2 that pass through point A intersect a circle at points B1, C1 and
B2, C2, respectively. Then AB1 · AC1 = AB2 · AC2. Indeed, △AB1C2 ∼ △AB2C1 in three
angles. (We advise the reader to prove this making use of the properties of the inscribed
angles and considering two cases: A lies outside the circle and A lies inside the circle.)

If line l2 is tangent to the circle, i.e., B2 = C2, then AB1 · AC1 = AB2
2 . The proof runs

along the same lines as in the preceding case except that now we have to make use of the

properties of the angle between a tangent and a chord.
3. The line that connects the centers of tangent circles passes through their tangent

point.
4. The value of the angle between two intersecting circles is the value of the angle between

the tangents to these circles drawn through the intersection point. It does not matter which
of the two of intersection points we choose: the corresponding angles are equal.

The angle between tangent circles is equal to 0◦.
5. In solutions of problems from §6 a property that has no direct relation to circles is

used: the heights of a triangle meet at one point. The reader can find the proof of this fact
in solutions of Problems 5.45 and 7.41 or can take it for granted for the time being.

6. It was already in the middle of the V century A.D. that Hyppocratus from island
Chios (do not confuse him with the famous doctor Hyppocratus from island Kos who lived
somewhat later) and Pythagoreans began to solve the quadrature of the circle problem. It is
formulated as follows: with the help of a ruler and compass construct a square of the same

area as the given circle.
In 1882 the German mathematician Lindemann proved that number π is transcendental,

i.e., is not a root of a polynomial with integer coefficients. This implies, in particular, that
the problem on the quadrature of the circle is impossible to solve as stated (using other tools
one can certainly solve it).

It seems that it was the problem on Hyppocratus’ crescents (Problem 3.38) that induced
in many a person great expectations to the possibility of squaring the circle: the area of the
figure formed by arcs of circles is equal to the area of a triangle. Prove this statement and
try to understand why such expectations were not grounded in this case.

57
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Introductory problems

1. Prove that from a point A outside a circle it is possible to draw exactly two tangents
to the circle and the lengths of these tangents (more exactly, the lengths from A to the
tangent points) are equal.

2. Two circles intersect at points A and B. Point X lies on line AB but not on segment
AB. Prove that the lengths of all the tangents drawn from point X to the circles are equal.

3. Two circles whose radii are R and r are tangent from the outside (i.e., none of them
lies inside the other one). Find the length of the common tangent to these circles.

4. Let a and b be the lengths of the legs of a right triangle, c the length of its hypothenuse.
Prove that:

a) the radius of the inscribed circle of this triangle is equal to 1
2
(a + b − c);

b) the radius of the circle tangent to the hypothenuse and the extensions of the legs is
equal to 1

2
(a + b + c).

§1. The tangents to circles

3.1. Lines PA and PB are tangent to a circle centered at O; let A and B be the tangent
points. A third tangent to the circle is drawn; it intersects with segments PA and PB at
points X and Y , respectively. Prove that the value of angle XOY does not depend on the
choice of the third tangent.

3.2. The inscribed circle of triangle ABC is tangent to side BC at point K and an
escribed circle is tangent at point L. Prove that CK = BL = 1

2
(a + b− c), where a, b, c are

the lengths of the triangle’s sides.
3.3. On the base AB of an isosceles triangle ABC a point E is taken and circles tangent

to segment CE at points M and N are inscribed into triangles ACE and ECB, respectively.
Find the length of segment MN if the lengths of segments AE and BE are known.

3.4. Quadrilateral ABCD is such that there exists a circle inscribed into angle ∠BAD
and tangent to the extensions of sides BC and CD. Prove that AB + BC = AD + DC.

3.5. The common inner tangent to circles whose radii are R and r intersects their
common outer tangents at points A and B and is tangent to one of the circles at point C.
Prove that AC · CB = Rr.

3.6. Common outer tangents AB and CD are drawn to two circles of distinct radii.
Prove that quadrilateral ABCD is a circumscribed one if and only if the circles are tangent
to each other.

3.7. Consider parallelogram ABCD such that the escribed circle of triangle ABD is
tangent to the extensions of sides AD and AB at points M and N , respectively. Prove
that the intersection points of segment MN with BC and CD lie on the inscribed circle of
triangle BCD.

Figure 18 (3.7)
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3.8. On each side of quadrilateral ABCD two points are taken; these points are con-
nected as shown on Fig. 18. Prove that if all the five dashed quadrilaterals are circumscribed
ones, then the quadrilateral ABCD is also a circumscribed one.

§2. The product of the lengths of a chord’s segments

3.9. Through a point P lying on the common chord AB of two intersecting circles chord
KM of the first circle and chord LN of the second circle are drawn. Prove that quadrilateral
KLMN is an inscribed one.

3.10. Two circles intersect at points A and B; let MN be their common tangent. Prove
that line AB divides MN in halves.

3.11. Line OA is tangent to a circle at point A and chord BC is parallel to OA. Lines
OB and OC intersect the circle for the second time at points K and L, respectively. Prove
that line KL divides segment OA in halves.

3.12. In parallelogram ABCD, diagonal AC is longer than diagonal BD; let M be a
point on diagonal AC such that quadrilateral BCDM is an inscribed one. Prove that line
BD is a common tangent to the circumscribed circles of triangles ABM and ADM .

3.13. Given circle S and points A and B outside it. For each line l that passes through
point A and intersects circle S at points M and N consider the circumscribed circle of
triangle BMN . Prove that all these circles have a common point distinct from point B.

3.14. Given circle S, points A and B on it and point C on chord AB. For every circle
S ′ tangent to chord AB at point C and intersecting circle S at points P and Q consider
the intersection point M of lines AB and PQ. Prove that the position of point M does not
depend on the choice of circle S ′.

§3. Tangent circles

3.15. Two circles are tangent at point A. A common (outer) tangent line is drawn to
them; it is tangent to the circles at points C and D, respectively. Prove that ∠CAD = 90◦.

3.16. Two circles S1 and S2 centered at O1 and O2 are tangent to each other at point A.
A line that intersects S1 at point A1 and S2 at point A2 is drawn through point A. Prove
that O1A1 ‖ O2A2.

3.17. Three circles S1, S2 and S3 are pairwise tangent to each other at three distinct
points. Prove that the lines that connect the tangent point of circles S1 and S2 with the
other two tangent points intersect circle S3 at points that are the endpoints of its diameter.

3.18. Two tangent circles centered at O1 and O2, respectively, are tangent from the
inside to the circle of radius R centered at O. Find the perimeter of triangle OO1O2.

3.19. Circles S1 and S2 are tangent to circle S from the inside at points A and B so
that one of the intersection points of circles S1 and S2 lies on segment AB. Prove that the
sum of the radii of circles S1 and S2 is equal to the radius of circle S.

3.20. The radii of circles S1 and S2 tangent at point A are equal to R and r (R > r).
Find the length of the tangent drawn to circle S2 from point B on circle S1 if AB = a
(consider the cases of the inner and outer tangent).

3.21. A point C is taken on segment AB. A line that passes through point C intersects
circles with diameters AC and BC at points K and L and the circle with diameter AB at
points M and N , respectively. Prove that KM = LN .

3.22. Given four circles S1, S2, S3 and S4 such that Si and Si+1 are tangent from the
outside for i = 1, 2, 3, 4 (S5 = S1). Prove that the tangent points are the vertices of an
inscribed quadrilateral.
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3.23. a) Three circles centered at A, B and C are tangent to each other and line l; they
are placed as shown on Fig. 19. Let a, b and c be radii of circles centered at A, B and C,
respectively. Prove that 1√

c
= 1√

a
+ 1√

b
.

Figure 19 (3.23)

b) Four circles are pairwise tangent from the outside (at 6 distinct points). Let a, b, c
and d be their radii; α = 1

a
, β = 1

b
, γ = 1

c
and δ = 1

d
. Prove that

2(α2 + β2 + γ2 + δ2) = (α + β + γ + δ)2.

§4. Three circles of the same radius

3.24. Three circles of radius R pass through point H; let A, B and C be points of their
pairwise intersection distinct from H. Prove that

a) H is the intersection point of heights of triangle ABC;
b) the radius of the circumscribed circle of the triangle ABC is also equal to R.

Figure 20 (3.24)

3.25. Three equal circles intersect as shown on Fig. 20 a) or b). Prove that ⌣ AB1+ ⌣
BC1± ⌣ CA1 = 180◦, where the minus sign is taken in case b) and plus in case a).

Figure 21 (3.26)

3.26. Three circles of the same radius pass through point P ; let A, B and Q be points
of their pairwise intersections. A fourth circle of the same radius passes through point Q



§6. APPLICATION OF THE THEOREM ON TRIANGLE’S HEIGHTS 61

and intersects the other two circles at points C and D. The triangles ABQ and CDP thus
obtained are acute ones and quadrilateral ABCD is a convex one (Fig. 21). Prove that
ABCD is a parallelogram.

§5. Two tangents drawn from one point

3.27. Tangents AB and AC are drawn from point A to a circle centered at O. Prove
that if segment AO subtends a right angle with vertex at point M , then segments OB and
OC subtend equal angles with vertices at M .

3.28. Tangents AB and AC are drawn from point A to a circle centered at O. Through
point X on segment BC line KL perpendicular to XO is drawn so that points K and L lie
on lines AB and AC, respectively. Prove that KX = XL.

3.29. On the extension of chord KL of a circle centered at O a point A is taken and
tangents AP and AQ to the circle are drawn from it; let M be the midpoint of segment PQ.
Prove that ∠MKO = ∠MLO.

3.30. From point A tangents AB and AC to a circle and a line that intersects the circle at
points D and E are drawn; let M be the midpoint of segment BC. Prove that BM2 = DM ·
ME and either ∠DME = 2∠DBE or ∠DME = 2∠DCE; moreover, ∠BEM = ∠DEC.

3.31. Quadrilateral ABCD is inscribed in a circle so that tangents to this circle at points
B and D intersect at a point K that lies on line AC.

a) Prove that AB · CD = BC · AD.
b) A line parallel to KB intersects lines BA, BD and BC at points P , Q and R,

respectively. Prove that PQ = QR.

∗ ∗ ∗
3.32. A circle S and a line l that has no common points with S are given. From point

P that moves along line l tangents PA and PB to circle S are drawn. Prove that all chords
AB have a common point.

Let point P lie outside circle S; let PA and PB be tangents to the circle. Then line AB
is called the polar line of point P relative circle S.

3.33. Circles S1 and S2 intersect at points A and B so that the center O of circle S1 lies
on S2. A line that passes through point O intersects segment AB at point P and circle S2

at point C. Prove that point P lies on the polar line of point C relative circle S1.

§6. Application of the theorem on triangle’s heights

3.34. Points C and D lie on the circle with diameter AB. Lines AC and BD, AD and
BC meet at points P and Q, respectively. Prove that AB ⊥ PQ.

3.35. Lines PC and PD are tangent to the circle with diameter AB so that C and D
are tangent points. Prove that the line that connects P with the intersection point of lines
AC and BD is perpendicular to AB.

3.36. Given diameter AB of a circle and point C outside AB. With the help of the ruler
alone (no compasses) drop the perpendicular from C to AB if:

a) point C does not lie on the circle;
b) point C lies on the circle.
3.37. Let Oa, Ob and Oc be the centers of circumscribed circles of triangles PBC, PCA

and PAB. Prove that if points Oa and Ob lie on lines PA and PB, then point Oc lies on
line PC.
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§7. Areas of curvilinear figures

3.38. On the hypothenuse and legs of a rectangular triangle semicircles are constructed
as shown on Fig. 22. Prove that the sum of the areas of the crescents obtained (shaded) is
equal to the area of the given triangle.

Figure 22 (3.38)

3.39. In a disc two perpendicular diameters, i.e., four radii, are constructed. Then there
are constructed four disks whose diameters are these radii. Prove that the total area of the
pairwise common parts of these four disks is equal to the area of the initial (larger) disk that
lies outside the considered four disks (Fig. 23).

Figure 23 (3.39)

3.40. On three segments OA, OB and OC of the same length (point B lies outside angle
AOC) circles are constructed as on diameters. Prove that the area of the curvilinear triangle
bounded by the arcs of these circles and not containing point O is equal to a half area of the
(common) triangle ABC.

3.41. On sides of an arbitrary acute triangle ABC as on diameters circles are constructed.
They form three “outer” curvilinear triangles and one “inner” triangle (Fig. 24). Prove that
if we subtract the area of the “inner” triangle from the sum of the areas of “outer” triangles
we get the doubled area of triangle ABC.

§8. Circles inscribed in a disc segment

In this section a segment is always a disc segment.
3.42. Chord AB divides circle S into two arcs. Circle S1 is tangent to chord AB at

point M and one of the arcs at point N . Prove that:
a) line MN passes through the midpoint P of the second arc;
b) the length of tangent PQ to circle S1 is equal to that of PA.
3.43. From point D of circle S the perpendicular DC is dropped to diameter AB. Circle

S1 is tangent to segment CA at point E and also to segment CD and to circle S. Prove that
DE is a bisector of triangle ADC.
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Figure 24 (3.41)

3.44. Two circles inscribed in segment AB of the given circle intersect at points M and
N . Prove that line MN passes through the midpoint C of arc AB complementary for the
given segment.

3.45. A circle tangent to sides AC and BC of triangle ABC at points M and N ,
respectively is also tangent to its circumscribed circle (from the inside). Prove that the
midpoint of segment MN coincides with the center of the inscribed circle of triangle ABC.

3.46. Triangles ABC1 and ABC2 are inscribed in circle S so that chords AC2 and BC1

intersect. Circle S1 is tangent to chord AC2 at point M2, to chord BC1 at point N1 and to
circle S (???where?). Prove that the centers of the inscribed circles of triangles ABC1 and
ABC2 lie on segment M2N1.

§9. Miscellaneous problems

3.47. The radii of two circles are equal to R1 and R2 and the distance between the
centers of the circles is equal to d. Prove that these circles are orthogonal if and only if
d2 = R2

1 + R2
2.

3.48. Three circles are pairwise tangent from the outside at points A, B and C. Prove
that the circumscribed circle of triangle ABC is perpendicular to all the three circles.

3.49. Two circles centered at O1 and O2 intersect at points A and B. A line is drawn
through point A; the line intersects the first circle at point M1 and the second circle at point
M2. Prove that ∠BO1M1 = ∠BO2M2.

§10. The radical axis

3.50. Circle S and point P are given on the plane. A line drawn through point P
intersects the circle at points A and B. Prove that the product PA · PB does not depend
on the choice of a line.

This product taken with the plus sign if point P is outside the circle and with minus sign
if P is inside of the circle is called the degree of point P with respect to circle S.

3.51. Prove that for a point P outside circle S its degree with respect to S is equal to
the square of the length of the tangent drawn to the circle from point P .

3.52. Prove that the degree of point P with respect to circle S is equal to d2−R2, where
R is the radius of S and d is the distance from P to the center of S.

3.53. Two nonconcentric circles S1 and S2 are given in plane. Prove that the locus of
points whose degree with respect to S1 is equal to the degree with respect to S2 is a line.

This line is called the radical axis of circles S1 and S2.



64 CHAPTER 3. CIRCLES

3.54. Prove that the radical axis of two intersecting circles passes through the intersection
points.

3.55. Given three circles in plane whose centers do not lie on one line. Let us draw
radical axes for each pair of these circles. Prove that all the three radical axes meet at one
point.

This point is called the radical center of the three circles.

3.56. Consider three pairwise intersecting circles in plane. Through the intersection
points of any two of them a line is drawn. Prove that either these three lines meet at one
point or are parallel.

3.57. Two nonconcentric circles S1 and S2 are given. Prove that the set of centers of
circles that intersect both these circles at a right angle is their radical axis (without their
common chord if the given circles intersect).

3.58. a) Prove that the midpoints of the four common tangents to two nonintersecting
circles lie on one line.

b) Through two of the tangent points of common exterior tangents with two circles a line
is drawn, see Fig. . Prove that the circles cut on this line equal chords.

3.59. On sides BC and AC of triangle ABC, points A1 and B1, respectively, are taken;
let l be the line that passes through the common points of circles with diameters AA1 and
BB1. Prove that:

a) Line l passes through the intersection point H of heights of triangle ABC;
b) line l passes through point C if and only if AB1 : AC = BA1 : BC.
3.60. The extensions of sides AB and CD of quadrilateral ABCD meet at point F and

the extensions of sides BC and AD meet at point E. Prove that the circles with diameters
AC, BD and EF have a common radical axis and the orthocenters of triangles ABE, CDE,
ADF and BCF lie on it.

3.6l. Three circles intersect pairwise at points A1 and A2, B1 and B2, C1 and C2. Prove
that A1B2 · B1C2 · C1A2 = A2B1 · B2C1 · C2A1.

3.62. On side BC of triangle ABC point A′ is taken. The midperpendicular to segment
A′B intersects side AB at point M and the midperpendicular to segment A′C intersects
side AC at point N . Prove that point symmetric to point A′ through line MN lies on the
circumscribed circle of triangle ABC.

3.63. Solve Problem 1.66 making use of the properties of the radical axis.
3.64. Inside a convex polygon several pairwise nonintersecting disks of distinct radii are

placed. Prove that it is possible to cut the polygon into smaller polygons so that all these
small polygons are convex and each of them contains exactly one of the given disks.

3.65. a) In triangle ABC, heights AA1, BB1 and CC1 are drawn. Lines AB and A1B1,
BC and B1C1, CA and C1A1 intersect at points C ′, A′ and B′, respectively. Prove that
points A′, B′ and C ′ lie on the radical axis of the circle of nine points (cf. Problem 5.106)
and on that of the circumscribed circle.

b) The bisectors of the outer angles of triangle ABC intersect the extensions of the
opposite sides at points A′, B′ and C ′. Prove that points A′, B′ and C ′ lie on one line
and this line is perpendicular to the line that connects the centers of the inscribed and
circumscribed circles of triangle ABC.

3.66. Prove that diagonals AD, BE and CF of the circumscribed hexagon ABCDEF
meet at one point. (Brianchon’s theorem.)

3.67. Given four circles S1, S2, S3 and S4 such that the circles Si and Si+1 are tangent
from the outside for i = 1, 2, 3, 4, where S5 = S1. Prove that the radical axis of circles S1

and S3 passes through the intersection point of common outer tangents to S2 and S4.
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3.68. a) Circles S1 and S2 intersect at points A and B. The degree of point P of circle
S1 with respect to circle S2 is equal to p, the distance from point P to line AB is equal to
h and the distance between the centers of circles is equal to d. Prove that |p| = 2dh.

b) The degrees of points A and B with respect to the circumscribed circles of triangles
BCD and ACD are equal to pa and pb, respectively. Prove that |pa|SBCD = |pb|SACD.

Problems for independent study

3.69. An easy chair of the form of a disc sector of radius R is swinging on a horizontal
table. What is the trajectory of the vertex of the sector?

3.70. From a point A outside a circle of radius R two tangents AB and AC are drawn,
B and C are tangent points. Let BC = a. Prove that 4R2 = r2 + r2

a + 1
2
a2, where r and ra

are the radii of the inscribed and escribed circles of triangle ABC.
3.71. Two circles have an inner tangent. The line that passes through the center of a

smaller circle intersects the greater one at points A and D and the smaller one at points B
and C. Find the ratio of the radii of the circles if AB : BC : CD = 2 : 3 : 4.

3.72. The centers of three circles each of radius R, where 1 < R < 2, form an equilateral
triangle with side 2. What is the distance between the intersection points of these circles
that lie outside the triangle?

3.73. A point C is taken on segment AB and semicircles with diameters AB, AC and
BC are constructed (on one side of line AB). Find the ratio of the area of the curvilinear
triangle bounded by these semicircles to the area of the triangle formed by the midpoints of
the arcs of these semicircles.

3.74. A circle intersects side BC of triangle ABC at points A1 and A2, side AC at
points B1 and B2, side AB at points C1 and C2. Prove that

AC1

C1B
· BA1

A1C
· CB1

B1A
=

(

AC2

C2B
· BA2

A2C
· CB2

B2A

)−1

.

3.75. From point A tangents AB and AC to a circle are drawn (B and C are tangent
points); PQ is a diameter of the circle; line l is tangent to the circle at point Q. Lines PA,
PB and PC intersect line l at points A1, B1 and C1. Prove that A1B1 = A1C1.

Solutions

3.1. Let line XY be tangent to the given circle at point Z. The corresponding sides of
triangles XOA and XOZ are equal and, therefore, ∠XOA = ∠XOZ. Similarly, ∠ZOY =
∠BOY . Therefore,

∠XOY = ∠XOZ + ∠ZOY =
∠AOZ + ∠ZOB

2
=

∠AOB

2
.

3.2. Let M and N be the tangent points of the inscribed circle with sides AB and BC.
Then BK + AN = BM + AM = AB, hence, CK + CN = a + b − c.

Let P and Q be the tangent points of the escribed circle with the extensions of sides AB
and BC. Then AP = AB + BP = AB + BL and AQ = AC + CQ = AC + CL. Hence,
AP + AQ = a + b + c. Therefore, BL = BP = AP − AB = 1

2
(a + b − c).

3.3. By Problem 3.2 CM = 1
2
(AC + CE −AE) and CN = 1

2
(BC + CE −BE). Taking

into account that AC = BC we get MN = |CM − CN | = 1
2
|AE − BE|.

3.4. Let lines AB, BC, CD and DA be tangent to the circle at points P , Q, R and S,
respectively. Then CQ = CR = x, hence, BP = BC+CQ = BC+x and DS = DC+CR =
DC +x. Therefore, AP = AB +BP = AB +BC +x and AS = AD +DS = AD +DC +x.
Taking into account that AP = AS, we get the statement desired.
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3.5. Let line AB be tangent to the circles centered at O1 and O2 at points C and
D, respectively. Since ∠O1AO2 = 90◦, the right triangles AO1C and O2AD are similar.
Therefore, O1C : AC = AD : DO2. Moreover, AD = CB (cf. Problem 3.2). Therefore,
AC · CB = Rr.

3.6. Let lines AB and CD intersect at point O. Let us assume for definiteness that
points A and D lie on the first circle while points B and C lie on the second one. Suppose
also that OB < OA (Fig. 25).

Figure 25 (Sol. 3.6)

The intersection point M of bisectors of angles ∠A and ∠D of quadrilateral ABCD is
the midpoint of the arc of the first circle that lies inside triangle AOD and the intersection
point N of bisectors of angles ∠B and ∠C is the midpoint of the arc of the second circle that
lies outside triangle BOC, cf. Problem 2.91 a). Quadrilateral ABCD is a circumscribed one
if and only if points M and N coincide.

3.7. Let R be the tangent point of the escribed circle with side BD, let P and Q be the
intersection points of segment MN with BC and CD, respectively (Fig. 26).

Figure 26 (Sol. 3.7)

Since ∠DMQ = ∠BPN , ∠DQM = ∠BNP and ∠DMQ = ∠BNP , it follows that
triangles MDQ, PBN and PCQ are isosceles ones. Therefore, CP = CQ, DQ = DM = DR
and BP = BN = BR. Therefore, P , Q and R are the tangent points of the inscribed circle
of triangle BCD with its sides (cf. Problem 5.1).

3.8. Denote some of the tangent points as shown on Fig. 27. The sum of the lengths of
one pair of the opposite sides of the inner quadrilateral is equal to the sum of the lengths
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of the pair of its other sides. Let us extend the sides of this quadrilateral to tangent points
with inscribed circles of the other quadrilaterals (ST is one of the obtained segments).

Figure 27 (Sol. 3.8)

Then both sums of lengths of pairs of opposite segments increase by the same number.
Each of the obtained segments is the common tangent to a pair of “corner” circles; each
segment can be replaced with another common outer tangent of equal length (i.e., replace
ST with QR). To prove the equality AB + CD = BC + AD, it remains to make use of
equalities of the form AP = AQ.

3.9. Let P be the intersection point of diagonals of convex quadrilateral ABCD. Quadri-
lateral ABCD is an inscribed one if and only if △APB ∼ △DPC, i.e., PA ·PC = PB ·PD.
Since quadrilaterals ALBN and AMBK are inscribed ones, PL·PN = PA·PB = PM ·PK.
Hence, quadrilateral KLMN is an inscribed one.

3.10. Let O be the intersection point of line AB and segment MN . Then OM2 =
OA · OB = ON2, i.e., OM = ON .

3.11. Let, for definiteness, rays OA and BC be codirected, M the intersection point of
lines KL and OA. Then ∠LOM = ∠LCB = ∠OKM and, therefore, △KOM ∼ △OLM .
Hence, OM : KM = LM : OM , i.e., OM2 = KM · LM . Moreover, MA2 = MK · ML.
Therefore, MA = OM .

3.12. Let O be the intersection point of diagonals AC and BD. Then MO · OC =
BO ·OD. Since OC = OA and BO = OD, we have MO ·OA = BO2 and MO ·OA = DO2.
These equalities mean that OB is tangent to the circumscribed circle of triangle ABM and
OD is tangent to the circumscribed circle of triangle ADM .

3.13. Let C be the intersection point of line AB with the circumscribed circle of triangle
BMN distinct from point B; let AP be the tangent to circle S. Then AB ·AC = AM ·AN =
AP 2 and, therefore, AC = AP 2

AB
, i.e., point C is the same for all lines l.

Remark. We have to exclude the case when the length of the tangent drawn to S from
A is equal to AB.

3.14. Clearly, MC2 = MP ·MQ = MA ·MB and point M lies on ray AB if AC > BC
and on ray BA if AC < BC. Let, for definiteness sake, point M lie on ray AB. Then
(MB + BC)2 = (MB + BA) · MB. Therefore, MB = BC2

AB−2BC
and we deduce that the

position of point M does not depend on the choice of circle S ′.
3.15. Let M be the intersection point of line CD and the tangent to circles at point A.

Then MC = MA = MD. Therefore, point A lies on the circle with diameter CD.
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3.16. Points O1, A and O2 lie on one line, hence, ∠A2AO2 = ∠A1AO1. Triangles
AO2A2 and AO1A1 are isosceles ones, hence, ∠A2AO2 = ∠AA2O2 and ∠A1AO1 = ∠AA1O1.
Therefore, ∠AA2O2 = ∠AA1O1, i.e., O1A1 ‖ O2A2.

3.17. Let O1, O2 and O3 be the centers of circles S1, S2 and S3; let A, B, C be
the tangent points of circles S2 and S3, S3 and S1, S1 and S2, respectively; A1 and B1 the
intersection points of lines CA and CB, respectively, with circle S3. By the previous problem
B1O3 ‖ CO1 and A1O3 ‖ CO2. Points O1, C and O2 lie on one line and, therefore, points
A1, O3 and B1 also lie on one line, i.e., A1B1 is a diameter of cicle S3.

3.18. Let A1, A2 and B be the tangent points of the circles centered at O and O1, O
and O2, O1 and O2, respectively. Then O1O2 = O1B + BO2 = O1A1 + O2A2. Therefore,

OO1 + OO2 + O1O2 = (OO1 + O1A1) + (OO2 + O2A2) = OA1 + OA2 = 2R.

3.19. Let O, O1 and O2 be centers of circles S, S1 and S2; let C be the common
point of circles S1 and S2 that lies on segment AB. Triangles AOB, AO1C and CO2B are
isosceles ones; consequently, OO1CO2 is a parallelogram and OO1 = O2C = O2B; hence,
AO = AO1 + O1O = AO1 + O2B.

3.20. Let O1 and O2 be the centers of circles S1 and S2; let X be the other intersection
point of line AB with circle S2. The square of the length of the tangent in question is equal

to BA · BX. Since AB : BX = O1A : O1O2, it follows that AB · BX = AB2·O1O2

R
= a2(R±r)

R
,

where the minus sign is taken for the inner tangent and the plus sign for the outer tangent.
3.21. Let O, O1 and O2 be the centers of the circles with diameters AB, AC and BC,

respectively. It suffices to verify that KO = OL. Let us prove that △O1KO = △O2OL.
Indeed, O1K = 1

2
AC = O2O, O1O = 1

2
BC = O2L and ∠KO1O = ∠OO2L = 180◦ − 2α,

where α is the value of the angle between lines KL and AB.
3.22. Let Oi be the center of circle Si and Ai the tangent point of circles Si and Si+1.

Quadrilateral O1O2O3O4 is a convex one; let α1, α2, α3 and α4 be the values of its angles.
It is easy to verify that ∠Ai−1AiAi+1 = 1

2
(αi + αi+1) and, therefore,

∠A1 + ∠A3 =
1

2
(α1 + α2 + α3 + α4) = ∠A2 + ∠A4.

3.23. a) Let A1, B1 and C1 be the projections of points A, B and C, respectively, to line l;
let C2 be the projection of point C to line AA1. By Pythagorus theorem CC2

2 = AC2−AC2
2 ,

i.e., A1C
2
1 = (a + c)2 − (a − c)2 = 4ac. Similarly, B1C

2
1 = 4bc and A1B

2
1 = 4ab. Since

A1C1 + C1B1 = A1B1, it follows that
√

ac +
√

bc =
√

ab, i.e., 1√
b
+ 1√

a
= 1√

c
.

Figure 28 (Sol. 3.23 b))
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b) Let A, B, C be the centers of “outer” circles, D the center of the “inner” circle (Fig.
28). The semiperimeter of triangle BDC is equal to b + c + d, and, therefore,

cos2

(

∠BDC

2

)

=
d(b + c + d)

(b + d)(c + d)
, sin2

(

∠BDC

2

)

=
bc

(b + d)(c + d)

(cf. Problem 12.13). As is easy to see the law of cosines is equivalent to the statement:

α′ + β′ + γ′ = 180◦ =⇒ sin2 α′ − sin2 β′ − sin2 γ′ + 2 sin β′ sin γ′ cos α′ = 0. (∗)
Substituting the values α′ = 1

2
∠BDC, β′ = 1

2
∠ADC and γ′ = 1

2
∠ADB into formula (∗), we

get

bc

(b + d)(c + d)
− ac

(a + d)(c + d)
− ab

(a + d)(b + d)
+ 2

a
√

bcd(b + c + d)

(a + d)(b + d)(c + d)
= 0,

i.e.,

a + d

a
− b + d

b
− c + d

c
+ 2

√

d(b + c + d)

bc
= 0.

Dividing this by d we get

α − β − γ − δ + 2
√

βγ + γδ + δβ = 0.

Therefore,

(α + β + γ + δ)2 = (α − β − γ − δ)2 + 4(αβ + αγ + αδ)+
4(βγ + γδ + δβ) + 4(αβ + αγ + αδ) =

2(α + β + γ + δ)2 − 2(α2 + β2 + γ2 + δ2),

i.e.,

2(α2 + β2 + γ2 + δ2) = (α + β + γ + δ)2.

3.24. Let A1, B1 and C1 be the centers of the given circles (Fig. 29). Then A1BC1H
is a rhombus and, therefore, BA1 ‖ HC1. Similarly, B1A ‖ HC1; hence, B1A ‖ BA1 and
B1ABA1 is a parallelogram.

Figure 29 (Sol. 3.24)

a) Since A1B1 ⊥ CH and A1B1 ‖ AB, it follows that AB ⊥ CH. We similarly prove
that BC ⊥ AH and CA ⊥ BH.

b) In the same way as we have proved that B1A ‖ BA1, we can prove that B1C ‖ BC1

and A1C ‖ AC1; moreover, the lengths of all these six segments are equal to R. Let us
complement the triangle BA1C to a rhombus BA1CO. Then AB1CO is also a rhombus.
Therefore, AO = BO = CO = R, i.e., O is the center of the circumscribed circle of triangle
ABC and its radius is equal to R.
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3.25. It is easy to verify that

⌣ AB1± ⌣ B1A1 = ⌣ AC1+ ⌣ C1A1,
⌣ BC1+ ⌣ C1B1 = ⌣ BA1± ⌣ B1A1

⌣ C1A1± ⌣ CA1 = ⌣ C1B1± ⌣ B1C,

where the minus sign is only taken in case b). Adding up these equalities we get

⌣ AB1+ ⌣ BC1± ⌣ CA1 =⌣ AC1+ ⌣ BA± ⌣ CB1.

On the other hand, the doubled values of the angles of triangle ABC are equal to ⌣ BA1± ⌣
CA1, ⌣ AB1± ⌣ CB1 and ⌣ BC1+ ⌣ AC1, and their sum is equal to 360◦.

3.26. Since ⌣ AP+ ⌣ BP+ ⌣ PQ = 180◦ (cf. Problem 3.25), it follows that
⌣ AB = 180◦− ⌣ PQ. Similarly, ⌣ CD = 180◦− ⌣ PQ, i.e., ⌣ AB =⌣ CD and,
therefore, AB = CD. Moreover, PQ ⊥ AB and PQ ⊥ CD (cf. Problem 3.24) and,
therefore, AB ‖ CD.

3.27. Points M , B and C lie on the circle with diameter AO. Moreover, chords OB and
OC of the circle are equal.

3.28. Points B and X lie on the circle with diameter KO, and, therefore, ∠XKO =
∠XBO. Similarly, ∠XLO = ∠XCO. Since ∠XBO = ∠XCO, triangle KOL is an isosceles
one and OX is its height.

3.29. It suffices to verify that AK ·AL = AM ·AO. Indeed, if such is the case, then points
K, L, M and O lie on one circle and, therefore, ∠MKO = ∠MLO. Since △AOP ∼ △APM ,
it follows that AM · AO = AP 2; it is also clear that AK · AL = AP 2.

3.30. Let O be the center of the circle; let points D′ and E ′ be symmetric to points
D and E through line AO. By Problem 28.7 the lines ED′ and E ′D meet at point M .
Hence, ∠BDM = ∠EBM and ∠BEM = ∠DBM and, therefore, △BDM ∼ △EBM . It
follows that BM : DM = EM : BM . Moreover, if line ED separates points B and M , then
∠DME =⌣ DE = 2∠DCE.

The equality ∠BEM = ∠DBM implies that ∠BEM = ∠DBC = ∠DEC.
3.31. a) Since △KAB ∼ △KBC, we have AB : BC = KB : KC. Similarly, AD :

DC = KD : KC. Taking into account that KB = KD we get the desired statement.
b) The problem of this heading reduces to that of the previous one, since

PQ

BQ
=

sin ∠PBQ

sin ∠BPQ
=

sin ∠ABD

sin ∠KBA
=

sin ∠ABD

sin ∠ADB
=

AD

AB
,

QR

BQ
=

CD

CB
.

3.32. Let us drop perpendicular OM to line l from center O of circle S. Let us prove that
point X at which AB and OM intersect remains fixed. Points A, B and M lie on the circle
with diameter PO. Hence, ∠AMO = ∠ABO = ∠BAO and, therefore, △AMO ∼ △XAO,
because these triangles have a common angle at vertex O. It follows that AO : MO = XO :
AO, i.e., OX = OA2

MO
is a constant.

3.33. Since ∠OBP = ∠OAB = ∠OCB, we deduce that △OBP ∼ △OCB and,
therefore, OB2 = OP · OC. Let us draw tangent CD to circle S1 from point C. Then
OD2 = OB2 = OP · OC. Therefore, △ODC ∼ △OPD and ∠OPD = ∠ODC = 90◦.

3.34. Lines BC and AD are heights of triangle APB and, therefore, line PQ that passes
through their intersection point Q is perpendicular to line AB.

3.35. Denote the intersection points of lines AC and BD, BC and AD by K and K1,
respectively. Thanks to the above problem, KK1 ⊥ AB and, therefore, it suffices to show
that the intersection point of tangents at points C and D lies on line KK1.

Let us prove that the tangent at point C passes through the midpoint of segment KK1.
Let M be the intersection point of the tangent at point C and segment KK1. The respective
sides of acute angles ∠ABC and ∠CKK1 are perpendicular and, therefore, the angles are
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equal. Similarly, ∠CAB = ∠CK1K. It is also clear that ∠KCM = ∠ABC and, therefore,
triangle CMK is an isosceles one. Similarly, triangle CMK1 is an isosceles one and KM =
CM = K1M , i.e., M is the midpoint of segment KK1.

We similarly prove that the tangent at point D passes through the midpoint of segment
KK1.

3.36. a) Line AC intersects the circle at points A and A1, line BC does same at points
B and B1. If A = A1 (or B = B1), then line AC (or BC) is the perpendicular to be
constructed. If this is not the case, then AB1 and BA1 are heights of triangle ABC and the
line to be constructed is the line that passes through point C and the intersection point of
lines AB1 and BA1.

b) Let us take point C1 that does not lie on the circle and drop from it perpendicular
to AB. Let the perpendicular intersect the circle at points D and E. Let us construct the
intersection point P of lines DC and AB and then the intersection point F of line PE with
the circle. The symmetry through AB sends point C to point F . Therefore, CF is the
perpendicular to be constructed.

3.37. Since PA ⊥ ObOc, line PA passes through point Oa if and only if line POa passes
through the intersection point of heights of triangle OaObOc. Similar statements are true for
points B and C as well.

The hypothesis of the problem implies that P is the intersection point of heights of
triangle OaObOc and, therefore, POc ⊥ OaOb.

3.38. Let 2a and 2b be the lengths of the legs, 2c the length of the hypothenuse. The
sum of the areas of the “crescents” is equal to πa2+πb2+SABC−πc2. But π(a2+b2−c2) = 0.

3.39. It suffices to carry out the proof for each of the four parts into which the diameters
divide the initial disc (Fig. 30).

Figure 30 (Sol. 3.39)

In the disc, consider the segment cut off by the chord intercepted by the central angle
of 90◦; let S and s be the areas of such segments for the initial disc and any of the four
constructed disks, respectively. Clearly, S = 4s. It remains to observe that the area of the
part shaded once is equal to S − 2s = 2s and the area of the part shaded twice is equal to
2s.

3.40. Denote the intersection points of circles constructed on segments OB and OC,
OA and OC, OA and OB as on diameters by A1, B1, C1, respectively (Fig. 31). Since
∠OA1B = ∠OA1C = 90◦, it follows that points B, A1 and C lie on one line and since all
the circles have equal radii, BA1 = A1C.

Points A1, B1, C1 are the midpoints of sides of triangle ABC, therefore, BA1 = C1B1

and BC = A1B1. Since the disks are of the same radius, the equal chords BA1 and C1B1

cut off the disks parts of equal area and equal chords C1B and B1A1 also cut off the disc’s
parts of equal area. Therefore, the area of curvilinear triangle A1B1C1 is equal to the area
of parallelogram A1B1C1B, i.e., is equal to half the area of triangle ABC.
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Figure 31 (Sol. 3.40)

Figure 32 (Sol. 3.41)

3.41. The considered circles pass through the bases of the triangle’s heights and, there-
fore, their intersection points lie on the triangle’s sides. Let x, y, z and u be the areas of the
considered curvilinear triangles; let a, b, c, d, e and f be the areas of the segments cut off
the circles by the sides of the triangle; let p, q and r be the areas of the parts of the triangle
that lie outside the inner curvilinear triangle (see Fig. 32). Then

x + (a + b) = u + p + q + (c + f),
y + (c + d) = u + q + r + (e + b),
z + (e + f) = u + r + p + (a + d)

By adding up these equalities we get

x + y + z = 2(p + q + r + u) + u.

3.42. a) Let O and O1 be the centers of circles S and S1. The triangles MO1N and
PON are isosceles ones and ∠MO1N = ∠PON . Therefore, points P , M and N lie on one
line.

b) It is clear that PQ2 = PM · PN = PM · (PM + MN). Let K be the midpoint of
chord AB. Then

PM2 = PK2 + MK2 and PM · MN = AM · MB = AK2 − MK2.

Therefore, PQ2 = PK2 + AK2 = PA2.
3.43. By Problem 3.42 b) BE = BD. Hence,

∠DAE + ∠ADE = ∠DEB = ∠BDE = ∠BDC + ∠CDE.

Since ∠DAB = ∠BDC, it follows that ∠ADE = ∠CDE.
3.44. Let O1 and O2 be the centers of the inscribed circles, CP and CQ the tangents to

them. Then CO2
1 = CP 2+PO2

1 = CP 2+O1M
2 and since CQ = CA = CP (by Problem 3.42
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b), we have CO2
2 = CQ2 +QO2

2 = CP 2 +O2M
2. It follows that CO2

1 −CO2
2 = MO2

1 −MO2
2

and, therefore, line CM is perpendicular to O1O2 (see Problem 7.6). Therefore, line MN
passes through point C.

Remark. If the circles do not intersect but are tangent to each other the statement is
still true; in this case, however, one should replace line MN with the tangent to the circles
at their common point.

3.45. Let A1 and B1 be the midpoints of arcs ⌣ BC and ⌣ AC;let O the center of
the inscribed circle. Then A1B1 ⊥ CO (cf. Problem 2.19 a) and MN ⊥ CO, consequently,
MN ‖ A1B1. Let us move points M ′ and N ′ along rays CA and CB, respectively, so that
M ′N ′ ‖ A1B1. Only for one position of points M ′ and N ′ does point L at which lines B1M

′

and A1N
′ intersect lie on the circumscribed circle of triangle ABC.

On the other hand, if segment MN passes through point O, then point L lies on this
circle (cf. Problem 2.49).

3.46. The solution of this problem generalizes the solution of the preceding problem. It
suffices to prove that the center O1 of the inscribed circle of triangle ABC1 lies on segment
M2N1. Let A1 and A2 be the midpoints of arcs ⌣ BC1 and ⌣ BC2; let B1 and B2 be the
midpoints of arcs ⌣ AC1 and ⌣ AC2; let PQ be the diameter of circle S perpendicular to
chord AB and let points Q and C1 lie on one side of line AB. Point O1 is the intersection
point of chords AA1 and BB1 and point L of tangent of circles S and S1 is the intersection
point of lines A1N1 and B2M2 (Fig. 33).

Figure 33 (Sol. 3.46)

Let ∠C1AB = 2α, ∠C1BA = 2β, ∠C1AC2 = 2ϕ. Then ⌣ A1A2 = 2ϕ =⌣ B1B2, i.e.,
A1B2 ‖ B1A2. For the angles between chords we have:

∠(A1B2, BC1) = 1
2
(⌣ B2C1+ ⌣ A1B) = β − ϕ + α,

∠(BC1, AC2) = 1
2
(⌣ C1C2+ ⌣ AB) = 2ϕ + 180◦ − 2α − 2β.

Consequently, chord M2N1 constitutes equal angles with tangents BC1 and AC2, each angle
equal to α + β − ϕ. Therefore, M2N1 ‖ A1B2.

Now, suppose that points M ′
2 and N ′

1 are moved along chords AC2 and BC1 so that
M ′

2N
′
1 ‖ A1B2. Let lines A1N

′
1 and B2M

′
2 meet at point L′. Point L′ lies on circle S for one

position of points M ′
2 and N ′

1 only. Therefore, it suffices to indicate on arc ⌣ AB a point
L1 such that if M ′′

2 , N ′′
1 are the intersection points of chords AC2 and L1B2, BC1 and L1A1,
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respectively, then M ′′
2 N ′′

1 ‖ A1B2 and point O1 lies on segment M ′′
2 N ′′

1 . Let Q1 be a point on
circle S such that 2∠(PQ,PQ1) = ∠(PC2, PC1) and L1 the intersection point of line Q1O1

with S.
Let us prove that L1 is the desired point. Since ⌣ B1Q = 2α, it follows that ⌣ B2Q1 =

2(α − 2ϕ) =⌣ C2A1. Hence, quadrilateral AM ′′
2 O1L1 is an inscribed one and, therefore,

∠M ′′
2 O1A = ∠M ′′

2 L1A = ∠B2A1A, i.e., M ′′
2 O1 ‖ B2A1.

Similarly, N ′′
1 O1 ‖ B2A1.

3.47. Let circles centered at O1 and O2 pass through point A. The radii O1A and
O2A are perpendicular to the tangents to circles at point A and, therefore, the circles are
orthogonal if and only if ∠O1AO2 = 90◦, i.e., ∠O1O

2
2 = O1A

2 + O2A
2.

3.48. Let A1, B1 and C1 be the centers of the given circles so that points A, B and C
lie on segments B1C1, C1A1 and A1B1, respectively. Since A1B = A1C, B1A = B1C and
CA = C1B, it follows that A, B and C are the tangent points of the inscribed circle of
triangle A1B1C1 with its sides (cf. Problem 5.1). Therefore, the radii A1B, BC and C1A of
the given circles are tangent to the circumscribed circle of triangle ABC.

3.49. It is easy to verify that the angle of rotation from vector
−−→
OiB to vector

−−−→
OiMi (coun-

terclockwise) is equal to 2∠(AB,AMi). It is also clear that ∠(AB,AM1) = ∠(AB,AM2).
3.50. Let us draw through point P another line that intersects the circle at points A1

and B1. Then △PAA1 ∼ △PB1B and, therefore, PA : PA1 = PB1 : PB.
3.51. Let us draw through point P tangent PC. Since △PAC ∼ △PCB, it follows that

PA : PC = PC : PB.
3.52. Let the line that passes through point P and the center of the circle intersect the

circle at points A and B. Then PA = d+R and PB = |d−R|. Therefore, PA·PB = |d2−R2|.
It is also clear that the signs of the expression d2 − R2 and of the degree of point P with
respect to to S are the same.

3.53. Let R1 and R2 be the radii of the circles. Let us consider the coordinate system in
which the coordinates of the centers of the circles are (−a, 0) and (a, 0). By Problem 3.52
the degrees of the point with coordinates (x, y) with respect to the given circles are equal to
(x + a)2 + y2 − R2

1 and (x − a)2 + y2 − R2
2, respectively. By equating these expressions we

get x =
R2

1−R2
2

4a
. This equation determines the perpendicular to the segment that connects

the centers of the circles.
3.54. The degrees of the intersection point of the circles with respect to each one of the

cicles are equal to zero and, therefore, the point belongs to the radical axis. If there are two
intersection points, then they uniquely determine the radical axis.

3.55. Since the centers of the circles do not lie on one line, the radical axis of the first
and the second circles intersects with the radical axis of the second and third circles. The
degrees of the intersection point with respect to all three circles are equal and, therefore,
this intersection point lies on the radical axis of the first and third circles.

3.56. By Problem 3.54 the lines that contain chords are radical axes. By Problem 3.55
the radical axes meet at one point if the centers of the circles do not lie on one line. Otherwise
they are perpendicular to this line.

3.57. Let O1 and O2 be the centers of given circles, r1 and r2 their radii. The circle S
of radius r centered at O is orthogonal to circle Si if and only if r2 = OO2

i − r2
i , i.e., the

squared radius of S is equal to the degree of point O with respect to circle Si. Therefore,
the locus of the centers of the circles to be found is the set of the points of the radical axis
whose degrees with respect to the given circles are positive.

3.58. a) The indicated points lie on the radical axis.
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b) The tangent points of the outer tangents with the circles are vertices of trapezoid
ABCD with base AB. The midpoints of lateral sides AD and BC belong to the radical
axis and, therefore, the midpoint O of diagonal AC also belongs to the radical axis. If line
AC intersects the circles at points A1 and C1, then OA1 · OA = OC1 · OC; consequently,
OA1 = OC1 and AA1 = CC1.

3.59. a) Let SA and SB be circles with diameters AA1 and BB1; let S be the circle with
diameter AB. The common chords of circles S and SA, S and SB are heights AHa and BHb

and, therefore, these heights (or their extensions) intersect at point H. By Problem 3.56 the
common chord of circles SA and SB passes through the intersection point of chords AHa and
BHb.

b) The common chord of circles SA and SB passes through the intersection point of lines
A1Ha and B1Hb (i.e., through point C) if and only if CB1 · CHb = CA1 · CHa (here we
should consider the lengths of segments as oriented). Since

CHb =
a2 + b2 − c2

2b
and CHa =

a2 + b2 − c2

2a
,

we deduce that CB1

b
= CA1

a
.

3.60. In triangle CDE, draw heights CC1 and DD1; let H be their intersection point.
The circles with diameters AC and BD pass through points C1 and D1, respectively, there-
fore, the degree of point H with respect to each of these circles is equal to its degree with
respect to the circle with diameter CD (this circle passes through points C1 and D1). We
similarly prove that the degrees of point H with respect to to circles with diameters AC,
BD and EF are equal, i.e., the radical axes of these circles pass through point H.

For the intersection points of heights of the other three triangles the proof is carried out
in a similar way.

Remark. The centers of the considered circles lie on the Gauss’ line (cf. Problem 4.55)
and, therefore, their common radical axis is perpendicular to the Gauss line.

3.61. Lines A1A2, B1B2 and C1C2 meet at a point O (cf. Problem 3.56). Since
△A1OB2 ∼ △B1OA2, it follows that A1B2 : A2B1 = OA1 : OB1. Similarly, B1C2 : B2C1 =
OB1 : OC1 and C1A2 : C2A1 = OC1 : OA1. By multiplying these equalities we get the
statement desired.

3.62. Denote by B′ and C ′ the intersection points of lines A′M and A′N , respectively,
with the line drawn through point A parallel to BC (Fig. 34).

Figure 34 (Sol. 3.62)

Since triangles A′BM and A′NC are isosceles ones, △ABC = △A′B′C ′. Since AM ·
BM = A′M · B′M , the degrees of point M with respect to circles S and S ′ circumscribed
about triangles ABC and A′B′C ′, respectively, are equal. This is true for point N as well
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and, therefore, line MN is the radical axis of circles S and S ′. Circles S and S ′ have equal
radii and, therefore, their radical axis is their axis of symmetry. The symmetry through line
MN sends a point A′ that lies on circle S ′ into a point that lies on circle S.

3.63. Let AC and BD be the tangents; E and K the intersection points of lines AC
and BD, AB and CD, respectively; O1 and O2 the centers of the circles (Fig. 35).

Figure 35 (Sol. 3.63)

Since AB ⊥ O1E, O1E ⊥ O2E and O2E ⊥ CD, it follows that AB ⊥ CD and, therefore,
K is the intersection point of circles S1 and S2 with diameters AC and BD, respectively.
Point K lies on the radical axis of circles S1 and S2; it remains to verify that line O1O2 is this
radical axis. The radii O1A and O1B are tangent to S1 and S2, respectively, and, therefore,
point O1 lies on the radical axis. Similarly, point O2 also lies on the radical axis.

3.64. Denote the given circles by S1, . . . , Sn. For each circle Si consider the set Mi that
consists of all the points X whose degree with respect to Si does not exceed their degrees
with respect to the other circles S1, . . . , Si−1, Si+1, . . . , Sn.

The set Mi is a convex one. Indeed, let Mij be the set of points X whose degree with
respect to Si does not exceed the degree with respect to Sj. The set Mij is a half plane that
consists of the points that lie on the same side of the radical axis of circles Si and Sj as Si

does. The set Mi is the intersection of the convex sets Mij for all j and, therefore, is a convex
set itself. Moreover, since each of the sets Mij contains circle Si, then Mi also contains Si.
Since for each point of the plane at least one of the degrees with respect to S1, . . . , Sn is the
least one, the sets Mi cover the whole plane.

Now, by considering the parts of the sets Mi that lie inside the initial polygon we get the
partition statement desired.

3.65. a) Points B1 and C1 lie on the circle with diameter BC and, therefore, the degrees
of point A′ with respect to the circumscribed circles of triangles A1B1C1 and ABC are equal
to the degrees of point A′ with respect to this circle. This means that point A′ lies on the
radical axis of the Euler circle and the circumscribed circle of triangle ABC. For points B′

and C ′ the proof is similar.
b) Let us consider triangle A1B1C1 formed by the outer bisectors of triangle ABC (tri-

angle A1B1C1 is an acute one). Thanks to heading a) points A′, B′ and C ′ lie on the radical
axis of the circumscribed circles of triangles ABC and A1B1C1. The radical axis of these
circles is perpendicular to the line that connects their centers, i.e., the Euler line of triangle
A1B1C1. It remains to notice that the intersection point of the heights of triangle A1B1C1

is the intersection point of the bisectors of triangle ABC, cf. Problem 1.56 a).
3.66. Let a convex hexagon ABCDEF be tangent to the circle at points R, Q, T , S,

P , U (point R lies on AB, point Q lies on BC, etc.).
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Take a number a > 0 and construct points Q′ and P ′ on lines BC and EF so that

QQ′ = PP ′ = a and vectors
−−→
QQ′ and

−−→
PP ′ are codirected with vectors

−−→
CB and

−→
EF .

Let us similarly construct points R′, S ′, T ′, U ′ (see Fig. 36, where RR′ = SS ′ = TT ′ =
UU ′ = a). Let us construct circle S1 tangent to lines BC and EF at points Q′ and P ′. Let
us similarly construct circles S2 and S3.

Figure 36 (Sol. 3.66)

Let us prove that points B and E lie on the radical axis of circles S1 and S2. We have

BQ′ = QQ′ − BQ = RR′ − BR = BR′

(if QQ′ < BQ, then BQ′ = BQ − QQ′ = BR − RR′ = BR′) and

EP ′ = EP + PP ′ = ES + SS ′ = ES ′.

We similarly prove that lines FC and AD are the radical axes of circles S1 and S3, S2 and
S3, respectively. Since the radical axes of three circles meet at one point, lines AD, BE and
CF meet at one point.

3.67. Let Ai be the tangent point of circles Si and Si+1 and X be the intersection point
of lines A1A4 and A2A3. Then X is the intersection point of the common outer tangents to
circles S2 and S4 (cf. Problem 5.60). Since quadrilateral A1A2A3A4 is an inscribed one (by
Problem 3.22), XA1 · XA4 = XA2 · XA3; consequently, point X lies on the radical axis of
circles S1 and S3.

3.68. a) Let us consider the coordinate system whose origin O is at the center of
the segment that connects the centers of the circles and the Ox-axis is directed along this
segment. Let (x, y) be the coordinates of point P ; let R and r be the radii of circles S1 and
S2, respectively; a = 1

2
d. Then (x + a)2 + y2 = R2 and

p = (x − a)2 + y2 − r2 = ((x + a)2 + y2 − R2) − 4ax − r2 + R2 = R2 − r2 − 4ax.

Let (x0, y0) be the coordinates of point A. Then

(x0 + a)2 + y2
0 − R2 = (x0 − a)2 + y2

0 − r2, i.e., x0 =
R2 − r2

4a
.

Therefore,
2dh = 4a|x0 − x| = |R2 − r2 − 4ax| = |p|.

b) Let d be the distance between the centers of the circumscribed circles of triangles ACD
and BCD; let ha and hb be the distances from points A and B to line CD. By heading a)
|pa| = 2dha and |pb| = 2dhb. Taking into account that SBCD = 1

2
hbCD and SACD = 1

2
haCD

we get the statement desired.
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Background

1. One can calculate the area S of triangle ABC with the help of the following formulas:
a) S = 1

2
aha, where a = BC and ha is the length of the height dropped to BC;

b) S = 1
2
bc sin ∠A, where b, c are sides of the triangle, ∠A the angle between these sides;

c) S = pr, where p is a semiperimeter, r the radius of the inscribed circle. Indeed, if O
is the center of the inscribed circle, then

S = SABO + SAOC + SOBC =
1

2
(c + b + a)r = pr.

2. If a polygon is cut into several polygons, then the sum of their areas is equal to the
area of the initial polygon.

Introductory problems

1. Prove that the area of a convex quadrilateral is equal to 1
2
d1d2 sin ϕ, where d1 and d2

are the lengths of the diagonals and ϕ is the angle between them.
2. Let E and F be the midpoints of sides BC and AD of parallelogram ABCD. Find

the area of the quadrilateral formed by lines AE, ED, BF and FC if it is known that the
area of ABCD is equal to S.

3. A polygon is circumscribed about a circle of radius r. Prove that the area of the
polygon is equal to pr, where p is the semiperimeter of the polygon.

4. Point X is inside parallelogram ABCD. Prove that SABX + SCDX = SBCX + SADX .
5. Let A1, B1, C1 and D1 be the midpoints of sides CD, DA, AB, BC, respectively, of

square ABCD whose area is equal to S. Find the area of the quadrilateral formed by lines
AA1, BB1, CC1 and DD1.

§1. A median divides the triangle
into triangles of equal areas

4.1. Prove that the medians divide any triangle into six triangles of equal area.
4.2. Given triangle ABC, find all points P such that the areas of triangles ABP , BCP

and ACP are equal.
4.3. Inside given triangle ABC find a point O such that the areas of triangles BOL,

COM and AON are equal (points L, M and N lie on sides AB, BC and CA so that
OL ‖ BC, OM ‖ AC and ON ‖ AB; see Fig. 37).

4.4. On the extensions of the sides of triangle ABC points A1, B1 and C1 are taken so

that
−−→
AB1 = 2

−→
AB,

−−→
BC1 = 2

−−→
BC and

−−→
CA1 = 2

−→
AC. Find the area of triangle A1B1C1 if it is

known that the area of triangle ABC is equal to S.
4.5. On the extensions of sides DA, AB, BC, CD of convex quadrilateral ABCD

points A1, B1, C1, D1 are taken so that
−−→
DA1 = 2

−−→
DA,

−−→
AB1 = 2

−→
AB,

−−→
BC1 = 2

−−→
BC and−−→

CD1 = 2
−−→
CD. Find the area of the obtained quadrilateral A1B1C1D1 if it is known that the

area of quadrilateral ABCD is equal to S.

79
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Figure 37 (4.3)

4.6. Hexagon ABCDEF is inscribed in a circle. Diagonals AD, BE and CF are
diameters of this circle. Prove that SABCDEF = 2SACE.

4.7. Inside a convex quadrilateral ABCD there exists a point O such that the areas of
triangles OAB, OBC, OCD and ODA are equal. Prove that one of the diagonals of the
quadrilateral divides the other diagonal in halves.

§2. Calculation of areas

4.8. The height of a trapezoid whose diagonals are mutually perpendicular is equal to 4.
Find the area of the trapezoid if it is known that the length of one of its diagonals is equal
to 5.

4.9. Each diagonal of convex pentagon ABCDE cuts off it a triangle of unit area.
Calculate the area of pentagon ABCDE.

4.10. In a rectangle ABCD there are inscribed two distinct rectangles with a common
vertex K lying on side AB. Prove that the sum of their areas is equal to the area of rectangle
ABCD.

4.11. In triangle ABC, point E is the midpoint of side BC, point D lies on side AC;
let AC = 1, ∠BAC = 60◦, ∠ABC = 100◦, ∠ACB = 20◦ and ∠DEC = 80◦ (Fig. 38). Find
S△ABC + 2S△CDE.

Figure 38 (4.11)

4.12. Triangle Ta = △A1A2A3 is inscribed in triangle Tb = △B1B2B3 and triangle Tb

is inscribed in triangle Tc = △C1C2C3 so that the sides of triangles Ta and Tc are pairwise
parallel. Express the area of triangle Tb in terms of the areas of triangles Ta and Tc.

Figure 39 (4.12)

4.13. On sides of triangle ABC, points A1, B1 and C1 that divide its sides in ratios
BA1 : A1C = p, CB1 : B1A = q and AC1 : C1B = r, respectively, are taken. The
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intersection points of segments AA1, BB1 and CC1 are situated as depicted on Fig. 39.
Find the ratio of areas of triangles PQR and ABC.

§3. The areas of the triangles into which
a quadrilateral is divided

4.14. The diagonals of quadrilateral ABCD meet at point O. Prove that SAOB = SCOD

if and only if BC ‖ AD.
4.15. a) The diagonals of convex quadrilateral ABCD meet at point P . The areas of

triangles ABP , BCP , CDP are known. Find the area of triangle ADP .
b) A convex quadrilateral is divided by its diagonals into four triangles whose areas are

expressed in integers. Prove that the product of these integers is a perfect square.
4.16. The diagonals of quadrilateral ABCD meet at point P and S2

ABP + S2
CDP =

S2
BCP + S2

ADP . Prove that P is the midpoint of one of the diagonals.
4.17. In a convex quadrilateral ABCD there are three inner points P1, P2, P3 not on

one line and with the property that

SABPi
+ SCDPi

= SBCPi
+ SADPi

for i = 1, 2, 3. Prove that ABCD is a parallelogram.

§4. The areas of the parts into which
a quadrilateral is divided

4.18. Let K, L, M and N be the midpoints of sides AB, BC, CD and DA, respectively,
of convex quadrilateral ABCD; segments KM and LN intersect at point O. Prove that

SAKON + SCLOM = SBKOL + SDNOM .

4.19. Points K, L, M and N lie on sides AB, BC, CD and DA, respectively, of parallel-
ogram ABCD so that segments KM and LN are parallel to the sides of the parallelogram.
These segments meet at point O. Prove that the areas of parallelograms KBLO and MDNO
are equal if and only if point O lies on diagonal AC.

4.20. On sides AB and CD of quadrilateral ABCD, points M and N are taken so that
AM : MB = CN : ND. Segments AN and DM meet at point K, and segments BN and
CM meet at point L. Prove that SKMLN = SADK + SBCL.

4.21. On side AB of quadrilateral ABCD, points A1 and B1 are taken, on side CD
points C1 and D1 are taken so that AA1 = BB1 = pAB and CC1 = DD1 = pCD, where

p < 0.5. Prove that
SA1B1C1D1

SABCD
= 1 − 2p.

4.22. Each of the sides of a convex quadrilateral is divided into five equal parts and
the corresponding points of the opposite sides are connected as on Fig. 40. Prove that the
area of the middle (shaded) quadrilateral is 25 times smaller than the area of the initial
quadrilateral.

Figure 40 (4.22)
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4.23. On each side of a parallelogram a point is taken. The area of the quadrilateral
with vertices at these points is equal to half the area of the parallelogram. Prove that at
least one of the diagonals of the quadrilateral is parallel to a side of the parallelogram.

4.24. Points K and M are the midpoints of sides AB and CD, respectively, of convex
quadrilateral ABCD, points L and N lie on sides BC and AD so that KLMN is a rectangle.
Prove that SABCD = SKLMN .

4.25. A square is divided into four parts by two perpendicular lines whose intersection
point lies inside the square. Prove that if the areas of three of these parts are equal, then
the area of all four parts are equal.

§5. Miscellaneous problems

4.26. Given parallelogram ABCD and a point M , prove that

SACM = |SABM ± SADM |.
4.27. On sides AB and BC of triangle ABC, parallelograms are constructed outwards;

let P be the intersection point of the extensions of the sides of these parallelograms parallel
to AB and BC. On side AC, a parallelogram is constructed whose other side is equal and
parallel to BP . Prove that the area of this parallelogram is equal to the sum of areas of the
first two parallelograms.

4.28. Point O inside a regular hexagon is connected with the vertices. The six triangles
obtained in this way are alternately painted red and blue. Prove that the sum of areas of
red triangles is equal to the sum of areas of blue ones.

4.29. The extensions of sides AD and BC of convex quadrilateral ABCD meet at point
O; let M and N be the midpoints of sides AB and CD; let P and Q be the midpoints of
diagonals AC and BD. Prove that:

a) SPMQN = 1
2
|SABD − SACD|;

b) SOPQ = 1
2
SABCD.

4.30. On sides AB and CD of a convex quadrilateral ABCD points E and F are taken.
Let K, L, M and N be the midpoints of segments DE, BF , CE and AF , respectively.
Prove that quadrilateral KLMN is a convex one and its area does not depend on the choice
of points E and F .

4.31. The midpoints of diagonals AC, BD, CE, . . . of convex hexagon ABCDEF are
vertices of a convex hexagon. Prove that the area of the new hexagon is 1

4
of that of the

initial one.
4.32. The diameter PQ and the chord RS perpendicular to it intersect in point A.

Point C lies on the circle, point B lies inside the circle and we know that BC ‖ PQ and
BC = RA. From points A and B perpendiculars AK and BL are dropped to line CQ.
Prove that SACK = SBCL.

* * *

4.33. Through point O inside triangle ABC segments are drawn parallel to its sides
(Fig. 41). Segments AA1, BB1 and CC1 divide triangle ABC into four triangles and three
quadrilaterals. Prove that the sum of areas of the triangles adjacent to vertices A, B and C
is equal to the area of the fourth triangle.

4.34. On the bisector of angle ∠A of triangle ABC a point A1 is taken so that AA1 =
p − a = 1

2
(b + c − a) and through point A1 line la perpendicular to the bisector is drawn. If

we similarly construct lines lb and lc, then triangle ABC will be divided into parts among
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Figure 41 (4.33)

which there are four triangles. Prove that the area of one of these triangles is equal to the
sum of areas of the three other triangles.

See also problems 3.38–3.41, 13.52–13.56, 16.5, 24.5.

§6. Lines and curves that divide figures
into parts of equal area

4.35. Segment MN parallel to side CD of quadrilateral ABCD divides its area in halves
(points M and N lie on sides BC and AD). The lengths of segments drawn from points
A and B parallel to CD till they intersect with lines BC and AD are equal to a and b,
respectively. Prove that MN2 = 1

2
(ab + c2), where c = CD.

4.36. Each of certain three lines divides the area of a figure in halves. Prove that the
area of the part of the figure confined inside the triangle formed by these lines does not
exceed 1

4
of the area of the whole figure.

4.37. Line l divides the area of a convex polygon in halves. Prove that this line divides
the projection of the given polygon onto a line perpendicular to l in the ratio that does not
exceed 1 +

√
2.

4.38. Prove that any convex polygon can be cut by two mutually perpendicular lines in
four figures of equal area.

4.39. a) Prove that any line that divides the area and the perimeter of the triangle in
halves passes through the center of the inscribed circle.

b) Prove a similar statement for any circumscribed polygon.
4.40. Points A and B of circle S1 are connected by an arc of circle S2 that divides the

area of the disk bounded by S1 into equal parts. Prove that the length of the arc of S2 that
connects A and B is greater than that of the diameter of S1.

4.41. Curve Γ divides a square into two parts of equal area. Prove that on Γ we can
select two points A and B so that line AB passes through the center O of the square.

See also problems 6.51, 6.52, 16.8, 18.29.

§7. Formulas for the area of a quadrilateral

4.42. The diagonals of quadrilateral ABCD meet at point P . The distances from
points A, B and P to line CD are equal to a, b and p, respectively. Prove that the area of
quadrilateral ABCD is equal to ab·CD

2p
.

4.43. Quadrilateral ABCD is inscribed into a circle of radius R; let ϕ be the angle
between the diagonals of ABCD. Prove that the area S of ABCD is equal to 2R2 · sin ∠A ·
sin ∠B · sin ϕ.
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4.44. Prove that the area of a quadrilateral whose diagonals are not perpendicular is
equal to 1

4
tan ϕ · |a2 + c2 − b2 − d2|, where a, b, c and d are the lengths of the consecutive

sides and ϕ is the angle between the diagonals.
4.45. a) Prove that the area of a convex quadrilatral ABCD can be computed with the

help of the formula

S2 = (p − a)(p − b)(p − c)(p − d) − abcd cos2

(

∠B + ∠D

2

)

,

where p is the semiperimeter, a, b, c, d are the lengths of the quadrilateral’s sides.
b) Prove that if quadrilateral ABCD is an inscribed one, then

S2 = (p − a)(p − b)(p − c)(p − d).

c) Prove that if quadrilateral ABCD is a circumscribed one, then

S2 = abcd sin2

(

∠B + ∠D

2

)

.

See also Problem 11.34.

§8. An auxiliary area

4.46. Prove that the sum of distances from an arbitrary point within an equilateral
triangle to the triangle’s sides is constant (equal to the length of the triangle’s height).

4.47. Prove that the length of the bisector AD of triangle ABC is equal to 2bc
b+c

cos 1
2
α.

4.48. Inside triangle ABC, point O is taken; lines AO, BO and CO meet the sides of
the triangle at points A1, B1 and C1, respectively. Prove that:

a) OA1

AA1
+ OB1

BB1
+ OC1

CC1
= 1;

b) AC
CB

· BA1

A1C
· CB1

B1A
= 1.

4.49. A (2n− 1)-gon A1 . . . A2n−1 and a point O are given. Lines AkO and An+k−1An+k

meet at point Bk. Prove that the product of ratios An+k−1Bk

An+kBk
for k = 1, . . . , n is equal to 1.

4.50. A convex polygon A1A2 . . . An is given. On side A1A2 points B1 and D2 are taken,
on side A2A3 points B2 and D3, etc. so that if we construct parallelograms A1B1C1D1, . . . , AnBnCnDn,
then lines A1C1, . . . , AnCn would meet at one point O. Prove that

A1B1 · A2B2 · · · · · AnBn = A1D1 · A2D2 · · · · · AnDn.

4.51. The lengths of the sides of a triangle form an arithmetic progression. Prove that
the (length of the) radius of the inscribed circle is equal to one third of the length of one of
the triangle’s heights.

4.52. The distances from point X on side BC of triangle ABC to lines AB and AC are
equal to db and dc, respectively. Prove that db

dc
= BX·AC

CX·AB
.

4.53. A polygon circumscribed about a circle of radius r is divided into triangles (in
an arbitrary way). Prove that the sum of radii of the inscribed circles of these triangles is
greater than r.

4.54. Through point M inside parallelogram ABCD lines PR and QS parallel to sides
BC and AB are drawn (points P , Q, R and S lie on sides AB, BC, CD and DA, respec-
tively). Prove that lines BS, PD and MC meet at one point.

4.55. Prove that if no side of a quadrilateral is parallel to any other side, then the
midpoint of the segment that connects the intersection points of the opposite sides lies on
the line that connects the midpoints of the diagonals. (The Gauss line.)

4.56. In an acute triangle ABC heights BB1 and CC1 are drawn and points K and L
are taken on sides AB and AC so that AK = BC1 and AL = CB1. Prove that line AO,
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where O is the center of the circumscribed circle of triangle ABC, divides segment KL in
halves.

4.57. Medians AA1 and CC1 of triangle ABC meet at point M . Prove that if quadri-
lateral A1BC1M is a circumscribed one, then AB = BC.

4.58. Inside triangle ABC a point O is taken. Denote the distances from O to sides
BC, CA, AB of the triangle by da, db, dc, respectively, and the distances from point O to
vertices A, B, C by Ra, Rb, Rc, respectively. Prove that:

a) aRa ≥ cdc + bdb;
b) daRa + dbRb + dcRc ≥ 2(dadb + dbdc + dcda);
c) Ra + Rb + Rc ≥ 2(da + db + dc);
d) RaRbRc ≥ R

2r
(da + db)(db + dc)(dc + da).

See also problems 5.5, 10.6.

§9. Regrouping areas

4.59. Prove that the area of a regular octagon is equal to the product of the lengths of
its greatest and smallest diagonals.

4.60. From the midpoint of each side of an acute triangle perpendiculars are dropped
to two other sides. Prove that the area of the hexagon bounded by these perpendiculars is
equal to a half area of the initial triangle.

4.61. Sides AB and CD of parallelogram ABCD of unit area are divided into n equal
parts; sides AD and BC are divided into m equal parts. The division points are connected
as indicated on a) Fig. 42 a); b) Fig. 42 b).

Figure 42 (4.61)

What are the areas of small parallelograms obtained in this way?
4.62. a) Four vertices of a regular 12-gon lie in the midpoints of a square (Fig. 43).

Prove that the area of the shaded part is equal to 1
12

that of the 12-gon.

Figure 43 (4.62)

b) Prove that the area of a 12-gon inscribed in the unit circle is equal to 3.
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Problems for independent study

4.63. The sides of an inscribed quadrilateral ABCD satisfy the relation AB · BC =
AD · DC. Prove that the areas of triangles ABC and ADC are equal.

4.64. Is it possible to use two straight cuts passing through two vertices of a triangle to
divide the triangle into four parts so that three triangles (of these parts) were of equal area?

4.65. Prove that all the convex quadrilaterals with common midpoints of sides are of
equal area.

4.66. Prove that if two triangles obtained by extention of sides of a convex quadrilateral
to their intersection are of equal area, then one of the diagonals divides the other one in
halves.

4.67. The area of a triangle is equal to S, its perimeter is equal to P . Each of the lines
on which the sides of the triangle lie are moved (outwards) by a distance of h. Find the area
and the perimeter of the triangle formed by the three obtained lines.

4.68. On side AB of triangle ABC, points D and E are taken so that ∠ACD = ∠DCE =
∠ECB = ϕ. Find the ratio CD : CE if the lengths of sides AC and BC and angle ϕ are
known.

4.69. Let AA1, BB1 and CC1 be the bisectors of triangle ABC. Prove that

SA1B1C1

SABC

=
2abc

(a + b) · (b + c) · (c + a)
.

4.70. Points M and N are the midpoints of lateral sides AB and CD of trapezoid
ABCD. Prove that if the doubled area of the trapezoid is equal to AN · NB + CM · MD,
then AB = CD = BC + AD.

4.71. If a quadrilateral with sides od distinct lengths is inscribed into a circle of radius
R, then there exist two more quadrilaterals not equal to it with the same lengths of sides
inscribed in the same circle. These quadrilaterals have not more than three distinct lengths
of diagonals: d1, d2 and d3. Prove that the area of the quadrilateral is equal to d1d2d3

4R
.

4.72. On sides AB, BC and CA of triangle ABC points C1, A1 and B1 are taken; points
C2, A2 and B2 are symmetric to these points through the midpoints of the corresponding
sides. Prove that SA1B1C1 = SA2B2C2 .

4.73. Inside triangle ABC, point P is taken. The lines that pass through P and vertices
of the triangle intersect the sides at points A1, B1 and C1. Prove that the area of the triangle
determined by the midpoints of segments AA1, BB1 and CC1 is equal to 1

4
of the area of

triangle A1B1C1.

Solutions

4.1. The triangles adjacent to one side have equal bases and a common height and,
therefore, are of equal area. Let M be the intersection point of the medians of triangle
ABC. Line BM divides each of the triangles ABC and AMC into two triangles of equal
area; consequently, SABM = SBCM . Similarly, SBCM = SCAM .

4.2. The equality of areas of triangles ABP and BCP implies that the distances from
points A and C to line BP are equal. Therefore, either line BP passes through the midpoint
of segment AC or it is parallel to it. The points to be found are depicted on Fig. 44.

4.3. Denote the intersection point of line LO with side AC by L1. Since SLOB = SMOC

and △MOC = △L1OC, it follows that SLOB = SL1CO. The heights of triangles LOB and
L1OC are equal and, therefore, LO = L1O, i.e., point O lies on the median drawn from
vertex A.
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Figure 44 (Sol. 4.2)

We similarly prove that point O lies on the medians drawn from vertices B and C, i.e., O
is the intersection point of the medians of the triangle. These arguments also demonstrate
that the intersection point of the medians of the triangle possesses the necessary property.

4.4. Since SA1BB1 = SA1AB = SABC , it follows that SAA1B1 = 2S. Similarly, SBB1C1 =
SCC1A1 = 2S. Therefore, SABC = 7S.

4.5. Since AB = BB1, it follows that SBB1C = SBAC . Since BC = CC1, we have
SB1C1C = SBB1C = SBAC and SBB1C1 = 2SBAC . Similarly, SDD1A1 = 2SACD and, conse-
quently,

SBB1C1 + SDD1A1 = 2SABC + 2SACD = 2SABCD.

Similarly, SAA1B1 + SCC1D1 = 2SABCD, consequently,

SA1B1C1D1 = SABCD + SAA1B1 + SBB1C1 + SCC1D1 + SDD1A1 = 5SABCD.

4.6. Let O be the center of the circumscribed circle. Since AD, BE and CF are
diameters,

SABO = SDEO = SAEO, SBCO = SEFO = SCEO, SCDO = SAFO = SACO.

It is also clear that SABCDEF = 2(SABO +SBCO +SCDO) and SACE = SAEO +SCEO +SACO.
Therefore, SABCDEF = 2SACE.

4.7. Let E and F be the midpoints of diagonals AC and BD, respectively. Since
SAOB = SAOD, point O lies on line AF . Similarly, point O lies on line CF . Suppose that the
intersection point of the diagonals is not the midpoint of either of them. Then the lines AF
and CF have a unique common point, F ; hence, O = F . We similarly prove that O = E.
Contradiction.

4.8. Let the length of diagonal AC of trapezoid ABCD with base AD be equal to 5.
Let us complement triangle ACB to parallelogram ACBE. The area of trapezoid ABCD
is equal to the area of the right triangle DBE. Let BH be a height of triangle DBE. Then
EH2 = BE2−BH2 = 52−42 = 32 and ED = BE2

EH
= 25

3
. Therefore, SDBE = 1

2
ED·BH = 50

3
.

4.9. Since SABE = SABC , it follows that EC ‖ AB. The remaining diagonals are also
parallel to the corresponding sides. Let P be the intersection point of BD and EC. If
SBPC = x, then

SABCDE = SABE + SEPB + SEDC + SBPC = 3 + x.

(we have SEPB = SABE = 1 because ABPE is a parallelogram). Since SBPC : SDPC =

BP : DP = SEPB : SEPD, it follows that x : (1 − x) = 1 : x and, therefore, x =
√

5−1
2

and

SABCDE =
√

5+5
2

.
4.10. The centers of all the three rectangles coincide (see Problem 1.7) and, therefore,

two smaller rectangles have a common diagonal, KL. Let M and N be the vertices of these
rectangles that lie on side BC. Points M and N lie on the circle with diameter KL. Let O be
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the center of the circle, O1 the projection of O to BC. Then BO1 = CO1 and MO1 = NO1

and, therefore, BM = NC. To prove that SKLM + SKLN = SKBCL it suffices to verify that

(SKBM + SLCM) + (SKBN + SLCN) = SKBCL =
1

2
BC(KB + CL) =

1

2
BC · AB.

It remains to observe that

KB · BM + KB · BN = KB · BC,
LC · CM + LC · CN = LC · BC,
KB · BC + LC · BC = AB · BC.

4.11. Let us drop perpendicular l from point C to line AB. Let points A′, B′ and E ′

be symmetric to points A, B and E, respectively, through line l. Then triangle AA′C is
an equilateral one and ∠ACB = ∠BCB′ = ∠B′CA′ = 20◦. Triangles EE ′C and DEC are
isosceles ones with the angle of 20◦ at the vertex and a common lateral side EC. Therefore,
SABC + 2SEDC = SABC + 2SEE′C . Since E is the midpoint of BC, it follows that 2SEE′C =
SBE′C = 1

2
SBB′C . Hence,

SABC + 2SEDC =
SAA′C

2
=

√
3

8
.

4.12. Let the areas of triangles Ta, Tb and Tc be equal to a, b and c, respectively.
Triangles Ta and Tc are homothetic and, therefore, the lines that connect their respective
vertices meett at one point, O. The similarity coefficient k of these triangles is equal to

√

a
c
.

Clearly, SA1B3O : SC1B3O = A1O : C1O = k. Writing similar equations for $??? and adding
them, we get a : b = k and, therefore, b =

√
ac.

4.13. Making use of the result of Problem 1.3 it is easy to verify that

BQ

BB1

=
p + pq

1 + p + pq
,

B1R

BB1

= qr1 + q + qr,

CR

CC1

=
q + qr

1 + q + qr
,

CP

CC1

=
pr

1 + r + pr
.(1)

It is also clear that
SPQR

SRB1C
= QR

RB1
· PR

RC
and

SRB1C

SABC
= B1C

AC
· B1R

BB1
. Hence,

SPQR

SABC

=
QR

BB1

· PR

RC
· B1C

AC
=

QR

BB1

· PR

CC1

· CC1

CR
· B1C

AC
.

Taking into account that
QR
BB1

= 1 − p+pq
1+p+pq

− qr
1+q+rq

= 1
1+p+pq

− rq
1+q+rq

= (1+q)(1−pqr)
(1+p+pq)(1+q+qr)

and
PR

CC1

=
(1 + r)(1 − pqr)

(1 + q + qr)(1 + r + pr)
we get

SPQR

SABC

=
(1 − pqr)2

(1 + p + pq)(1 + q + qr)(1 + r + pr)
.

4.14. If SAOB = SCOD, then AO · BO = CO · DO. Hence, △AOD ∼ △COB and
AD ‖ BC. These arguments are invertible.

4.15. a) Since SADP : SABP = DP : BP = SCDP : SBCP , we have

SADP =
SABP · SCDP

SBCP

.



SOLUTIONS 89

b) Thanks to heading a) SADP · SCBP = SABP · SCDP . Therefore,

SABP · SCBP · SCDP · SADP = (SADP · SCBP )2.

4.16. After division by 1
4
sin2 ϕ, where ϕ is the angle between the diagonals, we rewrite

the given equality of the areas in the form

(AP · BP )2 + (CP · DP )2 = (BP · CP )2 + (AP · DP )2,

i.e.,
(AP 2 − CP 2)(BP 2 − DP 2) = 0.

4.17. Suppose that quadrilateral ABCD is not a parallelogram; for instance, let lines
AB and CD intersect. By Problem 7.2 the set of points P that lie inside quadrilateral
ABCD for which

SABP + SCDP = SBCP + SADP =
1

2
SABCD

is a segment. Therefore, points P1, P2 and P3 lie on one line. Contradiction.
4.18. Clearly,

SAKON = SAKO + SANO =
1

2
(SAOB + SAOD).

Similarly, SCLOM = 1
2
(SBCO + SCOD). Hence, SAKON + SCLOM = 1

2
SABCD.

4.19. If the areas of the parallelograms KBLO and MDNO are equal, then OK ·OL =
OM · ON . Taking into account that ON = KA and OM = LC, we get KO : KA = LC :
LO. Therefore, △KOA ∼ △LCO which means that point O lies on diagonal AC. These
arguments are invertible.

4.20. Let h1, h and h2 be the distances from points A, M and B to line CD, respectively.
By Problem 1.1 b) we have h = ph2 + (1 − p)h1, where p = AM

AB
. Therefore,

SDMC =
h · DC

2
=

h2p · DC + h1(1 − p) · DC

2
= SBCN + SADN .

Subtracting SDKN + SCLN from both sides of this equality we get the desired statement.
4.21. Thanks to Problem 4.20,

SABD1 + SCDB1 = SABCD.

Hence,
SA1B1C1D1 = SA1B1D1 + SC1D1B1

= (1 − 2p)SABD1 + (1 − 2p)SCDB1 = (1 − 2p)SABCD.

4.22. By Problem 4.21 the area of the middle quadrilateral of those deteremined by
segments that connect points of sides AB and CD is 1

5
of the area of the initial quadrilateral.

Since each of the considered segments is divided by segments that connect the corresponding
points of the other pair of opposite sides into 5 equal parts (see Problem 1.16). By making
use once again of the result of Problem 4.21, we get the desired statement.

4.23. On sides AB, BC, CD and AD points K, L, M and N , respectively, are taken.
Suppose that diagonal KM is not parallel to side AD. Fix points K, M and N and let us
move point L along side BC. In accordance with this movement the area of triangle KLM
varies strictly monotonously. Moreover, if LN ‖ AB, then the equality SAKN + SBKL +
SCLM + SDMN = 1

2
SABCD holds, i.e., SKLMN = 1

2
SABCD.

4.24. Let L1 and N1 be the midpoints of sides BC and AD, respectively. Then KL1MN1

is a parallelogram and its area is equal to a half area of quadrilateral ABCD, cf. Problem
1.37 a). Therefore, it suffices to prove that the areas of parallelograms KLMN and KL1MN1

are equal. If these parallelograms coincide, then there is nothing more to prove and if they
do not coincide, then LL1 ‖ NN1 and BC ‖ AD because the midpoint of segment KM is
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their center of symmetry. In this case the midline KM of trapezoid ABCD is parallel to
bases BC and AD and therefore, heights of triangles KLM and KL1M dropped to side
KM are equal, i.e., the areas of parallelograms KLMN and KL1MN1 are equal.

4.25. Let the given lines l1 and l2 divide the square into four parts whose areas are equal
to S1, S2, S3 and S4 so that for the first line the areas of the parts into which it divides the
square are equal to S1 + S2 and S3 + S4 and for the second line they are equal to S2 + S3

and S1 + S4. Since by assumption S1 = S2 = S3, it follows that S1 + S2 = S2 + S3. This
means that the image of line l1 under the rotation about the center of the square through
an angle of +90◦ or −90◦ is not just parallel to line l2 but coincides with it.

It remains to prove that line l1 (hence, line l2) passes through the center of the square.
Suppose that this is not true. Let us consider the images of lines l1 and l2 under rotations
through an angle of ±90◦ and denote the areas of the parts into which they divide the square
as plotted on Fig. 45 (on this figure both distinct variants of the disposition of the lines are
plotted).

Figure 45 (Sol. 4.25)

Lines l1 and l2 divide the square into four parts whose areas are equal to a, a+b, a+2b+c
and a + b, where numbers a, b and c are nonzero. It is clear that three of the four numbers
indicated cannot be equal. Contradiction.

4.26. All the three triangles considered have a common base AM . Let hb, hc and hd be

the distances from points B, C and D, respectively, to line AM . Since
−→
AC =

−→
AB +

−−→
AD, it

follows that hc = |hb ± hd|.
4.27. We may assume that P is a common point of parallelograms constructed on sides

AB and BC, i.e., these parallelograms are of the form ABPQ and CBPR. It is clear that
SACRQ = SABPQ + SCBPR.

4.28. Let the length of the hexagon’s side be equal to a. The extensions of red sides of
the hexagon form an equilateral triangle with side 3a and the sum of areas of red triangles
is equal to a half product of a by the sum of distances from point O to a side of this triangle

and, therefore, it is equal to 3
√

3
4

a2, cf. Problem 4.46.
The sum of areas of blue triangles is similarly calculated.
4.29. a) The area of parallelogram PMQN is equal to 1

4
BC · AD sin α, where α is the

angle between lines AD and BC. The heights of triangles ABD and ACD dropped from
vertices B and C are equal to OB sin α and OC sin α, respectively; hence,

|SABD − SACD| =
|OB − OC| · AD sin α

2
=

BC · AD sin α

2
.

b) Let, for definiteness, rays AD and BC intersect. Since PN ‖ AO and QN ‖ CO,
point N lies inside triangle OPQ. Therefore,

SOPQ = SPQN + SPON + SQON = 1
2
SPMQN + 1

4
SACD + 1

4
SBCD

= 1
4
(SABD − SACD + SACD + SBCD = 1

4
SABCD.
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4.30. Segments KM and LN are the midlines of triangles CED and AFB and, therefore,
they have a common point — the midpoint of segment EF . Moreover, KM = 1

2
CD,

LN = 1
2
AB and the angle between lines KM and LN is equal to the angle α between lines

AB and CD. Therefore, the area of quadrilateral KLMN is equal to 1
8
AB · CD sin α.

Figure 46 (Sol. 4.31)

4.31. Denote the midpoints of the diagonals of hexagon ABCDEF as shown on Fig.
46. Let us prove that the area of quadrilateral A1B1C1D1 is 1

4
of the area of quadrilateral

ABCD. To this end let us make use of the fact that the area of the quadrilateral is equal to
a half product of the lengths of the diagonals by the sine of the angle between them. Since
A1C1 and B1D1 are the midlines of triangles BDF and ACE, we get the desired statement.

We similarly prove that the area of quadrilateral D1E1F1A1 is 1
4

of the area of quadrilat-
eral DEFA.

4.32. Let α = ∠PQC. Then

2SACK = CK · AK = (AP cos α) · (AQ sin α) = AR2 sin α · cos α
= BC2 sin α · cos α = BL · CL = 2SBCL.

4.33. Let Sa, Sb and Sc be the areas of the triangles adjacent to vertices A, B and C;
let S be the area of the fourth of the triangles considered. Clearly,

SACC1 + SBAA1 + SCBB1 = SABC − S + Sa + Sb + Sc.

Moreover,

SABC = SAOC + SAOB + SBOC = SACC1 + SBAA1 + SCBB1 .

4.34. Let O be the center of the inscribed circle of triangle ABC, let B1 be the tangent
point of the inscribed circle and side AC. Let us cut off triangle ABC triangle AOB1 and
reflect AOB1 symmetrically through the bisector of angle OAB1. Under this reflection line
OB1 turns into line la. Let us perform a similar operation for the remaining triangles. The
common parts of the triangles obtained in this way are three triangles of the considered
partition and the uncovered part of triangle ABC is the fourth triangle. It is also clear that
the area of the uncovered part is equal to the sum of areas of the parts covered twice.

4.35. Let, for definiteness, rays AD and BC meet at point O. Then SCDO : SMNO =
c2 : x2, where x = MN and SABO : SMNO = ab : x2 because OA : ON = a : x and
OB : OM = b : x. It follows that x2 − c2 = ab − x2, i.e., 2x2 = ab + c2.

4.36. Denote the areas of the parts of the figure into which it is divided by lines as
shown on Fig. 47. Let us denote by S the area of the whole figure. Since

S3 + (S2 + S7) =
1

2
S = S1 + S6 + (S2 + S7),
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Figure 47 (Sol. 4.36)

it follows that S3 = S1 + S6. Adding this equality to the equality 1
2
S = S1 + S2 + S3 + S4 we

get
1

2
S = 2S1 + S2 + S4 + S6 ≥ 2S1, i.e., S1 ≤

1

4
S.

4.37. Let us denote the projection of line l by B and the endpoints of the projection of
the polygon by A and C. Let C1 be a point of the polygon whose projection is C. Then line
l intersects the polygon at points K and L; let points K1 and L1 be points on lines C1K and
C1L that have point A as their projection (Fig. 48).

Figure 48 (Sol. 4.37)

One of the parts into which line l divides the polygon is contained in trapezoid K1KLL1,
the other part contains triangle C1KL. Therefore, SK1KLL1 ≥ SC1KL, i.e., AB · (KL +
K1L1) ≥ BC · KL. Since K1L1 = KL · AB+BC

BC
, we have AB ·

(

2 + AB
BC

)

≥ BC. Solving this

inequality we get BC
AB

≤ 1 +
√

2.

Similarly, AB
BC

≤ 1 +
√

2. (We have to perform the same arguments but interchange A
and C.)

4.38. Let S denote the area of the polygon, l an arbitrary line. Let us introduce a
coordinate system in which line l is Ox-axis. Let S(a) be the area of the part of the polygon
below the line y = a. Clearly, S(a) varies continuously from 0 to S as a varies from −∞ to
+∞ and, therefore (by Calculus, see, e.g., ??), S(a) = 1

2
S for some a, i.e., the line y = a

divides the area of the polygon in halves.
Similarly, there exists a line perpendicular to l and this perpendicular also divides the

area of the polygon in halves. These two lines divide the polygon into parts whose areas are
equal to S1, S2, S3 and S4 (see Fig. 49). Since S1 + S2 = S3 + S4 and S1 + S4 = S2 + S3,
we have S1 = S3 = A and S2 = S4 = B. The rotation of line l by 90◦ interchanges points A



SOLUTIONS 93

Figure 49 (Sol. 4.38)

and B. Since A and B vary continuously under the rotation of l, it follows that A = B for
a certain position of l, i.e., the areas of all the four figures are equal at this moment.

4.39. a) Let the line that divides the area and the perimeter of triangle ABC in halves
intersect sides AC and BC at points P and Q, respectively. Denote the center of the
inscribed circle of triangle ABC by O and the radius of the inscribed circle by r. Then
SABQOP = 1

2
r(AP + AB + BQ) and SOQCP = 1

2
r(QC + CP ). Since line PQ divides the

perimeter in halves, AP +AB+BQ = QC+CP and, therefore, SABQOP = SOQCP . Moreover,
SABQP = SQCP by the hypothesis. Therefore, SOQP = 0, i.e., line QP passes through point
O.

b) Proof is carried out similarly to that of heading a).
4.40. By considering the image of circle S2 under the symmetry through the center of

circle S1 and taking into account the equality of areas, it is possible to prove that diameter
AA1 of circle S1 intersects S2 at a point K distinct from A and so that AK > A1K. The
circle of radius KA1 centered at K is tangent to S1 at point A1 and, therefore, BK > A1K,
i.e., BK + KA > A1A. It is also clear that the sum of the lengths of segments BK and KA
is smaller than the length of the arc of S2 that connects points A and B.

4.41. The case when point O belongs to Γ is obvious; therefore, let us assume that O
does not belong to Γ. Let Γ′ be the image of the curve Γ under the symmetry through point
O. If curves Γ and Γ′ do not intersect, then the parts into which Γ divides the square cannot
be of equal area. Let X be the intersection point of Γ and Γ′; let X ′ be symmetric to X
through point O. Since under the symmetry through point O curve Γ′ turns into Γ, it follows
that X ′ belongs to Γ. Hence, line XX ′ is the desired one.

4.42. Let the areas of triangles APB, BPC, CPD and DPA be equal to S1, S2, S3 and
S4, respectively. Then a

p
= S3+S4

S3
and b·CD

2
= S3 + S2; consequently,

ab · CD

2p
=

(S3 + S4)(S3 + S2)

S3

.

Taking into account that S2S4 = S1S3 we get the desired statement.
4.43. By applying the law of sines to triangles ABC and ABD we get AC = 2R sin ∠B

and BD = 2R · sin ∠A. Therefore,

S =
1

2
AC · BD sin ϕ = 2R2 sin ∠A · sin ∠B · sin ϕ.

4.44. Since the area of the quadrilateral is equal to 1
2
d1d2 sin ϕ, where d1 and d2 are the

lengths of the diagonals, it remains to verify that 2d1d2 cos ϕ = |a2 + c2 − b2 − d2|. Let O be
the intersection point of the diagonals of quadrilateral ABCD and ϕ = ∠AOB. Then

AB2 = AO2 + BO2 − 2AO · OB cos ϕ; BC2 = BO2 + CO2 + 2BO · CO cos ϕ.
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Hence,
AB2 − BC2 = AO2 − CO2 − 2BO · AC cos ϕ.

Similarly,
CD2 − AD2 = CO2 − AO2 − 2DO · AC cos ϕ.

By adding these equalities we get the desired statement.

Remark. Since

16S2 = 4d2
1d

2
2 sin2 ϕ = 4d2

1d
2
2 − (2d1d2 cos ϕ)2,

it follows that 16S2 = 4d2
1d

2
2 − (a2 + c2 − b2 − d2)2.

4.45. a) Let AB = a, BC = b, CD = c and AD = d. Clearly,

S = SABC + SADC = 1
2
ab sin ∠B + cd sin ∠D;

a2 + b2 − 2ab cos ∠B = AC2 = c2 + d2 − 2cd cos ∠D.

Therefore,

16S2 = 4a2b2 − 4a2b2 cos2
∠B + 8abcd sin ∠B sin ∠D + 4c2d2 − 4c2d2 cos2

∠D,
(a2 + b2 − c2 − d2)2 + 8abcd cos ∠B cos ∠D = 4a2b2 · cos2

∠B + 4c2d2 cos2
∠D.

By inserting the second equality into the first one we get

16S2 = 4(ab + cd)2 − (a2 + b2 − c2 − d2)2 − 8abcd(1 + cos ∠B cos ∠D − sin ∠B sin ∠D).

Clearly,

4(ab + cd)2 − (a2 + b2 − c2 − d2)2 = 16(p − a)(p − b)(p − c)(p − d);
1 + cos ∠B cos ∠D − sin ∠B sin ∠D = 2 cos2 ∠B+∠D

2
.

b) If ABCD is an inscribed quadrilateral, then ∠B + ∠D = 180◦ and, therefore,
cos2 ∠B+∠D

2
= 0.

c) If ABCD is a circumscribed quadrilateral, then a + c = b + d and, therefore, p =
a + c = b + d and p − a = c, p − b = d, p − c = a, p − d = b. Hence,

S2 = abcd

(

1 − cos2 ∠B + ∠D

2

)

= abcd sin2 ∠B + ∠D

2
.

If ABCD is simultaneously an inscribed and circumscribed quadrilateral, then S2 = abcd.
4.46. Let us drop perpendiculars OA1, OB1 and OC1 to sides BC, AC and AB, respec-

tively, of an equilateral triangle ABC from a point O inside it. In triangle ABC, let a be
the length of the side, h the length of the height. Clearly, SABC = SBCO + SACO + SABO.
Therefore, ah = a · OA1 + a · OB1 + a · OC1, i.e., h = OA1 + OB1 + OC1.

4.47. Let AD = l. Then

2SABD = cl sin
α

2
, 2SACD = bl sin

α

2
, 2SABD = bc sin α.

Hence,

cl sin
α

2
+ bl sin

α

2
= bc sin α = 2bc sin

α

2
cos

α

2
.

4.48. a) Let the distances from points A and O to line BC be equal to h and h1,
respectively. Then SOBC : SABC = h1 : H = OA1 : AA1. Similarly, SOAC : SABC = OB1 :
BB1 and SOAB : SABC = OC1 : CC1. By adding these equalities and taking into account
that SOBC + SOAC + SOAB = SABC we get the desired statement.

b) Let the distances from points B and C to line AA1 be equal to db and dc, respectively.
Then SABO : SACO = db : dc = BA1 : A1C. Similarly, SACO : SBCO = AC1 : C1B and
SBCO : SABO = CB1 : B1A. It remains to multiply these equalities.
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4.49. It is easy to verify that the ratio of the lengths of segments An+k−1Bk and An+kBk

is equal to the ratio of areas of triangles An+k−1OAk and AkOAn+k. By multiplying these
equalities we get the desired statement.

4.50. Since AiBiCiDi is a parallelogram and point O lies on the extension of its diagonal
AiCi, it follows that SAiBiO = SAiDiO and, therefore, AiBi : AiDi = hi : hi−1, where hi is the
distance from point O to side AiAi+1. It remains to multiply these equalities for i = 1, . . . , n.

4.51. Let the lengths of sides of triangle ABC be equal to a, b and c, where a ≤ b ≤ c.
Then 2b = a + c and 2SABC = r(a + b + c) = 3rb, where r is the radius of the inscribed
circle. On the other hand, 2SABC = hbb. Therefore, r = 1

3
hb.

4.52. It suffices to observe that

db · AB = 2SAXB = BX · AX sin ϕ,

where ϕ = ∠AXB and dc · AC = 2SAXC = CX · AX sin ϕ.
4.53. Let r1, . . . , rn be the radii of the inscribed circles of the obtained triangles, let

P1, . . . , Pn their perimeters and S1, . . . , Sn their areas. Let us denote the area and the
perimeter of the initial polygon by S and P , respectively.

It is clear that Pi < P (cf. Problem 9.27, b). Hence,

r1 + · · · + rn = 2
S1

P1

+ · · · + 2
Sn

Pn

> 2
S1

P
+ · · · + 2

Sn

P
= 2

S

P
= r.

4.54. Let us draw lines Q1S1 and P1R1 parallel to lines QS and PR through the inter-
section point N of lines BS and CM (points P1, Q1, R1 and S1 lie on sides AB, BC, CD and
DA, respectively). Let F and G be the intersection points of lines PR and Q1S1, P1R1 and
QS, respectively. Since point M lies on diagonal NC of parallelogram NQ1CR1, it follows
that SFQ1QM = SMRR1G (by Problem 4.19) and, therefore, SNQ1QG = SNFRR1 . Point N lies
on diagonal BS of parallelogram ABQS and, therefore, SAP1NS1 = SNQ1QG = SNFRR1 . It
follows that point N lies on diagonal PD of parallelogram APRD.

4.55. Let E and F be the intersection points of the extensions of sides of the given
quadrilateral. Denote the vertices of the quadrilateral so that E is the intersection point of
the extensions of sides AB and CD beyond points B and C and F is the intersection point
of rays BC and AD. Let us complement triangles AEF and ABD to parallelograms AERF
and ABLD, respectively.

The homothety with center A and coefficient 2 sends the midpoint of the diagonal BD,
the midpoint of the diagonal AC and the midpoint of segment EF to points L, C and R,
respectively. Therefore, it suffices to prove that points L, C and R lie on one line. This is
precisely the fact proved in the preceding problem.

4.56. It suffices to verify that SAKO = SALO, i.e., AO·AL sin ∠OAL = AO·AK sin ∠OAK.
Clearly,

AL = CB1 = BC cos ∠C, sin ∠OAL = cos ∠B,
AK = BC1 = BC cos ∠B, sin ∠OAK = cos ∠C.

4.57. Since quadrilateral A1BC1M is a circumscribed one, then, first, the sums of the
lengths of its opposite sides are equal:

a

2
+

mc

3
=

c

2
+

ma

3

and, second, its inscribed circle is simultaneously the inscribed circle of triangles AA1B and
CC1B. Since these triangles have equal areas, their perimeters are equal:

c + ma +
a

2
= a + mc +

c

2
.
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By multiplying the first equality by 3 and adding to the second one we get the desired
statement.

4.58. First, let us prove a general inequality that will be used in the proof of headings
a)–d):

(∗) BC1 · Ra ≥ B1K · Ra + C1L · Ra = 2SAOB1 + 2SAOC1 = AB1 · dc + AC1 · db.

On rays AB and AC take arbitrary points B1 and C1 and drop from them perpendiculars
B1K and C1L to line AO. Since B1C1 ≥ B1K + C1L, inequality (∗) follows.

a) Setting B1 = B and C1 = C we get the desired statement.
b) By multiplying both sides of the inequality aRa ≥ cdc + bdb by da

a
we get

daRa ≥ c

a
dadc +

b

a
dadb.

Taking the sum of this inequality with the similar inequalities for dbRb and dcRc and taking
into account that x

y
+ y

x
≥ 2 we get the desired statement.

c) Take points B1 and C1 such that AB1 = AC and AC1 = AB. Then aRa ≥ bdc + cdb,
i.e., Ra ≥ b

a
dc + c

a
db. Taking the sum of this inequality with similar inequalities for Rb and

Rc and taking into account that x
y

+ y
x
≥ 2 we get the desired statement.

d) Take points B1 and C1 such that AB1 = AC1 = 1; then B1C1 = 2 sin 1
2
∠A and,

therefore, 2 sin 1
2
Ra ≥ dc + db. By multiplying this inequality by similar inequalities for Rb

and Rc and taking into account that sin 1
2
∠A sin 1

2
∠B sin 1

2
∠C = r

4R
(by Problem 12.36 a))

we get the desired statement.
4.59. Let us cut triangles off a regular octagon and replace the triangles as shown on

Fig. 50. As a result we get a rectangle whose sides are equal to the longest and shortest
diagonals of the octagon.

Figure 50 (Sol. 4.59)

4.60. Let A1, B1 and C1 be the midpoints of sides BC, CA and AB, respectively, of
triangle ABC. The drawn segments are heights of triangles AB1C1, A1BC1 and A1B1C,
respectively. Let P , Q and R be the respective intersection points of the heights of these
triangles and O the intersection point of the heights of triangle A1B1C1 (Fig. 51).

The considered hexagon consists of triangle A1B1C1 and triangles B1C1P , C1A1Q and
A1BR. Clearly, △B1C1P = △C1B1O, △C1A1Q = △A1C1O and △A1B1R = △B1A1O.
Therefore, the area of the considered hexagon is equal to the doubled area of triangle A1B1C1.
It remains to observe that SABC = 4SA1B1C1 .

4.61. a) Let us cut two parts off the parallelogram (Fig. 52 a)) and replace these parts as
shown on Fig. 52 b). We get a figure composed of mn + 1 small parallelograms. Therefore,
the area of a small parallelogram is equal to 1

mn+1
.

b) Let us cut off the parallelogram three parts (Fig. 53 a)) and replace these parts as
indicated on Fig. 53 b). We get a figure that consists of mn − 1 small parallelograms.
Therefore, the area of a small parallelogram is equal to 1

mn−1
.
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Figure 51 (Sol. 4.60)

Figure 52 (Sol. 4.61 a))

Figure 53 (Sol. 4.61 b))

4.62. a) Let us cut the initial square into four squares and consider one of them (Fig. 54).
Let point B′ be symmetric to point B through line PQ. Let us prove that △APB = △OB′P .
Indeed, triangle APB is an isosceles one and angle at its base is equal to 15◦ (Problem 2.26),
hence, triangle BPQ is an isosceles one. Therefore,

∠OPB′ = ∠OPQ − ∠B′PQ = 75◦ − 60◦ = 15◦

and ∠POB′ = 1
2
∠OPQ = 15◦. Moreover, AB = OP . We similarly prove that △BQC =

△OB′Q. It follows that the area of the shaded part on Fig. 43 is equal to the area of triangle
OPQ.

Figure 54 (Sol. 4.62)

b) Let the area of the regular 12-gon inscribed in a circle of radius 1 be equal to 12x.
Thanks to heading a) the area of the square circumscribed around this circle is equal to
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12x + 4x = 16x; on the other hand, the area of the square is equal to 4; hence, x = 1
4

and
12x = 3.



CHAPTER 5. TRIANGLES

Background

1) The inscribed circle of a triangle is the circle tangent to all its sides. The center of an
inscribed circle is the intersection point of the bisectors of the triangle’s angles.

An escribed circle of triangle ABC is the circle tangent to one side of the triangle and
extensions of the other two sides. For each triangle there are exactly three escribed circles.
The center of an escribed circle tangent to side AB is the intersection point of the bisector
of angle C and the bisectors of the outer angles A and B.

The circumscribed circle of a triangle is the circle that passes through the vertices of the
triangle. The center of the circumscribed circle of a triangle is the intersection point of the
midperpendiculars to the triangle’s sides.

2) For elements of a triangle ABC the following notations are often used:
a, b and c are the lengths of sides BC, CA and AB, respectively;
α, β and γ are the values of angles at vertices A, B, C;
R is the radius of the circumscribed cirlce;
r is the radius of the inscribed circle;
ra, rb and rc are the radii of the escribed circles tangent to sides BC, CA and AB,

respectively;
ha, hb and hc the lengths of the heights dropped from vertices A,B and C, respectively.
3) If AD is the bisector of angle A of triangle ABC (or the bisector of the outer angle

A), then BD : CD = AB : AC (cf. Problem 1.17).
4) In a right triangle, the median drawn from the vertex of the right angle is equal to a

half the hypothenuse (cf. Problem 5.16).
5) To prove that the intersection points of certain lines lie on one line Menelaus’s theorem

(Problem 5.58) is often used.
6) To prove that certain lines intersect at one point Ceva’s theorem (Problem 5.70) is

often used.

Introductory problems

1. Prove that the triangle is an isosceles one if a) one of its medians coincides with a
height;

b) if one of its bisectors coincides with a height.
2. Prove that the bisectors of a triangle meet at one point.
3. On height AH of triangle ABC a point M is taken. Prove that AB2 − AC2 =

MB2 − MC2.
4. On sides AB, BC, CA of an equilateral triangle ABC points P , Q and R, respectively,

are taken so that

AP : PB = BQ : QC = CR : RA = 2 : 1.

Prove that the sides of triangle PQR are perpendicular to the respective sides of triangle
ABC.

99
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1. The inscribed and the circumscribed circles

5.1. On sides BC, CA and AB of triangle ABC, points A1, B1 and C1, respectively, are
taken so that AC1 = AB1, BA1 = BC1 and CA1 = CB1. Prove that A1, B and C1 are the
points at which the inscribed circle is tangent to the sides of the triangle.

5.2. Let Oa, Ob and Oc be the centers of the escribed circles of triangle ABC. Prove
that points A, B and C are the bases of heights of triangle OaObOc.

5.3. Prove that side BC of triangle ABC subtends (1) an angle with the vertex at the
center O of the inscribed circle; the value of the angle is equal to 90◦ + 1

2
∠A and (2) an

angle with the vertex at the center Oa of the escribed circle; the value of the angle is equal
to 90◦ − 1

2
∠A.

5.4. Inside triangle ABC, point P is taken such that

∠PAB : ∠PAC = ∠PCA : ∠PCB = ∠PBC : ∠PBA = x.

Prove that x = 1.
5.5. Let A1, B1 and C1 be the projections of an inner point O of triangle ABC to the

heights. Prove that if the lengths of segments AA1, BB1 and CC1 are equal, then they are
equal to 2r.

5.6. An angle of value α = ∠BAC is rotated about its vertex O, the midpoint of the
basis AC of an isosceles triangle ABC. The legs of this angle meet the segments AB and
BC at points P and Q, respectively. Prove that the perimeter of triangle PBQ remains
constant under the rotation.

5.7. In a scalene triangle ABC, line MO is drawn through the midpoint M of side BC
and the center O of the inscribed circle. Line MO intersects height AH at point E. Prove
that AE = r.

5.8. A circle is tangent to the sides of an angle with vertex A at points P and Q.
The distances from points P , Q and A to a tangent to this circle are equal to u, v and w,
respectively. Prove that uv

w2 = sin2 1
2
∠A.

* * *

5.9. Prove that the points symmetric to the intersection point of the heights of triangle
ABC through its sides lie on the circumscribed circle.

5.10. From point P of arc BC of the circumscribed circle of triangle ABC perpendiculars
PX, PY and PZ are dropped to BC, CA and AB, respectively. Prove that BC

PX
= AC

PY
+ AB

PZ
.

* * *

5.11. Let O be the center of the circumscribed circle of triangle ABC, let I be the center
of the inscribed circle, Ia the center of the escribed circle tangent to side BC. Prove that

a) d2 = R2 − 2Rr, where d = OI;
b) d2

a = R2 + 2Rra, where da = OIa.
5.12. The extensions of the bisectors of the angles of triangle ABC intersect the circum-

scribed circle at points A1, B1 and C1; let M be the intersection point of bisectors. Prove
that a) MA·MC

MB1
= 2r; b) MA1·MC1

MB
= R.

5.13. The lengths of the sides of triangle ABC form an arithmetic progression: a, b, c,
where a < b < c. The bisector of angle ∠B intersects the circumscribed circle at point B1.
Prove that the center O of the inscribed circle divides segment BB1 in halves.

5.14. In triangle ABC side BC is the shortest one. On rays BA and CA, segments
BD and CE, respectively, each equal to BC, are marked. Prove that the radius of the
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circumscribed circle of triangle ADE is equal to the distance between the centers of the
inscribed and circumscribed circles of triangle ABC.

§2. Right triangles

5.15. In triangle ABC, angle ∠C is a right one. Prove that r = a+b−c
2

and rc = a+b+c
2

.

5.16. In triangle ABC, let M be the midpoint of side AB. Prove that CM = 1
2
AB if

and only if ∠ACB = 90◦.
5.17. Consider trapezoid ABCD with base AD. The bisectors of the outer angles at

vertices A and B meet at point P and the bisectors of the angles at vertices C and D meet at
point Q. Prove that the length of segment PQ is equal to a half perimeter of the trapezoid.

5.18. In an isosceles triangle ABC with base AC bisector CD is drawn. The line
that passes through point D perpendicularly to DC intersects AC at point E. Prove that
EC = 2AD.

5.19. The sum of angles at the base of a trapezoid is equal to 90◦. Prove that the
segment that connects the midpoints of the bases is equal to a half difference of the bases.

5.20. In a right triangle ABC, height CK from the vertex C of the right angle is drawn
and in triangle ACK bisector CE is drawn. Prove that CB = BE.

5.21. In a right triangle ABC with right angle ∠C, height CD and bisector CF are
drawn; let DK and DL be bisectors in triangles BDC and ADC. Prove that CLFK is a
square.

5.22. On hypothenuse AB of right triangle ABC, square ABPQ is constructed outwards.
Let α = ∠ACQ, β = ∠QCP and γ = ∠PCB. Prove that cos β = cos α · cos γ.

See also Problems 2.65, 5.62.

§3. The equilateral triangles

5.23. From a point M inside an equilateral triangle ABC perpendiculars MP , MQ and
MR are dropped to sides AB, BC and CA, respectively. Prove that

AP 2 + BQ2 + CR2 = PB2 + QC2 + RA2,
AP + BQ + CR = PB + QC + RA.

5.24. Points D and E divide sides AC and AB of an equilateral triangle ABC in the
ratio of AD : DC = BE : EA = 1 : 2. Lines BD and CE meet at point O. Prove that
∠AOC = 90◦.

* * *

5.25. A circle divides each of the sides of a triangle into three equal parts. Prove that
this triangle is an equilateral one.

5.26. Prove that if the intersection point of the heights of an acute triangle divides the
heights in the same ratio, then the triangle is an equilateral one.

5.27. a) Prove that if a + ha = b + hb = c + hc, then triangle ABC is a equilateral one.
b) Three squares are inscribed in triangle ABC: two vertices of one of the squares lie on

side AC, those of another one lie on side BC, and those of the third lie one on AB. Prove
that if all the three squares are equal, then triangle ABC is an equilateral one.

5.28. The circle inscribed in triangle ABC is tangent to the sides of the triangle at
points A1, B1, C1. Prove that if triangles ABC and A1B1C1 are similar, then triangle ABC
is an equilateral one.

5.29. The radius of the inscribed circle of a triangle is equal to 1, the lengths of the
heights of the triangle are integers. Prove that the triangle is an equilateral one.
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See also Problems 2.18, 2.26, 2.36, 2.44, 2.54, 4.46, 5.56, 7.45, 10.3, 10.77, 11.3, 11.5,
16.7, 18.9, 18.12, 18.15, 18.17-18.20, 18.22, 18.38, 24.1.

§4. Triangles with angles of 60◦ and 120◦

5.30. In triangle ABC with angle A equal to 120◦ bisectors AA1, BB1 and CC1 are
drawn. Prove that triangle A1B1C1 is a right one.

5.31. In triangle ABC with angle A equal to 120◦ bisectors AA1, BB1 and CC1 meet
at point O. Prove that ∠A1C1O = 30◦.

5.32. a) Prove that if angle ∠A of triangle ABC is equal to 120◦ then the center of the
circumscribed circle and the orthocenter are symmetric through the bisector of the outer
angle ∠A.

b) In triangle ABC, the angle ∠A is equal to 60◦; O is the center of the circumscribed
circle, H is the orthocenter, I is the center of the inscribed circle and Ia is the center of the
escribed circle tangent to side BC. Prove that IO = IH and IaO = IaH.

5.33. In triangle ABC angle ∠A is equal to 120◦. Prove that from segments of lengths
a, b and b + c a triangle can be formed.

5.34. In an acute triangle ABC with angle ∠A equal to 60◦ the heights meet at point
H.

a) Let M and N be the intersection points of the midperpendiculars to segments BH
and CH with sides AB and AC, respectively. Prove that points M , N and H lie on one
line.

b) Prove that the center O of the circumscribed circle lies on the same line.
5.35. In triangle ABC, bisectors BB1 and CC1 are drawn. Prove that if ∠CC1B1 = 30◦,

then either ∠A = 60◦ or ∠B = 120◦.

See also Problem 2.33.

§5. Integer triangles

5.36. The lengths of the sides of a triangle are consecutive integers. Find these integers
if it is known that one of the medians is perpendicular to one of the bisectors.

5.37. The lengths of all the sides of a right triangle are integers and the greatest common
divisor of these integers is equal to 1. Prove that the legs of the triangle are equal to 2mn
and m2 − n2 and the hypothenuse is equal to m2 + n2, where m and n are integers.

A right triangle the lengths of whose sides are integers is called a Pythagorean triangle.

5.38. The radius of the inscribed circle of a triangle is equal to 1 and the lengths of its
sides are integers. Prove that these integers are equal to 3, 4, 5.

5.39. Give an example of an inscribed quadrilateral with pairwise distinct integer lengths
of sides and the lengths of whose diagonals, the area and the radius of the circumscribed
circle are all integers. (Brakhmagupta.)

5.40. a) Indicate two right triangles from which one can compose a triangle so that the
lengths of the sides and the area of the composed triangle would be integers.

b) Prove that if the area of a triangle is an integer and the lengths of the sides are
consecutive integers then this triangle can be composed of two right triangles the lengths of
whose sides are integers.

5.41. a) In triangle ABC, the lengths of whose sides are rational numbers, height BB1

is drawn.
Prove that the lengths of segments AB1 and CB1 are rational numbers.



§6. MISCELLANEOUS PROBLEMS 103

b) The lengths of the sides and diagonals of a convex quadrilateral are rational numbers.
Prove that the diagonals cut it into four triangles the lengths of whose sides are rational
numbers.

See also Problem 26.7.

§6. Miscellaneous problems

5.42. Triangles ABC and A1B1C1 are such that either their corresponding angles are
equal or their sum is equal to 180◦. Prove that the corresponding angles are equal, actually.

5.43. Inside triangle ABC an arbitrary point O is taken. Let points A1, B1 and C1 be
symmetric to O through the midpoints of sides BC, CA and AB, respectively. Prove that
△ABC = △A1B1C1 and, moreover, lines AA1, BB1 and CC1 meet at one point.

5.44. Through the intersection point O of the bisectors of triangle ABC lines parallel
to the sides of the triangle are drawn. The line parallel to AB meets AC and BC at points
M and N , respectively, and lines parallel to AC and BC meet AB at points P and Q,
respectively. Prove that MN = AM + BN and the perimeter of triangle OPQ is equal to
the length of segment AB.

5.45. a) Prove that the heigths of a triangle meet at one point.
b) Let H be the intersection point of heights of triangle ABC and R the radius of the

circumscribed circle. Prove that

AH2 + BC2 = 4R2 and AH = BC| cot α|.
5.46. Let x = sin 18◦. Prove that 4x2 + 2x = 1.
5.47. Prove that the projections of vertex A of triangle ABC on the bisectors of the

outer and inner angles at vertices B and C lie on one line.
5.48. Prove that if two bisectors in a triangle are equal, then the triangle is an isosceles

one.
5.49. a) In triangles ABC and A′B′C ′, sides AC and A′C ′ are equal, the angles at

vertices B and B′ are equal, and the bisectors of angles ∠B and ∠B′ are equal. Prove that
these triangles are equal. (More precisely, either △ABC = △A′B′C ′ or △ABC = △C ′B′A′.)

b) Through point D on the bisector BB1 of angle ABC lines AA1 and CC1 are drawn
(points A1 and C1 lie on sides of triangle ABC). Prove that if AA1 = CC1, then AB = BC.

5.50. Prove that a line divides the perimeter and the area of a triangle in equal ratios if
and only if it passes through the center of the inscribed circle.

5.51. Point E is the midpoint of arc ⌣ AB of the circumscribed circle of triangle ABC
on which point C lies; let C1 be the midpoint of side AB. Perpendicular EF is dropped
from point E to AC. Prove that:

a) line C1F divides the perimeter of triangle ABC in halves;
b) three such lines constructed for each side of the triangle meet at one point.
5.52. On sides AB and BC of an acute triangle ABC, squares ABC1D1 and A2BCD2

are constructed outwards. Prove that the intersection point of lines AD2 and CD1 lies on
height BH.

5.53. On sides of triangle ABC squares centered at A1, B1 and C1 are constructed
outwards. Let a1, b1 and c1 be the lengths of the sides of triangle A1B1C1; let S and S1 be
the areas of triangles ABC and A1B1C1, respectively. Prove that:

a) a2
1 + b2

1 + c2
1 = a2 + b2 + c2 + 6S.

b) S1 − S = 1
8
(a2 + b2 + c2).

5.54. On sides AB, BC and CA of triangle ABC (or on their extensions), points C1,
A1 and B1, respectively, are taken so that ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) =
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α. Lines AA1 and BB1, BB1 and CC1, CC1 and AA1 intersect at points C ′, A′ and B′,
respectively. Prove that:

a) the intersection point of heights of triangle ABC coincides with the center of the
circumscribed circle of triangle A′B′C ′;

b) △A′B′C ′ ∼ △ABC and the similarity coefficient is equal to 2 cosα.
5.55. On sides of triangle ABC points A1, B1 and C1 are taken so that AB1 : B1C =

cn : an, BC1 : CA = an : bn and CA1 : A1B = bn : cn (here a, b and c are the lengths of
the triangle’s sides). The circumscribed circle of triangle A1B1C1 singles out on the sides of
triangle ABC segments of length ±x,±y and ±z, where the signs are chosen in accordance
with the orientation of the triangle. Prove that

x

an−1
+

y

bn−1
+

z

cn−1
= 0.

5.56. In triangle ABC trisectors (the rays that divide the angles into three equal parts)
are drawn. The nearest to side BC trisectors of angles B and C intersect at point A1; let us
define points B1 and C1 similarly, (Fig. 55). Prove that triangle A1B1C1 is an equilateral
one. (Morlie’s theorem.)

Figure 55 (5.56)

5.57. On the sides of an equilateral triangle ABC as on bases, isosceles triangles A1BC,
AB1C and ABC1 with angles α, β and γ at the bases such that α + β + γ = 60◦ are
constructed inwards. Lines BC1 and B1C meet at point A2, lines AC1 and A1C meet at
point B2, and lines AB1 and A1B meet at point C2. Prove that the angles of triangle A2B2C2

are equal to 3α, 3β and 3γ.

§7. Menelaus’s theorem

Let
−→
AB and

−−→
CD be colinear vectors. Denote by AB

CD
the quantity ±AB

CD
, where the plus

sign is taken if the vectors
−→
AB and

−−→
CD are codirected and the minus sign if the vectors are

directed opposite to each other.
5.58. On sides BC, CA and AB of triangle ABC (or on their extensions) points A1, B1

and C1, respectively, are taken. Prove that points A1, B1 and C1 lie on one line if and only
if

BA1

CA1

· CB1

AB1

· AC1

BC1

= 1. (Menelaus’s theorem)

5.59. Prove Problem 5.85 a) with the help of Menelaus’s theorem.
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5.60. A circle S is tangent to circles S1 and S2 at points A1 and A2, respectively. Prove
that line A1A2 passes through the intersection point of either common outer or common
inner tangents to circles S1 and S2.

5.61. a) The midperpendicular to the bisector AD of triangle ABC intersects line BC
at point E. Prove that BE : CE = c2 : b2.

b) Prove that the intersection point of the midperpendiculars to the bisectors of a triangle
and the extensions of the corresponding sides lie on one line.

5.62. From vertex C of the right angle of triangle ABC height CK is dropped and in
triangle ACK bisector CE is drawn. Line that passes through point B parallel to CE meets
CK at point F . Prove that line EF divides segment AC in halves.

5.63. On lines BC, CA and AB points A1, B1 and C1, respectively, are taken so that
points A1, B1 and C1 lie on one line. The lines symmetric to lines AA1, BB1 and CC1

through the corresponding bisectors of triangle ABC meet lines BC, CA and AB at points
A2, B2 and C2, respectively. Prove that points A2, B2 and C2 lie on one line.

* * *

5.64. Lines AA1, BB1 and CC1 meet at one point, O. Prove that the intersection points
of lines AB and A1B1, BC and B1C1, AC and A1C1 lie on one line. (Desargues’s theorem.)

5.65. Points A1, B1 and C1 are taken on one line and points A2, B2 and C2 are taken on
another line. The intersection pointa of lines A1B2 with A2B1, B1C2 with B2C1 and C1A2

with C2A1 are C, A and B, respectively. Prove that points A, B and C lie on one line.
(Pappus’ theorem.)

5.66. On sides AB, BC and CD of quadrilateral ABCD (or on their extensions) points
K, L and M are taken. Lines KL and AC meet at point P , lines LM and BD meet at
point Q. Prove that the intersection point of lines KQ and MP lies on line AD.

5.67. The extensions of sides AB and CD of quadrilateral ABCD meet at point P and
the extensions of sides BC and AD meet at point Q. Through point P a line is drawn that
intersects sides BC and AD at points E and F . Prove that the intersection points of the
diagonals of quadrilaterals ABCD, ABEF and CDFE lie on the line that passes through
point Q.

5.68. a) Through points P and Q triples of lines are drawn. Let us denote their
intersection points as shown on Fig. 56. Prove that lines KL, AC and MN either meet at
one point or are parallel.

Figure 56 (5.68)

b) Prove further that if point O lies on line BD, then the intersection point of lines KL,
AC and MN lies on line PQ.

5.69. On lines BC, CA and AB points A1, B1 and C1 are taken. Let P1 be an arbitrary
point of line BC, let P2 be the intersection point of lines P1B1 and AB, let P3 be the
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intersection point of lines P2A1 and CA, let P4 be the intersection point of P3C1 and BC,
etc. Prove that points P7 and P1 coincide.

See also Problem 6.98.

§8. Ceva’s theorem

5.70. Triangle ABC is given and on lines AB, BC and CA points C1, A1 and B1,
respectively, are taken so that k of them lie on sides of the triangle and 3 − k on the
extensions of the sides. Let

R =
BA1

CA1

· CB1

AB1

· AC1

BC1

.

Prove that
a) points A1, B1 and C1 lie on one line if and only if R = 1 and k is even. (Menelaus’s

theorem.)
b) lines AA1, BB1 and CC1 either meet at one point or are parallel if and only if R = 1

and k is odd. (Ceva’s theorem.)
5.71. The inscribed (or an escribed) circle of triangle ABC is tangent to lines BC, CA

and AB at points A1, B1 and C1, respectively. Prove that lines AA1, BB1 and CC1 meet at
one point.

5.72. Prove that the heights of an acute triangle intersect at one point.
5.73. Lines AP,BP and CP meet the sides of triangle ABC (or their extensions) at

points A1, B1 and C1, respectively. Prove that:
a) lines that pass through the midpoints of sides BC, CA and AB parallel to lines AP ,

BP and CP , respectively, meet at one point;
b) lines that connect the midpoints of sides BC, CA and AB with the midpoints of

segments AA1, BB1, CC1, respectively, meet at one point.
5.74. On sides BC, CA, and AB of triangle ABC, points A1, B1 and C1 are taken so

that segments AA1, BB1 and CC1 meet at one point. Lines A1B1 and A1C1 meet the line
that passes through vertex A parallel to side BC at points C2 and B2, respectively. Prove
that AB2 = AC2.

5.75. a) Let α, β and γ be arbitrary angles such that the sum of any two of them is not
less than 180◦. On sides of triangle ABC, triangles A1BC, AB1C and ABC1 with angles
at vertices A, B, and C equal to α, β and γ, respectively, are constructed outwards. Prove
that lines AA1, BB1 and CC1 meet at one point.

b) Prove a similar statement for triangles constructed on sides of triangle ABC inwards.
5.76. Sides BC, CA and AB of triangle ABC are tangent to a circle centered at O at

points A1, B1 and C1. On rays OA1, OB1 and OC1 equal segments OA2, OB2 and OC2 are
marked. Prove that lines AA2, BB2 and CC2 meet at one point.

5.77. Lines AB, BP and CP meet lines BC, CA and AB at points A1, B1 and C1,
respectively. Points A2, B2 and C2 are selected on lines BC, CA and AB so that

BA2 : A2C = A1C : BA1,
CB2 : B2A = B1A : CB1,
AC2 : C2B = C1B : AC1.

Prove that lines AA2, BB2 and CC2 also meet at one point, Q (or are parallel).

Such points P and Q are called isotomically conjugate with respect to triangle ABC.

5.78. On sides BC, CA, AB of triangle ABC points A1, B1 and C1 are taken so that
lines AA1, BB1 and CC1 intersect at one point, P . Prove that lines AA2, BB2 and CC2

symmetric to these lines through the corresponding bisectors also intersect at one point, Q.
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Such points P and Q are called isogonally conjugate with respect to triangle ABC.

5.80. The opposite sides of a convex hexagon are pairwise parallel. Prove that the lines
that connect the midpoints of opposite sides intersect at one point.

5.81. From a point P perpendiculars PA1 and PA2 are dropped to side BC of triangle
ABC and to height AA3. Points B1, B2 and C1, C2 are similarly defined. Prove that lines
A1A2, B1B2 and C1C2 either meet at one point or are parallel.

5.82. Through points A and D lying on a circle tangents that intersect at point S are
drawn. On arc ⌣ AD points B and C are taken. Lines AC and BD meet at point P , lines
AB and CD meet at point Q. Prove that line PQ passes through point S.

5.83. a) On sides BC, CA and AB of an isosceles triangle ABC with base AB, points
A1, B1 and C1, respectively, are taken so that lines AA1, BB1 and CC1 meet at one point.
Prove that

AC1

C1B
=

sin ∠ABB1 · sin ∠CAA1

sin ∠BAA1 · sin ∠CBB1

.

b) Inside an isosceles triangle ABC with base AB points M and N are taken so that
∠CAM = ∠ABN and ∠CBM = ∠BAN . Prove that points C, M and N lie on one line.

5.84. In triangle ABC bisectors AA1, BB1 and CC1 are drawn. Bisectors AA1 and CC1

intersect segments C1B1 and B1A1 at points M and N , respectively. Prove that ∠MBB1 =
∠NBB1.

See also Problems 10.56, 14.7, 14.38.

§9. Simson’s line

5.85. a) Prove that the bases of the perpendiculars dropped from a point P of the
circumscribed circle of a triangle to the sides of the triangle or to their extensions lie on one
line.

This line is called Simson’s line of point P with respect to the triangle.

b) The bases of perpendiculars dropped from a point P to the sides (or their extensions)
of a triangle lie on one line. Prove that point P lies on the circumscribed circle of the
triangle.

5.86. Points A, B and C lie on one line, point P lies outside this line. Prove that the
centers of the circumscribed circles of triangles ABP , BCP , ACP and point P lie on one
circle.

5.87. In triangle ABC the bisector AD is drawn and from point D perpendiculars DB′

and DC ′ are dropped to lines AC and AB, respectively; point M lies on line B′C ′ and
DM ⊥ BC. Prove that point M lies on median AA1.

5.88. a) From point P of the circumscribed circle of triangle ABC lines PA1, PB1 and
PC1 are drawn at a given (oriented) angle α to lines BC, CA and AB, respectively, so that
points A1, B1 and C1 lie on lines BC, CA and AB, respectively. Prove that points A1, B1

and C1 lie on one line.
b) Prove that if in the definition of Simson’s line we replace the angle 90◦ by an angle α,

i.e., replace the perpendiculars with the lines that form angles of α, their intersection points
with the sides lie on the line and the angle between this line and Simson’s line becomes equal
to 90◦ − α.

5.89. a) From a point P of the circumscribed circle of triangle ABC perpendiculars PA1

and PB1 are dropped to lines BC and AC, respectively. Prove that PA ·PA1 = 2Rd, where
R is the radius of the circumscribed circle, d the distance from point P to line A1B1.

b) Let α be the angle between lines A1B1 and BC. Prove that cos α = PA
2R

.
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5.90. Let A1 and B1 be the projections of point P of the circumscribed circle of triangle
ABC to lines BC and AC, respectively. Prove that the length of segment A1B1 is equal to
the length of the projection of segment AB to line A1B1.

5.91. Points P and C on a circle are fixed; points A and B move along the circle so that
angle ∠ACB remains fixed. Prove that Simson’s lines of point P with respect to triangle
ABC are tangent to a fixed circle.

5.92. Point P moves along the circumscribed circle of triangle ABC. Prove that Simson’s
line of point P with respect to triangle ABC rotates accordingly through the angle equal to
a half the angle value of the arc circumvent by P .

5.93. Prove that Simson’s lines of two diametrically opposite points of the circumscribed
circle of triangle ABC are perpendicular and their intersection point lies on the circle of 9
points, cf. Problem 5.106.

5.94. Points A, B, C, P and Q lie on a circle centered at O and the angles between vector−→
OP and vectors

−→
OA,

−−→
OB,

−→
OC and

−→
OQ are equal to α, β, γ and 1

2
(α + β + γ), respectively.

Prove that Simson’s line of point P with respect to triangle ABC is parallel to OQ.
5.95. Chord PQ of the circumscribed circle of triangle ABC is perpendicular to side

BC. Prove that Simson’s line of point P with respect to triangle ABC is parallel to line
AQ.

5.96. The heights of triangle ABC intersect at point H; let P be a point of its circum-
scribed circle. Prove that Simson’s line of point P with respect to triangle ABC divides
segment PH in halves.

5.97. Quadrilateral ABCD is inscribed in a circle; la is Simson’s line of point A with
respect to triangle BCD; let lines lb, lc and ld be similarly defined. Prove that these lines
intersect at one point.

5.98. a) Prove that the projection of point P of the circumscribed circle of quadrilateral
ABCD onto Simson’s lines of this point with respect to triangles BCD, CDA, DAB and
BAC lie on one line. (Simson’s line of the inscribed quadrilateral.)

b) Prove that by induction we can similarly define Simson’s line of an inscribed n-gon
as the line that contains the projections of a point P on Simson’s lines of all (n − 1)-gons
obtained by deleting one of the vertices of the n-gon.

See also Problems 5.10, 5.59.

§10. The pedal triangle

Let A1, B1 and C1 be the bases of the perpendiculars dropped from point P to lines
BC, CA and AB, respectively. Triangle A1B1C1 is called the pedal triangle of point P with
respect to triangle ABC.

5.99. Let A1B1C1 be the pedal triangle of point P with respect to triangle ABC. Prove
that B1C1 = BC·AP

2R
, where R is the radius of the circumscribed circle of triangle ABC.

5.100. Lines AP,BP and CP intersect the circumscribed circle of triangle ABC at
points A2, B2 and C2; let A1B1C1 be the pedal triangle of point P with respect to triangle
ABC. Prove that △A1B1C1 ∼ △A2B2C2.

5.101. Inside an acute triangle ABC a point P is given. If we drop from it perpendiculars
PA1, PB1 and PC1 to the sides, we get △A1B1C1. Performing for △A1B1C1 the same
operation we get △A2B2C2 and then we similarly get △A3B3C3. Prove that △A3B3C3 ∼
△ABC.
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5.102. A triangle ABC is inscribed in the circle of radius R centered at O. Prove
that the area of the pedal triangle of point P with respect to triangle ABC is equal to
1
4

∣

∣

∣
1 − d2

R2

∣

∣

∣
SABC , where d = |PO|.

5.103. From point P perpendiculars PA1, PB1 and PC1 are dropped on sides of triangle
ABC. Line la connects the midpoints of segments PA and B1C1. Lines lb and lc are similarly
defined. Prove that la, lb and lc meet at one point.

5.104. a) Points P1 and P2 are isogonally conjugate with respect to triangle ABC, cf.
Problem 5.79. Prove that their pedal triangles have a common circumscribed circle whose
center is the midpoint of segment P1P2.

b) Prove that the above statement remains true if instead of perpendiculars we draw
from points P1 and P2 lines forming a given (oriented) angle to the sides.

See also Problems 5.132, 5.133, 14.19 b).

§11. Euler’s line and the circle of nine points

5.105. Let H be the point of intersection of heights of triangle ABC, O the center of
the circumscribed circle and M the point of intersection of medians. Prove that point M
lies on segment OH and OM : MH = 1 : 2.

The line that contains points O, M and H is called Euler’s line.

5.106. Prove that the midpoints of sides of a triangle, the bases of heights and the
midpoints of segments that connect the intersection point of heights with the vertices lie on
one circle and the center of this circle is the midpoint of segment OH.

The circle defined above is called the circle of nine points.

5.107. The heights of triangle ABC meet at point H.
a) Prove that triangles ABC, HBC, AHC and ABH have a common circle of 9 points.
b) Prove that Euler’s lines of triangles ABC, HBC, AHC and ABH intersect at one

point.
c) Prove that the centers of the circumscribed circles of triangles ABC, HBC, AHC and

ABH constitute a quadrilateral symmetric to quadrilateral HABC.
5.108. What are the sides the Euler line intersects in an acute and an obtuse triangles?
5.109. a) Prove that the circumscribed circle of triangle ABC is the circle of 9 points

for the triangle whose vertices are the centers of escribed circles of triangle ABC.
b) Prove that the circumscribed circle divides the segment that connects the centers of

the inscribed and an escribed circles in halves.
5.110. Prove that Euler’s line of triangle ABC is parallel to side BC if and only if

tan B tan C = 3.
5.111. On side AB of acute triangle ABC the circle of 9 points singles out a segment.

Prove that the segment subtends an angle of 2|∠A − ∠B| with the vertex at the center.
5.112. Prove that if Euler’s line passes through the center of the inscribed circle of a

triangle, then the triangle is an isosceles one.
5.113. The inscribed circle is tangent to the sides of triangle ABC at points A1, B1 and

C1. Prove that Euler’s line of triangle A1B1C1 passes through the center of the circumscribed
circle of triangle ABC.

5.114. In triangle ABC, heights AA1, BB1 and CC1 are drawn. Let A1A2, B1B2 and
C1C2 be diameters of the circle of nine points of triangle ABC. Prove that lines AA2, BB2

and CC2 either meet at one point or are parallel.
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See also Problems 3.65 a), 13.34 b).

§12. Brokar’s points

5.115. a) Prove that inside triangle ABC there exists a point P such that ∠ABP =
∠CAP = ∠BCP .

b) On sides of triangle ABC, triangles CA1B, CAB1 and C1AB similar to ABC are
constructed outwards (the angles at the first vertices of all the four triangles are equal, etc.).
Prove that lines AA1, BB1 and CC1 meet at one point and this point coincides with the
point found in heading a).

This point P is called Brokar’s point of triangle ABC. The proof of the fact that there
exists another Brokar’s point Q for which ∠BAQ = ∠ACQ = ∠CBQ is similar to the proof
of existence of P given in what follows. We will refer to P and Q as the first and the second

Brokar’s points.

5.116. a) Through Brokar’s point P of triangle ABC lines AB, BP and CP are drawn.
They intersect the circumscribed circle at points A1, B1 and C1, respectively. Prove that
△ABC = △B1C1A1.

b) Triangle ABC is inscribed into circle S. Prove that the triangle formed by the inter-
section points of lines PA, PB and PC with circle S can be equal to triangle ABC for no
more than 8 distinct points P . (We suppose that the intersection points of lines PA, PB
and PC with the circle are distinct from points A, B and C.)

5.117. a) Let P be Brokar’s point of triangle ABC. Let ϕ = ∠ABP = ∠BCP = ∠CAP .
Prove that cotϕ = cot α + cot β + cot γ.

The angle ϕ from Problem 5.117 is called Brokar’s angle of triangle ABC.

b) Prove that Brokar’s points of triangle ABC are isogonally conjugate to each other (cf.
Problem 5.79).

c) The tangent to the circumscribed circle of triangle ABC at point C and the line
passing through point B parallel to AC intersect at point A1. Prove that Brokar’s angle of
triangle ABC is equal to angle ∠A1AC.

5.118. a) Prove that Brokar’s angle of any triangle does not exceed 30◦.
b) Inside triangle ABC, point M is taken. Prove that one of the angles ∠ABM , ∠BCM

and ∠CAM does not exceed 30◦.
5.119. Let Q be the second Brokar’s point of triangle ABC, let O be the center of its

circumscribed circle; A1, B1 and C1 the centers of the circumscribed circles of triangles CAQ,
ABQ and BCQ, respectively. Prove that △A1B1C1 ∼ △ABC and O is the first Brokar’s
point of triangle A1B1C1.

5.120. Let P be Brokar’s point of triangle ABC; let R1, R2 and R3 be the radii of the
circumscribed circles of triangles ABP , BCP and CAP , respectively. Prove that R1R2R3 =
R3, where R is the radius of the circumscribed circle of triangle ABC.

5.121. Let P and Q be the first and the second Brokar’s points of triangle ABC. Lines
CP and BQ, AP and CQ, BP and AQ meet at points A1, B1 and C1, respectively. Prove
that the circumscribed circle of triangle A1B1C1 passes through points P and Q.

5.122. On sides CA, AB and BC of an acute triangle ABC points A1, B1 and C1,
respectively, are taken so that ∠AB1A1 = ∠BC1B1 = ∠CA1C1. Prove that △A1B1C1 ∼
△ABC and the center of the rotational homothety that sends one triangle into another
coincides with the first Brokar’s point of both triangles.

See also Problem 19.55.
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§13. Lemoine’s point

Let AM be a median of triangle ABC and line AS be symmetric to line AM through
the bisector of angle A (point S lies on segment BC). Then segment AS is called a simedian

of triangle ABC; sometimes the whole ray AS is referred to as a simedian.
Simedians of a triangle meet at the point isogonally conjugate to the intersection point

of medians (cf. Problem 5.79). The intersection point of simedians of a triangle is called
Lemoine’s point.

5.123. Let lines AM and AN be symmetric through the bisector of angle ∠A of triangle
ABC (points M and N lie on line BC). Prove that BM ·BN

CM ·CN
= c2

b2
. In particular, if AS is a

simedian, then BS
CS

= c2

b2
.

5.124. Express the length of simedian AS in terms of the lengths of sides of triangle
ABC.

Segment B1C1, where points B1 and C1 lie on rays AC and AB, respectively, is said to
be antiparallel to side BC if ∠AB1C1 = ∠ABC and ∠AC1B1 = ∠ACB.

5.125. Prove that simedian AS divides any segment B1C1 antiparallel to side BC in
halves.

5.126. The tangent at point B to the circumscribed circle S of triangle ABC intersects
line AC at point K. From point K another tangent KD to circle S is drawn. Prove that
BD is a simedian of triangle ABC.

5.127. Tangents to the circumscribed circle of triangle ABC at points B and C meet at
point P . Prove that line AP contains simedian AS.

5.128. Circle S1 passes through points A and B and is tangent to line AC, circle S2

passes through points A and C and is tangent to line AB. Prove that the common chord of
these circles is a simedian of triangle ABC.

5.129. Bisectors of the outer and inner angles at vertex A of triangle ABC intersect
line BC at points D and E, respectively. The circle with diameter DE intersects the
circumscribed circle of triangle ABC at points A and X. Prove that AX is a simedian of
triangle ABC.

* * *

5.130. Prove that Lemoine’s point of right triangle ABC with right angle ∠C is the
midpoint of height CH.

5.131. Through a point X inside triangle ABC three segments antiparallel to its sides
are drawn, cf. Problem 5.125?. Prove that these segments are equal if and only if X is
Lemoine’s point.

5.132. Let A1, B1 and C1 be the projections of Lemoine’s point K to the sides of triangle
ABC. Prove that K is the intersection point of medians of triangle A1B1C1.

5.133. Let A1, B1 and C1 be the projections of Lemoine’s point K of triangle ABC on
sides BC, CA and AB, respectively. Prove that median AM of triangle ABC is perpendic-
ular to line B1C1.

5.134. Lines AK, BK and CK, where K is Lemoine’s point of triangle ABC, intersect
the circumscribed circle at points A1, B1 and C1, respectively. Prove that K is Lemoine’s
point of triangle A1B1C1.

5.135. Prove that lines that connect the midpoints of the sides of a triangle with the
midpoints of the corresponding heights intersect at Lemoine’s point.

See also Problems 11.22, 19.54, 19.55.
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Problems for independent study

5.136. Prove that the projection of the diameter of a circumscribed circle perpendicular
to a side of the triangle to the line that contains the second side is equal to the third side.

5.137. Prove that the area of the triangle with vertices in the centers of the escribed
circles of triangle ABC is equal to 2pR.

5.138. An isosceles triangle with base a and the lateral side b, and an isosceles triangle
with base b and the lateral side a are inscribed in a circle of radius R. Prove that if a 6= b,
then ab =

√
5R2.

5.139. The inscribed circle of right triangle ABC is tangent to the hypothenuse AB at
point P ; let CH be a height of triangle ABC. Prove that the center of the inscribed circle
of triangle ACH lies on the perpendicular dropped from point P to AC.

5.140. The inscribed circle of triangle ABC is tangent to sides CA and AB at points
B1 and C1, respectively, and an escribed circle is tangent to the extension of sides at points
B2 and C2. Prove that the midpoint of side BC is equidistant from lines B1C1 and B2C2.

5.141. In triangle ABC, bisector AD is drawn. Let O, O1 and O2 be the centers
of the circumscribed circles of triangles ABC, ABD and ACD, respectively. Prove that
OO1 = OO2.

5.142. The triangle constructed from a) medians, b) heights of triangle ABC is similar
to triangle ABC. What is the ratio of the lengths of the sides of triangle ABC?

5.143. Through the center O of an equilateral triangle ABC a line is drawn. It intersects
lines BC, CA and AB at points A1, B1 and C1, respectively. Prove that one of the numbers

1
OA1

, 1
OB1

and 1
OC1

is equal to the sum of the other two numbers.
5.144. In triangle ABC heights BB1 and CC1 are drawn. Prove that if ∠A = 45◦, then

B1C1 is a diameter of the circle of nine points of triangle ABC.
5.145. The angles of triangle ABC satisfy the relation sin2

∠A+sin2
∠B +sin2

∠C = 1.
Prove that the circumscribed circle and the circle of nine points of triangle ABC intersect
at a right angle.

Solutions

5.1. Let AC1 = AB1 = x, BA1 = BC1 = y and CA1 = CB1 = z. Then

a = y + z, b = z + x and c = x + y.

Subtracting the third equality from the sum of the first two ones we get z = a+b−c
2

. Hence,
if triangle ABC is given, then the position of points A1 and B1 is uniquely determined.
Similarly, the position of point C1 is also uniquely determined. It remains to notice that
the tangency points of the inscribed circle with the sides of the triangle satisfy the relations
indicated in the hypothesis of the problem.

5.2. Rays COa and COb are the bisectors of the outer angles at vertex C, hence, C lies
on line OaOb and ∠OaCB = ∠ObCA. Since COc is the bisector of angle ∠BCA, it follows
that ∠BCOc = ∠ACOc. Adding these equalities we get: ∠OaCOc = ∠OcCOb, i.e., OcC
is a height of triangle OaObOc. We similarly prove that OaA and ObB are heights of this
triangle.

5.3. Clearly,

∠BOC = 180◦ − ∠CBO − ∠BCO = 180◦ − ∠B

2
− ∠C

2
= 90◦ +

∠A

2
and ∠BOaC = 180◦ − ∠BOC, because ∠OBOa = ∠OCOa = 90◦.

5.4. Let AA1, BB1 and CC1 be the bisectors of triangle ABC and O the intersection
point of these bisectors. Suppose that x > 1. Then ∠PAB > ∠PAC, i.e., point P lies
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inside triangle AA1C. Similarly, point P lies inside triangles CC1B and BB1A. But the
only common point of these three triangles is point O. Contradiction. The case x < 1 is
similarly treated.

5.5. Let da, db and dc be the distances from point O to sides BC, CA and AB. Then
ada + bdb + cdc = 2S and aha = bhb = chc = 2S. If ha − da = hb − db = hc − dc = x, then

(a + b + c)x = a(ha − da) = b(hb − db) + c(hc − dc) = 6S − 2S = 4S.

Hence, x = 4S
2p

= 2r.

5.6. Let us prove that point O is the center of the escribed circle of triangle PBQ tangent
to side PQ. Indeed, ∠POQ = ∠A = 90◦ − 1

2
∠B. The angle of the same value with the

vertex at the center of the escribed circle subtends segment PQ (Problem 5.3). Moreover,
point O lies on the bisector of angle B. Hence, the semiperimeter of triangle PBQ is equal
to the length of the projection of segment OB to line CB.

5.7. Let P be the tangent point of the inscribed circle with side BC, let PQ be a diameter
of the inscribed circle, R the intersection point of lines AQ and BC. Since CR = BP (cf.
Problem 19.11 a)) and M is the midpoint of side BC, we have: RM = PM . Moreover, O is
the midpoint of diameter PQ, hence, MO ‖ QR and since AH ‖ PQ, we have AE = OQ.

5.8. The given circle can be the inscribed as well as the escribed circle of triangle ABC
cut off by the tangent from the angle. Making use of the result of Problem 3.2 we can verify
that in either case

uv

w2
=

(p − b)(p − c) sin ∠B sin ∠C

h2
a

.

It remains to notice that ha = b sin ∠C = c sin ∠B and (p−b)(p−c)
bc

= sin2 1
2
∠A (Problem

12.13).
5.9. Let A1, B1 and C1 be points symmetric to point H through sides BC, CA and AB,

respectively. Since AB ⊥ CH and BC ⊥ AH, it follows that ∠(AB,BC) = ∠(CH,HA) and
since triangle AC1H is an isosceles one, ∠(CH,HA) = ∠(AC1, C1C). Hence, ∠(AB,BC) =
∠(AC1, C1C), i.e., point C1 lies on the circumscribed circle of triangle ABC. We similarly
prove that points A1 and B1 lie on this same circle.

5.10. Let R be the radius of the circumscribed circle of triangle ABC. This circle
is also the circumscribed circle of triangles ABP , APC and PBC. Clearly, ∠ABP =
180◦ − ∠ACP = α, ∠BAP = ∠BCP = β and ∠CAP = ∠CBP = γ. Hence,

PX = PB sin γ = 2R sin β sin γ, PY = 2R sin α sin γ and P = 2R sin α sin β.

It is also clear that

BC = 2R sin ∠BAC = 2R sin(β + γ), AC = 2R sin(α − γ), AB = 2R sin(α + β).

It remains to verify the equality

sin(β + γ)

sin β sin γ
=

sin(α − γ)

sin α sin γ
+

sin(α + β)

sin α sin β

which is subject to a direct calculation.
5.11. a) Let M be the intersection point of line AI with the circumscribed circle.

Drawing the diameter through point I we get

AI · IM = (R + d)(R − d) = R2 − d2.

Since IM = CM (by Problem 2.4 a)), it follows that R2 − d2 = AI · CM . It remains to
observe that AI = r

sin 1
2
∠A

and CM = 2R sin 1
2
∠A.
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b) Let M be the intersection point of line AIa with the circumscribed circle. Then
AIa·IaM = d2

a−R2. Since IaM = CM (by Problem 2.4 a)), it follows that d2
a−R2 = AIa·CM .

It remains to notice that AIa = ra

sin 1
2
∠A

and CM = 2R sin 1
2
∠A.

5.12. a) Since B1 is the center of the circumscribed circle of triangle AMC (cf. Problem
2.4 a)), AM = 2MB1 sin ∠ACM . It is also clear that MC = r

sin ∠ACM
. Hence, MA·MC

MB1
= 2r.

b) Since

∠MBC1 = ∠BMC1 = 180◦ − ∠BMC and ∠BC1M = ∠A,

it follows that

MC1

BC
=

BM

BC
· MC1

BM
=

sin ∠BCM

sin ∠BMC
· sin ∠MBC1

sin ∠BC1M
=

sin ∠BCM

sin ∠A
.

Moreover, MB = 2MA1 sin ∠BCM . Therefore, MC1·MA1

MB
= BC

2 sin ∠A
= R.

5.13. Let M be the midpoint of side AC, and N the tangent point of the inscribed circle
with side BC. Then BN = p − b (see Problem 3.2), hence, BN = AM because p = 3

2
b

by assumption. Moreover, ∠OBN = ∠B1AM and, therefore, △OBN = △B1AM , i.e.,
OB = B1A. But B1A = B1O (see Problem 2.4 a)).

5.14. Let O and O1 be the centers of the inscribed and circumscribed circles of triangle
ABC. Let us consider the circle of radius d = OO1 centered at O. In this circle, let us draw
chords O1M and O1N parallel to sides AB and AC, respectively. Let K be the tangent
point of the inscribed circle with side AB and L the midpoint of side AB. Since OK ⊥ AB,
O1L ⊥ AB and O1M ‖ AB, it follows that

O1M = 2KL = 2BL − 2BK = c − (a + c − b) = b − a = AE.

Similarly, O1N = AD and, therefore, △MO1N = △EAD. Consequently, the radius of the
circumscribed circle of triangle EAD is equal to d.

5.15. Let the inscribed circle be tangent to side AC at point K and the escribed circle
be tangent to the extension of side AC at point L. Then r = CK and rc = CL. It remains
to make use of the result of Problem 3.2.

5.16. Since 1
2
AB = AM = BM , it follows that CM = 1

2
AB if and only if point C lies

on the circle with diameter AB.
5.17. Let M and N be the midpoints of sides AB and CD. Triangle APB is a right one;

hence, PM = 1
2
AB and ∠MPA = ∠PAM and, therefore, PM ‖ AD. Similar arguments

show that points P , M and Q lie on one line and

PQ = PM + MN + NQ =
AB + (BC + AD) + CD

2
.

5.18. Let F be the intersection point of lines DE and BC; let K be the midpoint of
segment EC. Segment CD is simultaneosly a bisector and a height of triangle ECF , hence,
ED = DF and, therefore, DK ‖ FC. Median DK of right triangle EDC is twice shorter
its hypothenuse EC (Problem 5.16), hence, AD = DK = 1

2
EC.

5.19. Let the sum of the angles at the base AD of trapezoid ABCD be equal to 90◦.
Denote the intersection point of lines AB and CD by O. Point O lies on the line that passes
through the midpoints of the bases. Let us draw through point C line CK parallel to this
line and line CE parallel to line AB (points K and E lie on base AD). Then CK is a median
of right triangle ECD, hence, CK = ED

2
= AD−BC

2
(cf. Problem 5.16).

5.20. It is clear that ∠CEB = ∠A + ∠ACE = ∠BCK + ∠KCE = ∠BCE.
5.21. Segments CF and DK are bisectors in similar triangles ACB and CDB and,

therefore, AB : FB = CB : KB. Hence, FK ‖ AC. We similarly prove that LF ‖ CB.
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Therefore, CLFK is a rectangle whose diagonal CF is the bisector of angle LCK, i.e., the
rectangle is a square.

5.22. Since sin ∠ACQ
AQ

= sin ∠AQC
AC

, it follows that

sin α

a
=

sin(180◦ − α − 90◦ − ϕ)

a cos ϕ
=

cos(α + ϕ)

a cos ϕ
,

where a is the (length of the) side of square ABPQ and ϕ = ∠CAB. Hence, cot α = 1+tanϕ.
Similarly,

cot γ = 1 + tan(90◦ − ϕ) = 1 + cotϕ.

It follows that

tan α + tan γ =
1

1 + tan ϕ
+

1

1 + cot ϕ
= 1

and, therefore,

cos α cos γ = cos α sin γ + cos γ sin α = sin(α + γ) = cos β.

5.23. By Pythagoras theorem

AP 2 + BQ2 + CR2 + (AM2 − PM2) + (BM2 − QM2) + (CM2 − RM2)

and
PB2 + QC2 + RA2 = (BM2 − PM2) + (CM2 − QM2) + (AM2 − RM2).

These equations are equal.
Since

AP 2 + BQ2 + CR2 = (a − PB)2 + (a − QC)2 + (a − RA)2 =
3a2 − 2a(PB + QC + RA) + PB2 + QC2 + RA2,

where a = AB, it follows that PB + QC + RA = 3
2
a.

5.24. Let point F divide segment BC in the ratio of CF : FB = 1 : 2; let P and Q be the
intersection points of segment AF with BD and CE, respectively. It is clear that triangle
OPQ is an equilateral one. Making use of the result of Problem 1.3 it is easy to verify that
AP : PF = 3 : 4 and AQ : QF = 6 : 1. Hence, AP : PQ : QF = 3 : 3 : 1 and, therefore,
AP = PQ = OP . Hence, ∠AOP = 180◦−∠APO

2
= 30◦ and ∠AOC = ∠AOP + ∠POQ = 90◦.

5.25. Let A and B, C and D, E and F be the intersection points of the circle with sides
PQ, QR, RP , respectively, of triangle PQR. Let us consider median PS. It connects the
midpoints of parallel chords FA and DC and, therefore, is perpendicular to them. Hence,
PS is a height of triangle PQR and, therefore, PQ = PR. Similarly, PQ = QR.

5.26. Let H be the intersection point of heights AA1, BB1 and CC1 of triangle ABC.
By hypothesis, A1H · BH = B1H · AH. On the other hand, since points A1 and B1 lie on
the circle with diameter AB, then AH · A1H = BH · B1H. It follows that AH = BH and
A1H = B1H and, therefore, AC = BC. Similarly, BC = AC.

5.27. a) Suppose that triangle ABC is not an equilateral one; for instance, a 6= b.
Since a + ha = a + b sin γ and b + hb = b + a sin γ, it follows that (a − b)(1 − sin γ) = 0;
hence, sin γ = 0, i.e., γ = 90◦. But then a 6= c and similar arguments show that β = 90◦.
Contradiction.

b) Let us denote the (length of the) side of the square two vertices of which lie on side
BC by x. The similarity of triangles ABC and APQ, where P and Q are the vertices of the
square that lie on AB and AC, respectively, yields x

a
= ha−x

ha
, i.e., x = aha

a+ha
= 2S

a+ha
.

Similar arguments for the other squares show that a + ha = b + hb = c + hc.
5.28. If α, β and γ are the angles of triangle ABC, then the angles of triangle A1B1C1

are equal to β+γ
2

, γ+α
2

and α+β
2

. Let, for definiteness, α ≥ β ≥ γ. Then α+β
2

≥ α+γ
2

≥ β+γ
2

.

Hence, α = α+β
2

and γ = β+γ
2

, i.e., α = β and β = γ.
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5.29. In any triangle a height is longer than the diameter of the inscribed circle. There-
fore, the lengths of heights are integers greater than 2, i.e., all of them are not less than 3.
Let S be the area of the triangle, a the length of its longest side and h the corresponding
height.

Suppose that the triangle is not an equilateral one. Then its perimeter P is shorter than
3a. Therefore, 3a > P = Pr = 2S = ha, i.e., h < 3. Contradiction.

5.30. Since the outer angle at vertex A of triangle ABA1 is equal to 120◦ and ∠A1AB1 =
60◦, it follows that AB1 is the bisector of this outer angle. Moreover, BB1 is the bisector of
the outer angle at vertex B, hence, A1B1 is the bisector of angle ∠AA1C. Similarly, A1C1

is the bisector of angle ∠AA1B. Hence,

∠B1A1C1 =
∠AA1C + ∠AA1B

2
= 90◦.

5.31. Thanks to the solution of the preceding problem ray A1C1 is the bisector of angle
∠AA1B. Let K be the intersection point of the bisectors of triangle A1AB. Then

∠C1KO = ∠A1KB = 90◦ +
∠A

2
= 120◦.

Hence, ∠C1KO + ∠C1AO = 180◦, i.e., quadrilateral AOKC1 is an inscribed one. Hence,
∠A1C1O = ∠KC1O = ∠KAO = 30◦.

5.32. a) Let S be the circumscribed circle of triangle ABC, let S1 be the circle symmetric
to S through line BC. The orthocenter H of triangle ABC lies on circle S1 (Problem 5.9)
and, therefore, it suffices to verify that the center O of circle S also belongs to S1 and
the bisector of the outer angle A passes through the center of circle S1. Then POAH is a
rhombus, because PO ‖ HA.

Let PQ be the diameter of circle S perpendicular to line BC; let points P and A lie on
one side of line BC. Then AQ is the bisector of angle A and AP is the bisector of the outer
angle ∠A. Since ∠BPC = 120◦ = ∠BOC, point P is the center of circle S1 and point O
belongs to circle S1.

b) Let S be the circumscribed circle of triangle ABC and Q the intersection point of
the bisector of angle ∠BAC with circle S. It is easy to verify that Q is the center of circle
S1 symmetric to circle S through line BC. Moreover, points O and H lie on circle S1 and
since ∠BIC = 120◦ and ∠BIaC = 60◦ (cf. Problem 5.3), it follows that IIa is a diameter
of circle S1. It is also clear that ∠OQI = ∠QAH = ∠AQH, because OQ ‖ AH and
HA = QO = QH. Hence, points O and H are symmetric through line IIa.

5.33. On side AC of triangle ABC, construct outwards an equilateral triangle AB1C.
Since ∠A = 120◦, point A lies on segment BB1. Therefore, BB1 = b + c and, moreover,
BC = a and B1C = b, i.e., triangle BB1C is the desired one.

5.34. a) Let M1 and N1 be the midpoints of segments BH and CH, respectively; let
BB1 and CC1 be heights. Right triangles ABB1 and BHC1 have a common acute angle —
the one at vertex B; hence, ∠C1HB = ∠A = 60◦. Since triangle BMH is an isosceles one,
∠BHM = ∠HBM = 30◦. Therefore, ∠C1HM = 60◦ − 30◦ = 30◦ = ∠BHM , i.e., point
M lies on the bisector of angle ∠C1HB. Similarly, point N lies on the bisector of angle
∠B1HC.

b) Let us make use of the notations of the preceding problem and, moreover, let B′ and
C ′ be the midpoints of sides AC and AB. Since AC1 = AC cos ∠A = 1

2
AC, it follows that

C1C
′ = 1

2
|AB − AC|. Similarly, B1B

′ = 1
2
|AB − AC|, i.e., B1B

′ = C1C
′. It follows that

the parallel lines BB1 and B′O, CC1 and C ′O form not just a parallelogram but a rhombus.
Hence, its diagonal HO is the bisector of the angle at vertex H.



SOLUTIONS 117

5.35. Since

∠BB1C = ∠B1BA + ∠B1AB > ∠B1BA = ∠B1BC,

it follows that BC > B1C. Hence, point K symmetric to B1 through bisector CC1 lies
on side BC and not on its extension. Since ∠CC1B = 30◦, we have ∠B1C1K = 60◦ and,
therefore, triangle B1C1K is an equilateral one. In triangles BC1B1 and BKB1 side BB1 is
a common one and sides C1B1 and KB1 are equal; the angles C1BB1 and KBB1 are also
equal but these angles are not the ones between equal sides. Therefore, the following two
cases are possible:

1) ∠BC1B1 = ∠BKB1. Then ∠BB1C1 = ∠BB1K = 60◦

2
= 30◦. Therefore, if O is the

intersection point of bisectors BB1 and CC1, then

∠BOC = ∠B1OC1 = 180◦ − ∠OC1B1 − ∠OB1C1 = 120◦.

On the other hand, ∠BOC = 90◦ + ∠A
2

(cf. Problem 5.3), i.e., ∠A = 60◦.
2) ∠BC1B1 + ∠BKB1 = 180◦. Then quadrilateral BC1B1K is an inscribed one and

since triangle B1C1K is an equilateral one, ∠B = 180◦ − ∠C1B1K = 120◦.
5.36. Let BM be a median, AK a bisector of triangle ABC and BM ⊥ AK. Line AK

is a bisector and a height of triangle ABM , hence, AM = AB, i.e., AC = 2AM = 2AB.
Therefore, AB = 2, BC = 3 and AC = 4.

5.37. Let a and b be legs and c the hypothenuse of the given triangle. If numbers a and
b are odd, then the remainder after division of a2 + b2 by 4 is equal to 2 and a2 + b2 cannot
be a perfect square. Hence, one of the numbers a and b is even and another one is odd; let,
for definiteness, a = 2p. The numbers b and c are odd, hence, c + b = 2q and c − b = 2r for
some q and r. Therefore, 4p2 = a2 = c2 − b2 = 4qr. If d is a common divisor of q and r,
then a = 2

√
qr, b = q − r and c = q + r are divisible by d. Therefore, q and r are relatively

prime, ??? since p2 = qr, it follows that q = m2 and r = n2. As a result we get a = 2mn,
b = m2 − n2 and c = m2 + n2.

It is also easy to verify that if a = 2mn, b = m2 −n2 and c = m2 + n2, then a2 + b2 = c2.
5.38. Let p be the semiperimeter of the triangle and a, b, c the lengths of the triangle’s

sides. By Heron’s formula S2 = p(p − a)(p − b)(p − c). On the other hand, S2 = p2r2 = p2

since r = 1. Hence, p = (p − a)(p − b)(p − c). Setting x = p − a, y = p − b, z = p − c we
rewrite our equation in the form

x + y + z = xyz.

Notice that p is either integer or half integer (i.e., of the form 2n+1
2

, where n is an integer)
and, therefore, all the numbers x, y, z are simultaneously either integers or half integers. But
if they are half integers, then x + y + z is a half integer and xyz is of the form m

8
, where m

is an odd number. Therefore, numbers x, y, z are integers. Let, for definiteness, x ≤ y ≤ z.
Then xyz = x + y + z ≤ 3z, i.e., xy ≤ 3. The following three cases are possible:

1) x = 1, y = 1. Then 2 + z = z which is impossible.
2) x = 1, y = 2. Then 3 + z = 2z, i.e., z = 3.
3) x = 1, y = 3. Then 4 + z = 3z, i.e., z = 2 < y which is impossible.
Thus, x = 1, y = 2, z = 3. Therefore, p = x + y + z = 6 and a = p− x = 5, b = 4, c = 3.
5.39. Let a1 and b1, a2 and b2 be the legs of two distinct Pythagorean triangles, c1 and

c2 their hypothenuses. Let us take two perpendicular lines and mark on them segments
OA = a1a2, OB = a1b2, OC = b1b2 and OD = a2b1 (Fig. 57). Since OA · OC = OB · OD,
quadrilateral ABCD is an inscribed one. By Problem 2.71

4R2 = OA2 + OB2 + OC2 + OD2 = (c1c2)
2,
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i.e., R = c1c2
2

. Magnifying, if necessary, quadrilateral ABCD twice, we get the quadrilateral
to be found.

Figure 57 (Sol. 5.39)

5.40. a) The lengths of hypothenuses of right triangles with legs 5 and 12, 9 and 12
are equal to 13 and 15, respectively. Identifying the equal legs of these triangles we get a

triangle whose area is equal to 12(5+9)
2

= 84.
b) First, suppose that the length of the shortest side of the given triangle is an even

number, i.e., the lengths of the sides of the triangle are equal to 2n, 2n + 1, 2n + 2. Then
by Heron’s formula

16S2 = (6n + 3)(2n + 3)(2n + 1)(2n − 1) = 4(3n2 + 6n + 2)(4n2 − 1) + 4n2 − 1.

We have obtained a contradiction since the number in the right-hand side is not divisible by
4. Consecutively, the lengths of the sides of the triangle are equal to 2n− 1, 2n and 2n + 1,
where S2 = 3n2(n2 − 1). Hence, S = nk, where k is an integer and k2 = 3(n2 − 1). It is also
clear that k is the length of the height dropped to the side of length 2n. This height divides
the initial triangle into two right triangles with a common leg of length k and hypothenuses
of length 2n + 1 and 2n− 1 the squares of the lengths of the other legs of these triangles are
equal to

(2n ± 1)2 − k2 = 4n2 ± 4n + 1 − 3n2 + 3 = (n ± 2)2.

5.41. a) Since AB2 − AB2
1 = BB2

1 = BC2 − (AC ± AB1)
2, we see that AB1 =

±AB2+AC2−BC2

2AC
.

b) Let diagonals AC and BD meet at point O. Let us prove, for example, that the
number q = BO

OD
is a rational one (then the number OD = BD

q+1
is also a rational one). In

triangles ABC and ADC draw heights BB1 and DD1. By heading a) the numbers AB1 and
CD1 — the lengths of the corresponding sides — are rational and, therefore, the number
B1D1 is also rational.

Let E be the intersection point of line BB1 and the line that passes through point D
parallel to AC. In right triangle BDE, we have ED = B1D1 and the lengths of leg ED
and hypothenuse BD are rational numbers; hence, BE2 is also a rational number. From
triangles ABB1 and CDD1 we derive that numbers BB2

1 and DD2
1 are rational. Since

BE2 = (BB1 + DD1)
2 = BB2

1 + DD2
1 + 2BB1 · DD1,

number BB1 · DD1 is rational. It follows that the number

BO

OD
=

BB1

DD1

=
BB1 · DD1

DD2
1

is a rational one.
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5.42. Triangles ABC and A1B1C1 cannot have two pairs of corresponding angles whose
sum is equal to 180◦ since otherwise their sum would be equal to 360◦ and the third angles
of these triangles should be equal to zero. Now, suppose that the angles of the first triangle
are equal to α, β and γ and the angles of the second one are equal to 180◦ − α, β and γ.
The sum of the angles of the two triangles is equal to 360◦, hence, 180◦ + 2β + 2γ = 360◦,
i.e., β + γ = 90◦. It follows that α = 90◦ = 180◦ − α.

5.43. Clearly,
−−→
A1C =

−−→
BO and

−−→
CB1 =

−→
OA, hence,

−−−→
A1B1 =

−→
BA. Similarly,

−−−→
B1C1 =−−→

CB and
−−−→
C1A1 =

−→
AC, i.e., △ABC = △A1B1C1. Moreover, ABA1B1 and ACA1C1 are

parallelograms. It follows that segments BB1 and CC1 pass through the midpoint of segment
AA1.

5.44. Since ∠MAO = ∠PAO = ∠AOM , it follows that AMOP is a rhombus. Similarly,
BNOQ is a rhombus. It follows that

MN = MO + ON = AM + BN and OP + PQ + QO = AP + PQ + QB = AB.

5.45. a) Through vertices of triangle ABC let us draw lines parallel to the triangle’s
opposite sides. As a result we get triangle A1B1C1; the midpoints of the sides of the new
triangle are points A, B and C. The heights of triangle ABC are the midperpendiculars to
the sides of triangle A1B1C1 and, therefore, the center of the circumscribed circle of triangle
A1B1C1 is the intersection point of heights of triangle ABC.

b) Point H is the center of the circumscribed circle of triangle A1B1C1, hence,

4R2 = B1H
2 = B1A

2 + AH2 = BC2 + AH2.

Therefore,

AH2 = 4R2 − BC2 =

(

1

sin2 α
− 1

)

BC2 = (BC cot α)2.

5.46. Let AD be the bisector of an equilateral triangle ABC with base AB and angle
36◦ at vertex C. Then triangle ACD is an isosceles one and △ABC ∼ △BDA. Therefore,
CD = AD = AB = 2xBC and DB = 2xAB = 4x2BC; hence,

BC = CD + DB = (2x + 4x2)BC.

5.47. Let B1 and B2 be the projections of point A to bisectors of the inner and outer
angles at vertex B; let M the midpoint of side AB. Since the bisectors of the inner and
outer angles are perpendicular, it follows that AB1BB2 is a rectangular and its diagonal
B1B2 passes through point M . Moreover,

∠B1MB = 180◦ − 2∠MBB1 = 180◦ − ∠B.

Hence, B1B2 ‖ BC and, therefore, line B1B2 coincides with line l that connects the midpoints
of sides AB and AC.

We similarly prove that the projections of point A to the bisectors of angles at vertex C
lie on line l.

5.48. Suppose that the bisectors of angles A and B are equal but a > b. Then cos 1
2
∠A <

cos 1
2
∠B and 1

c
+ 1

b
> 1

c
+ 1

a
, i.e., bc

b+c
< ac

a+c
. By multiplying these inequalities we get a

contradiction, since la =
2bc cos ∠A

2

b+c
and lb =

2ac cos ∠B
2

a+c
(cf. Problem 4.47).

5.49. a) By Problem 4.47 the length of the bisector of angle ∠B of triangle ABC is

equal to
2ac cos ∠B

2

a+c
and, therefore, it suffices to verify that the system of equations

ac

a + c
= p, a2 + c2 − 2ac cos ∠B = q
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has (up to a transposition of a with c) a unique positive solution. Let a + c = u. Then
ac = pu and q = u2 − 2pu(1 + cos β). The product of the roots of this quadratic equation
for u is equal to −q and, therefore, it has one positive root. Clearly, the system of equations

a + c = u, ac = pu

has a unique solution.
b) In triangles AA1B and CC1B, sides AA1 and CC1 are equal; the angles at vertex

B are equal, and the bisectors of the angles at vertex B are also equal. Therefore, these
triangles are equal and either AB = BC or AB = BC1. The second equality cannot take
place.

5.50. Let points M and N lie on sides AB and AC. If r1 is the radius of the circle whose
center lies on segment MN and which is tangent to sides AB and AC, then SAMN = qr1,
where q = AM+AN

2
. Line MN passes through the center of the inscribed circle if and only if

r1 = r, i.e., SAMN

q
= SABC

p
= SBCNM

p−q
.

5.51. a) On the extension of segment AC beyond point C take a point B′ such that
CB′ = CB. Triangle BCB′ is an isosceles one; hence, ∠AEB = ∠ACB = 2∠CBB′ and,
therefore, E is the center of the circumscribed circle of triangle ABB′. It follows that point
F divides segment AB′ in halves; hence, line C1F divides the perimeter of triangle ABC in
halves.

b) It is easy to verify that the line drawn through point C parallel to BB′ is the bisector
of angle ACB. Since C1F ‖ BB′, line C1F is the bisector of the angle of the triangle with
vertices at the midpoints of triangle ABC. The bisectors of this new triangle meet at one
point.

5.52. Let X be the intersection point of lines AD2 and CD1; let M , E1 and E2 be the
projections of points X, D1 and D2, respectively, to line AC. Then CE2 = CD2 sin γ =
a sin γ and AE1 = c sin α. Since a sin γ = c sin α, it follows that CE2 = AE1 = q. Hence,

XM

AM
=

D2E2

AE2

=
a cos γ

b + q
and

XM

CM
=

c cos α

b + q
.

Therefore, AM : CM = c cos α : a cos γ. Height BH divides side AC in the same ratio.
5.53. a) By the law of cosines

B1C
2
1 = AC2

1 + AB2
1 − 2AC1 · AB1 · cos(90◦ + α),

i.e.,

a2
1 =

c2

2
+

b2

2
+ bc sin α =

b2 + c2

2
+ 2S.

Writing similar equalities for b2
1 and c2

1 and taking their sum we get the statement desired.
b) For an acute triangle ABC, add to S the areas of triangles ABC1, AB1C and A1BC;

add to S1 the areas of triangles AB1C1, A1BC1 and A1B1C. We get equal quantities (for a
triangle with an obtuse angle ∠A the area of triangle AB1C1 should be taken with a minus
sign). Hence,

S1 = S +
a2 + b2 + c2

4
− ab cos γ + ac cos β + bc cos α

4
.

It remains to notice that

ab cos γ + bc cos α + ac cos β = 2S(cot γ + cot α + cot β) =
a2 + b2 + c2

2
;

cf. Problem 12.44 a).
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5.54. First, let us prove that point B′ lies on the circumscribed circle of triangle AHC,
where H is the intersection point of heights of triangle ABC. We have

∠(AB′, B′C) = ∠(AA1, CC1) =

∠(AA1, BC) + ∠(BC,AB) + ∠(AB,CC1) = ∠(BC,AB).

But as follows from the solution of Problem 5.9 ∠(BC,AB) = ∠(AH,HC) and, therefore,
points A, B′, H and C lie on one circle and this circle is symmetric to the circumscribed
circle of triangle ABC through line AC. Hence, both these circles have the same radius, R,
consequently,

B′H = 2R sin B′AH = 2R cos α.

Similarly, A′H = 2R cos α = C ′H. This completes solution of heading a); to solve heading b)
it remains to notice that △A′B′C ′ ∼ △ABC since after triangle A′B′C ′ is rotated through
an angle of α its sides become parallel to the sides of triangle ABC.

5.55. Let a1 = BA1, a2 = A1C, b1 = CB1, b2 = B1A, c1 = AC1 and c2 = C1B. The
products of the lengths of segments of intersecting lines that pass through one point are
equal and, therefore, a1(a1 + x) = c2(c2 − z), i.e.,

a1x + c2z = c2
2 − a2

1.

We similarly get two more equations for x, y and z:

b1y + a2x = a2
2 − b2

1 and c1z + b2y = b2
2 − c2

1.

Let us multiply the first equation by b2n; multiply the second and the third ones by c2n and
a2n, respectively, and add the equations obtained. Since, for instance, c2b

n − c1a
n = 0 by

the hypothesis, we get zero in the right-hand side. The coefficient of, say, x in the left-hand
side is equal to

a1b
2n + a2c

2n =
acnb2n + abnc2n

bn + cn
= abncn.

Hence,
abncnx + bancny + canbnz = 0.

Dividing both sides of this equation by (abc)n we get the statement desired.
5.56. Let in the initial triangle ∠A = 3α, ∠B = 3β and ∠C = 3γ. Let us take an

equilateral triangle A2B2C2 and construct on its sides as on bases isosceles triangles A2B2R,
B2C2P and C2A2Q with angles at the bases equal to 60◦ − γ, 60◦ − α, 60◦ − β, respectively
(Fig. 58).

Let us extend the lateral sides of these triangles beyond points A2, B2 and C2; denote the
intersection point of the extensions of sides RB2 and QC2 by A3, that of PC2 and RA2 by
B3, that of QA2 and PB2 by C3.Through point B2 draw the line parallel to A2C2 and denote
by M and N the its intersection points with lines QA3 and QC3, respectively. Clearly, B2 is
the midpoint of segment MN . Let us compute the angles of triangles B2C3N and B2A3M :

∠C3B2N = ∠PB2M = ∠C2B2M = ∠C2B2P = α;

∠B2NC3 = 180◦ − ∠C2A2Q = 120◦ + β;

hence, ∠B2C3N = 180◦ − α − (120◦ + β) = γ. Similarly, ∠A3B2M = γ and ∠B2A3M = α.
Hence, △B2C3N ∼ △A3B2M . It follows that C3B2 : B2A3 = C3N : B2M and since
B2M = B2N and ∠C3B2A3 = ∠C3NB2, it follows that C3B2 : B2A3 = C3N : NB2 and
△C3B2A3 ∼ △C3NB2; hence, ∠B2C3A3 = γ.
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Figure 58 (Sol. 5.56)

Similarly, ∠A2C3B3 = γ and, therefore, ∠A3C3B3 = 3γ = ∠C and C3B3, C3A2 are the
trisectors of angle C3 of triangle A3B3C3. Similar arguments for vertices A3 and B3 show
that △ABC ∼ △A3B3C3 and the intersection points of the trisectors of triangle A3B3C3

are vertices of an equilateral triangle A2B2C2.
5.57. Point A1 lies on the bisector of angle ∠BAC, hence, point A lies on the extension

of the bisector of angle ∠B2A1C2. Moreover, ∠B2AC2 = α = 180◦−∠B2A1C2

2
. Hence, A is the

center of an escribed circle of triangle B2A1C2 (cf. Problem 5.3). Let D be the intersection
point of lines AB and CB2. Then

∠AB2C2 = ∠AB2D = 180◦ − ∠B2AD − ∠ADB2 = 180◦ − γ − (60◦ + α) = 60◦ + β.

Since

∠AB2C = 180◦ − (α + β) − (β + γ) = 120◦ − β,

it follows that

∠CB2C2 = ∠AB2C − ∠AB2C2 = 60◦ − 2β.

Similarly, ∠AB2A2 = 60◦ − 2β. Hence,

∠A2B2C2 = ∠AB2C − ∠AB2A2 − ∠CB2C2 = 3β.

Similarly, ∠B2A2C2 = 3α and ∠A2C2B2 = 3γ.
5.58. Let the projection to a line perpendicular to line A1B1 send points A, B and C to

A′, B′ and C ′, respectively; point C1 to Q and points A1 and B1 into one point, P . Since

A1B

A1C
=

PB′

PC ′ ,
B1C

B1A
=

PC ′

PA′ and
C1A

C1B
=

QA′

QB′ ,

it follows that

A1B

A1C
· B1C

B1A
· C1A

C1B
=

PB′

PC ′ ·
PC ′

PA′ ·
QA′

QB′ =
PB′

PA′ ·
QA′

QB′ =
b′

a′ ·
a′ + x

b′ + x
,

where |x| = PQ. The equality b′

a′
· a′+x

b′+x
= 1 is equivalent to the fact that x = 0. (We have

to take into account that a′ 6= b′ since A′ 6= B′.) But the equality x = 0 means that P = Q,
i.e., point C1 lies on line A1B1.

5.59. Let point P lie on arc ⌣ BC of the circumscribed circle of triangle ABC. Then

BA1

CA1

= −BP cos ∠PBC

CP cos ∠PCB
,

CB1

AB1

= −CP cos ∠PCA

AP cos PAC
,

AC1

BC1

= −AP cos ∠PAB

PB cos ∠PBA
.
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By multiplying these equalities and taking into account that

∠PAC = ∠PBC, ∠PAB = ∠PCB and ∠PAC + ∠PBA = 180◦

we get
BA1

CA1

· CB1

AB1

· AC1

BC1

= 1.

5.60. Let O, O1 and O2 be the centers of circles S, S1 and S2; let X be the intersection
point of lines O1O2 and A1A2. By applying Menelaus’s theorem to triangle OO1O2 and
points A1, A2 and X we get

O1X

O2X
· O2A2

OA2

· OA1

O1A1

= 1

and, therefore, O1X : O2X = R1 : R2, where R1 and R2 are the radii of circles S1 and S2,
respectively. It follows that X is the intersection point of the common outer or common
inner tangents to circles S1 and S2.

5.61. a) Let, for definiteness, ∠B < ∠C. Then ∠DAE = ∠ADE = ∠B + ∠A
2

; hence,
∠CAE = ∠B. Since

BE

AB
=

sin ∠BAE

sin ∠AEB
and

AC

CE
=

sin ∠AEC

sin ∠CAE
,

it follows that

BE

CE
=

c sin ∠BAE

b sin ∠CAE
=

c sin(∠A + ∠B)

b sin ∠B
=

c sin ∠C

b sin ∠B
=

c2

b2
.

b) In heading a) point E lies on the extension of side BC since ∠ADC = ∠BAD+∠B >
∠CAD. Therefore, making use of the result of heading a) and Menelaus’s theorem we get
the statement desired.

5.62. Since ∠BCE = 90◦ − ∠B
2

, we have: ∠BCE = ∠BEC and, therefore, BE = BC.
Hence,

CF : KF = BE : BK = BC : BK and AE : KE = CA : CK = BC : BK.

Let line EF intersect AC at point D. By Menelaus’s theorem AD
CD

· CF
KF

· KE
AE

= 1. Taking
into account that CF : KF = AE : KE we get the statement desired.

5.63. Proof is similar to that of Problem 5.79; we only have to consider the ratio of
oriented segments and angles.

5.64. Let A2, B2 and C2 be the intersection points of lines BC with B1C1, AC with A1C1,
AB with A1B1, respectively. Let us apply Menelaus’s theorem to the following triangles and
points on their sides: OAB and (A1, B1, C2), OBC and (B1, C1, A2), OAC and (A1, C1, B2).
Then

AA1

OA1

· OB1

BB1

· BC2

AC2

= 1,
OC1

CC1

· BB1

OB1

· CA2

BA2

= 1,
OA1

AA1

· CC1

OC1

· AB2

CB2

= 1.

By multiplying these equalities we get

BC2

AC2

· AB2

CB2

· CA2

BA2

= 1.

Menelaus’s theorem implies that points A2, B2, C2 lie on one line.
5.65. Let us consider triangle A0B0C0 formed by lines A1B2, B1C2 and C1A2 (here A0

is the intersection point of lines A1B2 and A2C1, etc), and apply Menelaus’s theorem to this
triangle and the following five triples of points:

(A,B2, C1), (B,C2, A1), (C,A2, B1), (A1, B1, C1) and (A2, B2, C2).
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As a result we get

B0A

C0A
· A0B2

B0B2

· C0C1

A0C1

= 1,
C0B

A0B
· B0C2

C0C2

· A0A1

B0A1

= 1,

A0C

B0C
· C0A2

A0A2

· B0B1

C0B1

= 1,
B0A1

A0A1

· C0B1

B0B1

· A0C1

C0C1

= 1,(2)

A0A2

C0A2

· B0B2

A0B2

· C0C2

B0C2

= 1.(3)

By multiplying these equalities we get B0A
C0A

· C0B
A0B

· A0C
B0C

= 1 and, therefore, points A, B and

C lie on one line.
5.66. Let N be the intersection point of lines AD and KQ, P ′ the intersection point of

lines KL and MN . By Desargue’s theorem applied to triangles KBL and NDM we derive
that P ′, A and C lie on one line. Hence, P ′ = P .

5.67. It suffices to apply Desargues’s theorem to triangles AED and BFC and Pappus’
theorem to triples of points (B,E,C) and (A,F,D).

5.68. a) Let R be the intersection point of lines KL and MN . By applying Pappus’
theorem to triples of points (P,L,N) and (Q,M,K), we deduce that points A, C and R lie
on one line.

b) By applying Desargues’s theorem to triangles NDM and LBK we see that the inter-
section points of lines ND with LB, DM with BK, and NM with LK lie on one line.

5.69. Let us make use of the result of Problem 5.68 a). For points P and Q take points
P2 and P4, for points A and C take points C1 and P1 and for K, L, M and N take points
P5, A1, B1 and P3, respectively. As a result we see that line P6C1 passes through point P1.

5.70. a) This problem is a reformulation of Problem 5.58 since the number BA1 : CA1

is negative if point A1 lies on segment BC and positive otherwise.
b) First, suppose that lines AA1, BB1 and CC1 meet at point M . Any three (nonzero)

vectors in plane are linearly dependent, i.e., there exist numbers λ, µ and ν (not all equal

to zero) such that λ
−−→
AM + µ

−−→
BM + ν

−−→
CM = 0. Let us consider the projection to line BC

parallel to line AM . This projection sends points A and M to A1 and points B and C into

themselves. Therefore, µ
−−→
BA1 + ν

−−→
CA1 = 0, i.e.,

BA1

CA1

= −ν

µ
.

Similarly,

CB1

AB1

= −λ

ν
and

AC1

BC1

= −µ

λ
.

By multiplying these three equalities we get the statement desired.
If lines AA1, BB1 and CC1 are parallel, in order to get the proof it suffices to notice that

BA1

CA1

=
BA

C1A
and

CB1

AB1

=
C1B

AB
.

Now, suppose that the indicated relation holds and prove that then lines AA1, BB1 and
CC1 intersect at one point. Let C∗

1 be the intersection point of line AB with the line that
passes through point C and the intersection point of lines AA1 and BB1. For point C∗

1 the
same relation as for point C1 holds. Therefore, C∗

1A : C∗
1B = C1A : C1B. Hence, C∗

1 = C1,
i.e., lines AA1, BB1 and CC1 meet at one point.
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It is also possible to verify that if the indicated relation holds and two of the lines AA1,
BB1 and CC1 are parallel, then the third line is also parallel to them.

5.71. Clearly, AB1 = AC1, BA1 = BC1 and CA1 = CB1, and, in the case of the
inscribed circle, on sides of triangle ABC, there are three points and in the case of an
escribed circle there is just one point on sides of triangle ABC. It remains to make use of
Ceva’s theorem.

5.72. Let AA1, BB1 and CC1 be heights of triangle ABC. Then

AC1

C1B
· BA1

A1C
· CB1

B1A
=

b cos ∠A

a cos ∠B
· c cos ∠B

b cos ∠C
· a cos ∠C

c cos ∠A
= 1.

5.73. Let A2, B2 and C2 be the midpoints of sides BC, CA and AB. The considered
lines pass through the vertices of triangle A2B2C2 and in heading a) they divide its sides
in the same ratios in which lines AP , BP and CP divide sides of triangle ABC whereas in
heading b) they divide them in the inverse ratios. It remains to make use of Ceva’s theorem.

5.74. Since △AC1B2 ∼ △BC1A1 and △AB1C2 ∼ △CB1A1, it follows that AB2 ·C1B =
AC1 · BA1 and AC2 · CB1 = A1C · B1A. Hence,

AB2

AC2

=
AC1

C1B
· BA1

A1C
· CB1

B1A
= 1.

5.75. Let lines AA1, BB1 and CC1 intersect lines BC, CA and AB at points A1, B2

and C2.
a) If ∠B + β < 180◦ and ∠C + γ < 180◦, then

BA2

A2C
=

SABA1

SACA1

=
AB · BA1 sin(∠B + β)

AC · CA1 sin(∠C + γ)
=

AB

AC
· sin γ

sin β
· sin(∠B + β)

sin(∠C + γ)
.

The latter expression is equal to BA2 : A2C in all the cases. Let us write similar expressions
for CB2 : B2A and AC2 : C2B and multiply them. Now it remains to make use of Ceva’s
theorem.

b) Point A2 lies outside segment BC only if precisely one of the angles β and γ is greater
than the corresponding angle ∠B or ∠C. Hence,

BA2

A2C
=

AB

AC
· sin γ

sin β
· sin(∠B − β)

sin(∠C − γ)
.

5.76. It is easy to verify that this problem is a particular case of Problem 5.75.

Remark. A similar statement is also true for an escribed circle.

5.77. The solution of the problem obviously follows from Ceva’s theorem.
5.78. By applying the sine theorem to triangles ACC1 and BCC1 we get

AC1

C1C
=

sin ∠ACC1

sin ∠A
and

CC1

C1B
=

sin ∠B

sin ∠C1CB
,

i.e.,
AC1

C1B
=

sin ∠ACC1

sin ∠C1CB
· sin ∠B

sin ∠A
.

Similarly,

BA1

A1C
=

sin ∠BAA1

sin ∠A1AC
· sin ∠C

sin ∠B
and

CB1

B1A
=

sin ∠CBB1

sin ∠B1BA
· sin ∠A

sin ∠C
.

To complete the proof it remains to multiply these equalities.

Remark. A similar statement is true for the ratios of oriented segments and angles in
the case when the points are taken on the extensions of sides.
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5.79. We may assume that points A2, B2 and C2 lie on the sides of triangle ABC. By
Problem 5.78

AC2

C2B
· BA2

A2C
· CB2

B2A
=

sin ∠ACC2

sin ∠C2CB
· sin ∠BAA2

sin ∠A2AC
· sin ∠CBB2

sin ∠B2BA
.

Since lines AA2, BB2 and CC2 are symmetric to lines AA1, BB1 and CC1, respectively,
through the bisectors, it follows that ∠ACC2 = ∠C1CB, ∠C2CB = ∠ACC1 etc., hence,

sin ∠ACC2

sin ∠C2CB
· sin ∠BAA2

sin ∠A2AC
· sin ∠CBB2

sin ∠B2BA
=

sin ∠C1CB

sin ∠ACC1

· sin ∠A1AC

sin ∠BAA1

· sin ∠B1BA

sin ∠CBB1

=

C1B

AC1

· A1C

BA1

· B1A

CB1

= 1.

Therefore,
AC2

C2B
· BA2

A2C
· CB2

B2A
= 1,

i.e., lines AA2, BB2 and CC2 meet at one point.

Remark. The statement holds also in the case when points A1, B1 and C1 are taken on
the extensions of sides if only point P does not lie on the circumscribed circle S of triangle
ABC; if P does lie on S, then lines AA2, BB2 and CC2 are parallel (cf. Problem 2.90).

5.80. Let diagonals AD and BE of the given hexagon ABCDEF meet at point P ; let
K and L be the midpoints of sides AB and ED, respectively. Since ABDE is a trapezoid,
segment KL passes through point P (by Problem 19.2). By the law of sines

sin ∠APK : sin ∠AKP = AK : AP and sin ∠BPK : sin ∠BKP = BK : BP.

Since sin ∠AKP = sin ∠BKP and AK = BK, we have

sin ∠APK : sin ∠BPK = BP : AP = BE : AD.

Similar relations can be also written for the segments that connect the midpoints of the
other two pairs of the opposite sides. By multiplying these relations and applying the result
of Problem 5.78 to the triangle formed by lines AD, BE and CF , we get the statement
desired.

5.81. Let us consider the homothety with center P and coefficient 2. Since PA1A3A2 is
a rectangle, this homothety sends line A1A2 into line la that passes through point A3; lines
la and A3P are symmetric through line A3A. Line A3A divides the angle B3A3C3 in halves
(Problem 1.56 a)).

We similarly prove that lines lb and lc are symmetric to lines B3P and C3P , respectively,
through bisectors of triangle A3B3C3. Therefore, lines la, lb and lc either meet at one point
or are parallel (Problem 1.79) and, therefore, lines A1A2, B1B2 and C1C2 meet at one point.

5.82. By Problems 5.78 and 5.70 b)) we have

sin ∠ASP

sin ∠PSD
· sin ∠DAP

sin ∠PAS
· sin ∠SDP

sin ∠PDA
= 1 =

sin ∠ASQ

sin ∠QSD
· sin ∠DAQ

sin ∠QAS
· sin ∠SDQ

sin ∠QDA
.

But

∠DAP = ∠SDQ, ∠SDP = ∠DAQ, ∠PAS = ∠QDA and ∠PDA = ∠QAS.

Hence,
sin ∠ASP

sin ∠PSD
=

sin ∠ASQ

sin ∠QSD
.
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This implies that points S, P and Q lie on one line, since the function sin(α−x)
sin x

is monotonous
with respect to x: indeed,

d

dx

(

sin(α − x)

sin x

)

= − sin α

sin2 x
.

5.83. a) By Ceva’s theorem

AC1

C1B
=

CA1

A1B
· AB1

B1C

and by the law of sines

CA1 = CA sin ∠CAA1

sin ∠AA1B
, A1B = AB sin ∠BAA1

sin ∠AA1B
,

AB1 = AB sin ∠ABB1

sin ∠AB1B
, B1C = BC sin ∠CBB1

sin ∠AB1B
.

Substituting the last four identities in the first identity and taking into account that AC =
BC, we get the statement desired.

b) Let us denote the intersection points of lines CM and CN with base AB by M1

and N1, respectively. We have to prove that M1 = N1. From heading a) it follows that
AM1 : M1B = AN1 : N1B, i.e., M1 = N1.

5.84. Let segments BM and BN meet side AC at points P and Q, respectively. Then

sin ∠PBB1

sin PBA
=

sin ∠PBB1

sin ∠BPB1

· sin ∠APB

sin ∠PBA
=

PB

BB1

· AB

PA
.

If O is the intersection point of bisectors of triangle ABC, then AP
PB1

· B1O
OB

· BC1

C1A
= 1 and,

therefore,
sin ∠PBB1

sin ∠PBA
=

AB

BB1

· B1O

OB
· BC1

C1A
.

Observe that BC1 : C1A = BC : CA and perform similar calculations for sin∠QBB1 :
sin ∠QBC; we deduce that

sin ∠PBB1

sin ∠PBA
=

sin ∠QBB1

sin ∠QBC
.

Since ∠ABB1 = ∠CBB1, we have: ∠PBB1 = ∠QBB1.
5.85. a) Let point P lie on arc ⌣ AC of the circumscribed circle of triangle ABC; let

A1, B1 and C1 be the bases of perpendiculars dropped from point P to lines BC, CA and
AB. The sum of angles at vertices A1 and C1 of quadrilateral A1BC1P is equal to 180◦,
hence, ∠A1PC1 = 180◦ −∠B = ∠APC. Therefore, ∠APC1 = ∠A1PC, where one of points
A1 and C1 (say, A1) lies on a side of the triangle and the other point lies on the extension
of a side. Quadrilaterals AB1PC1 and A1B1PC are inscribed ones, hence,

∠AB1C1 = ∠APC1 = ∠A1PC = ∠A1B1C

and, therefore, point B1 lies on segment A1C1.
b) By the same arguments as in heading a) we get

∠(AP,PC1) = ∠(AB1, B1C) = ∠(CB1, B1A1) = ∠(CP, PA1).

Add ∠(PC1, PC) to ∠(AP,PC1); we get

∠(AP,PC) = ∠(PC1, PA1) = ∠(BC1, BA1) = ∠(AB,BC),

i.e., point P lies on the circumscribed circle of triangle ABC.
5.86. Let A1, B1 and C1 be the midpoints of segments PA, PB and PC, respectively;

let Oa, Ob and Oc be the centers of the circumscribed circles of triangles BCP , ACP and
ABP , respectively. Points A1, B1 and C1 are the bases of perpendiculars dropped from point
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P to sides of triangle OaObOc (or their extensions). Points A1, B1 and C1 lie on one line,
hence, point P lies on the circumscribed circle of triangle OaOcOc (cf. Problem 5.85, b).

5.87. Let the extension of the bisector AD intersect the circumscribed circle of triangle
ABC at point P . Let us drop from point P perpendiculars PA1, PB1 and PC1 to lines
BC, CA and AB, respectively; clearly, A1 is the midpoint of segment BC. The homothety
centered at A that sends P to D sends points B1 and C1 to B′ and C ′ and, therefore, it
sends point A1 to M , because M(???) lies on line B1C1 and PA1 ‖ DM .

5.88. a) The solution of Problem 5.85 can be adapted without changes to this case.
b) Let A1 and B1 be the bases of perpendiculars dropped from point P to lines BC and

CA, respectively, and let points A2 and B2 from lines BC and AC, respectively, be such
that ∠(PA2, BC) = α = ∠(PB2, AC). Then △PA1A2 ∼ △PB1B2 hence, points A1 and B1

turn under a rotational homothety centered at P into A2 and B2 and ∠A1PA2 = 90◦ − α is
the angle of the rotation.

5.89. a) Let the angle between lines PC and AC be equal to ϕ. Then PA = 2R sin ϕ.
Since points A1 and B1 lie on the circle with diameter PC, the angle between lines PA1 and
A1B1 is also equal to ϕ. Hence, PA1 = d

sin ϕ
and, therefore, PA · PA1 = 2Rd.

b) Since PA1 ⊥ BC, it follows that cos α = sin ϕ = d
PA1

. It remains to notice that

PA1 = 2Rd
PA

.
5.90. Points A1 and B1 lie on the circle with diameter PC, hence, A1B1 = PC sin ∠A1CB1 =

PC sin ∠C. Let the angle between lines AB and A1B1 be equal to γ and C1 be the projection
of point P to line A1B1. Lines A1B1 and B1C1 coincide, hence, cos γ = PC

2R
(cf. Problem

5.89). Therefore, the length of the projection of segment AB to line A1B1 is equal to

AB cos γ =
(2R sin ∠C)PC

2R
= PC sin ∠C.

5.91. Let A1 and B1 be the bases of perpendiculars dropped from point P to lines BC and
AC. Points A1 and B1 lie on the circle with diameter PC. Since sin ∠A1CB1 = sin ∠ACB,
the chords A1B1 of this circle are of the same length. Therefore, lines A1B1 are tangent to
a fixed circle.

5.92. Let A1 and B1 be the bases of perpendiculars dropped from point P to lines BC
and CA. Then

∠(A1B1, PB1) = ∠(A1C,PC) =
⌣ BP

2
.

It is also clear that for all points P lines PB1 have the same direction.
5.93. Let P1 and P2 be diametrically opposite points of the circumscribed circle of

triangle ABC; let Ai and Bi be the bases of perpendiculars dropped from point Pi to lines BC
and AC, respectively; let M and N be the midpoints of sides AC and BC, respectively; let
X be the intersection point of lines A1B1 and A2B2, respectively. By Problem 5.92 A1B1 ⊥
A2B2. It remains to verify that ∠(MX,XN) = ∠(BC,AC). Since AB2 = B1C, it follows
that XM is a median of right triangle B1XB2. Hence, ∠(XM,XB2) = ∠(XB2, B2M).

Similarly, ∠(XA1, XN) = ∠(A1N,XA1). Therefore,

∠(MX,XN) = ∠(XM,XB2) + ∠(XB2, XA1) + ∠(XA1, XN) =

∠(XB2, B2M) + ∠(A1N,XA1) + 90◦.

Since

∠(XB2, B2M) + ∠(AC,CB) + ∠(NA1, A1X) + 90◦ = 0◦,

we have: ∠(MN,XN) + ∠(AC,CB) = 0◦.
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5.94. If point R on the given circle is such that ∠(
−→
OP,

−→
OR) = 1

2
(β +γ), then OR ⊥ BC.

It remains to verify that ∠(OR,OQ) = ∠(PA1, A1B1). But ∠(OR,OQ) = 1
2
α and

∠(PA1, A1B1) = ∠(PB,BC1) =
∠(

−→
OP,

−→
OA)

2
=

α

2
.

5.95. Let lines AC and PQ meet at point M . In triangle MPC draw heights PB1

and CA1. Then A1B1 is Simson’s line of point P with respect to triangle ABC. More-
over, by Problem 1.52 ∠(MB1, B1A1) = ∠(CP, PM). It is also clear that ∠(CP, PM) =
∠(CA,AQ) = ∠(MB1, AQ). Hence, A1B1 ‖ AQ.

5.96. Let us draw chord PQ perpendicular to BC. Let points H ′ and P ′ be symmetric
to points H and P , respectively, through line BC; point H ′ lies on the circumscribed circle
of triangle ABC (Problem 5.9). First, let us prove that AQ ‖ P ′H. Indeed, ∠(AH ′, AQ) =
∠(PH ′, PQ) = ∠(AH ′, P ′H). Simson’s line of point P is parallel to AQ (Problem 5.95),
i.e., it passes through the midpoint of side PP ′ of triangle PP ′H and is parallel to side P ′H;
hence, it passes through the midpoint of side PH.

5.97. Let Ha, Hb, Hc and Hd be the orthocenters of triangles BCD, CDA, DAB and
ABC, respectively. Lines la, lb, lc and ld pass through the midpoints of segments AHa, BHb,
CHc and DHd, respectively (cf. Problem 5.96). The midpoints of these segments coincide

with point H such that 2
−−→
OH =

−→
OA +

−−→
OB +

−→
OC +

−−→
OD, where O is the center of the circle

(cf. Problem 13.33).
5.98. a) Let B1, C1 and D1 be the projections of point P to lines AB, AC and AD,

respectively. Points B1, C1 and D1 lie on the circle with diameter AP . Lines B1C1, C1D1

and D1B1 are Simson’s lines of point P with respect to triangles ABC, ACD and ADB,
respectively. Therefore, projections of point P to Simson’s lines of these triangles lie on one
line — Simson’s line of triangle B1C1D1.

We similarly prove that any triple of considered points lies on one line.
b) Let P be a point of the circumscribed circle of n-gon A1 . . . An; let B2, B3, . . . , Bn be

the projections of point P to lines A1A2, . . . , A1An, respectively. Points B2, . . . , Bn lie on
the circle with diameter A1P .

Let us prove by induction that Simson’s line of point P with respect to n-gon A1 . . . An

coincides with Simson’s line of point P with respect to (n− 1)-gon B2 . . . Bn (for n = 4 this
had been proved in heading a)). By the inductive hypothesis Simson’s line of the (n−1)-gon
A1A3 . . . An coincides with Simson’s line of (n − 2)-gon B3 . . . Bn. Hence, the projections of
point P to Simson’s line of (n− 1)-gons whose vertices are obtained by consecutive deleting
points A2, . . . , An from the collection A1, . . . , An ????? lie on Simson’s line of the (n−1)-gon
B2 . . . Bn. The projection of point P to Simson’s line of the (n − 1)-gon A2 . . . An lies on
the same line, because our arguments show that any n − 1 of the considered n points of
projections lie on one line.

5.99. Points B1 and C1 lie on the circle with diameter AP . Hence, B1C1 = AP sin ∠B1AC1 =
AP

(

BC
2R

)

.
5.100. This problem is a particular case of Problem 2.43.
5.101. Clearly,

∠C1AP = ∠C1B1P = ∠A2B1P = ∠A2C2P = ∠B3C2P = ∠B3A3P.

(The first, third and fifth equalities are obtained from the fact that the corresponding quadri-
laterals are inscribed ones; the remaining equalities are obvious.) Similarly, ∠B1AP =
∠C3A3P . Hence,

∠B3A3C3 = ∠B3A3P + ∠C3A3P = ∠C1AP + ∠BAP = ∠BAC.
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Similarly, the equalities of the remaining angles of triangles ABC and A3B3C3 are similarly
obtained.

5.102. Let A1, B1 and C1 be the bases of perpendiculars dropped from point P to lines
BC, CA and AB, respectively; let A2, B2 and C2 be the intersection points of lines PA,
PB and PC, respectively, with the circumscribed circle of triangle ABC. Further, let S, S1

and S2 be areas of triangles ABC, A1B1C1 and A2B2C2, respectively. It is easy to verify
that a1 = a·AP

2R
(Problem 5.99) and a2 = a·B2P

CP
. Triangles A1B1C1 and A2B2C2 are similar

(Problem 5.100); hence, S1

S2
= k2, where k = a1

a2
= AP ·CP

2R·B2P
. Since B2P · BP = |d2 − R2|, we

have:
S1

S2

=
(AP · BP · CP )2

4R2(d2 − R2)2
.

Triangles A2B2C2 and ABC are inscribed in one circle, hence, S2

S
= a2b2c2

abc
(cf. Problem

12.1). It is also clear that, for instance,

a2

a
=

B2P

CP
=

|d2 − R2|
BP · CP

.

Therefore,
S2 : S = |d2 − R2|3 : (AP · BP · CP )2.

Hence,
S1

S
=

S1

S2

· S2

S
=

|d2 − R2|
4R2

.

5.103. Points B1 and C1 lie on the circle with diameter PA and, therefore, the midpoint
of segment PA is the center of the circumscribed circle of triangle AB1C1. Consequenly, la
is the midperpendicular to segment B1C1. Hence, lines la, lb and lc pass through the center
of the circumscribed circle of triangle A1B1C1.

5.104. a) Let us drop from points P1 and P2 perpendiculars P1B1 and P2B2, respectively,
to AC and perpendiculars P1C1 and P2C2 to AB. Let us prove that points B1, B2, C1 and
C2 lie on one circle. Indeed,

∠P1B1C1 = ∠P1AC1 = ∠P2AB2 = ∠P2C2B2;

and, since ∠P1B1A = ∠P2C2A, it follows that ∠C1B1A = ∠B2C2A. The center of the
circle on which the indicated points lie is the intersection point of the midperpendiculars to
segments B1B2 and C1C2; observe that both these perpendiculars pass through the midpoint
O of segment P1P2, i.e., O is the center of this circle. In particular, points B1 and C1 are
equidistant from point O. Similarly, points A1 and B1 are equidistant from point O, i.e., O
is the center of the circumscribed circle of triangle A1B1C1. Moreover, OB1 = OB2.

b) The preceding proof passes virtually without changes in this case as well.
5.105. Let A1, B1 and C1 be the midpoints of sides BC, CA and AB. Triangles A1B1C1

and ABC are similar and the similarity coefficient is equal to 2. The heights of triangle
A1B1C1 intersect at point O; hence, OA1 : HA = 1 : 2. Let M ′ be the intersection point of
segments OH and AA1. Then OM ′ : M ′H = OA1 : HA = 1 : 2 and AM ′ : M ′A1 = OA1 :
HA = 1 : 2, i.e., M ′ = M .

5.106. Let A1, B1 and C1 be the midpoints of sides BC, CA and AB, respectively; let
A2, B2 and C2 the bases of heights; A3, B3 and C3 the midpoints of segments that connect
the intersection point of heights with vertices. Since A2C1 = C1A = A1B1 and A1A2 ‖ B1C1,
point A2 lies on the circumscribed circle of triangle A1B1C1. Similarly, points B2 and C2 lie
on the circumscribed circle of triangle A1B1C1.

Now, consider circle S with diameter A1A3. Since A1B3 ‖ CC2 and A3B3 ‖ AB, it follows
that ∠A1B3A3 = 90◦ and, therefore, point B3 lies on S. We similarly prove that points C1,
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B1 and C3 lie on S. Circle S passes through the vertices of triangle A1B1C1; hence, it is its
circumscribed circle.

The homothety with center H and coefficient 1
2

sends the circumscribed circle of trian-
gle ABC into the circumscribed circle of triangle A3B3C3, i.e., into the circle of 9 points.
Therefore, this homothety sends point O into the center of the circle of nine points.

5.107. a) Let us prove that, for example, triangles ABC and HBC share the same circle
of nine points. Indeed, the circles of nine points of these triangles pass through the midpoint
of side BC and the midpoints of segments BH and CH.

b) Euler’s line passes through the center of the circle of 9 points and these triangles share
one circle of nine points.

c) The center of symmetry is the center of the circle of 9 points of these triangles.
5.108. Let AB > BC > CA. It is easy to verify that for an acute and an obtuse

triangles the intersection point H of heights and the center O of the circumscribed circle
are positioned precisely as on Fig. 59 (i.e., for an acute triangle point O lies inside triangle
BHC1 and for an acute triangle points O and B lie on one side of line CH).

Figure 59 (Sol. 5.108)

Therefore, in an acute triangle Euler’s line intersects the longest side AB and the shortest
side AC, whereas in an acute triangle it intersects the longest side AB, and side BC of
intermediate length.

5.109. a) Let Oa, Ob and Oc be the centers of the escribed circles of triangle ABC. The
vertices of triangle ABC are the bases of the heights of triangle OaObOc (Problem 5.2) and,
therefore, the circle of 9 points of triangle OaObOc passes through point A, B and C.

b) Let O be the intersection point of heights of triangle OaObOc, i.e., the intersection
point of the bisectors of triangle ABC. The circle of 9 points of triangle OaObOc divides
segment OOa in halves.

5.110. Let AA1 be an height, H the intersection point of heights. By Problem 5.45 b)
AH = 2R| cos ∠A|. The medians are divided by their intersection point in the ratio of 1:2,

hence, Euler’s line is parallel to BC if and only if AH : AA1 = 2 : 3 and vectors
−−→
AH and−−→

AA1 are codirected, i.e.,

2R cos ∠A : 2R sin ∠B sin ∠C = 2 : 3.

Taking into account that

cos ∠A = − cos(∠B + ∠C) = sin ∠B sin ∠C − cos ∠B cos ∠C

we get
sin ∠B sin ∠C = 3 cos ∠B cos ∠C.

5.111. Let CD be a height, O the center of the circumscribed circle, N the midpoint of
side AB and let point E divide the segment that connects C with the intersection point of the
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heights in halves. Then CENO is a parallelogram, hence, ∠NED = ∠OCH = |∠A − ∠B|
(cf. Problem 2.88). Points N , E and D lie on the circle of 9 points, hence, segment ND is
seen from its center under an angle of 2∠NED = 2|∠A − ∠B|.

5.112. Let O and I be the centers of the circumscribed and inscribed circles, respectively,
of triangle ABC, let H be the intersection point of the heights; lines AI and BI intersect
the circumscribed circle at points A1 and B1. Suppose that triangle ABC is not an isosceles
one. Then OI : IH = OA1 : AH and OI : IH = OB1 : BH. Since OB1 = OA1, we see that
AH = BH and, therefore, AC = BC. Contradiction.

5.113. Let O and I be the centers of the circumscribed and inscribed circles, respectively,
of triangle ABC, H the orthocenter of triangle A1B1C1. In triangle A1B1C1, draw heights
A1A2, B1B2 and C1C2. Triangle A1B1C1 is an acute one (e.g., ∠B1A1C1 = ∠B+∠C

2
< 90◦),

hence, H is the center of the inscribed circle of triangle A2B2C2 (cf. Problem 1.56, a).
The corresponding sides of triangles ABC and A2B2C2 are parallel (cf. Problem 1.54 a)
and, therefore, there exists a homothety that sends triangle ABC to triangle A2B2C2. This
homothety sends point O to point I and point I to point H; hence, line IH passes through
point O.

5.114. Let H be be the intersection point of the heights of triangle ABC, let E and M
be the midpoints of segments CH and AB, see Fig. 60. Then C1MC2E is a rectangle.

Figure 60 (Sol. 5.114)

Let line CC2 meet line AB at point C3. Let us prove that AC3 : C3B = tan 2α : tan 2β.
It is easy to verify that

C3M : C2E = MC2 : EC, EC = R cos γ,
MC2 = C1E = 2R sin α sin β − R cos γ

and C2E = MC1 = R sin(β − α)

Hence,

C3M =
R sin(β − α)(2 sin β sin α − cos γ)

cos γ
=

R sin(β − α) cos(β − α)

cos γ
.

Therefore,

AC3

C3B
=

AM + MC3

C3M + MB
=

sin 2γ + sin 2(α − β)

sin 2γ − sin 2(α − β)
=

tan 2α

tan 2β
.

Similar arguments show that

AC3

C3B
· BA3

A3C
· CB3

B3A
=

tan 2α

tan 2β
· tan 2β

tan 2γ
· tan 2γ

tan 2α
= 1.

5.115. Let us solve a more general heading b). First, let us prove that lines AA1, BB1

and CC1 meet at one point. Let the circumscribed circles of triangles A1BC and AB1C
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intersect at point O. Then

∠(BO,OA) = ∠(BO,OC) + ∠(OC,OA) = ∠(BA1, A1C) + ∠(CB1, B1A) =
= ∠(BA,AC1) + ∠(C1B,BA) = ∠(C1B,AC1),

i.e., the circumscribed circle of triangle ABC1 also passes through point O. Hence,

∠(AO,OA1) = ∠(AO,OB) + ∠(BO,OA1) = ∠(AC1, C1B + ∠(BC,CA1) = 0◦,

i.e., line AA1 passes through point O. We similarly prove that lines BB1 and CC1 pass
through point O.

Now, let us prove that point O coincides with point P we are looking for. Since ∠BAP =
∠A−∠CAP , the equality ∠ABP = ∠CAP is equivalent to the equality ∠BAP +∠ABP =
∠A, i.e., ∠APB = ∠B + ∠C. For point O the latter equality is obvious since it lies on the
circumscribed circle of triangle ABC1.

5.116. a) Let us prove that ⌣ AB =⌣ B1C1, i.e., AB = B1C1. Indeed, ⌣ AB =⌣
AC1+ ⌣ C1B and ⌣ C1B =⌣ AB1; hence, ⌣ AB =⌣ AC1+ ⌣ AB1 =⌣ B1C1.

b) Let us assume that triangles ABC and A1B1C1 are inscribed in one circle, where
triangle ABC is fixed and triangle A1B1C1 rotates. Lines AA1, BB1 and CC1 meet at one
point for not more than one position of triangle A1B1C1, see Problem 7.20 b). We can obtain
12 distinct families of triangles A1B1C1: triangles ABC and A1B1C1 can be identified after
a rotation or an axial symmetry; moreover, there are 6 distinct ways to associate symbols
A1, B1 and C1 to the vertices of the triangle.

From these 12 families of triangles 4 families can never produce the desired point P . For
similarly oriented triangles the cases

△ABC = △A1C1B1, △ABC = △C1B1A1, △ABC = △B1A1C1

are excluded: for example, if △ABC = △A1C1B1, then point P is the intersection point of
line BC = B1C1 with the tangent to the circle at point A = A1; in this case triangles ABC
and A1B1C1 coincide.

For differently oriented triangles the case △ABC = △A1B1C1 is excluded: in this case
AA1 ‖ BB1 ‖ CC1.

Remark. Brokar’s points correspond to differently oriented triangles; for the first Brokar’s
point △ABC = △B1C1A1 and for the second Brokar’s point we have △ABC = △C1A1B1.

5.117. a) Since PC = AC sin ∠CAP
sin ∠APC

and PC = BC sin ∠CBP
sin ∠BPC

, it follows that

sin ϕ sin β

sin γ
=

sin(β − ϕ) sin α

sin β
.

Taking into account that

sin(β − γ) = sin β cos ϕ − cos β sin ϕ

we get cot ϕ = cot β + sin β
sin α sin γ

. It remains to notice that

sin β = sin(α + γ) = sin α cos γ + sin γ cos α.

b) For the second Brokar’s angle we get precisely the same expression as in heading a).
It is also clear that both Brokar’s angles are acute ones.

c) Since ∠A1BC = ∠BCA and ∠BCA1 = ∠CAB, it follows that △CA1B ∼ △ABC.
Therefore, Brokar’s point P lies on segment AA1 (cf. Problem 5.115 b)).

5.118. a) By Problem 10.38 a)

cot ϕ = cot α + cot β + cot γ ≥
√

3 = cot 30◦;

hence, ϕ ≤ 30◦.
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b) Let P be the first Brokar’s point of triangle ABC. Point M lies inside (or on the
boundary of) one of the triangles ABP , BCP and CAP . If, for example, point M lies inside
triangle ABP , then ∠ABM ≤ ∠ABP ≤ 30◦.

5.119. Lines A1B1, B1C1 and C1A1 are the midperpendiculars to segments AQ, BQ and
CQ, respectively. Therefore, we have, for instance, ∠B1A1C1 = 180◦ − ∠AQC = ∠A. For
the other angles the proof is similar.

Moreover, lines A1O, B1O and C1O are the midperpendiculars to segments CA, AB
and BC, respectively. Hence, acute angles ∠OA1C1 and ∠ACQ, for example, have pair-
wise perpendicular sides and, consecutively, they are equal. Similar arguments show that
∠OA1C1 = ∠OB1A1 = ∠OC1B1 = ϕ, where ϕ is the Brokar’s angle of triangle ABC.

5.120. By the law of sines

R1 =
AB

2 sin ∠APB
, R2 =

BC

2 sin ∠BPC
and R3 =

CA

2 sin ∠CPA
.

It is also clear that

sin ∠APB = sin ∠A, sin ∠BPC = sin ∠B and sin ∠CPA = sin ∠C.

5.121. Triangle ABC1 is an isosceles one and the angle at its base AB is equal to
Brokar’s angle ϕ. Hence, ∠(PC1, C1Q) = ∠(BC1, C1A) = 2ϕ. Similarly

∠(PA1, A1Q) = ∠(PB1, B1Q) = ∠(PC1, C1Q) = 2ϕ.

5.122. Since ∠CA1B1 = ∠A + ∠AB1A1 and ∠AB1A1 = ∠CA1C1, we have ∠B1A1C1 =
∠A. We similarly prove that the remaining angles of triangles ABC and A1B1C1 are equal.

The circumscribed circles of triangles AA1B1, BB1C1 and CC1A1 meet at one point O.
(Problem 2.80 a). Clearly, ∠AOA1 = ∠AB1A1 = ϕ. Similarly, ∠BOB1 = ∠COC1 = ϕ.
Hence, ∠AOB = ∠A1OB1 = 180◦−∠A. Similarly, ∠BOC = 180◦−∠B and ∠COA = 180◦−
∠C, i.e., O is the first Brokar’s point of both triangles. Hence, the rotational homothety by
angle ϕ with center O and coefficient AO

A1O
sends triangle A1B1C1 to triangle ABC.

5.123. By the law of sines AB
BM

= sin ∠AMB
sin ∠BAM

and AB
BN

= sin ∠ANB
sin ∠BAN

. Hence,

AB2

BM · BN
=

sin ∠AMB sin ∠ANB

sin ∠BAM sin ∠BAN
=

sin ∠AMC sin ∠ANC

sin ∠CAN sin ∠CAM
=

AC2

CM · CN
.

5.124. Since ∠BAS = ∠CAM , we have

BS

CM
=

SBAS

SCAM

=
AB · AS

AC · AM
,

i.e., AS
AM

= 2b·BS
ac

. It remains to observe that, as follows from Problems 5.123 and 12.11 a),

BS = ac2

b2+c2
and 2AM =

√
2b2 + 2c2 − a2.

5.125. The symmetry through the bisector of angle A sends segment B1C1 into a segment
parallel to side BC, it sends line AS to line AM , where M is the midpoint of side BC.

5.126. On segments BC and BA, take points A1 and C1, respectively, so that A1C1 ‖
BK. Since ∠BAC = ∠CBK = ∠BA1C1, segment A1C1 is antiparallel to side AC. On the
other hand, by Problem 3.31 b) line BD divides segment A1C1 in halves.

5.127. It suffices to make use of the result of Problem 3.30.
5.128. Let AP be the common chord of the considered circles, Q the intersection point

of lines AP and BC. Then

BQ

AB
=

sin ∠BAQ

sin ∠AQB
and

AC

CQ
=

sin ∠AQC

sin ∠CAQ
.
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Hence, BQ
CQ

= AB sin ∠BAP
AC sin ∠CAP

. Since AC and AB are tangents to circles S1 and S2, it follows that

∠CAP = ∠ABP and ∠BAP = ∠ACP and, therefore, ∠APB = ∠APC. Hence,

AB

AC
=

AB

AP
· AP

AC
=

sin ∠APB

sin ∠ABP
· sin ∠ACP

sin ∠APC
=

sin ∠ACP

sin ∠ABP
=

sin ∠BAP

sin ∠CAP
.

It follows that BQ
CQ

= AB2

AC2 .

5.129. Let S be the intersection point of lines AX and BC. Then AS
AB

= CS
CX

and
AS
AC

= BSBX and, therefore,
CS

BS
=

AC

AB
· XC

XB
.

It remains to observe that XC
XB

= AC
AB

(see the solution of Problem 7.16 a)).
5.130. Let L, M and N be the midpoints of segments CA,CB and CH. Since △BAC ∼

△CAH, it follows that △BAM ∼ △CAN and, therefore, ∠BAM = ∠CAN . Similarly,
∠ABL = ∠CBN .

5.131. Let B1C1, C2A2 and A3B3 be given segments. Then triangles A2XA3, B1XB3

and C1XC2 are isosceles ones; let the lengths of their lateral sides be equal to a, b and c.
Line AX divides segment B1C1 in halves if and only if this line contains a simedian. Hence,
if X is Lemoin’s point, then a = b, b = c and c = a. And if B1C1 = C2A2 = A3B3, then
b + c = c + a = a + b and, therefore, a = b = c.

5.132. Let M be the intersection point of medians of triangle ABC; let a1, b2, c1 and a2,
b2, c2 be the distances from points K and M , respectively, to the sides of the triangle. Since
points K and M are isogonally conjugate, a1a2 = b1b2 = c1c2. Moreover, aa2 = bb2 = cc2

(cf. Problem 4.1). Therefore, a
a1

= b
b1

= c
c1

. Making use of this equality and taking into

account that areas of triangles A1B1K, B1C1K and C1A1K are equal to a1b1c
4R

, b1c1a
4R

and c1a1b
4R

,
respectively, where R is the radius of the circumscribed circle of triangle ABC, we deduce
that the areas of these triangles are equal. Moreover, point K lies inside triangle A1B1C1.
Therefore, K is the intersection point of medians of triangle A1B1C1 (cf. Problem 4.2).

5.133. Medians of triangle A1B1C1 intersect at point K (Problem 5.132); hence, the
sides of triangle ABC are perpendicular to the medians of triangle A1B1C1. After a rotation
through an angle of 90◦ the sides of triangle ABC become pairwise parallel to the medians
of triangle A1B1C1 and, therefore, the medians of triangle ABC become parallel to the
corresponding sides of triangle A1B1C1 (cf. Problem 13.2). Hence, the medians of triangle
ABC are perpendicular to the corresponding sides of triangle A1B1C1.

5.134. Let A2, B2 and C2 be the projections of point K to lines BC, CA and AB,
respectively. Then △A1B1C1 ∼ △A2B2C2 (Problem 5.100) and K is the intersection point
of medians of triangle A2B2C2 (Problem 5.132). Hence, the similarity transformation that
sends triangle A2B2C2 to triangle A1B1C1 sends point K to the intersection point M of
medians of triangle A1B1C1. Moreover, ∠KA2C2 = ∠KBC2 = ∠B1A1K, i.e., points K and
M are isogonally conjugate with respect to triangle A1B1C1 and, therefore, K is Lemoin’s
point of triangle A1B1C1.

5.135. Let K be Lemoin’s point of triangle ABC; let A1, B1 and C1 be the projections
of point K on the sides of triangle ABC; let L be the midpoint of segment B1C1 and N
the intersection point of line KL and median AM ; let O be the midpoint of segment AK
(Fig. 61). Points B1 and C1 lie on the circle with diameter AK, hence, by Problem 5.132
OL ⊥ B1C1. Moreover, AN ⊥ B1C1 (Problem 5.133) and O is the midpoint of segment
AK, consequently, OL is the midline of triangle AKN and KL = LN . Therefore, K is
the midpoint of segment A1N . It remains to notice that the homothety with center M that
sends N to A sends segment NA1 to height AH.
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Figure 61 (Sol. 5.135)



Chapter 6. POLYGONS

Background

1) A polygon is called a convex one if it lies on one side of any line that connects two of
its neighbouring vertices.

2) A convex polygon is called a circumscribed one if all its sides are tangent to a circle.
A convex quadrilateral is a circumscribed one if and only if AB + CD = BC + AD.

A convex polygon is called an inscribed one if all its vertices lie on one circle. A convex
quadrilateral is an inscribed one if and only if

∠ABC + ∠CDA = ∠DAB + ∠BCD.

3) A convex polygon is called a regular one if all its sides are equal and all its angles are
also equal.

A convex n-gon is a regular one if and only if under a rotation by the angle of 2π
n

with
center at point O it turns into itself. This point O is called the center of the regular polygon.

Introductory problems

1. Prove that a convex quadrilateral ABCD can be inscribed into a circle if and only if
∠ABC + ∠CDA = 180◦.

2. Prove that a circle can be inscribed in a convex quadrilateral ABCD if and only if
AB + CD = BC + AD.

3. a) Prove that the axes of symmetry of a regular polygon meet at one point.
b) Prove that a regular 2n-gon has a center of symmetry.
4. a) Prove that the sum of the angles at the vertices of a convex n-gon is equal to

(n − 2) · 180◦.
b) A convex n-gon is divided by nonintersecting diagonals into triangles. Prove that the

number of these triangles is equal to n − 2.

§1. The inscribed and circumscribed quadrilaterals

6.1. Prove that if the center of the circle inscribed in a quadrilateral coincides with the
intersection point of the quadrilateral’s diagonals, then this quadrilateral is a rhombus.

6.2. Quadrilateral ABCD is circumscribed about a circle centered at O. Prove that
∠AOB + ∠COD = 180◦.

6.3. Prove that if there exists a circle tangent to all the sides of a convex quadrilateral
ABCD and a circle tangent to the extensions of all its sides then the diagonals of such a
quadrilateral are perpendicular.

6.4. A circle singles out equal chords on all the four sides of a quadrilateral. Prove that
a circle can be inscribed into this quadrilateral.

6.5. Prove that if a circle can be inscribed into a quadrilateral, then the center of this
circle lies on one line with the centers of the diagonals.
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6.6. Quadrilateral ABCD is circumscribed about a circle centered at O. In triangle
AOB heights AA1 and BB1 are drawn. In triangle COD heights CC1 and DD1 are drawn.
Prove that points A1, B1, C1 and D1 lie on one line.

6.7. The angles at base AD of trapezoid ABCD are equal to 2α and 2β. Prove that the
trapezoid is a circumscribed one if and only if BC

AD
= tan α tan β.

6.8. In triangle ABC, segments PQ and RS parallel to side AC and a segment BM are
drawn as plotted on Fig. 62. Trapezoids RPKL and MLSC are circumscribed ones. Prove
that trapezoid APQC is also a circumscribed one.

Figure 62 (6.8)

6.9. Given convex quadrilateral ABCD such that rays AB and CD intersects at a
point P and rays BC and AD intersect at a point Q. Prove that quadrilateral ABCD is a
circumscribed one if and only if one of the following conditions hold:

AB + CD = BC + AD, AP + CQ = AQ + CP BP + BQ = DP + DQ.

6.10. Through the intersection points of the extension of sides of convex quadrilateral
ABCD two lines are drawn that divide it into four quadrilaterals. Prove that if the quadri-
laterals adjacent to vertices B and D are circumscribed ones, then quadrilateral ABCD is
also a circumscribed one.

6.11. Prove that the intersection point of the diagonals of a circumscribed quadrilateral
coincides with the intersection point of the diagonals of the quadrilateral whose vertices are
the tangent points of the sides of the initial quadrilateral with the inscribed circle.

* * *

6.12. Quadrilateral ABCD is an inscribed one; Hc and Hd are the orthocenters of
triangles ABD and ABC respectively. Prove that CDHcHd is a parallelogram.

6.13. Quadrilateral ABCD is an inscribed one. Prove that the centers of the inscribed
circles of triangles ABC, BCD, CDA and DAB are the vertices of a rectangle.

6.14. The extensions of the sides of quadrilateral ABCD inscribed in a circle centered
at O intersect at points P and Q and its diagonals intersect at point S.

a) The distances from points P , Q and S to point O are equal to p, q and s, respectively,
and the radius of the circumscribed circle is equal to R. Find the lengths of the sides of
triangle PQS.

b) Prove that the heights of triangle PQS intersect at point O.

* * *

6.15. Diagonal AC divides quadrilateral ABCD into two triangles whose inscribed
circles are tangent to diagonal AC at one point. Prove that the inscribed circles of triangle
ABD and BCD are also tangent to diagonal BD at one point and their tangent points with
the sides of the quadrilateral lie on one circle.
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6.16. Prove that the projections of the intersection point of the diagonals of the inscribed
quadrilateral to its sides are vertices of a circumscribed quadrilateral only if the projections
do not lie on the extensions of the sides.

6.17. Prove that if the diagonals of a quadrilateral are perpendicular, then the pro-
jections of the intersection points of the diagonals on its sides are vertices of an inscribed
quadrilateral.

See also Problem 13.33, 13.34, 16.4.

§2. Quadrilaterals

6.18. The angle between sides AB and CD of quadrilateral ABCD is equal to ϕ. Prove
that

AD2 = AB2 + BC2 + CD2 − 2(AB · BC cos B + BC · CD cos C + CD · AB cos ϕ).

6.19. In quadrilateral ABCD, sides AB and CD are equal and rays AB and DC intersect
at point O. Prove that the line that connects the midpoints of the diagonals is perpendicular
to the bisector of angle AOD.

6.20. On sides BC and AD of quadrilateral ABCD, points M and N , respectively, are
taken so that BM : MC = AN : ND = AB : CD. Rays AB and DC intersect at point O.
Prove that line MN is parallel to the bisector of angle AOD.

6.21. Prove that the bisectors of the angles of a convex quadrilateral form an inscribed
quadrilateral.

6.22. Two distinct parallelograms ABCD and A1B1C1D1 with corresponding parallel
sides are inscribed into quadrilateral PQRS (points A and A1 lie on side PQ, points B and
B1 lie on side QR, etc.). Prove that the diagonals of the quadrilateral are parallel to the
corresponding sides of the parallelograms.

6.23. The midpoints M and N of diagonals AC and BD of convex quadrilateral ABCD
do not coincide. Line MN intersects sides AB and CD at points M1 and N1. Prove that if
MM1 = NN1, then AD ‖ BC.

6.24. Prove that two quadrilaterals are similar if and only if four of their corresponding
angles are equal and the corresponding angles between the diagonals are also equal.

6.25. Quadrilateral ABCD is a convex one; points A1, B1, C1 and D1 are such that
AB ‖ C1D1 and AC ‖ B1D1, etc. for all pairs of vertices. Prove that quadrilateral A1B1C1D1

is also a convex one and ∠A + ∠C1 = 180◦.
6.26. From the vertices of a convex quadrilateral perpendiculars are dropped on the

diagonals. Prove that the quadrilateral with vertices at the basis of the perpendiculars is
similar to the initial quadrilateral.

6.27. A convex quadrilateral is divided by the diagonals into four triangles. Prove that
the line that connects the intersection points of the medians of two opposite triangles is
perpendicular to the line that connects the intersection points of the heights of the other
two triangles.

6.28. The diagonals of the circumscribed trapezoid ABCD with bases AD and BC
intersect at point O. The radii of the inscribed circles of triangles AOD, AOB, BOC and
COD are equal to r1, r2, r3 and r4, respectively. Prove that 1

r1
+ 1

r3
= 1

r2
+ 1

r4
.

6.29. A circle of radius r1 is tangent to sides DA, AB and BC of a convex quadrilateral
ABCD; a circle of radius r2 is tangent to sides AB, BC and CD; the radii r3 and r4 are
similarly defined. Prove that AB

r1
+ CD

r3
= BC

r2
+ AD

r4
.

6.30. A quadrilateral ABCD is convex and the radii of the circles inscribed in triangles
ABC, BCD, CDA and DAB are equal. Prove that ABCD is a rectangle.
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6.31. Given a convex quadrilateral ABCD and the centers A1, B1, C1 and D1 of the
circumscribed circles of triangles BCD, CDA, DAB and ABC, respectively. For quadrilat-
eral A1B1C1D1 points A2, B2, C2 and D2 are similarly defined. Prove that quadrilaterals
ABCD and A2B2C2D2 are similar and their similarity coefficient is equal to

1

4
|(cot A + cot C)(cot B + cot D)| .

6.32. Circles whose diameters are sides AB and CD of a convex quadrilateral ABCD
are tangent to sides CD and AB, respectively. Prove that BC ‖ AD.

6.33. Four lines determine four triangles. Prove that the orthocenters of these triangles
lie on one line.

§3. Ptolemy’s theorem

6.34. Quadrilateral ABCD is an inscribed one. Prove that

AB · CD + AD · BC = AC · BD (Ptolemy’s theorem).

6.35. Quadrilateral ABCD is an inscribed one. Prove that

AC

BD
=

AB · AD + CB · CD

BA · BC + DA · DC
.

6.36. Let α = π
7
. Prove that

1

sin α
=

1

sin 2α
+

1

sin 3α
.

6.37. The distances from the center of the circumscribed circle of an acute triangle to
its sides are equal to da, db and dc. Prove that da + db + dc = R + r.

6.38. The bisector of angle ∠A of triangle ABC intersects the circumscribed circle at
point D. Prove that AB + AC ≤ 2AD.

6.39. On arc ⌣ CD of the circumscribed circle of square ABCD point P is taken. Prove
that PA + PC =

√
2PB.

6.40. Parallelogram ABCD is given. A circle passing through point A intersects seg-
ments AB, AC and AD at points P , Q and R, respectively. Prove that

AP · AB + AR · AD = AQ · AC.

6.41. On arc ⌣ A1A2n+1 of the circumscribed circle S of a regular (2n + 1)-gon
A1 . . . A2n+1 a point A is taken. Prove that:

a) d1 + d3 + · · · + d2n+1 = d2 + d4 + · · · + d2n, where di = AAi;
b) l1 + · · ·+ l2n+1 = l2 + · · ·+ l2n, where li is the length of the tangent drawn from point A

to the circle of radius r tangent to S at point Ai (all the tangent points are simultaneously
either inner or outer ones).

6.42. Circles of radii x and y are tangent to a circle of radius R and the distance between
the tangent points is equal to a. Calculate the length of the following common tangent to
the first two circles:

a) the outer one if both tangents are simultaneously either outer or inner ones;
b) the inner one if one tangent is an inner one and the other one is an outer one.
6.43. Circles α, β, γ and δ are tangent to a given circle at vertices A, B, C and D,

respectively, of convex quadrilateral ABCD. Let tαβ be the length of the common tangent
to circles α and β (the outer one if both tangent are simultaneously either inner or outer
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ones and the inner one if one tangent is an inner one and the other one is an outer one); tβγ,
tγδ, etc. are similarly determined. Prove that

tαβtγδ + tβγtδα = tαγtβδ (The generalized Ptolemy’s theorem)

See also Problem 9.67.

§4. Pentagons

6.44. In an equilateral (non-regular) pentagon ABCDE we have angle ∠ABC =
2∠DBE. Find the value of angle ∠ABC.

6.45. a) Diagonals AC and BE of a regular pentagon ABCDE intersect at point K.
Prove that the inscribed circle of triangle CKE is tangent to line BC.

b) Let a be the length of the side of a regular pentagon, d the length of its diagonal.
Prove that d2 = a2 + ad.

6.46. Prove that a square can be inscribed in a regular pentagon so that the vertices of
the square would lie on four sides of the pentagon.

Figure 63 (6.46)

6.47. Regular pentagon ABCDE with side a is inscribed in circle S. The lines that
pass through the pentagon’s vertices perpendicularly to the sides form a regular pentagon
with side b (Fig. 63). A side of a regular pentagon circumsribed about circle S is equal to
c. Prove that a2 + b2 = c2.

See also Problems 2.59, 4.9, 9.23, 9.44, 10.63, 10.67, 13.10, 13.56, 20.11.

§5. Hexagons

6.48. The opposite sides of a convex hexagon ABCDEF are pairwise parallel. Prove
that:

a) the area of triangle ACE constitutes not less than a half area of the hexagon.
b) the areas of triangles ACE and BDF are equal.
6.49. All the angles of a convex hexagon ABCDEF are equal. Prove that

|BC − EF | = |DE − AB| = |AF − CD|.
6.50. The sums of the angles at vertices A, C, E and B, D, F of a convex hexagon

ABCDEF with equal sides are equal. Prove that the opposite sides of this hexagon are
parallel.

6.51. Prove that if in a convex hexagon each of the three diagonals that connect the
opposite vertices divides the area in halves then these diagonals intersect at one point.

6.52. Prove that if in a convex hexagon each of the three segments that connect the
midpoints of the opposite sides divides the area in halves then these segments intersect at
one point.
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See also problems 2.11, 2.20, 2.46, 3.66, 4.6, 4.28, 4.31, 5.80, 9.45 a), 9.76–9.78, 13.3,
14.6, 18.22, 18.23.

§6. Regular polygons

6.53. The number of sides of a polygon A1 . . . An is odd. Prove that:
a) if this polygon is an inscribed one and all its angles are equal, then it is a regular

polygon;
b) if this polygon is a circumscribed one and all its sides are equal, then it is a regular

polygon.
6.54. All the angles of a convex polygon A1 . . . An are equal; an inner point O of the

polygon is the vertex of equal angles that subtend all the polygon’s sides. Prove that the
polygon is a regular one.

6.55. A paper band of constant width is tied in a simple knot and then tightened in
order to make the knot flat, cf. Fig. 64. Prove that the knot is of the form of a regular
pentagon.

Figure 64 (6.55)

6.56. On sides AB, BC, CD and DA of square ABCD equilateral triangles ABK,
BCL, CDM and DAN are constructed inwards. Prove that the midpoints of sides of these
triangles (which are not the sides of a square) and the midpoints of segments KL, LM , MN
and NK form a regular 12-gon.

* * *

6.57. Does there exist a regular polygon the length of one of whose diagonal is equal to
the sum of lengths of some other two diagonals?

6.58. A regular (4k + 2)-gon is inscribed in a circle of radius R centered at O. Prove
that the sum of the lengths of segments singled out by the legs of angle ∠AkOAk+1 on lines
A1A2k, A2A2k−1, . . . , AkAk+1 is equal to R.

6.59. In regular 18-gon A1 . . . A18, diagonals AaAd, AbAe and AcAf are drawn. Let
k = a− b, p = b− c, m = c−d, q = d− e, n = e− f and r = f −a. Prove that the indicated
diagonals intersect at one point in any of the following cases and only in these cases:

a)
−−−−→
k,m, n = −−−→p, q, r;

b)
−−−−→
k,m, n =

−−−→
1, 2, 7 and −−−→p, q, r =

−−−→
1, 3, 4;

c)
−−−−→
k,m, n =

−−−→
1, 2, 8 and −−−→p, q, r =

−−−→
2, 2, 3.

Remark. The equality
−−−−→
k,m, n = −−−→x, y, z means that the indicated tuples of numbers

coincide; the order in which they are written in not taken into account.

6.60. In a regular 30-gon three diagonals are drawn. For them define tuples
−−−−→
k,m, n and

−−−→p, q, r as in the preceding problem. Prove that if
−−−−→
k,m, n =

−−−−→
1, 3, 14 and −−−→p, q, r =

−−−→
2, 2, 8, then

the diagonals intersect at one point.
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6.61. In a regular n-gon (n ≥ 3) the midpoints of all its sides and the diagonals are
marked. What is the greatest number of marked points that lie on one circle?

6.62. The vertices of a regular n-gon are painted several colours so that the points of
one colour are the vertices of a regular polygon. Prove that among these polygons there are
two equal ones.

6.63. Prove that for n ≥ 6 a regular (n − 1)-gon is impossible to inscribe in a regular
n-gon so that on every side of the n-gon except one there lies exactly one vertex of the
(n − 1)-gon.

* * *

6.64. Let O be the center of a regular n-gon A1 . . . An and X an arbitrary point. Prove
that −−→

OA1 + · · · + −−→
OAn =

−→
0 and

−−→
XA1 + · · · + −−→

XAn = n
−−→
XO.

6.65. Prove that it is possible to place real numbers x1, . . . , xn all distinct from zero in
the vertices of a regular n-gon so that for any regular k-gon all vertices of which are vertices
of the initial n-gon the sum of the numbers at the vertices of the k-gon is equal to zero.

6.66. Point A lies inside regular 10-gon X1 . . . X10 and point B outside it. Let a =−−→
AX1 + . . .

−−−→
AX10 and b =

−−→
BX1 + . . .

−−−→
BX10. Is it possible that |a| > |b|?

6.67. A regular polygon A1 . . . An is inscribed in the circle of radius R centered at O;
let X be an arbitrary point. Prove that

A1X
2 + · · · + AnX

2 = n(R2 + d2), where d = OX.

6.68. Find the sum of squares of the lengths of all the sides and diagonals of a regular
n-gon inscribed in a circle of radius R.

6.69. Prove that the sum of distances from an arbitrary X to the vertices of a regular
n-gon is the least if X is the center of the n-gon.

6.70. A regular n-gon A1 . . . An is inscribed in the circle of radius R centered at O; let

ei =
−−→
OAi and x =

−−→
OX be an arbitrary vector. Prove that

∑

(ei,x)2 =
nR2 · OX2

2
.

6.71. Find the sum of the squared distances from the vertices of a regular n-gon inscribed
in a circle of radius R to an arbitrary line that passes through the center of the n-gon.

6.72. The distance from point X to the center of a regular n-gon is equal to d and r is
the radius of the inscribed circle of the n-gon. Prove that the sum of squared distances from

point X to the lines that contain the sides of the n-gon is equal to n
(

r2 + d2

2

)

.

6.73. Prove that the sum of squared lengths of the projections of the sides of a regular
n-gon to any line is equal to 1

2
na2, where a is the length of the side of the n-gon.

6.74. A regular n-gon A1 . . . An is inscribed in a circle of radius R; let X be a point on
this circle. Prove that

XA4
1 + · · · + XA4

n = 6nR4.

6.75. a) A regular n-gon A1 . . . An is inscribed in the circle of radius 1 centered at 0, let

ei =
−−→
OAi and u an arbitrary vector. Prove that

∑

(u, ei)ei = 1
2
nu.

b) From an arbitrary point X perpendiculars XA1, . . . , XAn are dropped to the sides

(or their extensions) of a regular n-gon. Prove that
∑−−→

XAi = 1
2
n
−−→
XO, where O is the center

of the n-gon.
6.76. Prove that if the number n is not a power of a prime, then there exists a convex

n-gon with sides of length 1, 2, . . . , n, all the angles of which are equal.
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See also Problems 2.9, 4.59, 4.62, 6.36, 6.41, 6.45–6.47, 9.83, 9.84, 11.46, 11.48, 17.31,
18.30, 19.47, 23.8, 24.2.

§7. The inscribed and circumscribed polygons

6.77. On the sides of a triangle three squares are constructed outwards. What should be
the values of the angles of the triangle in order for the six vertices of these squares distinct
from the vertices of the triangle belong to one circle?

6.78. A 2n-gon A1 . . . A2n is inscribed in a circle. Let p1, . . . , p2n be the distances
from an arbitrary point M on the circle to sides A1A2, A2A3, . . . , A2nA1. Prove that
p1p3 . . . p2n−1 = p2p4 . . . p2n.

6.79. An inscribed polygon is divided by nonintersecting diagonals into triangles. Prove
that the sum of radii of all the circles inscribed in these triangles does not depend on the
partition.

6.80. Two n-gons are inscribed in one circle and the collections of the length of their
sides are equal but the corresponding sides are not necessarily equal. Prove that the areas
of these polygons are equal.

6.81. Positive numbers a1, . . . , an are such that 2ai < a1 + · · · + an for all i = 1, . . . ,
n. Prove that there exists an inscribed n-gon the lengths of whose sides are equal to a1, . . . ,
an.

* * *

6.82. A point inside a circumscribed n-gon is connected by segments with all the vertices
and tangent points. The triangles formed in this way are alternately painted red and blue.
Prove that the product of areas of red triangles is equal to the product of areas of blue
triangles.

6.83. In a 2n-gon (n is odd) A1 . . . A2n circumscribed about a circle centered at O the
diagonals A1An+1, A2An+2, . . . , An−1A2n−1 pass through point O. Prove that the diagonals
AnA2n also passes through point O.

6.84. A circle of radius r is tangent to the sides of a polygon at points A1, . . . , An and
the length of the side on which point Ai lies is equal to ai. The distance from point X to
the center of the circle is equal to d. Prove that

a1XA2
1 + · · · + anXA2

n = P (r2 + d2),

where P is the perimeter of the polygon.
6.85. An n-gon A1 . . . An is circumscribed about a circle; l is an arbitrary tangent to

the circle that does not pass through any vertex of the n-gon. Let ai be the distance from
vertex Ai to line l and bi the distance from the tangent point of side AiAi+1 with the circle
to line l. Prove that:

a) the value b1...bn

a1...an
does not depend on the choice of line l;

b) the value a1a3...a2m−1

a2a4...a2m
does not depend on the choice of line l if n = 2m.

6.86. Certain sides of a convex polygon are red; the other ones are blue. The sum of the
lengths of the red sides is smaller than the semiperimeter and there is no pair of neighbouring
blue sides. Prove that it is impossible to inscribe this polygon in a circle.

See also Problems 2.12, 4.39, 19.6.

§8. Arbitrary convex polygons

6.87. What is the greatest number of acute angles that a convex polygon can have?
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6.88. How many sides whose length is equal to the length of the longest diagonal can a
convex polygon have?

6.89. For which n there exists a convex n-gon one side of which is of length 1 and the
lengths of the diagonals are integers?

6.90. Can a convex non-regular pentagon have exactly four sides of equal length and
exactly four diagonals of equal lengths? Can the fifth side of such a pentagon have a common
point with the fifth diagonal?

6.91. Point O that lies inside a convex polygon forms, together with each two of its
vertices, an isosceles triangle. Prove that point O is equidistant from the vertices of this
polygon.

See also Problems 4.49, 4.50, 9.82, 9.85, 9.86, 11.35, 13.14, 14.26, 16.8, 17.33, 17.34, 19.9,
23.13, 23.15.

§9. Pascal’s theorem

6.92. Prove that the intersection points of the opposite sides (if these sides are not
parallel) of an inscribed hexagon lie on one line. (Pascal’s theorem.)

6.93. Point M lies on the circumscribed cirlce of triangle ABC; let R be an arbitrary
point. Lines AR, BR and CR intersect the circumscribed circle at points A1, B1 and C1,
respectively. Prove that the intersection points of lines MA1 and BC, MB1 and CA, MC1

and AB lie on one line and this line passes through point R.
6.94. In triangle ABC, heights AA1 and BB1 and bisectors AA2 and BB2 are drawn;

the inscribed circle is tangent to sides BC and AC at points A3 and B3, respectively. Prove
that lines A1B1, A2B2 and A3B3 either intersect at one point or are parallel.

6.95. Quadrilateral ABCD is inscribed in circle S; let X be an arbitrary point, M and
N be the other intersection points of lines XA and XD with circle S. Lines DC and AX,
AB and DX intersect at points E and F , respectively. Prove that the intersection point of
lines MN and EF lies on line BC.

6.96. Points A and A1 that lie inside a circle centered at O are symmetric through point
O. Rays AP and A1P1 are codirected, rays AQ and A1Q1 are also codirected. Prove that
the intersection point of lines P1Q and PQ1 lies on line AA1. (Points P , P1, Q and Q1 lie
on the circle.)

6.97. On a circle, five points are given. With the help of a ruler only construct a sixth
point on this circle.

6.98. Points A1, . . . , A6 lie on one circle and points K, L, M and N lie on lines A1A2,
A3A4, A1A6 and A4A5, respectively, so that KL ‖ A2A3, LM ‖ A3A6 and MN ‖ A6A5.
Prove that NK ‖ A5A2.

Problems for independent study

6.99. Prove that if ABCD is a rectangle and P is an arbitrary point, then AP 2 +CP 2 =
DP 2 + BP 2.

6.100. The diagonals of convex quadrilateral ABCD are perpendicular. On the sides
of the quadrilateral, squares centered at P , Q, R and S are constructed outwards. Prove
that segment PR passes through the intersection point of diagonals AC and BD so that
PR = 1

2
(AC + BD).

6.101. On the longest side AC of triangle ABC, points A1 and C1 are taken so that
AC1 = AB and CA1 = CB and on sides AB and BC points A2 and C2 are taken so that
AA1 = AA2 and CC1 = CC2. Prove that quadrilateral A1A2C2C1 is an inscribed one.
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6.102. A convex 7-gon is inscribed in a circle. Prove that if certain three of its angles
are equal to 120◦ each, then some two of its sides are equal.

6.103. In plane, there are given a regular n-gon A1 . . . An and point P . Prove that from
segments A1P , . . . , AnP a closed broken line can be constructed.

6.104. Quadrilateral ABCD is inscribed in circle S1 and circumscribed about circle S2;
let K, L, M and N be tangent points of its sides with circle S2. Prove that KM ⊥ LN .

6.105. Pentagon ABCDE the lengths of whose sides are integers and AB = CD = 1 is
circumscribed about a circle. Find the length of segment BK, where K is the tangent point
of side BC with the circle.

6.106. Prove that in a regular 2n-gon A1 . . . A2n the diagonals A1An+2, A2n−1A3 and
A2nA5 meet at one point.

6.107. Prove that in a regular 24-gon A1 . . . A24 diagonals A1A7, A3A11 and A5A21

intersect at a point that lies on diameter A4A16.

Solutions

6.1. Let O be the center of the inscribed circle and the intersection point of the diagonals
of quadrilateral ABCD. Then ∠ACB = ∠ACD and ∠BAC = ∠CAD. Hence, triangles
ABC and ADC are equal, since they have a common side AC. Therefore, AB = DA.
Similarly, AB = BC = CD = DA.

6.2. Clearly,

∠AOB = 180◦ − ∠BAO − ∠ABO = 180◦ − ∠A + ∠B

2

and ∠COD = 180◦ − ∠C+∠D
2

. Hence,

∠AOB + ∠COD = 360◦ − ∠A + ∠B + ∠C + ∠D

2
= 180◦.

6.3. Let us consider two circles tangent to the sides of the given quadrilateral and their
extensions. The lines that contain the sides of the quadrilateral are the common inner and
outer tangents to these circles. The line that connects the midpoints of the circles contains
a diagonal of the quadrilateral and besides it is an axis of symmetry of the quadrilateral.
Hence, the other diagonal is perpendicular to this line.

6.4. Let O be the center of the given circle, R its radius, a the length of chords singled
out by the circle on the sides of the quadrilateral. Then the distances from point O to the

sides of the quadrilateral are equal to
√

R2 − a2

4
, i.e., point O is equidistant from the sides

of the quadrilateral and is the center of the inscribed circle.
6.5. For a parallelogram the statement of the problem is obvious therefore, we can

assume that lines AB and CD intersect. Let O be the center of the inscribed circle of
quadrilateral ABCD; let M and N be the midpoints of diagonals AC and BD. Then

SANB + SCND = SAMB + SCMD = SAOB + SCOD =
SABCD

2
.

It remains to make use of the result of Problem 7.2.
6.6. Let the inscribed circle be tangent to sides DA, AB and BC at points M , H and

N , respectively. Then OH is a height of triangle AOB and the symmetries through lines AO
and BO sends point H into points M and N , respectively. Hence, by Problem 1.57 points
A1 and B1 lie on line MN . Similarly, points C1 and D1 lie on line MN .

6.7. Let r be the distance from the intersection point of bisectors of angles A and D to
the base AD, let r′ be the distance from the intersection point of bisectors of angles B and
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C to base BC. Then AD = r(cot α + cot β) and BC = r′(tan α + tan β). Hence, r = r′ if
and only if

BC

AD
=

tan α + tan β

cot α cot β
= tan α · tan β.

6.8. Let ∠A = 2α, ∠C = 2β and ∠BMA = 2ϕ. By Problem 6.7, PK
RL

= tan α
tan ϕ

and
LS
MC

= cot ϕ tan β. Since PQ
RS

= PK
RL

and RS
AC

= LS
MC

, it follows that

PQ

AC
=

PK

RL

LS

MC
= tan α tan β.

Hence, trapezoid APQC is a circumscribed one.
6.9. First, let us prove that if quadrilateral ABCD is a circumscribed one, then all the

conditions take place. Let K, L, M and N be the tangent points of the inscribed circle with
sides AB, BC, CD and DA. Then

AB + CD = AK + BK + CM + DM = AN + BL + CL + DN = BC + AD,
AP + CQ = AK + PK + QL − CL = AN + PM + QN − CM = AQ + CP,

BP + BQ = AP − AB + BC + CQ = (AP + CQ) + (BC − AB) =
AQ + CP + CD − AD = DP + DQ.

Now, let us prove, for instance, that if BP +BQ = DP +DQ, then quadrilateral ABCD
is a circumscribed one. For this let us consider the circle tangent to side BC and rays BA
and CD. Assume that line AD is not tangent to this circle; let us shift this line in order for
it to touch the circle (Fig. 65).

Figure 65 (Sol. 6.9)

Let S be a point on line AQ such that Q′S ‖ DD′. Since BP + BQ = DP + DQ and
BP + BQ′ = D′P + D′Q′, it follows that QS + SQ′ = QQ′. Contradiction.

In the other two cases the proof is similar.
6.10. Let rays AB and DC intersect at point P , let rays BC and AD intersect at point

Q; let the given lines passing through points P and Q intersect at point O. By Problem 6.9
we have BP + BQ = OP + OQ and OP + OQ = DP + DQ. Hence, BP + BQ = DP + DQ
and, therefore, quadrilateral ABCD is a circumscribed one.

6.11. Let sides AB, BC, CD and DA of quadrilateral ABCD be tangent of the inscribed
circle at points E, F , G and H, respectively. First, let us show that lines FH,EG and AC
intersect at one point. Denote the points at which lines FH and EG intersect line AC by
M and M ′, respectively. Since ∠AMH = ∠BFM as angles between the tangents and chord
HF , it follows that sin ∠AHM = sin ∠CFM . Hence,

AM · MH

FM · MC
=

SAMH

SFMC

=
AH · MH

FC · FM
,
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i.e., AM
MC

= AH
FC

. Similarly,

AM ′

M ′C
=

AE

CG
=

AH

FC
=

AM

MC
;

hence, M = M ′, i.e., lines FH, EG and AC intersect at one point.
Similar arguments show that lines FH, EG and BD intersect at one point and therefore,

lines AC, BD, FH and EG intersect at one point.
6.12. Segments CHd and DHc are parallel because they are perpendicular to line BC.

Moreover, since ∠BCA = ∠BDA = ϕ, the lengths of these segments are equal to AB| cot ϕ|,
cf. Problem 5.45 b).

6.13. Let Oa, Ob, Oc and Od be the centers of the inscribed circles of triangles BCD,
ACD, ABD and ABC, respectively. Since ∠ADB = ∠ACB, it follows that

∠AOcB = 90◦ +
∠ADB

2
= 90◦ +

∠ACB

2
= ∠AOdB,

cf. Problem 5.3. Therefore, quadrilateral ABOdOc is an inscribed one, i.e.,

∠OcOdB = 180◦ − ∠OcAB = 180◦ − ∠A

2
.

Similarly, ∠OaOdB = 180◦ − ∠C
2

. Since ∠A + ∠C = 180◦, it follows that ∠OcOdB +
∠OaObB = 270◦ and, therefore, ∠OaOdOc = 90◦. We similarly prove that the remaining
angles of quadrilateral OaObOcOd are equal to 90◦.

6.14. a) Let rays AB and DC intersect at point P and rays BC and AD intersect at
point Q. Let us prove that point M at which the circumscribed circles of triangles CBP
and CDQ intersect lies on segment PQ. Indeed,

∠CMP + ∠CMQ = ∠ABC + ∠ADC = 180◦.

Hence, PM + QM = PQ and since

PM · PQ = PD · PC = p2 − R2 and QM · PQ = QD · QA = q2 − R2,

it follows that PQ2 = PM ·PQ+QM ·PQ = p2 + q2−2R2. Let N be the intersection point
of the circumscribed circles of triangles ACP and ABS. Let us prove that point S lies on
segment PN . Indeed,

∠ANP = ∠ACP = 180◦ − ∠ACD = 180◦ − ∠ABD = ∠ANS.

Hence, PN − SN = PS and since

PN · PS = PA · PB = p2 − R2 and SN · PS = SA · SC = R2 − s2,

it follows that

PS2 = PN · PS − SN · PS = p2 + s2 − 2R2.

Similarly, QS2 = q2 + s2 − 2R2.
b) By heading a)

PQ2 − PS2 = q2 − s2 = OQ2 − OS2.

Hence, OP ⊥ QS, cf. Problem 7.6. We similarly prove that OQ ⊥ PS and OS ⊥ PQ.
6.15. Let the inscribed circles of triangles ABC and ACD be tangent to diagonal AC

at points M and N , respectively. Then

AM =
AC + AB − BC

2
andquadAN =

AC + AD − CD

2
,

cf. Problem 3.2. Points M and N coincide if and only if AM = AN , i.e., AB + CD =
BC + AD. Thus, if points M and N coincide, then quadrilateral ABCD is a circumscribed
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one and similar arguments show that the tangent points of the inscribed circles of triangles
ABD and BCD with the diagonal BD coincide.

Let the inscribed circle of triangle ABC be tangent to sides AB, BC and CA at points P ,
Q and M , respectively and the inscribed circle of triangle ACD be tangent to sides AC, CD
and DA at points M , R and S, respectively. Since AP = AM = AS and CQ = CM = CR,
it follows that triangles APS, BPQ, CQR and DRS are isosceles ones; let α, β, γ and δ be
the angles at the bases of these isosceles triangles. The sum of the angles of these triangles
is equal to

2(α + β + γ + δ) + ∠A + ∠B + ∠C + ∠D;

hence, α + β + γ + δ = 180◦. Therefore,

∠SPQ + ∠SRQ = 360◦ − (α + β + γ + δ) = 180◦,

i.e., quadrilateral PQRS is an inscribed one.
6.16. Let O be the intersection point of diagonals AC and BD; let A1, B1, C1 and D1

be the projections of O to sides AB, BC, CD and DA, respectively. Points A1 and D1 lie
on the circle with diameter AO, hence, ∠OA1D1 = ∠OAD1. Similarly, ∠OA1B1 = ∠OBB1.
Since ∠CAD = ∠CBD, we have: ∠OA1D1 = ∠OA1B1.

We similarly prove that B1O, C1O and D1O are the bisectors of the angles of quadrilateral
A1B1C1D1, i.e., O is the center of its inscribed circle.

Figure 66 (Sol. 6.17)

6.17. Let us make use of the notations on Fig. 66. The condition that quadrilateral
A1B1C1D1 is an inscribed one is equivalent to the fact that (α+β)+(γ+δ) = 180◦ and the the
fact that AC and BD are perpendicular is equivalent to the fact that (α1 + δ1)+ (β1 +γ1) =
180◦. It is also clear that α = α1, β = β1, γ = γ1 and δ = δ1.

6.18. By the law of cosines

AD2 = AC2 + CD2 − 2AC · CD cos ACD, AC2 = AB2 + BC2 − 2AB · BC cos B.

Since the length of the projection of segment AC to line l perpendicular to CD is equal to
the sum of the lengths of projections of segments AB and BC to line l,

AC cos ACD = AB cos ϕ + BC cos C.

6.19. Let ∠AOD = 2α; then the distances from point O to the projections of the
midpoints of diagonals AC and BD to the bisector of angle ∠AOD are equal to OA+OC

2
cos α

and OB+OD
2

cos α, respectively. Since

OA + OC = AB + OB + OC = CD + OB + OC = OB + OD,

these projections coincide.



150 CHAPTER 6. POLYGONS

6.20. Let us complement triangles ABM and DCM to parallelograms ABMM1 and
DCMM2. Since AM1 : DM2 = BM : MC = AN : DN , it follows that △ANM1 ∼
△DNM2. Hence, point N lies on segment M1M2 and

MM1 : MM2 = AB : CD = AN : ND = M1N : M2N,

i.e., MN is the bisector of angle M1MM2.
6.21. Let a, b, c and d be (the lengths of) the bisectors of the angles at vertices A, B,

C and D. We have to verify that ∠(a, b) + ∠(c, d) = 0◦. Clearly,

∠(a, b) = ∠(a,AB) + ∠(AB, b) and ∠(c, d) = ∠(c, CD) + ∠(CD, d).

Since quadrilateral ABCD is a convex one and

∠(a,AB) =
∠(AD,AB)

2
, ∠(AB, b) =

∠(AB,BC)

2
,

∠(c, CD) =
∠(CB,CD)

2
, ∠(CD, d) =

∠(CD,DA)

2
,

it follows that

∠(a, b) + ∠(c, d) =
∠(AD,AB) + ∠(AB,BC) + ∠(CB,CD) + ∠(CD,DA)

2
=

360◦

2
= 0◦

(see Background to Chapter 2).

6.22. Let, for definiteness, AB > A1B1. The parallel translation by vector
−−→
CB sends

triangle SD1C1 to S ′D′
1C

′
1 and segment CD to BA. Since QA1 : QA = A1B1 : AB = S ′D′

1 :
S ′A, we see that QS ′ ‖ A1D

′
1. Hence, QS ‖ AD. Similarly, PR ‖ AB.

6.23. Suppose that lines AD and BC are not parallel. Let M2, K, N2 be the midpoints
of sides AB, BC, CD, respectively. If MN ‖ BC, then BC ‖ AD, because AM = MC and
BN = ND. Therefore, let us assume that lines MN and BC are not parallel, i.e., M1 6= M2

and N1 6= N2. Clearly,
−−−→
M2M = 1

2

−−→
BC =

−−→
NN2 and

−−−→
M1M =

−−→
NN1. Hence, M1M2 ‖ N1N2.

Therefore, KM ‖ AB ‖ CD ‖ KN , i.e., M = N . Contradiction.
6.24. By a similarity transformation we can identify one pair of the corresponding sides

of quadrilaterals, therefore, it suffices to consider quadrilaterals ABCD and ABC1D1 whose
points C1 and D1 lie on rays BC and AD and such that CD ‖ C1D1. Denote the intersection
points of diagonals of quadrilaterals ABCD and ABC1D1 by O and O1, respectively.

Suppose that points C and D lie closer to points B and A, then points C1 and D1,
respectively. Let us prove then that ∠AOB > ∠AO1B. Indeed, ∠C1BA > ∠CAB and
∠D1BA > ∠DBA, hence,

∠AO1B = 180◦ − ∠C1AB − ∠D1BA < 180◦ − ∠CAB − ∠DBA = ∠AOB.

We have obtained a contradiction and, therefore, C1 = C, D1 = D.
6.25. Any quadrilateral is determined up to similarity by the directions of its sides and

diagonals. Therefore, it suffices to construct one example of a quadrilateral A1B1C1D1 with
the required directions of sides and diagonals. Let O be the intersection point of diagonals
AC and BD. On ray OA, take an arbitrary point D1 and draw D1A1 ‖ BC, A1B1 ‖ CD
and B1C1 ‖ DA (Fig. 67).
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Figure 67 (Sol. 6.25)

Since

OC1 : OB1 = OD : OA, OB1 : OA1 = OC : OD and OA1 : OD1 = OB : OC,

it follows that OC1 : OD1 = OB : OA, consequently, C1D1 ‖ AB. The obtained plot shows
that ∠A + ∠C1 = 180◦.

6.26. Let O be the intersection point of the diagonals of quadrilateral ABCD. Without
loss of generality we may assume that α = ∠AOB < 90◦. Let us drop perpendiculars AA1,
BB1, CC1, DD1 to the diagonals of quadrilateral ABCD. Since

OA1 = OA cos α, OB1 = OB cos α, OC1 = OC cos α, OD1 = OD cos α,

it follows that the symmetry through the bisector of angle AOB sends quadrilateral ABCD

into a quadrilateral homothetic to quadrilateral A1B1C1D1 with coefficient
−−→
BC1cos α.

6.27. Let the diagonals of quadrilateral ABCD intersect at point O; let Ha and Hb

be the orthocentres of triangles AOB and COD; let Ka and Kb be the midpoints of sides
BC and AD; let P be the midpoint of diagonal AC. The intersection point of medians of
triangles AOD and BOC divide segments KaO and KbO in the ratio of 1 : 2 and, therefore,
we have to prove that HaHb ⊥ KaKb.

Since OHa = AB| cot ϕ| and OHb = CD| cot ϕ|, where ϕ = ∠AOB, cf. Problem 5.45 b),
then OHa : OHb = PKa : PKb. The correspondiong legs of angles ∠HaOHb and ∠KaPKb

are perpendicular; moreover, vectors
−−→
OHa and

−−→
OHb are directed towards lines AB and CD

for ϕ < 90◦ and away from these lines for ϕ > 90◦. Hence, ∠HaOHb = ∠KaPKb and
△HaOHb ∼ △KaPKb. It follows that HaHb ⊥ KaKb.

6.28. Let S = SAOD, x = AO, y = DO, a = AB, b = BC, c = CD, d = DA and k the
similarity coefficient of triangles BOC and AOD. Then

2

(

1

r1

+
1

r3

)

=
d + x + y

S
+

kd + kx + ky

k2S
,

2

(

1

r2

+
1

r4

)

=
a + x + ky

kS
+

c + kx + y

kS

because SBOC = k2S and SAOB = SCOD = kS. Since

x + y

S
+

x + y

k2S
=

x + ky

kS
+

kx + y

kS
,

it remains to notice that a + c = b + d = kd + d.
6.29. It is easy to verify that

AB = r1

(

cot
A

2
+ cot

B

2

)

and CD = r3

(

cot
C

2
+ cot

D

2

)

.

Hence,
AB

r1

+
CD

r3

= cot
A

2
+ cot

B

2
+ cot

C

2
+ cot

D

2
=

BC

r2

+
AD

r4

.
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6.30. Let us complete triangles ABD and DBC to parallelograms ABDA1 and DBCC1.
The segments that connect point D with the vertices of parallelogram ACC1A1 divide it into
four triangles equal to triangles DAB, CDA, BCD and ABC and, therefore, the radii of
the inscribed circles of these triangles are equal.

Let us prove that point D coincides with the intersection point O of the diagonals of
the parallelogram. If D 6= 0, then we may assume that point D lies inside triangle AOC.
Then rADC < rAOC = rA1OC1 < rA1DC1 = rABC , cf. Problem 10.86. We have obtained a
contradiction, hence, D = O.

Since p =
−−→
BCSr and the areas and radii of the inscribed circles of triangles into which the

diagonals divide the parallelogram ACC1A1 are equal, the triangles’ perimeters are equal.
Hence, ACC1A1 is a rhombus and ABCD is a rectangular.

6.31. Points C1 and D1 lie on the midperpendicular to segment AB, hence, AB ⊥ C1D1.
Similarly, C1D1 ⊥ A2B2 and, therefore, AB ‖ A2B2. We similarly prove that the remaining
corresponding sides and the diagonals of quadrilaterals ABCD and A2B2C2D2 are parallel.
Therefore, these quadrilaterals are similar.

Let M be the midpoint of segment AC. Then B1M = |AM cot D| and D1M = |AM cot B|,
where B1D1 = | cot B + cot D| · 1

2
AC. Let us rotate quadrilateral A1B1C1D1 by 90◦. Then

making use of the result of Problem 6.25 we see that this quadrilateral is a convex one and
cot A = − cot C1, etc. Therefore,

A2C2 = | cot A + cot C| · 1

2
B1D1 =

1

4
|(cot A + cot C)(cot B + cot D)| · AC.

6.32. Let M and N be the midpoints of sides AB and CD, respectively. Let us drop
from point D perpendicular DP to line MN and from point M perpendicular MQ to line
CD. Then Q is the tangent point of line CD and a circle with diameter AB. Right triangles
PDN and OMN are similar, hence,

DP =
ND · MQ

MN
=

ND · MA

MN
.

Similarly, the distance from point A to line MN is equal to
−−→
BCND · MAMN . Therefore,

AD ‖ MN . Similarly, BC ‖ MN .
6.33. It suffices to verify that the orthocentres of any three of the four given triangles

lie on one line. Let a certain line intersect lines B1C1, C1A1 and A1B1 at points A, B and
C, respectively; let A2, B2 and C2 be the orthocentres of triangles A1BC, AB1C and ABC1,
respectively. Lines AB2 and A2B are perpendicular to line A1B1 and, therefore, they are
parallel. Similarly, BC2 ‖ B2C and CA2 ‖ C2A. Points A, B and C lie on one line and,
therefore, points A2, B2 and C2 also lie on one line, cf. Problem 1.12 b).

6.34. On diagonal BD, take point M so that ∠MCD = ∠BCA. Then △ABC ∼
△DMC, because angles ∠BAC and ∠BDC subtend the same arc. Hence, AB · CD =
AC ·MD. Since ∠MCD = ∠BCA, then ∠BCM = ∠ACD and △BCM ∼ △ACD because
angles ∠CBD and ∠CAD subtend one arc. Hence, BC · AD = AC · BM . It follows that

AB · CD + AD · BC = AC · MD + AC · BM = AC · BD.

6.35. Let S be the area of quadrilateral ABCD, let R be the radius of its circumscribed
circle. Then

S = SABC + SADC =
AC(AB · BC + AD · DC)

4R
,

cf. Problem 12.1. Similarly,

S =
BD(AB · AD + BC · CD)

4R
.
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By equating these equations for S we get the desired statement.
6.36. Let regular hexagon A1 . . . A7 be inscribed in a circle. By applying Ptolemey’s

theorem to qudrilateral A1A3A4A5 we get

A1A3 · A5A4 + A3A4 · A1A5 = A1A4 · A3A5,

i.e.,
sin 2α sin α + sin α sin 3α = sin 3α sin 2α.

6.37. Let A1, B1 and C1 be the midpoints of sides BC, CA and AB, respectively. By
Ptolemy’s theorem

AC1 · OB1 + AB1 · OC1 = AO · B1C1,

where O is the center of the circumscribed circle. Hence, cdb+bdc = aR. Similarly, adc+cda =
bR and adb + bda = cR. Moreover, ada + bdb + cdc = 2S = (a + b + c)r. By adding all these
equalities and dividing by a + b + c we get the desired statement.

6.38. By Ptolemy’s theorem

AB · CD + AC · BD = AD · BC.

Taking into account that CD = BD ≥ 1
2
BC we get the desired statement.

6.39. By applying Ptolemy’s theorem to quadrilateral ABCP and dividing by the lengths
of the square’s side we get the desired statement.

6.40. By applying Ptolemy’s theorem to quadrilateral APQR we get

AP · RQ + AR · QP = AQ · PR.

Since ∠ACB = ∠RAQ = ∠RPQ and ∠RQP = 180◦ − ∠PAR = ∠ABC, it follows that
△RQP ∼ △ABC and, therefore, RQ : QP : PR = AB : BC : CA. It remains to notice
that BC = AD.

6.41. a) Let us express Ptolemy’s theorem for all quadrilaterals with vertices at point
A and three consecutive vertices of the given polygon; then let us group in the obtained
equalities the factors in which di with even indices enter in the right-hand side. By adding
these equalities we get

(2a + b)(d1 + · · · + d2n+1) = (2a + b)(d2 + · · · + d2n),

where a is the side of the given polygon and b is its shortest diagonal.

b) Let R be the radius of circle S. Then li = di

√

R±r
R

, cf. Problem 3.20. It remains to

make use of the result of heading a).

Figure 68 (Sol. 6.42)

6.42. Let both tangent be exterior ones and x ≤ y. The line that passes through the
center O of the circle of radius x parallel to the segment that connects the tangent points
intersects the circle of radius y−x (centered in the center of the circle of radius y) at points
A and B (Fig. 68).
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Then OA = a(R+x)
R

and

OB = OA +
a(y − x)

R
=

a(R + y)

R
.

The square of the length to be found of the common outer tangent is equal to

OA · OB =
( a

R

)2

(R + x)(R + y).

Similar arguments show that if both tangent are inner ones, then the square of the lengths

of the outer tangent is equal to
(

a
R

)2
(R − x)(R − y) and if the circle of radius x is tangent

from the outside and the circle of radius y from the inside, then the square of the length of

the inner tangent is equal to
(

a
R

)2
(R − y)(R + x).

Remark. In the case of an inner tangency of the circles we assume that R > x and
R > y.

6.43. Let R be the radius of the circumscribed circle of quadrilateral ABCD; let ra, rb,
rc and rd be the radii of circles α, β, γ and δ, respectively. Further, let a =

√
R ± ra, where

the plus sign is taken if the tangent is an outer one and the minus sign if it is an inner one;
numbers b, c and d are similarly defined. Then tαβ = ab·AB

R
, cf. Problem 6.42, etc. Therefore,

by multiplying the equality

AB · CD + BC · DA = AC · BD

by abcd
R

we get the desired statement.
6.44. Since ∠EBD = ∠ABE + ∠CBD, it is possible to take a point P on side ED

so that ∠EBP = ∠ABE = ∠AEB, i.e., BP ‖ AE. Then ∠PBD = ∠EBD − ∠EBP =
∠CBD = ∠BDC, i.e., BP ‖ CD. Therefore, AE ‖ CD and since AE = CD, CDEA is a
parallelogram. Hence, AC = ED, i.e., triangle ABC is an equilateral one and ∠ABC = 60◦.

6.45. a) Let O be the center of the circumscribed circle of triangle CKE. It suffices to
verify that ∠COK = 2∠KCB. It is easy to calculate both these angles:

∠COK = 180◦ − 2∠OKC = 180◦ − ∠EKC = 180◦ − ∠EDC = 72◦

and ∠KCB = 180◦−∠ABC
2

= 36◦.
b) Since BC is a tangent to the circumscribed circle of triangle CKE, then BE ·BK =

BC2, i.e., d(d − a) = a2.
6.46. Let the perpendiculars erected to line AB at points A and B intersect sides DE

and CD at points P and Q, respectively. Any point of segment CQ is a vertex of a rectangle
inscribed in pentagon ABCDE (the respective sides of this pentagon are parallel to AB and
AP ); as this point moves from Q to C the ratio of the lengths of the sides of the rectangles
varies from AP

AB
to 0. Since angle ∠AEP is an obtuse one, AP > AE = AB. Therefore, for

a certain point of segment QC the ratio of the lengths of the sides of the rectangle is equal
to 1.

6.47. Let points A1, . . . , E1 be symmetric to points A, . . . , E through the center of
circle S; let P , Q and R be the intersection points of lines BC1 and AB1, AE1 and BA1,
BA1 and CB1, see Fig. 69.

Then PQ = AB = a and QR = b. Since PQ ‖ AB and ∠ABA1 = 90◦, it follows
that PR2 = PQ2 + QR2 = a2 + b2. Line PR passes through the center of circle S and
∠AB1C = 4 · 18◦ = 72◦, hence, PR is a side of a regular pentagon circumscribed about the
circle with center B1 whose radius B1O is equal to the radius of circle S.
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Figure 69 (Sol. 6.47)

Figure 70 (Sol. 6.48)

6.48. Through points A, C and E draw lines l1, l2 and l3 parallel to lines BC, DE and
FA, respectively. Denote the intersection points of lines l1 and l2, l2 and l3, l3 and l1 by P ,
Q, R, see Fig. 70. Then

SACE =
SABCDEF − SPQR

2
+ SPQR =

SABCDEF + SPQR

2
≥ SABCDEF

2
.

Similarly, SBDF = 1
2
(SABCDEF + SP ′Q′R′). Clearly,

PQ = |AB − DE|, QR = |CD − AF |, PR = |EF − BC|,
hence, triangles PQR and P ′Q′R′ are equal. Therefore, SACE = SBDF .

6.49. Let us construct triangle PQR as in the preceding problem. This triangle is an
equilateral one and

PQ = |AB − DE|, QR = |CD − AF |, RP = |EF − BC|.
Hence, |AB − DE| = |CD − AF | = |EF − BC|.

6.50. The sum of the angles at vertices A, C and E is equal to 360◦, hence, from isosceles
triangles ABF , CBD and EDF we can construct a triangle by juxtaposing AB to CB, ED
to CD and EF to AF . The sides of the obtained triangle are equal to the respective sides
of triangle BDF . Therefore, the symmetry through lines FB, BD and DF sends points A,
C and E, respectively, into the center O of the circumscribed circle of triangle BDF , and,
therefore, AB ‖ OF ‖ DE.

6.51. Let us suppose that the diagonals of the hexagon form triangle PQR. Denote the
vertices of the hexagon as follows: vertex A lies on ray QP , vertex B on RP , vertex C on
RQ, etc. Since lines AD and BE divide the area of the hexagon in halves, then

SAPEF + SPED = SPDCB + SABP and SAPEF + SABP = SPDCB + SPED.
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Hence, SABP = SPED, i.e.,

AP · BP = EP · DP = (ER + RP )(DQ + QP ) > ER · DQ.

Similarly, CQ · DQ > AP · FR and FR · ER > BP · CQ. By multiplying these inequalities
we get

AP · BP · CQ · DQ · FR · ER > ER · DQ · AP · FR · BP · CQ

which is impossible. Hence, the diagonals of the hexagon intersect at one point.

Figure 71 (Sol. 6.52)

6.52. Denote the midpoints of the sides of convex hexagon ABCDEF as plotted on Fig.
71. Let O be the intersection point of segments KM and LN . Let us denote the areas of
triangles into which the segments that connect point O with the vertices and the midpoints
of the sides divide the hexagon as indicated on the same figure. It is easy to verify that
SKONF = SLOMC , i.e., a + f = c + d. Therefore, the broken line POQ divides the hexagon
into two parts of equal area; hence, segment PQ passes through point O.

6.53. a) Let O be the center of the circumscribed circle. Since

∠AkOAk+2 = 360◦ − 2∠AkAk+1Ak+2 = ϕ

is a constant, the rotation through an angle of ϕ with center O sends point Ak into Ak+2.
For n odd this implies that all the sides of polygon A1 . . . An are equal.

b) Let a be the length of the side of the given polygon. If one of its sides is divided
by the tangent point with the inscribed circle into segments of length x and a − x, then its
neighbouring sides are also divided into segments of length x and a − x (the neighbouring
segments of neighbouring sides are equal), etc. For n odd this implies that all the sides
of polygon A1 . . . An are divided by the tangent points with the inscribed circle in halves;
therefore, all the angles of the polygon are equal.

6.54. The sides of polygon A1 . . . An are parallel to respective sides of a regular n-gon.
On rays OA1, . . . , OAn mark equal segments OB1, . . . , OBn. Then polygon B1 . . . Bn is a
regular one and the sides of polygon A1 . . . An form equal angles with the respective sides of
polygon B1 . . . Bn. Therefore,

OA1 : OA2 = OA2 : OA3 = · · · = OAn : OA1 = k,

i.e.,
OA1 = kOA2 = k2OA3 = · · · = knOA1;

thus, k = 1.
6.55. Denote the vertices of the pentagon as indicated on Fig. 72. Notice that if in a

triangle two heights are equal, then the sides on which these heights are dropped are also
equal.
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Figure 72 (Sol. 6.55)

From consideration of triangles EAB, ABC and BCD we deduce that EA = AB,
AB = BC and BC = CD. Therefore, trapezoids EABC and ABCD are isosceles ones,
i.e., ∠A = ∠B = ∠C. By considering triangles ABD and BCE we get AD = BD and
BE = CE. Since triangles EAB, ABC, BCD are equal, it follows that BE = AC = BD.
Hence, AD = BE and BD = CE, i.e., trapezoids ABDE and CDEB are isosceles ones.
Therefore, ED = AB = BC = CD = AE and ∠E = ∠A = ∠B = ∠C = ∠D, i.e., ABCDE
is a regular pentagon.

6.56. Triangles BAM and BCN are isosceles ones with angle 15◦ at the base, cf. Problem
2.26, and, therefore, triangle BMN is an equilateral one. Let O be the centre of the square,
P and Q the midpoints of segments MN and BK (Fig. 73). Since OQ is the midline of
triangle MBK, it follows that OQ = 1

2
BM = MP = OP and ∠QON = ∠MBA = 15◦.

Therefore, ∠POQ = ∠PON − ∠QON = 30◦.
The remaining part of the proof is carried out similarly.

Figure 73 (Sol. 6.56)

6.57. Let us consider a regular 12-gon A1 . . . A12 inscribed in a circle of radius R. Clearly,
A1A7 = 2R, A1A3 = A1A11 = R. Hence, A1A7 = A1A3 + A1A11.

6.58. For k = 3 the solution of the problem is clear from Fig. 74. Indeed, A3A4 = OQ,
KL = QP and MN = PA14 and, therefore,

A3A4 + KL + MN = OQ + QP + PA14 = OA14 = R.

Proof is carried out in a similar way for any k.
6.59. In the proof if suffices to apply the result of Problems 5.78 and 5.70 b) to triangle

AaAcAe and lines AaAd, AcAf and AeAb. Solvling heading b) we have to notice additionally
that

sin 20◦ sin 70◦ = sin 20◦ cos 20◦ =
sin 40◦

2
= sin 30◦ sin 40◦

and in the solution of heading c) that sin 10◦ sin 80◦ = sin 30◦ sin 20◦.
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Figure 74 (Sol. 6.58)

6.60. As in the preceding problem we have to verify the equality

sin 2α sin 2α sin 8α = sin α sin 3α sin 14α, where α =
180◦

30
= 6◦.

Clearly, sin 14α = cos α, hence, 2 sin α sin 3α sin 14α = sin 2α sin 3α. It remains to verify
that

sin 3α = 2 sin 2α sin 8α = cos 6α − cos 10α = 1 − 2 sin2 3α − 1

2
,

i.e., 4 sin2 18◦ + 2 sin 18◦ = 1, cf. Problem 5.46.
6.61. First, let n = 2m. The diagonals and sides of a regular 2m-gon have m distinct

lengths. Therefore, the marked points lie on m− 1 concentric circles (having n points each)
or in the common center of these circles. Since distinct circles have not more than two
common points, the circle that does not belong to this family of concentric circles contains
not more than 1 + 2(m − 1) = 2m − 1 = n − 1 of marked points.

Now, let n = 2m + 1. There are m distinct lengths among the lengths of the diagonals
and sides of a regular (2m + 1)-gon. Hence, the marked points lie on m concentric circles (n
points on each). A circle that does not belong to this family of concentric circles contains
not more than 2m = n − 1 marked points.

In either case the greatest number of marked points that lie on one circle is equal to n.
6.62. Denote the center of the polygon by O and the vertices of the polygon by

A1, . . . , An. Suppose that there are no equal polygons among the polygons of the same
colour, i.e., they have m = m1 < m2 < m3 < · · · < mk sides, respectively. Let us consider a
transformation f defined on the set of vertices of the n-gon as the one that sends vertex Ak

to vertex Amk : f(Ak) = Amk (we assume that Ap+qn = Ap). This transformation sends the

vertices of a regular m-gon into one point, B, hence, the sum of vectors
−−−−→
Of(Ai), where Ai

are the vertices of an m-gon, is equal to m
−−→
OB 6= −→

0 .
Since ∠AmiOAmj = m∠AiOAj, the vertices of any regular polygon with the number of

sides greater than m pass under the considered transformation into the vertices of a regular

polygon. Therefore, the sum of vectors
−−−−→
Of(Ai) over all vertices of an n-gon and similar

sums over the vertices of m2-, m3-, . . . ,mk-gons are equal to zero. We have obtained a

contradiction with the fact that the sum of vectors
−−−−→
Of(Ai) over the vertices of an m-gon is

not equal to zero.
Therefore, among the polygons of one color there are two equal ones.
6.63. Let a regular (n − 1)-gon B1 . . . Bn−1 be inscribed into a regular n-gon A1 . . . An.

We may assume that A1 and B1 are the least distant from each other vertices of these
polygons and points B2, B3, B4 and B5 lie on sides A2A3, A3A4, A4A5 and A5A6. Let
αi = ∠Ai+1BiBi+1 and βi = ∠BiBi+1Ai+1, where i = 1, 2, 3, 4. By the sine theorem
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A2B2 : B1B2 = sin α1 : sin ϕ and B2A3 : B2B3 = sin β2 : sin ϕ, where ϕ is the angle at a
vertex of a regular n-gon. Therefore, sin α1 + sin β2 = an sin ϕ

an−1
, where an and an−1 are the

(lengths of the) sides of the given polygons.
Similar arguments show that

sin α1 + sin β2 = sin α2 + sin β3 = sin α3 + sin β4.

Now, observe that

sin αi + sin βi+1 = 2 sin
αi + βi+1

2
cos

αi − βi+1

2

and compute αi +βi+1 and αi −βi+1. Since αi +βi = 2π
n

and αi+1 +βi = 2π
n−1

, it follows that

αi+1 = αi + 2π
n(n−1)

and βi+1 = βi − 2π
n(n−1)

; therefore,

αi + βi+1 =
2π

n
− 2π

n(n − 1)

is a constant and

αi − βi+1 = αi−1 − βi +
4π

n(n − 1)
.

Hence,

cos θ = cos

(

θ +
2π

n(n − 1)

)

= cos

(

θ +
4π

(n − 1)n

)

for θ =
α1 − β2

2
.

We have obtained a contradiction because on an interval shorter than 2π the cosine cannot
attain the same value at three distinct points.

Remark. A square can be inscribed in a regular pentagon, cf. Problem 6.46.

6.64. Let a =
−−→
OA1 + · · · +

−−→
OAn. A rotation about point O by 360◦

n
sends point Ai to

Ai+1 and, therefore, sends vector a into itself, i.e., a = 0.

Since
−−→
XAi =

−−→
XO +

−−→
OAi and

−−→
OA1 + · · ·+−−→

OAn =
−→
0 , it follows that

−−→
XA1 + · · ·+−−→

XAn =

n
−−→
XO.

6.65. Through the center of a regular polygon A1 . . . An, draw line l that does not pass
through the vertices of the polygon. Let xi be equal to the length of the projection of vector−−→
OAi to a line perpendicular to l. Then all the xi are nonzero and the sum of numbers xi

assigned to the vertices of a regular k-gon is equal to zero since the corresponding sum of

vectors
−−→
OAi vanishes, cf. Problem 6.64.

6.66. By Problem 6.64 a = 10
−→
AO and b = 10

−−→
BO, where O is the center of polygon

X1 . . . X10. Clearly, if point A is situated rather close to a vertex of the polygon and point
B rather close to the midpoint of a side, then AO > BO.

6.67. Since

AiX
2 = |−−→AiO +

−−→
OX|2 = AiO

2 + OX2 + 2(
−−→
AiO,

−−→
OX) =

R2 + d2 + 2(
−−→
AiO,

−−→
OX),

it follows that
∑

AiX
2 = n(R2 + d2) + 2(

∑−−→
AiO,

−−→
OX) = n(R2 + d2),

cf. Problem 6.64.
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6.68. Denote by Sk the sum of squared distances from vertex Ak to all the other vertices.
Then

Sk = AkA
2
1 + AkA

2
2 + · · · + AkA

2
n = AkO

2 + 2(
−−→
AkO,

−−→
OA1) + A1O

2 + . . .

+ AkO
2 + 2(

−−→
AkO,

−−→
OAn) + AnO

2 = 2nR2

because
∑n

i=1

−−→
OAi =

−→
0 . Hence,

∑n
i=1 Sk = 2n2R2. Since each squared side and diagonal

enters this sum twice, the sum to be found is equal to n2R2.
6.69. Consider the rotation of the given n-gon about the n-gon’s center O that sends

Ak to A1. Let Xk be the image of point X under the rotation. This rotation sends segment
AkX to A1Xk. Therefore,

A1X + · · · + AnX = A1X1 + · · · + A1Xn.

Since n-gon X1 . . . Xn is a regular one,

−−−→
A1X1 + · · · + −−−→

A1Xn = n
−−→
A1O,

cf. Problem 6.64. Therefore, A1X1 + · · · + AnXn ≥ n
−−→
A1O.

6.70. Let Bi be the projection of point X to line OAi. Then

(ei,x) = (
−−→
OAi,

−−→
OBi +

−−→
BiX) = (

−−→
OAi,

−−→
OBi) = ±R · OBi.

Points B1, . . . , Bn lie on the circle with diameter OX and are vertices of a regular n-gon
for n odd and vertices of an n

2
-gon counted twice for n even, cf. Problem 2.9. Therefore,

∑

OB2
i = 1

2
n · OX2, cf. Problem 6.67.

6.71. Let e1, . . . , en be the vectors that go from the center of the given n-gon into
its vertices; x a unit vector perpendicular to line l. The sum to be found is equal to
∑

(ei,x)2 = 1
2
n · R2, cf. Problem 6.70.

6.72. Let e1, . . . , en be the unit vectors directed from the center O of a regular n-gon

into the midpoints of its sides; x =
−−→
OX. Then the distance from point X to the i-th side is

equal to |(x, ei) − r|. Hence, the sum to be found is equal to

∑

((x, ei)
2 − 2r(x, ei) + r2) =

∑

(x, ei)
2 + nr2.

By Problem 6.70
∑

(x, ei)
2 = 1

2
nd2.

6.73. Let x be the unit vector parallel to line l and ei =
−−−−→
AiAi+1. Then the squared length

of the projection of side AiAi+1 to line l is equal to (x, ei)
2. By Problem 6.70

∑

(x, ei)
2 =

1
2
na2.

6.74. Let a =
−−→
OX, ei =

−−→
OAi. Then

XA4
i = |a + ei|4 = (|a|2 + 2(a, ei) + |ei|2)2 =

4(R2 + (a, ei))
2 = 4(R4 + 2R2(a, ei) + (a, ei)

2).

Clearly,
∑

(a, ei) = (a,
∑

ei) = 0. By Problem 6.70
∑

(a, ei)
2 = 1

2
nR4; hence, the sum to

be found is equal to 4
(

nR4 + nR4

2

)

= 6nR4.
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6.75. a) First, let us prove the required relation for u = e1. Let ei = (sin ϕi, cos ϕi),
where cos ϕ1 = 1. Then

∑

(e1, ei)ei =
∑

cos ϕiei =
∑

(sin ϕi cos ϕi, cos2 ϕi) =

∑

(

sin 2ϕi

2
,
1 + cos 2ϕi

2

)

=
(

0,
n

2

)

=
ne1

2
.

For u = e2 the proof is similar.
It remains to notice that any vector u can be represented in the form u = λe1 + µe2.

b) Let B1, . . . , Bn be the midpoints of sides of the given polygon, ei =
−−→
OBi

OBi
, u =

−−→
XO.

Then
−−→
XAi =

−−→
OBi + (u, ei)ei. Since

∑−−→
OBi =

−→
0 , it follows that

∑−−→
XAi =

∑

(u, ei)ei =
nu

2
=

n
−−→
XO

2
.

6.76. Let e0, . . . , en−1 be the vectors of sides of a regular n-gon. It suffices to prove that
by reordering these vectors we can get a set of vectors −−−−−−−→a1, . . . , an such that

∑n
k=1 kak = 0.

A number n which is not a power of a prime can be represented in the form n = pq, where
p and q are relatively prime. Now, let us prove that the collection

e0, ep, . . . , e(q−1)p; eq, eq+p, . . . , eq+(q−1)p;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e(p−1)q, e(p−1)q+p, . . . , e(p−1)q+(q−1)p

is the one to be found. First, notice that if

x1q + y1p ≡ x2q + y2p ( mod pq),

then x1 ≡ x2 ( mod p) and y1 ≡ y2 ( mod q); therefore, in the considered collection each
of the vectors e0, . . . , en−1 is encountered exactly once.

The endpoints of vectors eq, eq+p, . . . , eq+(q−1)p with a common beginning point des-
tinguish a regular q-gon and, therefore, their sum is equal to zero. Moreover, vectors e0,
ep, . . . , e(q−1)p turn into eq, eq+p, . . . , eq+(p−1)q under the rotation by an angle of ϕ = 2π

p
.

Hence, if e0 + 2ep + · · · + qe(q−1)p = b, then

(q + 1)eq + (q + 2)eq+p + · · · + 2qeq+(q−1)p =

q(eq + · · · + eq+(q−1)p) + eq + 2eq+p + · · · + qeq+(q−1)p = Rϕb,

where Rϕb is the vector obtained from b after the rotation by ϕ = 2π
p

. Similar arguments

show that for the considered set of vectors we have
n

∑

k=1

kak = b + Rϕb + · · · + R(p−1)ϕb = 0.

6.77. Suppose that on the sides of triangle ABC squares ABB1A1, BCC2B2, ACC3A3

are constructed outwards and vertices A1, B1, B2, C2, C3, A3 lie on one circle S. The mid-
perpendiculars to segments A1B1, B2C2, A3C3 pass through the center of circle S. It is clear
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that the midperpendiculars to segments A1B1, B2C2, A3C3 coincide with the midperpendic-
ulars to sides of triangle ABC and therefore, the center of circle S coincides with the center
of the circumscribed circle of the triangle.

Denote the center of the circumscribed circle of triangle ABC by O. The distance from
O to line B2C2 is equal to R cos ∠A + 2R sin ∠A, where R is the radius of the circumscribed
circle of triangle ABC. Hence,

OB2
2 = (R sin ∠A)2 + (R cos ∠A + 2R sin ∠A)2 =

R2(3 + 2(sin ∠2A − cos 2∠A)) = R2(3 − 2
√

2 cos(45◦ + 2∠A)).

Clearly, in order for the triangle to possess the desired property, it is necessary and sufficient
that OB2

2 = OC2
3 = OA2

1, i.e.,

cos(45◦ + 2∠A) = cos(45◦ + 2∠B) = cos(45◦ + 2∠C).

This equality holds for ∠A = ∠B = ∠C = 60◦. If, contrarywise, ∠A 6= ∠B, then (45◦ +
2∠A) + (45◦ + 2∠B) = 360◦, i.e., ∠A + ∠B = 135◦. Hence, ∠C = 45◦ and ∠A = ∠C = 45◦,
∠B = 90◦ (or ∠B = 45◦, ∠A = 90◦). We see that the triangle should be either an equilateral
or an isosceles one.

6.78. In any triangle we have hc = ab
2R

(Problem 12.33); hence, pk = MAk·MAk+1

2R
. There-

fore,

p1p3 . . . p2n−1 =
MA1 · MA2 . . . MA2n

(2R)n
= p2p4 . . . p2n.

6.79. Let ABC be a triangle inscribed in circle S. Denote the distances from the center
O of S to sides BC, CA and AB by a, b and c, respectively. Then R + r = a + b + c if point
O lies inside triangle ABC and R + r = −a + b + c if points A and O lie on various sides of
line BC, cf. Problem 12.38.

Each of the diagonals of the partition belongs to two triangles of the partition. For one
of these triangles point O and the remaining vertex lie on one side of the diagonal, for the
other one the points lie on different sides.

A partition of an n-gon by nonintersecting diagonals into triangles consists of n − 2
triangles. Therefore, the sum (n−2)R+ r1 + · · ·+ rn−2 is equal to the sum of distances from
point O to the sides of an n-gon (the distances to the sides are taken with the corresponding
signs). This implies that the sum r1 + · · · + rn−2 does not depend on the partition.

6.80. Let polygon A1 . . . An be inscribed in a circle. Let us consider point A′
2 symmetric

to point A2 through the midperpendicular to segment A1A3. Then polygon A1A
′
2A3 . . . An

is an inscribed one and its area is equal to the area of polygon A1 . . . An. Therefore, we can
transpose any two sides. Therefore, we can make any side, call it X, a neighbouring side of
any given side, Y ; next, make any of the remaining sides a neighbour of X, etc. Therefore,
the area of an n-gon inscribed into the given circle only depends on the set of lengths of the
sides but not on their order.

6.81. Without loss of generality we may assume that an is the greatest of the numbers
a1, . . . , an. Let n-gon A1 . . . An be inscribed into a circle centered at O. Then

AiAi+1 : A1An = sin
∠AiOAi+1

2
: sin

∠A1OAn

2
.

Therefore, let us proceed as follows. From the relation sin ϕi

2
: sin ϕ

2
= ai : an the angle ϕi

is uniquely determined in terms of ϕ if ϕi < π. On a circle of radius 1, fix a point An and
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consider variable points A1, . . . , An−1, A′
n such that

⌣ AnA1 = ϕ, ⌣ A1A2 = ϕ1, . . . ,⌣ An−2An−1 = ϕn−2 and ⌣ An−1A
′
n = ϕn−1.

Denote these points in two distinct ways as plotted on Fig. 75. (The first way — Fig. 75 a)
— corresponds to an n-gon that contains the center of the circle, and the second way — Fig.
75 b) — corresponds to an n-gon that does not contain the center of the circle). It remains
to prove that as ϕ varies from 0 to π, then in one of these cases point A′

n coincides with An

(indeed, then up to a similarity we get the required n-gon). Suppose that in the first case
points A′

n and An never coincide for 0 ≤ ϕ ≤ π, i.e., for ϕ = π we have ϕ1 + · · ·+ ϕn−1 < π.

Figure 75 (Sol. 6.81)

Fig. 75 b) requires certain comments: sinα ≈ α for small values of α; hence, the
conditions of the problem imply that for small angles point An does indeed lie on arc ⌣ A1A

′
n

because ϕ1 + · · ·+ ϕn−1 > ϕ. Thus, for small angles ϕ1 + · · ·+ ϕn−1 > ϕ and if ϕ = π, then
by the hypothesis ϕ1 + · · ·+ ϕn−1 < π = ϕ. Hence, at certain moment ϕ = ϕ1 + · · ·+ ϕn−1,
i.e., points An and A′

n coincide.
6.82. Let h1, . . . , hn be the distances from the given point to the corresponding sides;

let a1, . . . , an be the distances from the vertices of the polygon to tangent points. Then the
product of areas of red as well as blue triangles is equal to a1...anh1...hn

2n .
6.83. Let OHi be a height of triangle OAiAi+1. Then ∠Hi−1OAi = ∠HiOAi = ϕi. The

conditions of the problem imply that

ϕ1 + ϕ2 = ϕn+1 + ϕn+2,
ϕn+2 + ϕn+3 = ϕ2 + ϕ3,
ϕ3 + ϕ4 = ϕn+3 + ϕn+4,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
ϕn−2 + ϕn−1 = ϕ2n−2 + ϕ2n−1

(expressing the last equality we have taken into account that n is odd) and

ϕn−1 + 2ϕn + ϕn+1 = ϕ2n−1 + 2ϕ2n + ϕ1.

Adding all these equalities we get

ϕn−1 + ϕn = ϕ2n−1 + ϕ2n,

as required.

6.84. Let O be the center of the given circle. Then
−−→
XAi =

−−→
XO +

−−→
OAi and, therefore,

XA2
i = XO2 + OA2

i + 2(
−−→
OX,

−−→
OAi) = d2 + r2 + 2(

−−→
XO,

−−→
OAi).

Since a1
−−→
OA1 + · · · + An

−−→
OAn =

−→
0 (cf. Problem 13.4), it follows that

a1XA2
1 + · · · + anXA2

n = (a1 + · · · + an)(d2 + r2).
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6.85. By Problem 5.8 bi−1bi

a2
i

= sin2 ∠Ai

2
. To solve heading a) it suffices to multiply all

these equalities and to solve heading b) we have to divide the product of all equalities with
even index i by the product of all equalities with odd index i.

6.86. Let BC be a blue side, AB and CD be the sides neighbouring with BC. By the
hypothesis sides AB and CD are red ones. Suppose that the polygon is a circumscribed one;
let P , Q, R be the tangent points of sides AB, BC, CD, respectively, with the inscribed
circle. Clearly, BP = BQ, CR = CQ and segments BP , CR only neighbour one blue
segment. Therefore, the sum of the lengths of the red sides is not smaller than the sum of
the lengths of the blue sides. We have obtained a contradiction with the fact that the sum
of the lengths of red sides is smaller than the semiperimeter. Therefore, a circle cannot be
inscribed into the polygon.

6.87. Let the given n-gon have k acute angles. Then the sum of its angles is smaller
than k · 90◦ + (n− k) · 180◦. On the other hand, the sum of the angles of the n-gon is equal
to (n − 2) · 180◦. Hence,

(n − 2) · 180◦ < k · 90◦ + (n − k) · 180◦, i.e., k < 4.

Since k is an integer, k ≤ 3.

Figure 76 (Sol. 6.87)

For any n ≥ 3 there exists a convex n-gon with three acute angles (Fig. 76).
6.88. Suppose that the lengths of nonadjacent sides AB and CD are equal to the

length of the greatest diagonal. Then AB + CD ≥ AC + BD. But by Problem 9.14
AB + CD < AC + BD. We have obtained a contradiction and therefore, the sides whose
length is equal to the length of the longest diagonal should be adjacent ones, i.e., there are
not more than two of such sides.

Figure 77 (Sol. 6.88)

An example of a polygon with two sides whose lengths are equal to the length of the
longest diagonal is given on Fig. 77. Clearly, such an n-gon exists for any n > 3.

6.89. Let us prove that n ≤ 5. Let AB = 1 and C the vertex not adjacent to either A or
B. Then |AC−BC| < AB = 1. Hence, AC = BC, i.e., point C lies on the midperpendicular
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to side AB. Therefore, in addition to vertices A, B, C the polygon can have only two more
vertices.

Figure 78 (Sol. 6.89)

An example of a pentagon with the required property is given on Fig. 78. Let us elucidate
its construction. Clearly, ACDE is a rectangle, AC = ED = 1 and ∠CAD = 60◦. Point B
is determined from the condition BE = BD = 3.

An example of a quadrilateral with the desired property is rectangle ACDE on the same
figure.

6.90. An example of a pentagon satisfying the conditions of the problem is plotted on
Fig. 79. Let us clarify its construction. Take an equilateral right triangle EAB and draw
midperpendiculars to sides EA, AB; on them construct points C and D, respectively, so
that ED = BC = AB (i.e., lines BC and ED form angles of 30◦ with the corresponding
midperpendiculars). Clearly,

DE = BC = AB = EA < EB < DC and DB = DA = CA = CE > EB.

Now, let us prove that the fifth side and the fifth diagonal cannot have a common point.
Suppose that the fifth side AB has a common point A with the fifth diagonal. Then the
fifth diagonal is either AC or AD. Let us consider these two cases.

Figure 79 (Sol. 6.90)

In the first case △AED = △CDE; hence, under the symmetry through the midper-
pendicular to segment ED point A turns into point C. This symmetry preserves point B
because BE = BD. Therefore, segment AB turns into CB, i.e., AB = CB. Contradiction.
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In the second case △ACE = △EBD; hence, under the symmetry through the bisector
of angle ∠AED segment AB turns into DC, i.e., AB = CD. Contradiction.

6.91. Let us consider two neighbouring vertices A1 and A2. If ∠A1OA2 ≥ 90◦, then
OA1 = OA2 because neither right nor acute angle can be adjacent to the base of an isosceles
triangle.

Figure 80 (Sol. 6.91)

Now, let ∠A1OA2 < 90◦. Let us draw through point O lines l1 and l2 perpendicular
to lines OA1 and OA2, respectively. Denote the regions into which these lines divide the
plane as indicated on Fig. 80. If in region 3 there is a vertex, Ak, then A1O = AkO = A2O
because ∠A1OAk ≥ 90◦ and ∠A2OAk ≥ 90◦. If region 3 has no vertices of the polygon, then
in region 1 there is a vertex Ap and in region 2 there is a vertex Aq (if neither of the regions
1 or 2 would have contained vertices of the polygon, then point O would have been outside
the polygon). Since ∠A1OAq ≥ 90◦, ∠A2OAp ≥ 90◦ and ∠ApOAq ≥ 90◦, it follows that
A1O = AqO = ApO = A2O.

It remains to notice that if the distances from point O to any pair of the neighbouring
vertices of the polygon are equal, then all the distances from point O to the vertices of the
polygon are equal.

6.92. Let us prove that if A, B, C, D, E, F are points on the circle placed in an
arbitrary order; lines AB and DE, BC and EF , CD and FA, intersect at points G, H, K,
respectively. Then points G, H and K lie on one line.

Let a, b, . . . , f be oriented angles between a fixed line and lines OA, OB, . . . , OF ,
respectively, where O is the center of the circumscribed circle of the hexagon. Then

∠(AB,DE) =
a + b − d − e

2
, ∠(CD,FA) =

c + d − f − a

2
,

∠(EF,BC) =
e + f − b − c

2

and, therefore, the sum of these angles is equal to 0.
Let Z be the intersection point of circumscribed circles of triangles BDG and DFK.

Let us prove that point B, F , Z and H lie on one circle. For this we have to verify that
∠(BZ,ZF ) = ∠(BH,HF ). Clearly,

∠(BZ,ZF ) = ∠(BZ,ZD) + ∠(DZ,ZF ),
∠(BZ,ZD) = ∠(BG,GD) = ∠(AB,DE),
∠(DZ,ZF ) = ∠(DK,KF ) = ∠(CD,FA)

and, as we have just proved,

∠(AB,DE) + ∠(CD,FA) = −∠(EF,BC) = ∠(BC,EF ) = ∠(BH,HF ).
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Now, let us prove that points H, Z and G lie on one line. For this it suffices to verify
that ∠(GZ,ZB) = ∠(HZ,ZB). Clearly,

∠(GZ,ZB) = ∠(GD,DB) = ∠(ED,DB), ∠(HZ,ZB) = ∠(HF,FB) = ∠(ED,DB).

We similarly prove that points K, Z and G lie on one line:

∠(DZ,ZG) = ∠(DB,BG) = ∠(DB,BA);
∠(DZ,ZK) = ∠(DF,FK) = ∠(DB,BA)

We have deduced that points H and K lie on line GZ, consequently, points G, H and K lie
on one line.

6.93. Let A2, B2 and C2 be the indicated intersection points of lines. By applying
Pascal’s theorem to points M , A1, A, C, B, B1 we deduce that A2, B2 and R lie on one line.
Similarly, points A2, C2 and R lie on one line. Hence, points A2, B2, C2 and R lie on one
line.

6.94. Points A1 and B1 lie on circle S of diameter AB. Let A4 and B4 be the intersection
points of lines AA2 and BB2 with line A3B3. By Problem 2.41 a) these points lie on circle
S. Lines A1B and A4A intersect at point A2 and lines BB4 and AB1 at point B2. Therefore,
applying Pascal’s theorem to points B1, A1, B, B4, A4, A we see that the intersection point
of lines B1A1 and B4A4 (the latter line coincides with A3B3) lies on line A2B2.

6.95. Let K be the intersection point of lines BC and MN . Apply Pascal’s theorem to
points A, M , N , D, C, B. We see that points E, K, F lie on one line and, therefore, K is
the intersection point of lines MN and EF .

6.96. Let rays PA and QA intersect the circle at points P2 and Q2, i.e., P1P2 and Q1Q2

are diameters of the given circle. Let us apply Pascal’s theorem to hexagon PP2P1QQ2Q1.
Lines PP2 and QQ2 intersect at point A and lines P1P2 and Q1Q2 intersect at point O,
hence, the intersection point of lines P1Q and Q1P lies on line AO.

6.97. Let given points A, B, C, D, E lie on one line. Suppose that we have constructed
point F of the same circle. Denote by K, L, M the intersection points of lines AB and DE,
BC and EF , CD and FA, respectively. Then by Pascal’s theorem points K, L, M lie on
one line.

The above implies the following construction. Let us draw through point E an arbitrary
line a and denote its intersection point with line BC by L. Then construct the intersection
point K of lines AB and DE and the intersection point M of lines KL and CD. Finally, let
F be the intersection point of lines AM and a. Let us prove that F lies on our circle. Let
F1 be the intersection point of the circle and line a. From Pascal’s theorem it follows that
F1 lies on line AM , i.e., F1 is the intersection point of a and AM . Hence, F1 = F .

6.98. Let P and Q be the intersection points of line A3A4 with A1A2 and A1A6, respec-
tively, and R and S be the intersection points of line A4A5 with A1A6 and A1A2, respectively.
Then

A2K : A3L = A2P : A3P, A3L : A6M = A3Q : A6Q, A6M : A5N = A6R : A5R.

Therefore, the desired relation A2K : A5N = A2S : A5S takes the form

A2P

A3P
· A3Q

A6Q
· A6R

A5R
· A5S

A2S
= 1.

Let T be the intersection point of lines A2A3 and A5A6; by Pascal’s theorem points S, Q
and T lie on one line. By applying Menelau’s theorem (cf. Problem 5.58) to triangle PQS
and points T , A2, A3 and also to triangle RQS and points T , A5, A6 we get

A2P

A2S
· A3Q

A3P
· TS

TQ
= 1 and

TQ

TS
· A5S

A5R
· A6R

A6Q
= 1.
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By multiplying these equalities we get the statement desired. (The ratio of segments should
be considered oriented ones.)



Chapter 7. LOCI

Background

1) A locus is a figure consisting of all points having a cirtain property.
2) A solution of a problem where a locus is to be found should contain the proof of the

following facts:
a) the points with a required property belong to figure Φ which is the answer to the

problem;
b) All points of Φ have the required property.
3) A locus possessing two properties is the intersection of two figures: (1) the locus of

points possessing the first property and (2) the locus of points possessing the other property.
4) Three most important loci:
a) The locus of points equidistant from points A and B is the midperpendicular to

segment AB;
b) The locus of points whose distance from a given point O is equal to R is the circle of

radius R centered at O;
c) The locus of vertices of a given angle that subtend given segment AB is the union of

two arcs of circles symmetric through line AB (points A and B do not belong to the locus).

Introductory problems

1. a) Find the locus of points equidistant from two parallel lines.
b) Find the locus of points equidistant from two intersecting lines.
2. Find the locus of the midpoints of segments with the endpoints on two given parallel

lines.
3. Given triangle ABC, find the locus of points X satisfying inequalities AX ≤ BX ≤CX.
4. Find the locus of points X such that the tangents drawn from X to the given circle

have a given length.
5. A point A on a circle is fixed. Find the locus of points X that divide chords with A

as an endpoint in the ratio of 1 : 2 counting from point A.

§1. The locus is a line or a segment of a line

7.1. Two wheels of radii r1 and r2 roll along line l. Find the set of intersection points
M of their common inner tangents.

7.2. Sides AB and CD of quadrilateral ABCD of area S are not parallel. Inside the
quadrilateral find the locus of points X for which SABX + SCDX = 1

2
S.

7.3. Given two lines that meet at point O. Find the locus of points X for which the sum
of the lengths of projections of segments OX to these lines is a constant.

7.4. Given rectangle ABCD, find the locus of points X for which AX+BX = CX+DX.
7.5. Find the locus of points M that lie inside rhombus ABCD and with the property

that ∠AMD + ∠BMC = 180◦.

169
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* * *

7.6. Given points A and B in plane, find the locus of points M for which the difference
of the squared lengths of segments AM and PM is a constant.

7.7. A circle S and a point M outside it are given. Through point M all possible circles
S1 that intersect S are drawn; X is the intersection point of the tangent at M to S1 with
the extension of the common chord of circles S and S1. Find the locus of points X.

7.8. Given two nonintersecting circles, find the locus of the centers of circles that divide
the given circles in halves (i.e., that intersect the given circles in diametrically opposite
points).

7.9. A point A inside a circle is taken. Find the locus of the intersection points of
tangents to circles drawn through the endpoints of possible chords that contain point A.

7.10. a) Parallelogram ABCD is given. Prove that the quantity

AX2 + CX2 − BX2 − DX2

does not depend on the choice of point X.
b) Quadrilateral ABCD is not a parallelogram. Prove that all points X that satisfy

the relation AX2 + CX2 = BX2 + DX2 lie on one line perpendicular to the segment that
connects the midpoints of the diagonals.

See also Problems 6.14, 15.14.

§2. The locus is a circle or an arc of a circle

7.11. A segment moves along the plane so that its endpoints slide along the legs of a
right angle ∠ABC. What is the trajectory traversed by the midpoint of this segment? (We
naturally assume that the length of the segment does not vary while it moves.)

7.12. Find the locus of the midpoints of the chords of a given circle, provided the chords
pass through a given point.

7.13. Given two points, A and B and two circles that are tangent to line AB: one circle
is tangent at A and the other one at B, and the circles are tangent to each other at point
M . Find the locus of points M .

* * *

7.14. Two points, A and B in plane are given. Find the locus of points M for which
AM : BM = k. (Apollonius’s circle.)

7.15. Let S be Apollonius’s circle for points A and B where point A lies outside circle
S. From point A tangents AP and AQ to circle S are drawn. Prove that B is the midpoint
of segment PQ.

7.16. Let AD and AE be the bisectors of the inner and outer angles of triangle ABC
and Sa be the circle with diameter DE; circles Sb and Sc are similarly defined. Prove that:

a) circles Sa, Sb and Sc have two common points, M and N , such that line MN passes
through the center of the circumscribed circle of triangle ABC;

b) The projections of point M (and N) to the sides of triangle ABC distinguish an
equilateral triangle.

7.17. Triangle ABC is an equilateral one, M is a point. Prove that if the lengths
of segments AM , BM and CM form a geometric progression, then the quotient of this
progression is smaller than 2.

See also Problems 14.19 a), 18.14.
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§3. The inscribed angle

7.18. Points A and B on a circle are fixed and a point C runs along the circle. Find the
set of the intersection points of a) heights; b) bisectors of triangles ABC.

7.19. Point P runs along the circumscribed circle of square ABCD. Lines AP and BD
intersect at point Q and the line that passes through point Q parallel to AC intersects line
BP at point X. Find the locus of points X.

7.20. a) Points A and B on a circle are fixed and points A1 and B1 run along the same
circle so that the value of arc ⌣ A1B1 remains a constant; let M be the intersection point
of lines AA1 and BB1. Find the locus of points M .

b) Triangles ABC and A1B1C1 are inscribed in a circle; triangle ABC is fixed and triangle
A1B1C1 rotates. Prove that lines AA1, BB1 and CC1 intersect at one point for not more
than one position of triangle A1B1C1.

7.21. Four points in the plane are given. Find the locus of the centers of rectangles
formed by four lines that pass through the given points.

7.22. Find the locus of points X that lie inside equilateral triangle ABC and such that
∠XAB + ∠XBC + ∠XCA = 90◦.

See also Problems 2.5, 2.37.

§4. Auxiliary equal triangles

7.23. A semicircle centered at O is given. From every point X on the extension of the
diameter of the semicircle a ray tangent to the semicircle is drawn. On the ray segment XM
equal to segment XO is marked. Find the locus of points M obtained in this way.

7.24. Let A and B be fixed points in plane. Find the locus of points C with the following
property: height hb of triangle ABC is equal to b.

7.25. A circle and a point P inside it are given. Through every point Q on the circle
the tangent is drawn. The perpendicular dropped from the center of the circle to line PQ
and the tangent intersect at a point M . Find the locus of points M .

§5. The homothety

7.26. Points A and B on a circle are fixed. Point C runs along the circle. Find the set
of the intersection points of the medians of triangles ABC.

7.27. Triangle ABC is given. Find the locus of the centers of rectangles PQRS whose
vertices Q and P lie on side AC and vertices R and S lie on sides AB and BC, respectively.

7.28. Two circles intersect at points A and B. Through point A a line passes. It
intersects the circles for the second time at points P and Q. What is the line plotted by the
midpoint of segment PQ while the intersecting line rotates about point A.

7.29. Points A, B and C lie on one line; B is between A and C. Find the locus of points
M such that the radii of the circumscribed circles of triangles AMB and CMB are equal.

See also Problems 19.10, 19.21, 19.38.

§6. A method of loci

7.30. Points P and Q move with the same constant speed v along two lines that intersect
at point O. Prove that there exists a fixed point A in plane such that the distances from A
to P and Q are equal at all times.

7.31. Through the midpoint of each diagonal of a convex quadrilateral a line is drawn
parallel to the other diagonal. These lines meet at point O. Prove that segments that connect
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O with the midpoints of the sides of the quadrilateral divide the area of the quadrilateral
into equal parts.

7.32. Let D and E be the midpoints of sides AB and BC of an acute triangle ABC and
point M lies on side AC. Prove that if MD < AD, then ME > EC.

7.33. Inside a convex polygon points P and Q are taken. Prove that there exists a vertex
of the polygon whose distance from Q is smaller than that from P .

7.34. Points A, B and C are such that for any fourth point M either MA ≤ MB or
MA ≤ MC. Prove that point A lies on segment BC.

7.35. Quadrilateral ABCD is given; in it AB < BC and AD < DC. Point M lies on
diagonal BD. Prove that AM < MC.

§7. The locus with a nonzero area

7.36. Let O be the center of rectangle ABCD. Find the locus of points M for which
AM ≥ OM , BM ≥ OM , CM ≥ OM and DM ≥ OM .

7.37. Find the locus of points X from which tangents to a given arc AB of a circle can
be drawn.

7.38. Let O be the center of an equilateral triangle ABC. Find the locus of points M
satisfying the following condition: any line drawn through M intersects either segment AB
or segment CO.

7.39. In plane, two nonintersecting disks are given. Does there necessarily exist a point
M outside these disks that satisfies the following condition: each line that passes through
M intersects at least one of these disks?

Find the locus of points M with this property.

See also Problem 18.11.

§8. Carnot’s theorem

7.40. Prove that the perpendiculars dropped from points A1, B1 and C1 to sides BC,
CA, AB of triangle ABC intersect at one point if and only if

A1B
2 + C1A

2 + B1C
2 = B1A

2 + A1C
2 + C1B

2. (Carnot’s formula)

7.41. Prove that the heights of a triangle meet at one point.
7.42. Points A1, B1 and C1 are such that AB1 = AC1, BC = BA1 and CA1 = CB1.

Prove that the perpendiculars dropped from points A1, B1 and C1 to lines BC, CA and AB
meet at one point.

7.43. a) The perpendiculars dropped from the vertices of triangle ABC to the corre-
sponding sides of triangle A1B1C1 meet at one point. Prove that the perpendiculars dropped
from the vertices of triangle A1B1C1 to the corresponding sides of triangle ABC also meet
at one point.

b) Lines drawn through vertices of triangle ABC parallelly to the corresponding sides of
triangle A1B1C1 intersect at one point. Prove that the lines drawn through the vertices of
triangle A1B1C1 parallelly to the corresponding sides of triangle ABC also intersect at one
point.

7.44. On line l points A1, B1 and C1 are taken and from the vertices of triangle ABC
perpendiculars AA2, BB2 and CC2 are dropped to this line. Prove that the perpendiculars
dropped from points A1, B1 and C1 to lines BC, CA and AB, respectively, intersect at one
point if and only if

A1B1 : B1C1 = A2B2 : B2C2.

The ratios of segments are oriented ones.
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7.45. Triangle ABC is an equilateral one, P an arbitrary point. Prove that the perpen-
diculars dropped from the centers of the inscribed circles of triangles PAB, PBC and PCA
to lines AB, BC and CA, respectively, meet at one point.

7.46. Prove that if perpendiculars raised at the bases of bisectors of a triangle meet at
one point, then the triangle is an isosceles one.

§9. Fermat-Apollonius’s circle

7.47. Prove that the set of points X such that

k1A1X
2 + · · · + knAnX2 = c

is either
a) a circle or the empty set if k1 + · · · + kn 6= 0;
b) a line, a plane or the empty set if k1 + · · · + kn = 0.
7.48. Line l intersects two circles at four points. Prove that the quadrilateral formed by

the tangents at these points is a circumscribed one and the center of its circumscribed circle
lies on the line that connects the centers of the given circles.

7.49. Points M and N are such that AM : BM : CM = AN : BN : CN . Prove that
line MN passes through the center O of the circumscribed circle of triangle ABC.

See also Problems 7.6, 7.14, 8.59–8.63.

Problems for independent study

7.50. On sides AB and BC of triangle ABC, points D and E are taken. Find the locus
of the midpoints of segments DE.

7.51. Two circles are tangent to a given line at two given points A and B; the circles
are also tangent to each other. Let C and D be the tangent points of these circles with
another outer tangent. Both tangent lines to the circles are outer ones. Find the locus of
the midpoints of segments CD.

7.52. The bisector of one of the angles of a triangle has inside the triangle a common
point with the perpendicular erected from the midpoint of the side opposite the angle. Prove
that the triangle is an isosceles one.

7.53. Triangle ABC is given. Find the locus of points M of this triangle for which
the condition AM ≥ BM ≥ CM holds. When the obtained locus is a) a pentagon; b) a
triangle?

7.54. Square ABCD is given. Find the locus of the midpoints of the sides of the squares
inscribed in the given square.

7.55. An equilateral triangle ABC is given. Find the locus of points M such that
triangles AMB and BCM are isosceles ones.

7.56. Find the locus of the midpoints of segments of length 2√
3

whose endpoints lie on

the sides of a unit square.
7.57. On sides AB, BC and CA of a given triangle ABC points P , Q and R, respectively,

are taken, so that PQ ‖ AC and PR ‖ BC. Find the locus of the midpoints of segments
QR.

7.58. Given a semicircle with diameter AB. For any point X on this semicircle, point
Y on ray XA is taken so that XY = XB. Find the locus of points Y .

7.59. Triangle ABC is given. On its sides AB, BC and CA points C1, A1 and B1,
respectively, are selected. Find the locus of the intersection points of the circumscribed
circles of triangles AB1C1, A1BC1 and A1B1C.
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Solutions

7.1. Let O1 and O2 be the centers of the wheels of radii r1 and r2, respectively. If M is
the intersection point of the inner tangents, then OM : O2M = r1 : r2. It is easy to derive
from this condition that the distance from point M to line l is equal to 2r1r2

r1+r2
. Hence, all

the intersection points of the common inner tangents lie on the line parallel to l and whose
distance from l is equal to 2r1r2

r1+r2
.

7.2. Let O be the intersection point of lines AB and CD. On rays OA and OD, mark
segments OK and OL equal to AB and CD, respectively. Then

SABX + SCDX = SKOX + SLOX = SKOL ± SKXL.

Therefore, the area of triangles KXL is a constant, i.e., point X lies on a line parallel to
KL.

7.3. Let a and b be unit vectors parallel to the given lines; x =
−−→
OX. The sum of

the lengths of the projections of vector x to the given lines is equal to |(a,x)| + |(b,x)| =
|(a±b,x)|, where the change of sign occurs on the perpendiculars to the given lines erected
at point O. Therefore, the locus to be found is a rectangle whose sides are parallel to
the bisectors of the angles between the given lines and the vertices lie on the indicated
perpendiculars.

7.4. Let l be the line that passes through the midpoints of sides BC and AD. Suppose
that point X does not lie on l; for instance, points A and X lie on one side of l. Then
AX < DX and BX < CX and, therefore, AX + BX < CX + DX. Hence, l is the locus to
be found.

7.5. Let N be a point such that
−−→
MN =

−−→
DA. Then ∠NAM = ∠DMA and ∠NBM =

∠BMC and, therefore, quadrilateral AMBN is an inscribed one. The diagonals of the
inscribed quadrilateral AMBN are equal, hence, either AM ‖ BN or BM ‖ AN . In the first
case ∠AMD = ∠MAN = ∠AMB and in the second case ∠BMC = ∠MBN = ∠BMA. If
∠AMB = ∠AMD, then ∠AMB + ∠BMC = 180◦ and point M lies on diagonal AC and if
∠BMA = ∠BMC, then point M lies on diagonal BD. It is also clear that if point M lies
on one of the diagonals, then ∠AMD + ∠BMC = 180◦.

7.6. Introduce a coordinate system selecting point A as the origin and directing Ox-axis
along ray AB. Let (x, y) be the coordinates of M . Then AM2 = x2 + y2 and BM2 =
(x − a)2 + y2, where a = AB. Hence, AM2 − BM2 = 2ax − a2. This quantity is equal to k

for points M whose coordinates are (a2+k
2a

, y). All such points lie on a line perpendicular to
AB.

7.7. Let A and B be the intersection points of circles S and S1. Then XM2 = XA·XB =
XO2 − R2, where O and R are the center and the radius, respectively, of circle S. Hence,
XO2−XM2 = R2 and, therefore, points X lie on the perpendicular to line OM (cf. Problem
7.6).

7.8. Let O1 and O2 be the centers of the given circles, R1 and R2 their respective radii.
The circle of radius r centered at X intersects the first circle in the diametrically opposite
points if and only if r2 = XO2

1 + R2
1; hence, the locus to be found consists of points X such

that XO2
1 + R2

1 = XO2
2 + R2

2. All such points X lie on a line perpendicular to O1O2, cf.
Problem 7.6.

7.9. Let O be the center of the circle, R its radius, M the intersection point of the
tangents drawn through the endpoints of the chord that contains point A, and P the midpoint
of this chord. Then OP · OM = R2 and OP = OA cos ϕ, where ϕ = ∠AOP . Hence,

AM2 = OM2 + OA2 − 2OM · OA cos ϕ = OM2 + OA2 − 2R2,
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and, therefore, the quantity

OM2 − AM2 = 2R2 − OA2

is a constant. It follows that all points M lie on a line perpendicular to OA, cf. Problem
7.6.

7.10. Let P and Q be the midpoints of diagonals AC and BD. Then

AX2 + CX2 = 2PX2 +
AC2

2
and BX2 + DX2 = 2QX2 +

BD2

2

(cf. Problem 12.11 a)) and, therefore, in heading b) the locus to be found consists of points
X such that PX2 − QX2 = 1

4
(BD2 − AC2) and in heading a) P = Q and, therefore, the

considered quantity is equal to 1
2
(BD2 − AC2).

7.11. Let M and N be the midpoints of the given segment, O its midpoint. Point B lies
on the circle with diameter MN , hence, OB = 1

2
MN . The trajectory of point O is the part

of the circle of radius 1
2
MN centered at B confined inside angle ∠ABC.

7.12. Let M be the given point, O the center of the given circle. If X is the midpoint of
chord AB, then XO ⊥AB. Therefore, the locus to be found is the circle with diameter MO.

7.13. Let us draw through point M a common tangent to the circles. Let O be the
intersection point of this tangent with line AB. Then AO = MO = BO, i.e., O is the
midpoint of segment AB. Point M lies on the circle with center O and radius 1

2
AB. The

locus of points M is the circle with diameter AB (points A and B excluded).
7.14. For k = 1 we get the midperpendicular to segment AB. In what follows we will

assume that k 6= 1.
Let us introduce a coordinate system in plane so that the coordinates of A and B are

(−a, 0) and (a, 0), respectively. If the coordinates of point M are (x, y), then

AM2

BM2
= (x + a)2 +

y2

(x − a)2
+ y2.

The equation AM2

BM2 = k2 takes the form

x + 1 − k2

1 − k2a
+ y2 =

2ka

1 − k2

2

.

This is an equation of the circle with center (−1 + k2

1−k2a
, 0) and radius 2ka

|1−k2| .

7.15. Let line AB intersect circle S at points E and F so that point E lies on segment
AB. Then PE is the bisector of triangle APB, hence, ∠EPB = ∠EPA = ∠EFP . Since
∠EPF = 90◦, it follows that PB ⊥ EF .

7.16. a) The considered circles are Apollonius’s circles for the pairs of vertices of triangle
ABC and, therefore, if X is a common point of circles Sa and Sb, then XB : XC = AB : AC
and XC : XA = BC : BA, i.e., XB : XA = CB : CA and, therefore, point X belongs to
circle Sc. It is also clear that if AB > BC, then point D lies inside circle Sb and point A
outside it. It follows that circles Sa and Sb intersect at two distinct points.

To complete the proof, it remains to make use of the result of Problem 7.49.
b) According to heading a) MA = λ

a
, MB = λ

b
and MC = λ

c
. Let B1 and C1 be the

projections of point M on lines AC and AB, respectively. Points B1 and C1 lie on the circle
with diameter MA, hence,

B1C1 = MA sin ∠B1AC1 =
λ

a

a

2R
=

λ

2R
,

where R is the radius of the circumscribed circle of triangle ABC. Similarly, A1C1 = A1B1 =
λ

2R
.



176 CHAPTER 7. LOCI

7.17. Let O1 and O2 be points such that
−−→
BO1 = 4

3

−→
BA and

−−→
CO2 = 4

3

−−→
CB. It is easy to

verify that if BM > 2AM , then point M lies inside circle S1 of radius 2
3
AB with center O1

(cf. Problem 7.14) and if CM > 2BM , then point M lies inside circle S2 of radius 2
3
AB

centered at O2. Since O1O2 > BO1 = 4
3
AB and the sum of the radii of circles S1 and S2 is

equal to 4
3
AB, it follows that these circles do not intersect. Therefore, if BM = qAM and

CM = qBM , then q < 2.
7.18. a) Let O be the intersection point of heights AA1 and BB1. The points A1 and

B1 lie on the circle with diameter CO. Therefore, ∠AOB = 180◦ −∠C. Hence, the locus to
be found is the circle symmetric to the given one through line AB (points A and B should
be excluded).

b) If O is the intersection point of the bisectors of triangle ABC, then ∠AOB = 90◦ +
1
2
∠C. On each of the two arcs ⌣ AB the angles C are constant and, therefore, the desired

locus of the vertices of angles of 90◦ + 1
2
∠C that subtend segment AB is the union of two

arcs (points A and B should be excluded).
7.19. Points P and Q lie on the circle with diameter DX, hence,

∠(QD,DX) = ∠(QP,PX) = ∠(AP,PB) = 45◦,

i.e., point X lies on line CD.
7.20. a) If point A1 traverses along the circle an arc of value 2ϕ, then point B1 also

traverses an arc of value 2ϕ, consequently, lines AA1 and BB1 turn through an angle of ϕ
and the angle between them will not change.

Hence, point M moves along a circle that contains points A and B.
b) Let at some moment lines AA1, BB1 and CC1 meet at point P . Then, for instance,

the intersection point of lines AA1 and BB1 moves along the circumscribed circle of triangle
ABP . It is also clear that the circumscribed circles of triangles ABP , BCP and CAP have
a unique common point, P .

7.21. Suppose that points A and C lie on opposite sides of a rectangle. Let M and N be
the midpoints of segments AC and BD, respectively. Let us draw through point M line l1
parallel to the sides of the rectangle on which points A and C lie and through point N line l2
parallel to the sides of the rectangle on which points B and D lie. Let O be the intersection
point of lines l1 and l2. Clearly, point O lies on circle S constructed on segment MN as on
a diameter.

On the other hand, point O is the center of the rectangle. Clearly, the rectangle can be
constructed for any point O that lies on circle S.

It remains to notice that on the opposite sides of the rectangle points A and B or A and
D can also lie. Hence, the locus to be found is the union of three circles.

7.22. It is easy to verify that the points of heights of triangle ABC possess the required
property. Suppose that a point X not belonging to any of the heights of triangle ABC
possesses the required property. Then line BX intersects heights AA1 and CC1 at points
X1 and X2. Since

∠XAB + ∠XBC + ∠XCA = 90◦ = ∠X1AB + ∠X1BC + ∠X1CA,

it follows that

∠XAB − ∠X1AB = ∠X1CA − ∠XCA,

i.e., ∠(XA,AX1) = ∠(X1C,CX). Therefore, point X lies on the circumscribed circle of
triangle AXC ′, where point C ′ is symmetric to C through line BX. We similarly prove
that point X2 lies on the circle and, therefore, line BX intersects this circle at three distinct
points. Contradiction.
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7.23. Let K be the tangent point of line MX with the given semicircle and P the
projection of point M to the diameter. In right triangles MPX and OKX, the hypothenuses
are equal and ∠PXM = ∠OXK; hence, these triangles are equal. In particular, MP =
KO = R, where R is the radius of the given semicircle. It follows that point M lies on line
l parallel to the diameter of the semicircle and tangent to the semicircle. Let AB be the
segment of line l whose projection is the diameter of the semicircle. From a point on l that
does not belong to segment AB a tangent to the given semicircle cannot be drawn because
the tangent drawn to the circle should be tangent to the other semicircle as well.

The locus to be found is punctured segment AB: without points A, B, and the midpoint.
7.24. Let H be the base of height hb of triangle ABC and hb = b. Denote by B′

the intersection point of the perpendicular to line AB drawn through point A and the
perpendicular to line AH drawn through point C. Right triangles AB′C and BAH are
equal, becuase ∠AB′C = ∠BAH and ∠AC = BH. Therefore, AB′ = AB, i.e., point C lies
on the circle with diameter AB′.

Figure 81 (Sol. 7.24)

Let S1 and S2 be the images of circle S with diameter AB under the rotations through
angles of ±90◦ with center at A (Fig. 81). We have proved that point C 6= A belongs to the
union of circles S1 and S2.

Conversely, let a point C, C 6= A, belong to either of the circles S1 or S2; let AB′ be
a diameter of the corresponding circle. Then ∠AB′C = ∠HAB and A′B = AB; hence,
AC = HB.

7.25. Let O be the center of the circle, N the intersection point of lines OM and QP .
Let us drop from point M perpendicular MS to line OP . Since △ONQ ∼ △OQM and
△OPN ∼ △OMS, we derive that

ON : OQ = OQ : OM and OP : ON = OM : OS.

By multiplying these equalities we get OP : OQ = OQ : OS. Hence, OS = OQ2 : OP is a
constant. Since point S lies on line OP , its position does not depend on the choice of point
Q. The locus to be found is the line perpendicular to line OP and passing through point S.

7.26. Let O be the midpoint of segment AB, and M the intersection point of the medians
of triangle ABC. The homothety with center O and coefficient 1

3
sends point C to point M .

Therefore, the intersection point of the medians of triangle ABC lies on circle S which is
the image of the initial circle under the homothety with center O and coefficient 1

3
. To get

the desired locus we have to delete from S the images of points A and B.
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7.27. Let O be the midpoint of height BH; let M , D and E be the midpoints of segment
AC, and sides RQ and PS, respectively (Fig. 82).

Figure 82 (Sol. 7.27)

Points D and E lie on lines AO and CO, respectively. The midpoint of segment DE is
the center of rectangle PQRS. Clearly, this midpoint lies on segment OM . The locus in
question is segment OM without its endpoints.

7.28. Let O1 and O2 be the centers of the given circles (point P lies on the circle centered
at O1); O the midpoint of segment O1O2; P ′, Q′ and O′ the projections of points O1, O2 and
O to line PQ. As line PQ rotates, point O′ runs the circle S with diameter AO. Clearly, the
homothety with center A and coefficient 2 sends segment P ′Q′ to segment PQ, i.e., point O′

turns into the midpoint of segment PQ. Hence, the locus in question is the image of circle
S under this homothety.

7.29. Let P and Q be the centers of the circumscribed circles of triangles AMB and
CMB. Point M belongs to the locus to be found if BPMQ is a rhombus, i.e., point M is
the image of the midpoint of segment PQ under the homothety with center B and coefficient
2. Since the projections of points P and Q to line AC are the midpoints of segments AB
and BC, respectively, the midpoints of all segments PQ lie on one line. (The locus to be
found is the above-obtained line without the intersection point with line AC.)

7.30. Point P passes through point O at time t1, it passes point Q at time t2. At
time 1

2
(t1 + t2) the distances from O to points P and Q are equal to 1

2
|t1 + t2|v. At this

moment erect the perpendiculars to the lines at points P and Q. It is easy to verify that the
intersection point of these perpendiculars is the required one.

7.31. Denote the midpoints of diagonals AC and BD of quadrilateral ABCD by M and
N , respectively. Clearly, SAMB = SBMC and SAMD = SDMC , i.e., SDABM = SBCDM . Since
the areas of quadrilaterals DABM and BCDM do not vary as point M moves parallelly to
BD, it follows that SDABO = SCDAO. Similar arguments for point N show that SABCO =
SCDAO. Hence,

SADO + SABO = SBCO + SCDO and SABO + SBCO = SCDO + SADO

and, therefore,
SADO = SBCO = S1 and SABO = SCDO = S2,

i.e., the area of each of the four parts into which the segments that connect point O with
the midpoints of sides of the quadrilateral divide it is equal to 1

2
(S1 + S2).

7.32. Let us drop height BB1 from point B. Then AD = B1D and CE = B1E. Clearly,
if MD < AD, then point M lies on segment AB1, i.e., outside segment B1C. Therefore,
ME > EC.

7.33. Suppose that the distance from any vertex of the polygon to point Q is not shorter
than to point P . Then all the vertices of the polygon lie in the same half plane determined by
the perpendicular to segment PQ at point P ; point Q lies in the other half plane. Therefore,
point Q lies outside the polygon. This contradicts the hypothesis.



SOLUTIONS 179

7.34. Let us find the locus of points M for which MA > MB and MA > MC. Let us
draw midperpendiculars l1 and l2 to segments AB and AC. We have MA > MB for the
points that lie inside the half-plane bounded by line l1 and the one without point A. There-
fore, the locus in question is the intersection of half-planes (without boundaries) bounded
by lines l1 and l2 and not containing point A.

If points A, B and C do not lie on one line, then this locus is always nonempty. If A, B,
C lie on one line but A does not lie on segment BC, then this locus is also nonempty. If point
A lies on segment BC, then this locus is empty, i.e., for any point M either MA ≤ MB or
MA ≤ MC.

7.35. Let O be the midpoint of diagonal AC. The projections of points B and D to line
AC lie on segment AO, hence, the projection of point M also lies on segment AO.

7.36. Let us draw the midperpendicular l to segment AO. Clearly, AM ≥ OM if and
only if point M lies on the same side of line l as O (or lies on line l itself). Therefore, the
locus in question is the rhombus formed by the midperpendiculars to segments OA, OB,
OC and OD.

7.37. The locus to be found is shaded on Fig. 83 (the boundary belongs to the locus).

Figure 83 (Sol. 7.37)

7.38. Let A1 and B1 be the midpoints of sides CB and AC, respectively. The locus to
be found is the interior of quadrilateral OA1CB1.

Figure 84 (Sol. 7.39)

7.39. Let us draw the common tangents to given disks (Fig. 84). It is easy to verify
that the points that belong to the shaded domains (but not to their boundaries) satisfy the
required condition and the points that do not belong to these domains do not satisfy this
condition.

7.40. Let the perpendiculars dropped from points A1, B1, C1 to lines BC, CA, AB,
respectively, intersect at point M . Since points B1 and M lie on one perpendicular to line
AC, we have

B1A
2 − B1C

2 = MA2 − MC2.
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Similarly,

C1B
2 − C1A

2 = MB2 − MA2 and A1C
2 − A1B

2 = MC2 − MB2.

Adding these equalities we get

(∗) A1B
2 + C1A

2 + B1C
2 = B1A

2 + A1C
2 + C1B

2.

Conversely, let (∗) hold. Denote the intersection point of the perpendiculars dropped from
points A1 and B1 to lines BC and AC, respectively, by M . Let us draw through point M
line l perpendicular to line AB. If C ′

1 is a point on line l, then by the above

A1B
2 + C ′

1A
2 + B1C

2 = B1A
2 + A1C

2 + C ′
1B

2.

Hence, C ′
1A

2 − C ′
1B

2 = C1A
2 − C1B

2. By Problem 7.6 the locus of points X for which
XA2 − XB2 = k is a line perpendicular to segment AB. Therefore, the perpendicular
dropped from point C1 to line AB passes through point M , as required.

7.41. Set A1 = A, B1 = B and C1 = C. From the obvious identity

AB2 + CA2 + BC2 = BA2 + AC2 + CB2

we derive that the heights dropped from points A, B and C to sides BC, CA and AB,
respectively, intersect at one point.

7.42. It suffices to make use of the result of Problem 7.40.
7.43. a) This problem is an obvious corollary of Problem 7.40.
b) Let the rotation by 90◦ about a point send triangle A1B1C1 to triangle A2B2C2.

The perpendiculars to sides of triangle A2B2C2 are parallel to the corresponding sides of
triangle A1B1C1 and, therefore, the perpendiculars dropped from the vertices of triangle
ABC to the corresponding sides of triangle A2B2C2 intersect at one point. It follows that
the perpendiculars dropped from the vertices of triangle A2B2C2 to the corresponding sides
of triangle ABC intersect at one point. It remains to notice that the rotation by 90◦ that
sends triangle A2B2C2 to triangle A1B1C1 sends these perpendiculars to the lines that pass
through the sides of triangle A1B1C1 parallelly the corresponding sides of triangle ABC.

7.44. We have to find out when the identity

AB2
1 + BC2

1 + CA2
1 = BA2

1 + CB2
1 + AC2

1

holds. By subtracting AA2
2 + BB2

2 + CC2
2 from both sides of this identity we get

A2B
2
1 + B2C

2
1 + C2A

2
1 = B2A

2
1 + C2B

2
1 + A2C

2
1 ,

i.e.,

(b1 − a2)
2 + (c1 − b2)

2 + (a1 − c2)
2 = (a1 − b2)

2 + (b1 − c2)
2 + (c1 − a2)

2,

where ai, bi and ci are the coordinates of points Ai, Bi and Ci on line l. After simplification
we get

a2b1 + b2c1 + c2a1 = a1b2 + b1c2 + c1a2

and, therefore,

(b2 − a2)(c1 − b1) = (b1 − a1)(c2 − b2), i.e., A2B2 : B2C2 = A1B1 : B1C1.

7.45. We may assume that the length of a side of the given equilateral triangle is equal
to 2. Let PA = 2a, PB = 2b and PC = 2c; let A1, B1 and C1 be the projections of the
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centers of the inscribed circles of triangles PBC, PCA and PAB to lines BC, CA and AB,
respectively. By Problem 3.2 we have

AB2
1 + BC2

1 + CA2
1 = (1 + a − c)2 + (1 + b − a)2 + (1 + c − b)2 =

3 + (a − c)2 + (b − a)2 + (c − b)2 = BA2
1 + CB2

1 + AC2
1 .

7.46. The segments into which the bisectors divide the sides of the triangle are easy to
calculate. As a result we see that if the perpendiculars raised from the bases of the bisectors
intersect, then

(
ac

b
+ c)2 + (

ab

a
+ c)2 + (

bc

a
+ b)2 = (

ab

b
+ c)2 + (

bc

a
+ c)2 + (

ac

a
+ b)2,

i.e.,

0 = a2 c − b

b + c
+ b2a − c

a + c
+ c2 b − a

a + b
= −(b − a)(a − c)

a2 + b2 + c2

(a + b)(a + c)(b + c)
.

7.47. Let (ai, bi) be the coordinates of point Ai and (x, y) the coordinates of point X.
Then the equation satisfied by point X takes the form

c =
∑

ki((x − ai)
2 + (x − bi)

2) =

(
∑

ki)(x
2 + y2) − (2

∑

kiai)x − (2
∑

kibi)y +
∑

ki(a
2
i + b2

i ).

If the coefficient of x2 + y2 is nonzero, then this equation determines either a circle or the
empty set and if it is zero, then the equation determines either a line, or a plane, or the
empty set.

Remark. If in case a) points A1, . . . , An lie on one line l, then this line can be taken for
Ox-axis. Then bi = 0 and, therefore, the coefficient of y is equal to zero, i.e., the center of
the circle lies on l.

7.48. Let line l cut on the given circles arcs ⌣ A1B1 and ⌣ A2B2 whose values are 2α1

and 2α2, respectively; let O1 and O2 be the centers of the circles, R1 and R2 their respective
radii. Let K be the intersection point of the tangents at points A1 and A2. By the law of
sines KA1 : KA2 = sin α2 : sin α1, i.e., KA1 sin α1 = KA2 sin α2. Since

KO2
1 = KA2

1 + R2
1 and KO2

2 = KA2
2 + R2

2,

it follows that

(sin2 α2)KO2
1 − (sin2 α2)KO2

2 = (R1 sin α1)
2 − (R2 sin α2)

2 = q.

We similarly prove that the other intersection points of the tangents belong to the locus of
points X such that

(sin2 α1)XO2
1 − (sin2 α2)XO2

2 = q.

This locus is a circle whose center lies on line O1O2 (cf. Remark to Problem 7.47).
7.49. Let AM : BM : CM = p : q : r. All the points X that satisfy

(q2 − r2)AX2 + (r2 − p2)BX2 + (p2 − q2)CX2 = 0

lie on one line (cf. Problem 7.47) and points M , N and O satisfy this relation.





Chapter 8. CONSTRUCTIONS

§1. The method of loci

8.1. Construct triangle ABC given a, ha and R.
8.2. Inside triangle ABC construct point M so that SABM : SBCM : SACM = 1 : 2 : 3.
8.3. Through given point P inside a given circle draw a chord so that the difference of

the lengths of the segments into which P divides the chord would be equal to the given value
a.

8.4. Given a line and a circle without common points, construct a circle of a given radius
r tangent to them.

8.5. Given point A and circle S draw a line through point A so that the chord cut by
circle S on this line would be of given length d.

8.6. Quadrilateral ABCD is given. Inscribe in it a parallelogram with given directions
of sides.

§2. The inscribed angle

8.7. Given a, mc and angle ∠A, construct triangle ABC.
8.8. A circle and two points A and B inside it are given. Inscribe a right triangle in the

circle so that the legs would pass through the given points.
8.9. The extensions of sides AB and CD of rectangle ABCD intersect a line at points

M and N , respectively, and the extensions of sides AD and BC intersect the same line at
points P and Q, respectively. Construct rectangle ABCD given points M , N , P , Q and the
length a of side AB.

8.10. Construct a triangle given its bisector, median and height drawn from one vertex.
8.11. Construct triangle ABC given side a, angle ConstructatriangleA and the radius

r of the inscribed circle.

§3. Similar triangles and a homothety

8.12. Construct a triangle given two angles ∠A, ∠B and the perimeter P .
8.13. Construct triangle ABC given ma, mb and mc.
8.14. Construct triangle ABC given ha, hb and hc.
8.15. In a given acute triangle ABC inscribe square KLMN so that vertices K and N

lie on sides AB and AC and vertices L and M lie on side BC.
8.16. Construct triangle ABC given ha, b − c and r.

Cf. also Problems 19.15-19.20, 19.39, 19.40.

§4. Construction of triangles from various elements

In the problems of this section it is necessary to construct triangle ABC given the
elements indicated below.

8.17. c, ma and mb.
8.18. a, b and ha.

183
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8.19. hb, hc and ma.
8.20. ∠A, hb and hc.
8.21. a, hb and mb.
8.22. ha, ma and hb.
8.23. a, b and mc.
8.24. ha, ma and ∠A.
8.25. a, b and lc.
8.26. ∠A, ha and p.

See also Problems 17.6-17.8.

§5. Construction of triangles given various points

8.27. Construct triangle ABC given (1) line l containing side AB and (2) bases A1 and
B1 of heights dropped on sides BC and AC, respectively.

8.28. Construct an equilateral triangle given the bases of its bisectors.
8.29. a) Construct triangle ABC given three points A′, B′, C ′ at which the bisectors of

the angles of triangle ABC intersect the circumscribed circle (both triangles are supposed
to be acute ones).

b) Construct triangle ABC given three points A′, B′, C ′ at which the heights of the
triangle intersect the circumscribed circle (both triangles are supposed to be acute ones).

8.30. Construct triangle ABC given three points A′, B′, C ′ symmetric to the center O
of the circumscribed circle of this triangle through sides BC, CA, AB, respectively.

8.31. Construct triangle ABC given three points A′, B′, C ′ symmetric to the intersection
point of the heights of the triangle through sides BC, CA, AB, respectively (both triangles
are supposed to be acute ones).

8.32. Construct triangle ABC given three points P , Q, R at which the height, the
bisector and the median drawn from vertex C, respectively, intersect the circumscribed
circle.

8.33. Construct triangle ABC given the position of points A1, B1, C1 that are the
centeres of the escribed circles of triangle ABC.

8.34. Construct triangle ABC given the center of the circumscribed circle O, the inter-
section point of medians, M , and the base H of height CH.

8.35. Construct triangle ABC given the centers of the inscribed, the circumscribed, and
one of the escribed circles.

§6. Triangles

8.36. Construct points X and Y on sides AB and BC, respectively, of triangle ABC so
that AX = BY and XY ‖ AC.

8.37. Construct a triangle from sides a and b if it is known that the angle opposite one
of the sides is three times the angle opposite the other side.

8.38. In given triangle ABC inscribe rectangle PRQS (vertices R and Q lie on sides
AB and BC and vertices P and S lie on side AC) so that its diagonal would be of a given
length.

8.39. Through given point M draw a line so that it would cut from the given angle with
vertex A a triangle ABC of a given perimeter 2p.

8.40. Construct triangle ABC given its median mc and bisector lc if ∠C = 90◦.
8.41. Given triangle ABC such that AB < BC, construct on side AC point D so that

the perimeter of triangle ABD would be equal to the length of side BC.
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8.42. Construct triangle ABC from the radius of its circumscribed circle and the bisector
of angle ∠A if it is known that ∠B − ∠C = 90◦.

8.43. On side AB of triangle ABC point P is given. Draw a line (distinct from AB)
through point P that cuts rays CA and CB at points M and N , respectively, such that
AM = BN .

8.44. Construct triangle ABC from the radius of the inscribed circle r and (nonzero)
lengths of segments AO and AH, where O is the center of the inscribed circle and H the
orthocenter.

See also Problems 15.12 b), 17.12-17.15, 18.10, 18.29.

§7. Quadrilaterals

8.45. Construct a rhombus two sides of which lie on two given parallel lines and two
other sides pass through two given points.

8.46. Construct quadrilateral ABCD given the lengths of the four sides and the angle
between AB and CD.

8.47. Through vertex A of convex quadrilateral ABCD draw a line that divides ABCD
into two parts of equal area.

8.48. In a convex quadrilateral three sides are equal. Given the midpoints of the equal
sides construct the quadrilateral.

8.49. A quadrilateral is both inscribed and circumscribed. Given three of its vertices,
construct its fourth vertex.

8.50. Given vertices A and C of an isosceles circumscribed trapezoid ABCD (AD ‖ BC)
and the directions of its bases, construct vertices B and D.

8.51. On the plane trapezoid ABCD is drawn (AD ‖ BC) and perpendicular OK from
the intersection point O is dropped on base AD; the midpoint EF is drawn. Then the
trapezoid itself was erased. How to recover the plot of the trapezoid from the remaining
segments OK and EF?

8.52. Construct a convex quadrilateral given the lengths of all its sides and one of the
midlines.

8.53. (Brachmagupta.) Construct an inscribed quadrilateral given its four sides.

See also Problems 15.10, 15.13, 16.17, 17.4, 17.5.

§8. Circles

8.54. Inside an angle two points A and B are given. Construct a circle that passes
through these points and intercepts equal segments on the sides of the angle.

8.55. Given circle S, point A on it and line l. Construct a circle tangent to the given
circle at point A and tangent to the given line.

8.56. a) Two points, A, B and line l are given. Construct a circle that passes through
point A, B and is tangent to l.

b) Two points A, B and circle S are given. Construct a circle that passes through points
A and B and is tangent to S.

8.57. Three points A, B and C are given. Construct three circles that are pairwise
tangent at these points.

8.58. Construct a circle the tangents to which drawn from three given points A, B and
C have given lengths a, b and c, respectively.

See also Problems 15.8, 15.9, 15.11, 15.12 a), 16.13, 16.14, 16.18–16.20, 18.24.
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§9. Apollonius’ circle

8.59. Construct triangle ABC given a, ha and b
c
.

8.60. Construct triangle ABC given the length of bisector CD and the lengths of
segments AD and BD into which the bisector divides side AB.

8.61. On a line four points A, B, C, D are given in the indicated order. Construct point
M — the vertex of equal angles that subtend segments AB, BC, CD.

8.62. Two segments AB and A′B′ are given in plane. Construct point O so that triangles
AOB and A′OB′ would be similar (equal letters stand for the corresponding vertices of
similar triangles).

8.63. Points A and B lie on a diameter of a given circle. Through A and B draw two
equal chords with a common endpoint.

§10. Miscellaneous problems

8.64. a) On parallel lines a and b, points A and B are given. Through a given point
C draw line l that intersects lines a and b at points A1 and B1, respectively, and such that
AA1 = BB1.

b) Through point C draw a line equidistant from given points A and B.
8.65. Construct a regular decagon.
8.66. Construct a rectangle with the given ratio of sides knowing one point on each of

its sides.
8.67. Given diameter AB of a circle and point C on the diameter. On this circle,

construct points X and Y symmetric through line AB and such that lines AX and Y C are
perpendicular.

See also Problems 15.7, 16.15, 16.16, 16.21, 17.9–17.11, 17.27–17.29, 18.41.

§11. Unusual constructions

8.68. With the help of a ruler and a compass divide the angle of 19◦ into 19 equal parts.
8.69. Prove that an angle of value n◦, where n is an integer not divisible by 3, can be

divided into n equal parts with the help of a compass and ruler.
8.70. On a piece of paper two lines are drawn. They form an angle whose vertex lies

outside this piece of paper. With the help of a ruler and a compass draw the part of the
bisector of the angle that lies on this piece of paper.

8.71. With the help of a two-sided ruler construct the center of the given circle whose
diameter is greater than the width of the ruler.

8.72. Given points A and B; the distance between them is greater than 1 m. The length
of a ruler is 10 cm. With the help of the ruler only construct segment AB. (Recall that with
the help of a ruler one can only draw straight lines.)

8.73. On a circle of radius a a point is given. With the help of a coin of radius a
construct the point diametrically opposite to the given one.

§12. Construction with a ruler only

In the problems of this section we have to perform certain constructions with the help of
a ruler only, without a compass or anything else. With the help of one ruler it is almost im-
possible to construct anything. For example, it is even impossible to construct the midpoint
of a segment (Problem 30.59).

But if certain additional lines are drawn on the plane, it is possible to perform certain
constructions. In particular, if an additional circle is drawn on the plane and its center is
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marked, then with the help of a ruler one can perform all the constructions that can be
performed with the help of a ruler and a compass. One has, however, to convene that a
circle is “constructed” whenever its center and one of its points are marked.

Remark. If a circle is drawn on the plane but its center is not marked then to construct
its center with the help of a ruler only is impossible (Problem 30.60).

8.74. Given two parallel lines and a segment that lies on one of the given lines. Divide
the segment in halves.

8.75. Given two parallel lines and a segment that lies on one of the given lines. Double
the segment.

8.76. Given two parallel lines and a segment that lies on one of the given lines. Divide
the segment into n equal parts.

8.77. Given two parallel lines and point P , draw a line through P parallel to the given
lines.

8.78. A circle, its diameter AB and point P are given. Through point P draw the
perpendicular to line AB.

8.79. In plane circle S and its center O are given. Then with the help of a ruler only
one can:

a) additionally given a line, draw a line through any point parallel to the given line and
drop the perpendicular to the given line from this point;

b) additionally given a line a point on it and a length of a segment, on the given line,
mark a segment of length equal to the given one and with one of the endpoints in the given
point;

c) additionally given lengths of a, b, c of segments, construct a segment of length ab
c
;

d) additionally given line l, point A and the length r of a segment, construct the inter-
section points of line l with the circle whose center is point A and the radius is equal to
r;

e) additionally given two points and two segments, construct the intersection points of
the two circles whose centers are the given points and the radii are the given segments.

See also Problem 6.97.

§13. Constructions with the help of a two-sided ruler

In problems of this section we have to perform constructions with the help of a ruler
with two parallel sides (without a compass or anything else). With the help of a two-sided
ruler one can perform all the constructions that are possible to perform with the help of a
compass and a ruler.

Let a be the width of a two-sided ruler. By definition of the two-sided ruler with the
help of it one can perform the following elementary constructions:

1) draw the line through two given points;
2) draw the line parallel to a given one and with the distance between the lines equal to

a;
3) through two given points A and B, where AB ≥ a, draw a pair of parallel lines the

distance between which is equal to a (there are two pairs of such lines).

8.80. a) Construct the bisector of given angle ∠AOB.
b) Given acute angle ∠AOB, construct angle ∠BOC whose bisector is ray OA.
8.81. Erect perpendicular to given line l at given point A.
8.82. a) Given a line and a point not on the line. Through the given point draw a line

parallel to the given line.
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b) Construct the midpoint of a given segment.
8.83. Given angle ∠AOB, line l and point P on it, draw through P lines that form

together with l an angle equal to angle ∠AOB.
8.84. Given segment AB, a non-parallel to it line l and point M on it, construct the

intersection points of line l with the circle of radius AB centered at M .
8.85. Given line l and segment OA, parallel to l, construct the intersection points of l

with the circle of radius OA centered at O.
8.86. Given segments O1A1 and O2A2, construct the radical axis of circles of radii O1A1

and O2A2 centered at O1 and O2, respectively.

§14. Constructions using a right angle

In problems of this section we have to perform the constructions indicated using a right

angle. A right angle enables one to perform the following elementary constructions:
a) given a line and a point not on it, place the right angle so that one of its legs lies on

the given line and the other leg runs through the given point;
b) given a line and two points not on it, place the right angle so that its vertex lies on

the given line and thelegs pass through two given points (if, certainly, for the given line and
points such a position of the right angle exists).

Placing the right angle in one of the indicated ways we can draw rays corresponding to
its sides.

8.87. Given line l and point A not on it, draw a line parallel to l.
8.88. Given segment AB, construct
a) the midpoint of AB;
b) segment AC whose midpoint is point B.
8.89. Given angle ∠AOB, construct
a) an angle of value 2∠AOB;
b) an angle of value 1

2
∠AOB.

8.90. Given angle ∠AOB and line l, draw line l1 so that the angle between lines l and
l1 is equal to ∠AOB.

8.91. Given segment AB, line l and point O on it, construct on l point X such that
OX = AB.

8.92. Given segment OA parallel to line l, construct the locus of points in which the
disc segment of radius OA centered at O intersects l.

Problems for independent study

8.93. Construct a line tangent to two given circles (consider all the possible cases).
8.94. Construct a triangle given (the lengths of) the segments into which a height divides

the base and a median drawn to a lateral side.
8.95. Construct parallelogram ABCD given vertex A and the midpoints of sides BC

and CD.
8.96. Given 3 lines, a line segment and a point. Construct a trapezoid whose lateral

sides lie on the given lines, the diagonals intersect at the given point and one of the bases is
of the given length.

8.97. Two circles are given. Draw a line so that it would be tangent to one of the circles
and the other circle would intersept on it a chord of a given length.

8.98. Through vertex C of triangle ABC draw line l so that the areas of triangles AA1C
and BB1C, where A1 and B1 are projections of points A and B on line l, are equal.
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8.99. Construct triangle ABC given sides AB and AC if it is given that bisector AD,
median BM , and height CH meet at one point.

8.100. Points A1, B1 and C1 that divide sides BC, CA and AB, respectively, of triangle
ABC in the ratio of 1 : 2 are given. Recover triangle ABC from this data.

Solutions

8.1. Let us construct segment BC of length a. The center O of the circumscribed circle
of triangle ABC is the intersection point of two circles of radius R centered at B and C.
Select one of these intersection points and construct the circumscribed circle S of triangle
ABC. Point A is the intersection point of circle S and a line parallel line BC and whose
distance from BC is equal to ha (there are two such lines).

8.2. Let us construct points A1 and B1 on sides BC and AC, respectively, so that
BA1 : A1C = 1 : 3 and AB1 : B1C = 1 : 2. Let point X lie inside triangle ABC. Clearly,
SABX : SBCX = 1 : 2 if and only if point X lies on segment BB1 and SABX : SACX = 1 : 3
if and only if point X lies on segment AA1. Therefore, the point M to be constucted is the
intersection point of segments AA1 and BB1.

8.3. Let O be the center of the given circle, AB a chord that passes through point P
and M the midpoint of AB. Then |AP − BP | = 2PM . Since ∠PMO = 90◦, point M lies
on circle S with diameter OP . Let us construct chord PM of circle S so that PM = 1

2
a

(there are two such chords). The chord to be constructed is determined by line PM .
8.4. Let R be the radius of the given circle, O its center. The center of the circle to be

constructed lies on circle S of radius R + r centered at O. On the other hand, the center
to be constructed lies on line l passing parallelly to the given line at distance r (there are
two such lines). Any intersection point of S with l can serve as the center of the circle to be
constructed.

8.5. Let R be the radius of circle S and O its center. If circle S intersepts on the line
that passes through point A chord PQ and M is the midpoint of PQ, then

OM2 + OQ2 − NQ2 = R2 − d2

4
.

Therefore, the line to be constructed is tangent to the circle of radius
√

R2 − d2

4
centered at

O.
8.6. On lines AB and CD take points E and F so that lines BF and CE would have had

prescribed directions. Let us considered all possible parallelograms PQRS with prescribed
directions of sides whose vertices P and R lie on rays BA and CD and vertex Q lies on side
BC (Fig. 85).

Figure 85 (8.6)
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Let us prove that the locus of vertices S is segment EF . Indeed, SR
EC

= PQ
EC

= BQ
BC

= FR
FC

,
i.e., point S lies on segment EF . Conversely if point S ′ lies on segment EF then let us draw
lines S ′P ′, P ′Q′ and Q′R′ so that S ′P ′ ‖ BF , P ′Q′ ‖ EC and Q′R′ ‖ BF , where P ′, Q′ and

R′ are some points on lines AB, BC, CD, respectively. Then S′P ′

BF
= P ′E

BE
= Q′C

BC
= Q′R′

BF
, i.e.,

S ′P ′ = Q′R′ and P ′Q′R′S ′ is a parallelogram.
This implies the following construction. First, construct points E and F . Vertex S is the

intersection point of segments AD and EF . The continuation of construction is obvious.
8.7. Suppose that triangle ABC is constructed. Let A1 and C1 be the midpoints of sides

CD and AB, respectively. Since C1A1 ‖ AC, it follows that ∠A1C1B = ∠A. This implies
the following construction.

First, let us construct segment CD of length a and its midpoint, A1. Point C1 is the
intersection point of the circle of radius mc centered at C and the arcs of the circles whose
points are vertices of the angles equal to ∠A that segment A1B subtends. Construct point
C1, then mark on ray BC1 segment BA = 2BC1. Then A is the vertex of the triangle to be
constructed.

8.8. Suppose that the desired triangle is constructed and C is the vertex of its right
angle. Since ∠ACB = 90◦, point C lies on circle S with diameter AB. Hence, point C is
the intersection point of circle S and the given circle. Constructing point C and drawing
lines CA and AB, we find the remaining vertices of the triangle to be constructed.

8.9. Suppose that rectangle ABCD is constructed. Let us drop perpendicular PR from
point P to line BC. Point R can be constructed because it lies on the circle with diameter
PQ and PR = AB = a. Constructing point R, let us construct lines BC and AD and drop
on them perpendiculars from points M and N , respectively.

8.10. Suppose that triangle ABC is constructed, AH is its height, AD its bisector, AM
its median. By Problem 2.67 point D lies between M and H. Point E, the intersection point
of line AD with the perpendicular drawn from point M to side BC, lies on the circumscribed
circle of triangle ABC. Hence, the center O of the circumscribed circle lies on the intersection
of the midperpendicular to segment AE and the perpendicular to side BC drawn through
point M .

The sequence of constructions is as follows: on an arbitrary line (which in what follows
turns out to be line BC) construct point H, then consecutively construct points A, D, M ,
E, O. The desired vertices B and C of triangle ABC are intersection points of the initial
line with the circle of radius OA centered at O.

8.11. Suppose that triangle ABC is constructed and O is the center of its inscribed
circle. Then ∠BOC = 90◦ + 1

2
∠A (Problem 5.3). Point O is the vertex of an angle of

90◦ + 1
2
∠A that subtends segment BC; the distance from O to line BC is equal to r, hence,

BC(??) can be constructed. Further, let us construct the inscribed circle and draw the
tangents to it from points B and C.

8.12. Let us construct any triangle with angles ∠A and ∠B and find its perimeter P1.
The triangle to be found is similar to the constructed triangle with coefficient P

P1
.

8.13. Suppose that triangle ABC is constructed. Let AA1, BB1 and CC1 be its medians,
M their intersection point, M ′ the point symmetric to M through point A1. Then MM ′ =
2
3
ma, MC = 2

3
mc and M ′C = 2

3
mb; hence, triangle MM ′C can be constructed. Point A is

symmetric to M ′ through point M and point B is symmetric to C through the midpoint of
segment MM ′.

8.14. Clearly,

BC : AC : AB =
S

ha

:
S

hb

:
S

hc

=
1

ha

:
1

hb

:
1

hc

.
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Let us take an arbitrary segment B′C ′ and construct triangle A′B′C ′ so that B′C ′ : A′C ′ =
hb : ha and B′C ′ : A′B′ = hc : ha. Let h′

a be the height of triangle A′B′C ′ dropped from
vertex A′. The triangle to be found is similar to triangle A′B′C ′ with coefficient ha

h′

a
.

8.15. On side AB, take an arbitrary point K ′ and drop from it perpendicular K ′L′

to side BC; then construct square K ′L′M ′N ′ that lies inside angle ∠ABC. Let line BN ′

intersect side AC at point N . Clearly, the square to be constructed is the image of square
K ′L′M ′N ′ under the homothety with center B and coefficient BN : BN ′.

8.16. Suppose that the desired triangle ABC is constructed. Let Q be the tangent point
of the inscribed circle with side BC; let PQ be a diameter of the circle, R the tangent point
of an escribed circle with side BC. Clearly,

BR =
a + b + c

2
− c =

a + b − c

2
and BQ =

a + c − b

2
.

Hence, RQ = |BR − BQ| = |b − c|. The inscribed circle of triangle ABC and the escribed
circle tangent to side BC are homothetic with A being the center of homothety. Hence,
point A lies on line PR (Fig. 86).

Figure 86 (Sol. 8.16)

This implies the following construction. Let us construct right triangle PQR from the
known legs PQ = 2r and RQ = |b − c|. Then draw two lines parallel to line RQ and whose
distances from RQ are equal to ha. Vertex A is the intersection point of one of these lines
with ray RP . Since the length of diameter PQ of the inscribed circle is known, it can be
constructed. The intersection points of the tangents to this circle drawn from point A with
line RQ are vertices B and C of the triangle.

8.17. Suppose that triangle ABC is constructed. Let M be the intersection point
of medians AA1 and BB1. Then AM = 2

3
ma and BM = 2

3
mb. Triangle ABM can be

constructed from the lengths of sides AB = c, AM and BM . Then on rays AM and BM
segments AA1 = ma and BB1 = mb should be marked. Vertex C is the intersection point of
lines AB1 and A1B.

8.18. Suppose triangle ABC is constructed. Let H be the base of the height dropped
from vertex A. Right triangle ACH can be constructed from its hypothenuse AC = b and
leg AH = ha. Then on line CH construct point B so that CB = a.

8.19. Suppose that triangle ABC is constructed. Let us draw from the midpoint A1 of
side BC perpendiculars A1B

′ and A1C
′ to lines AC and AB, respectively. Clearly, AA1 =

ma, A1B
′ = 1

2
hb and A1C

′ = 1
2
hc. This implies the following construction.

First, let us construct segment AA1 of length ma. Then construct right triangles AA1B
′

and AA1C
′ from the known legs and hypothenuse so that they would lie on distinct sides

of line AA1. It remains to construct points B and C on sides AC ′ and AB′ of angle C ′AB′

so that segment BC would be divided by points A1 in halves. For this let us mark on ray
AA1 segment AD = 2AA1 and then draw through point D the lines parallel to the legs of
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Figure 87 (Sol. 8.19)

angle ∠C ′AB′. The intersection points of these lines with the legs of angle ∠C ′AB′ are the
vertices of the triangle to be constructed (Fig. 87).

8.20. Let us construct angle ∠B′AC ′ equal to ∠A. Point B is constructed as the
intersection of ray AB′ with a line parallel to ray AC ′ and passsing at distance hb from it.
Point C is similarly constructed.

8.21. Suppose that triangle ABC is constructed. Let us drop height BH from point B
and draw median BB1. In right triangles CBH and B1BH, leg BH and hypothenuses CB
and B1B are known; hence, these segments can be constructed. Then on ray CB1 we mark
segment CA = 2CB1. The problem has two solutions because we can construct triangles
CBH and B1BH either on one or on distinct sides of line BH.

8.22. Suppose that triangle ABC is constructed. Let M be the midpoint of segment
BC. From point A drop height AH and from point M drop perpendicular MD to side AC.
Clearly, MD = 1

2
hb. Hence, triangles AMD and AMH can be constructed.

Vertex C is the intersection point of lines AD and MH. On ray CM , mark segment
CB = 2CM . The problem has two solutions because triangles AMD and AMH can be
constructed either on one or on distinct sides of line AM .

8.23. Suppose that triangle ABC is constructed. Let A1, B1 and C1 be the midpoints of
sides BC, CA and AB, respectively. In triangle CC1B1 all the sides are known: CC1 = mc,
C1B1 = 1

2
a and CB1 = 1

2
b; hence, it can be constructed. Point A is symmetric to C through

point B1 and point B is symmetric to A through C1.
8.24. Suppose that triangle ABC is constructed, AM is its median, AH its height. Let

point A′ be symmetric to A through point M .
Let us construct segment AA′ = 2ma. Let M be the midpoint of AA′. Let us construct

right triangle AMH with hypothenuse AM and leg AH = ha. Point C lies on an arc of the
circle whose points are the vertices of the angles that subtend segment AA′; the values of
these angles are equal to 180◦−∠A because ∠ACA′ = 180◦−∠CAB. Hence, point C is the
intersection point of this arc and line MH. Point B is symmetric to C through point M .

8.25. Suppose triangle ABC is constructed. Let CD be its bisector. Let us draw line
MD parallel to side BC (point M lies on side AC). Triangle CMD is an isosceles one
because ∠MCD = ∠DCB = ∠MDC. Since

MC : AM = DB : AD = CB : AC = a : b and AM + MC = b,

it follows that MC = ab
a+b

. Let us construct an isosceles triangle CMD from its base CD = lc
and lateral sides MD = MC = ab

a+b
. Further, on ray CM , mark segment CA = b and on

the ray symmetric to ray CM through line CD mark segment CB = a.
8.26. Suppose that triangle ABC is constructed. Let S1 be the escribed circle tangent

to side BC. Denote the tangent points of circle S1 with the extensions of sides AB and AC
by K and L, respectively, and the tangent point of S1 with side BC by M . Since

AK = AL,AL = AC + CM and AK = AB + BM,
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it follows that AK = AL = p. Let S2 be the circle of radius ha centered at A. Line BC is a
common inner tangent to circles S1 and S2.

This implies the following construction. Let us construct angle ∠KAL whose value is
equal to that of A so that KA = LA = p. Next, construct circle S1 tangent to the sides of
angle ∠KAL at points K and L and circle S2 of radius ha centered at A. Then let us draw
a common inner tangent to circles S1 and S2. The intersection points of this tangent with
the legs of angle ∠KAL are vertices B and C of the triangle to be constructed.

8.27. Points A1 and B1 lie on the circle S with diameter AB. The center O of this
circle lies on the midperpendicular to chord A1B1. This implies the following construction.
First, let us construct point O which is the intersection point of the midperpendicular to
segment A1B1 with line l. Next, construct the circle of radius OA1 = OB1 centered at O.
The vertices A and B are the intersection points of circle S with line l. Vertex C is the
intersection point of lines AB1 and BA1.

8.28. Let AB = BC and A1, B1, C1 the bases of the bisectors of triangle ABC. Then
∠A1C1C = ∠C1CA = ∠C1CA1, i.e., triangle CA1C1 is an isosceles one and A1C = A1C1.

This implies the following construction.
Let us draw through point B1 line l parallel to A1C1. On l, construct point C such that

CA1 = C1A1 and ∠C1A1C > 90◦. Point A is symmetric to point C through point B1 and
vertex B is the intersection point of lines AC1 and A1C.

8.29. a) By Problem 2.19 a) points A, B and C are the intersection points of the
extensions of heights of triangle A′B′C ′ with its circumscribed circle.

b) By Problem 2.19 b) points A, B and C are the intersection points of the extensions
of bisectors of the angles of triangle A′B′C ′ with its circumscribed circle.

8.30. Denote the midpoints of sides BC, CA, AB of the triangle by A1, B1, C1, respec-
tively. Since BC ‖ B1C1 ‖ B′C ′ and OA1 ⊥ BC, it follows that OA′ ⊥ B′C ′. Similarly,
OB′ ⊥ A′C ′ and OC ′ ⊥ A′B′, i.e., O is the intersection point of the heights of triangle
A′B′C ′. Constructing point O, let us draw the midperpendiculars to segments OA′, OB′,
OC ′. These lines form triangle ABC.

8.31. Thanks to Problem 5.9 our problem coincides with Problem 8.29 b).
8.32. Let O be the center of the circumscribed circle, M the midpoint of side AB and

H the base of the height dropped from point C. Point Q is the midpoint of arc ⌣ AB,
therefore, OQ ⊥ AB. This implies the following construction. First, the three given points
determine the circumscribed circle S of triangle PQR. Point C is the intersection point of
circle S and the line drawn parallelly to OQ through point P . Point M is the intersection
point of line OQ and line RC. Line AB passes through point M and is perpendicular to
OQ.

8.33. By Problem 5.2, points A, B and C are the bases of the heights of triangle A1B1C1.
8.34. Let H1 be the intersection point of heights of triangle ABC. By Problem 5.105,

OM : MH1 = 1 : 2 and point M lies on segment OH1. Therefore, we can construct point
H1. Then let us draw line H1H and erect at point H of this line perpendicular l. Dropping
perpendicular from point O to line l we get point C1 (the midpoint of segment AB). On ray
C1M , construct point C so that CC1 : MC1 = 3 : 1. Points A and B are the intersection
points of line l with the circle of radius CO centered at O.

8.35. Let O and I be the centers of the circumscribed and inscribed circles, Ic the center
of the escribed circle tangent to side AB. The circumscribed circle of triangle ABC divides
segment IIc (see Problem 5.109 b)) in halves and segment IIc divides arc ⌣ AB in halves.
It is also clear that points A and B lie on the circle with diameter IIc. This implies the
following construction.
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Let us construct circle S with diameter IIc and circle S1 with center O and radius OD,
where D is the midpoint of segment IIc. Circles S and S1 intersect at points A and B. Now,
we can construct the inscribed circle of triangle ABC and draw tangents to it at points A
and B.

8.36. Suppose that we have constructed points X and Y on sides AB and BC, respec-
tively, of triangle ABC so that AX = BY and XY ‖ AC. Let us draw Y Y1 parallel to AB
and Y1C1 parallel to BC (points Y1 and C1 lie on sides AC and AB, respectively). Then
Y1Y = AX = BY , i.e., BY Y1C is a rhombus and BY1 is the bisector of angle ∠B.

This implies the following construction. Let us draw bisector BY1, then line Y1Y parallel
to side AB (we assume that Y lies on BC). Now, it is obvious how to construct point X.

8.37. Let, for definiteness, a < b. Suppose that triangle ABC is constructed. On side
AC, take point D such that ∠ABD = ∠BAC. Then ∠BDC = 2∠BAC and

∠CBD = 3∠BAC − ∠BAC = 2∠BAC,

i.e., CD = CB = a. In triangle BCD all the sides are known: CD = CB = a and
DB = AD = b − a. Constructing triangle BCD, draw ray BA that does not intersect side
CD so that ∠DBA = 1

2
∠DBC. Vertex A to be constructed is the intersection point of line

CD and this ray.
8.38. Let point B′ lie on line l that passes through point B parallelly to AC. Sides of

triangles ABC and AB′C intersept equal segments on l. Hence, rectangles P ′R′Q′S ′ and
PRQS inscribed in triangles ABC and AB′C, respectively, are equal if points R, Q, R′ and
Q′ lie on one line.

On line l, take point B′ so that ∠B′AC = 90◦. It is obvious how to inscribe rectangle
P ′R′Q′S ′ with given diagonal P ′Q′ in triangle AB′C (we assume that P ′ = A). Draw line
R′Q′; we thus find vertices R and Q of the rectangle to be found.

8.39. Suppose that triangle ABC is constructed. Let K and L be points at which
the escribed circle tangent to side BC is tangent to the extensions of sides AB and AC,
respectively. Since AK = AL = p, this escribed circle can be constructed; it remains to
draw the tangent through the given point M to the constructed circle.

8.40. Let the extension of the bisector CD intersect the circumscribed circle of triangle
ABC (with right angle ∠C) at point P , let PQ be a diameter of the circumscribed circle
and O its center. Then PD : PO = PQ : PC, i.e., PD · PC = 2R2 = 2m2

c . Therefore,
drawing a tangent of length

√
2mc to the circle with diameter CD, it is easy to construct a

segment of length PC. Now, the lengths of all the sides of triangle OPC are known.
8.41. Let us construct point K on side AC so that AK = BC − AB. Let point D

lie on segment AC. The equality AD + BD + AB = BC is equivalent to the equality
AD + BD = AK. For point D that lies on segment AK the latter equality takes the
form AD + BD = AD + DK and for point D outside segment AK it takes the form
AD + BD = AD − DK. In the first case BD = DK and the second case is impossible.
Hence, point D is the intersection point of the midperpendicular to segment BK and segment
AC.

8.42. Suppose that triangle ABC is constructed. Let us draw diameter CD of the
circumscribed circle. Let O be the center of the circumscribed circle, L the intersection
point of the extension of the bisector AK with the circumscribed circle (Fig. 88). Since
∠ABC − ∠ACB = 90◦, it follows that ∠ABD = ∠ACB; hence, ⌣ DA =⌣ AB. It is also
clear that ⌣ BL =⌣ LC. Therefore, ∠AOL = 90◦.

This implies the following construction. Let us construct circle S with center O and a
given radius. On circle S select an arbitrary point A. Let us construct a point L on circle
S so that ∠AOL = 90◦. On segment AL, construct segment AK whose length is equal to
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Figure 88 (Sol. 8.42)

that of the given bisector. Let us draw through point K line l perpendicular to OL. The
intersection points of l with circle S are vertices B and C of triangle ABC to be constructed.

8.43. On sides BC and AC, take points A1 and B1 such that PA1 ‖ AC and PB1 ‖ BC.
Next, on rays A1B and B1A mark segments A1B2 = AB1 and B1A2 = BA1. Let us prove
that line A2B2 is the one to be found. Indeed, let k = AP

AB
. Then

BA2

BP
=

(1 − k)a

ka
=

(1 − k)a + (1 − k)b

ka + kb
=

CA2

CB2

,

i.e., △A2B1P ∼ △A2CB2 and line A2B2 passes through point P . Moreover, AA2 = |(1 −
k)a − kb| = BB2.

8.44. Suppose that triangle ABC is constructed. Let B1 be the tangent point of the
inscribed circle with side AC. In right triangle AOB1 leg OB1 = r and hypothenuse AO
are known, therefore, we can construct angle ∠OAB1, hence, angle ∠BAC. Let O1 be the
center of the circumscribed circle of triangle ABC, let M be the midpoint of side BC. In
right triangle BO1M leg O1M = 1

2
AH is known (see solution to Problem 5.105) and angle

∠BO1M is known (it is equal to either ∠A or 180◦ − ∠A); hence, it can be constructed.

Next, we can determine the length of segment OO1 =
√

R(R − 2r), cf. Problem 5.11 a).
Thus, we can construct segments of length R and OO1 = d.

After this take segment AO and construct point O1 for which AO1 = R and OO1 = d
(there could be two such points). Let us draw from point A tangents to the circle of radius
r centered at O. Points B and C to be found lie on these tangents and their distance from
point O1 is equal to R; obviously, points B and C are distinct from point A.

8.45. Let the distance between the given parallel lines be equal to a. We have to draw
parallel lines through points A and B so that the distance between the lines is equal to
a. To this end, let us construct the circle with segment AB as its diameter and find the
intersection points C1 and C2 of this circle with the circle of radius a centered at B. A side
of the rhombus to be constructed lies on line AC1 (another solution: it lies on AC2). Next,
let us draw through point B the line parallel to AC1 (resp. AC2).

8.46. Suppose that quadrilateral ABCD is constructed. Let us denote the midpoints of
sides AB, BC, CD and DA by P , Q, R and S, respectively, and the midpoints of diagonals
AC and BD by K and L, respectively. In triangle KSL we know KS = 1

2
CD, LS = 1

2
AB

and angle ∠KSL equal to the angle between the sides AB and CD.
Having constructed triangle KSL, we can construct triangle KRL because the lengths of

all its sides are known. After this we complement triangles KSL and KRL to parallelograms
KSLQ and KRLP , respectively. Points A, B, C, D are vertices of parallelograms PLSA,
QKPB, RLQC, SKRD (Fig. 89).

8.47. Let us drop perpendiculars BB1 and DD1 from vertices B and D, respectively,
to diagonal AC. Let, for definiteness, DD1 > BB1. Let us construct a segment of length
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Figure 89 (Sol. 8.46)

a = DD1 − BB1; draw a line parallel to line AC and such that the distance between this
line and AC is equal to a and which intersects side CD at a point, E. Clearly,

SAED =
ED

CD
SACD =

BB1

DD1

SACD = SABC .

Therefore, the median of triangle AEC lies on the line to be constructed.
8.48. Let P , Q, R be the midpoints of equal sides AB, BC, CD of quadrilateral

ABCD. Let us draw the midperpendiculars l1 and l2 to segments PQ and QR. Since
AB = BC = CD, it is clear that points B and C lie on lines l1 and l2 and BQ = QC.

This implies the following construction. Let us draw the midperpendiculars l1 and l2
to segments PQ and QR, respectively. Then through point Q we draw a segment with
endpoints on lines l1 and l2 so that Q were its midpoint, cf. Problem 16.15.

8.49. Let vertices A, B and C of quadrilateral ABCD which is both inscribed and
circumscribed be given and AB ≥ BC. Then AD − CD = AB − BC ≥ 0. Hence, on side
AD we can mark segment DC1 equal to DC. In triangle AC1C the lengths of sides AC and
AC1 = AB −BC are known and ∠AC1C = 90◦ + 1

2
∠D = 180◦ − 1

2
∠B. Since angle ∠AC1C

is an obtuse one, triangle AC1C is uniquely recoverable from these elements. The remaining
part of the construction is obvious.

8.50. Let ABCD be a circumscribed equilateral trapezoid with bases AD and BC such
that AD > BC; let C1 be the projection of point C to line AD. Let us prove that AB = AC1.
Indeed, if P and Q are the tangent points of sides AB and AD with the inscribed circle,
then AB = AP + PB = AQ + 1

2
BC = AQ + QC1 = AC1.

This implies the following construction. Let C1 be the projection of point C to base AD.
Then B is the intersection point of line BC and the circle of radius AC1 centered at A. A
trapezoid with AD < BC is similarly constructed.

8.51. Let us denote the midpoints of bases AD and BC by L and N and the midpoint
of segment EF by M . Points L, O, N lie on one line (by Problem 19.2). Clearly, point M
also lies on this line. This implies the following construction.

Let us draw through point K line l perpendicular to line OK. Base AD lies on l. Point
L is the intersection point of l and line OM . Point N is symmetric to point L through point
M . Let us draw lines through point O parallel to lines EN and FN . The intersection points
of the lines we have just drawn are vertices A and D of the trapezoid. Vertices B and C are
symmetric to vertices A and D through points E and F , respectively.

8.52. Suppose that we have constructed quadrilateral ABCD with given lengths of sides
and a given midline KP (here K and P are the midpoints of sides AB and CD, respectively).
Let A1 and B1 be the points symmetric to points A and B, respectively, through point P .
Triangle A1BC can be constructed because its sides BC, CA1 = AD and BA1 = 2KP are
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known. Let us complement triangle A1BC to parallelogram A1EBC. Now we can construct

point D because CD and ED = BA are known. Making use of the fact that
−−→
DA =

−−→
A1C we

construct point A.
8.53. Making use of the formulas of Problems 6.34 and 6.35 it is easy to express the

lengths of the diagonals of the inscribed triangle in terms of the lengths of its sides. The
obtained formulas can be applied for the construction of the diagonals (for convenience it is
advisable to introduce an arbitrary segment e as the measure of unit length and construct
segments of length pq, p

q
and

√
p as pq

e
, pe

q
and

√
pe).

8.54. A circle intercepts equal segments on the legs of an angle if and only if the center
of the circle lies on the bisector of the angle. Therefore, the center of the circle to be found is
the intersection point of the midperpendicular to segment AB and the bisector of the given
angle.

8.55. Let us suppose that we have constructed circle S ′ tangent to the given circle S at
point A and the given line l at a point, B. Let O and O′ be the centers of circles S and S ′,
respectively (Fig. 90). Clearly, points O, O′ and A lie on one line and O′B = O′A. Hence,
we have to construct point O′ on line OA so that O′A = O′B, where B is the base of the
perpendicular dropped from point O′ to line l.

Figure 90 (Sol. 8.55)

To this end let us drop perpendiculr OB′ on line l. Next, on line AO mark segment OA′

of length OB′. Let us draw through point A line AB parallel to A′B′ (point B lies on line
l). Point O′ is the intersection point of line OA and the perpendicular to l drawn through
point B.

8.56. a) Let l1 be the midperpendicular to segment AB, let C be the intercection point
of lines l1 and l; let l′ be the line symmetric to l through line l1. The problem reduces to
the necessity to construct a circle that passes through point A and is tangent to lines l and
l′, cf. Problem 19.15.

b) We may assume that the center of circle S does not lie on the midperpendicular to
segment AB (otherwise the construction is obvious). Let us take an arbitrary point C on
circle S and construct the circumscribed circle of triangle ABC; this circle intersects S at a
point D. Let M be the intersection point of lines AB and CD. Let us draw tangents MP
and MQ to circle S. Then the circumscribed circles of triangles ABP and ABQ are the
ones to be found since MP 2 = MQ2 = MA · MB.

8.57. Suppose we have constructed circles S1, S2 and S3 tangent to each other pairwise
at given points: S1 and S2 are tangent at point C; circles S1 and S3 are tangent at point
B; circles S2 and S3 are tangent at point A. Let O1, O2 and O3 be the centers of circles
S1, S2 and S3, respectively. Then points A, B and C lie on the sides of triangle O1O2O3

and O1B = O1C, O2C = O2A and O3A = O3B. Hence, points A, B and C are the tangent
points of the inscribed circle of triangle O1O2O3 with its sides.
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This implies the following construction. First, let us construct the circumscribed circle
of triangle ABC and draw tangents to it at points A, B and C. The intersection points of
these tangents are the centers of circles to be found.

8.58. Suppose that we have constructed circle S whose tangents AA1, BB1 and CC1,
where A1, B1 and C1 are the tangent points, are of length a, b and c, respectively. Let us
construct circles Sa, Sb and Sc with the centers A, B and C and radii a, b and c, respectively
(Fig. 91). If O is the center of circle S, then segments OA1, OB1 and OC1 are radii of circle
S and tangents to circles Sa, Sb and Sc as well. Hence, point O is the radical center (cf.
§3.10) of circles Sa, Sb and Sc.

Figure 91 (Sol. 8.58)

This implies the following construction. First, construct circles Sa, Sb and Sc. Then let
us construct their radical center O. The circle to be found is the circle with center O and
the radius whose length is equal to that of the tangent drawn from point O to circle Sa.

8.59. First, let us construct segment BC of length a. Next, let us construct the locus
of points X for which CX : BX = b : c, cf. Problem 7.14. For vertex A we can take any of
the intersection points of this locus with a line whose distance from line BC is equal to ha.

8.60. Given the lengths of segments AD′ and BD, we can construct segment AB and
point D on this segment. Point C is the intersection point of the circle of radius CD centered
at D and the locus of points X for which AX : BX = AD : BD.

8.61. Let X be a point that does not lie on line AB. Clearly, ∠AXB = ∠BCX if and
only if AX : CX = AB : CB. Hence, point M is the intersection point of the locus of points
X for which AX : CX = AB : CB and the locus of points Y for which BY : DY = BC : DC
(it is possible for these loci not to intersect).

8.62. We have to construct a point O for which AO : A′O = AB : A′B′ and BO :
B′O = AB : A′B′. Point O is the intersection point of the locus of points X for which
AX : A′X = AB : A′B′ and the locus of points Y for which BY : B′Y = AB : A′B′.

8.63. Let O be the center of the given circle. Chords XP and XQ that pass through
points A and B are equal if and only if XO is the bisector of angle PXO, i.e., AX :
BX = AO : BO. The point X to be found is the intersection point of the corresponding
Apollonius’s circle with the given circle.

8.64. a) If line l does not intersect segment AB, then ABB1A1 is a parallelogram and
l ‖ AB. If line l intersects segment AB, then AA1BB1 is a parallelogram and l passes
through the midpoint of segment AB.

b) One of the lines to be found is parallel to line AB and another one passes through the
midpoint of segment AB.

8.65. Let us construct a circle of radius 1 and in it draw two perpendicular diameters, AB
and CD. Let O be the center of the circle, M the midpoint of segment OC, P the intersection
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point of line AM and the circle with diameter OC (Fig. 92). Then AM2 = 1 + 1
4

= 5
4

and,

therefore, AP = AM − PM =
√

5−1
2

= 2 sin 18◦ (cf. Problem 5.46), i.e., AP is the length of
a side of a regular decagon inscribed in the given circle.

Figure 92 (Sol. 8.65)

8.66. Suppose we have constructed rectangle PQRS so that the given points A, B, C,
D lie on sides PQ, QR, RS, SP , respectively, and PQ : QR = a, where a is the given ratio
of sides. Let F be the intersection point of the line drawn through point D perpendicularly
to line AC and line QR. Then DF : AC = a.

This implies the following construction. From point D draw a ray that intersects segment
AC at a right angle and on this ray construct a point F so that DF = a ·AC. Side QR lies
on line BF . The continuation of the construction is obvious.

8.67. Suppose that points X and Y with the required properties are constructed. Denote
the intersection point of lines AX and Y C by M , that of lines AB and XY by K. Right
triangles AXK and Y XM have a common acute angle ∠X, hence, ∠XAK = ∠XY M .
Angles ∠XAB and ∠XY B subtend the same arc, hence, ∠XAB = ∠XY B. Therefore,
∠XY M = ∠XY B. Since XY ⊥ AB, it follows that K is the midpoint of segment CB.

Conversely, if K is the midpoint of segment CB, then ∠MY X = ∠BY X = ∠XAB.
Triangles AXK and Y XM have a common angle ∠X and ∠XAK = ∠XY M ; hence,
∠Y MX = ∠AKX = 90◦.

This implies the following construction. Through the midpoint K of segment CB draw
line l perpendicular to line AB. Points X and Y are the intersection points of line l with
the given circle.

8.68. If we have an angle of value α, then we can construct angles of value 2α, 3α, etc.
Since 19 · 19◦ = 361◦, we can construct an angle of 361◦ that coincides with the angle of 1◦.

8.69. First, let us construct an angle of 36◦, cf. Problem 8.65. Then we can construct
the angle of 36◦−30◦

2
= 3◦. If n is not divisible by 3, then having at our disposal angles of n◦

and 3◦ we can construct an angle of 1◦. Indeed, if n = 3k + 1, then 1◦ = n◦ − k · 3◦ and if
n = 3k + 2, then 1◦ = 2n◦ − (2k + 1) · 3◦.

8.70. The sequence of constructions is as follows. On the piece of paper take an arbitrary
point O and perform the homothety with center O and sufficiently small coefficient k so that
this homothety sends the image of the intersection point of the given lines on the piece of
paper. Then we can construct the bisector of the angle between the images of the lines.
Next, let us perform the homothety with the same center and coefficient 1

k
which yields the

desired segment of the bisector.
8.71. Let us construct with the help of a two-sided ruler two parallel chords AB and CD.

Let P and Q be the intersection points of lines AC with BD and AD with BC, respectively.
Then line PQ passes through the center of the given circle. Constructing similarly one more
such line we find the center of the circle.
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8.72. Let us draw through point A two rays p and q that form a small angle inside
which point B lies (the rays can be constructed by replacing the ruler). Let us draw through
point B segments PQ1 and P1Q (Fig. 93). If PQ < 10 cm and P1Q1 < 10 cm, then we can
construct point O at which lines PQ and P1Q1 intersect.

Figure 93 (Sol. 8.72)

Through point O draw line P2Q2. If PQ2 < 10 cm and P2Q < 10 cm; then we can
construct point B′ at which lines PQ2 and P2Q intersect. If BB′ < 10 cm, then by Problem
5.67 we can construct line BB′; this line passes through point A.

8.73. The construction is based on the fact that if A and B are the intersection points of

equal circles centered at P and Q, then
−→
PA =

−−→
BQ. Let S1 be the initial circle, A1 the given

point. Let us draw circle S2 through point A1 and circle S3 through the intersection point
A2 of circles S1 and S2; circle S4 through the intersection point A3 of circles S2 and S3 and,
finally, circle S5 through the intersection points B1 and A4 of circles S1 and S3, respectively,
with circle S4. Let us prove that the intersection point B2 of circles S5 and S1 is the one to
be found.

Let Oi be the center of circle Si. Then
−−−→
A1O1 =

−−−→
O2A2 =

−−−→
A3O3 =

−−−→
O4A4 =

−−−→
B1O5 =

−−−→
O1B2.

Remark. There are two intersection points of circles S1 and S4; for point B1 we can
take any of them.

8.74. Let AB be the given segment, P an arbitrary point not on the given lines. Let
us construct the intersection points C and D of the second of the given lines with lines PA
and PB, respectively, and the intersection point Q of lines AD and BC. By Problem 19.2
line PQ passes through the midpoint of segment AB.

8.75. Let AB be the given segment; let C and D be arbitrary points on the second of
given lines. By the preceding problem we can construct the midpoint, M , of segment CD.
Let P be the intersection point of lines AM and BD; let E be the intersection point of lines
PC and AB. Let us prove that EB is the segment to be found.

Since △PMC ∼ △PAE and △PMD ∼ △PAB, it follows that

AB

AE
=

AB

AP
:
AE

AP
=

MD

MP
:
MC

MP
=

MD

MC
= 1.

8.76. Let AB be the given segment; let C and D be arbitrary points on the second of
the given lines. By the preceding problem we can construct points D1 = D, D2, . . . , Dn such
that all the segments DiDi+1 are equal to segment CD. Let P be the intersection point
of lines AC and BDn and let B1, . . . , Bn−1 be the intersection points of line AB with lines
PD1, . . . , PDn−1, respectively. Clearly, points B1, . . . , Bn−1 divide segment AB in n equal
parts.
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8.77. On one of the given lines take segment AB and construct its midpoint, M (cf.
Problem 8.74). Let A1 and M1 be the intersection points of lines PA and PM with the
second of the given lines, Q the intersection point of lines BM1 and MA1. It is easy to verify
that line PQ is parallel to the given lines.

8.78. In the case when point P does not lie on line AB, we can make use of the solution
of Problem 3.36. If point P lies on line AB, then we can first drop perpendiculars l1 and
l2 from some other points and then in accordance with Problem 8.77 draw through point P
the line parallel to lines l1 and l2.

8.79. a) Let A be the given point, l the given line. First, let us consider the case
when point O does not lie on line l. Let us draw through point O two arbitrary lines that
intersect line l at points B and C. By Problem 8.78, in triangle OBC, heights to sides OB
and OC can be dropped. Let H be their intersection point. Then we can draw line OH
perpendicular to l. By Problem 8.78 we can drop the perpendicular from point A to OH.
This is the line to be constructed that passes through A and is parallel to l. In order to drop
the perpendicular from A to l we have to erect perpendicular l′ to OH at point O and then
drop the perpendicular from A to l′.

If point O lies on line l, then by Problem 8.78 we can immediately drop the perpendicular
l′ from point A to line l and then erect the perpendicular to line l′ from the same point A.

b) Let l be the given line, A the given point on it and BC the given segment. Let us
draw through point O lines OD and OE parallel to lines l and BC, respectively (D and E
are the intersection points of these lines with circle S). Let us draw through point C the
line parallel to OB to its intersection with line OE at point F and through point F the line
parallel to ED to its intersection with OD at point G and, finally, through point G the line
parallel to OA to its intersection with l at point H. Then AH = OG = OF = BC, i.e., AH
is the segment to be constructed.

c) Let us take two arbitrary lines that intersect at point P . Let us mark on one of them
segment PA = a and on the other one segments PB = b and PC = c. Let D be the
intersection point of line PA with the line that passes through B and is parallel to AC.
Clearly, PD = ab

c
.

d) Let H be the homothety (or the parallel translation) that sends the circle with center
A and radius r to circle S (i.e., to the given circle with the marked center O). Since the radii
of both circles are known, we can construct the image of any point X under the mapping
H. For this we have to draw through point O the line parallel to line AX and mark on it a
segment equal to rs·AX

r
, where rs is the radius of circle S.

We similarly construct the image of any point under the mapping H−1. Hence, we can
construct the line l′ = H(l) and find its intersection points with circle S and then construct
the images of these points under the map H−1.

e) Let A and B be the centers of the given circles, C one of the points to be constructed,
CH the height of triangle ABC. From Pythagoras theorem for triangles ACH and BCH we
deduce that AH = b2+c2−a2

2c
. The quantities a, b and c are known, hence, we can construct

point H and the intersection points of line CH with one of the given circles.
8.80. a) Let us draw lines parallel to lines OA and OB, whose distance from the latter

lines is equal to a and which intersect the legs of the angles. The intersection point of these
lines lies on the bisector to be constructed.

b) Let us draw the line parallel to OB, whose distance from OB is equal to a and which
intersects ray OA at a point M . Let us draw through points O and M another pair of
parallel lines the distance between which is equal to a; the line that passes through point O
contains the leg of the angle to be found.
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8.81. Let us draw through point A an arbitrary line and then draw lines l1 and l2 parallel
to it and whose distance from this line is equal to a; these lines intersect line l at points M1

and M2. Let us draw through points A and M1 one more pair of parallel lines, la and lm,
the distance between which is equal to a. The intersection point of lines l2 and lm belongs
to the perpendicular to be found.

8.82. Let us draw a line parallel to the given one at a distance of a. Now, we can make
use of the results of Problems 8.77 and 8.74.

8.83. Let us draw through point P lines PA1 and PB1 so that PA1 ‖ OA and PB1 ‖ OB.
Let line PM divide the angle between lines l and PA1 in halves. The symmetry through
line PM sends line PA1 to line l and, therefore, line PB1 turns under this symmetry into
one of the lines to be constructed.

8.84. Let us complement triangle ABM to parallelogram ABMN . Through point N
draw lines parallel to the bisectors of the angles between lines l and MN . The intersection
points of these lines with line l are the ones to be found.

8.85. Let us draw line l1 parallel to line OA at a distance of a. On l, take an arbitrary
point B. Let B1 be the intersection point of lines OB and l1. Through point B1 draw the
line parallel to AB; this line intersects line OA at point A1. Now, let us draw through points
O and A1 a pair of parallel lines the distance between which is equal to a.

There could be two pairs of such lines. Let X and X1 be the intersection points of the line
that passes through point O with lines l and l1. Since OA1 = OX1 and △OA1X1 ∼ △OAX,
point X is the one to be found.

8.86. Let us erect perpendiculars to line O1O2 at points O1 and O2 and on the perpen-
diculars mark segments O1B1 = O2A2 and O2B2 = O1A1. Let us construct the midpoint
M of segment B1B2 and erect the perpendicular to B1B2 at point M . This perpendicu-
lar intersects line O1O2 at point N . Then O1N

2 + O1B
2
1 = O2N

2 + O2B
2
2 and, therefore,

O1N
2 −O1A

2
1 = O2N

2 −O2A
2
2, i.e., point N lies on the radical axis. It remains to erect the

perpendicular to O1O2 at point N .
8.87. First, let us construct an arbitrary line l1 perpendicular to line l and then draw

through point A the line perpendicular to l1.
8.88. a) Let us draw through points A and B lines AB and BQ perpendicular to line

AB and then draw an arbitrary perpendicular to line AP . As a result we get a rectangle.
It remains to drop from the intersection point of its diagonals the perpendicular to line AB.

b) Let us raise from point B perpendicular l to line AB and draw through point A
two perpendicular lines; they intersect line l at points M and N . Let us complement right
triangle MAN to rectangle MANR. The base of the perpendicular dropped from point R
to line AB is point C to be found.

8.89. a) Let us drop perpendicular AP from point A to line OB and construct segment
AC whose midpoint is points P . Then angle ∠AOC is the one to be found.

b) On line OB, take points B and B1 such that OB = OB1. Let us place the right angle
so that its sides would pass through points B and B1 and the vertex would lie on ray OA.
If A is the vertex of the right angle, then angle ∠AB1B is the one to be found.

8.90. Let us draw through point O line l′ parallel to line l. Let us drop perpendiculars
BP and BQ from point B to lines l′ and OA, respectively, and then drop perpendicular OX
from point O to line PQ. Then line XO is the desired one (cf. Problem 2.3); if point Y is
symmetric to point X through line l′, then line Y O is also the one to be found.

8.91. Let us complement triangle OAB to parallelogram OABC and then construct
segment CC1 whose midpoint is point O. Let us place the right angle so that its legs pass
through points C and C1 and the vertex lies on line l. Then the vertex of the right angle
coincides with point X to be found.
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8.92. Let us construct segment AB whose midpoint is point O and place the right angle
so that its legs passes through points A and B and the vertex lies on line l. Then the vertex
of the right angle coincides with the point to be found.





Chapter 9. GEOMETRIC INEQUALITIES

Background

1) For elements of a triangle the following notations are used:
a, b, c are the lengths of sides BC, CA, AB, respectively;
α, β, γ the values of the angles at vertices A, B, C, respectively;
ma, mb, mc are the lengths of the medians drawn from vertices A, B, C, respectively;
ha, hb, hc are the lengths of the heights dropped from vertices A, B, C, respectively;
la, lb, lc are the lengths of the bisectors drawn from vertices A, B, C, respectively;
r and R are the radii of the inscribed and circumscribed circles, respectively.
2) If A, B, C are arbitrary points, then AB ≤ AC + CB and the equality takes place

only if point C lies on segment AB (the triangle inequality).
3) The median of a triangle is shorter than a half sum of the sides that confine it:

ma < 1
2(b+c)

(Problem 9.1).

4) If one convex polygon lies inside another one, then the perimeter of the outer polygon
is greater than the perimeter of the inner one (Problem 9.27 b).

5) The sum of the lengths of the diagonals of a convex quadrilateral is greater than the
sum of the length of any pair of the opposite sides of the quadrilateral (Problem 9.14).

6) The longer side of a triangle subtends the greater angle (Problem 10.59).
7) The length of the segment that lies inside a convex polygon does not exceed either

that of its longest side or that of its longest diagonal (Problem 10.64).

Remark. While solving certain problems of this chapter we have to know various alge-
braic inequalities. The data on these inequalities and their proof are given in an appendix to
this chapter; one should acquaint oneself with them but it should be taken into account that
these inequalities are only needed in the solution of comparatively complicated problems;
in order to solve simple problems we will only need the inequality

√
ab ≤ 1

2
a + b and its

corollaries.

Introductory problems

1. Prove that SABC ≤ 1
2
AB · BC.

2. Prove that SABCD ≤ 1
2
(AB · BC + AD · DC).

3. Prove that ∠ABC > 90◦ if and only if point B lies inside the circle with diameter
AC.

4. The radii of two circles are equal to R and r and the distance between the centers of
the circles is equal to d. Prove that these circles intersect if and only if |R− r| < d < R + r.

5. Prove that any diagonal of a quadrilateral is shorter than the quadrilateral’s semiperime-
ter.

§1. A median of a triangle

9.1. Prove that 1
2
(a + b − c) < mc < 1

2
(a + b).

205
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9.2. Prove that in any triangle the sum of the medians is greater than 3
4

of the perimeter
but less than the perimeter.

9.3. Given n points A1, . . . , An and a unit circle, prove that it is possible to find a point
M on the circle so that MA1 + · · · + MAn ≥ n.

9.4. Points A1, . . . , An do not lie on one line. Let two distinct points P and Q have the
following property

A1P + · · · + AnP = A1Q + · · · + AnQ = s.

Prove that A1K + · · · + AnK < s for a point K.
9.5. On a table lies 50 working watches (old style, with hands); all work correctly.

Prove that at a certain moment the sum of the distances from the center of the table to the
endpoints of the minute’s hands becomes greater than the sum of the distances from the
center of the table to the centers of watches. (We assume that each watch is of the form of
a disk.)

§2. Algebraic problems on the triangle inequality

In problems of this section a, b and c are the lengths of the sides of an arbitrary triangle.
9.6. Prove that a = y + z, b = x + z and c = x + y, where x, y and z are positive

numbers.
9.7. Prove that a2 + b2 + c2 < 2(ab + bc + ca).
9.8. For any positive integer n, a triangle can be composed of segments whose lengths

are an, bn and cn. Prove that among numbers a, b and c two are equal.
9.9. Prove that

a(b − c)2 + b(c − a)2 + c(a − b)2 + 4abc > a3 + b3 + c3.

9.10. Let p = a
b

+ b
c
+ c

a
and q = a

c
+ c

b
+ b

a
. Prove that |p − q| < 1.

9.11. Five segments are such that from any three of them a triangle can be constructed.
Prove that at least one of these triangles is an acute one.

9.12. Prove that
(a + b − c)(a − b + c)(−a + b + c) ≤ abc.

9.13. Prove that
a2b(a − b) + b2c(b − c) + c2a(c − a) ≥ 0.

§3. The sum of the lengths of quadrilateral’s diagonals

9.14. Let ABCD be a convex quadrilateral. Prove that AB + CD < AC + BD.
9.15. Let ABCD be a convex quadrilateral and AB + BD ≤ AC + CD. Prove that

AB < AC.
9.16. Inside a convex quadrilateral the sum of lengths of whose diagonals is equal to d,

a convex quadrilateral the sum of lengths of whose diagonals is equal to d′ is placed. Prove
that d′ < 2d.

9.17. Given closed broken line has the property that any other closed broken line with
the same vertices (?) is longer. Prove that the given broken line is not a self-intersecting
one.

9.18. How many sides can a convex polygon have if all its diagonals are of equal length?
9.19. In plane, there are n red and n blue dots no three of which lie on one line. Prove

that it is possible to draw n segments with the endpoints of distinct colours without common
points.

9.20. Prove that the mean arithmetic of the lengths of sides of an arbitrary convex
polygon is less than the mean arithmetic of the lengths of all its diagonals.
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9.21. A convex (2n + 1)-gon A1A3A5 . . . A2n+1A2 . . . A2n is given. Prove that among all
the closed broken lines with the vertices in the vertices of the given (2n + 1)-gon the broken
line A1A2A3 . . . A2n+1A1 is the longest.

§4. Miscellaneous problems on the triangle inequality

9.22. In a triangle, the lengths of two sides are equal to 3.14 and 0.67. Find the length
of the third side if it is known that it is an integer.

9.23. Prove that the sum of lengths of diagonals of convex pentagon ABCDE is greater
than its perimeter but less than the doubled perimeter.

9.24. Prove that if the lengths of a triangle’s sides satisfy the inequality a2 + b2 > 5c2,
then c is the length of the shortest side.

9.25. The lengths of two heights of a triangle are equal to 12 and 20. Prove that the
third height is shorter than 30.

9.26. On sides AB, BC, CA of triangle ABC, points C1, A1, B1, respectively, are taken
so that BA1 = λ · BC, CB1 = λ · CA and AC1 = λ · AB, where 1

2
< λ < 1. Prove that the

perimeter P of triangle ABC and the perimeter P1 of triangle A1B1C1 satisfy the following
inequality: (2λ − 1)P < P1 < λP .

* * *

9.27. a) Prove that under the passage from a nonconvex polygon to its convex hull the
perimeter diminishes. (The convex hull of a polygon is the smallest convex polygon that
contains the given one.)

b) Inside a convex polygon there lies another convex polygon. Prove that the perimeter
of the outer polygon is not less than the perimeter of the inner one.

9.28. Inside triangle ABC of perimeter P , a point O is taken. Prove that 1
2
P <

AO + BO + CO < P .
9.29. On base AD of trapezoid ABCD, a point E is taken such that the perimeters of

triangles ABE, BCE and CDE are equal. Prove that BC = 1
2
AD.

See also Problems 13.40, 20.11.

§5. The area of a triangle does not exceed a half product of two sides

9.30. Given a triangle of area 1 the lengths of whose sides satisfy a ≤ b ≤ c. Prove that
b ≥

√
2.

9.31. Let E, F , G and H be the midpoints of sides AB, BC, CD and DA of quadrilateral
ABCD. Prove that

SABCD ≤ EG · HF ≤ (AB + CD)(AD + BC)

4
.

9.32. The perimeter of a convex quadrilateral is equal to 4. Prove that its area does not
exceed 1.

9.33. Inside triangle ABC a point M is taken. Prove that

4S ≤ AM · BC + BM · AC + CM · AB,

where S is the area of triangle ABC.
9.34. In a circle of radius R a polygon of area S is inscribed; the polygon contains the

center of the circle and on each of its sides a point is chosen. Prove that the perimeter of
the convex polygon with vertices in the chosen points is not less than 2S

R
.

9.35. Inside a convex quadrilateral ABCD of area S point O is taken such that AO2 +
BO2 + CO2 + DO2 = 2S. Prove that ABCD is a square and O is its center.
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§6. Inequalities of areas

9.36. Points M and N lie on sides AB and AC, respectively, of triangle ABC, where
AM = CN and AN = BM . Prove that the area of quadrilateral BMNC is at least three
times that of triangle AMN .

9.37. Areas of triangles ABC,A1B1C1, A2B2C2 are equal to S, S1, S2, respectively, and
AB = A1B1 + A2B2, AC = A1C1 + A2B2, BC = B1C1 + B2C2. Prove that S ≤ 4

√
S1S2.

9.38. Let ABCD be a convex quadrilateral of area S. The angle between lines AB and
CD is equal to α and the angle between AD and BC is equal to β. Prove that

AB · CD sin α + AD · BC sin β ≤ 2S ≤ AB · CD + AD · BC.

9.39. Through a point inside a triangle three lines parallel to the triangle’s sides are
drawn.

Figure 94 (9.39)

Denote the areas of the parts into which these lines divide the triangle as plotted on Fig.
94. Prove that a

α
+ b

β
+ c

γ
≥ 3

2
.

9.40. The areas of triangles ABC and A1B1C1 are equal to S and S1, respectively, and
we know that triangle ABC is not an obtuse one. The greatest of the ratios a1

a
, b1

b
and c1

c
is

equal to k. Prove that S1 ≤ k2S.
9.41. a) Points B,C and D divide the (smaller) arc ⌣ AE of a circle into four equal

parts. Prove that SACE < 8SBCD.
b) From point A tangents AB and AC to a circle are drawn. Through the midpoint D

of the (lesser) arc ⌣ BC the tangent that intersects segments AB and AC at points M and
N , respectively is drawn. Prove that SBCD < 2SMAN .

9.42. All sides of a convex polygon are moved outwards at distance h and extended
to form a new polygon. Prove that the difference of areas of the polygons is more than
Ph + πh2, where P is the perimeter.

9.43. A square is cut into rectangles. Prove that the sum of areas of the disks circum-
scribed about all these rectangles is not less than the area of the disk circumscribed about
the initial square.

9.44. Prove that the sum of areas of five triangles formed by the pairs of neighbouring
sides and the corresponding diagonals of a convex pentagon is greater than the area of the
pentagon itself.

9.45. a) Prove that in any convex hexagon of area S there exists a diagonal that cuts
off the hexagon a triangle whose area does not exceed 1

6
S.

b) Prove that in any convex 8-gon of area S there exists a diagonal that cuts off it a
triangle of area not greater than 1

8
S.

See also Problem 17.19.
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§7. Area. One figure lies inside another

9.46. A convex polygon whose area is greater than 0.5 is placed in a unit square. Prove
that inside the polygon one can place a segment of length 0.5 parallel to a side of the square.

9.47. Inside a unit square n points are given. Prove that:
a) the area of one of the triangles some of whose vertices are in these points and some in

vertices of the square does not exceed 1
2(n+1)

;

b) the area of one of the triangles with the vertices in these points does not exceed 1
n−2

.
9.48. a) In a disk of area S a regular n-gon of area S1 is inscribed and a regular n-gon

of area S2 is circumscribed about the disk. Prove that S2 > S1S2.
b) In a circle of length L a regular n-gon of perimeter P1 is inscribed and another regular

n-gon of perimeter P2 is circumscribed about the circle. Prove that L2 < P1P2.
9.49. A polygon of area B is inscribed in a circle of area A and circumscribed about a

circle of area C. Prove that 2B ≤ A + C.
9.50. In a unit disk two triangles the area of each of which is greater than 1 are placed.

Prove that these triangles intersect.
9.51. a) Prove that inside a convex polygon of area S and perimeter P one can place a

disk of radius S
P
.

b) Inside a convex polygon of area S1 and perimeter P1 a convex polygon of area S2 and
perimeter P2 is placed. Prove that 2S1

P1
> S2

P2
.

9.52. Prove that the area of a parallelogram that lies inside a triangle does not exceed
a half area of the triangle.

9.53. Prove that the area of a triangle whose vertices lie on sides of a parallelogram does
not exceed a half area of the parallelogram.

* * *

9.54. Prove that any acute triangle of area 1 can be placed in a right triangle of area√
3.
9.55. a) Prove that a convex polygon of area S can be placed in a rectangle of area not

greater than 2S.
b) Prove that in a convex polygon of area S a parallelogram of area not less than 1

2
S can

be inscribed.
9.56. Prove that in any convex polygon of area 1 a triangle whose area is not less than

a) 1
4
; b) 3

8
can be placed.

9.57. A convex n-gon is placed in a unit square. Prove that there are three vertices A,B
and C of this n-gon, such that the area of triangle ABC does not exceed a) 8

n2 ; b) 16π
n3 .

See also Problem 15.6.

§8. Broken lines inside a square

9.58. Inside a unit square a non-self-intersecting broken line of length 1000 is placed.
Prove that there exists a line parallel to one of the sides of the square that intersects this
broken line in at least 500 points.

9.59. In a unit square a broken line of length L is placed. It is known that each point of
the square is distant from a point of this broken line less than by ε. Prove that L ≥ 1

2ε
− 1

2
πε.

9.60. Inside a unit square n2 points are placed. Prove that there exists a broken line
that passes through all these points and whose length does not exceed 2n.

9.61. Inside a square of side 100 a broken line L is placed. This broken line has the
following property: the distance from any point of the square to L does not exceed 0.5.
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Prove that on L there are two points the distance between which does not exceed 1 and the
distance between which along L is not less than 198.

§9. The quadrilateral

9.62. In quadrilateral ABCD angles ∠A and ∠B are equal and ∠D > ∠C. Prove that
AD < BC.

9.63. In trapezoid ABCD, the angles at base AD satisfy inequalities ∠A < ∠D < 90◦.
Prove that AC > BD.

9.64. Prove that if two opposite angles of a quadrilateral are obtuse ones, then the
diagonal that connects the vertices of these angles is shorter than the other diagonal.

9.65. Prove that the sum of distances from an arbitrary point to three vertices of an
isosceles trapezoid is greater than the distance from this point to the fourth vertex.

9.66. Angle ∠A of quadrilateral ABCD is an obtuse one; F is the midpoint of side BC.
Prove that 2FA < BD + CD.

9.67. Quadrilateral ABCD is given. Prove that AC · BD ≤ AB · CD + BC · AD.
(Ptolemy’s inequality.)

9.68. Let M and N be the midpoints of sides BC and CD, respectively, of a convex
quadrilateral ABCD. Prove that SABCD < 4SAMN .

9.69. Point P lies inside convex quadrilateral ABCD. Prove that the sum of distances
from point P to the vertices of the quadrilateral is less than the sum of pairwise distances
between the vertices of the quadrilateral.

9.70. The diagonals divide a convex quadrilateral ABCD into four triangles. Let P be
the perimeter of ABCD and Q the perimeter of the quadrilateral formed by the centers of
the inscribed circles of the obtained triangles. Prove that PQ > 4SABCD.

9.71. Prove that the distance from one of the vertices of a convex quadrilateral to the
opposite diagonal does not exceed a half length of this diagonal.

9.72. Segment KL passes through the intersection point of diagonals of quadrilateral
ABCD and the endpoints of KL lie on sides AB and CD of the quadrilateral. Prove that the
length of segment KL does not exceed the length of one of the diagonals of the quadrilateral.

9.73. Parallelogram P2 is inscribed in parallelogram P1 and parallelogram P3 whose sides
are parallel to the corresponding sides of P1 is inscribed in parallelogram P2. Prove that the
length of at least one of the sides of P1 does not exceed the doubled length of a parallel to
it side of P3.

See also Problems 13.19, 15.3 a).

§10. Polygons

9.74. Prove that if the angles of a convex pentagon form an arithmetic progression, then
each of them is greater than 36◦.

9.75. Let ABCDE is a convex pentagon inscribed in a circle of radius 1 so that AB = A,
BC = b, CD = c, DE = d, AE = 2. Prove that

a2 + b2 + c2 + d2 + abc + bcd < 4.

9.76. Inside a regular hexagon with side 1 point P is taken. Prove that the sum of the
distances from point P to certain three vertices of the hexagon is not less than 1.

9.77. Prove that if the sides of convex hexagon ABCDEF are equal to 1, then the
radius of the circumscribed circle of one of triangles ACE and BDF does not exceed 1.

9.78. Each side of convex hexagon ABCDEF is shorter than 1. Prove that one of the
diagonals AD, BE, CF is shorter than 2.
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9.79. Heptagon A1 . . . A7 is inscribed in a circle. Prove that if the center of this circle
lies inside it, then the value of any angle at vertices A1, A3, A5 is less than 450◦.

* * *

9.80. a) Prove that if the lengths of the projections of a segment to two perpendicular
lines are equal to a and b, then the segment’s length is not less than a+b√

2
.

b) The lengths of the projections of a polygon to coordinate axes are equal to a and b.
Prove that its perimeter is not less than

√
2(a + b).

9.81. Prove that from the sides of a convex polygon of perimeter P two segments whose
lengths differ not more than by 1

3
P can be constructed.

9.82. Inside a convex polygon A1 . . . An a point O is taken. Let αk be the value of the
angle at vertex Ak, xk = OAk and dk the distance from point O to line AkAk+1. Prove that
∑

xk sin αk

2
≥

∑

dk and
∑

xk cos αk

2
≥ p, where p is the semiperimeter of the polygon.

9.83. Regular 2n-gon M1 with side a lies inside regular 2n-gon M2 with side 2a. Prove
that M1 contains the center of M2.

9.84. Inside regular polygon A1 . . . An point O is taken.
Prove that at least one of the angles ∠AiOAj satisfies the inequalities π

(

1 − 1
n

)

≤
∠AiOAj ≤ π.

9.85. Prove that for n ≥ 7 inside a convex n-gon there is a point the sum of distances
from which to the vertices is greater than the semiperimeter of the n-gon.

9.86. a) Convex polygons A1 . . . An and B1 . . . Bn are such that all their corresponding
sides except for A1An and B1Bn are equal and ∠A2 ≥ ∠B2, . . . ,∠An−1 ≥ ∠Bn−1, where at
least one of the inequalities is a strict one. Prove that A1An > B1Bn.

b) The corresponding sides of nonequal polygons A1 . . . An and B1 . . . Bn are equal.
Let us write beside each vertex of polygon A1 . . . An the sign of the difference ∠Ai−∠Bi.

Prove that for n ≥ 4 there are at least four pairs of neighbouring vertices with distinct signs.
(The vertices with the zero difference are disregarded: two vertices between which there only
stand vertices with the zero difference are considered to be neighbouring ones.)

See also Problems 4.37, 4.53, 13.42.

§11. Miscellaneous problems

9.87. On a segment of length 1 there are given n points. Prove that the sum of distances
from a point of the segment to these points is not less than 1

2
n.

9.88. In a forest, trees of cylindrical form grow. A communication service person has to
connect a line from point A to point B through this forest the distance between the points
being equal to l. Prove that to acheave the goal a piece of wire of length 1.6l will be sufficient.

9.89. In a forest, the distance between any two trees does not exceed the difference of
their heights. Any tree is shorter than 100 m. Prove that this forest can be fenced by a
fence of length 200 m.

9.90. A (not necessarily convex) paper polygon is folded along a line and both halves
are glued together. Can the perimeter of the obtained lamina be greater than the perimeter
of the initial polygon?

* * *

9.91. Prove that a closed broken line of length 1 can be placed in a disk of radius 0.25.
9.92. An acute triangle is placed inside a circumscribed circle. Prove that the radius of

the circle is not less than the radius of the circumscribed circle of the triangle.
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Is a similar statement true for an obtuse triangle?
9.93. Prove that the perimeter of an acute triangle is not less than 4R.

See also problems 14.23, 20.4.

Problems for independent study

9.94. Two circles divide rectangle ABCD into four rectangles. Prove that the area of
one of the rectangles, the one adjacent to vertices A and C, does not exceed a quarter of the
area of ABCD.

9.95. Prove that if AB + BD = AC + CD, then the midperpendicular to side BC of
quadrilateral ABCD intersects segment AD.

9.96. Prove that if diagonal BD of convex quadrilateral ABCD divides diagonal AC in
halves and AB > BC, then AD < DC.

9.97. The lengths of bases of a circumscribed trapezoid are equal to 2 and 11. Prove
that the angle between the extensions of its lateral sides is an acute one.

9.98. The bases of a trapezoid are equal to a and b and its height is equal to h. Prove

that the length of one of its diagonals is not less than
√

h2+(b+a)2

4
.

9.99. The vertices of an n-gon M1 are the midpoints of sides of a convex n-gon M . Prove
that for n ≥ 3 the perimeter of M1 is not less than the semiperimeter of M and for n ≥ 4
the area of M1 is not less than a half area of M .

9.100. In a unit circle a polygon the lengths of whose sides are confined between 1 and√
2 is inscribed. Find how many sides does the polygon have.

Supplement. Certain inequalities

1. The inequality between the mean arithmetic and the mean geometric of two numbers√
ab ≤ 1

2
(a + b), where a and b are positive numbers, is often encountered. This inequality

follows from the fact that a − 2
√

ab + b = (
√

a −
√

b)2 ≥ 0, where the equality takes place
only if a = b.

This inequality implies several useful inequalities, for example:

x(a − x) ≤
(

x+a−x
2

)2
= a2

4
;

a + 1
a

≥ 2
√

a · 1
a

= 2 fora > 0.

2. The inequality between the mean arithmetic and the mean geometric of n positive

numbers (a1a2 . . . an)
1
n ≤ a1+···+an

n
is sometimes used. In this inequality the equality takes

place only if a1 = · · · = an.
First, let us prove this inequality for the numbers of the form n = 2m by induction on

m. For m = 1 the equality was proved above.
Suppose that it is proved for m and let us prove it for m + 1. Clearly, akak+2m ≤

(ak+ak+2m

2

)2
. Therefore,

(a1a2 . . . a2m+1)
1

2m+1 ≤ (b1b2 . . . b2m)
1

2m ,

where bk = 1
2
(ak + ak+2m) and by the inductive hypothesis

(b1 . . . b2m)
1

2m ≤ 1

2m
(b1 + · · · + b2m) =

1

2m+1
(a1 + · · · + a2m+1).

Now, let n be an arbitrary number. Then n < 2m for some m. Suppose an+1 = · · · = a2m =
a1+···+an

n
= A. Clearly,

(a1 + · · · + an) + (an+1 + · · · + a2m) = nA + (2m − n)A = 2mA
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and a1 . . . a2m = a1 . . . an · A2m−n. Hence,

a1 . . . an · A2m−n ≤
(

2mA

2m

)2m

= A2m

, i.e. a1 . . . an ≤ An.

The equality is attained only for a1 = · · · = an.
3. For arbitrary numbers a1, . . . , an we have

(a + · · · + an)2 ≤ n(a2
1 + · · · + a2

n).

Indeed,

(a1 + · · · + an)2 =
∑

a2
i + 2

∑

i<j

aiaj ≤
∑

a2
i +

∑

i<j

(a2
i + a2

j) = n
∑

a2
i .

4. Since
∫ α

0
cos t dt = sin α and

∫ α

0
sin t dt = 1 − cos α, it follows that starting from the

inequality cos t ≤ 1 we get: first, sin α ≤ α, then 1 − cos α ≤ α2

2
(i.e. cos α ≥ 1 − α2

2
), next,

sin α ≥ α − α3

6
, cos α ≤ 1 − α2

2
+ α4

24
, etc. (the inequalities are true for all α ≥ 0).

5. Let us prove that tan α ≥ α for 0 ≤ α < π
2
. Let AB be the tangent to the unit circle

centered at O; let B be the tangent point, C the intersection point of ray OA with the circle
and S the area of the disk sector BOC. Then α = 2S < 2SAOB = tan α.

6. On the segment [0, π
2
] the function f(x) = x

sin x
monotonously grows because f ′(x) =

tan x−x
cos x sin2 x

> 0. In particular, f(α) ≤ f
(

π
2

)

, i.e.,

α

sin α
≤ π

2
for 0 < α <

π

2
.

7. If f(x) = a cos x + b sin x, then f(x) ≤
√

a2 + b2. Indeed, there exists an angle ϕ such
that cos ϕ = a√

a2+b2
and sin ϕ = b√

a2+b2
; hence,

f(x) =
√

a2 + b2 cos(ϕ − x) ≤
√

a2 + b2.

The equality takes place only if ϕ = x + 2kπ, i.e., cos x = a√
a2+b2

and sin x = b√
a2+b2

.

Solutions

9.1. Let C1 be the midpoint of side AB. Then CC1 +C1A > CA and BC1 +C1C > BC.
Therefore, 2CC1 + BA > CA + BC, i.e., mc > 1

2
(a + b − c).

Let point C ′ be symmetric to C through point C1. Then CC1 = C1C
′ and BC ′ = CA.

Hence, 2mc = CC ′ < CB + BC ′ = CB + CA, i.e., mc < 1
2
(a + b).

9.2. The preceding problem implies that ma < 1
2
(b+c), mb < 1

2
(a+c) and mc < 1

2
(a+ b)

and, therefore, the sum of the lengths of medians does not exceed the perimeter.
Let O be the intersection point of medians of triangle ABC. Then BO + OA > BA,

AO + OC > AC and CO + OB > CB. Adding these inequalities and taking into account
that AO = 2

3
ma, BO = 2

3
mb, CO = 2

3
mc we get ma + mb + mc > 3

4
(a + b + c).

9.3. Let M1 and M2 be diametrically opposite points on a circle. Then M1Ak +M2Ak ≥
M1M2 = 2. Adding up these inequalities for k = 1, . . . , n we get

(M1A1 + · · · + M1An) + (M2A1 + · · · + M2An) ≥ 2n.

Therefore, either M1A1+· · ·+M1An ≥ n and then we set M = M1 or M2A1+· · ·+M2An ≥ n
and then we set M = M2.

9.4. For K we can take the midpoint of segment PQ. Indeed, then AiK ≤ 1
2
(AiP +AiQ)

(cf. Problem 9.1), where at least one of the inequalities is a strict one because points Ai

cannot all lie on line PQ.
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9.5. Let Ai and Bi be the positions of the minute hands of the i-th watch at times t
and t + 30 min, let Oi be the center of the i-th watch and O the center of the table. Then
OOi ≤ 1

2
(OAi + OBi) for any i, cf. Problem 9.1. Clearly, at a certain moment points Ai

and Bi do not lie on line OiO, i.e., at least one of n inequalities becomes a strict one. Then
either OO1 + · · · + OOn < OA1 + · · · + OAn or OO1 + · · · + OOn < OB1 + · · · + OBn.

9.6. Solving the system of equations

x + y = c, x + z = b, y + z = a

we get

x =
−a + b + c

2
, y =

a − b + c

2
, z =

a + b − c

2
.

The positivity of numbers x, y and z follows from the triangle inequality.
9.7. Thanks to the triangle inequality we have

a2 > (b − c)2 = b2 − 2bc + c2, b2 > a2 − 2ac + c2, c2 > a2 − 2ab + b2.

Adding these inequalities we get the desired statement.
9.8. We may assume that a ≥ b ≥ c. Let us prove that a = b. Indeed, if b < a, then

b ≤ λa and c ≤ λa, where λ < 1. Hence, bn + cn ≤ 2λnan. For sufficiently large n we have
2λn < 1 which contradicts the triangle inequality.

9.9. Since c(a − b)2 + 4abc = c(a + b)2, it follows that

a(b − c)2 + b(c − a)2 + c(a − b)2 + 4abc − a3 − b3 − c3 =
a((b − c)2 − a2) + +b((c − a)2 − b2) + c((a + b)2 − c2) =

(a + b − c)(a − b + c)(−a + b + c).

The latter equality is subject to a direct verification. All three factors of the latter expression
are positive thanks to the triangle inequality.

9.10. It is easy to verify that

abc|p − q| = |(b − c)(c − a)(a − b)|.
Since |b − c| < a, |c − a| < b and |a − b| < c, we have |(b − c)(c − a)(a − b)| < abc.

9.11. Let us index the lengths of the segments so that a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. If all
the triangles that can be composed of these segments are not acute ones, then a2

3 ≥ a2
1 + a2

2,
a2

4 ≥ a2
2 + a2

3 and a2
5 ≥ a2

3 + a2
4. Hence,

a2
5 ≥ a2

3 + a2
4 ≥ (a2

1 + a2
2) + (a2

2 + a2
3) ≥ 2a2

1 + 3a2
2.

Since a2
1 + a2

2 ≥ 2a1a2, it follows that

2a2
1 + 3a2

2 > a2
1 + 2a1a2 + a2

2 = (a1 + a2)
2.

We get the inequality a2
5 > (a1 + a2)

2 which contradicts the triangle inequality.
9.12. First solution. Let us introduce new variables

x = −a + b + c, y = a − b + c, z = a + b − c.

Then a = 1
2
(y + z), b = 1

2
(x + z), c = 1

2
(x + y), i.e., we have to prove that either

xyz ≤ 1

8
(x + y)(y + z)(x + z)

or

6xyz ≤ x(y2 + z2) + y(x2 + z2) + z(x2 + y2).

The latter inequality follows from the fact that 2xyz ≤ x(y2 + z2), 2xyz ≤ y(x2 + z2) and
2xyz ≤ z(x2 + y2), because x, y, z are positive numbers.



SOLUTIONS 215

Second solution. Since 2S = ab sin γ and sin γ = c
2R

, it follows that abc = 2SR. By
Heron’s formula

(a + b − c)(a − b + c)(−a + b + c) =
8S2

p
.

Therefore, we have to prove that 8S2

p
≤ 4SR, i.e., 2S ≤ pR. Since S = pr, we infer that

2r ≤ R, cf. Problem 10.26.
9.13. Let us introduce new variables

x =
−a + b + c

2
, y =

a − b + c

2
, z =

a + b − c

2
.

Then numbers x, y, z are positive and

a = y + z, b = x + z, c = x + y.

Simple but somewhat cumbersome calculations show that

a2b(a − b) + b2c(b − c) + c2a(c − a) = 2(x3z + y3x + z3y − xyz(x + y + z)) =

2xyz

(

x2

y
+

y2

z
+

z2

x
− x − y − z

)

.

Since 2 ≤ x
y

+ y
x
, it follows that

2x ≤ x

(

x

y
+

y

x

)

=
x2

y
+ y.

Similarly,

2y ≤ y

(

y

z
+

z

y

)

=
y2

z
+ z; 2z ≤ z

(z

x
+

x

z

)

=
z2

x
+ x.

Adding these inequalities we get

x2

y
+

y2

z
+

z2

x
≥ x + y + z.

9.14. Let O be the intersection point of the diagonals of quadrilateral ABCD. Then

AC + BD = (AO + OC) + (BO + OD) = (AO + OB) + (OC + OD) > AB + CD.

9.15. By the above problem AB + CD < AC + BD. Adding this inequality to the
inequality AB + BD ≤ AC + CD we get 2AB < 2AC.

9.16. First, let us prove that if P is the perimeter of convex quadrilateral ABCD and
d1 and d2 are the lengths of its diagonals, then P > d1 + d2 > 1

2
P . Clearly, AC < AB + BC

and AC < AD + DC; hence,

AC <
AB + BC + CD + AD

2
=

P

2
.

Similarly, BD < 1
2
P . Therefore, AC +BD < P . On the other hand, adding the inequalities

AB + CD < AC + BD and BC + AD < AC + BD

(cf. Problem 9.14) we get P < 2(AC + BD).
Let P be the perimeter of the outer quadrilateral, P ′ the perimeter of the inner one.

Then d > 1
2
P and since P ′ < P (by Problem 9.27 b)), we have d′ < P ′ < P < 2d.

9.17. Let the broken line of the shortest length be a self-intersecting one. Let us consider
two intersecting links. The vertices of these links can be connected in one of the following
three ways: Fig. 95. Let us consider a new broken line all the links of which are the same
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as of the initial one except that the two solid intersecting links are replaced by the dotted
links (see Fig. 95).

Figure 95 (Sol. 9.17)

Then we get again a broken line but its length is less than that of the initial one because
the sum of the lengths of the opposite sides of a convex quadrilateral is less than the sum
of the length of its diagonals. We have obtained a contradiction and, therefore, the closed
broken line of the least length cannot have intersecting links.

9.18. Let us prove that the number of sides of such a polygon does not exceed 5. Suppose
that all the diagonals of polygon A1 . . . An are of the same length and n ≥ 6. Then segments
A1A4, A1A5, A2A4 and A2A5 are of equal length since they are the diagonals of this polygon.
But in convex quadrilateral A1A2A4A5 segments A1A5 and A2A4 are opposite sides whereas
A1A4 and A2A5 are diagonals. Therefore, A1A5 + A2A4 < A1A4 + A2A5. Contradiction.

It is also clear that a regular pentagon and a square satisfy the required condition.
9.19. Consider all the partitions of the given points into pairs of points of distinct

colours. There are finitely many such partitions and, therefore, there exists a partition for
which the sum of lengths of segments given by pairs of points of the partition is the least
one. Let us show that in this case these segments will not intersect. Indeed, if two segments
would have intersected, then we could have selected a partition with the lesser sum of lengths
of segments by replacing the diagonals of the convex quadrilateral by its opposite sides as
shown on Fig. 96.

Figure 96 (Sol. 9.19)

9.20. Let ApAp+1 and AqAq+1 be nonadjacent sides of n-gon A1 . . . An (i.e., |p− q| ≥ 2).
Then

ApAp+1 + AqAq+1 < ApAq + Ap+1Aq+1.

Let us write all such inequalities and add them. For each side there exist precisely n − 3
sides nonadjacent to it and, therefore, any side enters n − 3 inequality, i.e., in the left-hand
side of the obtained sum there stands (n− 3)p, where p is the sum of lengths of the n-gon’s
sides. Diagonal AmAn enters two inequalities for p = n, q = m and for p = n−1, q = m−1;
hence, in the right-hand side stands 2d, where d is the sum of lengths of diagonals. Thus,
(n − 3)p < 2d. Therefore, p

n
< d

n(n−3)/2
, as required.

9.21. Let us consider an arbitrary closed broken line with the vertices in vertices of the
given polygon. If we have two nonintersecting links then by replacing these links by the
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diagonals of the quadrilateral determined by them we enlarge the sum of the lengths of the
links. In this process, however, one broken line can get split into two nonintersecting ones.
Let us prove that if the number of links is odd then after several such operations we will
still get in the end a closed broken line (since the sum of lengths of the links increases each
time, there can be only a finite number of such operations). One of the obtained closed
broken lines should have an odd number of links but then any of the remaining links does
not intersect at least one of the links of this broken line (cf. Problem 23.1 a)); therefore, in
the end we get just one broken line.

Figure 97 (Sol. 9.21)

Now, let us successively construct a broken line with pairwise intersecting links (Fig.
97). For instance, the 10-th vertex should lie inside the shaded triangle and therefore,
the position of vertices is precisely as plotted on Fig. 97. Therefore, to convex polygon
A1A3A5 . . . A2n+1A2 . . . A2n the broken line A1A2A3 . . . A2n+1A1 corresponds.

9.22. Let the length of the third side be equal to n. From the triangle inequality we get
3.14 − 0.67 < n < 3.14 + 0.67. Since n is an integer, n = 3.

9.23. Clearly, AB + BC > AC, BC + CD > BD, CD + DE > CE, DE + EA > DA,
EA + AB > EB. Adding these inequalities we see that the sum of the lengths of the
pentagon’s diagonals is shorter than the doubled perimeter.

Figure 98 (Sol. 9.23)

The sum of the the diagonals’ lengths is longer than the sum of lengths of the sides of
the “rays of the star” and it, in turn, is greater than the perimeter of the pentagon (Fig.
98).

9.24. Suppose that c is the length of not the shortest side, for instance, a ≤ c. Then
a2 ≤ c2 and b2 < (a + c)2 ≤ 4c2. Hence, a2 + b2 < 5c2. Contradiction.

9.25. Since c > |b − a| and a = 2S
ha

, c = 2S
hc

, it follows that 1
hc

>
∣

∣

∣

1
ha

− 1
hb

∣

∣

∣
. Therefore, in

our case hc < 20·12
8

= 30.



218 CHAPTER 9. GEOMETRIC INEQUALITIES

9.26. On sides AB, BC, CA take points C2, A2, B2, respectively, so that A1B2 ‖ AB,
B1C2 ‖ BC, CA2 ‖ CA (Fig. 99). Then

A1B1 < A1B2 + B2B1 = (1 − λ)AB + (2λ − 1)CA.

Similarly,

BC1 < (1 − λ)BC + (2λ − 1)AB and C1A1 < (1 − λ)CA + (2λ − 1)BC.

Adding these inequalities we get P1 < λP .

Figure 99 (Sol. 9.26)

Clearly, A1B1 + AC > B1C, i.e.,

A1B1 + (1 − λ)BC > λ · CA.

Similarly,

B1C1 + (1 − λ)CA > λ · AB and C1A1 + (1 − λ)AB > λ · BC.

Adding these inequalities we get P1 > (2λ − 1)P .
9.27. a) Passing from a nonconvex polygon to its convex hull we replace certain broken

lines formed by sides with segments of straight lines (Fig. 100). It remains to take into
account that any brokenline is longer than the line segment with the same endpoints.

Figure 100 (Sol. 9.27 a))

b) On the sides of the inner polygon construct half bands directed outwards; let the
parallel sides of half bands be perpendicular to the corresponding side of the polygon (Fig.
101).

Denote by P the part of the perimeter of the outer polygon corresponding to the boundary
of the polygon contained inside these half bands. Then the perimeter of the inner polygon
does not exceed P whereas the perimeter of the outer polygon is greater than P .

9.28. Since AO + BO > AB, BO + OC > BC and CO + OA > AC, it follows that

AO + BO + CO >
AB + BC + CA

2
.

Since triangle ABC contains triangle ABO, it follows that AB+BO+OA < AB+BC+CA
(cf. Problem 9.27 b)), i.e., BO + OA < BC + CA. Similarly,

AO + OC < AB + BC and CO + OB < CA + AB.

Adding these inequalities we get AO + BO + CO < AB + BC + CA.
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Figure 101 (Sol. 9.27 b))

9.29. It suffices to prove that ABCE and BCDE are parallelograms. Let us complement
triangle ABE to parallelogram ABC1E. Then perimeters of triangles BC1E and ABE are
equal and, therefore, perimeters of triangles BC1E and BCE are equal. Hence, C1 = C
because otherwise one of the triangles BC1E and BCE would have lied inside the other one
and their perimeters could not be equal. Hence, ABCE is a parallelogram. We similarly
prove that BCDE is a parallelogram.

9.30. Clearly, 2 = 2S = ab sin γ ≤ ab ≤ b2, i.e., b ≥
√

2.
9.31. Since EH is the midline of triangle ABD, it follows that SAEH = 1

4
SABD. Similarly,

SCFG = 1
4
SCBD. Therefore, SAEH + SCFG = 1

4
SABCD. Similarly, SBFE + SDGH = 1

4
SABCD.

It follows that

SABCD = 2SEFGH = EG · HF sin α,

where α is the angle between lines EG and HF . Since sin α ≤ 1, then SABCD ≤ EG · HF .
Adding equalities

−−→
EG =

−−→
EB +

−−→
BC +

−→
CG and

−−→
EG =

−→
EA +

−−→
AD +

−−→
DG

we obtain

2
−−→
EG = (

−−→
EB +

−→
EA) + (

−−→
BC +

−−→
AD) + (

−−→
DG +

−→
CG) =

−−→
BC +

−−→
AD.

Therefore, EG ≤ 1
2
(BC + AD). Similarly, HF ≤ 1

2
(AB + CD). It follows that

SABCD ≤ EG · HF ≤ (AB + CD)(BC + AD)

4
.

9.32. By Problem 9.31 SABCD ≤ 1
4
(AB + CD)(BC + AD). Since ab ≤ 1

4
(a + b)2, it

follows that SABCD ≤ 1
16

(AB + CD + AD + BC)2 = 1.
9.33. From points B and C drop perpendiculars BB1 and CC1 to line AM . Then

2SAMB + 2SAMC = AM · BB1 + AM · CC1 ≤ AM · BC

because BB1 + CC1 ≤ BC. Similarly,

2SBMC + 2SBMA ≤ BM · AC and 2SCMA + 2SCMB ≤ CM · AB.

Adding these inequalities we get the desired statement.
9.34. Let on sides A1A2, A2A3, . . . , AnA1 points B1, . . . , Bn, respectively, be selected;

let O be the center of the circle. Further, let

Sk = SOBkAk+1Bk+1
=

OAk+1 · BkBk+1 sin ϕ

2
,
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where ϕ is the angle between OAk+1 and BkBk+1. Since OAk+1 = R and sin ϕ ≤ 1, it follows
that Sk ≤ 1

2
R · BkBk+1. Hence,

S = S1 + · · · + Sn ≤ R(B1B2 + · · · + BnB1)

2
,

i.e., the perimeter of polygon B1B2 . . . Bn is not less than 2S
R

.

9.35. We have 2SAOB ≤ AO · OB ≤ 1
2
(AO2 + BO2), where the equality is only possible

if ∠AOB = 90◦ and AO = BO. Similarly,

2SBOC ≤ BO2 + CO2

2
, 2SCOD ≤ CO2 + DO2

2
and 2SDOA ≤ DO2 + AO2

2
.

Adding these inequalities we get

2S = 2(SAOB + SBOC + SCOD + SDOA) ≤ AO2 + BO2 + CO2 + DO2,

where the equality is only possible if AO = BO = CO = DO and ∠AOB = ∠BOC =
∠COD = ∠DOA = 90◦, i.e., ABCD is a square and O is its center.

9.36. We have to prove that SABC

SAMN
≥ 4. Since AB = AM + MB = AM + AN =

AN + NC = AC, it follows that

SABC

SAMN

=
AB · AC

AM · AN
=

(AM + AN)2

AM · AN
≥ 4.

9.37. Let us apply Heron’s formula

S2 = p(p − a)(p − b)(p − c).

Since p−a = (p1−a1)+(p2−a2) and (x+y)2 ≥ 4xy, it follows that (p−a)2 ≥ 4(p1−a1)(p2−a2).
Similarly,

(p − b)2 ≥ 4(p1 − b1)(p2 − b2), (p − c)2 ≥ 4(p1 − c1)(p2 − c2) and p2 ≥ 4p1p2.

Multiplying these inequalities we get the desired statement.
9.38. For definiteness, we may assume that rays BA and CD, BC and AD intersect

(Fig. 102). If we complement triangle ADC to parallelogram ADCK, then point K occurs
inside quadrilateral ABCD. Therefore,

2S ≥ 2SABK + 2SBCK = AB · AK sin α + BC · CK sin β =

AB · CD sin α + BC · AD sin β.

The equality is obtained if point D lies on segment AC.

Figure 102 (Sol. 9.38)
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Let point D′ be symmetric to point D through the midperpendicular to segment AC.
Then

2S = 2SABCD′ = 2SABD′ + 2SBCD′ ≤
AB · AD′ + BC · CD′ = AB · CD + BC · AD.

9.39. Thanks to the inequality between the mean geometric and the mean arithmetic,

we have a
α

+ b
β

+ c
γ
≥ 3 3

√

abc
αβγ

= 3
2

because α = 2
√

bc, β = 2
√

ca and γ = 2
√

ab, cf. Problem

1.33.
9.40. The inequalities α < α1, β < β1 and γ < γ1 cannot hold simultaneously. Therefore,

for instance, α1 ≤ α ≤ 90◦; hence, sin α1 ≤ sin α. It follows that 2S1 = a1b1 sin α1 ≤
k2ab sin α = 2k2S.

9.41. a) Let chords AE and BD intersect diameter CM at points K and L, respectively.

Then AC2 = CK · CM and BC2 = CL · CM . It follows that CK
CL

= AC2

BC2 < 4. Moreover,
AE
BD

= AE
AC

< 2. Therefore, SACE

SBCD
= AE·CK

BD·CL
< 8.

b) Let H be the midpoint of segment BC. Since ∠CBD = ∠BCD = ∠ABD, it follows
that D is the intersection point of the bisectors of triangle ABC. Hence, AD

DH
= AB

BH
> 1.

Therefore, SMAN > 1
4
SABC and

SBCD =
BC · DH

2
<

BC · AH

4
=

SABC

4
.

9.42. Let us cut off the obtained polygon rectangles with side h constructed outwards
on the sides of the initial polygon (Fig. 103). Then beside the initial polygon there will
be left several quadrilaterals from which one can compose a polygon circumscribed about a
circle of radius h. The sum of the areas of these quadrilaterals is greater than the area of
the circle of radius h, i.e., greater than πh2. It is also clear that the sum of areas of the cut
off rectangles is equal to Ph.

Figure 103 (Sol. 9.42)

9.43. Let s, s1, . . . , sn be the areas of the square and the rectangles that constitute it,
respectively; S, S1, . . . , Sn the areas of the disks circumscribed about the square and the
rectangles, respectively. Let us prove that sk ≤ 2Sk

π
. Indeed, if the sides of the rectangle are

equal to a and b, then sk = ab and Sk = πR2, where R2 = a2

4
+ b2

4
. Therefore, sk = ab ≤

a2+b2

2
= 2πR2

π
= 2Sk

π
. It follows that

2S

π
= s = s1 + · · · + sn ≤ 2(S1 + · · · + Sn)

π
.
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9.44. Let, for definiteness, ABC be the triangle of the least area. Denote the intersection
point of diagonals AD and EC by F . Then SABCDE < SAED + SEDC + SABCF . Since
point F lies on segment EC and SEAB ≥ SCAB, it follows that SEAB ≥ SFAB. Similarly,
SDCB ≥ SFCB. Therefore, SABCF = SFAB+SFCB ≤ SEAB+SDCB. It follows that SABCDE <
SAED + SEDC + SEAB + SDCB and this is even a stronger inequality than the one required.

9.45. a) Denote the intersection points of diagonals AD and CF , CF and BE, BE
and AD by P , Q, R, respectively (Fig. 104). Quadrilaterals ABCP and CDEQ have no
common inner points since sides CP and QC lie on line CF and segments AB and DE lie
on distinct sides of it. Similarly, quadrilaterals ABCP , CDEQ and EFAR have no pairwise
common inner points. Therefore, the sum of their areas does not exceed S.

Figure 104 (Sol. 9.45 a))

It follows that the sum of the areas of triangles ABP , BCP , CDQ, DEQ, EFR, FAR
does not exceed S, i.e., the area of one of them, say ABP , does not exceed 1

6
S. Point P

lies on segment CF and, therefore, one of the points, C or F , is distant from line AB not
further than point P . Therefore, either SABC ≤ SABP ≤ 1

6
S or SABF ≤ SABP ≤ 1

6
S.

b) Let ABCDEFGH be a convex octagon. First, let us prove that quadrilaterals ABEF ,
BCFG, CDGH and DEHA have a common point. Clearly, a convex quadrilateral KLMN
(Fig. 105) is the intersection of ABEF and CDGH. Segments AF and HC lie inside
angles ∠DAH and ∠AHE, respectively; hence, point K lies inside quadrilateral DEHA.
We similarly prove that point M lies inside quadrilateral DEHA, i.e., the whole segment
KM lies inside it. Similarly, segment LN lies inside quadrilateral BCFG. The intersection
point of diagonals KM and LN belongs to all our quadrilaterals; denote it by O.

Figure 105 (Sol. 9.45 b))

Let us divide the 8-gon into triangles by connecting point O with the vertices. The area
of one of these triangles, say ABO, does not exceed 1

8
S. Segment AO intersects side KL

at a point P , therefore, SABP < SABO ≤ 1
8
S. Since point P lies on diagonal CH, it follows

that either SABC ≤ SABP ≤ 1
8
S or SABH ≤ SABP ≤ 1

8
S.

9.46. Let us draw through all the vertices of the polygon lines parallel to one pair of
sides of the square thus dividing the square into strips. Each such strip cuts off the polygon
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either a trapezoid or a triangle. It suffices to prove that the length of one of the bases of these
trapezoids is greater than 0.5. Suppose that the length of each base of all the trapezoids does
not exceed 0.5. Then the area of each trapezoid does not exceed a half height of the strip
that confines it. Therefore, the area of the polygon, equal to the sum of areas of trapezoids
and triangles into which it is cut, does not exceed a half sum of heights of the strips, i.e.,
does not exceed 0.5. Contradiction.

9.47. a) Let P1, . . . , Pn be the given points. Let us connect point P1 with the vertices
of the square. We will thus get four triangles. Next, for k = 2, . . . , n let us perform the
following operation. If point Pk lies strictly inside one of the triangles obtained earlier, then
connect it with the vertices of this triangle.

If point Pk lies on the common side of two triangles, then connect it with the vertices
of these triangles opposite to the common side. Each such operation increases the total
number of triangles by 2. As a result we get 2(n + 1) triangles. The sum of the areas of
these triangles is equal to 1, therefore, the area of any of them does not exceed 1

2(n+1)
.

b) Let us consider the least convex polygon that contains the given points. Let is have
k vertices. If k = n then this k-gon can be divided into n − 2 triangles by the diagonals
that go out of one of its vertices. If k < n, then inside the k-gon there are n − k points and
it can be divided into triangles by the method indicated in heading a). We will thus get
k + 2(n − k − 1) = 2n − k − 2 triangles. Since k < n, it follows that 2n − k − 2 > n − 2.

The sum of the areas of the triangles of the partition is less than 1 and there are not less
than n − 2 of them; therefore, the area of at least one of them does not exceed 1

n−2
.

9.48. a) We may assume that the circumscribed n-gon A1 . . . An and the inscribed n-gon
B1 . . . Bn are placed so that lines AiBi intersect at the center O of the given circle. Let Ci

and Di be the midpoints of sides AiAi+1 and BiBi+1, respectively. Then

SOBiCi
= p · OBi · OCi, SOBiDi

= p · OBi · ODi and SOAiCi
= p · OAi · OCi,

where p = 1
2
sin ∠AiOCi. Since OAi : OCi = OBi : ODi, it follows that S2

OBiCi
=

SOBiDi
SOAiCi

. It remains to notice that the area of the part of the disk confined inside
angle ∠AiOCi is greater than SOBiCi

and the areas of the parts of the inscribed and circum-
scribed n-gons confined inside this angle are equal to SOBiDi

and SOAiCi
, respectively.

b) Let the radius of the circle be equal to R. Then P1 = 2nR sin π
n
, P2 = 2nR tan π

n
and

L = 2πR. We have to prove that sinx tan x > x2 for 0 < x ≤ 1
3
π. Since

(

sin x

x

)2

≥
(

1 − x2

6

)2

= 1 − x2

3
+

x4

36

and 0 < cos x ≤ 1 − x2

2
+ x4

24
(see Supplement to this chapter), it remains to verify that

1 − x2

3
+ x4

36
≥ 1 − x2

2
+ x4

24
, i.e., 12x2 > x4. For x ≤ 1

3
π this inequality is satisfied.

9.49. Let O be the center of homothety that sends the inscribed circle into the circum-
scribed one. Let us divide the plane by rays that exit from point O and pass through the
vertices of the polygon and the tangent points of its sides with the inscribed circle (Fig.
106).

It suffices to prove the required inequality for the parts of disks and the polygon confined
inside each of the angles formed by these rays. Let the legs of the angle intersect the
inscribed circle at points P , Q and the circumscribed circle at points R, S so that P is
the tangency point and S is a vertex of the polygon. The areas of the parts of disks are
greater than the areas of triangles OPQ and ORS and, therefore, it suffices to prove that
2SOPS ≤ SOPQ + SORS. Since 2SOPS = 2SOPQ + 2SPQS and SORS = SOPQ + SPQS + SPRS,
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Figure 106 (Sol. 9.49)

it remains to prove that SPQS ≤ SPRS. This inequality is obvious, because the heights of
triangles PQS and PRS dropped to bases PQ and RS, respectively, are equal and PQ < RS.

9.50. It suffices to prove that both triangles contain the center O of the disk. Let us
prove that if triangle ABC placed in the disk of radius 1 does not contain the center of the
disk, then its area is less than 1. Indeed, for any point outside the triangle there exists a
line that passes through two vertices and separating this point from the third vertex. Let,
for definiteness, line AB separate points C and O. Then hc < 1 and AB < 2, hence,
S = 1

2
hc · AB < 1.

9.51. a) On the sides of the polygon, construct inwards rectangles whose other side is
equal to R = S

P
. The rectangles will not cover the whole polygon (these rectangles overlap

and can stick out beyond the limits of the polygon whereas the sum of their areas is equal
to the area of the polygon). An uncovered point is distant from every side of the polygon
further than by R, consequently, the disk of radius R centered at this point entirely lies
inside the polygon.

b) Heading a) implies that in the inner polygon a disk of radius S2

P2
can be placed. Clearly,

this disk lies inside the outer polygon. It remains to prove that if inside a polygon a disk of
radius R lies, then R ≤ 2S

P
. For this let us connect (with lines) the center O of the disk with

the vertices of the polygon. These lines split the polygon into triangles whose respective
areas are equal to 1

2
hiai, where hi is the distance from point O to the i-th side and ai is the

length of the i-th side. Since hi ≥ R, we deduce that 2S =
∑

hiai ≥
∑

Rai = RP .
9.52. First, let us consider the case when two sides of a parallelogram lie on lines AB

and AC and the fourth vertex X lies on side BC. If BX : CX = x : (1 − x), then the ratio
of the area of the parallelogram to the area of the triangle is equal to 2x(1 − x) ≤ 1

2
.

Figure 107 (Sol. 9.52)

In the general case let us draw parallel lines that contain a pair of sides of the given
parallelogram (Fig. 107). The area of the given parallelogram does not exceed the sum
of areas of the shaded parallelograms which fall in the case considered above. If lines that
contain a pair of sides of the given parallelogram only intersect two sides of the triangle,
then we can restrict ourselves to one shaded parallelogram only.
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9.53. First, let us consider the following case: two vertices A and B of triangle ABC lie
on one side PQ of the parallelogram. Then AB ≤ PQ and the height dropped to side AB is
not longer than the height of the parallelogram. Therefore, the area of triangle ABC does
not exceed a half area of the parallelogram.

Figure 108 (Sol. 9.53)

If the vertices of the triangle lie on distinct sides of the parallelogram, then two of them
lie on opposite sides. Let us draw through the third vertex of the triangle a line parallel to
these sides (Fig. 108). This line cuts the parallelogram into two parallelograms and it cuts
the triangle into two triangles so that two vertices of each of these triangles lie on sides of
the parallelogram. We get the case already considered.

9.54. Let M be the midpoint of the longest side BC of the given acute triangle ABC.
The circle of radius MA centered at M intersects rays MB and MC at points B1 and
C1, respectively. Since ∠BAC < 90◦, it follows that MB < MB1. Let, for definiteness,
∠AMB ≤ ∠AMC, i.e., ∠AMB ≤ 90◦. Then AM2 + MB2 ≤ AB2 ≤ BC2 = 4MB2, i.e.,
AM ≤

√
3BM . If AH is a height of triangle ABC, then AH · BC = 2 and, therefore,

SAB1C1 =
B1C1 · AH

2
= AM · AH ≤

√
3BM · AH =

√
3.

9.55. a) Let AB be the longest of the diagonals and sides of the given polygon M .
Polygon M is confined inside the strip formed by the perpendiculars to segment AB passing
through points A and B. Let us draw two baselines to M parallel to AB. Let them intersect
polygon M at points C and D. As a result we have confined M into a rectangle whose area
is equal to 2SABC + 2SABD ≤ 2S.

Figure 109 (Sol. 9.55)

b) Let M be the initial polygon, l an arbitrary line. Let us consider the polygon M1 one
of whose sides is the projection of M to l and the lengths of the sections of polygons M and
M1 by any line perpendicular to l are equal (Fig. 109). It is easy to verify that M1 is also
a convex polygon and its area is equal to S. Let A be the most distant from l point of M1.
The line equidistant from point A and line l intersects the sides of M1 at points B and C.
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Let us draw base lines through points B and C. As a result we will circumscribe a
trapezoid about M1 (through point A a base line can also be drawn); the area of this
trapezoid is no less than S. If the height of the trapezoid, i.e., the distance from A to l
is equal to h then its area is equal to h · BC and, therefore, h · BC ≥ S. Let us consider
sections PQ and RS of polygon M by lines perpendicular to l and passing through B and
C. The lengths of these sections are equal to 1

2
h and, therefore, PQRS is a parallelogram

whose area is equal to 1
2
BC · h ≥ 1

2
S.

9.56. a) Let us confine the polygon in the strip formed by parallel lines. Let us shift
these lines parallelly until some vertices A and B of the polygon lie on them. Then let us
perform the same for the strip formed by lines parallel to AB. Let the vertices that lie on
these new lines be C and D (Fig. 110). The initial polygon is confined in a parallelogram
and, therefore, the area of this parallelogram is not less than 1. On the other hand, the
sum of areas of triangles ABC and ADB is equal to a half area of the parallelogram and,
therefore, the area of one of these triangles is not less than 1

4
.

Figure 110 (Sol. 9.56 a))

b) As in heading a) let us confine the polygon in a strip formed by parallel lines so that
some vertices, A and B, lie on these lines. Let d be the width of this strip. Let us draw
three lines that divide this strip into equal strips of width 1

4
d. Let the first and the third

lines intersect sides of the polygon at points K, L and M , N , respectively (Fig. 111).

Figure 111 (Sol. 9.56 b))

Let us extend the sides on which points K, L, M and N lie to the intersection with the
sides of the initial strip and with the line that divides it in halves. In this way we form two
trapezoids with the midlines KL and MN and heights of length 1

2
d each.

Since these trapezoids cover the whole polygon, the sum of their areas is not less than its
area, i.e., 1

2
(d ·KL + d ·MN) ≥ 1. The sum of areas of triangles AMN and BKL contained

in the initial polygon is equal to 1
8
(3d · MN + 3d · KL) ≥ 3

4
. Therefore, the area of one of

these triangles is not less than 3
8
.

9.57. Let us prove that there exists even three last vertices satisfying the required
condition. Let αi be the angle between the i-th and (i + 1)-th sides βi = π − αi; let ai be
the length of the i-th side.



SOLUTIONS 227

a) The area of the triangle formed by the i-th and (i + 1)-th sides is equal to Si =
aiai+1 sin αi

2
. Let S be the least of these areas. Then 2S ≤ aiai+1 sin αi; hence,

(2S)n ≤ (a2
1 . . . a2

n)(sin α1 . . . sin αn) ≤ a2
1 . . . a2

n.

By the inequality between the mean arithmetic and the mean geometric we have (a1 . . . an)
1
n ≤

a1+···+an

n
and, therefore,

2S ≤ (a1 . . . an)
2
n ≤ (a1 + · · · + an)2

n2
.

Since ai ≤ pi+qi, where pi and qi are projections of the i-th side to a vertical and a horizontal
sides of the square, it follows that

a1 + · · · + an ≤ (p1 + · · · + pn) + (q1 + · · · + qn) ≤ 4.

Hence, 2S ≤ 16n2, i.e., S ≤ 8
n2 .

b) Let us make use of the inequality

2S ≤ (a1 . . . an)
2
n (sin α1 . . . sin αn)

1
n ≤ 16

n2
(sin α1 . . . sin αn)

proved above. Since sin αi = sin βi and β1 + · · · + βn = 2π, it follows that

(sin α1 . . . sin αn)
1
n = (sin β1 . . . sin βn)

1
n ≤ β1 + · · · + βn

n
=

2π

n
.

Hence, 2S ≤ 32π
n3 , i.e., S ≤ 16π

n3 .
9.58. Let li be the length of the i-th link of the broken line; ai and bi the lengths of its

projections to the sides of the square. Then li ≤ ai + bi. It follows that

1000 = l1 + · · · + ln ≤ (a1 + · · · + an) + (b1 + · · · + bn),

i.e., either a1 + · · · + an ≥ 500 or b1 + · · · + bn ≥ 500. If the sum of the lengths of the links’
projections on a side of length 1 is not less than 500, then not fewer than 500 distinct lengths
of the broken line are projected into one of the points of this side, i.e., the perpendicular to
the side that passes through this point intersects the broken line at least at 500 points.

9.59. The locus of points distant from the given segment not further than by ε is depicted
on Fig. 112. The area of this figure is equal to πε2+2εl, where l is the length of the segment.

Figure 112 (Sol. 9.59)

Let us construct such figures for all N links of the given broken lines. Since neighbouring
figures have N − 1 common disks of radius ε centered at vertices of the broken line which
are not its endpoints, it follows that the area covered by these figures does not exceed

Nπε2 + 2ε(l1 + · · · + ln) − (N − 1)πε2 = 2εL + πε2.

This figure covers the whole square since any point of the square is distant from a point of
the broken line by less than ε. Hence, 1 ≤ 2εL + πε2, i.e., L ≥ 1

2ε
− πε

2
.

9.60. Let us divide the square into n vertical strips that contain n points each. Inside
each strip let us connect points downwards thus getting n broken lines. These broken lines
can be connected into one broken line in two ways: Fig. 113 a) and b).
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Figure 113 (Sol. 9.60)

Let us consider the segments that connect distinct bands. The union of all such segments
obtained in both ways is a pair of broken lines such that the sum of the lengths of the
horizontal projections of each of them does not exceed 1. Therefore, the sum of the lengths
of horizontal projections of the connecting segments for one of these ways does not exceed
1.

Let us consider such a connection. The sum of the lengths of the horizontal projections
for connecting links does not exceed 1 and for all the other links it does not exceed (n −
1)(h1 + · · · + hn), where hi is the width of the i-th strip. Clearly, h1 + · · · + hn = 1. The
sum of the vertical projections of all links of the broken line does not exceed n. As a result
we deduce that the sum of the vertical and horizontal projections of all the links does not
exceed 1+ (n− 1)+n = 2n and, therefore, the length of the broken line does not exceed 2n.

9.61. Let M and N be the endpoints of the broken line. Let us traverse along the
broken line from M to N . Let A1 be the first of points of the broken line that we meet
whose distance from a vertex of the square is equal to 0.5. Let us consider the vertices of
the square neighboring to this vertex. Let B1 be the first after A1 point of the broken line
distant from one of these vertices by 0.5. Denote the vertices of the square nearest to points
A1 and B1 by A and B, respectively (Fig. 114).

Figure 114 (Sol. 9.61)

Denote the part of the broken line from M to A1 by L1 and the part from A1 to N by
L2. Let X and Y be the sets of points that lie on AD and distant not further than by 0.5
from L1 and L2, respectively. By hypothesis, X and Y cover the whole side AD. Clearly,
A ∈ X and D 6∈ X; hence, D ∈ Y , i.e., both sets, X and Y , are nonempty. But each of
these sets consists of several segments and, therefore, they should have a common point P .
Therefore, on L1 and L2, there are points F1 and F2 for which PF1 ≤ 0.5 and PF2 ≤ 0.5.

Let us prove that F1 and F2 are the points to be found. Indeed, F1F2 ≤ F1P + PF2 ≤ 1.
On the other hand, while traversing from F1 to F2 we should pass through point B; and we
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have F1B1 ≥ 99 and F2B1 ≥ 99 because point B1 is distant from side BC no further than
by 0.5 while F1 and F2 are distant from side AD not further than by 0.5.

9.62. Let ∠A = ∠B. It suffices to prove that if AD < BC; then ∠D > ∠C. On side
BC, take point D1 such that BD1 = AD. Then ABD1D is an isosceles trapezoid. Hence,
∠D > ∠D1DA = ∠DD1B ≥ ∠C.

9.63. Let B1 and C1 be the projections of points B and C on base AD. Since ∠BAB1 <
∠CDC1 and BB1 = CC1, it follows that AB1 > DC1 and, therefore, B1D < AC1. It follows
that

BD2 = B1D
2 + B1B

2 < AC2
1 + CC2

1 = AC2.

9.64. Let angles ∠B and ∠D of quadrilateral ABCD be obtuse ones. Then points B
and D lie inside the circle with diameter AC. Since the distance between any two points
that lie inside the circle is less than its diameter, BD < AC.

9.65. In an isosceles trapezoid ABCD diagonals AC and BD are equal. Therefore,

BM + (AM + CM) ≥ BM + AC = BM + BD ≥ DM.

9.66. Let O be the midpoint of segment BD. Point A lies inside the circle with diameter
BD, hence, OA < 1

2
BD. Moreover, FO = 1

2
CD. Therefore, 2FA ≤ 2FO + 2OA <

CD + BD.
9.67. On rays AB, AC and AD mark segments AB′, AC ′ and AD′ of length 1

AB
, 1

AC

and 1
AD

. Then AB : AC = AC ′ : AB′, i.e., △ABC ∼ △AC ′B′. The similarity coefficient of

these triangles is equal to 1
AB·AC

and therefore, B′C ′ = BC
AB·AC

. Analogously, C ′D′ = CD
AC·AD

and B′D′ = BD
AB·AD

. Substituting these expressions in the inequality B′D′ ≤ B′C ′ + C ′D′

and multiplying both sides by AB · AC · AD, we get the desired statement.
9.68. Clearly,

SABCD = SABC + SACD = 2SAMC + 2SANC = 2(SAMN + SCMN).

If segment AM intersects diagonal BD at point A1, then SCMN = SA1MN < SAMN . There-
fore, SABCD < 4SAMN .

9.69. Diagonals AC and BD intersect at point O. Let, for definiteness, point P lie in
side of AOB. Then AP + BP ≤ AO + BO < AC + BD (cf. the solution of Problem 9.28)
and CP + DP < CB + BA + AD.

9.70. Let ri, Si and pi be the radii of the inscribed circles, the areas and semiperimeters
of the obtained triangles, respectively. Then

Q ≥ 2
∑

ri = 2
∑

(

Si

pi

)

> 4
∑

(

Si

P

)

=
4S

P
.

9.71. Let AC ≤ BD. Let us drop from vertices A and C perpendiculars AA1 and CC1

to diagonal BD. Then AA1 + CC1 ≤ AC ≤ BD and, therefore, either AA1 ≤ 1
2
BD or

CC1 ≤ 1
2
BD.

9.72. Let us draw through the endpoints of segment KL lines perpendicular to it and
consider projections to these lines of the vertices of the quadrilateral. Consider also the
intersection points of lines AC and BD with these lines, cf. Fig. 115.

Let, for definiteness, point A lie inside the strip determined by these lines and point B
outside it. Then we may assume that D lies inside the strip, because otherwise BD > KL
and the proof is completed. Since

AA′

BB′ ≤
A1K

B1K
=

C1L

D1L
≤ CC ′

DD′ ,
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Figure 115 (Sol. 9.72)

then either AA′ ≤ CC ′ (and, therefore, AC > KL) or BB′ ≥ DD′ (and, therefore, BD >
KL).

9.73. Let us introduce the notations as plotted on Fig. 116. All the parallelograms
considered have a common center (thanks to Problem 1.7). The lengths of the sides of
parallelogram P3 are equal to a + a1 and b + b1 and the lengths of the sides of parallelogram
P1 are equal to a + a1 + 2x and b + b1 + 2y, consequently, we have to verify that either
a + a1 + 2x ≤ 2(a + a1) or b + b1 + 2y ≤ 2(b + b1), i.e., either 2x ≤ a + a1 or 2y ≤ b + b1.

Figure 116 (Sol. 9.73)

Suppose that a + a1 < 2x and b + b1 < 2y. Then
√

aa1 ≤ 1
2
(a + a1) < x and

√
bb1 < y.

On the other hand, the equality of the areas of shaded parallelograms (cf. Problem 4.19)
shows that ab = xy = a1b and, therefore,

√
aa1

√
bb1 = xy. Contradiction.

9.74. Let the angles of the pentagon be equal to α, α + γ, α + 2γ, α + 3γ, α + 4γ,
where α, γ ≥ 0. Since the sum of the angles of the pentagon is equal to 3π, it follows that
5α + 10γ = 3π. Since the pentagon is a convex one, each of its angles is less than π, i.e.,
either α + 4γ < π or −51

2
α − 10γ > −1

2
5π. Taking the sum of the latter inequality with

5α + 10γ = 3π we get 5α
2

> π
2
, i.e., α > π

5
= 36◦.

9.75. Clearly,

4 = AE2 = |−→AB +
−−→
BC +

−−→
CD +

−−→
DE|2 =

|−→AB +
−−→
BC|2 + 2(

−→
AB +

−−→
BC,

−−→
CD +

−−→
DE) + |−−→CD +

−−→
DE|2.

Since ∠ACE = 90◦, we have

(
−→
AB +

−−→
BC,

−−→
CD +

−−→
DE) = (

−→
AC,

−−→
CE) = 0.

Hence,

4 = |−→AB +
−−→
BC|2 + |−−→CD +

−−→
DE|2 =

AB2 + BC2 + CD2 + DE2 + 2(
−→
AB,

−−→
BC) + 2(

−−→
CD,

−−→
DE),

i.e., it suffices to prove that

abc < 2(
−→
AB,

−−→
BC) and bcd < 2(

−−→
CD,

−−→
DE).
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Since

2(
−→
AB,

−−→
BC) = 2ab cos(180◦ − ∠ABC) = 2ab cos AEC = ab · CE and c < CE,

it follows that abc < 2(
−→
AB,

−−→
BC).

The second inequality is similarly proved, because in notations A1 = E, B1 = D, C1 =

C, a1 = d, b1 = c, c1 = b the inequality bcd < 2(
−−→
CD,

−−→
DE) takes the form a1b1c1 <

2(
−−−→
A1B1,

−−−→
B1C1).

9.76. Let B be the midpoint of side A1A2 of the given hexagon A1 . . . A6 and O its
center. We may assume that point P lies inside triangle A1OB. Then PA3 ≥ 1 because the
distance from point A3 to line BO is equal to 1; since the distances from points A4 and A5

to line A3A6 are equal to 1, we deduce that PA4 ≥ 1 and PA5 ≥ 1.
9.77. Suppose that the radii of the circumscribed circles of triangles ACE and BDF

are greater than 1. Let O be the center of the circumscribed circle of triangle ACE. Then
∠ABC > ∠AOC, ∠CDE > ∠COE and ∠EFA > ∠EOA and, therefore, ∠B+∠D+∠F >
2π. Similarly, ∠A + ∠C + ∠E > 2π, i.e., the sum of the angles of hexagon ABCDEF is
greater than 4π. Contradiction.

Remark. We can similarly prove that the radius of the circumscribed circle of one of
triangles ACE and BDF is not less than 1.

9.78. We may assume that AE ≤ AC ≤ CE. By Problem 9.67

AD · CE ≤ AE · CD + AC · DE < AE + AC ≤ 2CE,

i.e., AD < 2.
9.79. Since ∠A1 = 180◦ − 1

2
⌣ A2A7, ∠A3 = 180◦ − 1

2
⌣ A4A2 and ∠A5 = 180◦ − 1

2
⌣

A6A4, it follows that

∠A1 + ∠A3 + ∠A5 = 2 · 180◦ + 360◦−⌣A2A7−⌣A4A2−⌣A6A4

2
=

2 · 180◦ + ⌣A7A6

2
.

Since the center of the circle lies inside the hexagon, it follows that ⌣ A7A6 < 180◦ and,
therefore, ∠A1 + ∠A3 + ∠A5 < 360◦ + 90◦ = 450◦.

9.80. a) We have to prove that if c is the hypothenuse of the right triangle and a and b
are its legs, then c ≥ a+b√

2
, i.e., (a + b)2 ≤ 2(a2 + b2). Clearly,

(a + b)2 = (a2 + b2) + 2ab ≤ (a2 + b2) + (a2 + b2) = 2(a2 + b2).

b) Let di be the length of the i-th side of the polygon; xi and yi the lengths of its
projections to coordinate axes. Then x1 + · · · + xn ≥ 2a, y1 + · · · + yn ≥ 2b. By heading a)
di ≥ xi+yi√

2
. Therefore,

d1 + · · · + dn ≥ x1 + · · · + xn + y1 + · · · + yn√
2

≥
√

2(a + b).

9.81. Let us take a segment of length P and place the sides of the polygon on the
segment as follows: on one end of the segment place the greatest side, on the other end place
the second long side; place all the other sides between them. Since any side of the polygon
is shorter than 1

2
P , the midpoint O of the segment cannot lie on these two longest sides.

The length of the side on which point O lies, does not exceed 1
3
P (otherwise the first two

sides would also have been longer than 1
3
P and the sum of the three sides would have been

greater than P ) and, therefore, one of its vertices is distant from O not further than by 1
6
P .

This vertex divides the segment into two segments to be found since the difference of their
lengths does not exceed 2

6
P = 1

3
P .
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9.82. Let βk = ∠OAkAk+1. Then xk sin βk = dk = xk+1 sin(αk+1 − βk+1). Hence,

2
∑

dk =
∑

xk(sin(αk − βk) + sin βk) =
2
∑

xk sin αk

2
cos

(

αk

2
− βk

)

≤ 2
∑

xk sin αk

2
.

It is also clear that

AkAk+1 = xk cos βk + xk+1 cos(αk+1 − βk+1).

Therefore,
2p =

∑

AkAk+1 =
∑

xk(cos(αk − βk) + cos βk) =
2
∑

xk cos αk

2
cos

(

αk

2
− βk

)

≤ 2
∑

xk cos αk

2
.

In both cases the equality is only attained if αk = 2βk, i.e., O is the center of the inscribed
circle.

9.83. Suppose that the center O of polygon M2 lies outside polygon M1. Then there
exists a side AB of polygon M1 such that polygon M1 and point O lie on distinct sides of
line AB. Let CD be a side of M1 parallel to AB. The distance between lines AB and CD
is equal to the radius of the inscribed circle S of polygon M2 and, therefore, line CD lies
outside S. On the other hand, segment CD lies inside M2. Therefore, segment CD is shorter
than a half side of polygon M2, cf. Problem 10.66. Contradiction.

9.84. Let A1 be the nearest to O vertex of the polygon. Let us divide the polygon into
triangles by the diagonals that pass through vertex A1. Point O lies inside one of these
triangles, say, in triangle A1AkAk+1. If point O lies on side A1Ak, then ∠A1OAk = π and
the problem is solved.

Therefore, let us assume that point O lies strictly inside triangle A1AkAk+1. Since A1O ≤
AkO and A1O ≤ Ak+1O, it follows that ∠A1AkO ≤ ∠AkA1O and ∠A1Ak+1O ≤ ∠Ak+1A1O.
Hence,

∠AkOA1 + ∠Ak+1OA1 =
(π − ∠OA1Ak − ∠OAkA1) + (π − ∠OA1Ak+1 − ∠OAk+1A1) ≥
2π − 2∠OA1Ak − 2∠OA1Ak+1 = 2π − 2∠AkA1Ak+1 = 2π − 2π

n
,

i.e., one of the angles ∠AkOA1 and ∠Ak+1OA1 is not less than π
(

1 − 1
n

)

.
9.85. Let d be the length of the longest diagonal (or side) AB of the given n-gon. Then

the perimeter of the n-gon does not exceed πd (Problem 13.42). Let A′
i be the projection

of Ai to segment AB. Then either
∑

AA′
i ≥ 1

2
nd or

∑

BA′
i ≥ 1

2
nd (Problem 9.87); let, for

definiteness, the first inequality hold. Then
∑

AAi >
∑

AA′
i ≥ 1

2
nd > πd ≥ P because

1
2
n ≥ 3.5 > π. Any point of the n-gon sufficiently close to vertex A possesses the required

property.
9.86. a) First, suppose that ∠Ai > ∠Bi and for all the other considered pairs of angles

an equality takes place. Let us arrange polygons so that vertices A1, . . . , Ai coincide with B1,
. . . , Bi. In triangles A1AiAn and A1AiBn sides AiAn and AiBn are equal and ∠A1AiAn >
∠A1AiBn; hence, A1An > A1Bn.

If several angles are distinct, then polygons A1 . . . An and B1 . . . Bn can be included in a
chain of polygons whose successive terms are such as in the example considered above.

b) As we completely traverse the polygon we encounter the changes of minus sign by
plus sign as often as the opposite change. Therefore, the number of pairs of neighbouring
vertices with equal signs is an even one. It remains to verify that the number of sign changes
cannot be equal to 2 (the number of sign changes is not equal to zero because the sums of
the angles of each polygon are equal).

Suppose the number of sign changes is equal to 2. Let P and Q, as well as P ′ and Q′ be
the midpoints of sides of polygons A1 . . . An and B1 . . . Bn on which a change of sign occurs.
We can apply the statement of heading a) to pairs of polygons M1 and M ′

1, M2 and M ′
2
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Figure 117 (Sol. 9.86)

(Fig. 117); we get PQ > P ′Q′ in the one case, and PQ < P ′Q′ in the other one, which is
impossible.

9.87. Let A and B be the midpoints of the segment; X1, . . . , Xn the given points. Since
AXi + BXi = 1, it follows that

∑

AXi +
∑

BXi = n. Therefore, either
∑

AXi ≥ 1
2
n or

∑

BXi ≥ 1
2
n.

Figure 118 (Sol. 9.88)

9.88. Let us draw a wire along segment AB circumventing the encountered trees along
the shortest arc as on Fig. 118. It suffices to prove that the way along an arc of the circle
is not more than 1.6 times longer than the way along the line. The ratio of the length of an
arc with the angle value 2ϕ to the chord it subtends is equal to ϕ

sin ϕ
. Since 0 < ϕ ≤ π

2
, it

follows that ϕ
sin ϕ

≤ π
2

< 1.6.

9.89. Let the trees of height a1 > a2 > · · · > an grow at points A1, . . . , An. Then by
the hypothesis

A1A2 ≤ |a1 − a2| = a1 − a2, . . . , An−1An ≤ an−1 − an.

It follows that the length of the broken line A1A2 . . . An does not exceed

(a1 − a2) + (a2 − a3) + · · · + (an−1 − an) = a1 − an < 100 m.

This broken line can be fenced by a fence, whose length does not exceed 200 m (Fig. 119).

Figure 119 (Sol. 9.89)

9.90. In the obtained pentagon, distinguish the parts that were glued (on Fig. 120
these parts are shaded). All the sides that do not belong to the shaded polygons enter the
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perimeters of the initial and the obtained polygons. The sides of the shaded polygons that
lie on the line along which the folding was performed enter the perimeter of the obtained
polygon whereas all the other sides enter the perimeter of the initial polygon.

Figure 120 (Sol. 9.90)

Since for any polygon the sum of its sides that lie on a line is less than the sum of the
other sides, the perimeter of the initial polygon is always longer than the perimeter of the
obtained one.

9.91. On the broken line, take two points A and B, that divide its perimeter in halves.
Then AB ≤ 1

2
. Let us prove that all the points of the broken line lie inside the circle of

radius 1
4

centered at the midpoint O of segment AB. Let M be an arbitrary point of the
broken line and point M1 be symmetric to M through point O. Then

MO =
M1M

2
≤ M1A + AM

2
=

BM + AM

2
≤ 1

4
because BM + AM does not exceed a half length of the broken line.

9.92. Let acute triangle ABC be placed inside circle S. Let us construct the circum-
scribed circle S1 of triangle ABC. Since triangle ABC is an acute one, the angle value of
the arc of circle S1 that lies inside S is greater than 180◦. Therefore, on this arc we can
select diametrically opposite points, i.e., inside circle S a diameter of circle S1 is contained.
It follows that the radius of S is not shorter than the radius of S1.

A similar statement for an acute triangle is false. An acute triangle lies inside a circle
constructed on the longest side a as on diameter. The radius of this circle is equal to 1

2
a and

the radius of the circle circumscribed about the triangle is equal to a
2 sin α

. Clearly, 1
2
a < a

2 sin α
.

9.93. First solution. Any triangle of perimeter P can be placed in a disk of radius
1
4
P and if an acute triangle is placed in a disk of radius R1, then R1 ≥ R (Problem 9.92).

Hence, 1
4
P = R1 ≥ R.

Second solution. If 0 < x < π
2
, then sin x > 2x

π
. Hence,

a + b + c = 2R(sin α + sin β + sin γ) >
2R(2α + 2β + 2γ)

π
= 4R.



Chapter 10. INEQUALITIES BETWEEN THE ELEMENTS OF
A TRIANGLE

This chapter is in close connection with the preceding one. For background see the
preceding chapter.

§1. Medians

10.1. Prove that if a > b, then ma < mb.
10.2. Medians AA1 and BB1 of triangle ABC intersect at point M . Prove that if

quadrilateral A1MB1C is a circumscribed one, then AC = BC.
10.3. Perimeters of triangles ABM , BCM and ACM , where M is the intersection point

of medians of triangle ABC, are equal. Prove that triangle ABC is an equilateral one.
10.4. a) Prove that if a, b, c are the lengths of sides of an arbitrary triangle, then

a2 + b2 ≥ 1
2
c2.

b) Prove that m2
a + m2

b ≥ 2
8
c2.

10.5. Prove that m2
a + m2

b + m2
c ≤ 27

4
R2.

b) Prove that ma + mb + mc ≤ 9
2
R.

10.6. Prove that |a2−b2|
2c

< mc ≤ a2+b2

2c
.

10.7. Let x = ab + bc + ca, x1 = mamb + mbmc = mcma. Prove that 9
20

< x1

x
< 5

4
.

See also Problems 9.1, 10.74, 10.76, 17.17.

§2. Heights

10.8. Prove that in any triangle the sum of the lengths of its heights is less than its
semiperimeter.

10.9. Two heights of a triangle are longer than 1. Prove that its area is greater than 1
2
.

10.10. In triangle ABC, height AM is not shorter than BC and height BH is not
shorter than AC. Find the angles of triangle ABC.

10.11. Prove that 1
2r

< 1
ha

+ 1
hb

< 1
r
.

10.12. Prove that ha + hb + hc ≥ 9r.
10.13. Let a < b. Prove that a + ha ≤ b + hb.
10.14. Prove that ha ≤ √

rbrc.
10.15. Prove that ha ≤ a

2
cot α

2
.

10.16. Let a ≤ b ≤ c. Prove that

ha + hb + hc ≤
3b(a2 + ac + c2)

4pR
.

See also Problems 10.28, 10.55, 10.74, 10.79.

§3. The bisectors

10.17. Prove that la ≤
√

p(p − a).

235
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10.18. Prove that ha

la
≥

√

2r
R

.

10.19. Prove that a) l2a + l2b + l2c ≤ p2; b) la + lb + lc ≤
√

3p.
10.20. Prove that la + lb + mc ≤

√
3p.

See also Problems 6.38, 10.75, 10.94.

§4. The lengths of sides

10.21. Prove that 9r
2S

≤ 1
a

+ 1
b
+ 1

c
≤ 9R

4S
.

10.22. Prove that 2bc cos α
b+c

< b + c − a < 2bc
a

.
10.23. Prove that if a, b, c are the lengths of sides of a triangle of perimeter 2, then

a2 + b2 + c2 < 2(1 − abc).
10.24. Prove that 20Rr − 4r2 ≤ ab + bc + ca ≤ 4(R + r)2.

§5. The radii of the circumscribed, inscribed and escribed circles

10.25. Prove that rrc ≤ c2

4
.

10.26. Prove that r
R
≤ 2 sin α

2

(

1 − sin α
2

)

.
10.27. Prove that 6r ≤ a + b.
10.28. Prove that ra

ha
+ rb

hb
+ rc

hc
≥ 3.

10.29. Prove that 27Rr ≤ 2p2 ≤ 1
2
27R2.

10.30. Let O be the centre of the inscribed circle of triangle ABC and OA ≥ OB ≥ OC.
Prove that OA ≥ 2r and OB ≥ r

√
2.

10.31. Prove that the sum of distances from any point inside of a triangle to its vertices
is not less than 6r.

10.32. Prove that 3
(

a
ra

+ b
rb

+ c
rc

)

≥ 4
(

ra

a
+ rb

b
+ rc

c

)

.

10.33. Prove that:
a) 5R − r ≥

√
3p;

b) 4R − ra ≥ (p − a)
[√

3 + a2+(b−c)2

2S

]

.

10.34. Prove that 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.
10.35. Prove that r2

a + r2
b + r2

c ≥ 1
4
27R2.

See also Problems 10.11, 10.12, 10.14, 10.18, 10.24, 10.55, 10.79, 10.82, 19.7.

§6. Symmetric inequalities between the angles of a triangle

Let α, β and γ be the angles of triangle ABC. In problems of this section you have to
prove the inequalities indicated.

Remark. If α, β and γ are the angles of a triangle, then there exists a triangle with
angles π−α

2
, π−β

2
and π−γ

2
. Indeed, these numbers are positive and their sum is equal to π. It

follows that if a symmetric inequality holds for sines, cosines, tangents and cotangents of the
angles of any triangle then a similar inequality in which sinx is replaced with cos x

2
, cos x

with sin x
2
, tan x with cot x

2
and cot x with tan x

2
is also true.

The converse passage from inequalities for halved angles to inequalities with whole angles
is only possible for acute triangles. Indeed, if α′ = 1

2
(π − α), then α = π − 2α′. Therefore,

for an acute triangle with angles α′, β′, γ′ there exists a triangle with angles π− 2α′, π− 2β′

and π − 2γ′. Under such a passage sin x
2

turns into cos x, etc., but the inequality obtained
can only be true for acute triangles.
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10.36. a) 1 < cos α + cos β + cos γ ≤ 3
2
.

b) 1 < sin α
2

+ sin β
2

+ sin γ
2
≤ 3

2
.

10.37. a) sin α + sin β + sin γ ≤ 3
2

√
3.

b) cos α
2

+ cos β
2

+ cos γ
2
≤ 3

2

√
3.

10.38. a) cot α + cot β + cot γ ≥
√

3.
b) tan α

2
+ tan β

2
+ tan γ

2
≥

√
3.

10.39. cot α
2

+ cot β
2

+ cot γ
2
≥ 3

√
3.

b) For an acute triangle tanα + tan β + tan γ ≥ 3
√

3.
10.40. a) sin α

2
sin β

2
sin γ

2
≤ 1

8
.

b) cos α cos β cos γ ≤ 1
8
.

10.41. a) sin α sin β sin γ ≤ 3
√

3
8

;

b) cos α
2

cos β
2

cos γ
2
≤ 3

8

√
3.

10.42. a) cos2 α + cos2 β + cos2 γ ≥ 3
4
.

b) For an obtuse triangle

cos2 α + cos2 β + cos2 γ > 1.

10.43. cos α cos β + cos β cos γ + cos γ cos α ≤ 3
4
.

10.44. For an acute triangle

sin 2α + sin 2β + sin 2γ ≤ sin(α + β) + sin(β + γ) + sin(γ + α).

§7. Inequalities between the angles of a triangle

10.45. Prove that 1 − sin α
2
≤ 2 sin β

2
sin γ

2
.

10.46. Prove that sin γ
2
≤ c

a+b
.

10.47. Prove that if a + b < 3c, then tan α
2

tan β
2

< 1
2
.

10.48. In an acute triangle, if α < β < γ, then sin 2α > sin 2β > sin 2γ.
10.49. Prove that cos 2α + cos 2β − cos 2γ ≤ 3

2
.

10.50. On median BM of triangle ABC, point X is taken. Prove that if AB < BC,
then ∠XAB < ∠XCB.

10.51. The inscribed circle is tangent to sides of triangle ABC at points A1, B1 and C1.
Prove that triangle A1B1C1 is an acute one.

10.52. From the medians of a triangle whose angles are α, β and γ a triangle whose
angles are αm, βm and γm is constructed. (Angle αm subtends median AA1, etc.) Prove that
if α > β > γ, then α > αm, α > βm, γm > β > αm, βm > γ and γm > γ.

See also Problems 10.90, 10.91, 10.93.

§8. Inequalities for the area of a triangle

10.53. Prove that: a) 3
√

3r2 ≤ S ≤ p2

3
√

3
; b) S ≤ a2+b2+c2

4
√

3
.

10.54. Prove that

a2 + b2 + c2 − (a − b)2 − (b − c)2 − (c − a)2 ≥ 4
√

3S.

10.55. Prove that: a) S3 ≤
(√

3
4

)3

(abc)2; b)
√

hahbhc ≤ 4
√

3
√

S ≤ 3
√

rarbrc.
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* * *

10.56. On sides BC, CA and AB of triangle ABC points A1, B1 and C1, respectively,

are taken so that AA1, BB1 and CC1 meett at one point. Prove that
SA1B1C1

SABC
≤ 1

4
.

10.57. On sides BC, CA and AB of triangle ABC arbitrary points A1, B1 and C1 are
taken. Let a = SAB1C1 , b = SA1BC1 , c = SA1B1C and u = SA1B1C1 . Prove that

u3 + (a + b + c)u2 ≥ 4abc.

10.58. On sides BC, CA and AB of triangle ABC points A1, B1 and C1 are taken.
Prove that the area of one of the triangles AB1C1, A1BC1, A1B1C does not exceed: a)
1
4
SABC ; b) SA1B1C1 .

See also Problems 9.33, 9.37, 9.40, 10.9, 20.1, 20.7.

§9. The greater angle subtends the longer side

10.59. In a triangle ABC, prove that ∠ABC < ∠BAC if and only if AC < BC, i.e.,
the longer side subtends the greater angle and the greater angle subtends the longer side.

10.60. Prove that in a triangle ABC angle ∠A is an acute one if and only if mb > 1
2
a.

10.61. Let ABCD and A1B1C1D1 be two convex quadrilaterals with equal corresponding
sides. Prove that if ∠A > ∠A1, then ∠B < ∠B1, ∠C < ∠C1, ∠D < ∠D1.

10.62. In an acute triangle ABC the longest height AH is equal to median BM . Prove
that ∠B ≤ 60◦.

10.63. Prove that a convex pentagon ABCDE with equal sides whose angles satisfy
inequalities ∠A ≥ ∠B ≥ ∠C ≥ ∠D ≥ ∠E is a regular one.

§10. Any segment inside a triangle is shorter than the longest side

10.64. a) Segment MN is placed inside triangle ABC. Prove that the length of MN
does not exceed the length of the longest side of the triangle.

b) Segment MN is placed inside a convex polygon. Prove that the length of MN does
not exceed that of the longest side or of the greatest diagonal of this polygon.

10.65. Segment MN lies inside sector AOB of a disk of radius R = AO = BO. Prove
that either MN ≤ R or MN ≤ AB (we assume that ∠AOB < 180◦).

10.66. In an angle with vertex A, a circle tangent to the legs at points B and C is
inscribed. In the domain bounded by segments AB, AC and the shorter arc ⌣ BC a
segment is placed. Prove that the length of the segment does not exceed that of AB.

10.67. A convex pentagon lies inside a circle. Prove that at least one of the sides of the
pentagon is not longer than a side of the regular pentagon inscribed in the circle.

10.68. Given triangle ABC the lengths of whose sides satisfy inequalities a > b > c and
an arbitrary point O inside the triangle. Let lines AO, BO, CO intersect the sides of the
triangle at points P , Q, R, respectively. Prove that OP + OQ + OR < a.

§11. Inequalities for right triangles

In all problems of this section ABC is a right triangle with right angle ∠C.

10.69. Prove that cn > an + bn for n > 2.
10.70. Prove that a + b < c + hc.
10.71. Prove that for a right triangle 0.4 < r

h
< 0.5, where h is the height dropped from

the vertex of the right angle.
10.72. Prove that c

r
≥ 2(1 +

√
2).

10.73. Prove that m2
a + m2

b > 29r2.
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§12. Inequalities for acute triangles

10.74. Prove that for an acute triangle

ma

ha

+
mb

hb

+
mc

hc

≤ 1 +
R

r
.

10.75. Prove that for an acute triangle

1

la
+

1

lb
+

1

lc
≤

√
2

(

1

a
+

1

b
+

1

c

)

.

10.76. Prove that if a triangle is not an obtuse one, then ma + mb + mc ≥ 4R.
10.77. Prove that if in an acute triangle ha = lb = mc, then this triangle is an equilateral

one.
10.78. In an acute triangle ABC heights AA1, BB1 and CC1 are drawn. Prove that the

perimeter of triangle A1B1C1 does not exceed a semiperimeter of triangle ABC.
10.79. Let h be the longest height of a non-obtuse triangle. Prove that r + R ≤ h.
10.80. On sides BC, CA and AB of an acute triangle ABC, points A1, B1 and C1,

respectively, are taken. Prove that

2(B1C1 cos α + C1A1 cos β + A1B1 cos γ) ≥ a cos α + b cos β + c cos γ).

10.81. Prove that a triangle is an acute one if and only if a2 + b2 + c2 > 8R2.
10.82. Prove that a triangle is an acute one if and only if p > 2R + r.
10.83. Prove that triangle ABC is an acute one if and only if on its sides BC, CA and

AB interior points A1, B1 and C1, respectively, can be selected so that AA1 = BB1 = CC1.
10.84. Prove that triangle ABC is an acute one if and only if the lengths of its projections

onto three distinct directions are equal.

See also Problems 9.93, 10.39, 10.44, 10.48, 10.62.

§13. Inequalities in triangles

10.85. A line is drawn through the intersection point O of the medians of triangle ABC.
The line intersects the triangle at points M and N . Prove that NO ≤ 2MO.

10.86. Prove that if triangle ABC lies inside triangle A′B′C ′, then rABC < rA′B′C′ .
10.87. In triangle ABC side c is the longest and a is the shortest. Prove that lc ≤ ha.
10.88. Medians AA1 and BB1 of triangle ABC are perpendicular. Prove that cot∠A +

cot ∠B ≥ 2
3
.

10.89. Through vertex A of an isosceles triangle ABC with base AC a circle tangent to
side BC at point M and intersecting side AB at point N is drawn. Prove that AN > CM .

10.90. In an acute triangle ABC bisector AB, median BM and height CH intersect at
one point. What are the limits inside which the value of angle A can vary?

10.91. In triangle ABC, prove that 1
3
π ≤ πaα + bβ + cγa + b + c < 1

2
π.

10.92. Inside triangle ABC point O is taken. Prove that

AO sin ∠BOC + BO sin ∠AOC + CO sin ∠AOB ≤ p.

10.93. On the extension of the longest side AC of triangle ABC beyond point C, point
D is taken so that CD = CB. Prove that angle ∠ABD is not an acute one.

10.94. In triangle ABC bisectors AK and CM are drawn. Prove that if AB > BC,
then AM > MK > KC.

10.95. On sides BC, CA, AB of triangle ABC points X, Y , Z are taken so that lines
AX, BY , CZ meet at one point O. Prove that of ratios OA : OX, OB : OY , OC : OZ at
least one is not greater than 2 and one is not less than 2.
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10.96. Circle S1 is tangent to sides AC and AB of triangle ABC, circle S2 is tangent
to sides BC and AB and, moreover, S1 and S2 are tangent to each other from the outside.
Prove that the sum of radii of these circles is greater than the radius of the inscribed circle
S.

See also Problems 14.24, 17.16, 17.18.

Problems for independent study

10.97. In a triangle ABC, let P = a+b+c, Q = ab+bc+ca. Prove that 3Q < P 2 < 4Q.
10.98. Prove that the product of any two sides of a triangle is greater than 4Rr.
10.99. In triangle ABC bisector AA1 is drawn. Prove that A1C < AC.
10.100. Prove that if a > b and a + ha ≤ b + hb, then ∠C = 90◦.
10.101. Let O be the centre of the inscribed circle of triangle ABC. Prove that ab +

bc + ca ≥ (AO + BO + CO)2.
10.102. On sides of triangle ABC equilateral triangles with centers at D, E and F are

constructed outwards. Prove that SDEF ≥ SABC .
10.103. In plane, triangles ABC and MNK are given so that line MN passes through

the midpoints of sides AB and AC and the intersection of these triangles is a hexagon of
area S with pairwise parallel opposite sides. Prove that 3S < SABC + SMNK .

Solutions

10.1. Let medians AA1 and BB1 meet at point M . Since BC > AC, points A and C
lie on one side of the midperpendicular to segment AB and therefore, both median CC1 and
its point M lie on the same side. It follows that AM < BM , i.e., ma < mb.

10.2. Suppose that, for instance, a > b. Then m < mb (Problem 10.1). Since
quadrilateral A1MB1C is a circumscribed one, it follows that 1

2
a + 1

3
mb = 1

2
b + 1

3
ma, i.e.,

1
2
(a − b) = 1

3
(ma − mb). Contradiction.

10.3. Let, for instance, BC > AC. Then MA < MB (cf. Problem 10.1); hence,
BC + MB + MC > AC + MA + MC.

10.4. a) Since c ≤ a + b, it follows that c2 ≤ (a + b)2 = a2 + b2 + 2ab ≤ 2(a2 + b2).
b) Let M be the intersection point of medians of triangle ABC. By heading a) MA2 +

MB2 ≥ 1
2
AB2, i.e., 4

9
m2

a + 4
9
m2

b ≥ 1
2
c2.

10.5. a) Let M be the intersection point of medians, O the center of the circumscribed
circle of triangle ABC. Then

AO2 + BO2 + CO2 =

(
−−→
AM +

−−→
MO)2 + (

−−→
BM +

−−→
MO)2 + (

−−→
CM +

−−→
MO)2 =

AM2 + BM2 + CM2 + 2(
−−→
AM +

−−→
BM +

−−→
CM,

−−→
MO) + 3MO2.

Since
−−→
AM +

−−→
BM +

−−→
CM =

−→
0 , it follows that

AO2 + BO2 + CO2 = AM2 + BM2 + CM2 + 3MO2 ≥ AM2 + BM2 + CM2,

i.e., 3R2 ≥ 4
9
(m2

a + m2
b + m2

c).
b) It suffices to notice that (ma + mb + mc)

2 ≤ 3(m2
a + m2

b + m2
c), cf. Supplement to Ch.

9.
10.6. Heron’s formula can be rewritten as

16S2 = 2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4.
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Since m2
c = 1

4
(2a2 + 2b2 − c2) (Problem 12.11 a)), it follows that the inequalities

m2
c ≤

(

a2 + b2

2c

)2

; m2
c ≥

(

a2 − b2

2c

)2

are equivalent to the inequalities 16S2 ≤ 4a2b2 and 16S2 > 0, respectively.
10.7. Let y = a2 + b2 + c2 and y1 = m2

a + m2
b + m2

c . Then 3y = 4y1 (Problem 12.11, b),
y < 2x (Problem 9.7) and 2x1 + y1 < 2x + y because (ma + mb + mc)

2 < (a + b + c)2 (cf.
Problem 9.2). By adding 8x1 + 4y1 < 8x + 4y to 3y = 4y1 we get 8x1 < y + 8x < 10x, i.e.,
x1

x
< 5

4
.

Let M be the intersection point of the medians of triangle ABC. Let us complement
triangle AMB to parallelogram AMBN . Applying the above-proved statement to triangle

AMN we get (x/4)
(4x1/9)

< 5
4
, i.e., x

x1
< 20

9
.

10.8. Clearly, ha ≤ b, hb ≤ c, hc ≤ a, where at least one of these inequalities is a strict
one. Hence, ha + hb + hc < a + b + c.

10.9. Let ha > 1 and hb > 1. Then a ≥ hb > 1. Hence, S = 1
2
aha > 1

2
.

10.10. By the hypothesis BH ≥ AC and since the perpendicular is shorter than a slanted
line, BH ≥ AC ≥ AM . Similarly, AM ≥ BC ≥ BH. Hence, BH = AM = AC = BC.
Since AC = AM , segments AC and AM coincide, i.e., ∠C = 90◦; since AC = BC, the
angles of triangle ABC are equal to 45◦, 45◦, 90◦.

10.11. Clearly, 1
ha

+ 1
hb

= a+b
2S

= a+b
(a+b+c)r

and a + b + c < 2(a + b) < 2(a + b + c).

10.12. Since aha = r(a + b + c), it follows that ha = r
(

1 + b
a

+ c
a

)

. Adding these
equalities for ha, hb and hc and taking into account that x

y
+ y

x
≥ 2 we get the desired

statement.
10.13. Since ha −hb = 2S

(

1
a
− 1

b

)

= 2S b−a
ab

and 2S ≤ ab, it follows that ha −hb ≤ b− a.

10.14. By Problem 12.21 2
ha

= 1
rb

+ 1
rc

. Moreover, 1
rb

+ 1
rc

≥ 2√
rbrc

.

10.15. Since

2 sin β sin γ = cos(β − γ) − cos(β + γ) ≤ 1 + cos α,

we have

ha

a
=

sin β sin γ

sin α
≤ 1 + cos α

2 sin α
=

1

2
cot

α

2
.

10.16. Since b
2R

= sin β, then multiplying by 2p we get

(a + b + c)(ha + hb + hc) ≤ 3 sin β(a2 + ac + c2).

Subtracting 6S from both sides we get

a(hb + hc) + b(ha + hc) + c(ha + hb) ≤ 3 sin β(a2 + c2).

Since, for instance, ahb = a2 sin γ = a2c
2R

, we obtain a(b2 + c2) − 2b(a2 + c2) + c(a2 + b2) ≤ 0.
To prove the latter inequality let us consider the quadratic exoression

f(x) = x2(a + c) − 2x(a2 + c2) + ac(a + c).

It is easy to verify that f(a) = −a(a − c)2 ≤ 0 and f(c) = −c(a − c)2 ≤ 0. Since the
coefficient of x is positive and a ≤ b ≤ c, it follows that f(b) ≤ 0.

10.17. By Problem 12.35 a) l2a = 4bcp(p−a)
(b+c)2

. Moreover, 4bc ≤ (b + c)2.
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10.18. Clearly, ha

la
= cos 1

2
(β − γ). By Problem 12.36 a)

2r

R
= 8 sin

α

2
sin

β

2
sin

γ

2
= 4 sin

α

2
[ cos

β − γ

2
− cos

β + γ

2
] = 4x(q − x),

where x = sin
α

2
and q = cos

β − γ

2
.

It remains to notice that 4x(q − x) ≤ q2.
10.19. a) By Problem 10.17 l2a ≤ p(p − a). Adding three similar inequalities we get the

desired statement.
b) For any numbers la, lb and lc we have (la + lb + lc)

2 ≤ 3(l2a + l2b + l2c).

10.20. It suffices to prove that
√

p(p − a) +
√

p(p − b) + mc ≤ √
3p. We may assume

that p = 1; let x = 1 − a and y = 1 − b. Then

m2
c =

2a2 + 2b2 − c2

4
= 1 − (x + y) +

(x − y)2

4
= m(x, y).

Let us consider the function

f(x, y) =
√

x +
√

y +
√

m(x, y).

We have to prove that f(x, y) ≤
√

3 for x, y ≥ 0 and x + y ≤ 1. Let

g(x) = f(x, x) = 2
√

x +
√

1 − 2x.

Since g′(x) = 1√
x
− 1√

1−2x
, it follows that as x grows from 0 to 1

3
and g(x) grows from 1 to

√
3

and as x grows from 1
3

to 1
2
; we also see that g(x) diminishes from

√
3 to

√
2. Introduce new

variables: d = x−y and q =
√

x+
√

y. It is easy to verify that (x−y)2−2q2(x+y)+q4 = 0,

i.e., x + y = d2+q4

2q2 . Hence,

f(x, y) = q +

√

1 − q2

2
− d2(2 − q2)

4q2
.

Now, observe that q2 = (
√

x +
√

y)2 ≤ 2(x + y) ≤ 2, i.e., d2(2−q2)
4q2 ≥ 0. It follows that for

a fixed q the value of function f(x, y) is the maximal one for d = 0, i.e., x = y; the case
x = y(?) is the one considered above.

10.21. Clearly, 1
a

+ 1
b
+ 1

c
= ha+hb+hc

2S
. Moreover, 9r ≤ ha + hb + hc (Problem 10.12) and

ha + hb + hc ≤ ma + mb + mc ≤ 9
2
R (Problem 10.5 b)).

10.22. First, let us prove that b + c − a < 2bc
a

. Let 2x = b + c − a, 2y = a + c − b and
2z = a + b − c. We have to prove that

2x <
2(x + y)(x + z)

y + z
, i.e., xy + xz < xy + xz + x2 + yz.

The latter inequality is obvious.
Since

2bc cos α = b2 + c2 − a2 = (b + c − a)(b + c + a) − 2bc,

it follows that
2bc cos α

b + c
= b + c − a +

[

(b + c − a)a

b + c
− 2bc

b + c

]

.

The expression in square brackets is negative because b + c − a < 2bc
a

.
10.23. By Problem 12.30 we have

a2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ac) = 4p2 − 2r2 − 2p2 − 8rR = 2p2 − 2r2 − 8rR
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and abc = 4prR. Thus, we have to prove that

2p2 − 2r2 − 8rR < 2(1 − 4prR), where p = 1.

This inequality is obvious.
10.24. By Problem 12.30, ab + bc + ca = r2 + p2 + 4Rr. Moreover, 16Rr − 5r2 ≤ p2 ≤

4R2 + 4Rr + 3r2 (Problem 10.34).
10.25. Since

r(cot α + cot β) = c = rc(tan α + tan β),

it follows that

c2 = rrc

(

2 +
tan α

tan β
+

tan β

tan β

)

≥ 4rrc.

10.26. It suffices to apply the results of Problems 12.36 a) and 10.45. Notice also that
x(1 − x) ≤ 1

4
, i.e., r

R
≤ 1

2
.

10.27. Since hc ≤ a and hc ≤ b, it follows that 4S = 2chc ≤ c(a + b). Hence,

6r(a + b + c) = 12S ≤ 4ab + 4S ≤ (a + b)2 + c(a + b) = (a + b)(a + b + c).

10.28. Since 2
ha

= 1
rb

+ 1
rc

(Problem 12.21), it follows that ra

ha
= 1

2

(

ra

rb
+ ra

rc

)

. Let us write

similar equalities for rb

hb
and rc

hc
and add them. Taking into account that x

y
+ y

x
≥ 2 we get

the desired statement.
10.29. Since Rr = PS

p
= abc

4p
(cf. Problem 12.1), we obtain 27abc ≤ 8p3 = (a + b + c)3.

Since (a + b + c)2 ≤ 3(a2 + b2 + c2) for any numbers a, b and c, we have

p2 ≤ 3

4
(a2 + b2 + c2) = m2

a + m2
b + m2

c

(cf. Problem 12.11 b)). It remains to notice that m2
a + m2

b + m2
c ≤ 27

4
R2 (Problem 10.5 a)).

10.30. Since OA = r
sin A

2

, OB = r
sin ∠B

2

and OC = r
sin ∠X

2

and since angles 1
2
∠A, 1

2
∠B and

1
2
∠C are acute ones, it follows that ∠A ≤ ∠B ≤ ∠C. Hence, ∠A ≤ 60◦ and ∠B ≤ 90◦ and,

therefore, sin ∠A
2

≤ 1
2

and sin ∠B
2

≤ 1√
2
.

10.31. If ∠C ≥ 120◦, then the sum of distances from any point inside the triangle to its
vertices is not less than a + b (Problem 11.21); moreover, a + b ≥ 6r (Problem 10.27).

If each angle of the triangle is less than 120◦, then at a point the sum of whose distances
from the vertices of the triangle is the least one the square of this sum is equal to 1

2
(a2 +

b2 + c2) + 2
√

3S (Problem 18.21 b)). Further, 1
2
(a2 + b2 + c2) ≥ 2

√
3S (Problem 10.53 b))

and 4
√

3S ≥ 36r2 (Problem 10.53 a)).
10.32. Let α = cos ∠A

2
, β = cos ∠B

2
and γ = cos ∠C

2
. By Problem 12.17 b) a

ra
= α

βγ
,

b
rb

= β
γα

and c
rc

= γ
αβ

. Therefore, multiplying by αβγ we express the inequality to be proved

in the form

3(α2 + β2 + γ2) ≥ 4(β2γ2 + γ2α2 + α2β2).

Since α2 = 1+cos ∠A
2

, β2 = 1+cos ∠B
2

and γ2 = 1+cos ∠C
2

, we obtain the inequality

cos ∠A + cos ∠B + cos ∠C + 2(cos ∠A cos ∠B + cos ∠B cos ∠C + cos ∠C cos ∠A) ≤ 3.

It remains to make use of results of Problems 10.36 and 10.43.
10.33. a) Adding equality 4R+r = ra+rb+rc (Problem 12.24) with inequality R−2r ≥ 0

(Problem 10.26) we get

5R − r ≥ ra + rb + rc = pr((p − a)−1 + (p − b)−1 + (p − c)−1) =
p(ab+bc+ca−p2)

S
== p(2(ab+bc+ca)−a2−b2−c2)

4S
.
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It remains to observe that

2(ab + bc + ca) − a2 − b2 − c2 ≥ 4
√

3S

(Problem 10.54).
b) It is easy to verify that

4R − ra = rb + rc − r =
pr

p − b
+

pr

p − c
− pr

p
=

(p − a)(p2 − bc)

S
.

It remains to observe that

4(p2 − bc) = a2 + b2 + c2 + 2(ab − bc + ca) =
= 2(ab + bc + ca) =

−a2 − b2 − c2 + 2(a2 + b2 + c2 − 2bc) ≥ 4
√

3S + 2(a2 + (b − c)2).

10.34. Let a, b and c be the lengths of the sides of the triangle, F = (a−b)(b−c)(c−a) =
A − B, where A = ab2 + bc2 + ca2 and B = a2b + b2c + c2a. Let us prove that the required
inequalities can be obtained by a transformation of an obvious inequality F 2 ≥ 0. Let
σ1 = a + b + c = 2p, σ2 = ab + bc + ca = r2 + p2 + 4rR and σ3 = abc = 4prR, cf. Problem
12.30. It is easy to verify that

F 2 = σ2
1σ

2
2 − 4σ3

2 − 4σ3
1σ3 + 18σ1σ2σ3 − 27σ2

3.

Indeed,

(σ1σ2)
2 − F 2 = (A + B + 3abc)2 − (A − B)2 = 4AB + 6(A + B)σ3 + 9σ2

3 =
4(a3b3 + . . .) + 4(a4bc + . . .) + 6(A + B)σ3 + 21σ2

3.

It is also clear that

4σ3
2 = 4(a3b3 + . . .) + 12(A + B)σ3 + 24σ2

3,
4σ3

1σ3 = 4(a4bc + . . .) + 12(A + B)σ3 + 24σ2
3,

18σ1σ2σ3 = 18(A + B)σ3 + 54σ2
3.

Expressing σ1, σ2 and σ3 via p, r and R, we obtain

F 2 = −4r2[(p2 − 2R2 − 10Rr + r2)2 − 4R(R − 2r)3] ≥ 0.

Thus, we obtain

p2 ≥ 2R2 + 10Rr − r2 − 2(R − 2r)
√

R(R − 2r) =

[(R − 2r) −
√

R(R − 2r)]2 + 16Rr − 5r2 ≥ 16Rr − 5r2

p2 ≤ 2R2 + 10Rr + r2 + 2(R − 2r)
√

R(R − 2r) =

4R2 + 4Rr + 3r2 − [(R − 2r) −
√

R(R − 2r)]2 ≤
4R2 + 4Rr + 3r2.

10.35. Since ra +rb +rc = 4R+r and rarb +rbrc +rcra = p2 (Problems 12.24 and 12.25),
it follows that r2

a + r2
b + r2

c = (4R + r)2 − 2p2. By Problem 10.34 p2 ≤ 4R2 + 4Rr + 3r2;
hence, r2

a + r2
b + r2

c = 8R2 − 5r2. It remains to notice that r ≤ 1
2
R (Problem 10.26).

10.36. a) By Problem 12.38 cosα + cos β + cos γ = R+r
R

. Moreover, r ≤ 1
2
R (Problem

10.26).
b) Follows from heading a), cf. Remark.
10.37. a) Clearly, sin α + sin β + sin γ = p

R
. Moreover, p ≤ 3

2

√
3R (Problem 10.29).

b) Follows from heading a), cf. Remark.
10.38. a) By Problem 12.44 a)

cot α + cot β + cot γ =
a2 + b2 + c2

4S
.
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Moreover, a2 + b2 + c2 ≥ 4
√

3S (Problem 10.53 b)).
b) Follows from heading a), cf. Remark.
10.39. a) By Problem 12.45 a)

cot
α

2
+ cot

β

2
+ cot

γ

2
=

p

r
.

Moreover, p ≥ 3
√

3r (Problem 10.53 a)).
b) Follows from heading a), cf. Remark. For an acute triangle tan α + tan β + tan γ < 0;

cf., for instance, Problem 12.46.
10.40. a) By Problem 12.36 a)

sin
α

2
+ sin

β

2
+ sin

γ

2
=

r

4R
.

Moreover, r ≤ 1
2
R (Problem 10.26).

b) For an acute triangle it follows from heading a), cf. Remark. For an obtuse triangle
cos α cos β cos γ < 0.

10.41. a) Since sin x = 2 sin x
2
cos x

2
, we see that making use of results of Problems 12.36

a) and 12.36 c) we obtain sinα sin β sin γ = pr
2R2 . Moreover, p ≤ 3

2

√
3R (Problem 10.29) and

r ≤ 1
2
R (Problem 10.26).

b) Follows from heading a), cf. Remark.
10.42. By Problem 12.39 b)

cos2 α + cos2 β + cos2 γ = 1 − 2 cos α cos β cos γ.

It remains to notice that cos α cos β cos γ ≤ 1
8

(Problem 10.40 b)) and for an obtuse triangle
cos α cos β cos γ < 0.

10.43. Clearly,

2(cos α cos β + cos β cos γ + cos γ cos α) =

(cos α + cos β + cos γ)2 − cos2 α − cos2 β − cos2 γ.

It remains to notice that cosα + cos β + cos γ ≤ 3
2

(Problem 10.36 a)) and cos2 α + cos2 β +
cos2 γ ≥ 3

4
(Problem 10.42).

10.44. Let the extensions of bisectors of acute triangle ABC with angles α, β and γ
intersect the circumscribed circle at points A1, B1 and C1, respectively. Then

SABC =
R2(sin 2α + sin 2β + sin 2γ)

2
;

SA1B1C1 =
R2(sin(α + β) + sin(β + γ) + sin(γ + α))

2
.

It remains to make use of results of Problems 12.72 and 10.26.
10.45. Clearly,

2 sin
β

2
sin

γ

2
= cos

β − γ

2
− cos

β + γ

2
≤ 1 − sin

α

2
.

10.46. Let us drop perpendiculars AA1 and BB1 from vertices A and B to the bisector
of angle ∠ACB. Then AB ≥ AA1 + BB1 = b sin γ

2
+ a sin γ

2
.

10.47. By Problem 12.32 tan α
2

tan β
2

= a+b−c
a+b+c

. Since a+b < 3c, it follows that a+b−c <
1
2
(a + b + c).
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10.48. Since π−2α > 0, π−2β > 0, π−2γ > 0 and (π−2α)+ (π−2β)+ (π−2γ) = π,
it follows that there exists a triangle whose angles are π − 2α, π − 2β, π − 2γ. The lengths
of sides opposite to angles π − 2α, π − 2β, π − 2γ are proportional to sin(π − 2α) = sin 2α,
sin 2β, sin 2γ, respectively. Since π − 2α > π − 2β > π − 2γ and the greater angle subtends
the longer side, sin 2α > sin 2β > sin 2γ.

10.49. First, notice that

cos 2γ = cos 2(π − α − β) = cos 2α cos 2β − sin 2α sin 2β.

Hence,

cos 2α + cos 2β − cos 2γ = cos 2α + cos 2β − cos 2α cos 2β + sin 2α sin 2β.

Since a cos ϕ + b sin ϕ ≤
√

a2 + b2 (cf. Supplement to Ch. 9), it follows that

(1 − cos 2β) cos 2α + sin 2β sin 2α + cos 2β ≤
√

(1 − cos 2β)2 + sin2 2β + cos 2β = 2| sin β| + 1 − 2 sin2 β.

It remains to notice that the greatest value of the quadratic 2t + 1− 2t2 is attained at point
t = 1

2
and this value is equal to 3

2
. The maximal value corresponds to angles α = β = 30◦

and γ = 120◦.
10.50. Since AB < CB, AX < CX = SABX = SBCX , it follows that sin ∠XAB >

sin ∠XCB. Taking into account that angle ∠XCB is an acute one, we get the desired
statement.

10.51. If the angles of triangle ABC are equal to α, β and γ, then the angles of triangle
A1B1C1 are equal to 1

2
(β + γ), 1

2
(γ + α) and 1

2
(α + β).

10.52. Let M be the intersection point of medians AA1, BB1 and CC1. Complementing
triangle AMB to parallelogram AMBN we get ∠BMC1 = αm and ∠AMC1 = βm. It is easy
to verify that ∠C1CB < 1

2
γ and ∠B1BC < 1

2
β. It follows that αm = ∠C1CB + ∠B1BC <

1
2
(β + γ) < β. Similarly, γm = ∠A1AB + ∠B1BA > 1

2
(α + β) > β.

First, suppose that triangle ABC is an acute one. Then the heights’ intersection point
H lies inside triangle AMC1. Hence, ∠AMB < ∠AHB, i.e., π− γm < π− γ and ∠CMB <
∠CHB, i.e., π − αm > π − α. Now, suppose that angle α is an obtuse one. Then angle
CC1B is also an obtuse one and therefore, angle αm is an acute one, i.e., αm < α. Let us
drop perpendicular MX from point M to BC. Then γm > ∠XMB > 180◦ − ∠HAB > γ.

Since α > αm, it follows that α+(π−αm) > π, i.e., point M lies inside the circumscribed
circle of triangle AB1C1. Therefore, γ = ∠AB1C1 < ∠AMC1 = βm. Similarly, α =
∠CB1A1 > ∠CMA1 = βm because γ + (π − γm) < π.

10.53 a) Clearly,

S2

p
= (p − a)(p − b)(p − c) ≤

(

p − a + p − b + p − c

3

)2

=
p3

27
.

Hence, pr = S ≤ p2

3
√

3
, i.e., r ≤ p

3
√

3
. By multiplying the latter inequality by r we get the

desired statement.
b) Since (a + b + c)2 ≤ 3(a2 + b2 + c2), it follows that

S ≤ p2

3
√

3
=

(a + b + c)2

12
√

3
≤ a2 + b2 + c2

4
√

3
.
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10.54. Let x = p − a, y = p − b, z = p − c. Then

(a2 − (b − c)2) + (b2 − (a − c)2) + (c2 − (a − b)2) =
4(p − b)(p − c) + 4(p − a)(p − c) + 4(p − a)(p − b) =

4(yz + zx + xy)

and
4
√

3S = 4
√

3p(p − a)(p − b)(p − c) = 4
√

3(x + y + z)xyz.

Thus, we have to prove that xy + yz + zx ≥
√

3(x + y + z)xyz. After squaring and simpli-
fication we obtain

x2y2 + y2z2 + z2x2 ≥ x2yz + y2xz + z2xy.

Adding inequalities

x2yz ≤ x2(y2 + z2)

2
, y2xz ≤ y2(x2 + z2)

2
and z2xy ≤ z2(x2 + y2)

2
we get the desired statement.

10.55. a) By multiplying three equalities of the form S = 1
2
ab sin γ we get S3 =

1
8
(abc)2 sin γ sin β sin α. It remains to make use of a result of Problem 10.41.

b) Since (hahbhc)
2 = (2S)6

(abc)2
and (abc)2 ≥

(

4√
3

)3

S3, it follows that (hahbhc)
2 ≤ (2S)6(

√
3/4)3

S3 =

(
√

3S)3.

Since (rarbrc)
2 = S4

r2 (Problem 12.18, c) and r2(
√

3)3 ≤ S (Problem 10.53 a), it follows

that (rarbrc)
2 ≥ (

√
3S)3.

10.56. Let p = BA
BC

, q = CB1

CA
and r = AC1

AC
. Then

SA1B1C1

SABC

= 1 − p(1 − r) − q(1 − p) − r(1 − q) = 1 − (p + q + r) + (pq + qr + rp).

By Cheva’s theorem (Problem 5.70) pqr = (1 − p)(1 − q)(1 − r), i.e., 2pqr = 1 − (p + q +
r) + (pq + qr + rp). Moreover,

(pqr)2 = p(1 − p)(1 − q)r(1 − r) ≤
(

1

4

)3

.

Therefore,
SA1B1C1

SABC
= 2pqr ≤ 1

4
.

10.57. We can assume that the area of triangle ABC is equal to 1. Then a + b + c = 1
and, therefore, the given inequality takes the form u2 ≥ 4abc. Let x = BA1

BC
, y = CB1

CA
and

z = AC1

AB
. Then

u = 1 − (x + y + z) + xy + yz + zx and abc = xyz(1 − x)(1 − y)(1 − z) = v(u − v),

where v = xyz. Therefore, we pass to inequality u2 ≥ 4v(u− v), i.e., (u− 2v)2 ≥ 0 which is
obvious.

10.58. a) Let x = BA1

BC
, y = BC1

BA
and z = AC1

AB
. We may assume that the area of triangle

ABC is equal to 1. Then SAB1C1 = z(1 − y), SA1BC1 = x(1 − z) and SA1B1C = y(1 − x).
Since x(1 − x) ≤ 1

4
, y(1 − y) ≤ 1

4
and z(1 − z) ≤ 1

4
, it follows that the product of numbers

SAB1C1 , SA1BC1 and SA1B1C does not exceed
(

1
4

)3
; hence, one of them does not exceed 1

4
.

b) Let, for definiteness, x ≥ 1
2
. If y ≤ 1

2
, then the homothety with center C and

coefficient 2 sends points A1 and B1 to inner points on sides BC and AC, consequently,
SA1B1C ≤ SA1B1C1 . Hence, we can assume that y ≥ 1

2
and, similarly, z ≥ 1

2
. Let x = 1

2
(1+α),

y = 1
2
(1 + β) and z = 1

2
(1 + γ). Then SAB1C1 = 1

4
(1 + γ − β − βγ), SA1B1C1 = 1

4
(1 + α −

γ − αγ) and SA1B1C = 1
4
(1 + β − α − αβ); hence, SA1B1C1 = 1

4
(1 + αβ + βγ + αγ) ≥ 1

4
and

SAB1C1 + SA1BC1 + SA1B1C ≤ 3
4
.
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10.59. It suffices to prove that if AC < BC, then ∠ABC < ∠BAC. Since AC < BC, on
side BC point A1 can be selected so that A1C = AC. Then ∠BAC < ∠AAC = ∠AA1C >
∠ABC.

10.60. Let A1 be the midpoint of side BC. If AA1 < 1
2
BC = BA1 = A1C, then

∠BAA1 > ∠ABA1 and ∠CAA1 > ∠ACA1; hence, ∠A = ∠BAA1 + ∠CAA1 < ∠B + ∠C,
i.e., ∠A > 90◦. Similarly, if AA1 > 1

2
BC then ∠A > 90◦.

10.61. If we fix two sides of the triangle, then the greater the angle between these sides
the longer the third side. Therefore, inequality ∠A > ∠A1 implies that BD > B1D1, i.e.,
∠C < ∠C1. Now, suppose that ∠B ≥ ∠B1. Then AC ≥ A1C1, i.e., ∠D ≥ ∠D1. Hence,

360◦ = ∠A + ∠B + ∠C + ∠D > ∠A1 + ∠B1 + ∠C1 + ∠D1 = 360◦.

Contradiction; therefore, ∠B < ∠B1 and ∠D < ∠D1.
10.62. Let point B1 be symmetric to B through point M . Since the height dropped

from point M to side BC is equal to a half of AH, i.e., to a half of BM , it follows that
∠MBC = 30◦. Since AH is the longest of heights, BC is the shortest of sides. Hence,
AB1 = BC ≤ AB, i.e., ∠ABB1 ≤ ∠AB1B = ∠MBC = 30◦. Therefore, ∠ABC =
∠ABB1 + ∠MBC ≤ 30◦ + 30◦ = 60◦.

10.63. First, let us suppose that ∠A > ∠D. Then BE > EC and ∠EBA < ∠ECD.
Since in triangle EBC side BE is longer than side EC, it follows that ∠EBC < ∠ECB.
Therefore,

∠B = ∠ABE + ∠EBC < ∠ECD + ∠ECB = ∠C

which contradicts the hypothesis. Thus, ∠A = ∠B = ∠C = ∠D. Similarly, the assumption
∠B > ∠E leads to inequality ∠C < ∠D. Hence, ∠B = ∠C = ∠D = ∠E.

10.64. Let us carry out the proof for the general case. Let line MN intersect the sides
of the polygon at points M1 and N1. Clearly, MN ≤ M1N1. Let point M1 lie on side AB
and point N1 lie on PQ. Since ∠AM1N1 + ∠BM1N1 = 180◦, one of these angles is not less
than 90◦. Let, for definiteness, ∠AM1N1 ≥ 90◦. Then AN1 ≥ M1N1 because the longer side
subtends the greater angle.

We similarly prove that either AN1 ≤ AP or AN1 ≤ AQ. Therefore, the length of
segment MN does not exceed the length of a segment with the endpoints at vertices of the
polygon.

10.65. The segment can be extended to its intersection with the boundary of the sector
because this will only increase its length. Therefore, we may assume that points M and N
lie on the boundary of the disk sector. The following three cases are possible:

1) Points M and N lie on an arc of the circle. Then

MN = 2R sin
∠MON

2
≤ 2R sin

∠AOB

2
= AB

because 1
2
∠MON ≤ 1

2
∠AOB ≤ 90◦.

2) Points M and N lie on segments AO and BO, respectively. Then MN is not longer
than the longest side of triangle AOB.

3) One of points M and N lies on an arc of the circle, the other one on one of segments
AO or BO. Let, for definiteness, M lie on AO and N on an arc of the circle. Then the
length of MN does not exceed that of the longest side of triangle ANO. It remains to notice
that AO = NO = R and AN ≤ AB.

10.66. If the given segment has no common points with the circle, then a homothety
with center A (and coefficient greater than 1) sends it into a segment that has a common
point X with arc AB and lies in our domain. Let us draw through point X tangent DE to
the circle (points D and E lie on segments AB and AC). Then segments AD and AE are
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shorter than AB and DE < 1
2
(DE + AD + AE) = AB, i.e., each side of triangle ADE is

shorter than AB. Since our segment lies inside triangle ADE (or on its side DE), its length
does not exceed that of AB.

10.67. First, suppose that the center O of the circle lies inside the given pentagon
A1A2A3A4A5. Consider angles ∠A1OA2, ∠A2OA3, . . . , ∠A5OA1. The sum of these five
angles is equal to 2π; hence, one of them, say, ∠A1OA2, does not exceed 2

5
π. Then segment

A1A2 can be placed in disk sector OBC, where ∠BOC = 2
5
π and points B and C lie on the

circle. In triangle OBC, side BC is the longest one; hence, A1A2 ≤ BC.
If point O does not belong to the given pentagon, then the union of angles ∠A1OA2, . . . ,

∠A5OA1 is less than π and each point of the angle — the union — is covered twice by these
angles. Therefore, the sum of these five angles is less than 2π, i.e., one of them is less than
2
5
π. The continuation of the proof is similar to the preceding case.

If point O lies on a side of the pentagon, then one of the considered angles is not greater
than 1

4
π and if it is its vertex, then one of them is not greater than 1

3
π. Clearly, 1

4
π < 1

3
π < 2

5
π.

Figure 121 (Sol. 10.68)

10.68. On sides BC, CA, AB take points A1 and A2, B1 and B2, C1 and C2, respectively,
so that B1C2 ‖ BC, C1A2 ‖ CA, A1B2 ‖ AB (Fig. 121). In triangles A1A2O, B1B2O, C1C2O
sides A1A2, B1O, C2O, respectively, are the longest ones. Hence, OP < A1A2, OQ < BO,
OR ≤ C2O, i.e.,

OP + OQ + OR < A1A2 + B1O + C2O = A1A2 + CA2 + BA1 = BC.

10.69. Since c2 = a2 + b2, it follows that

cn = (a2 + b2)cn−2 = a2cn−2 + b2cn−2 > an + bn.

10.70. The height of any of the triangles considered is longer than 2r. Moreover, in a
right triangle 2r = a + b − c (Problem 5.15).

10.71. Since ch = 2S = r(a + b + c) and c =
√

a2 + b2, it follows that r
h

=
√

a2+b2

a+b+
√

a2+b2
=

1
x+1

, where x = a+b√
a2+b2

=
√

1 + 2ab
a2+b2

. Since 0 < 2ab
a2+b2

≤ 1, it follows that 1 < x ≤
√

2.

Hence, 2
5

< 1
1+

√
2
≤ r

h
< 1

2
.

10.72. Clearly, a + b ≥ 2
√

ab and c2 + a2 + b2 ≥ 2ab. Hence,

c2

r2
=

(a + b + c)2c2

a2b2
≥ (2

√
ab +

√
2ab)2 · 2ab

a2b2
= 4(1 +

√
2)2.

10.73. By Problem 12.11 a) m2
a + m2

b = 1
4
(4c2 + a2 + b2) = 5

4
c2. Moreover,

5c2

4
≥ 5(1 +

√
2)2r2 = (15 + 10

√
2)r2 > 29r2,

cf. Problem 10.72.
10.74. Let O be the center of the circumscribed circle, A1, B1, C1 the midpoints of

sides BC, CA, AB, respectively. Then ma = AA1 ≤ AO + OA1 = R + OA1. Similarly,
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mb ≤ R + OB1 and mc ≤ R + OC1. Hence,

ma

ha

+
mb

hb

+
mc

hc

≤ R

(

1

ha

+
1

hb

+
1

hc

)

+
OA1

ha

+
OB1

hb

+
OC1

hc

.

It remains to make use of the result of Problem 12.22 and the solution of Problem 4.46.
10.75. By Problem 4.47 1

b
+ 1

c
= 2 cos(α/2)

la
≥

√
2

la
. Adding three analogous inequalities we

get the required statement.
10.76. Denote the intersection point of medians by M and the center of the circumscribed

circle by O. If triangle ABC is not an obtuse one, then point O lies inside it (or on its side);
let us assume, for definiteness, that it lies inside triangle AMB. Then AO+BO ≤ AM+BM ,
i.e., 2R ≤ 2

3
ma + 2

3
mb or, which is the same, ma + mb ≥ 3R. It remains to notice that since

angle ∠COC1 (where C1 is the midpoint of AB) is obtuse, it follows that CC1 ≥ CO, i.e.,
mc ≥ R.

The equality is attained only for a degenerate triangle.
10.77. In any triangle hb ≤ lb ≤ mb (cf. Problem 2.67); hence, ha = lb ≥ hb and

mc = lb ≤ mb. Therefore, a ≤ b and b ≤ c (cf. Problem 10.1), i.e., c is the length of the
longest side and γ is the greatest angle.

The equality ha = mc yields γ ≤ 60◦ (cf. Problem 10.62). Since the greatest angle γ of
triangle ABC does not exceed 60◦, all the angles of the triangle are equal to 60◦.

10.78. By Problem 1.59 the ratio of the perimeters of triangles A1B1C1 and ABC is
equal to r

R
. Moreover, r ≤ R

2
(Problem 10.26).

Remark. Making use of the result of Problem 12.72 it is easy to verify that
SA1B1C1

SABC
=

r1

2R1
≤ 1

4
.

10.79. Let 90◦ ≥ α ≥ β ≥ γ, then CH is the longest height. Denote the centers of the
inscribed and circumscribed circles by I and O, the tangent points of the inscribed circle
with sides BC, CA, AB by K, L, M , respectively (Fig. 122).

Figure 122 (Sol. 10.79)

First, let us prove that point O lies inside triangle KCI. For this it suffices to prove that
CK ≥ KB and ∠BCO ≤ ∠BCI. Clearly, CK = r cot γ

2
≥ r cot β

2
= KB and

2∠BCO = 180◦ − ∠BOC = 180◦ − 2α ≤ 180◦ − α − β = γ = 2∠BCI.

Since ∠BCO = 90◦ − α = ∠ACH, the symmetry through CI sends line CO to line CH.
Let O′ be the image of O under this symmetry and P the intersection point of CH and IL.
Then CP ≥ CO′ = CO = R. It remains to prove that PH ≥ IM = r. It follows from the
fact that ∠MIL = 180◦ − α ≥ 90◦.

10.80. Let B2C2 be the projection of segment B1C1 on side BC. Then

BC1 ≥ B2C2 = BC − BC1 cos β − CB1 cos γ.
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Similarly,

A1C1 ≥ AC − AC1 cos α − CA1 cos γ;

A1B1 ≥ AB − AB1 cos α − BA1 cos β.

Let us multiply these inequalities by cos α, cos β and cos γ, respectively, and add them; we
get

B1C1 cos α + C1A1 cos β + AB1 cos γ ≥ a cos α + b cos β + c cos γ−
−(a cos β cos γ + b cos α cos γ + c cos α cos β).

Since c = a cos β + b cos α, it follows that c cos γ = a cos β cos γ + b cos α cos γ. Write three
analogous inequalities and add them; we get

a cos β cos γ + b cos α cos γ + c cos α cos β =
a cos α + b cos β + c cos γ

2
.

10.81. Since
cos2 α + cos2 β + cos2 γ + 2 cos α cos β cos γ = 1

(Problem 12.39 b)), it follows that triangle ABC is an acute one if and only if cos2 α +
cos2 β + cos2 γ < 1, i.e., sin2 α + sin2 β + sin2 γ > 2. Multiplying both sides of the latter
inequality by 4R2 we get the desired statement.

10.82. It suffices to notice that

p2 − (2R + r)2 = 4R2 cos α cos β cos γ

(cf. Problem 12.41 b).
10.83. Let ∠A ≤ ∠B ≤ ∠C. If triangle ABC is not an acute one, then CC1 < AC <

AA1 for any points A1 and C1 on sides BC and AB, respectively. Now, let us prove that for
an acute triangle we can select points A1, B1 and C1 with the required property. For this it
suffices to verify that there exists a number x satisfying the following inequalities:

ha ≤ x < max(b, c) = c, hb ≤ x < max(a, c) = c and hc ≤ x < max(a, b) = b.

It remains to notice that max(ha, hb, hc) = ha, min(b, c) = b and ha < h.
10.84. Let ∠A ≤ ∠B ≤ ∠C. First, suppose that triangle ABC is an acute one. As line

l that in its initial position is parallel to AB rotates, the length of the triangle’s projection
on l first varies monotonously from c to hb, then from hb to a, then from a to hc, next from
hc to b, then from b to ha and, finally, from ha to c. Since hb < a, there exists a number x
such that hb < x < a. It is easy to verify that a segment of length x is encountered on any
of the first four intervals of monotonity.

Now, suppose that triangle ABC is not an acute one. As line l that in its initial position
is parallel to AB rotates, the length of the triangle’s projection on l monotonously decreases
first from c to hb, then from hb to hc; after that it monotonously increases, first, from hc to
ha, then from ha to c. Altogether we have two intervals of monotonity.

10.85. Let points M and N lie on sides AB and AC, respectively. Let us draw through
vertex C the line parallel to side AB. Let N1 be the intersection point of this line with MN .
Then N1O : MO = 2 but NO ≤ N1O; hence, NO : MO ≤ 2.

10.86. Sircle S inscribed in triangle ABC lies inside triangle A′B′C ′. Draw the tangents
to this circle parallel to sides of triangle A′B′C ′; we get triangle A′′B′′C ′′ similar to triangle
A′B′C ′ and S is the inscribed circle of triangle A′′B′′C ′′. Hence, rABC = rA′′B′′C′′ < rA′B′C′ .

10.87. The bisector lc divides triangle ABC into two triangles whose doubled areas are
equal to alc sin γ

2
and blc sin γ

2
. Hence, aha = 2S = lc(a + b) sin γ

2
. The conditions of the

problem imply that a
a+b

≤ 1
2
≤ sin γ

2
.
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10.88. Clearly, cot ∠A + cot ∠B = c
hc

≥ c
mc

. Let M be the intersection point of the

medians, N the midpoint of segment AB. Since triangle AMB is a right one, MN = 1
2
AB.

Therefore, c = 2MN = 2
3
mc.

10.89. Since BN ·BA = BM2 and BM < BA, it follows that BN < BM and, therefore,
AN > CN .

10.90. Let us draw through point B the perpendicular to side AB. Let F be the
intersection point of this perpendicular with the extension of side AC (Fig. 123). Let us
prove that bisector AD, median BM and height CH intersect at one point if and only if
AB = CF . Indeed, let L be the intersection point of BM and CH. Bisector AD passes
through point L if and only if BA : AM = BL : LM but BL : LM = FC : CM = FC : AM .

Figure 123 (Sol. 10.90)

If on side AF of right triangle ABF (∠ABF = 90◦) segment CF equal to AB is marked,
then angles ∠BAC and ∠ABC are acute ones. It remains to find out when angle ∠ACB is
acute.

Let us drop perpendicular BP from point B to side AF . Angle ACB is an acute one if
FP > FC = AB, i.e., BF sin ∠A > BF cot ∠A. Therefore, 1−cos2

∠A = sin2
∠A > cos ∠A,

i.e., cos A < 1
2
(
√

5 − 1). Finally, we see that

90◦ > ∠A > arccos

√
5 − 1

2
≈ 51◦50′.

10.91. Since the greater angle subtends the longer side,

(a − b)(α − β) ≥ 0, (b − c)(β − γ) ≥ 0 and (a − c)(α − γ) ≥ 0.

Adding these inequalities we get

2(aα + bβ + cγ) ≥ a(β + γ) + b(α + γ) + c(α + β) =
(a + b + c)π − aα − bβ − cγ,

i.e., 1
3
π ≤ aα+bβ+cγ

a+b+c
. The triangle inequality implies that

α(b + c − a) + β(a + c − b) + γ(a + b − c) > 0,

i.e.,
a(β + γ − α) + b(α + γ − β) + c(α + β − γ) > 0.

Since α+β+γ = π, it follows that a(π−2α)+b(π−2β) = c(π−2γ) > 0, i.e., aα+bβ+cγ
a+b+c

< 1
2
π.

10.92. On rays OB and OC, take points C1 and B1, respectively, such that OC1 = OC
and OB1 = OB. Let B2 and C2 be the projections of points B1 and C1, respectively, on a
line perpendicular to AO. Then

BO sin ∠AOC + CO sin ∠AOB = B2C2 ≤ BC.

Adding three analogous inequalities we get the desired statement. It is also easy to verify
that the conditions B1C1 ⊥ AO, C1A1 ⊥ BO and A1B1 ⊥ CO are equivalent to the fact
that O is the intersection point of the bisectors.
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10.93. Since ∠CBD = 1
2
∠C and ∠B ≤ ∠A, it follows that ∠ABD = ∠B + ∠CBD ≥

1
2
(∠A + ∠B + ∠C) = 90◦.

10.94. By the bisector’s property, BM : MA = BC : CA and BK : KC = BA : AC.
Hence, BM : MA < BK : KC, i.e.,

AB

AM
= 1 +

BM

MA
< 1 +

BK

KC
=

CB

CK
.

Therefore, point M is more distant from line AC than point K, i.e., ∠AKM < ∠KAC =
∠KAM and ∠KMC < ∠MCA = ∠MCK. Hence, AM > MK and MK > KC, cf.
Problem 10.59.

10.95. Suppose that all the given ratios are less than 2. Then

SABO + SAOC < 2SXBO + 2SXOC = 2SOBC ,

SABO + SOBC < 2SAOC , SAOC + SOBC < 2SABO.

Adding these inequalities we come to a contradiction. We similarly prove that one of the
given ratios is not greater than 2.

10.96. Denote the radii of the circles S, S1 and S2 by r, r1 and r2, respectively. Let
triangles AB1C1 and A2BC2 be similar to triangle ABC with similarity coefficients r1

r
and

r2

r
, respectively. Circles S1 and S2 are the inscribed circles of triangles AB1C1 and A2BC2,

respectively. Therefore, these triangles intersect because otherwise circles S1 and S2 would
not have had common points. Hence, AB1 + A2B > AB, i.e., r1 + r2 > r.





Chapter 11. PROBLEMS ON MAXIMUM AND MINIMUM

Background

1) Geometric problems on maximum and minimum are in close connection with geometric
inequalities because in order to solve these problems we always have to prove a correspond-
ing geometric inequality and, moreover, to prove that sometimes it turns into an equality.
Therefore, before solving problems on maximum and minimum we have to skim through
Supplement to Ch. 9 once again with the special emphasis on the conditions under which
strict inequalities become equalities.

2) For elements of a triangle we use the standard notations.
3) Problems on maximum and minimum are sometimes called extremal problems (from

Latin extremum).

Introductory problems

1. Among all triangles ABC with given sides AB and AC find the one with the greatest
area.

2. Inside triangle ABC find the vertex of the smallest angle that subtends side AB.
3. Prove that among all triangles with given side a and height ha. an isosceles triangle

is the one with the greatest value of angle α.
4. Among all triangles with given sides AB and AC (AB < AC), find the one for which

the radius of the circumscribed circle is maximal.
5. The iagonals of a convex quadrilateral are equal to d1 and d2. What the greatest

value the quadrilateral’s area can attain?

§1. The triangle

11.1. Prove that among all the triangles with fixed angle α and area S, an isosceles
triangle with base BC has the shortest length of side BC.

11.2. Prove that among all triangles with fixed angle α and semiperimeter p, an isosceles
triangle with base BC is of the greatest area.

11.3. Prove that among all the triangles with fixed semiperimeter p, an equilateral
triangle has the greatest area.

11.4. Consider all the acute triangles with given side a and angle α. What is the
maximum of b2 + c2?

11.5. Among all the triangles inscribed in a given circle find the one with the maximal
sum of squared lengths of the sides.

11.6. The perimeter of triangle ABC is equal to 2p. On sides AB and AC points M
and N , respectively, are taken so that MN ‖ BC and MN is tangent to the inscribed circle
of triangle ABC. Find the greatest value of the length of segment MN .

11.7. Into a given triangle place a centrally symmetric polygon of greatest area.
11.8. The area of triangle ABC is equal to 1. Let A1, B1, C1 be the midpoints of sides

BC, CA, AB, respectively. On segments AB1, CA1, BC1, points K, L, M , respectively, are
taken. What is the least area of the common part of triangles KLM and A1B1C1?

255
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11.9. What least width From an infinite strip of paper any triangle of area 1 can be cut.
What is the least width of such a strip?

* * *

11.10. Prove that triangles with the lengths of sides a, b, c and a1, b1, c1, respectively,
are similar if and only if

√
aa1 +

√

bb1 +
√

cc1 =
√

(a + b + c)(a1 + b1 + c1).

11.11. Prove that if α, β, γ and α1, β1, γ1 are the respective angles of two triangles,
then

cos α1

sin α
+

cos β1

sin β
+

cos γ1

sin γ
≤ cot α + cot β + cot γ.

11.12. Let a, b and c be the lengths of the sides of a triangle of area S; let α1, β1 and
γ1 be the angles of another triangle. Prove that

a2 cot α1 + b2 cot β1 + c2 cot γ1 ≥ 4S,

where the equality is attained only if the considered triangles are similar.
11.13. In a triangle a ≥ b ≥ c; let x, y and z be the angles of another triangle. Prove

that

bc + ca − ab < bc cos x + ca cos y + ab cos z ≤ a2 + b2 + c2

2
.

See also Problem 17.21.

§2. Extremal points of a triangle

11.14. On hypothenuse AB of right triangle ABC point X is taken; M and N are the
projections of X on legs AC and BC, respectively.

a) What is the position of X for which the length of segment MN is the smallest one?
b) What is the position of point X for which the area of quadrilateral CMXN is the

greatest one?
11.15. From point M on side AB of an acute triangle ABC perpendiculars MP and

MQ are dropped to sides BC and AC, respectively. What is the position of point M for
which the length of segment PQ is the minimal one?

11.16. Triangle ABC is given. On line AB find point M for which the sum of the radii
of the circumscribed circles of triangles ACM and ACN is the least possible one.

11.17. From point M of the circumscribed circle of triangle ABC perpendiculars MP
and MQ are dropped on lines AB and AC, respectively. What is the position of point M
for which the length of segment PQ is the maximal one?

11.18. Inside triangle ABC, point O is taken. Let da, db, dc be distances from it to lines
BC, CA, AB, respectively. What is the position of point O for which the product dadbdc is
the greatest one?

11.19. Points A1, B1 and C1 are taken on sides BC, CA and AB, respectively, of triangle
ABC so that segments AA1, BB1 and CC1 meet at one point M . For what position of point
M the value of MA1

AA1
· MB1

BB1
· MC1

CC1
is the maximal one?

11.20. From point M inside given triangle ABC perpendiculars MA1, MB1, MC1 are
dropped to lines BC, CA, AB, respectively. What are points M inside the given triangle
ABC for which the quantity a

MA1
+ b

MB1
+ c

MC1
takes the least possible value?

11.21. Triangle ABC is given. Find a point O inside of it for which the sum of lengths
of segments OA, OB, OC is the minimal one. (Take a special heed to the case when one of
the angles of the triangle is greater than 120◦.)
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11.22. Inside triangle ABC find a point O for which the sum of squares of distances
from it to the sides of the triangle is the minimal one.

See also Problem 18.21 a).

§3. The angle

11.23. On a leg of an acute angle points A and B are given. On the other leg construct
point C the vertex of the greatest angle that subtends segment AB.

11.24. Angle ∠XAY and point O inside it are given. Through point O draw a line that
cuts off the given angle a triangle of the least area.

11.25. Through given point P inside angle ∠AOB draw line MN so that the value
OM + ON is minimal (points M and N lie on legs OA and OB, respectively).

11.26. Angle ∠XAY and a circle inside it are given. On the circle construct a point the
sum of the distances from which to lines AX and AY is the least.

11.27. A point M inside acute angle ∠BAC is given. On legs BA and AC construct
points X and Y , respectively, such that the perimeter of triangle XY M is the least.

11.28. Angle ∠XAY is given. The endpoints B and C of unit segments BO and CO
move along rays AX and AY , respectively. Construct quadrilateral ABOC of the greatest
area.

§4. The quadrilateral

11.29. Inside a convex quadrilateral find a point the sum of distances from which to the
vertices were the least one.

11.30. The diagonals of convex quadrilateral ABCD intersect at point O. What least
area can this quadrilateral have if the area of triangle AOB is equal to 4 and the area of
triangle COD is equal to 9?

11.31. Trapezoid ABCD with base AD is cut by diagonal AC into two triangles. Line
l parallel to the base cuts these triangles into two triangles and two quadrilaterals. What
is the position of line l for which the sum of areas of the obtained triangles is the minimal
one?

11.32. The area of a trapezoid is equal to 1. What is the least value the length of the
longest diagonal of this trapezoid can attain?

11.33. On base AD of trapezoid ABCD point K is given. On base BC find point M
for which the area of the common part of triangles AMD and BKC is maximal.

11.34. Prove that among all quadrilaterals with fixed lengths of sides an inscribed
quadrilateral has the greatest area.

See also Problems 9.35, 15.3 b).

§5. Polygons

11.35. A polygon has a center of symmetry, O. Prove that the sum of the distances
from a point to the vertices attains its minimum at point O.

11.36. Among all the polygons inscribed in a given circle find the one for which the sum
of squared lengths of its sides is minimal.

11.37. A convex polygon A1 . . . An is given. Prove that a point of the polygon for which
the sum of distances from it to all the vertices is maximal is a vertex.

See also Problem 6.69.
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§6. Miscellaneous problems

11.38. Inside a circle centered at O a point A is given. Find point M on the circle for
which angle ∠OMA is maximal.

11.39. In plane, line l and points A and B on distinct sides of l are given. Construct a
circle that passes through points A and B so that line l intercepts on the circle a shortest
chord.

11.40. Line l and points P and Q lying on one side of l are given. On line l, take point
M and in triangle PQM draw heights PP ′ and QQ′. What is the position of point M for
which segment P ′Q′ is the shortest?

11.41. Points A, B and O do not lie on one line. Through point O draw line l so that
the sum of distances from it to points A and B were: a) maximal; b) minimal.

11.42. If five points in plane are given, then considering all possible triples of these
points we can form 30 angles. Denote the least of these angles by α. Find the greatest value
of α.

11.43. In a town there are 10 streets parallel to each other and 10 streets that intersect
them at right angles. A closed bus route passes all the road intersections. What is the least
number of turns such a bus route can have?

11.44. What is the greatest number of cells on a 8× 8 chessboard that one straight line
can intersect? (An intersection should have a common inner point.)

11.45. What is the greatest number of points that can be placed on a segment of length
1 so that on any segment of length d contained in this segment not more than 1 + 1000d2

points lie?

See also Problems 15.1, 17.20.

§7. The extremal properties of regular polygons

11.46. a) Prove that among all n-gons circumscribed about a given circle a regular n-gon
has the least area.

b) Prove that among all the n-gons circumscribed about a given circle a regular n-gon
has the least perimeter.

11.47. Triangles ABC1 and ABC2 have common base AB and ∠AC1B = ∠AC2B.
Prove that if |AC1 − C1B| < |AC2 − C2B|, then:

a) the area of triangle ABC1 is greater than the area of triangle ABC2;
b) the perimeter of triangle ABC1 is greater than the perimeter of triangle ABC2.
11.48. a) Prove that among all the n-gons inscribed in a given circle a regular n-gon has

the greatest area.
b) Prove that among all n-gons inscribed in a given circle a regular n-gon has the greatest

perimeter.

Problems for independent study

11.49. On a leg of an acute angle with vertex A point B is given. On the other leg
construct point X such that the radius of the circumscribed circle of triangle ABX is the
least possible.

11.50. Through a given point inside a (given?) circle draw a chord of the least length.
11.51. Among all triangles with a given sum of lengths of their bisectors find a triangle

with the greatest sum of lengths of its heights.
11.52. Inside a convex quadrilateral find a point the sum of squared distances from

which to the vertices is the least possible.



SOLUTIONS 259

11.53. Among all triangles inscribed in a given circle find the one for which the value
1
a

+ 1
b
+ 1

c
is the least possible.

11.54. On a chessboard with the usual coloring draw a circle of the greatest radius so
that it does not intersect any white field.

11.55. Inside a square, point O is given. Any line that passes through O cuts the square
into two parts. Through point O draw a line so that the difference of areas of these parts
were the greatest possible.

11.56. What is the greatest length that the shortest side of a triangle inscribed in a
given square can have?

11.57. What greatest area can an equilateral triangle inscribed in a given square can
have?

Solutions

11.1. By the law of cosines

a2 = b2 + c2 − 2bc cos α = (b − c)2 + 2bc(1 − cos α) =

(b − c)2 +
4S(1 − cos α)

sin α
.

Since the last summand is constant, a is minimal if b = c.
11.2. Let an escribed circle be tangent to sides AB and AC at points K and L, respec-

tively. Since AK = AL = p, the escribed circle Sa is fixed. The radius r of the inscribed
circle is maximal if it is tangent to circle Sa, i.e., triangle ABC is an isosceles one. It is also
clear that S = pr.

11.3. By Problem 10.53 a) we have S ≤ p2

3
√

3
, where the equality is only attained for an

equilateral triangle.
11.4. By the law of cosines b2 + c2 = a2 + 2bc cos α. Since 2bc ≤ b2 + c2 and cos α > 0,

it follows that b2 + c2 ≤ a2 + (b2 + c2) cos α, i.e., b2 + c2 ≤ a2

1−cos α
. The equality is attained if

b = c.
11.5. Let R be the radius of the given circle, O its center; let A, B and C be the vertices

of the triangle; a =
−→
OA, b =

−−→
OB, c =

−→
OC. Then

AB2 + BC2 + CA2 = |a − b|2 + |b − c|2 + |c − a|2 =
2(|a|2 + |b|2 + |c|2) −−2(a,b) − 2(b, c) − 2(c, a).

Since

|a + b + c|2 = |a|2 + |b|2 + |c|2 + 2(a,b) + 2(b, c) + 2(c, a),

it follows that

AB2 + BC2 + CA2 = 3(|a|2 + |b|2 + |c|2) − |a + b + c|2 ≤
3(|a|2 + |b|2 + |c|2) = 9R2,

where the equality is only attained if a+b+ c = 0. This equality means that triangle ABC
is an equilateral one.

11.6. Denote the length of the height dropped on side BC by h. Since △AMN ∼
△ABC, it follows that MN

BC
= h−2r

h
, i.e. MN = a

(

1 − 2r
h

)

. Since r = S
p

= ah
2p

, we deduce

that MN = a
(

1 − a
p

)

. The maximum of the quadratic expression a
(

1 − a
p

)

= a(p−a)
p

in a



260 CHAPTER 11. PROBLEMS ON MAXIMUM AND MINIMUM

is attained for a = 1
2
p. This maximum is equal to p

4
. It remains to notice that there exists a

triangle of perimeter 2p with side a = 1
2
p (set b = c = 3

4
p).

11.7. Let O be the center of symmetry of polygon M lying inside triangle T , let S(T )
be the image of triangle T under the symmetry through point O. Then M lies both in T
and in S(T ). Therefore, among all centrally symmetric polygons with the given center of
symmetry lying in T the one with the greatest area is the intersection of T and S(T ). Point
O lies inside triangle T because the intersection of T and S(T ) is a convex polygon and a
convex polygon always contains its center of symmetry.

Figure 124 (Sol. 11.7)

Let A1, B1 and C1 be the midpoints of sides BC, CA and AB, respectively, of triangle
T = ABC. First, let us suppose that point O lies inside triangle A1B1C1. Then the
intersection of T and S(T ) is a hexagon (Fig. 124). Let side AB be divided by the sides of
triangle S(T ) in the ratio of x : y : z, where x + y + z = 1. Then the ratio of the sum of
areas of the shaded triangles to the area of triangle ABC is equal to x2 + y2 + z2 and we
have to minimize this expression. Since

1 = (x + y + z)2 = 3(x2 + y2 + z2) − (x − y)2 − (y − z)2 − (z − x)2,

it follows that x2 + y2 + z2 ≥ 1
3
, where the equality is only attained for x = y = z; the latter

equality means that O is the intersection point of the medians of triangle ABC.
Now, consider another case: point O lies inside one of the triangles AB1C1, A1BC1,

A1B1C; for instance, inside AB1C1. In this case the intersection of T and S(T ) is a paral-
lelogram and if we replace point O with the intersection point of lines AO and B1C1, then
the area of this parallelogram can only increase. If point O lies on side B1C1, then this is
actually the case that we have already considered (set x = 0).

The polygon to be found is a hexagon with vertices at the points that divide the sides of
the triangles into three equal parts. Its area is equal to 2

3
of the area of the triangle.

11.8. Denote the intersection point of lines KM and BC by T and the intersection
points of the sides of triangles A1B1C1 and KLM as shown on Fig. 125.

Figure 125 (Sol. 11.8)
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Then TL : RZ = KL : KZ = LC : ZB1. Since TL ≥ BA1 = A1C ≥ LC, it follows that
RZ ≥ ZB1, i.e., SRZQ ≥ SZB1Q. Similarly, SQY P ≥ SY A1P and SPXR ≥ SXC1R. Adding all
these inequalities and the inequality SPQR > 0 we see that the area of hexagon PXRZQY
is not less than the area of the remaining part of triangle A1B1C1, i.e., its area is not less

than
SA1B1C1

2
= 1

8
. The equality is attained, for instance, if point K coincides with B1 and

point M with B.

11.9. Since the area of an equilateral triangle with side a is equal to a2
√

3
4

, the side of an

equilateral triangle of area 1 is equal to 2
4√3

and its height is equal to 4
√

3. Let us prove that

it is impossible to cut an equilateral triangle of area 1 off a strip of width less than 4
√

3.
Let equilateral triangle ABC lie inside a strip of width less than 4

√
3. Let, for definiteness,

the projection of vertex B on the boundary of the strip lie between the projections of vertices
A and C. Then the line drawn through point B perpendicularly to the boundary of the strip
intersects segment AC at a point M . The length of a height of triangle ABC does not exceed
BM and BM is not greater than the width of the strip and, therefore, a height of triangle
ABC is shorter than 4

√
3, i.e., its area is less than 1.

It remains to prove that any triangle of area 1 can be cut off a strip of width 4
√

3. Let us
prove that any triangle of area 1 has a height that does not exceed 4

√
3. For this it suffices

to prove that it has a side not shorter than 2
4√3

. Suppose that all sides of triangle ABC are

shorter than 2 4
√

3. Let α be the smallest angle of this triangle. Then α ≤ 60◦ and

SABC =
AB · AC sin α

2
<

(

2
4
√

3

)2
(√

3

4

)

= 1.

We have obtained a contradiction. A triangle that has a height not exceeding 4
√

3 can be
placed in a strip of width 4

√
3: place the side to which this height is dropped on a boundary

of the strip.
11.10. Squaring both sides of the given equality we easily reduce the equality to the

form

(
√

ab1 −
√

a1b)
2 + (

√
ca1 −

√
c1a)2 + (

√

bc1 −
√

cb1)
2 = 0,

i.e., a
a1

= b
b1

= c
c1

.
11.11. Fix angles α, β and γ. Let A1B1C1 be a triangle with angles α1, β1 and γ1.

Consider vectors a, b and c codirected with vectors
−−−→
B1C1,

−−−→
C1A1 and

−−−→
A1B1 and of length

sin α, sin β and sin γ, respectively. Then

cos α1

sin α
+

cos β1

sin β
+

cos γ1

sin γ
= − [(a,b) + (b, c) + (c, a)]

sin α sin β sin γ
.

Since

2[(a,b) + (b, c) + (c, a)] = |a + b + c|2 − |a|2 − |b|2 − |c|2,
the quantity (a,b) + (b, c) + (c, a) attains its minimum when a + b + c = 0, i.e., α1 = α,
β1 = β and γ1 = γ.

11.12. Let x = cot α1 and y = cot β1. Then x + y > 0 (since α1 + β1 < π) and

cot γ1 =
1 − xy

x + y
=

x2 + 1

x + y
− x.

Therefore,

a2 cot α1 + b2 cot β1 + c2 cot γ1 = (a2 − b2 − c2)x + b2(x + y) + c2x2 + 1

x + y
.
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For a fixed x this expression is minimal for a y such that b2(x + y) = c2 x2+1
x+y

, i.e.,

c

b
=

x + y√
1 + x2

= sin α1(cot α1 + cot β1) =
sin γ1

sin β1

.

Similar arguments show that if a : b : c = sin α1 : sin β1 : sin γ1, then the considered
expression is minimal. In this case triangles are similar and a2 cot α+b2 cot β+c2 cot γ = 4S,
cf. Problem 12.44 b).

11.13. Let f = bc cos x + ca cos y + ab cos z. Since cos x = − cos y cos z + sin y sin z, it
follows that

f = c(a − b cos z) cos y + bc sin y sin z + ab cos z.

Consider a triangle the lengths of whose two sides are equal to a and b and the angle between
them is equal to z; let ξ and η be the angles subtending sides a and b; let t be the length of
the side that subtends angle z. Then

cos z =
a2 + b2 − t2

2ab
and cos η =

t2 + a2 − b2

2at
;

hence, a−b cos z
t

= cos η. Moreover, b
t

= sin η
sin z

. Therefore, f = ct cos(η − y) + 1
2
(a2 + b2 − t2).

Since cos(η − y) ≤ 1, it follows that f ≤ 1
2
(a2 + b2 + c2) − 1

2
((c − t)2) ≤ 1

2
(a2 + b2 + c2).

Since a ≥ b, it follows that ξ ≥ η, consequently, −ξ ≤ −η < y − η < π − z − η = ξ, i.e.,
cos(y − ψ) > cos ξ. Hence,

f > ct cos ξ +
a2 + b2 − t2

2
=

c − b

2b
t2 +

c(b2 − a2)

2b
+

a2 + b2

2
= g(t).

The coefficient of t2 is either negative or equal to zero; moreover, t < a + b. Hence, g(t) ≥
g(a + b) = bc + ca − ab.

11.14. a) Since CMXN is a rectangle, MN = CX. Therefore, the length of segment
MN is the least possible if CX is a height.

b) Let SABC = S. Then SAMX = AX2·S
AB2 and SBNX = BX2·S

AB2 . Since AX2 + BX2 ≥ 1
2
AB2

(where the equality is only attained if X is the midpoint of segment AB), it follows that
SCMXN = S − SAMX − SBNX ≤ 1

2
S. The area of quadrilateral CMXN is the greatest if X

is the midpoint of side AB.
11.15. Points P and Q lie on the circle constructed on segment CM as on the diameter.

In this circle the constant angle C intercepts chord PQ, therefore, the length of chord PQ
is minimal if the diameter CM of the circle is minimal, i.e., if CM is a height of triangle
ABC.

11.16. By the law of sines the radii of the circumscribed circles of triangles ACM and
BCM are equal to AC

2 sin AMC
and BC

2 sin BMC
, respectively. It is easy to verify that sinAMC =

sin BMC. Therefore,

AC

2 sin AMC
+

BC

2 sin BMC
=

AC + BC

2 sin BMC
.

The latter expression is minimal if sin BMC = 1, i.e., CM ⊥ AB.
11.17. Points P and Q lie on the circle with diameter AM , hence, PQ = AM sin PAQ =

AM sin A. It follows that the length of segment PQ is maximal if AM is a diameter of the
circumscribed circle.

11.18. Clearly, 2SABC = ada + bdb + cdc. Therefore, the product (ada)(bdb)(cdc) takes
its greatest value if ada = bdb = cdc (cf. Supplement to Ch. 9, the inequality between the
mean arithmetic and the mean geometric). Since the value abc is a constant, the product
(ada)(bdb)(cdc) attains its greatest value if and only if the product dadbdc takes its greatest
value.
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Let us show that equality ada = bdb = cdc means that O is the intersection point of the
medians of triangle ABC. Denote the intersection point of lines AO and BC by A1. Then

BA1 : A1C = SABA1 : SACA1 = SABO : SACO = (cdc) : (bdb) = 1,

i.e., AA1 is a median. We similarly prove that point O lies on medians BB1 and CC1.
11.19. Let α = MA1

AA1
, β = MB1

BB1
and γ = MC1

CC1
. Since α + β + γ = 1 (cf. Problem 4.48 a)),

we have
√

αβγ ≤ 1
3
(α + β + γ) = 1

3
, where the equality is attained when α = β = γ = 1

3
,

i.e., M is the intersection point of the medians.
11.20. Let x = MA1, y = MB1 and z = MC1. Then

ax + by + cz = 2SBMC + 2SAMC + 2SAMB = 2SABC .

Hence,
(

a
x

+ b
y

+ c
z

)

· 2SABC =
(

a
x

+ b
y

+ c
z

)

(ax + by + cz) = a2 + b2 + c2 + ab
(

x
y

+ y
x

)

+ bc
(

y
z

+ z
y

)

+ ac
(

z
x

+ x
z

)

≥
a2 + b2 + c2 + 2ab + 2bc + 2ac,

where the equality is only attained if x = y = z, i.e., M is the center of the inscribed circle
of triangle ABC.

11.21. First, suppose that all the angles of triangle ABC are less than 120◦. Then inside
triangle ABC there exists a point O — the vertex of angles of 120◦ that subtend each side.
Let us draw through vertices A, B and C lines perpendicular to segments OA, OB and OC,
respectively. These lines form an equilateral triangle A1B1C1 (Fig. 126).

Figure 126 (Sol. 11.21)

Let O′ be any point that lies inside triangle ABC and is distinct from O. Let us prove
then that O′A + O′B + O′C > OA + OB + OC, i.e., O is the desired point. Let A′, B′ and
C ′ be the bases of the perpendiculars dropped from point O′ on sides B1C1, C1A1 and A1B1,
respectively, a the length of the side of equilateral triangle A1B1C1. Then

O′A′ + O′B′ + O′C ′ =
2(SO′B1C1 + SO′A1C1)

a
=

2SA1B1C1

a
= OA + OB + OC.

Since a slanted line is longer than the perpendicular,

O′A + O′B + O′C > O′A′ + O′B′ + O′C ′ = OA + OB + OC.
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Figure 127 (Sol. 11.21)

Now, let one of the angles of triangle ABC, say ∠C, be greater than 120◦. Let us
draw through points A and B perpendiculars B1C1 and C1A1 to segments CA and CB and
through point C line A1B1 perpendicular to the bisector of angle ∠ACB (Fig. 127).

Since ∠AC1B = 180◦ −∠ACB < 60◦, it follows that B1C1 > A1B1. Let O′ be any point
that lies inside triangle A1B1C1. Since

B1C1 · O′A′ + C1A1 · O′B′ + A1C1 · O′C ′ = 2SA1B1C1 ,

it follows that

(O′A′ + O′B′ + O′C ′) · B1C1 = 2SA1B1C1 + (B1C1 − A1B1) · O′C ′.

Since B1C1 > A1B1, the sum O′A′ +O′B′ +O′C ′ is minimal for points that lie on side B1A1.
It is also clear that

O′A + O′B + O′C ≥ O′A′ + O′B′ + O′C ′.

Therefore, vertex C is the point to be found.
11.22. Let the distances from point O to sides BC, CA and AB be equal to x, y and z,

respectively. Then

ax + by + cz = 2(SBOC + SCOA + SAOB) = 2SABC .

It is also clear that

x : y : z =

(

SBOC

a

)

:

(

SCOA

b

)

:

(

SAOB

c

)

.

Equation ax + by + cz = 2S determines a plane in 3-dimensional space with coordinates
x, y, z; vector (a, b, c) is perpendicular to this plane because if ax1 + by1 + cz1 = 2S and
ax2 + by2 + cz2 = 2S, then a(x1 − x2) + b(y1 − y2) + c(z1 − z2) = 0.

We have to find a point (x0, y0, z0) on this plane at which the minimum of expression
x2 + y2 + z2 is attained and verify that an inner point of the triangle corresponds to this
point. Since x2 + y2 + z2 is the squared distance from the origin to point (x, y, z), it follows
that the base of the perpendicular dropped from the origin to the plane is the desired point,
i.e., x : y : z = a : b : c. It remains to verify that inside the triangle there exists point O for
which x : y : z = a : b : c. This equality is equivalent to the condition

(

SBOC

a

)

:

(

SCOA

b

)

:

(

SAOB

c

)

= a : b : c,

i.e., SBOC : SCOA : SAOB = a2 : b2 : c2. Since the equality SBOC : SAOB = a2 : c2 follows
from equalities SBOC : SCOA = a2 : b2 and SCOA : SAOB = b2 : c2, the desired point is the
intersection point of lines CC1 and AA1 that divide sides AB and BC, respectively, in the
ratios of BC1 : C1A = a2 : b2 and CA1 : A1B = b2 : c2, respectively.
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11.23. Let O be the vertex of the given angle. Point C is the tangent point of a leg with
the circle that passes through points A and B, i.e., OC2 = OA · OB. To find the length of
segment OC, it suffices to draw the tangent to any circle that passes through points A and
B.

11.24. Let us consider angle ∠X ′A′Y ′ symmetric to angle ∠XAY through point O. Let
B and C be the intersection points of the legs of these angles. Denote the intersection points
of the line that passes through point O with the legs of angles ∠XAY and ∠X ′A′Y ′ by B1,
C1 and B′

1, C ′
1, respectively (Fig. 128).

Figure 128 (Sol. 11.24)

Since SAB1C1 = SA′B′

1C′

1
, it follows that SAB1C1 = 1

2
(SABA′C +SBB1C′

1
+SCC1B′

1
). The area

of triangle AB1C1 is the least if B1 = B and C1 = C, i.e., line BC is the one to be found.
11.25. On legs OA and OB, take points K and L so that KP ‖ OB and LP ‖ OA.

Then KM : KP = PL : LN and, therefore,

KM + LN ≥ 2
√

KM · LN = 2
√

KP · PL = 2
√

OK · OL

where the equality is attained when KM = LN =
√

OK · OL. It is also clear that OM +
ON = (OK + OL) + (KM + LN).

11.26. On rays AX and AY , mark equal segments AB an AC. If point M lies on segment

BC, then the sum of distances from it to lines AB and AC is equal to 2(SABM+SACM )
AB

= 2SABC

AB
.

Therefore, the sum of distances from a point to lines AX and AY is the lesser, the lesser is
the distance between point A and the point’s projection on the bisector of angle ∠XAY .

11.27. Let points M1 and M2 be symmetric to M through lines AB and AC, respectively.
Since ∠BAM1 = ∠BAM and ∠CAM2 = ∠CAM , it follows that ∠M1AM2 = 2∠BAC <
180◦. Hence, segment M1M2 intersects rays AB and AC at certain points X and Y (Fig.
129). Let us prove that X and Y are the points to be found.

Figure 129 (Sol. 11.27)

Indeed, if points X1 and Y1 lie on rays AB and AC, respectively, then MX1 = M1X1

and MY1 = M2Y1, i.e., the perimeter of triangle MX1Y1 is equal to the length of the broken
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line MX1Y1M2. Of all the broken lines with the endpoints at M1 and M2 segment M1M2 is
the shortest one.

11.28. Quadrilateral ABOC of the greatest area is a convex one. Among all the triangles
ABC with the fixed angle ∠A and side BC an isosceles triangle with base BC has the greatest
area. Therefore, among all the considered quadrilaterals ABOC with fixed diagonal BC the
quadrilateral with AB = AC, i.e., for which point O lies on the bisector of angle ∠A, is of
greatest area.

Further, let us consider triangle ABO in which angle ∠BAO equal to 1
2
∠A and side BO

are fixed. The area of this triangle is maximal when AB = AO.
11.29. Let O be the intersection point of the diagonals of convex quadrilateral ABCD

and O1 any other point. Then AO1 + CO1 ≥ AC = AO + CO and BO1 + DO1 ≥ BD =
BO + DO, where at least one of the inequalities is a strict one. Therefore, O is the point to
be found.

11.30. Since SAOB : SBOC = AO : OC = SAOD : SDOC , it follows that SBOC · SAOD =
SAOB · SDOC = 36. Therefore, SBOC + SAOD ≥ 2

√
SBOC · SAOD = 12, where the equality

takes place if SBOC = SAOD, i.e., SABC = SABD. This implies that AB ‖ CD. In this case
the area of the triangle is equal to 4+9+12=25.

11.31. Let S0 and S be the considered sums of areas of triangles for line l0 that passes
through the intersection point of the diagonals of the trapezoid and for another line l. It is
easy to verify that S = S0 + s, where s is the area of the triangle formed by diagonals AC
and BD and line l. Hence, l0 is the line to be found.

11.32. Denote the lengths of the diagonals of the trapezoid by d1 and d2 and the lengths
of their projections on the bottom base by p1 and p2, respectively; denote the lengths of the
bases by a and b and that of the height by h. Let, for definiteness, d1 ≥ d2. Then p1 ≥ p2.
Clearly, p1 + p2 ≥ a + b. Hence, p1 ≥ a+b

2
= S

h
= 1

h
. Therefore, d2

1 = p2
1 + h2 ≥ 1

h2 + h2 ≥ 2,

where the equality is attained only if p1 = p2 = h = 1. In this case d1 =
√

2.
11.33. Let us prove that point M that divides side BC in the ratio of BM : NC =

AK : KD is the desired one. Denote the intersection points of segments AM and BK, DM
and CK by P and Q, respectively. Then KQ : QC = KD : MC = KA : MB = KP : PB,
i.e., line PQ is parallel to the basis of the trapezoid.

Let M1 be any other point on side BC. For definiteness, we may assume that M1 lies
on segment BM . Denote the intersection points of AM1 and BK, DM1 and CK, AM1 and
PQ, DM1 and PQ, AM and DM1 by P1, Q1, P2, Q2, O, respectively (Fig. 130).

Figure 130 (Sol. 11.33)

We have to prove that SMPKQ > SM1P1KQ1 , i.e., SMOQ1Q > SM1OPP1 . Clearly, SMOQ1Q >
SMOQ2Q = SM1OPP2 > SM1OPP1 .

11.34. By Problem 4.45 a) we have

S2 = (p − a)(p − b)(p − c)(p − d) − abcd cos2 ∠B + ∠D

2
.
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This quantity takes its maximal value when cos ∠B+∠D
2

= 0, i.e., ∠B + ∠D = 180◦.
11.35. If A and A′ are vertices of the polygon symmetric through point O, then the sum

of distances from any point of segment AA′ to points A and A′ is the same whereas for any
other point it is greater. Point O belongs to all such segments.

11.36. If in triangle ABC, angle ∠B is either obtuse or right, then by the law of sines
AC2 ≥ AB2 + BC2. Therefore, if in a polygon the angle at vertex B is not acute, then
deleting vertex B we obtain a polygon with the sum of squared lengths of the sides not less
than that of the initial polygon. Since for n ≥ 3 any n-gon has a nonacute angle, it follows
that by repeating such an operation we eventually get a triangle. Among all the triangles
inscribed in the given circle an equilateral triangle has the greatest sum of squared lengths
of the sides, cf. Problem 11.5.

11.37. If point X divides segment PQ in the ratio of λ : (1 − λ), then
−−→
AiX = (1 −

λ)
−−→
AiP + λ

−−→
AiQ; hence, AiX ≤ (1 − λ)AiP + λAiQ. Therefore,

f(X) =
∑

AiX ≤ (1 − λ)
∑

AiP + λ
∑

AiQ = (1 − λ)f(P ) + λf(Q).

Let, for instance, f(P ) ≤ f(Q), then f(X) ≤ f(Q); hence, on segment PQ the function f
attains its maximal value at one of the endpoints; more precisely, inside the segment there
can be no point of strict maximum of f . Hence, if X is any point of the polygon, then
f(X) ≤ f(Y ), where Y is a point on a side of the polygon and f(Y ) ≤ f(Z), where Z is a
vertex.

11.38. The locus of points X for which angle ∠OXA is a constant consists of two arcs
of circles S1 and S2 symmetric through line OA.

Consider the case when the diameter of circles S1 and S2 is equal to the radius of the
initial circle, i.e., when these circles are tangent to the initial circle at points M1 and M2

for which ∠OAM1 = ∠OAM2 = 90◦. Points M1 and M2 are the desired ones because if
∠OXA > ∠OM1A = ∠OM2A, then point X lies strictly inside the figure formed by circles
S1 and S2, i.e., cannot lie on the initial circle.

11.39. Let us denote the intersection point of line l and segment AB by O. Let us
consider an arbitrary circle S that passes through points A and B. It intersects l at certain
points M and N . Since MO · NO = AO · BO is a constant,

MN = MO + NO ≥ 2
√

MO · NO = 2
√

AO · BO,

where the equality is only attained if MO = NO. In the latter case the center of S is the
intersection point of the midperpendicular to AB and the perpendicular to l that passes
through point O.

11.40. Let us construct the circle with diameter PQ. If this circle intersects with l,
then any of the intersection points is the desired one because in this case P ′ = Q′. If the
circle does not intersect with l, then for any point M on l angle ∠PMQ is an acute one
and ∠P ′PQ′ = 90◦ ± ∠PMQ. Now it is easy to establish that the length of chord P ′Q′ is
minimal if angle ∠PMQ is maximal.

To find point M it remains to draw through points P and Q circles tangent to l (cf.
Problem 8.56 a)) and select the needed point among the tangent points.

11.41. Let the sum of distances from points A and B to line l be equal to 2h. If l
intersects segment AB at point X, then SAOB = h · OX and, therefore, the value of h is
extremal when the value of OX is extremal, i.e., when line OX corresponds to a side or a
height of triangle AOB.

If line l does not intersect segment AB, then the value of h is equal to the length of the
midline of the trapezoid confined between the perpendiculars dropped from points A and B
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on line l. This quantity is an extremal one when l is either perpendicular to median OM of
triangle AOB or corresponds to a side of triangle AOB. Now it only remains to select two
of the obtained four straight lines.

11.42. First, suppose that the points are the vertices of a convex pentagon. The sum
of angles of the pentagon is equal to 540◦; hence, one of its angles does not exceed 540◦

5
=

108◦. The diagonals divide this angle into three angles, hence, one of them does not exceed
108◦

3
= 36◦. In this case α ≤ 36◦.

If the points are not the vertices of a convex pentagon, then one of them lies inside the
triangle formed by some other three points. One of the angles of this triangle does not exceed
60◦. The segment that connects the corresponding vertex with an inner point divides this
angle into two angles, hence, one of them does not exceed 30◦. In this case α ≤ 30◦. In all
the cases α ≤ 36◦. Clearly, for a regular pentagon α = 36◦.

11.43. A closed route that passes through all the road crossings can have 20 turns (Fig.
131). It remains to prove that such a route cannot have less than 20 turns. After each turn
a passage from a horizontal street to a vertical one or from a vertical street to a horizontal
one occurs.

Figure 131 (Sol. 11.43)

Hence, the number of horizontal links of a closed route is equal to the number of vertical
links and is equal to half the number of turns. Suppose that a closed route has less than 20
turns. Then there are streets directed horizontally, as well as streets directed vertically, along
which the route does not pass. Therefore, the route does not pass through the intersection
point of these streets.

11.44. A line can intersect 15 cells (Fig. 132). Let us prove now that a line cannot
intersect more than 15 cells. The number of cells that the line intersects is by 1 less than
the number of intersection points of the line with the segments that determine the sides of
the cells. Inside a square there are 14 such segments.

Hence, inside a square there are not more than 14 intersection points of the line with
sides of cells. No line can intersect the boundary of the chessboard at more than 2 points;
hence, the number of intersection points of the line with the segments does not exceed 16.
Hence, the maximal number of cells on the chessboard of size 8 × 8 that can be intersected
by one line is equal to 15.

11.45. First, let us prove that 33 points are impossible to place in the required way.
Indeed, if on a segment of length 1 there are 33 points, then the distance between some two
of them does not exceed 1

32
. The segment with the endpoints at these points contains two

points and it should contain not more than 1 + 1000
322 points, i.e., not less than two points.

Now, let us prove that it is possible to place 32 points. Let us take 32 points that divide
the segment into equal parts (the endpoints of the given segment should be among these 32
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Figure 132 (Sol. 11.44)

points). Then a segment of length d contains either [31d] or [31d] + 1 points. (Recall that
[x] denotes the integer part of the number x, i.e., the greatest integer that does not exceed
x.) We have to prove that [31d] ≤ 1000d2. If 31d < 1, then [31d] = 0 < 1000d2. If 31d ≥ 1,
then [31d] ≤ 31d ≤ (31d)2 = 961d2 < 1000d2.

11.46. a) Let a non-regular n-gon be circumscribed about circle S. Let us circumscribe
a regular n-gon about this circle and let us circumscribe circle S1 about this regular n-gon
(Fig. 133). Let us prove that the area of the part of the non-regular n-gon confined inside
S1 is greater than the area of the regular n-gon.

Figure 133 (Sol. 11.46)

All the tangents to S cut off S1 equal segments. Hence, the sum of areas of the segments
cut off S1 by the sides of the regular n-gon is equal to the sum of segments cut off S1 by the
sides of the non-regular n-gon or by their extensions.

But for the regular n-gon these segments do not intersect (more exactly, they do not have
common interior points) and for the non-regular n-gon some of them must overlap, hence,
the area of the union of these segments for a regular-gon is greater than for a non-regular
one. Therefore, the area of the part of the non-regular n-gon confined inside S1 is greater
than the area of the regular n-gon and the area of the whole non-regular n-gon is still greater
than the area of the regular one.

b) This heading follows from heading a) because the perimeter of the polygon circum-
scribed about a circle of radius R is equal to 2S

R
, where S is the area of the polygon.

11.47. The sides of triangle ABC are proportional to sinα, sin β and sin γ. If angle γ is
fixed, then the value of

| sin α − sin β| = 2

∣

∣

∣

∣

sin
α − β

2
sin

γ

2

∣

∣

∣

∣
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is the greater the greater is ϕ = |α − β|. It remains to observe that quantities

S = 2R2 sin α sin β sin γ = R2 sin γ(cos α − β + cos γ) =
R2 sin γ(cos ϕ + cos γ)

and sin α + sin β = 2 cos γ
2
cos ϕ

2

monotonously decrease as ϕ increases.
11.48. a) Denote the length of the side of a regular n-gon inscribed in the given circle by

an. Consider an arbitrary non-regular n-gon inscribed in the same circle. It will necessarily
have a side shorter than an.

On the other hand, it can have no side longer than an and in such a case such a polygon
can be confined in a segment cut off a side of the regular n-gon. Since the symmetry through
a side of a regular n-gon sends the segment cut off this side inside the n-gon, the area of
the n-gon is greater than the area of the segment(??). Therefore, we may assume that the
considered n-gon has a side shorter than an and a side longer than an.

We can replace neighbouring sides of the n-gon, i.e., replace A1A2A3 . . . An with polygon
A1A

′
2A3 . . . An, where point A′

2 is symmetric to A2 through the midperpendicular to segment
A1A3 (Fig. 134). Clearly, both polygons are inscribed in the same circle and their areas
are equal. It is also clear that with the help of this operation we can make any two sides
of the polygon neighbouring ones. Therefore, let us assume that for the n-gon considered,
A1A2 > an and A2A3 < an.

Figure 134 (Sol. 11.48)

Let A′
2 be the point symmetric to A2 through the midperpendicular to segment A1A3. If

point A′′
2 lies on arc ⌣ A2A

′
2, then the difference of the angles at the base A1A3 of triangle

A1A
′′
2A3 is less than that of triangle A1A2A3 because the values of angles ∠A1A2A

′′
2 and

∠A3A1A
′′
2 are confined between the values of angles ∠A1A3A2 and ∠A3A1A2.

Since A1A
′
2 < an and A1A2 > an, on arc ⌣ A2A

′
2 there exists a point A′′

2 for which
A1A

′′
2 = an. The area of triangle A1A

′′
2A3 is greater than the area of triangle A1A2A3, cf.

Problem 11.47 a). The area of polygon A1A
′′
2A3 . . . An is greater than the area of the initial

polygon and it has at least by 1 more sides equal to an.
After finitely many steps we get a regular n-gon and at each step the area increases.

Therefore, the area of any non-regular n-gon inscribed in a circle is less than the area of a
regular n-gon inscribed in the same circle.

b) Proof is similar to the proof of heading a); one only has to make use of the result of
Problem 11.47 b) instead of that of Problem 11.47 a).
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Introductory problems

1. Prove the law of cosines:

BC2 = AB2 + AC2 − 2AB · AC cos ∠A.

2. Prove the law of sines:
a

sin α
=

b

sin β
=

c

sin γ
= 2R.

3. Prove that the area of a triangle is equal to
√

p(p − a)(p − b)(p − c), where p is semiperime-
ter (Heron’s formula.)

4. The sides of a parallelogram are equal to a and b and its diagonals are equal to d and
e. Prove that 2(a2 + b2) = d2 + e2.

5. Prove that for convex quadrilateral ABCD with the angle ϕ between the diagonals
we have SABCD = 1

2
AC · BD sin ϕ.

§1. The law of sines

12.1. Prove that the area S of triangle ABC is equal to abc
4R

.
12.2. Point D lies on base AC of equilateral triangle ABC. Prove that the radii of the

circumscribed circles of triangles ABD and CBD are equal.
12.3. Express the area of triangle ABC in terms of the length of side BC and the value

of angles ∠B and ∠C.

12.4. Prove that a+b
c

=
cos α−β

2

sin γ
2

and a−b
c

=
sin α−β

2

cos γ
2

.

12.5. In an acute triangle ABC heights AA1 and CC1 are drawn. Points A2 and C2 are
symmetric to A1 and C1 through the midpoints of sides BC and AB, respectively. Prove
that the line that connects vertex B with the center O of the circumscribed circle divides
segment A2C2 in halves.

12.6. Through point S lines a, b, c and d are drawn; line l intersects them at points A,
B, C and D. Prove that the quantity AC·BD

BC·AD
does not depend on the choice of line l.

12.7. Given lines a and b that intersect at point O and an arbitrary point P . Line l that
passes through point P intersects lines a and b at points A and B. Prove that the value of
OA
OB
PA
PB

does not depend on the choice of line l.

12.8. Denote the vertices and the intersection points of links of a (non-regular) five-
angled star as shown on Fig. 135. Prove that

A1C · B1D · C1E · D1A · E1B = A1D · B1E · C1A · D1B · E1C.

12.9. Two similar isosceles triangles have a common vertex. Prove that the projections
of their bases on the line that connects the midpoints of the bases are equal.

12.10. On the circle with diameter AB, points C and D are taken. Line CD and the
tangent to the circle at point B intersect at point X. Express BX in terms of the radius R
of the circle and angles ϕ = ∠BAC and ψ = ∠BAD.

271
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Figure 135 (12.8)

§2. The law of cosines

12.11. Prove that:
a) m2

a = 2b2+2c2−a2

4
;

b) m2
a + m2

b + m2
c = 3(a2+b2+c2)

4
.

12.12. Prove that 4S = (a2 − (b − c)2) cot α
2
.

12.13. Prove that

cos2 α

2
=

p(p − a)

bc
and sin2 α

2
=

(p − b)(p − c)

bc
.

12.14. The lengths of sides of a parallelogram are equal to a and b; the lengths of the
diagonals are equal to m and n. Prove that a4 + b4 = m2n2 if and only if the acute angle of
the parallelogram is equal to 45◦.

12.15. Prove that medians AA1 and BB1 of triangle ABC are perpendicular if and only
if a2 + b2 = 5c2.

12.16. Let O be the center of the circumscribed circle of scalane triangle ABC, let M
be the intersection point of the medians. Prove that line OM is perpendicular to median
CC1 if and only if a2 + b2 = 2c2.

§3. The inscribed, the circumscribed and escribed circles; their radii

12.17. Prove that:
a) a = r

(

cot β
2

+ cot γ
2

)

=
r cos α

2

sin β
2

sin γ
2

;

b) a = ra

(

tan β
2

+ tan γ
2

)

=
ra cos α

2

cos β
2

cos γ
2

;

c) p − b = r cot β
2

= ra tan γ
2
;

d) p = ra cot α
2
.

12.18. Prove that:
a) rp = ra(p − a), rra = (p − b)(p − c) and rbrc = p(p − a);
b) S2 = p(p − a)(p − b)(p − c); (Heron’s formula.)
c) S2 = rrarbrc.
12.19. Prove that S = r2

c tan α
2

tan β
2

cot γ
2
.

12.20. Prove that S = crarb

ra+rb
.

12.21. Prove that 2
ha

= 1
rb

+ 1
rc

.

12.22. Prove that 1
ha

+ 1
hb

+ 1
hc

= 1
ra

+ 1
rb

+ 1
rc

= 1r.
12.23. Prove that

1

(p − a)(p − b)
+

1

(p − b)(p − c)
+

1

(p − c)(p − a)
=

1

r2
.
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12.24. Prove that ra + rb + rc = 4R + r.
12.25. Prove that rarb + rbrc + rcra = p2.
12.26. Prove that 1

r3 − 1
r3
a
− 1

r3
b
− 1

r2
c

= 12R
S2 .

12.27. Prove that

a(b + c) = (r + ra)(4R + r − ra) and a(b − c) = (rb − rc)(4R − rb − rc).

12.28. Let O be the center of the inscribed circle of triangle ABC. Prove that OA2

bc
+

OB2

ac
+ OC2

ab
= 1.

12.29. a) Prove that if for a triangle we have p = 2R + r, then this triangle is a right
one.

b) Prove that if p = 2R sin ϕ + r cot ϕ
2
, then ϕ is one of the angles of the triangle (we

assume here that 0 < ϕ < π).

§4. The lengths of the sides, heights, bisectors

12.30. Prove that abc = 4prR and ab + bc + ca = r2 + p2 + 4rR.
12.31. Prove that 1

ab
+ 1

bc
+ 1

ca
= 1

2Rr
.

12.32. Prove that a+b−c
a+b+c

= tan α
2

tan β
2
.

12.33. Prove that ha = bc
2R

.
12.34. Prove that

ha =
2(p − a) cos β

2
cos γ

2

cos α
2

=
2(p − b) sin β

2
cos γ

2

sin α
2

.

12.35. Prove that the length of bisector la can be computed from the following formulas:

a) la =
√

4p(p−a)bc
(b+c)2

;

b) la =
2bc cos α

2

b+c
;

c) la = 2R sin β sin γ

cos β−γ
2

;

d) la =
4p sin β

2
sin γ

2

sin β+sin γ
.

§5. The sines and cosines of a triangle’s angles

Let α, β and γ be the angles of triangle ABC. In the problems of this section one should
prove the relations indicated.

12.36. a) sin α
2

sin β
2

sin γ
2

= r
4R

;

b) tan α
2

tan β
2

tan γ
2

= r
p
;

c) cos α
2

cos β
2

cos γ
2

= p
4R

.

12.37. a) cos α
2

sin β
2

sin γ
2

= p−a
4R

;

b) sin α
2

cos β
2

cos γ
2

= ra

4R
.

12.38. cos α + cos β + cos γ = R+r
R

.
12.39. a) cos 2α + cos 2β + cos 2γ + 4 cos α cos β cos γ + 1 = 0;
b) cos2 α + cos2 β + cos2 γ + 2 cos α cos β cos γ = 1.
12.40. sin 2α + cos 2β + cos 2γ = 4 sin α sin β sin γ.

12.41. a) sin2 α + sin2 β + sin2 γ = p2−r2−4rR
2R2 .

b) 4R2 cos α cos β cos γ = p2 − (2R + r)2.

12.42. ab cos γ + bc cos α + ca cos β = a2+b2+c2

2
.

12.43.
cos2 α

2

a
+

cos2 β
2

b
+

cos2 γ
2

c
= p

4Rr
.
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§6. The tangents and cotangents of a triangle’s angles

In problems of this section one has to prove the relations indicated between the values
α, β and γ of the angles of triangle ABC.

12.44. a) cot α + cot β + cot γ = a2+b2+c2

4S
;

b) a2 cot α + b2 cot β + c2 cot γ = 4S.
12.45. a) cot α

2
+ cot β

2
+ cot γ

2
= p

r
;

b) tan α
2

+ tan β
2

+ tan γ
2

= 1
2

(

a
ra

+ b
rb

+ c
rc

)

.

12.46. tan α + tan β + tan γ = tan σ tan β tan γ.
12.47. tan α

2
tan β

2
+ tan β

2
tan γ

2
+ tan γ

2
tan α

2
= 1.

12.48. a) cot α cot β + cot β cot γ + cot α cot γ = 1;
b) cot α + cot β + cot γ − cot α cot β cot γ = 1

sin α sin β sin γ
.

12.49. For a non-right triangle we have

tan σ + tan β + tan γ =
4S

a2 + b2 + c2 − 8R2
.

§7. Calculation of angles

12.50. Two intersecting circles, each of radius R with the distance between their centers
greater than R are given. Prove that β = 3α (Fig. 136).

Figure 136 (12.50)

12.51. Prove that if 1
b
+ 1

c
= 1

la
, then ∠A = 120◦.

12.52. In triangle ABC height AH is equal to median BM . Find angle ∠MBC.
12.53. In triangle ABC bisectors AD and BE are drawn. Find the value of angle ∠C

if it is given that AD · BC = BE · AC and AC 6= BC.
12.54. Find angle ∠B of triangle ABC if the length of height CH is equal to a half

length of side AB and ∠BAC = 75◦.
12.55. In right triangle ABC with right angle ∠A the circle is constructed with height

AD of the triangle as a diameter; the circle intersects leg AB at point K and leg AC at
point M . Segments AD and KM intersect at point L. Find the acute angles of triangle
ABC if AK : AL = AL : AM .

12.56. In triangle ABC, angle ∠C = 2∠A and b = 2a. Find the angles of triangle ABC.
12.57. In triangle ABC bisector BE is drawn and on side BC point K is taken so that

∠AKB = 2∠AEB. Find the value of angle ∠AKE if ∠AEB = α.

* * *

12.58. In an isosceles triangle ABC with base BC angle at vertex A is equal to 80◦.
Inside triangle ABC point M is taken so that ∠MBC = 30◦ and ∠MCB = 10◦. Find the
value of angle ∠AMC.
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12.59. In an isosceles triangle ABC with base AC the angle at vertex B is equal to 20◦.
On sides BC and AB points D and E, respectively, are taken so that ∠DAC = 60◦ and
∠ECA = 50◦. Find angle ∠ADE.

12.60. In an acute triangle ABC segments BO and CO, where O is the center of the
circumscribed circle, are extended to their intersection at points D and E with sides AC
and AB, respectively. It turned out that ∠BDE = 50◦ and ∠CED = 30◦. Find the value
of the angles of triangle ABC.

§8. The circles

12.61. Circle S with center O on base BC of isosceles triangle ABC is tangent to equal
sides AB and AC. On sides AB and AC, points P and Q, respectively, are taken so that
segment PQ is tangent to S. Prove that 4PB · CQ = BC2.

12.62. Let E be the midpoint of side AB of square ABCD and points F and G are
taken on sides BC and CD, respectively, so that AG ‖ EF . Prove that segment FG is
tangent to the circle inscribed in square ABCD.

12.63. A chord of a circle is distant from the center by h. A square is inscribed in each
of the disk segments subtended by the chord so that two neighbouring vertices of the square
lie on an arc and two other vertices lie either on the chord or on its extension (Fig. 137).
What is the difference of lengths of sides of these squares?

Figure 137 (12.63)

12.64. Find the ratio of sides of a triangle one of whose medians is divided by the
inscribed circle into three equal parts.

* * *

12.65. In a circle, a square is inscribed; in the disk segment cut off the disk by one of
the sides of this square another square is inscribed. Find the ratio of the lengths of the sides
of these squares.

12.66. On segment AB, point C is taken and on segments AC, BC and AB as on
diameters semicircles are constructed lying on one side of line AB. Through point C the
line perpendicular to AB is drawn and in the obtained curvilinear triangles ACD and BCD
circles S1 and S2 are inscribed (Fig. 138). Prove that the radii of these circles are equal.

12.67. The centers of circles with radii 1, 3 and 4 are positioned on sides AD and BC of
rectangle ABCD. These circles are tangent to each other and lines AB and CD as shown
on Fig. 139. Prove that there exists a circle tangent to all these circles and line AB.

§9. Miscellaneous problems

12.68. Find all the triangles whose angles form an arithmetic projection and sides form
a) an arithmetic progression; b) a geometric progression.
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Figure 138 (12.66)

Figure 139 (12.67)

12.69. Find the height of a trapezoid the lengths of whose bases AB and CD are equal
to a and b (a < b), the angle between the diagonals is equal to 90◦, and the angle between
the extensions of the lateral sides is equal to 45◦.

12.70. An inscribed circle is tangent to side BC of triangle ABC at point K. Prove
that the area of the triangle is equal to BK · KC cot α

2
.

12.71. Prove that if cot α
2

= a+b
a

, then the triangle is a right one.
12.72. The extensions of the bisectors of triangle ABC intersect the circumscribed circle

at points A1, B1 and C1. Prove that SABC

SA1B1C1
= 2r

R
, where r and R are the radii of the inscribed

and circumscribed circles, respectively, of triangle ABC.
12.73. Prove that the sum of cotangents of the angles of triangle ABC is equal to the

sum of cotangents of the angles of the triangle formed by the medians of triangle ABC.
12.74. Let A4 be the orthocenter of triangle A1A2A3. Prove that there exist numbers

λ1, . . . , λ4 such that AiA
2
j = λi + λj and if the triangle is not a right one, then

∑

1
λi

= 0.

§10. The method of coordinates

12.75. Coordinates of the vertices of a triangle are rational numbers. Prove that then
the coordinates of the center of the circumscribed circle are also rational.

12.76. Diameters AB and CD of circle S are perpendicular. Chord EA intersects
diameter CD at point K, chord EC intersects diameter AB at point L. Prove that if
CK : KD = 2 : 1, then AL : LB = 3 : 1.

12.77. In triangle ABC angle ∠C is a right one. Prove that under the homothety with
center C and coefficient 2 the inscribed circle turns into a circle tangent to the circumscribed
circle.
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12.78. A line l is fixed. Square ABCD is rotated about its center. Find the locus of the
midpoints of segments PQ, where P is the base of the perpendicular dropped from point D
on l and Q is the midpoint of side AB.

See also Problems 7.6, 7.14, 7.47, 22.15.

Problems for independent study

12.79. Each of two circles is tangent to both sides of the given right angle. Find the
ratio of the circles’ radii if it is known that one of the circles passes through the center of
the other one.

12.80. Let the extensions of sides AB and CD, BC and AD of convex quadrilat-
eral ABCD intersect at points K and M , respectively. Prove that the radii of the cir-
cles circumscribed about triangles ACM , BDK, ACK, BDM are related by the formula
RACM · RBDK = RACK · RBDM .

12.81. Three circles of radii 1, 2, 3 are tangent to each other from the outside. Find the
radius of the circle that passes through the tangent points of these circles.

12.82. Let point K lie on side BC of triangle ABC. Prove that

AC2 · BK + AB2 · CK = BC(AK2 + BK · KC).

12.83. Prove that the length of the bisector of an outer angle ∠A of triangle ABC is

equal to
2bc sin α

2

|b−c| .

12.84. Two circles of radii R and r are placed so that their common inner tangents are
perpendicular. Find the area of the triangle formed by these tangents and their common
outer tangent.

12.85. Prove that the sum of angles at rays of any (nonregular) five-angled star is equal
to 180◦.

12.86. Prove that in any triangle S = (p − a)2 tan α
2

cot β
2

cot γ
2
.

12.87. Let a < b < c be the lengths of sides of a triangle; la, lb, lc and l′a, l′b, l′c the lengths
of its bisectors and the bisectors of its outer angles, respectively. Prove that 1

alal′a
+ 1

clcl′c
= 1

blbl
′

b
.

12.88. In every angle of a triangle a circle tangent to the inscribed circle of the triangle
is inscribed. Find the radius of the inscribed circle if the radii of these smaller circles are
known.

12.89. The inscribed circle is tangent to sides AB, BC, CA at points K, L, M , respec-
tively. Prove that:

a) S = 1
2

(

MK2

sin α
+ KL2

sin β
+ LM2

sin γ

)

;

b) S2 = 1
4
(bcMK2 + caKL2 + abLM2);

c) MK2

hbhc
+ KL2

hcha
+ LM2

hahb
= 1.

Solutions

12.1. By the law of sines sin γ = c2R; hence, S = 1
2
ab sin γ = abc

4R
.

12.2. The radii of the circumscribed circles of triangles ABD and CBD are equal to
AB

2 sin ∠ADB
and BC

2 sin ∠BDC
. It remains to notice that AB = BC and sin ∠ADB = sin ∠BDC.

12.3. By the law of sines b = a sin β
sin α

= a sin β
sin(β+y)

and, therefore, S = 1
2
ab sin γ = a2 sin β sin γ

2 sin(β+γ)
.

12.4. By the law of sines 1
2
(a + b) = sin α+sin β

sin γ
. Moreover,

sin α + sin β = 2 sin
α + β

2
cos

α − β

2
= 2 cos

γ

2
cos

α − β

2
and sin γ = 2 sin γ

2
cos γ

2
. The second equality is similarly proved.
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12.5. In triangle A2BC2, the lengths of sides A2B and BC2 are equal to b cos γ and
b cos α; line BO divides angle ∠A2BC2 into angles of 90◦ − γ and 90◦ − α. Let line BO
intersect segment A2C2 at point M . By the law of sines

A2M =
A2B sin ∠A2BM

sin ∠A2MB
=

b cos γ cos α

sin ∠C2MB
= C2M.

12.6. Let α = ∠(a, c), β = ∠(c, d) and γ = ∠(d, b). Then

AC
AS
BC
BS

=
sin α

sin(β + γ)
and

BD
BS
AD
AS

=
sin γ

sin(α + β)
.

Hence
(AC · BD)

(BC · AD)
=

sin α sin γ

sin(α + β) sin(β + γ)
.

12.7. Since OA
PA

= sin ∠OPA
sin ∠POA

and OB
PB

= sin ∠OPB
sin ∠POB

, it follows that

(OA : OB)

(PA : PB)
=

sin ∠POB

sin ∠POA
.

12.8. It suffices to multiply five equalities of the form D1A
D1B

= sin ∠B
sin ∠A

.
12.9. Let O be the common vertex of the given triangles, M and N the midpoints of

the bases, k the ratio of the lengths of the bases to that of heights. The projections of the
bases of given triangles on line MN are equal to k ·OM sin ∠OMN and k ·ON sin ∠ONM .
It remains to notice that OM

sin ∠ONM
= ON

sin ∠OMN
.

12.10. By the law of sines

BX

sin ∠BDX
=

BD

sin ∠BXD
=

2R sin ψ

sin ∠BXD
.

Moreover, sin ∠BDX = sin ∠BDC = sin ϕ and the value of angle ∠BXD is easy to calcu-
late: if points C and D lie on one side of AB, then ∠BXD = π − ϕ − ψ and if they lie on
distinct sides, then ∠BXD = |ϕ − ψ|. Hence, BX = 2R sin ϕ sin ψ

sin |ϕ±ψ| .

12.11. a) Let A1 be the midpoint of segment BC. Adding equalities

AB2 = AA2
1 + A1B

2 − 2AA1 · BA1 cos ∠BA1A

and

AC2 = AA2
1 + A1C

2 − 2AA1 · A1C cos ∠CA1A

and taking into account that cos∠BA1A = − cos ∠CA1A we get the statement desired.
b) Follows in an obvious way from heading a).
12.12. By the law of cosines

a2 − (b − c)2 = 2bc(1 − cos α) =
4S(1 − cos α)

sin α
= 4S tan

α

2
.

12.13. By the law of cosines cos α = b2+c2−a2

2bc
. It remains to make use of the formulas

cos2 α
2

= 1
2
(1 + cos α) and sin2 α

2
= 1

2
(1 − cos α).

12.14. Let α be the angle at a vertex of the parallelogram. By the law of cosines

m2 = a2 + b2 + 2ab cos α and n2 = a2 + b2 − 2ab cos α.

Hence,

m2n2 = (a2 + b2)2 − (2ab cos α)2 = a4 + b4 + 2a2b2(1 − 2 cos2 α).

Therefore, m2n2 = a4 + b4 if and only if cos2 α = 1
2
.
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12.15. Let M be the intersection point of medians AA1 and BB1. Angle ∠AMB is
a right one if and only if AM2 + BM2 = AB2, i.e. 4

9
(m2

a + m2
b) = c2. By Problem 12.11

m2
a + m2

b = 4c2+a2+b2

4
.

12.16. Let m = C1M and ϕ = ∠C1MO. Then

OC2
1 = C1M

2 + OM2 − 2OM · C1M cos ϕ

and

BO2 = CO2 = OM2 + MC2 + 2OM · CM cos ϕ = OM2 + 4C1M
2 + 4OM · C1M cos ϕ.

Hence,

BC2
1 = BO2 − OC2

1 = 3C1M
2 + 6OM · C1M cos ϕ,

i.e.,

c2 = 4BC2
1 = 12m2 + 24OM · C1M cos ϕ.

It is also clear that 18m2 = 2m2
c = a2 + b2 − c2

2
, cf. Problem 12.11. Therefore, equality

a2 + b2 = 2c2 is equivalent to the fact that 18m2 = 3c2

2
, i.e., c2 = 12m2. Since c2 = 12m2 +

24OM ·C1M cos ϕ, equality a2 + b2 = 2c2 is equivalent to the fact that ∠C1MO = ϕ = 90◦,
i.e., CC1 ⊥ OM .

12.17. Let the inscribed circle be tangent to side BC at point K and the escribed one
at point L. Then

BC = BK + KC = t cot
β

2
+ r cot

γ

2
and

BC = BL + LC = ra cot LBOa + ra cot LCOa = ra tan
β

2
+ ra tan

γ

2
.

Moreover, cos α
2

= sin
(

β
2

+ γ
2

)

.

By Problem 3.2, p − b = BK = r cot β
2

and p − b = CL = ra tan γ
2
.

If the inscribed circle is tangent to the extensions of sides AB and AC at points P and
Q, respectively, then p = AP = AQ = ra cot α

2
.

12.18. a) By Problem 12.17,

p = ra cot α
2

and r cot α
2

= p − a;

r cot β
2

= p − b and ra tan β
2

= p − c;

rc tan β
2

= p − a and rb cot β
2

= p.

By multiplying these pairs of equalities we get the desired statement.
b) By multiplying equalities rp = ra(p − a) and rra = (p − b)(p − c) we get r2p =

(p − a)(p − b)(p − c). It is also clear that S2 = p(r2p).
c) It suffices to multiply rra = (p− b)(p− c) and rbrc = p(p−a) and make use of Heron’s

formula.
12.19. By Problem 12.17, r = rc tan α

2
tan β

2
and p = rc cot γ

2
.

12.20. By Problem 12.18 a), ra = rp
p−a

and rb = rp
p−b

. Hence,

crarb =
cr2p2

(p − a)(p − b)
and ra + rb =

rpc

(p − a)(p − b)

and, therefore, crarb

ra+rb
= rp = S.

12.21. By Problem 12.18 a), 1
rb

= p−b
pr

and 1
rc

= p−c
pr

, hence, 1
rb

+ 1
rc

= a
pr

= a
S

= 2
ha

.

12.22. It is easy to verify that 1
ha

= a
2pr

and 1
ra

= p−a
pr

. Adding similar equalities we get

the desired statement.



280 CHAPTER 12. CALCULATIONS AND METRIC RELATIONS

12.23. By Problem 12.18 a) 1
(p−b)(p−c)

= 1
rra

. It remains to add similar equalities and

make use of the result of Problem 12.22.
12.24. By Problem 12.1, 4SR = abc. It is also clear that

abc = p(p − b)(p − c) + p(p − c)(p − a) + p(p − a)(p − b) − (p − a)(p − b)(p − c) =
S2

p−a
+ S2

p−b
+ S2

p−c
− S2p = S(ra + rb + rc − r).

12.25. By Problem 12.18 a)

rarb = p(p − c), rbrc = p(p − a) and rcra = p(p − b).

Adding these equalities we get the desired statement.
12.26. Since

S = rp = ra(p − a) = rb(p − b) = rc(p − c),

the right-most expression is equal to

p3 − (p − a)3 − (p − b)3 − (p − c)3

S3
=

3abc

S3
.

It remains to observe that abc
S

= 4R (Problem 12.1).
12.27. Let the angles of triangle ABC be equal to 2α, 2β and 2γ. Thanks to Problems

12.36 a) and 12.37 b) we have r = 4R sin α sin β sin γ and ra = 4R sin α cos β cos γ. Therefore,

(r + ra)(4R + r − ra) =
16R2 sin α · (sin β sin γ + cos β cos γ)(1 + sin α(sin β sin γ − cos β cos γ)) =

16R2 sin α cos(β − γ)(1 − sin α cos(β + γ)) =
16R2 sin α cos(β − γ) cos2 α.

It remains to notice that 4R sin α cos α = a and

4R sin(β + γ) cos(β − γ) = 2R(sin 2β + sin 2γ) = b + c.

The second equality is similarly proved.
12.28. Since OA = r

sin α
2

and bc = 2S
sin α

, it follows that

OA2

bc
=

r2 cot α
2

S
=

r(p − a)

S
,

cf. Problem 12.17 c). It remains to notice that r(p − a + p − b + p − c) = rp = S.
12.29. Let us solve heading b); heading a) is its particular case. Since cot ϕ

2
= sin ϕ

1−cos ϕ
, it

follows that
p2(1 − x)2 = (1 − x2)(2R(1 − x) + r)2, where x = cos ϕ.

The root x0 = 1 of this equation is of no interest to us because in this case cot ϕ
2

is undefined;
therefore, by dividing both parts of the equation by 1 − x we get a cubic equation. Making
use of results of Problems 12.38, 12.41 b) and 12.39 b) we can verify that this equation
coincides with the equation

(x − cos α)(x − cos β)(x − cos γ) = 0,

where α, β and γ are the angles of the triangle. Therefore the cosine of ϕ is equal to the
cosine of one of the angles of the triangle; moreover, the cosine is monotonous on the interval
[0, π].

12.30. It is clear that 2pr = 2S = ab sin γ = abc
2R

, i.e., 4prR = abc. To prove the second
equality make use of Heron’s formula: S2 = p(p − a)(p − b)(p − c), i.e.,

pr2 = (p − a)(p − b)(p − c) = p3 − p2(a + b + c) + p(ab + bc + ca) − abc =
= −p3 + p(ab + bc + ca) − 4prR.
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By dividing by p we get the desired equality.
12.31. Since abc = 4RS (Problem 12.1), the expression in the left-hand side is equal to

c+a+b
4RS

= 2p
4Rpr

= 1
2Rr

.

12.32. It suffices to observe that p−c
p

= r
rc

(Problem 12.18 a)),

r =
c sin α

2
sin β

2

cos γ
2

and rc =
c cos α

2
cos β

2

cos γ
2

(Problem 12.17).
12.33. By Problem 12.1, S = abc

4R
. On the other hand, S = aha

2
. Hence, ha = bc

2R
.

12.34. Since aha = 2S = 2(p − a)ra and ra

a
=

cos β
2

cos γ
2

cos α
2

(Problem 12.17 b)), we have

ha =
2(p − a) cos β

2
cos γ

2

cos α
2

.

Taking into account that (p − a) cot β
2

= rc = (p − b) cot α
2

(Problem 12.17 c)), we get

ha =
2(p−b) sin β

2
cos γ

2

sin α
2

.

12.35. a) Let the extension of bisector AD intersect the circumscribed circle of triangle
ABC at point M . Then AD ·DM = BD ·DC and since △ABC ∼ △AMC, it follows that

AB · AC = AD · AM = AD(AD + DM) = AD2 + BD · DC.

Moreover, BD = ac
b+c

and DC = ab
b+c

. Hence,

AD2 = bc − bca2

(b + c)2
=

4p(p − a)bc

(b + c)2
.

b) See the solution of Problem 4.47.
c) Let AD be a bisector, AH a height of triangle ABC. Then AH = c sin β = 2R sin β sin γ.

On the other hand,

AH = AD sin ∠ADH = la sin
(

β +
α

2

)

= la sin
π + β − γ

2
= la cos

β − γ

2
.

d) Taking into account that p = 4R cos α
2

cos β
2

cos γ
2

(Problem 12.36 c)) and

sin β + sin γ = 2 sin
β + γ

2
cos

β − γ

2
= 2 cos

α

2
cos

β − γ

2

we arrive at the formula of heading c).
12.36. a) Let O be the center of the inscribed circle, K the tangent point of the inscribed

circle with side AB. Then

2R sin γ = AB = AK + KB = r

(

cot
α

2
+ cot

β

2

)

= r sin
α + β

2
sin

α

2
sin

β

2
.

Taking into account that sin γ = 2 sin γ
2
cos γ

2
and sin α+β

2
= cos γ

2
we get the desired state-

ment.
b) By Problem 3.2, p−a = AK = r cot α

2
. Similarly, p−b = r cot β

2
and p−c = r cot γ

2
. By

multiplying these equalities and taking into account that p(p− a)(p− b)(p− c) = S2 = (pr)2

we get the desired statement.
c) Obviously follows from headings a) and b).
12.37. a) By multiplying equalities r cos α

2
sin α

2
= p − a and

sin
α

2
sin

β

2
sin

γ

2
=

r

4R
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(cf. Problems 12.17 c) and 12.36 a)) we get the desired statement.
b) By Problem 12.17 c), ra tan γ

2
= p − b = r cot β

2
. By multiplying this equality by

r
4R

= sin α
2

sin β
2

sin γ
2

we get the desired statement.
12.38. By adding equalities

cos α + cos β = 2 cos
α + β

2
cos

α − β

2

cos γ = − cos(α + β) = −2 cos2 α + β

2
+ 1

and taking into account that

cos
α − β

2
− cos

α + β

2
= 2 sin

α

2
sin

β

2
we get

cos α + cos β + cos γ = 4 sin
α

2
sin

β

2
sin

γ

2
+ 1 =

r

R
+ 1,

cf. Problem 12.36 a).
12.39. a) Adding equalities

cos 2α + cos 2β = 2 cos(α + β) cos(α − β) = −2 cos γ cos(α − β);
cos 2γ = 2 cos2 γ − 1 = −2 cos γ cos(α + β) − 1

and taking into account that

cos(α + β) + cos(α − β) = 2 cos α cos β

we get the desired statement.
b) It suffices to substitute expressions of the form cos 2α = 2 cos2 α − 1 in the equality

obtained in heading a).
12.40. Adding equalities

sin 2α + sin 2β = 2 sin(α + β) cos(α − β) = 2 sin γ cos(α − β);
sin 2γ = 2 sin γ cos γ = −2 sin γ cos(α + β)

and taking into account that

cos(α − β) − cos(α + β) = 2 sin α sin β

we get the desired statement.
12.41. a) Clearly,

sin2 α + sin2 β + sin2 γ =
a2 + b2 + c2

4R
and

a2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca) = 4p2 − 2(r2 + p2 + 4rR),

cf. Problem 12.30.
b) By Problem 12.39 b)

2 cos α cos β cos γ = sin2 α + sin2 β + sin2 γ − 2.

It remains to make use of a result of heading a).

12.42. The law of cosines can be expressed as ab cos γ = a2+b2−c2

2
. By adding three

similar equalities we get the desired statement.

12.43. By Problem 12.13
cos2 α

2

a
= p(p−a)

abc
. It remains to notice that p(p− a) + p(p− b) +

p(p − c) = p2 and abc = 4SR = 4prR.
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12.44. a) Since bc cos α = 2S cot α, it follows that a2 = b2 + c2 − 4S cot α. By adding
three similar equalities we get the desired statement.

b) For an acute triangle a2 cot α = 2R2 sin 2α = 4SBOC , where O is the center of the
circumscribed circle. It remains to add three analogous equalities. For a triangle with an
obtuse angle α the quality SBOC should be taken with the minus sign.

12.45. By Problem 12.17 cot α
2

+ cot β
2

= c
r

and tan α
2

+ tan β
2

= c
rc

. It remains to add
such equalities for all pairs of angles of the triangle.

12.46. Clearly,

tan γ = − tan(α + β) = − tan α + tan β

1 − tan α tan β
.

By multiplying both sides of equality by 1 − tan α tan β we get the desired statement.
12.47.

tan
γ

2
= cot

(

α

2
+

β

2

)

=

[

1 − tan
α

2
tan

β

2

] [

tan
α

2
+ tan

β

2

]

.

It remains to multiply both sides of the equality by tan α
2

+ tan β
2
.

12.48. a) Let us multiply both sides of the equality by sinα sin β sin γ. Further on:

cos γ(sin α cos β + sin β cos α) + sin γ(cos α cos β − sin α sin β) =
cos γ sin(α + β) + sin γ cos(α + β) =

cos γ sin γ − sin γ cos γ = 0.

b) Let us multiply both sides of the equality by sinα sin β sin γ. Further on:

cos α(sin β sin γ − cos β cos γ) + sin α(cos β sin γ + cos γ sin β) = cos2 α + sin2 α = 1.

12.49. Since

sin2 α + sin2 β + sin2 γ − 2 = 2 cos α cos β cos γ

(see Problem 12.39 b) and S = 2R2 sin α sin β sin γ, it remains to verify that

(tan α + tan β + tan γ) cos α cos β cos γ = sin γ sin β sin α.

The latter equality is proved in the solution of Problem 12.48 a).
12.50. Let A and B be the vertices of angles α and β, let P be the intersection point

of non-coinciding legs of these angles, Q the common point of the given circles that lies
on segment PA. Triangle AQB is an isosceles one, hence, ∠PQB = 2α. Since ∠PQB +
∠QPB = β + ∠QBA, it follows that β = 3α.

12.51. By Problem 4.47, 1
b
+ 1

c
=

2 cos α
2

la
, hence, cos α

2
= 1

2
, i.e., α = 120◦.

12.52. Let us drop perpendicular MD from point M to line BC. Then MD = 1
2
AH =

1
2
BM . In right triangle BDM , leg MD is equal to a half hypothenuse BM . Hence,

∠MBC = ∠MBD = 30◦.
12.53. The quantities AD · BC sin ADB and BE · AC sin AEB are equal because each

of them is equal to the doubled area of triangle ABC. Hence, sin ADB = sin AEB. Two
cases are possible:

1) ∠ADB = ∠AEB. In this case points A, E, D, B lie on one circle; hence, ∠EAD =
∠EBD, i.e., ∠A = ∠B which contradicts the hypothesis.

2) ∠ADB + ∠AEB = 180◦. In this case ∠ECD + ∠EOD = 180◦, where O is the
intersection point of bisectors. Since ∠EOD = 90◦ + ∠C

2
(Problem 5.3), it follows that

∠C = 60◦.
12.54. Let B′ be the intersection point of the midperpendicular to segment AC with line

AB. Then AB′ = CB′ and ∠AB′C = 180◦−2·75◦ = 30◦. Hence, AB′ = CB′ = 2CH = AB,
i.e., B′ = B and ∠B = 30◦.
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12.55. Clearly, AKDM is a rectangle and L the intersection point of its diagonals. Since
AD ⊥ BC and AM ⊥ BA, it follows that ∠DAM = ∠ABC. Similarly, ∠KAD = ∠ACB.
Let us drop perpendicular AP from point A to line KM . Let, for definiteness, ∠B < ∠C.
Then point P lies on segment KL. Since △AKP ∼ △MKA, it follows that AK : AP =
MK : MA. Hence, AK · AM = AP · MK = AP · AD = 2AP · AL. By the hypothesis
AL2 = AK · AM ; hence, AL = 2AP , i.e., ∠ALP = 30◦. Clearly, ∠KMA = ∠ALP

2
= 15◦.

Therefore, the acute angles of triangle ABC are equal to 15◦ and 75◦.
12.56. Let CD be a bisector. Then BD = ac

a+b
. On the other hand, △BDC ∼ △BCA,

consequently, BD : BC = BC : BA, i.e., BD = a2

c
. Hence c2 = a(a + b) = 3a2. The lengths

of the sides of triangle ABC are equal to a, 2a and
√

3a; hence, its angles are equal to 30◦,
90◦ and 60◦, respectively.

12.57. Let ∠ABC = 2x. Then the outer angle ∠A of triangle ABE is equal to ∠ABE +
∠AEB = x + α. Further,

∠KAE = ∠BAE − ∠BAK = (180◦ − x − α) − (180◦ − 2x − 2α) = x + α.

Therefore, AE is the bisector of the outer angle ∠A of triangle ABK. Since BE is the
bisector of the inner angle ∠B of triangle ABK, it follows that E is the center of its escribed
circle tangent to side AK. Hence, ∠AKE = 1

2
∠AKC = 90◦ − α.

12.58. Let A1 . . . A18 be a regular 18-gon. For triangle ABC we can take triangle
A14A1A9. By Problem 6.59 b) the diagonals A1A12, A2A14 and A9A18 meet at one point,
hence, ∠AMC = 1

2
(⌣ A18A2+ ⌣ A9A14) = 70◦.

12.59. Let A1 . . . A18 be a regular 18-gon, O its center. For triangle ABC we can take
triangle A1OA18. The diagonals A2A14 and A18A6 are symmetric through diameter A1A10;
diagonal A2A14 passes through the intersection point of diagonals A1A12 and A9A18 (cf. the
solution of Problem 12.58), therefore, ∠ADE = 1

2
(⌣ A1A2+ ⌣ A12A14) = 30◦.

12.60. Since ∠BDE = 50◦ and ∠CDE = 30◦, it follows that ∠BOC = ∠EOD =
180◦ − 50◦ − 30◦ = 100◦. Let us assume that diameters BB′ and CC ′ of the circle are fixed,
∠BOC = 100◦ and point A moves along arc ⌣ B′C ′. Let D be the intersection point of
BB′ and AC, E the intersection point of CC ′ and AB (Fig. 140). As point A moves from
B′ to C ′, segment OE increases while OD decreases, consequently, angle ∠OED decreases
and angle ∠ODE increases. Therefore, there exists a unique position of point A for which
∠CED = ∠OED = 30◦ and ∠BDE = ∠ODE = 50◦.

Figure 140 (Sol. 12.60)

Now, let us prove that triangle ABC with angles ∠A = 50◦, ∠B = 70◦, ∠C = 60◦

possesses the required property. Let A1 . . . A18 be a regular 18-gon. For triangle ABC we
can take triangle A2A14A9. Diagonal A1A12 passes through point E (cf. solution of Problem
12.58). Let F be the intersection point of lines A1A12 and A5A14; line A9A16 is symmetric to
line A1A12 through line A5A14 and, therefore, it passes through point F . In triangle CDF ,
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ray CE is the bisector of angle ∠C and line FE is the bisector of the outer angle at vertex
F . Hence, DE is the bisector of angle ∠ADB, i.e., ∠ODE = 1

4
(⌣ A2A14+ ⌣ A5A9) = 50◦.

12.61. Let D, E and F be the tangent points of the circle with BP,PQ and QC,
respectively; ∠BOD = 90◦ − ∠B = 90◦ − ∠C = ∠COF = α, ∠DOP = ∠POE = β and
∠EOQ = ∠QOF = γ. Then 180◦ = ∠BOC = 2α + 2β + 2γ, i.e., α + β + γ = 90◦. Since
∠BPO = 1

2
∠DPE = 1

2
(180◦ −∠DOE) = 90◦ − β and ∠QOC = γ + α = 90◦ − β, it follows

that ∠BPO = ∠COQ. It is also clear that ∠PBO = ∠OCQ. Hence, △BPO ∼ △COQ,
i.e., PB · CQ = BO · CO = 1

4
BC2.

12.62. Let P and Q be the midpoints of sides BC and CD, respectively. Points P and
Q are the tangent points of the inscribed circle with sides BC and CD. Therefore, it suffices
to verify that PF + GQ = FG. Indeed, if F ′G′ is the segment parallel to FG and tangent
to the inscribed circle, then PF ′ + G′Q = F ′G′; hence, F ′ = F and G′ = G.

We may assume that the side of the square is equal to 2. Let GD = x. Since BF : EB =
AD : GD, then BF = 2

x
. Therefore, CG = 2 − x, GQ = x − 1, CF = 2 − 2

x
, FP = 2

x
− 1,

i.e., PF + GQ = x + 2
x
− 2 and

FG2 = CG2 + CF 2 = (2 − x)2 +

(

2 − 2

x

)2

=

4 − 4x + x2 + 4 − 8

x
+

4

x2
=

(

x +
2

x
− 2

)2

= (PF + GQ)2.

12.63. Denote the vertices of the squares as shown on Fig. 141. Let O be the center of
the circle, H the midpoint of the given chord, K the midpoint of segment AA1.

Figure 141 (Sol. 12.63)

Since tan AHB = 2 = tanA1HD1, point H lies on line AA1. Let α = ∠AHB =
∠A1HD1, then

AB − A1D1 = (AH − A1H) · sin α = 2KH sin α = 2OH sin2 α.

Since tan α = 2 and 1 + cot2 α = 1
sin2 α

, it follows that sin2 α = 4
5
. Therefore, the difference

of the lengths of the squares’ sides is equal to 8
5
h.

12.64. Let median BM of triangle ABC intersect the inscribed circle at points K and L,
where BK = KL = LM = x. Let, for definiteness, the tangent point of the inscribed circle
with side AC lie on segment MC. Then since the symmetry through the midperpendicular
to segment BM interchanges points B and M and fixes the inscribed circle, tangent MC
turns into tangent BC. Therefore, BC = MC = 1

2
AC, i.e., b = 2a.

Since BM2 = 2a2+2c2−b2

4
by Problem 12.11 a), we have 9x2 = 2a2+2c2−4a2

4
= c2−a2

2
. Let

P be the tangent point of the inscribed circle with side BC. Then BP = a+c−b
2

= c−a
2

. On
the other hand, by a property of the tangent, BP 2 = BK · BL, i.e., BP 2 = 2x2. Hence,
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2x2 =
(

c−a
2

)2
. Multiplying inequalities 9x2 = c2−a2

2
and

(

c−a
2

)2
= 2x2 we get c+a

c−a
= 9

4
, i.e.,

c : a = 13 : 5. As a result we get a : b : c = 5 : 10 : 13.
12.65. Let 2a and 2b be the length of the side of the first and second squares, respectively.

Then the distance from the center of the circle to any of the vertices of the second square
that lie on the circle is equal to

√

(a + 2b)2 + b2. On the other hand, this distance is equal

to
√

2a. Therefore, (a + 2b)2 + b2 = 2a2, i.e., a = 2b ±
√

4b2 + 5b2 = (2 ± 3)b. Only the
solution a = 5b is positive.

12.66. Let P and Q be the midpoints of segments AC and AB, respectively, R the
center of circle S1; a = 1

2
AC, b = 1

2
BC, x the radius of circle S1. It is easy to verify that

PR = a + x, QR = a + b− x and PQ = b. In triangle PQR, draw height RH. The distance
from point R to line CD is equal to x, hence, PH = a− x, consequently, QH = |b− a + x|.
It follows that

(a + x)2 − (a − x)2 = RH2 = (a + b − x)2 − (b − a + x)2,

i.e., ax = b(a − x). As a result we get x = ab
a+b

.
For the radius of circle S2 we get precisely the same expression.
12.67. Let x be the radius of circle S tangent to circles S1 and S2 and ray AB, let y be

the radius of circle S ′ tangent to circles S2 and S3 and ray BA. The position of the circle
tangent to circle S1 and ray AB (resp. S3 and BA) is uniquely determined by its radius,
consequently, it suffices to verify that x = y.

By equating two expressions for the squared distance from the center of circle S to line
AD we get

(x + 1)2 − (x − 1)2 = (3 + x)2 − (5 − x)2, i.e., x =
4

3
.

Considering circles S2 and S3 it is easy to verify that AB2 = (3 + 4)2 − 12 = 48. On the
other hand, the squared distances from the center of circle S ′ to lines AD and BC are equal
to (y + 3)2 − (5 − y)2 = 16(y − 1) and (4 + y)2 − (4 − y)2 = 16y, respectively. Therefore,
4
√

y − 1 + 4
√

y =
√

48, i.e., y = 4
3
.

12.68. If the angles of a triangle form an arithmetic progression, then they are equal to
α − γ, α, α + γ, where γ ≥ 0. Since the sum of the angles of a triangle is equal to 180◦,
we deduce that α = 60◦. The sides of this triangle are equal to 2R sin(α − γ), 2R sin α,
2R sin(α + γ). Since the greater side subtends the greater angle, sin(α − γ) ≤ sin α ≤
sin(α + γ).

a) If the numbers sin(α − γ) ≤ sin α ≤ sin(α + γ) form an arithmetic progression, then
sin α = 1

2
(sin(α + γ) + sin(α − γ)) = sin α cos γ, i.e., either cos γ = 1 or γ = 0. Therefore,

each of the triangle’s angles is equal to 60◦.
b) If the numbers sin(α − γ) ≤ sin α ≤ sin(α + γ) form a geometric progression, then

sin2 α = sin(α − γ) sin(α + γ) = sin2 α cos2 γ − sin2 γ cos2 α ≤ sin2 α cos2 γ.

Hence, cos γ = 1, i.e., each of the triangle’s angles is equal to 60◦.
12.69. Let us complement triangle ABC to parallelogram ABCE (Fig. 142). Let

BC = x and AD = y. Then (b − a)h = 2SAED = xy sin 45◦ and

(b − a)2 = x2 + y2 − 2xy cos 45◦ = x2 + y2 − 2xy sin 45◦.

By Pythagoras theorem

a2 + b2 = (AO2 + BO2) + (CO2 + DO2) = (BO2 + CO2) + (DO2 + AO2) = x2 + y2.

Therefore,

(b − a)2 = x2 + y2 − 2xy sin 45◦ = a2 + b2 − 2(b − a)h,
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Figure 142 (Sol. 12.69)

i.e., h = ab
b−a

.

12.70. Since BK = 1
2
(a + c − b) and KC = 1

2
(a + b − c) (cf. Problem 3.2), it follows

that BK · KC = a2−(b−c)2

4
= S tan α

2
, cf. Problem 12.12.

12.71. Since b+c
a

=
cos β−γ

2

sin α
2

(Problem 12.4), it follows that cos β−γ
2

= cos α
2
, i.e., β − γ =

±α. If β = γ + α, then β = 90◦ and if β + α = γ, then γ = 90◦.
12.72. It is easy to verify that SABC = 2R2 sin α sin β sin γ. Analogously,

SA1B1C1 = 2R2 sin
β + γ

2
sin

α + γ

2
sin

α + β

2
= 2R2 cos

α

2
cos

β

2
cos

γ

2
.

Hence,
SABC

SA1B1C1

= 8 sin
α

2
sin

β

2
sin

γ

2
=

2r

R
,

cf. Problem 12.36 a).

12.73. The sum of cotangents of the angles of a triangle is equal to a2+b2+c2

4S
, cf. Problem

12.44 a). Moreover, m2
a + m2

b + m2
c = 3(a2+b2+c2)

4
(by Problem 12.11 b)) and the area of the

triangle formed by the medians of triangle ABC is equal to 3
4
SABC (Problem 1.36).

12.74. One of the points Ai lies inside the triangle formed by the other three points;
hence, we can assume that triangle A1A2A3 is an acute one (or a right one). Numbers λ1,
λ2 and λ3 are easy to obtain from the corresponding system of equations; as a result we get

λ1 =
b2 + c2 − a2

2
, λ2 =

a2 + c2 − b2

2
and λ3 =

a2 + b2 − c2

2
,

where a = A2A3, b = A1A3 and c = A1A2. By Problem 5.45 b) A1A
2
4 = 4R2 − a2, where R

is the radius of the circumscribed circle of triangle A1A2A3. Hence,

λ4 = A1A
2
4 − λ1 = 4R2 − a2 + b2 + c2

2
= A2A

2
4 − λ2 = A3A

2
4 − λ3.

Now, let us verify that
∑

1
λi

= 0. Since b2+c2−a2

2
= bc cos α = 2S cot α, it follows that

1
λ1

= tan α
2S

. It remains to observe that

2

a2 + b2 + c2 − 8R2
=

tan α + tan β + tan γ

2S

?Problem 12.49.
12.75. Let (a1, b1), (a2, b2) and (a3, b3) be the coordinates of the triangle’s vertices. The

coordinates of the center of the circumscribed circle of the triangle are given by the system
of equations

(x − a1)
2 + (y − b1)

2 = (x − a2)
2 + (y − b2)

2,
(x − a1)

2 + (y − b1)
2 = (x − a3)

2 + (y − b3)
2.
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It is easy to verify that these equations are actually linear ones and, therefore, the solution
of the considered system is a rational one.

12.76. On segments AB and CD, take points K and L that divide the segments in
the ratios indicated. It suffices to prove that the intersection point of lines AK and CL
lies on circle S. Let us take the coordinate system with the origin at the center O of circle
S and axes Ox and Oy directed along rays OB and OD. The radius of circle S can be
assumed to be equal to 1. Lines AK and CL are given by equations y = x+1

3
and y = 2x−1,

respectively. Therefore, the coordinates of their intersection point are x0 = 4
5

and y0 = 3
5
.

Clearly, x2
0 + y2

0 = 1.
12.77. Let d be the distance between the center of the circumscribed circle and the

image of the center of the inscribed circle under the considered homothety. It suffices to
verify that R = d + 2r. Let (0, 0), (2a, 0) and (0, 2b) be the coordinates of the vertices of
the given triangle. Then (a, b) are the coordinates of the center of the circumscribed circle,
(r, r) the coordinates of the center of the inscribed circle, where r = a + b − R. Therefore,

d2 = (2r − a)2 + (2r − b)2 = a2 + b2 − 4r(a + b − r) + 4r2 = (R − 2r)2

because a2 + b2 = R2.
12.78. Let us consider the coordinate system with the origin at the center of the square

and the Ox-axis parallel to line l. Let the coordinates of the vertices of the square be (A(x, y),
B(y,−x), C(−x,−y) and D(−y, x); let line l be given by the equation y = a. Then the
coordinates of point Q are

(

x+y
2

, y−x
2

)

and those of P are (−y, a). Therefore, the locus to be

found consists of points
(

t,−t + 1
2
a
)

, where t = x−y
4

. It remains to observe that the quantity

x − y varies from −
√

2(x2 + y2) = −AB to AB.



Chapter 13. VECTORS

Background

1. We will make use of the following notations:

a)
−→
AB and a denote vectors;

b) AB and |a| denote the lengths of these vectors; sometimes the length of vector a will
be denoted by a; a unit vector is a vector of unit length;

c) (
−→
AB,

−−→
CD), (a,b) and (

−→
AB, a) denote the inner products of the vectors;

d) (x, y) is the vector with coordinates x, y;

e)
−→
0 or 0 denotes the zero vector.

2. The oriented angle between the nonzero vectors a and b (notation ∠(a,b)) is the
angle through which one should rotate the vector a counterclockwise to make it directed as
b is. The angles that differ by 360 degrees are assumed to be equal. It is easy to verify the
following properties of oriented angles between vectors:

a) ∠(a,b) = −∠(b, a);
b) ∠(a,b) + ∠(b, c) = ∠(a, c);
c) ∠(−a,b) = ∠(a,b) + 180◦.
3. The inner product of vectors a and b is the number

(a,b) = |a| · |b| cos ∠(a,b)

(if one of these vectors is the zero one, then by definition (a,b) = 0). The following properties
of the inner product are easily verified:

a) (a,b) = (b, a);
b) |(a,b)| ≤ |a| · |b|;
c) (λa + µb, c) = λ(a, c) + µ(b, c);
d) if a,b 6= 0 then (a,b) = 0 if and only if a ⊥ b.
4. Many of vector inequalities can be proved with the help of the following fact.
Given two sets of vectors such that the sum of lengths of projections of the vectors of

the first set to any straight line does not exceed the sum of the lengths of projections of the
vectors from the second set to the same line, the sum of the lengths of the vectors from the
first set does not exceed the sum of the lengths of the vectors of the second set, cf. Problem
13.39.

In this way a problem on a plane reduces to a problem on a straight line which is usually
easier.

Introductory problems

1. Let AA1 be the median of triangle ABC. Prove that
−−→
AA1 = 1

2
(
−→
AB +

−→
AC).

2. Prove that |a + b|2 + |a − b|2 = 2(|a|2 + |b|2).
3. Prove that if vectors a + b and a − b are perpendicular, then |a| = |b|.
4. Let

−→
OA +

−−→
OB +

−→
OC =

−→
0 and OA = OB = OC. Prove that ABC is an equilateral

triangle.

289
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5. Let M and N be the midpoints of segments AB and CD, respcetively. Prove that−−→
MN = 1

2
(
−→
AC +

−−→
BD).

§1. Vectors formed by polygons’ (?) sides

13.1. a) Prove that from the medians of a triangle one can construct a triangle.
b) From the medians of triangle ABC one constructed triangle A1B1C1 and from the

medians of triangle A1B1C1 one constructed triangle A2B2C2. Prove that triangles ABC
and A2B2C2 are similar with simlarity coefficient 3

4
.

13.2. The sides of triangle T are parallel to the respective medians of triangle T1. Prove
that the medians of T are parallel to the corresponding sides of T1.

13.3. Let M1, M2, . . . ,M6 be the midpoints of a convex hexagon A1A2 . . . A6. Prove
that there exists a triangle whose sides are equal and parallel to the segments M1M2, M3M4,
M5M6.

13.4. From a point inside a convex n-gon, the rays are drawn perpendicular to the sides
and intersecting the sides (or their continuations). On these rays the vectors a1, . . . , an

whose lengths are equal to the lengths of the corresponding sides are drawn. Prove that
a1 + · · · + an = 0.

13.5. The sum of four unit vectors is equal to zero. Prove that the vectors can be divided
into two pairs of opposite vectors.

13.6. Let E and F be the midpoints of sides AB and CD of quadrilateral ABCD and
K, L, M and N are the midpoints of segments AF , CE, BF and DE, respectively. Prove
that KLMN is a parallelogram.

13.7. Consider n pairwise noncodirected vectors (n ≥ 3) whose sum is equal to zero.
Prove that there exists a convex n-gon such that the set of vectors formed by its sides
coincides with the given set of vectors.

13.8. Given four pairwise nonparallel vectors whose sum is equal to zero. Prove that we
can construct from them:

a) a nonconvex quadrilateral;
b) a self-intersecting broken line of four links.
13.9. Given four pairwise nonparallel vectors a, b, c and d whose sum is equal to zero,

prove that

|a| + |b| + |c| + |d| > |a + b| + |a + c| + |a + d|.
13.10. In a convex pentagon ABCDE side BC is parallel to diagonal AD, in addition

we have CD ‖ BE, DE ‖ AC and AE ‖ BD. Prove that AB ‖ CE.

§2. Inner product. Relations

13.11. Prove that if the diagonals of quadrilateral ABCD are perpendicular to each
other, then the diagonals of any other quadrilateral with the same lengths of its sides are
perpendicular to each other.

13.12. a) Let A, B, C and D be arbitrary points on a plane. Prove that

(
−→
AB,

−−→
CD) + (

−−→
BC,

−−→
AD) + (

−→
CA,

−−→
BD) = 0.

b) Prove that the hights of a triangle intersect at one point.
13.13. Let O be the center of the circle inscribed in triangle ABC and let point H

satisfy OH = OA + OB + OC. Prove that H is the intersection point of heights of triangle
ABC.
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13.14. Let a1, . . . , an be vectors formed by the sides of an n-gon, ϕij = ∠(ai, aj). Prove
that

a2
1 = a2

2 + · · · + a2
n + 2

∑

i>j>1

aiaj cos ϕij, where ai = |ai|.

13.15. Given quadrilateral ABCD and the numbers

u = AD2, v = BD2, w = CD2, U = BD2 + CD2 − BC2,

V = AD2 + CD2 − AC2, W = AD2 + BD2 − AB2.

Prove that

((Gauss).) uU2 + vV 2 + wW 2 = UV W + 4uvw.

13.16. Points A, B, C and D are such that for any point M the numbers (
−−→
MA,

−−→
MB)

and (
−−→
MC,

−−→
MD) are distinct. Prove that

−→
AC =

−−→
DB.

13.17. Prove that in a convex k-gon the sum of distances from any inner point to the
sides of the k-gon is constant if and only if the sum of vectors of unit exterior normals to
the sides is equal to zero.

13.18. In a convex quadrilateral the sum of distances from a vertex to the sides is the
same for all vertices. Prove that this quadrilateral is a parallelogram.

§3. Inequalities

13.19. Given points A, B, C and D. Prove that

AB2 + BC2 + CD2 + DA2 ≥ AC2 + BD2,

where the equality is attained only if ADCD is a parallelogram.
13.20. Prove that from any five vectors one can always select two so that the length of

their sum does not exceed the length of the sum of the remaining three vectors.
13.21. Ten vectors are such that the length of the sum of any nine of them is smaller

than the length of the sum of all the ten vectors. Prove that there exists an axis such that
the projection of every of the ten vectors to the axis is positive.

13.22. Points A1, . . . , An lie on a circle with center O and
−−→
OA1 + · · ·+−−→

OAn =
−→
0 . Prove

that for any point X we have

XA1 + · · · + XAn ≥ nR,

where R is the radius of the circle.
13.23. Given eight real numbers a, b, c, d, e, f , g, h. Prove that at least one of the six

numbers
ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh

is nonnegative.
13.24. On the circle of radius 1 with center O there are given 2n+1 points P1, . . . , P2n+1

which lie on one side of a diameter. Prove that

|−−→OP1 + · · · + −−−−→
OP2n+1| ≥ 1.

13.25. Let a1, a2, . . . , an be vectors whose length does not exceed 1. Prove that in the
sum

c = ±a1 ± a2 ± · · · ± an

we can select signs so that |c| ≤
√

2.
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13.26. Point O is the beginning point of n unit vectors such that in any half plane
bounded by a straight line through O there are contained not less than k vectors (we assume
that the boundary line belongs to the half-plane). Prove that the length of the sum of these
vectors does not exceed n − 2k.

§4. Sums of vectors

13.27. Prove that point X belongs to line AB if and only if
−−→
OX = t

−→
OA + (1 − t)

−−→
OB

for some t and any point O.
13.28. We are given several points and for several pairs (A,B) of these points the vectors

AB are taken in such a way that as many vectors exit from every point as terminate in it.
Prove that the sum of all the selected vectors is equal to 0.

13.29. Inside triangle ABC, point O is taken. Prove that

SBOC · −→OA + SAOC · −−→OB + SAOB · −→OC =
−→
0 .

13.30. Points A and B move along two fixed rays with common origin O so that p
OA

+ q
OB

is a constant. Prove that line AB passes through a fixed point.
13.31. Through the intersection point M of medians of triangle ABC a straight line is

drawn intersecting BC, CA and AB at points A1, B1 and C1, respectively. Prove that

(
1

MA1

) + (
1

MB1

) + (
1

MC1

) = 0.

(Segments MA1, MB1 and MC1 are assumed to be oriented.)
13.32. On sides BC, CA and AB of triangle ABC points A1, B1 and C1, respectively,

are taken. Segments BB1 and CC1, CC1 and AA1, AA1 and BB1 intersect at points A1, B2

and C2, respectively. Prove that if
−−→
AA2 +

−−→
BB2 +

−−→
CC2 =

−→
0 , then

AB1 : B1C = CA1 : A1B = BC1 : C1A.

13.33. Quadrilateral ABCD is an inscribed one. Let Ha be the orthocenter of BCD,
let Ma be the midpoint of AHa; let points Mb, Mc and Md be similarly defined. Prove that
points Ma, Mb, Mc and Md coincide.

13.34. Quadrilateral ABCD is inscribed in a circle of radius R.
a) Let Sa be the circle of radius R with center at the orthocenter of triangle BCD; let

circles Sb, Sc and Sd be similarly defined. Prove that these four circles intersect at one point.
b) Prove that the circles of nine points of triangles ABC, BCD, CDA and DAB intersect

at one point.

§5. Auxiliary projections

13.35. Point X belongs to the interior of triangle ABC; let α = SBXC , β = SCXA

and γ = SAXB. Let A1, B1 and C1 be the projections of points A, B and C, respectively,

on an arbitrary line l. Prove that the length of vector α
−−→
AA1 + β

−−→
BB1 + γ

−−→
CC1 is equal to

(α + β + γ)d, where d is the distance from X to l.
13.36. A convex 2n-gon A1A2 . . . A2n is inscribed into a unit circle. Prove that

|−−−→A1A2 +
−−−→
A3A4 + · · · + −−−−−−→

A2n−1A2n| ≤ 2.

13.37. Let a, b and c be the lengths of the sides of triangle ABC; let na, nb and nc be
unit vectors perpendicular to the corresponding sides and directed outwards. Prove that

a3na + b2nb + c2nc = 12S · −−→MO,
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where S is the area, M the intersection point of the medians, O the center of the circle
inscribed into triangle ABC.

13.38. Let O and R be the center and the radius, respectively, of an escribed circle
of triangle ABC; let Z and r be the center and the radius of the inscribed circle, K the
intersection point of the medians of the triangle with vertices at the tangent points of the
inscribed circle of triangle ABC with the sides of triangle ABC. Prove that Z belongs to
segment OK and

OZ : ZK = 3R : r.

§6. The method of averaging

13.39. Given two sets of vectors a1, . . . , an and b1, . . . ,bm such that the sum of the
lengths of the projections of the vectors from the first set to any straight line does not
exceed the sum of the lengths of the projections of the vectors from the second set to the
same straight line. Prove that the sum of the lengths of the vectors from the first set does
not exceed the sum of the lengths of the vectors from the second set.

13.40. Prove that if one convex polygon lies inside another one, then the perimeter of
the inner polygon does not exceed the perimeter of the outer one.

13.41. The sum of the length of several vectors on a plane is equal to L. Prove that
from these vectors one can select several vectors (perhaps, just one) so that the length of
their sum is not less than L

π
.

13.42. Prove that if the lengths of any side and diagonal of a convex polygon are shorter
than d, then its perimeter is shorter than πd.

13.43. On the plane, there are given four vectors a, b, c and d whose sum is equal to
zero. Prove that

|a| + |b| + |c| + |d| ≥ |a + d| + |b + d| + |b + d|.
13.44. Inside a convex n-gon A1A2 . . . An a point O is selected so that

−−→
OA1+· · ·+−−→

OAn =−→
0 . Let d = OA1 + · · · + OAn. Prove that the perimeter of the polygon is not shorter than
4d
n

for n even and not shorter than 4dn
n2−1

for n odd.
13.45. The length of the projection of a closed convex curve to any line is equal to 1.

Prove that its length is equal to π.
13.46. Given several convex polygons so that it is impossible to draw a line which does

not intersect any of the polygons and at least one polygon would lie on both sides of it.
Prove that all the polygons are inside a polygon whose perimeter does not exceed the sum
of the perimeters of the given polygons.

§7. Pseudoinner product

The pseudoinner product of nonzero vectors a and b is the number

c = |a| · |b| sin ∠(a,b);

the pseudoinner product is equal to 0 if at least one of the vectors a or b is zero. The
pseudoinner product is denoted by c = a ∨ b. Clearly, a ∨ b = −b ∨ a.

The absolute value of the pseudoinner product of a and b is equal to the area of the
parallelogram spanned by these vectors. In this connection the oriented area of the triple of
points A, B and C is the number

S(A,B,C) =
1

2
(
−→
AB ∨ −→

AC).

The absolute value of S(A,B,C) is equal to the area of triangle ABC.
13.47. Prove that:
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a) (λa) ∨ b = λ(a,b);
b) a ∨ (b + c) = a ∨ b + a ∨ c.
13.48. Let a = (a1, a2) and b = (b1, b2). Prove that

a ∨ b = a1b2 − a2b1.

13.49. a) Prove that

S(A,B,C) = −S(B,A,C) = S(B,C,A).

b) Prove that for any points A, B, C and D we have

S(A,B,C) = S(D,A,B) + S(D,B,C) + S(D,C,A).

13.50. Three runners A, B and C run along the parallel lanes with constant speeds. At
the initial moment the area of triangle ABC is equal to 2 in 5 seconds it is equal to 3. What
might be its value after 5 more seconds?

13.51. Three pedestrians walk at constant speeds along three straight roads. At the
initial moment the pedestrians were not on one straight line. Prove that the pedestrians can
occure on one straight line not more than twice.

13.52. Prove Problem 4.29 b) with the help of a pseudoinner product.
13.53. Points P1, P2 and P3 not on one line are inside a convex 2n-gon A1 . . . A2n. Prove

that if the sum of the areas of triangles A1A2Pi, A3A4Pi, . . . , A2n−1A2nPi is equal to the
same number c for i = 1, 2, 3, then for any inner point P the sum of the areas of these
triangles is equal to c.

13.54. Given triangle ABC and point P . Let point Q be such that CQ ‖ AP and point
R be such that AR ‖ BQ and CR ‖ BP . Prove that SABC = SPQR.

13.55. Let H1, H2 and H3 be the orthocenters of triangles A2A3A4, A1A3A4 and A1A2A4.
Prove that the areas of triangles A1A2A3 and H1H2H3 are equal.

13.56. In a convex 5-gon ABCDE whose area is equal to S the areas of triangles ABC,
BCD, CDE, DEA and EAB are equal to a, b, c, d and e, respectively. Prove that

S2 − S(a + b + c + d + e) + ab + bc + cd + de + ea = 0.

Problems for independent study

13.57. Let M and N be the midpoints of segments AB and AC, respectively, P the

midpoint of MN and O an arbitrary point. Prove that 2
−→
OA +

−−→
OB +

−→
OC = 4

−→
OP .

13.58. Points A, B and C move uniformly with the same angle velocities along the three
circles in the same direction. Prove that the intersection point of the medians of triangle
ABC moves along a circle.

13.59. Let A, B, C, D and E be arbitrary points. Is there a point O such that−→
OA +

−−→
OB +

−→
OC =

−−→
OD +

−−→
OE? Find all such points, if any.

13.60. Let P and Q be the midpoints of the diagonals of a convex quadrilateral ABCD.
Prove that

AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4PQ2.

13.61. The midpoints of segments AB and CD are connected by a segment; so are
the midpoints of segments BC and DE. The midpoints of the segments obtained are also
connected by a segment. Prove that the last segment is parallel to segment AE and its
length is equal to 1

4
AE.

13.62. The inscribed circle is tangent to sides BC, CA and AB of triangle ABC at

points A1, B1 and C1, respectively. Prove that if
−−→
AA1 +

−−→
BB1 +

−−→
CC1 =

−→
0 , then triangle

ABC is an equilateral one.
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13.63. Quadrilaterals ABCD, AEFG, ADFH, FIJE and BIJC are parallelograms.
Prove that quadrilateral AFHG is also a parallelogram.

Solutions

13.1. a) Let a =
−−→
BC, b =

−→
CA and c =

−→
AB; let AA′, BB′ and CC ′ be medians of

triangle ABC. Then
−−→
AA′ = 1

2
(c − b),

−−→
BB′ = 1

2
(a − c) and

−−→
CC ′ = 1

2
(b − c). Therefore,

−−→
AA′ +

−−→
BB′ +

−−→
CC ′ =

−→
0 .

b) Let a1 =
−−→
AA′, b1 =

−−→
BB′ and c =

−−→
CC ′. Then 1

2
(c1 − b1) = 1

4
(b− a− a + c) = −3

4
a is

the vector of one of the sides of triangle A2B2C2.
13.2. Let a, b and c be the vectors of the sides of T . Then 1

2
(b − a), 1

2
(a − c) and

1
2
(c − b) are the vectors of its medians. We may assume that a, b and c are the vectors

directed from the intersection point of the medians of triangle T1 to its vertices. Then b−a,
a − c and c − a are the vectors of its sides.

13.3. It is clear that 2
−−−−→
M1M2 =

−−−→
A1A2 +

−−−→
A2A3 =

−−−→
A1A3, 2

−−−−→
M3M4 =

−−−→
A3A5 and 2

−−−−→
M5M6 =−−−→

A5A1. Therefore,
−−−−→
M1M2 +

−−−−→
M3M4 +

−−−−→
M5M6 =

−→
0 .

13.4. After rotation through 90◦ the vectors a1, . . . , an turn into the vectors of sides of
the n-gon.

13.5. From given vectors one can construct a convex quadrilateral. The lengths of all
the sides of this quadrilateral are equal to 1, therefore, this quadrilateral is a rhombus; the
pairs of its opposite sides provide us with the division desired.

13.6. Let a =
−→
AE, b =

−−→
DF and v =

−−→
AD. Then 2

−−→
AK = b + v and 2

−→
AL = a + v + 2b

and, therefore,
−−→
KL =

−→
AL −−−→

AK = 1
2
(a + b). Similarly,

−−→
NM = 1

2
(a + b).

13.7. Let us draw the given vectors from one point and index them clockwise: a1, . . . ,

an. Consider a closed broken line A1 . . . An, where
−−−−→
AiAi+1 = ai. Let us prove that A1 . . . An

is a convex polygon. Introduce a coordinate system and direct the Ox-axis along a1. Let the
vectors a2, . . . , ak lie on one side of Ox-axis and the vectors ak+1, . . . , an lie on the other side
(if there is a vector directed opposite to a1 it can be referred to either of these two groups).

The projections of the vectors from the first group on the Oy-axis are of one sign and
the projections of the vectors of the other group are of the opposite sign. Therefore, the
second coordinate of the points A2, A3, . . . , Ak+1 and the points Ak+1, . . . , An, A1 vary
monotonously: for the first group from 0 to a quantity d, for the second group they de-
crease from d to 0. Since there are two intervals of monotonity, all the vertices of the
polygon lie on one side of the line A1A2.

For the other lines passing through the sides of the polygon the proof is similar.
13.8. Thanks to Problem 13.7 the given vectors form a convex quadrilateral. The rest

is clear from Fig. 143.

Figure 143 (Sol. 13.8)
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13.9. By Problem 13.8 b) from the given vectors we can construct a self-intersecting
broken line of four links; this broken line can be viewed as the two diagonals and two opposite
sides of a convex quadrilateral. Two cases are possible: the vector a can be either a side or
a diagonal of this quadrilateral.

But in both cases the sum in the left-hand side of the inequality is the sum of lengths of
two opposite sides and two diagonals of the quadrilateral and the sum in the right-hand side
is constituted by the length of the sum of vectors of the same opposite sides and the lengths
of the two other opposite sides. It only remains to observe that the sum of lengths of two
vectors is not shorter than the length of their sum and the sum of the length of diagonals
of a convex quadrilateral is longer than the sum of lengths of the two opposite sides: cf.
Problem 19.14.

13.10. Let diagonal BE intersect diagonals AD and AC at points F and G, respectively.
The respective sides of triangles AFE and BCD are parallel; hence, the triangles are similar
and AF : FE = BC : CD. Therefore,

AD : BE = (AF + BC) : (EF + CD) = BC : CD.

Similarly, AE : BD = DE : AC. From the similarity of BED and EGA we deduce that
AE : DB = EG : BE = CD : BE. Thus,

BC

AD
=

CD

BE
=

AE

BD
=

DE

AC
= λ.

Clearly,

−−→
BC +

−−→
CD +

−−→
DE +

−→
EA +

−→
AB =

−→
0 ,

−−→
AD +

−−→
BE +

−→
CA +

−−→
DB +

−−→
EC =

−→
0

and −−→
BC = λ

−−→
AD,

−−→
CD = λ

−−→
BE,

−−→
DE = λ

−→
CA,

−→
EA = λ

−−→
DB.

It follows that
−→
0 = λ(

−−→
AD +

−−→
BE +

−→
CA +

−−→
DB) +

−→
AB = −λ

−−→
EC +

−→
AB,

i.e.,
−→
AB = λ

−−→
EC. Hence, AB ‖ EC.

13.11. Let a =
−→
AB, b =

−−→
BC, c =

−−→
CD and d =

−−→
DA. It suffices to verify that AC ⊥ BD

if and only if a2 + c2 = b2 + d2. Clearly,

d2 = |a + b + c|2 = a2 + b2 + c2 + 2[(a,b) + (b, c) + (c, a)].

Therefore, the condition AC ⊥ BD, i.e.,

0 = (a + b,b + c) = b2 + (b, c) + (a, c) + (a,b)

is equivalent to the fact that

d2 = a2 + b2 + c2 − 2b2.

13.12. a) Let us express all the vectors that enter the formula through
−→
AB,

−−→
BC and−−→

CD, i.e., let us write
−−→
AD =

−→
AB +

−−→
BC +

−−→
CD,

−→
CA = −−→

AB − −−→
BC and

−−→
BD =

−−→
BC +

−−→
CD.

After simplification we get the statement desired.
b) Let D be the intersection point of heights drawn from vertices A and C of triangle

ABC. Then in the formula proved in heading a) the first two summands are zero and,
therefore, the last summand is also zero, i.e., BD ⊥ AC.



SOLUTIONS 297

13.13. Let us prove that AH ⊥ BC. Indeed,
−−→
AH =

−→
AO+

−−→
OH =

−→
AO+

−→
OA+

−−→
OB+

−→
OC =−−→

OB +
−→
OC and

−−→
BC =

−−→
BO +

−→
OC = −−−→

OB +
−→
OC and, therefore,

(
−−→
AH,

−−→
BC) = OC2 − OB2 = R2 − R2 = 0

because O is the center of the circumscribed circle. We similarly prove that BH ⊥ AC and
CH ⊥ AB.

13.14. Let αi = ∠(ai, a1). Considering the projections to the straight line parallel to a1

and the straight line perpendicular to a1 we get a1 =
∑

i>1 ai cos αi and 0 =
∑

i>1 ai sin αi,
respectively. Squaring these equalities and summing we get

a2
1 =

∑

i>1 a2
i (cos2 αi + sin2 αi) + 2

∑

i>j>1 aiaj(cos αi cos αj + sin αi sin αj) =
a2

2 + · · · + a2
n + 2

∑

i>j>1 aiaj cos(αi − αj).

It remains to notice that αi − αj = ∠(ai, a1) − ∠(aj, a1) = ∠(ai, aj) = ϕij.

13.15. Let a =
−−→
AD, b =

−−→
BD and c =

−−→
CD. Since BC2 = |b−c|2 = BD2+CD2−2(b, c),

it follows that U = 2(b, c). Similarly, V = 2(a, c) and W = 2(a,b). Let α = ∠(a,b) and
β = ∠(b, c). Multiplying the equality

cos2 α + cos2 β + cos2(α + β) = 2 cos α cos β cos(α + β) + 1

(cf. Problem 12.39 b)) by 4uvw = 4|a|2|b|2|c|2 we get the statement desired.

13.16. Fix an arbitrary point O. Let m =
−−→
OM , a =

−→
OA, . . . ,d =

−−→
OD. Then

(
−−→
MA,

−−→
MB) − (

−−→
MC,

−−→
MD) = (a − m,b − m) − (c − m,d − m) =

(c + d − a − b,m) + (a,b) − (c,d).

If v = c + d − a − b 6= 0, then as the point M runs over the plane the value (v,m)
attains all the real values, in particular, it takes the value (c,d)− (a,b). Hence, v = 0, i.e.,−→
OC +

−−→
OD =

−→
OA +

−−→
OB and, therefore,

−→
AC =

−−→
DB.

13.17. Let n1, . . . ,nk be the unit exterior normals to the sides and let M1, . . . ,Mk be
arbitrary points on these sides. For any point X inside the polygon the distance from X to

the i-th side is equal to (
−−−→
XMi,ni). Therefore, the sums of distances from the inner points

A and B to the sides of the polygon are equal if and only if

k
∑

i=1

(
−−→
AMi,ni) =

k
∑

i=1

(
−−→
BMi,ni) =

k
∑

i=1

(
−→
BA,ni) +

k
∑

i=1

(
−−→
AMi,ni),

i.e., (
−→
BA,

∑k
i=1 ni) = 0. Hence, the sum of distances from any inner point of the polygon to

the sides is constant if and only if
∑

ni = 0.
13.18. Let l be an arbitrary line, n the unit vector perpendicular to l. If points A

and B belong to the same half-plane given by the line l the vector n belongs to, then

ρ(B, l) − ρ(A, l) = (
−→
AB,n), where ρ(X, l) is the distance from X to l.

Let n1, n2, n3 and n4 be unit vectors perpendicular to the consecutive sides of quadri-
lateral ABCD and directed inwards. Denote the sum of distances from point X to the sides
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of quadrilateral ABCD by
∑

(X). Then

0 =
∑

(B) −
∑

(A) = (
−→
AB,n1 + n2 + n3 + n4).

Similarly,

(
−−→
BC,n1 + n2 + n3 + n4) = 0.

Since points A, B and C do not belong to the same line, n1 + n2 + n3 + n4 = 0. It remains
to make use of the result of Problem 13.5.

13.19. Let a =
−→
AB, b =

−−→
BC and c =

−−→
CD. Then

−−→
AD = a + b + c,

−→
AC = a + b and−−→

BD = b + c. It is also clear that

|a|2 + |b|2 + |c|2 + |a + b + c|2 − |a + b|2 − |b + c|2 = |a|2 + 2(a, c) + |c|2 = |a + c|2 ≥ 0.

The equality is only attained if a = −c, i.e., ABCD is a parallelogram.
13.20. Consider five vectors a1, a2, a3, a4, a5 and suppose that the length of the sum

of any two of them is longer than the length of the sum of the three remaining ones. Since
|a1 + a2| > |a3 + a4 + a5|, it follows that

|a1|2 + 2(a1, a2) + |a2|2 > |a3|2 + |a4|2 + |a5|2 + 2(a3, a4) + 2(a4, a5) + 2(a3, a5).

Adding such inequalities for all ten pairs of vectors we get

4(|a1|2 + . . . ) + 2((a1, a2) + . . . ) > 6(|a1|2 + . . . ) + 6((a1, a2) + . . . )

i.e., |a1 + a2 + a3 + a4 + a5|2 < 0. Contradiction.

13.21. Denote the given vectors by e1, . . . , e10. Let
−→
AB = e1 + · · · + e10. Let us prove

that the ray AB determines the required axis. Clearly, |−→AB−ei|2 = AB2−2(
−→
AB, ei)+ |ei|2,

i.e., (
−→
AB, ei) = 1

2
(AB2+|ei|2−|−→AB−ei|2). By the hypothesis AB > |−→AB−ei| and, therefore,

(
−→
AB, ei) > 0, i.e., the projection of ei to AB is positive.

13.22. Let ai =
−−→
OAi and x =

−−→
OX. Then |ai| = R and

−−→
XAi = ai − x. Therefore,

∑

XAi =
∑

|ai − x| =
∑ |ai − x| · |ai|

R
≥

∑ ai − x, ai

R
=

∑ ai, ai

R
− (x,

∑

ai)

R
.

It remains to observe that (ai, ai) = R2 and
∑

ai = 0.
13.23. On the plane, consider four vectors (a, b), (c, d), (e, f) and (g, h). One of the

angles between these vectors does not exceed 360◦

4
= 90◦. If the angle between the vectors

does not exceed 90◦, then the inner product is nonnegative.
The given six numbers are inner products of all the pairs of our four vectors and, therefore,

at least one of them is nonnegative.
13.24. Let us prove this statement by induction. For n = 0 the statement is obviously

true. Let us assume that the statement is proved for 2n + 1 vectors. In a system of 2n + 3
vectors consider two extreme vectors (i.e., the vectors the angle between which is maximal).

For definiteness sake, suppose that these are vectors
−−→
OP1 and

−−−−→
OP2n+3. By the inductive

hypothesis the length of
−→
OR =

−−→
OP2 + · · · + −→

OP 2n+2 is not shorter than 1. The vector
−→
OR

belongs to the interior of angle ∠P1OP2n+3 and, therefore, it forms an acute angle with the

vector
−→
OS =

−→
OP 1 +

−→
OP 2n+3. Hence, |−→OS +

−→
OR| ≥ OR ≥ 1.

13.25. First, let us prove that if a, b and c are vectors whose length does not exceed 1,
then at least one of the vectors a ± b, a ± c, b ± c is not longer than 1.
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Indeed, two of the vectors ±a, ±b, ±c form an angle not greater than 60◦ and, therefore,
the difference of these two vectors is not longer than 1 (if (??) in triangle ABC we have
AB ≤ 1, BC ≤ 1 and ∠ABC ≤ 60◦, then AC is not the greatest side and AC ≤ 1).

Thus, we can reduce the discussion to two vectors a and b. Then either the angle between
vectors a and b or between vectors a and −b does not exceed 90◦; hence, either |a−b| ≤

√
2

or |a + b| ≤
√

2.
13.26. We can assume that the sum a of the given vectors is nonzero because otherwise

the statement of the problem is obvious.

Figure 144 (Sol. 13.26)

Let us introduce a coordinate system directing Oy-axis along a. Let us enumerate the
vectors of the lower half-plane clockwise: e1, e2, . . . as on Fig. 144. By the hypothesis there
are not less than k of these vectors. Let us prove that among the given vectors there are
also vectors v1, . . . ,vk such that the second coordinate of the vector vi + ei is nonpositive
for any i = 1, . . . , k. This will prove the required statement.

Indeed, the length of the sum of the given vectors is equal to the sum of the second
coordinates (the coordinate system was introduced just like this). The second coordinate of
the sum of the vectors e1, v1, . . . , ek, vk is nonpositive and the second coordinate of any of
the remaining vectors does not exceed 1. Therefore, the second coordinate of the sum of all
the given vectors does not exceed n − 2k.

Let vectors e1, . . . , ep belong to the fourth quadrant. Let us start assigning to them the
vectors v1, . . . ,vp. Let us rotate the lower half plane that consists of points with nonpositive
second coordinate by rotating the Ox-axis clockwise through an angle between 0◦ and 90◦.
If one of the two vectors that belongs to the half plane rotated this way lies in the fourth
quadrant, then their sum has a nonpositive second coordinate. As the Ox-axis rotates beyond
vector e1, at least one vector that belongs to the half plane should be added to the vectors
e2, . . . , ek; hence, the vector which follows ek should be taken for v1.

Similarly, while the Ox-axis is rotated beyond e2 we get vector v2, and so on. These
arguments remain valid until the Ox-axis remains in the fourth quadrant. For the vectors
ep+1, . . . , ek which belong to the third quadrant the proof is given similarly (if the first
coordinate of the vector ep+1 is zero, then we should first disregard it; then take any of the
remaining vectors for its(whose?) partner).

13.27. Point X belongs to line AB if and only if
−−→
AX = λ

−→
AB, i.e.,

−−→
OX =

−→
OA +

−−→
AX = (1 − λ)

−→
OA + λ

−−→
OB.

13.28. Let us take an arbitrary point O and express all the selected vectors in the form−−−→
AiAj =

−→
OAj −

−→
OAi. By the hypothesis every vector

−→
OAi enters the sum of all the chosen

vectors with the “plus” sign as many times as with the “minus” sign.
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13.29. Let e1, e2 and e3 be unit vectors codirected with vectors
−→
OA,

−−→
OB and

−→
OC,

respectively; let α = ∠BOC, β = ∠COA and γ = ∠AOB. We have to prove that

e1 sin α + e2 sin β + e3 sin γ =
−→
0 .

Consider triangle A1B1C1 whose sides are parallel to lines OC, OA and OB. Then

−→
0 =

−−−→
A1B1 +

−−−→
B1C1 +

−−−→
C1A1 = ±2R(e1 sin α + e2 sin β + e3 sin γ),

where R is the radius of the circumscribed circle of triangle ABC.
13.30. Let a and b be unit vectors codirected with rays OA and OB, let λ = OA and

µ = OB. Line AB consists of all points X such that
−−→
OX = t

−→
OA + (1 − t)

−−→
OB = tλa + (1 − t)µb.

We have to find numbers x0 and y0 such that x0

λ
= t = 1 − y0

µ
for all the considered values

of λ and µ. It remains to set x0 = p
c

and y0 = q
c
. As a result we see that if p

OA
+ q

OB
= c,

then line AB passes through a point X such that
−−→
OX = pa+qb

c
.

13.31. Let a =
−−→
MA, b =

−−→
MB and c =

−−→
MC. Then e =

−−→
MC1 = pa + (1 − p)b and

−−→
MA1 = qc + (1 − q)b = −qa + (1 − 2q)b.

On the other hand,
−−→
MA1 = αe. Similarly,

βe =
−−→
MB1 = −rb + (1 − 2r)a.

We have to show that 1 + 1
α

+ 1
β

= 0. Since αpa + α(1 − p)b = αe = −qa + (1 − 2q)b,

it follows that αp = 1 − 2r and α(1 − p) = 1 − 2q and, therefore, 1
α

= 1 − 3p. Similarly,
βp = 1 − 2r and β(1 − p) = −r and, therefore, 1

β
= 3p − 2.

13.32. Summing up the equalities
−→
AA2 +

−−→
BB2 +

−→
CC2 =

−→
0 and

−−→
A2B2 +

−−→
B2C2 +

−−→
C2A2 =−→

0 we get
−→
AB2 +

−−→
BC2 +

−→
CA2 =

−→
0 . It follows that

−→
AB2 = λ

−−→
C2B2,

−−→
BC2 = λ

−−→
A2C2 and−→

CA2 = λ
−−→
B2A2. Let E be a point on line BC such that A2E ‖ AA1. Then

−→
BA1 = λ

−→
EA1 and−−→

EC = λ
−→
EA1; hence,

−−→
A1C =

−−→
EC − −→

EA1 = (λ − 1)
−→
EA1. Therefore, A1C

BA1
= λ−1

λ
. Similarly,

AB1

B1C
= BC1

C1A
= λ−1

λ
.

13.33. Let O be the center of the inscribed circle of the given quadrilateral, a =
−→
OA,

b =
−−→
OB, c =

−→
OC and d =

−−→
OD. If Ha is the orthocenter of triangle BCD, then

−−→
OHa =

b + c + d (cf. Problem 13.13). Therefore,

−−→
OMa =

1

2
(a + b + c + d) =

−−→
OM b =

−−→
OM c =

−−→
OMd.

13.34. Let O be the center of the circumscribed circle of the given quadrilateral; a =−→
OA, b =

−−→
OB, c =

−→
OC and d =

−−→
OD. If Hd is the orthocenter of triangle ABC, then−−→

OHd = a + b + c (Problem 13.13).

a) Take a point K such that
−−→
OK = a + b + c + d. Then

KHd = |−−→OK −−−→
OHd| = |d| = R,

i.e., K belongs to circle Sd. We similarly prove that K belongs to circles Sa, Sb and Sc.
b) Let Od be the center of the circle of nine points of triangle ABC, i.e., the midpoint of

OHd. Then
−→
OOd =

−−→
OHd/2 = (a+b+c)/2. Take point X such that

−−→
OX = (a+b+c+d)/2.

Then XOd = 1
2
|d| = 1

2
R, i.e., X belongs to the circle of nine points of triangle ABC. We
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similarly prove that X belongs to the circles of nine points of triangles BCD, CDA and
DAB.

13.35. Let X1 be the projection of X on l. Vector α
−→
AA1+β

−−→
BB1+γ

−→
CC1 is the projection

of vector α
−−→
AX1 + β

−−→
BX1 + γ

−−→
CX1 to a line perpendicular to l. Since

α
−−→
AX1 + β

−−→
BX1 + γ

−−→
CX1 = α

−−→
AX + β

−−→
BX + γ

−−→
CX + (α + β + γ)

−−→
XX1

and α
−−→
AX + β

−−→
BX + γ

−−→
CX =

−→
0 (by Problem 13.29), we get the statement required.

(?)13.36. Let a =
−−→
A1A2 +

−−→
A3A4 + · · · + −−−−−−→

A2n−1A2n and a 6= 0. Introduce the coordinate

system directing the Ox-axis along vector a. Since the sum of projections of vectors
−−−→
A1A2,−−−→

A3A4, . . . ,
−−−−−−→
A2n−1A2n on Oy is zero, it follows that the length of a is equal to the absolute

value of the difference between the sum of the lengths of positive projections of these vectors
to the Ox-axis and the sum of lengths of their negative projections.

Therefore, the length of a does not exceed either the sum of the lengths of the positive
projections or the sum of the lengths of the negative projections.

It is easy to verify that the sum of the lengths of positive projections as well as the sum
of the lengths of negative projections of the given vectors on any axis does not exceed the
diameter of the circle, i.e., does not exceed 2.

13.37. In the proof of the equality of vectors it suffices to verify the equality of their
projections (minding the sign) on lines BC, CA and AB. Let us carry out the proof, for
example, for the projections on line BC, where the direction of ray BC will be assumed to
be the positive one. Let P be the projection of point A on line BC and N the midpoint of
BC. Then

−−→
PN =

−→
PC +

−−→
CN =

b2 + a2 − c2

2a
− a

2
=

b2 − c2

2a

(PC is found from the equation AB2 − BP 2 = AC2 − CP 2). Since NM : NA = 1 : 3,

the projection of
−−→
MO on line BC is equal to 1

3

−−→
PN = b2−c2

6a
. It remains to notice that the

projection of vector a3na + b3nb + c3nc on BC is equal to

b3 sin γ − c3 sin β =
b3c − c3b

2R
=

abc

2R
· b2 − c2

a
= 2S

b2 − c2

a
.

13.38. Let the inscribed circle be tangent to sides AB, BC and CA at points U , V and

W , respectively. We have to prove that
−→
OZ = 3R

r

−−→
ZK, i.e.,

−→
OZ = R

r
(
−→
ZU +

−→
ZV +

−−→
ZW ). Let

us prove, for example, that the (oriented) projections of these vectors on line BC are equal;
the direction of ray BC will be assumed to be the positive one.

Let N be the projection of point O on line BC. Then the projection of vector OZ on
line BC is equal to

−−→
NV =

−−→
NC +

−−→
CV = (

a

2
) − (a + b − c)

2
=

(c − b)

2
.

The projection of vector
−→
ZU +

−→
ZV +

−−→
ZW on this line is equal to the projection of vector−→

ZU +
−−→
ZW , i.e., it is equal to

−r sin V ZU + r sin V ZW = −r sin B + r sin C =
r(c − b)

2R
.

13.39. Introduce the coordinate system Oxy. Let lϕ be the straight line through O and
constituting an angle of ϕ (0 < ϕ < π) with the Ox-axis, i.e., if point A belongs to lϕ and
the second coordinate of A is positive, then ∠AOX = ϕ; in particular, l0 = lπ = Ox.
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If vector a forms an angle of α with the Ox-axis (the angle is counted counterclockwise
from the Ox-axis to the vector a), then the length of the projection of a on lϕ is equal to
|a| · | cos(ϕ − α)|. The integral

∫ π

o
|a| · | cos(ϕ − α)|dϕ = 2|a| does not depend on α.

Let vectors a1, . . . , an; b1, . . . , bm constitute angles of α1, . . . , αn; β1, . . . , βn, respec-
tively, with the Ox-axis. Then by the hypothesis

|a1| · | cos(ϕ − α1)| + · · · + |an| · | cos(ϕ − αn)| ≤
|b1| · | cos(ϕ − β1)| + · · · + |bm| · | cos(ϕ − βm)|

for any ϕ. Integrating these inequalities over ϕ from 0 to π we get

|a1| + · · · + |an| ≤ |b1| + · · · + |bm|.

Remark. The value 1
b−a

∫ b

a
f(x)dx is called the mean value of the function f on the

segment [a, b]. The equality
∫ π

0

|a| · | cos(ϕ − α)|dϕ = 2|a|

means that the mean value of the length of the projection of vector a is equal to 2
π
|a|; more

precisely, the mean value of the function f(ϕ) equal to the length of the projection of a to
lϕ on the segment [0, π] is equal to 2

π
|a|.

13.40. The sum of the lengths of the projections of a convex polygon on any line is equal
to twice the length of the projection of the polygon on this line. Therefore, the sum of the
lengths of the projections of vectors formed by edges on any line is not longer for the inner
polygon than for the outer one. Hence, by Problem 13.39 the sum of the lengths of vectors
formed by the sides, i.e., the perimeter of the inner polygon, is not longer than that of the
outer one.

13.41. If the sum of the lengths of vectors is equal to L, then by Remark to Problem
13.39 the mean value of the sum of the lengths of projections of these vectors is equal to
2L/π.

The value of function f on segment [a, b] cannot be always less than its mean value c
because otherwise

c =
1

a − b

∫ b

a

f(x)dx <
(b − a)c

b − a
= c.

Therefore, there exists a line l such that the sum of the lengths of the projections of the
initial vectors on l is not shorter than 2L/π.

On l, select a direction. Then either the sum of the lengths of the positive projections
to this directed line or the sum of the lengths of the negative projections is not shorter than
L/π. Therefore, either the length of the sum of vectors with positive projections or the
length of the sum of vectors with negative porjections is not shorter than L/π.

13.42. Let AB denote the projection of the polygon on line l. Clearly, points A and B
are projections of certain vertices A1 and B1 of the polygon. Therefore, A1B1 ≥ AB, i.e.,
the length of the projection of the polygon is not longer than A1B1 and A1B1 < d by the
hypothesis. Since the sum of the lengths of the projections of the sides of the polygon on l
is equal to 2AB, it does not exceed 2d.

The mean value of the sum of the lengths of the projections of sides is equal to 2
π
P ,

where P is a perimeter (see Problem 13.39). The mean value does not exceed the maximal
one; hence, 2

π
P < 2d, i.e., P < πd.
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13.43. By Problem 13.39 it suffices to prove the inequality

|a| + |b| + |c| + |d| ≥ |a + d| + |b + d| + |c + d|
for the projections of the vectors on a line, i.e., we may assume that a, b, c and d are vectors
parallel to one line, i.e., they are just numbers such that a + b + c + d = 0. Let us assume
that d ≥ 0 because otherwise we can change the sign of all the numbers.

We can assume that a ≤ b ≤ c. We have to consider three cases:
1) a, b, c ≤ 0;
2) a ≤ 0 and b, c ≥ 0;
3) a, b ≤ 0, c ≥ 0.
All arising inequalities are quite easy to verify. In the third case we have to consider

separately the subcases |d| ≤ |b|, |b| ≤ |d| ≤ |a| and |a| ≤ |d| (in the last subcase we have to
take into account that |d| = |a| + |b| − |c| ≤ |a| + |b|).

13.44. By Problem 13.39 it suffices to prove the inequality for the projections of vectors

on any line. Let the projections of
−→
OA1, . . . ,

−→
OAn on a line l be equal (up to a sign) to

a1, . . . , an. Let us divide the numbers a1, . . . , an into two groups: x1 ≥ x2 ≥ · · · ≥ xk > 0
and y′

1 ≤ y′
2 ≤ · · · ≤ y′

n−k ≤ 0. Let yi = −y′
i. Then x1 + · · · + xk = y1 + · · · + yn−k = a and,

therefore, x1 ≥ a
k

and y1 ≥ a
n−k

. To the perimeter the number 2(x1 + y1) in the projection

corresponds. To the sum of the vectors
−→
OAi the number x1 + · · ·+ xk + y1 + · · ·+ yn−k = 2a

in the projection corresponds. And since

2(x1 + y1)

x1 + · · · + yn−k

≥ 2((a/k) + (a/(n − k)))

2a
=

n

k(n − k)
,

it remains to notice that the quantity k(n − k) is maximal for k = n/2 if n is even and for
k = (n ± 1)/2 if n is odd.

13.45. By definition the length of a curve is the limit of perimeters of the polygons
inscribed in it. [Vo vvedenie]

Consider an inscribed polygon with perimeter P and let the length of the projection on
line l be equal to di. Let 1 − ε < di < 1 for all lines l. The polygon can be selected so
that ε is however small. Since the polygon is a convex one, the sum of the lengths of the
projections of its sides on l is equal to 2di.

By Problem 13.39 the mean value of the quantity 2di is equal to 2
π
P (cf. Problem 13.39)

and, therefore, 2 − 2ε < 2
π
P < 2, i.e., π − πε < P < π. Tending ε to zero we see that the

length of the curve is equal to π.
13.46. Let us prove that the perimeter of the convex hull of all the vertices of given

polygons does not exceed the sum of their perimeters. To this end it suffices to notice that
by the hypothesis the projections of given polygons to any line cover the projection of the
convex hull.

13.47. a) If λ < 0, then

(λa) ∨ b = −λ|a| · |b| sin ∠(−a,b) = λ|a| · |a| sin ∠(a,b) = λ(a ∨ b).

For λ > 0 the proof is obvious.

b) Let a =
−→
OA, b =

−−→
OB and c =

−→
OC. Introduce the coordinate system directing the

Oy-axis along ray OA. Let A = (0, y1), B = (x2, y2) and C = (x3, y3). Then

a ∨ b = x2y1, a ∨ c = x3y1; a ∨ (b + c) = (x2 + x3)y1 = a ∨ b + a ∨ c.

13.48. Let e1 and e2 be unit vectors directed along the axes Ox and Oy. Then e1∨e2 =
−e2 ∨ e1 = 1 and e1 ∨ e1 = e2 ∨ e2 = 0; hence,

a ∨ b = (a1e1 + a2e2) ∨ (b1e1 + b2e2) = a1b2 − a2b1.
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13.49. a) Clearly,

−→
AB ∨ −→

AC =
−→
AB ∨ (

−→
AB +

−−→
BC) = −−→

BA ∨ −−→
BC =

−−→
BC ∨ −→

BA.

b) In the proof it suffices to make use of the chain of inequalities

−→
AB ∨ −→

AC = (
−−→
AD +

−−→
DB) ∨ (

−−→
AD +

−−→
DC) =−−→

AD ∨ −−→
DC +

−−→
DB ∨ −−→

AD +
−−→
DB ∨ −−→

DC =

=
−−→
DC ∨ −−→

DA +
−−→
DA ∨ −−→

DB +
−−→
DB ∨ −−→

DC.

13.50. Let at the initial moment, i.e., at t = 0 we have
−→
AB = v and

−→
AC = w. Then at

the moment t we get
−→
AB = v + t(a − b) and

−→
AC = w + t(c − a), where a, b and c are the

velocity vectors of the runners A, B and C, respectively. Since vectors a, b and c are parallel,

it follows that (b − a) ∨ (c − a) = 0 and, therefore, |S(A,B,C)| = 1
2
|−→AB ∨ −→

AC| = |x + ty|,
where x and y are some constants.

Solving the system |x| = 2, |x + 5y| = 3 we get two solutions with the help of which we
express the dependence of the area of triangle ABC of time t as |2+ t

5
| or |2− t|. Therefore,

at t = 10 the value of the area can be either 4 or 8.
13.51. Let v(t) and w(t) be the vectors directed from the first pedestrian to the second

and the third ones, respectively, at time t. Clearly, v(t) = ta + b and w(t) = tc + d. The
pedestrians are on the same line if and only if v(t) ‖ w(t), i.e., v(t)∨w(t) = 0. The function

f(t) = v(t) ∨ w(t) = t2a ∨ c + t(a ∨ d + b ∨ c) + b ∨ d

is a quadratic and f(0) 6= 0. We know that a quadratic not identically equal to zero has not
more than 2 roots.

13.52. Let
−→
OC = a,

−−→
OB = λa,

−−→
OD = b and

−→
OA = µb. Then

±2SOPQ =
−→
OP ∨ −→

OQ =
a + µb

2
∨ λa + b

2
=

1 − λµ

4
(a ∨ b)

and

±SABCD = ±2(SCOD − SAOB) = ±(a ∨ b − λa ∨ µb) = ±(1 − λµ)a ∨ b.

13.53. Let aj =
−−→
P1Aj. Then the doubled sum of the areas of the given triangles is equal

for any inner point P to

(x + a1) ∨ (x + a2) + (x + a3) ∨ (x + a4) + · · · + (x + a2n−1) ∨ (x + a2n),

where x =
−→
PP 1 and it differs from the doubled sum of the areas of these triangles for point

P1 by

x ∨ (a1 − a2 + a3 − a4 + · · · + a2n−1 − a2n) = x ∨ a.

By the hypothesis x ∨ a = 0 for x =
−−→
P1P 1 and x =

−−→
P3P 1 and these vectors are not

parallel. Hence, a = 0, i.e., x ∨ a = 0 for any x.

13.54. Let a =
−→
AP , b =

−−→
BQ and c =

−→
CR. Then

−→
QC = αa,

−→
RA = βb and

−−→
PB = γc;

we additionally have

(1 + α)a + (1 + β)b + (1 + γ)c = 0.

It suffices to verify that
−→
AB ∨ −→

CA =
−→
PQ ∨ −→

RP . The difference between these quantities is
equal to

(a + γc) ∨ (c + βb) − (γc + b) ∨ (a + βb) = a ∨ c + βa ∨ b + a ∨ b + γa ∨ c =
= a ∨ [(1 + γ)c + (1 + β)b] = −a ∨ (1 + α)a = 0.
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13.55. Let ai =
−−→
A4Ai and wi =

−−→
A4H i. By Problem 13.49 b) it suffices to verify that

a1 ∨ a2 + a2 ∨ a3 + a3 ∨ a1 = w1 ∨ w2 + w2 ∨ w3 + w3 ∨ w1.

Vectors a1 −w2 and a2 −w1 are perpendicular to vector a3 and, therefore, they are parallel
to each other, i.e., (a1 − w2) ∨ (a2 − w1) = 0. Adding this equality to the equalities
(a2 − w3) ∨ (a3 − w2) = 0 and (a3 − w1) ∨ (a1 − w3) = 0 we get the statement required.

13.56. Let x = x1e1 + x2e2. Then e1 ∨ x = x2(e1 ∨ e2) and x ∨ e2 = x1(e1 ∨ e2), i.e.,

x =
(x ∨ e2)e1 + (e1 ∨ x)e2

e1 ∨ e2

.

Multiplying this expression by (e1 ∨ e2)y from the right we get

(1) (x ∨ e2)(e1 ∨ y) + (e1 ∨ x)(e2 ∨ y) + (e2 ∨ e1)(x ∨ y) = 0.

Let e1 =
−→
AB, e2 =

−→
AC, x =

−−→
AD and y =

−→
AE. Then

S = a + x ∨ e2 + d = c + y ∨ e2 + a = d + x ∨ e1 + b,

i.e.,
x ∨ e2 = S − a − d,y ∨ e2 = S − c − a

and x∨e1 = S−d−b. Substituting these expressions into (1) we get the statement required.





Chapter 14. THE CENTER OF MASS

Background

1. Consider a system of mass points on a plane, i.e., there is a set of pairs (Xi,mi), where
Xi is a point on the plane and mi a positive number. The center of mass of the system of
points X1, . . . , Xn with masses m1, . . . , mn, respectively, is a point, O, which satisfies

m1
−−→
OX1 + · · · + mn

−−→
OXn =

−→
0 .

The center of mass of any system of points exists and is unique (Problem 14.1).
2. A careful study of the solution of Problem 14.1 reveals that the positivity of the

numbers mi is not actually used; it is only important that their sum is nonzero. Sometimes
it is convenient to consider systems of points for which certain masses are positive and certain
are negative (but the sum of masses is nonzero).

3. The most important property of the center of mass which lies in the base of almost
all its applications is the following

Theorem on mass regroupping. The center of mass of a system of points does not
change if part of the points are replaced by one point situated in their center of mass and
whose mass is equal to the sum of their masses (Problem 14.2).

4. The moment of inertia of a system of points X1, . . . , Xn with masses m1, . . . , mn

with respect to point M is the number

IM = m1MX2
1 + · · · + mnMX2

n.

The applications of this notion in geometry are based on the relation IM = IO + mOM2,
where O is the center of mass of a system and m = m1 + · · · + mn (Problem 14.17).

§1. Main properties of the center of mass

14.1. a) Prove that the center of mass exists and is unique for any system of points.
b) Prove that if X is an arbitrary point and O the center of mass of points X1, . . . , Xn

with masses m1, . . . , mn, then

−−→
XO =

1

m1 + · · · + mn

(m1
−−→
XX1 + · · · + mn

−−−→
XXn).

14.2. Prove that the center of mass of the system of points X1, . . . , Xn, Y1, . . . , Ym with
masses a1, . . . , an, b1, . . . , bm coincides with the center of mass of two points — the center
of mass X of the first system with mass a1 + · · ·+an and the center of mass Y of the second
system with mass b1 + · · · + bm.

14.3. Prove that the center of mass of points A and B with masses a and b belongs to
segment AB and divides it in the ratio of b : a.

307
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§2. A theorem on mass regroupping

14.4. Prove that the medians of triangle ABC intersect at one point and are divided by
it in the ratio of 2 : 1 counting from the vertices.

14.5. Let ABCD be a convex quadrilateral; let K, L, M and N be the midpoints of
sides AB, BC, CD and DA, respectively. Prove that the intersection point of segments
KM and LN is the midpoint of these segments and also the midpoint of the segment that
connects the midpoints of the diagonals.

14.6. Let A1, B1, . . . , F1 be the midpoints of sides AB, BC, . . . , FA, respectively, of a
hexagon. Prove that the intersection points of the medians of triangles A1C1E1 and B1D1F1

coincide.
14.7. Prove Ceva’s theorem (Problem 4.48 b)) with the help of mass regrouping.
14.8. On sides AB, BC, CD and DA of convex quadrilateral ABCD points K, L, M

and N , respectively, are taken so that AK : KB = DM : MC = α and BL : LC = AN :
ND = β. Let P be the intersection point of segments KL and LN . Prove that NP : PL = α
and KP : PM = β.

14.9. Inside triangle ABC find point O such that for any straight line through O,
intersecting AB at K and intersecting BC at L the equality pAK

KB
+ q CL

LB
= 1 holds, where p

and q are given positive numbers.
14.10. Three flies of equal mass crawl along the sides of triangle ABC so that the center

of their mass is fixed. Prove that the center of their mass coincides with the intersection
point of medians of ABC if it is known that one fly had crawled along the whole boundary
of the triangle.

14.11. On sides AB, BC and CA of triangle ABC, points C1, A1 and B1, respectively,
are taken so that straight lines CC1, AA1 and BB1 intersect at point O. Prove that

a) CO
OC1

= CA1

A1B
+ CB1

B1A
;

b) AO
OA1

· BO
OB1

· CO
OC1

= AO
OA1

+ BO
OB1

+ CO
OC1

+ 2 ≥ 8.
14.12. On sides BC, CA and AB of triangle ABC points A1, B1 and C1, respectively,

are taken so that BA1

A1C
= CB1

B1A
= AC1

C1B
. Prove that the centers of mass of triangles ABC and

A1B1C1 coincide.
14.13. On a circle, n points are given. Through the center of mass of n − 2 points a

straight line is drawn perpendicularly to the chord that connects the two remaining points.
Prove that all such straight lines intersect at one point.

14.14. On sides BC, CA and AB of triangle ABC points A1, B1 and C1, respectively,
are taken so that segments AA1, BB1 and CC1 intersect at point P . Let la, lb, lc be the
lines that connect the midpoints of segments BC and B1C1, CA and C1A1, AB and A1B1,
respectively. Prove that lines la, lb and lc intersect at one point and this point belongs to
segment PM , where M is the center of mass of triangle ABC.

14.15. On sides BC, CA and AB of triangle ABC points A1, B1 and C1, respectively,
are taken; straight lines B1C1, BB1 and CC1 intersect straight line AA1 at points M , P and
Q, respectively. Prove that:

a) A1M
MA

= A1P
PA

+ A1Q
QA

;

b) if P = Q, then MC1 : MB1 = BC1

AB
: CB1

AC
.

14.16. On line AB points P and P1 are taken and on line AC points Q and Q1 are
taken. The line that connects point A with the intersection point of lines PQ and P1Q1
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intersects line BC at point D. Prove that

BD

CD
=

BP
PA

− BP1

P1A

CQ

QA
− CQ1

Q1A

.

§3. The moment of inertia

For point M and a system of mass points X1, . . . , Xn with masses m1, . . . , mn the
quantity IM = m1MX2

1 + · · · + mnMX2
n is called the moment of inertia with respect to M .

14.17. Let O be the center of mass of a system of points whose sum of masses is equal
to m. Prove that the moments of inertia of this system with respect to O and with respect
to an arbitrary point X are related as follows: IX = IO + mXO2.

14.18. a) Prove that the moment of inertia with respect to the center of mass of a system
of points of unit masses is equal to 1

n

∑

i<j a2
ij, where n is the number of points and aij the

distance between points whose indices are i and j.
b) Prove that the moment of inertia with respect to the center of mass of a system of

points whose masses are m1, . . . ,mn is equal to 1
m

∑

i<j mimja
2
ij, where m = m1 + · · · + mn

and aij is the distance between the points whose indices are i and j.
14.19. a) Triangle ABC is an equilateral one. Find the locus of points X such that

AX2 = BX2 + CX2.
b) Prove that for the points of the locus described in heading a) the pedal triangle with

respect to the triangle ABC is a right one.
14.20. Let O be the center of the circumscribed circle of triangle ABC and H the

intersection point of the heights of triangle ABC. Prove that a2 + b2 + c2 = 9R2 − OH2.
14.21. Chords AA1, BB1 and CC1 in a disc with center O intersect at point X. Prove

that
AX

XA1

+
BX

XB1

+
CX

XC1

= 3

if and only if point X belongs to the circle with diameter OM , where M is the center of
mass of triangle ABC.

14.22. On sides AB, BC, CA of triangle ABC pairs of points A1 and B2, B1 and C2,
C1 and A2, respectively, are taken so that segments A1A2, B1B2 and C1C2 are parallel to
the sides of triangle ABC and intersect at point P . Prove that

PA1 · PA2 + PB1 · PB2 + PC1 · PC2 = R2 − OP 2,

where O is the center of the circumscribed circle.
14.23. Inside a circle of radius R, consider n points. Prove that the sum of squares of

the pairwise distances between the points does not exceed n2R2.
14.24. Inside triangle ABC point P is taken. Let da, db and dc be the distances from P

to the sides of the triangle; Ra, Rb and Rc the distances from P to the vertices. Prove that

3(d2
a + d2

b + d2
c) ≥ (Ra sin A)2 + (Rb sin B)2 + (Rc sin C)2.

14.25. Points A1, . . . , An belong to the same circle and M is their center of mass. Lines
MA1, . . . ,MAn intersect this circle at points B1, . . . , Bn (distinct from A1, . . . , An). Prove
that

MA1 + · · · + MAn ≤ MB1 + · · · + MBn.
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§4. Miscellaneous problems

14.26. Prove that if a polygon has several axes of symmetry, then all of them intersect
at one point.

14.27. A centrally symmetric figure on a graph paper consists of n “corners” and k
rectangles of size 1 × 4 depicted on Fig. 145. Prove that n is even.

Figure 145 (14.27)

14.28. Solve Problem 13.44 making use the properties of the center of mass.
14.29. On sides BC and CD of parallelogram ABCD points K and L, respectively, are

taken so that BK : KC = CL : LD. Prove that the center of mass of triangle AKL belongs
to diagonal BD.

§5. The barycentric coordinates

Consider triangle A1A2A3 whose vertices are mass points with masses m1, m2 and m3,
respectively. If point X is the center of mass of the triangle’s vertices, then the triple
(m1 : m2 : m3) is called the barycentric coordinates of point X with respect to triangle
A1A2A3.

14.30. Consider triangle A1A2A3. Prove that
a) any point X has some barycentric coordinates with respect to △A1A2A3;
b) provided m1 + m2 + m3 = 1 the barycentric coordinates of X are uniquely defined.
14.31. Prove that the barycentric coordinates with respect to △ABC of point X which

belongs to the interior of ABC are equal to (SBCX : SCAX : SABX).
14.32. Point X belongs to the interior of triangle ABC. The straight lines through

X parallel to AC and BC intersect AB at points K and L, respectively. Prove that the
barycentric coordinates of X with respect to △ABC are equal to (BL : AK : LK).

14.33. Consider △ABC. Find the barycentric coordinates with respect to △ABC of
a) the center of the circumscribed circle;
b) the center of the inscribed circle;
c) the orthocenter of the triangle.
14.34. The baricentric coordinates of point X with respect to △ABC are (α : β : γ),

where α + β + γ = 1. Prove that
−−→
XA = β

−→
BA + γ

−→
CA.

14.35. Let (α : β : γ) be the barycentric coordinates of point X with respect to △ABC
and α + β + γ = 1 and let M be the center of mass of triangle ABC. Prove that

3
−−→
XM = (α − β)

−→
AB + (β − γ)

−−→
BC + (γ − α)

−→
CA.

14.36. Let M be the center of mass of triangle ABC and X an arbitrary point. On
lines BC, CA and AB points A1, B1 and C1, respectively, are taken so that A1X ‖ AM ,
B1X ‖ BM and C1X ‖ CM . Prove that the center of mass M1 of triangle A1B1C1 coincides
with the midpoint of segment MX.

14.37. Find an equation of the circumscribed circle of triangle A1A2A3 (kto sut’ indexy?
iz 14.36?) in the barycentric coordinates.
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14.38. a) Prove that the points whose barycentric coordinates with respect to △ABC
are (α : β : γ) and (α−1 : β−1 : γ−1) are isotomically conjugate with respect to triangle ABC.

b) The lengths of the sides of triangle ABC are equal to a, b and c. Prove that the points

whose barycentric coordinates with respect to △ABC are (α : β : γ) and (a2

α
: b2

β
: c2

γ
) are

isogonally conjugate with respect to ABC.

Solutions

14.1. Let X and O be arbitrary points. Then

m1
−−→
OX1 + · · · + mn

−−→
OXn =

(m1 + · · · + mn)
−−→
OX + m1

−−→
XX1 + · · · + mn

−−−→
XXn

and, therefore, O is the center of mass of the given system of points if and only if

(m1 + · · · + mn)
−−→
OX + m1

−−→
XX1 + · · · + Mn

−−−→
XXn =

−→
0 ,

i.e.,
−−→
OX = 1

m1+···+mn
(m1

−−→
XX1 + · · · + mn

−−−→
XXn).

This argument gives a solution to the problems of both headings.
14.2. Let Z be an arbitrary point; a = a1 + · · · + an and b = b1 + · · · + bm. Then−−→

ZX = a1
−−→
ZX1+···+an

−−−→
ZXn

a
and

−→
ZY = b1

−−→
ZY1+···+bm

−−−→
ZYm

b
. If O is the center of mass of point X

whose mass is a and of point Y whose mass is b, then

−→
ZO =

a
−−→
ZX + b

−→
ZY

a + b
=

a1
−−→
ZX1 + · · · + an

−−→
ZXn + b1

−−→
ZY1 + · · · + bm

−−→
ZYm

a + b
,

i.e., O is the center of mass of the system of points X1, . . . , Xn and Y1, . . . , Ym with masses
a1, . . . , an, b1, . . . , bm.

14.3. Let O be the center of mass of the given system. Then a
−→
OA + b

−−→
OB =

−→
0 and,

therefore, O belongs to segment AB and aOA = bOB, i.e., AO : OB = b : a.
14.4. Let us place unit masses at points A, B and C. Let O be the center of mass

of this system of points. Point O is also the center of mass of points A of mass 1 and A1

of mass 2, where A1 is the center of mass of points B and C of unit mass, i.e., A1 is the
midpoint of segment BC. Therefore, O belongs to median AA1 and divides it in the ratio
AO : OA1 = 2 : 1. We similarly prove that the remaining medians pass through O and are
divided by it in the ratio of 2 : 1.

14.5. Let us place unit masses in the vertices of quadrilateral ABCD. Let O be the
center of mass of this system of points. It suffices to prove that O is the midpoint of segments
KM and LN and the midpoint of the segment connecting the midpoints of the diagonals.
Clearly, K is the center of mass of points A and B while M is the center of mass of points
C and D. Therefore, O is the center of mass of points K and M of mass 2, i.e., O is the
center of mass of segment KM .

Similarly, O is the midpoint of segment LN . Considering centers of mass of pairs of
points (A,C) and (B,D) (i.e., the midpoints of diagonals) we see that O is the midpoint of
the segment connecting the midpoints of diagonals.
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14.6. Let us place unit masses in the vertices of the hexagon; let O be the center of
mass of the obtained system of points. Since points A1, C1 and E1 are the centers of mass of
pairs of points (A,B), (C,D) and (E,F ), respectively, point O is the center of mass of the
system of points A1, C1 and E1 of mass 2, i.e., O is the intersection point of the medians of
triangle A1C1E1 (cf. the solution of Problem 14.4).

We similarly prove that O is the intersection point of medians of triangle B1D1F1.
14.7. Let lines AA1 and CC1 intersect at O and let AC1 : C1B = p and BA1 : A1C = q.

We have to prove that line BB1 passes through O if and only if CB1 : B1A = 1 : pq.
Place masses 1, p and pq at points A, B and C, respectively. Then point C1 is the center

of mass of points A and B and point A1 is the center of mass of points B and C. Therefore,
the center of mass of points A, B and C with given masses is the intersection point O of
lines CC1 and AA1.

On the other hand, O belongs to the segment which connects B with the center of mass
of points A and C. If B1 is the center of mass of points A and C of masses 1 and pq,
respectively, then AB1 : B1C = pq : 1. It remains to notice that there is one point on
segment AC which divides it in the given ratio AB1 : B1C.

14.8. Let us place masses 1, α, αβ and β at points A, B, C and D, respectively. Then
points K, L, M and N are the centers of mass of the pairs of points (A,B), (B,C), (C,D)
and (D,A), respectively. Let O be the center of mass of points A, B, C and D of indicated
mass. Then O belongs to segment NL and NO : OL = (αβ + α) : (1 + β) = α. Point O
belongs to the segment KM and KO : OM = (β + αβ) : (1 + α) = β. Therefore, O is the
intersection point of segments KM and LN , i.e., O = P and NP : PL = NO : OL = α,
KP : PM = β.

14.9. Let us place masses p, 1 and q in vertices A, B and C, respectively. Let O be the
center of mass of this system of points. Let us consider a point of mass 1 as two coinciding
points of mass xa and xc, where xa +xc = 1. Let K be the center of mass of points A and B
of mass p and xa and L the center of mass of points C and B of mass q and xc, respectively.
Then AK : KB = xa : p and CL : LB = xc : q, whereas point O which is the center of mass
of points K and L of mass p + xa and q + xc, respectively, belongs to line KL. By varying
xa from 0 to 1 we get two straight lines passing through O and intersecting sides AB and
BC. Therefore, for all these lines we have

pAK

KB
+

qCL

LB
= xa + xc = 1.

14.10. Denote the center of mass of the flies by O. Let one fly be sited in vertex A
and let A1 be the center of mass of the two other flies. Clearly, point A1 lies inside triangle
ABC and point O belongs to segment AA1 and divides it in the ratio of AO : OA1 = 2 : 1.
Therefore, point O belongs to the interior of the triangle obtained from triangle ABC by a
homothety with coefficient 2

3
and center A.

Considering such triangles for all the three vertices of triangle ABC we see that their
unique common point is the intersection point of the medians of triangle ABC. Since one
fly visited all the three vertices of the triangle ABC and point O was fixed during this, O
should belong to all these three small triangles, i.e., O coincides with the intersection point
of the medians of triangle ABC.

14.11. a) Let AB1 : B1C = 1 : p and BA1 : A1C = 1 : q. Let us place masses p, q, 1 at
points A, B, C, respectively. Then points A1 and B1 are the centers of mass of the pairs of
points (B,C) and (A,C), respectively. Therefore, the center of mass of the system of points
A, B and C belongs both to segment AA1 and to segment BB1, i.e., coincides with O. It
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follows that C1 is the center of mass of points A and B. Therefore,

CO

OC1

= p + q =
CB1

B1A
+

CA1

A1B
.

b) By heading a) we have

AO

OA1

· BO

OB1

· CO

OC1

=
1 + q

p
· 1 + p

q
· p + q

1
=

p + q +
p

q
+

q

p
+

1

p
+

1

q
+ 2 =

AO

OA1

+
BO

OB1

+
CO

OC1

+ 2.

It is also clear that

p +
1

p
≥ 2, q +

1

q
≥ 2 and

p

q
+

q

p
≥ 2.

14.12. Let M be the center of mass of triangle ABC. Then

−−→
MA +

−−→
MB +

−−→
MC =

−→
0 .

Moreover,
−−→
AB1 +

−−→
BC1 +

−−→
CA1 = k(

−→
AC +

−→
BA +

−−→
CB) =

−→
0 .

Adding these identities we get
−−−→
MB1 +

−−−→
MC1 +

−−−→
MA1 =

−→
0 , i.e., M is the center of mass of

triangle A1B1C1.

Remark. We similarly prove a similar statement for an arbitrary n-gon.

14.13. Let M1 be the center of mass of n − 2 points; K the midpoint of the chord
connecting the two remaining points, O the center of the circle, and M the center of mass
of all the given points. If line OM intersects a(?) line drawn through M1 at point P , then

OM

MP
=

KM

MM1

=
n − 2

2

and, therefore, the position of point P is uniquely determined by the position of points O
and M (if M = O, then P = O).

14.14. Let P be the center of mass of points A, B and C of masses a, b and c, respectively,
M the center of mass of points A, B and C (the mass of M is a + b + c) and Q the center of
mass of the union of these two systems of points. The midpoint of segment AB is the center
of mass of points A, B and C of mass a + b + c − ab

c
, a + b + c − ab

c
and 0, respectively, and

the midpoint of segment A1B1 is the center of mass of points A, B and C of mass a(b+c)
c

,
b(a+c)

c
and (b + c) + (a + c), respectively. Point O is the center of mass of the union of these

systems of points.
14.15. a) Place masses β, γ and b + c in points B, C and A so that CA1 : BA1 = β : γ,

BC1 : AC1 = b : β and AB1 : CB1 = γ : c. Then M is the center of mass of this system
and, therefore, A1M

AM
= b+c

β+γ
. Point P is the center of mass of points A, B and C of masses c,

β and γ and, therefore, A1P
PA

= c
β+γ

. Similarly, A1Q
AQ

= b
b+γ

.

b) As in heading a), we get MC1

MB1
= c+γ

b+β
, BC1

AB
= b

b+β
and AC

CB1
= c+γ

c
. Moreover, b = c

because straight lines AA1, BB1 and CC1 intersect at one point (cf. Problem 14.7).
14.16. The intersection point of lines PQ and P1Q1 is the center of mass of points A,

B and C of masses a, b and c and P is the center of mass of points A and B of masses a− x
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and b while Q is the center of mass of points A and C of masses x and c. Let p = BP
PA

= a−x
b

and q = CQ
QA

= x
c
. Then pb + qc = a. Similarly, p1b + q1c = a. It follows that

BD

CD
= −c

b
=

(p − p1)

(q − q1)
.

14.17. Let us enumerate the points of the given system. Let xi be the vector with the
beginning at O and the end at the point of index i and of mass mi. Then

∑

mixi = 0.

Further, let a =
−−→
OX. Then

IO =
∑

m2
ii,

IM =
∑

mi(xi + a)2 =
∑

mix
2
i + 2(

∑

mixi, a) +
∑

mia
2 = IO + ma2.

14.18. a) Let xi be the vector with the beginning at the center of mass O and the end
at the point of index i. Then

∑

i,j

(xi − xj)
2 =

∑

i,j

(x2
i + x2

j) − 2
∑

i,j

(xi,xj),

where the sum runs over all the possible pairs of indices. Clearly,

∑

i,j

(x2
i + x2

j) = 2n
∑

i

x2
i = 2nIO;

∑

i,j

(xi,xj) =
∑

i

(xi,
∑

j

xj) = 0.

Therefore, 2nIO =
∑

i,j(xi − xj)
2 = 2

∑

i<j a2
ij.

b) Let xi be the vector with the beginning at the center of mass O and the end at the
point with index i. Then

∑

i,j

mimj(xi − xj)
2 =

∑

i,j

mimj(x
2
i + x2

j) − 2
∑

i,j

mimj(xi,xj).

It is clear that
∑

i,j

mimj(x
2
i + x2

j) =
∑

i

mi

∑

j

(mjx
2
i + mjx

2
j) =

∑

i

mi(mx2
i + IO) = 2mIO

and
∑

i,j

mimj(xi,xj) =
∑

i

mi(xi,
∑

j

mjxj) = 0.

Therefore,

2mIO =
∑

i,j

mimj(xi − xj)
2 = 2

∑

i<j

mimja
2
ij.

14.19. a) Let M be the point symmetric to A through line BC. Then M is the center
of mass of points A, B and C whose masses are −1, 1 and 1, respectively, and, therefore,

−AX2 + BX2 + CX2 = IX = IM + (−1 + 1 + 1)MX2 = (−3 + 1 + 1)a2 + MX2,

where a is the length of the side of triangle ABC. As a result we see that the locus to be
found is the circle of radius a with the center at M .

b) Let A′, B′ and C ′ be the projections of point X to lines BC, CA and AB, respec-
tively. Points B′ and C ′ belong to the circle with diameter AX and, therefore, B′C ′ =

AX sin B′AC ′ =
√

3
2

AX. Similarly, C ′A′ =
√

3
2

BX and A′B′ =
√

3
2

CX. Therefore, if
AX2 = BX2 + CX2, then ∠B′A′C ′ = 90◦.
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14.20. Let M be the center of mass of the vertices of triangle ABC with unit masses in
them. Then

IO = IM + 3MO2 =
1

3
(a2 + b2 + c2) + 3MO2

(cf. Problems 14.17 and 14.18 a)). Since OA = OB = OC = R, it follows that IO = 3R2. It
remains to notice that OH = 3OM (Problem 5.105).

14.21. It is clear that

AX

XA1

=
AX2

AX · XA1

=
AX2

R2 − OX2
.

Therefore, we have to verify that AX2 + BX2 + CX2 = 3(R2 −OX2) if and only if OM2 =
OX2 + MX2. To this end it suffices to notice that

AX2 + BX2 + CX2 = IX = IM + 3MX2 =

IO − 3MO2 + 3MX2 = 3(R2 − MO2 + MX2).

14.22. Let P be the center of mass of points A, B and C whose masses are α, β and γ,
respectively. We may assume that α + β + γ = 1. If K is the intersection point of lines CP
and AB, then

BC

PA1

=
CK

PK
=

CP + PK

PK
= 1 +

CP

PK
= 1 +

α + β

γ
=

1

γ
.

Similar arguments show that the considered quantity is equal to βγa2+γαb2+αβc2 = IP (cf.
Problem 14.18 b)). Since IO = αR2 +βR2 +γR2 = R2, we have IP = IO−OP 2 = R2−OP 2.

14.23. Let us place unit masses in the given points. As follows from the result of Problem
14.18 a) the sum of squared distances between the given points is equal to nI, where I is the
moment of inertia of the system of points with respect to its center of mass. Now, consider
the moment of inertia of the system with respect to the center O of the circle. On the one
hand, I ≤ IO (see Problem 14.17). On the other hand, since the distance from O to any of
the given points does not exceed R, it follows that IO ≤ nR2. Therefore, nI ≤ n2R2 and the
equality is attained only if I = IO (i.e., when the center of mass coincides with the center of
the circle) and IO = nR2 (i.e., all the points lie on the given circle).

14.24. Let A1, B1 and C1 be projections of point P to sides BC, CA and AB, respec-
tively; let M be the center of mass of triangle A1B1C1. Then

3(d2
a + d2

b + d2
c) = 3IP ≥

3IM = A1B
2
1 + B1C

2
1 + C1A

2
1 = (Rc sin C)2 + (Ra sin A)2 + (Rb sin B)2

because, for example, segment A1B1 is a chord of the circle with diameter CP .
14.25. Let O be the center of the given circle. If chord AB passes through M , then

AM · BM = R2 − d2, where d = MO. Denote by IX the moment of inertia of the system
of points A1, . . . , An with respect to X. Then IO = IM + nd2 (see Problem 14.17). On the
other hand, since OAi = R, we deduce that IO = nR2. Therefore,

AiM · BiM = R2 − d2 =
1

n
(A1M

2 + · · · + AnM2).

Set ai = AiM . Then the inequality to be proved takes the form

a1 + · · · + an ≤ 1

n
(a2

1 + · · · + a2
n)(

1

a1

+ · · · + 1

an

).
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To prove this inequality we have to make use of the inequality

x + y ≤ (
x2

y
) + (

y2

x
)

which is obtained from the inequality xy ≤ x2 − xy + y2 by multiplying both of its sides by
x+y
xy

.

14.26. Let us place unit masses in the vertices of the polygon. Under the symmetry
through a line this system of points turns into itself and, therefore, its center of mass also
turns into itself. It follows that all the axes of symmetry pass through the center of mass of
the vertices.

14.27. Let us place unit masses in the centers of the cells which form “corners” and
rectangles. Let us split each initial small cell of the graph paper into four smaller cells
getting as a result a new graph paper. It is easy to verify that now the center of mass of a
corner belongs to the center of a new small cell and the center of mass of a rectangle is a
vertex of a new small cell, cf. Fig. 146.

Figure 146 (Sol. 14.27)

It is clear that the center of mass of a figure coincides with its center of symmetry and
the center of symmetry of the figure consisting of the initial cells can only be situated in a
vertex of a new cell. Since the masses of corners and bars (rectangles) are equal, the sum
of vectors with the source in the center of mass of a figure and the targets in the centers of
mass of all the corners and bars is equal to zero. If the number of corners had been odd,
then the sum of the vectors would have had half integer coordinates and would have been
nonzero. Therefore, the number of corners is an even one.

14.28. Let us place unit masses in the vertices of the polygon A1 . . . An. Then O is the

center of mass of the given system of points. Therefore,
−−→
AiO = 1

n
(
−−−→
AiA1 + · · · + −−−→

AiAn) and

AiO ≤ 1
n
(AiA1 + · · · + AiAn); it follows that

d = A1O + · · · + AnO ≤ 1

n

n
∑

i,j=1

AiAj.

We can express the number n either in the form n = 2m or in the form n = 2m + 1. Let P
be the perimeter of the polygon. It is clear that

A1A2 + · · · + AnA1 = P,
A1A3 + A2A4 + · · · + AnA2 ≤ 2P,

. . . . . . . . . . . . . . . . . . . . . . . . . . .
A1Am+1 + A2Am+2 + · · · + AnAm ≤ mP
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and in the left-hand sides of these inequalities all the sides and diagonals are encountered.
Since they enter the sum

∑n
i,j=1 AiAj twice, it is clear that

d ≤ 1

n

n
∑

i,j=1

AiAj ≤
2

n
(P + 2P + · · · + mP ) =

m(m + 1)

n
P.

For n even this inequality can be strengthened due to the fact that in this case every diagonal
occuring in the sum A1Am+1 + · · · + AnAm+n is counted twice, i.e., instead of mP we can
take m

2
P . This means that for n even we have

d ≤ 2

n
(P + 2P + · · · + (m − 1)P +

m

2
P ) =

m2

n
P.

Thus, we have

d ≤
{

m2

n
P = n

4
P if n is even

m(m+1)
n

P = n2−1
4n

P if n is odd.

14.29. Let k = BK
BC

= 1 − DL
DC

. Under the projection to a line perpendicular to diagonal
BD points A, B, K and L pass into points A′, B′, K ′ and L′, respectively, such that

B′K ′ + B′L′ = kA′B′ + (1 − k)A′B′ = A′B′.

It follows that the center of mass of points A′, K ′ and L′ coincides with B′. It remains to
notice that under the projection a center of mass turns into a center of mass.

14.30. Introduce the following notations: e1 =
−−−→
A3A1, e2 =

−−−→
A3A2 and x =

−−→
XA3. Point

X is the center of mass of the vertices of triangle A1A2A3 with masses m1, m2, m3 attached
to them if and only if

m1(x + e1) + m2(x + e2) + m3x = 0,

i.e., mx = −(m1e1+m2e2), where m = m1+m2+m3. Let us assume that m = 1. Any vector
x on the plane can be represented in the form x = −m1e1 − m2e2, where the numbers m1

and m2 are uniquely defined. The number m3 is found from the relation m3 = 1−m1 −m2.
14.31. This problem is a reformulation of Problem 13.29.

Remark. If we assume that the areas of triangles BCX, CAX and ABX are oriented,
then the statement of the problem remains true for all the points situated outside the triangle
as well.

14.32. Under the projection to line AB parallel to line BC vector u =
−−→
XA ·BL +

−−→
XB ·

AK +
−−→
XC · LK turns into vector

−→
LA · BL +

−→
LB · AK +

−→
LB · LK. The latter vector is the

zero one since
−→
LA =

−−→
LK +

−−→
KA. Considering the projection to line AB parallel to line AC

we get u = 0.
14.33. Making use of the result of Problem 14.31 it is easy to verify that the answer is

as follows: a) (sin 2α : sin 2β : sin 2γ); b) (a : b : c); c) (tan α : tan β : tan γ).

14.34. Adding vector (β +γ)
−−→
XA to both sides of the equality α

−−→
XA+β

−−→
XB +γ

−−→
XC =

−→
0

we get −−→
XA = (β + γ)

−−→
XA + β

−−→
BX + γ

−−→
CX = β

−→
BA + γ

−→
CA.

14.35. By Problem 14.1 b) we have 3
−−→
XM =

−−→
XA +

−−→
XB +

−−→
XC. Moreover,

−−→
XA =

β
−→
BA + γ

−→
CA,

−−→
XB = α

−→
AB + γ

−−→
CB and

−−→
XC = α

−→
AC + β

−−→
BC (see Problem 14.34).

14.36. Let the lines through point X parallel to AC and BC intersect the line AB
at points K and L, respectively. If (α : β : γ) are the barycentric coordinates of X and
α + β + γ = 1, then

2
−−→
XC1 =

−−→
XK +

−−→
XL = γ

−→
CA + γ

−−→
CB



318 CHAPTER 14. THE CENTER OF MASS

(see the solution of Problem 14.42). Therefore,

3
−−−→
XM1 =

−−→
XA1 +

−−→
XB1 +

−−→
XC1 =

1
2
(α(

−→
AB +

−→
AC) + β(

−→
BA +

−−→
BC) + γ

−→
CA +

−−→
CB) = 3

2

−−→
XM

(see Problem 14.35).
14.37. Let X be an arbitrary point, O the center of the circumscribed circle of the given

triangle, ei =
−−→
OAi and a =

−−→
XO. If the barycentric coordinates of X are (x1 : x2 : x3), then

∑

xi(a + ei) =
∑

xi
−−→
XAi = 0 because X is the center of mass of points A1, A2, A3 with

masses x1, x2, x3. Therefore, (
∑

xi)a = −
∑

xiei.
Point X belongs to the circumscribed circle of the triangle if and only if |a| = XO = R,

where R is the radius of this circle. Thus, the circumscribed circle of the triangle is given in
the barycentric coordinates by the equation

R2(
∑

xi)
2 = (

∑

xiei)
2,

i.e.,

R
2

∑

x2
i + 2R2

∑

i<j

xixj = R2
∑

x2
i + 2

∑

i<j

xixj(ei, ej)

because |ei| = R. This equation can be rewritten in the form
∑

i<j

xixj(R
2 − (ei, ej)) = 0.

Now notice that 2(R2 − (ei, ej)) = a2
ij, where aij is the length of side AiAj. Indeed,

a2
ij = |ei − ej|2 = |ei|2 + |ej|2 − 2(ei, ej) = 2(R2 − (ei, ej)).

As a result we see that the circumscribed circle of triangle A1A2A3 is given in the barycentric
coordinates by the equation

∑

i<j xixjaij = 0, where aij is the length of side AiAj.

14.38. a) Let X and Y be the points with barycentric coordinates (α : β : γ) and
(α−1 : β−1 : γ−1) and let lines CX and CY intersect line AB at points X1 and Y1, respectively.
Then

AX1 : BX1 = β : α = α−1 : β−1 = BY1 : AY1.

Similar arguments for lines AX and BX show that points X and Y are isotomically conjugate
with respect to triangle ABC.

b) Let X be the point with barycentric coordinates (α : β : γ). We may assume that
α + β + γ = 1. Then by Problem 14.34 we have

−−→
AX = β

−→
AB + γ

−→
AC = βc(

−→
AB

c
) + γb(

−→
AC

b
).

Let Y be the point symmetric to X through the bisector of angle ∠A and (α′ : β′ : γ′) the

barycentric coordinates of Y . It suffices to verify that β′ : γ′ = b2

β
: c2

γ
. The symmetry

through the bisector of angle ∠A interchanges unit vectors
−→
AB
c

and
−→
AC
b

, consequently,
−→
AY =

βc
−→
AC
b

+ γb
−→
AB
c

. It follows that

β′ : γ′ =
γb

c
: βcb =

b2

β
:
c2

γ
.



Chapter 15. PARALLEL TRANSLATIONS

Background

1. The parallel translation by vector
−→
AB is the transformation which sends point X into

point X ′ such that
−−→
XX ′ =

−→
AB.

2. The composition (i.e., the consecutive execution) of two parallel translations is, clearly,
a parallel translation.

Introductory problems

1. Prove that every parallel translation turns any circle into a circle.
2. Two circles of radius R are tangent at point K. On one of them we take point A,n

on the other one we take point B such that ∠AKB = 90◦. Prove that AB = 2R.
3. Two circles of radius R intersect at points M and N . Let A and B be the intersection

points of these circles with the perpendicular erected at the midpoint of segment MN . It so
happens that the circles lie on one side of line MN . Prove that MN2 + AB2 = 4R2.

4. Inside rectangle ABCD, point M is taken. Prove that there exists a convex quadri-
lateral with perpendicular diagonals of the same length as AB and BC whose sides are equal
to AM , BM , CM , DM .

§1. Solving problems with the aid of parallel translations

15.1. Where should we construct bridge MN through the river that separates villages
A and B so that the path AMNB from A to B was the shortest one? (The banks of the
river are assumed to be parallel lines and the bridge perpendicular to the banks.)

15.2. Consider triangle ABC. Point M inside the triangle moves parallel to side BC to
its intersection with side CA, then parallel to AB to its intersection with BC, then parallel to
AC to its intersection with AB, and so on. Prove that after a number of steps the trajectory
of the point becomes a closed one.

15.3. Let K, L, M and N be the midpoints of sides AB, BC, CD and DA, respectively,
of convex quadrilateral ABCD.

a) Prove that KM ≤ 1
2
(BC + AD) and the equality is attained only if BC ‖ AD.

b) For given lengths of the sides of quadrilateral ABCD find the maximal value of the
lengths of segments KM and LN .

15.4. In trapezoid ABCD, sides BC and AD are parallel, M the intersection point of
the bisectors of angles ∠A and ∠B, and N the intersection point of the bisectors of angles
∠C and ∠D. Prove that 2MN = |AB + CD − BC − AD|.

15.5. From vertex B of parallelogram ABCD heights BK and BH are drawn. It is
known that KH = a and BD = b. Find the distance from B to the intersection point of the
heights of triangle BKH.

15.6. In the unit square a figure is placed such that the distance between any two of its
points is not equal to 0.001. Prove that the area of this figure does not exceed a) 0.34; b)
0.287.

319
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§2. Problems on construction and loci

15.7. Consider angle ∠ABC and straight line l. Construct a line parallel to l on which
the legs of angle ∠ABC intercept a segment of given length a.

15.8. Consider two circles S1, S2 and line l. Draw line l1 parallel to l so that:
a) the distance between the intersection points of l1 with circles S1 and S2 is of a given

value a;
b) S1 and S2 intercept on l1 equal chords;
c) S1 and S2 intercept on l1 chords the sum (or difference) of whose lengths is equal to

a given value.
15.9. Consider nonintersecting chords AB and CD on a circle. Construct a point X on

the circle so that chords AX and BX would intercept on chord CD a segment, EF , of a
given length a.

15.10. Construct quadrilateral ABCD given the quadrilateral’s angles and the lengths
of sides AB = a and CD = b.

15.11. Given point A and circles S1 and S2. Through A draw line l so that S1 and S2

intercept on l equal chords.
15.12. a) Given circles S1 and S2 intersect at points A and B. Through point A draw

line l so that the intercept of this line between circles S1 and S2 were of a given length.
b) Consider triangle ABC and triangle PQR. In triangle ABC inscribe a triangle equal

to PQR.
15.13. Construct a quadrilateral given its angles and diagonals.

* * *

15.14. Find the loci of the points for which the following value is given: a) the sum, b)
the difference of the distances from these points to the two given straight lines.

15.15. An angle made of a transparent material moves so that two nonintersecting circles
are tangent to its legs from the inside. Prove that on the angle a point circumscribing an
arc of a circle can be marked.

Problems for independent study

15.16. Consider two pairs of parallel lines and point P . Through P draw a line on which
both pairs of parallel lines intercept equal segments.

15.17. Construct a parallelogram given its sides and an angle between the diagonals.
15.18. In convex quadrilateral ABCD, sides AB and CD are equal. Prove that
a) lines AB and CD form equal angles with the line that connects the midpoints of sides

AC and BD;
b) lines AB and CD form equal angles with the line that connects the midpoints of

diagonals BC and AD.
15.19. Among all the quadrilaterals with given lengths of the diagonals and an angle

between them find the one of the least perimeter.
15.20. Given a circle and two neighbouring vertices of a parallelogram. Construct the

parallelogram if it is known that its other two (not given) vertices belong to the given circle.

Solutions

15.1. Let A′ be the image of point A under the parallel translation by
−−→
MN . Then

A′N = AM and, therefore, the length of path AMNB is equal to A′N + NB + MN .
Since the length of segment MN is a constant, we have to find point N for which the sum
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A′N +NB is the least one. It is clear that the sum is minimal if N belongs to segment A′B,
i.e., N is the closest to B intersection point of the bank and segment A′B.

Figure 147 (Sol. 15.2)

15.2. Denote the consecutive points of the trajectory on the sides of the triangle as on
Fig. 147:

A1, B1, B2, C2, C3, A3, A4, B4, . . .

Since A1B1 ‖ AB2, B1B2 ‖ CA1 and B1C ‖ B2C2, it is clear that triangle AB2C2 is the
image of triangle A1B1C under a parallel translation. Similarly, triangle A3BC3 is the image
of triangle AB2C2 under a parallel translation and A4B4C is obtained in the same way from
A3BC3. But triangle A1B1C is also the image of triangle A3BC3 under a parallel translation,
hence, A1 = A4, i.e., after seven steps the trajectory becomes closed. (It is possible for the
trajectory to become closed sooner. Under what conditions?)

15.3. a) Let us complement triangle CBD to parallelogram CBDE. Then 2KM =
AE ≤ AD + DE = AD + BC and the equality is attained only if AD ‖ BC.

b) Let a = AB, b = BC, c = CD and d = DA. If |a − c| = |b − d| 6= 0 then by heading
a) the maximum is attained in the degenerate case when all points A, B, C and D belong
to one line. Now suppose that, for example, |a − c| < |b − d|. Let us complement triangles
ABL and LCD to parallelograms ABLP and LCDQ, respectively; then PQ ≥ |b − d| and,
therefore,

LN2 =
1

4
(2LP 2 + 2LQ2 − PQ2) ≤ 1

4
(2(a2 + c2) − (b − d)2).

Moreover, by heading a) KM ≤ 1
2
(b + d). Both equalities are attained when ABCD is a

trapezoid with bases AD and BC.
15.4. Let us construct circle S tangent to side AB and rays BC and AD; translate

triangle CND parallelly (in the direction of bases BC and AD) until N ′ coincides with
point M , i.e., side C ′D′ becomes tangent to circle S (Fig. 148).

Figure 148 (Sol. 15.4)

For the circumscribed trapezoid ABC ′D′ the equality 2MN ′ = |AB+C ′D′−BC ′−AD′| is
obvious because N ′ = M . Under the passage from trapezoid ABC ′D′ to trapezoid ABCD
the left-hand side of this equality accrues by 2N ′N and the right-hand side accrues by
CC ′ + DD′ = 2NN ′. Hence, the equality is preserved.
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15.5. Denote the intersection point of heights of triangle BKH by H1. Since HH1 ⊥ BK
and KH1 ⊥ BH, it follows that HH1 ‖ AD and KH1 ‖ DC, i.e., H1HDK is a parallelogram.

Therefore, under the parallel translation by vector
−−→
H1H point K passes to point D and point

B passes to point P (Fig. 149). Since PD ‖ BK, it follows that BPDK is a rectangle and
PK = BD = b. Since BH1 ⊥ KH, it follows that PH ⊥ KH. It is also clear that
PH = BH1.

Figure 149 (Sol. 15.5)

In right triangle PKH, hypothenuse KP = b and the leg KH = a are known; therefore,
BH1 = PH =

√
b2 − a2.

15.6. a) Denote by F the figure that lies inside the unit square ABCD; let S be its

area. Let us consider two vectors
−−→
AA1 and

−−→
AA2, where point A1 belongs to side AD and

AA1 = 0.001 and where point A2 belongs to the interior of angle ∠BAD, ∠A2AA1 = 60◦

and AA2 = 0.001 (Fig. 150).

Figure 150 (Sol. 15.6 a))

Let F1 and F2 be the images of F under the parallel translations by vectors
−−→
AA1 and−−→

AA2, respectively. The figures F , F1 and F2 have no common points and belong to the
interior of the square with side 1.001. Therefore, 2S < 1.0012, i.e., S < 0.335 < 0.34.

b) Consider vector
−−→
AA3 =

−−→
AA1 +

−−→
AA2. Let us rotate

−−→
AA3 about point A through an

acute angle counterclockwise so that point A3 turns into point A4 such that A3A4 = 0.001.

Let us also consider vectors
−−→
AA5 and

−−→
AA6 of length 0.001 each constituting an angle of 30◦

with vector
−−→
AA4 and situated on both sides of it (Fig. 151).

Denote by Fi the image of figure F under the parallel translation by the vector
−−→
AAi.

Denote the area of the union of figures A and B by S(A ∪ B) and by S(A ∩ B) the area of
their intersection.

For definiteness, let us assume that S(F4 ∩ F ) ≤ S(F3 ∩ F ). Then S(F4 ∩ F ) ≤ 1
2
S

and, therefore, S(F4 ∪ F ) ≥ 3
2
S. The figures F5 and F6 do not intersect either each other
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Figure 151 (Sol. 15.6 b))

or figures F or F4 and, therefore, S(F ∪ F4 ∪ F5 ∪ F6) ≥ 7
2
S. (If it would have been that

S(F3 ∩ F ) ≤ S(F4 ∩ F ), then instead of figures F5 and F6 we should have taken F1 and F2.)

Since the lengths of vectors
−−→
AAi do not exceed 0.001

√
3, all the figures considered lie inside

a square with side 1 + 0.002
√

3. Therefore, 7S/2 ≤ (1 + 0.002
√

3)2 and S < 0.287.
15.7. Given two vectors ±a parallel to l and of given length a. Consider the images of

ray BC under the parallel translations by these vectors. Their intersection point with ray
BA belongs to the line to be constructed (if they do not intersect, then the problem has no
solutions).

15.8. a) Let S ′
1 be the image of circle S1 under the parallel translation by a vector

of length a parallel to l (there are two such vectors). The desired line passes through the
intersection point of circles S ′

1 and S2.
b) Let O1 and O2 be the projections of the centers of circles S1 and S2 to line l; let S ′

1

be the image of the circle S1 under the parallel translation by vector
−−−→
O1O2. The desired line

passes through the intersection point of circles S ′
1 and S2.

c) Let S ′
1 be the image of circle S1 under the parallel translation by a vector parallel to l.

Then the lengths of chords cut by the line l1 on circles S1 and S ′
1 are equal. If the distance

between the projections of the centers of circles S ′
1 and S2 to line l is equal to 1

2
a, then the

sum of difference of the lengths of chords cut by the line parallel to l and passing through
the intersection point of circles S ′

1 and S2 is equal to a. Now it is easy to construct circle S ′
1.

15.9. Suppose that point X is constructed. Let us translate point A by vector
−→
EF , i.e.,

let us construct point A′ such that
−→
EF =

−−→
AA′. This construction can be performed since we

know vector
−→
EF : its length is equal to a and it is parallel to CD.

Figure 152 (Sol. 15.9)
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Since AX ‖ A′F , it follows that ∠A′FB = ∠AXB and, therefore, angle ∠A′FB is
known. Thus, point F belongs to the intersection of two figures: segment CD and an arc
of the circle whose points are vertices of the angles equal to ∠AXB that subtend segment
A′B, see Fig. 152.

15.10. Suppose that quadrilateral ABCD is constructed. Denote by D1 the image of

point D under the parallel translation by vector
−−→
CB. In triangle ABD1, sides AB, BD1 and

angle ∠ABD1 are known. Hence, the following construction.
Let us arbitrarily construct ray BC ′ and then draw rays BD′

1 and BA′ so that ∠D′
1BC ′ =

180◦ − ∠C, ∠A′BC ′ = ∠B and these rays lie in the half plane on one side of ray BC ′.
On rays BA′ and BD′

1, draw segments BA = a and BD1 = b, respectively. Let us draw
ray AD′ so that ∠BAD′ = ∠A and rays BC ′, AD′ lie on one side of line AB. Vertex D is
the intersection point of ray AD′ and the ray drawn from D1 parallel to ray BC ′. Vertex C
is the intersection point of BC ′ and the ray drawn from D parallel to ray D1B.

15.11. Suppose that points M and N at which line l intersects circle S2 are constructed.
Let O1 and O2 be the centers of circles S1 and S2; let O′

1 be the image of point O1 under the
parallel translation along l such that O′

1O2 ⊥ MN ; let S ′
1 be the image of circle S1 under

the same translation.
Let us draw tangents AP and AQ to circles S ′

1 and S2, respectively. Then AQ2 =
AM ·AN = AP 2 and, therefore, O′

1A
2 = AP 2 +R2, where R is the radius of circle S ′

1. Since
segment AP can be constructed, we can also construct segment AO′

1. It remains to notice
that point O′

1 belongs to both the circle of radius AO′
1 with the center at A and to the circle

with diameter O1O2.
15.12. a) Let us draw through point A line PQ, where P belongs to circle S and Q

belongs to circle S2. From the centers O1 and O2 of circles S1 and S2, respectively, draw
perpendiculars O1M and O2N to line PQ. Let us parallelly translate segment MN by a

vector
−−−→
MO1. Let C be the image of point N under this translation.

Triangle O1CO2 is a right one and O1C = MN = 1
2
PQ. It follows that in order to con-

struct line PQ for which PQ = a we have to construct triangle O1CO2 of given hypothenuse
O1O2 and leg O1C = 1

2
a and then draw through A the line parallel to O1C.

b) It suffices to solve the converse problem: around the given triangle PQR circumscribe
a triangle equal (?) to the given triangle ABC. Suppose that we have constructed triangle
ABC whose sides pass through given points P , Q and R. Let us construct the arcs of circles
whose points serve as vertices for angles ∠A and ∠B that subtend segments RP and QP ,
respectively. Points A and B belong to these arcs and the length of segment AB is known.

By heading a) we can construct line AP through P whose intercept between circles S1

and S2 is of given length. Draw lines AR and BQ; we get triangle ABC equal to the given
triangle since these triangles have by construction equal sides and the angles adjacent to it.

15.13. Suppose that the desired quadrilateral ABCD is constructed. Let D1 and D2 be

the images of point D under the translations by vectors
−→
AC and

−→
CA, respectively. Let us

circumscribe circles S1 and S2 around triangles DCD1 and DAD2, respectively. Denote the
intersection points of lines BC and BA with circles S1 and S2 by M and N , respectively,
see Fig. 153. It is clear that ∠DCD1 = ∠DAD2 = ∠D, ∠DCM = 180◦ − ∠C and
∠DAN = 180◦ − ∠A.

This implies the following construction. On an arbitrary line l, take a point, D, and
construct points D1 and D2 on l so that DD1 = DD2 = AC. Fix one of the half planes Π
determined by line l and assume that point B belongs to this half plane. Let us construct
a circle S1 whose points belonging to Π serve as vertices of the angles equal to ∠D that
subtend segment DD1.
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Figure 153 (Sol. 15.13)

We similarly construct circle S2. Let us construct point M on S1 so that all the points
of the part of the circle that belongs to Π serve as vertices of the angles equal to 180◦ −∠C
that subtend segment DM .

Point N is similarly constructed. Then segment MN subtends angle ∠B, i.e., B is the
intersection point of the circle with center D of radius DB and the arc of the circle serve
as vertices of the angles equal to ∠B that subtend segment MN (it also belongs to the half
plane Π). Points C and A are the intersection points of lines BM and BN with circles S1

and S2, respectively.
15.14. From a point X draw perpendiculars XA1 and XA2 to given lines l1 and l2,

respectively. On ray A1X, take point B so that A1B = a. Then if XA1 ± XA2 = a, we

have XB = XA2. Let l′1 be the image of line l1 under the parallel translation by vector
−−→
A1B

and M the intersection point of lines l′1 and l2. Then in the indicated cases ray MX is the
bisector of angle ∠A2MB. As a result we get the following answer.

Let the intersection points of lines l1 and l2 with the lines parallel to lines l1 and l2 and
distant from them by a form rectangle M1M2M3M4. The locus to be found is either a) the
sides of this rectangle; or b) the extensions of these sides.

15.15. Let leg AB of angle ∠BAC be tangent to the circle of radius r1 with center O1

and leg AC be tangent to the circle of radius r2 with center O2. Let us parallelly translate
line AB inside angle ∠BAC by distance r1 and let us parallelly translate line AC inside
angle ∠BAC by distance r2. Let A1 be the intersection point of the translated lines (Fig.
154).

Figure 154 (Sol. 15.15)

Then ∠O1A1O2 = ∠BAC. The constant(?) angle O1A1O2 subtends fixed segment O1O2

and, therefore, point A1 traverses an arc of a(?) circle.





Chapter 16. CENTRAL SYMMETRY

Background

1. The symmetry through point A is the transformation of the plane which sends point
X into point X ′ such that A is the midpoint of segment XX ′. The other names of such a
transformation: the central symmetry with center A or just the symmetry with center A.

Notice that the symmetry with center A is a particular case of two other transformations:
it is the rotation through an angle of 180◦ with center A and also the homothety with center
A and coefficient −1.

2. If a figure turns into itself under the symmetry through point A, then A is called the
center of symmetry of this figure.

3. The following notations for transformations are used in this chapter:
SA — the symmetry with center A;
Ta — the translation by vector a.
4. We will denote the composition of symmetries through points A and B by SB◦SA; here

we assume that we first perform symmetry SA and then symmetry SB. This notation might
look unnatural at first glance, but it is, however, justified by the identity (SB ◦ SA)(X) =
SB(SA(X)).

The composition of maps is associative: F ◦ (G ◦H) = (F ◦G) ◦H. Therefore, the order
of the compositions is inessential and we may simply write F ◦ G ◦ H.

5. The compositions of two central symmetries or of a symmetry with a parallel transla-
tion are calculated according to the following formulas (Problem 16.9):

a) SB ◦ SA = T
2
−→
AB

;

b) Ta ◦ SA = SB and SB ◦ Ta = SA, where a = 2
−→
AB.

Introductory problems

1. Prove that under any central symmetry any circle turns into a circle.
2. Prove that a quadrilateral with a center of symmetry is a parallelogram.
3. The opposite sides of a convex hexagon are equal and parallel. Prove that the hexagon

has a center of symmetry.
4. Consider parallelogram ABCD and point M . The lines parallel to lines MC, MD,

MA and MB are drawn through points A, B, C and D, respectively. Prove that the lines
drawn intersect at one point.

5. Prove that the opposite sides of a hexagon formed by the sides of a triangle and the
tangents to its circumscribed circle parallel to the sides of the triangle are equal.

§1. Solving problems with the help of a symmetry

16.1. Prove that if in a triangle a median and a bisector coincide, then the triangle is
an isosceles one.

327
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16.2. Two players lay out nickels on a rectangular table taking turns. It is only allowed
to place a coin onto an unoccupied place. The loser is the one who can not make any move.
Prove that the first player can always win in finitely many moves.

16.3. A circle intersects sides BC, CA, AB of triangle ABC at points A1 and A2, B1

and B2, C1 and C2, respectively. Prove that if the perpendiculars to the sides of the triangle
drawn through points A1, B1 and C1 intersect at one point, then the perpendiculars to the
sides drawn through A2, B2 and C2 also intersect at one point.

16.4. Prove that the lines drawn through the midpoints of the circumscribed quadrilat-
eral perpendicularly to the opposite sides intersect at one point.

16.5. Let P be the midpoint of side AB of convex quadrilateral ABCD. Prove that if
the area of triangle PCD is equal to a half area of quadrilateral ABCD, then BC ‖ AD.

16.6. Unit circles S1 and S2 are tangent at point A; the center O of circle S of radius 2
belongs to S1. Circle S1 is tangent to circle S at point B. Prove that line AB passes through
the intersection point of circles S2 and S.

16.7. In triangle ABC medians AF and CE are drawn. Prove that if ∠BAF = ∠BCE =
30◦, then triangle ABC is an equilateral one.

16.8. Consider a convex n-gon with pairwise nonparallel sides and point O inside it.
Prove that it is impossible to draw more than n lines through O so that each line divides
the area of the n-gon in halves.

§2. Properties of the symmetry

16.9. a) Prove that the composition of two central symmetries is a parallel translation.
b) Prove that the composition of a parallel translation with a central symmetry (in either

order) is a central symmetry.
16.10. Prove that if a point is reflected symmetrically through points O1, O2 and O3

and then reflected symmetrically once again through the same points, then it assumes the
initial position.

16.11. a) Prove that a bounded figure cannot have more than one center of symmetry.
b) Prove that no figure can have precisely two centers of symmetry.
c) Let M be a finite set of points on a plane. Point O will be called an “almost center of

symmetry” of the set M if we can delete a point from M so that O becomes the center of
symmetry of the remaining set. How many “almost centers of symmetry” can a set have?

16.12. On segment AB, consider n pairs of points symmetric through the midpoint; n
of these 2n points are painted blue and the remaining are painted red. Prove that the sum
of distances from A to the blue points is equal to the sum of distances from B to the red
points.

§3. Solving problems with the help of a symmetry. Constructions

16.13. Through a common point A of circles S1 and S2 draw a straight line so that these
circles would intercept on it equal chords.

16.14. Given point A, a line and a circle. Through A draw a line so that A divides the
segment between the intersection points of the line drawn with the given line and the given
circle in halves.

16.15. Given angle ABC and point D inside it. Construct a segment with the endpoints
on the legs of the given angle and with the midpoint at D.

16.16. Consider an angle and points A and B inside it. Construct a parallelogram for
which points A and B are opposite vertices and the two other vertices belong to the legs of
the angle.
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16.17. Given four pairwise nonparallel straight lines and point O not belonging to these
lines. Construct a parallelogram whose center is O and the vertices lie on the given lines,
one on each.

16.18. Consider two concentric circles S1 and S2. Draw a line on which these circles
intercept three equal segments.

16.19. Consider nonintersecting chords AB and CD of a circle and point J on chord
CD. Construct point X on the circle so that chords AX and BX would intercept on chord
CD segment EF which J divides in halves.

16.20. Through a common point A of circles S1 and S2 draw line l so that the difference
of the lengths of the chords intercepted by circles S1 and S2 on l were of given value a.

16.21. Given m = 2n + 1 points — the midpoints of the sides of an m-gon — construct
the vertices of the m-gon.

Problems for independent study

16.22. Construct triangle ABC given medians ma, mb and angle ∠C.
16.23. a) Given a point inside a parallelogram; the point does not belong to the segments

that connect the midpoints of the opposite sides. How many segments divided in halves by
the given point are there such that their endpoints are on the sides of the parallelogram?

b) A point inside the triangle formed by the midlines of a given triangle is given. How
many segments divided in halves by the given point and with the endpoints on the sides of
the given triangle are there?

16.24. a) Find the locus of vertices of convex quadrilaterals the midpoints of whose sides
are the vertices of a given square.

b) Three points are given on a plane. Find the locus of vertices of convex quadrilaterals
the midpoints of three sides of each of which are the given points.

16.25. Points A, B, C, D lie in the indicated order on a line and AB = CD. Prove that
for any point P on the plane we have AP + DP ≥ BP + CP .

Solutions

16.1. Let median BD of triangle ABC be a bisector as well. Let us consider point B1

symmetric to B through point D. Since D is the midpoint of segment AC, the quadrilateral
ABCB1 is a parallelogram. Since ∠ABB1 = ∠B1BC = ∠AB1B, it follows that triangle
B1AB is an isosceles one and AB = AB1 = BC.

16.2. The first player places a nickel in the center of the table and then places nickels
symmetrically to the nickels of the second player with respect to the center of the table.
Using this strategy the first player has always a possibility to make the next move. It is also
clear that the play will be terminated in a finite number of moves.

16.3. Let the perpendiculars to the sides drawn through points A1, B1 and C1 intersect
at point M . Denote the center of the circle by O. The perpendicular to side BC drawn
through point A1 is symmetric through point O to the perpendicular to side BC drawn
through A2. It follows that the perpendiculars to the sides drawn through points A2, B2 and
C2 intersect at the point symmetric to M through point O.

16.4. Let P , Q, R and S be the midpoints of sides AB, BC, CD and DA, respectively,
and M the intersection point of segments PR and QS (i.e., the midpoint of both of these
segments, see Problem 14.5); O the center of the circumscribed circle and O′ the point
symmetric to O through M . Let us prove that the lines mentioned in the formulation of
the problem pass through O′. Indeed, O′POR is a parallelogram and, therefore, O′P ‖ OR.
Since R is the midpoint of chord CD, it follows that OR ⊥ CD, i.e., O′P ⊥ CD.
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For lines O′Q,O′R and O′S the proof is similar.
16.5. Let point D′ be symmetric to D through P . If the area of triangle PCD is equal

to a half area of quadrilateral ABCD, then it is equal toSPBC + SPAD, i.e., it is equal to
SPBC + SPBD′ . Since P is the midpoint of segment DD′, it follows that SPCD′ = SPCD =
SPBC + SPBD′ and, therefore, point B belongs to segment D′C. It remains to notice that
D′B ‖ AD.

16.6. Circles S1 and S2 are symmetric through point A. Since OB is the diameter of
circle S1, it follows that ∠BAO = 90◦ and, therefore, under the symmetry through A point
B becomes on the circle S again. It follows that under the symmetry through A point B
turns into the intersection point of circles S2 and S.

16.7. Since ∠EAF = ∠ECF = 30◦, we see that points A, E, F and C belong to one
circle S and if O is its center, then ∠EOF = 60◦. Point B is symmetric to A through E and,
therefore, B belongs to circle S1 symmetric to circle S through E. Similarly, point B belongs
to circle S2 symmetric to circle S through point F . Since triangle EOF is an equilateral
one, the centers of circles S, S1 and S2 form an equilateral triangle with side 2R, where R is
the radius of these circles. Therefore, circles S1 and S2 have a unique common point — B
— and triangle BEF is an equilateral one. Thus, triangle ABC is also an equilateral one.

16.8. Consider a polygon symmetric to the initial one through point O. Since the sides
of the polygons are pairwise nonparallel, the contours of these polygons cannot have common
segments but could only have common points. Since the polygons are convex ones, each side
has not more than two intersection points; therefore, there are not more than 2n intersection
points of the contours (more precisely, not more than n pairs of points symmetric through
O).

Let l1 and l2 be the lines passing through O and dividing the area of the initial polygon
in halves. Let us prove that inside each of the four parts into which these lines divide the
plane there is an intersection point of the contours.

Suppose that one of the parts has no such points between lines l1 and l2. Denote the
intersection points of lines l1 and l2 with the sides of the polygon as indicated on Fig. 12.

Figure 154 (Sol. 16.8)

Let points A′, B′, C ′ and D′ be symmetric trough O to points A, B, C and D, respectively.
For definiteness sake, assume that point A is closer to O than C ′. Since segments AB and
C ′D′ do not intersect, point B is closer to O than D′. It follows that SABO < SC′D′O = SCDO,
where ABO is a convex figure bounded by segments AO and BO and the part of the boundary
of the n-gon between points A and B.

On the other hand, SABO = SCDO because lines l1 and l2 divide the area of the polygon
in halves. Contradiction.

Therefore, between every pair of lines which divide the area of the polygon in halves
there is a pair of symmetric intersection points of contours; in other words, there are not
more than n such lines.

16.9. a) Let the central symmetry through O1 send point A into A1; let the central
symmetry through O2 send point A1 into A2. Then O1O2 is the midline of triangle AA1A2

and, therefore,
−−→
AA2 = 2

−−−→
O1O2.
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b) Let O2 be the image of point O1 under the translation by vector 1
2
a. By heading a) we

have SO1 ◦SO2 = Ta. Multiplying this equality by SO1 from the right or by SO2 from the left
and taking into account that SX ◦ SX is the identity transformation we get SO1 = SO2 ◦ Ta

and SO2 = Ta ◦ SO1 .
16.10. By the preceding problem SB ◦ SA = T

2
−→
AB

; therefore,

SO3 ◦ SO2 ◦ SO1 ◦ SO3 ◦ SO2 ◦ SO1 = T
2(
−−−→
O2O3+

−−−→
O3O1+

−−−→
O1O2)

is the identity transformation.
16.11. a) Suppose that a bounded figure has two centers of symmetry: O1 and O2.

Let us introduce a coordinate system whose absciss axis is directed along ray O1O2. Since

SO2 ◦ SO1 = T
2
−−−→
O1O2

, the figure turns into itself under the translation by vector 2
−−−→
O1O2. A

bounded figure cannot possess such a property since the image of the point with the largest
absciss does not belong to the figure.

b) Let O3 = SO2(O1). It is easy to verify that SO3 = SO2 ◦ SO1 ◦ SO2 and, therefore, if
O1 and O2 are the centers of symmetry of a figure, then O3 is also a center of symmetry,
moreover, O3 6= O1 and O3 6= O2.

c) Let us demonstrate that a finite set can only have 0, 1, 2 or 3 “almost centers of
symmetry”. The corresponding examples are given on Fig. 13. It only remains to prove
that a finite set cannot have more than three “almost centers of symmetry”.

Figure 155 (Sol. 16.11)

There are finitely many “almost centers of symmetry” since they are the midpoints of
the segments that connect the points of the set. Therefore, we can select a line such that the
projections of “almost centers of symmetry” to the line are distinct. Therefore, it suffices to
carry out the proof for the points which belong to one line.

Let n points on a line be given and x1 < x2 < · · · < xn−1 < xn be their coordinates.
If we discard the point x1, then only point 1

2
(x2 + xn) can serve as the center of symmetry

of the remaining set; if we discard xn, then only point 1
2
(x1 + xn−1) can be the center of

symmetry of the remaining set and if we discard any other point, then only point 1
2
(x1 +xn)

can be the center of symmetry of the remaining set. Therefore, there can not be more than
3 centers of symmetry.

16.12. A pair of symmetric points is painted different colours, therefore, it can be
discarded from the consideration; let us discard all such pairs. In the remaining set of points
the number of blue pairs is equal to the number of red pairs. Moreover, the sum of the
distances from either of points A or B to any pair of symmetric points is equal to the length
of segment AB.
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16.13. Consider circle S ′
1 symmetric to circle S1 through point A. The line to be found

passes through the intersection points of S ′
1 and S2.

16.14. Let l′ be the image of line l under the symmetry through point A. The desired
line passes through point A and an intersection point of line l′ with the circle S.

Figure 156 (Sol. 16.15)

16.15. Let us construct the intersection points A′ and C ′ of the lines symmetric to the
lines BC and AB through the point D with lines AB and BC, respectively, see Fig. 14. It is
clear that point D is the midpoint of segment A′C ′ because points A′ and C ′ are symmetric
through D.

16.16. Let O be the midpoint of segment AB. We have to construct points C and D
that belong to the legs of the angle so that point O is the midpoint of segment CD. This
construction is described in the solution of the preceding problem.

16.17. Let us first separate the lines into pairs. This can be done in three ways. Let the
opposite vertices A and C of parallelogram ABCD belong to one pair of lines, B and D to
the other pair. Consider the angle formed by the first pair of lines and construct points A
and C as described in the solution of Problem 16.15. Construct points B and D in a similar
way.

16.18. On the smaller circle, S1, take an arbitrary point, X. Let S ′
1 be the image of S1

under the symmetry with respect to X, let Y be the intersection point of circles S ′
1 and S2.

Then XY is the line to be found.

Figure 157 (Sol. 16.19)

16.19. Suppose X is constructed. Denote the images of points A, B and X under the
symmetry through point J by A′, B′ and X ′, respectively, see Fig. 15. Angle ∠A′FB =
180◦ − ∠AXB is known and, therefore, point F is the intersection point of segment CD
with the arc of the circle whose points serve as vertices of angles of value 180◦−∠AXB that
subtend segment BA′. Point X is the intersection point of line BF with the given circle.

16.20. Suppose that line l is constructed. Let us consider circle S ′
1 symmetric to circle

S1 through point A. Let O1, O′
1 and O2 be the centers of circles S1, S ′

1 and S2, as shown on
Fig. 16.
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Figure 158 (Sol. 16.20)

Let us draw lines l′1 and l2 through O′
1 and O2 perpendicularly to line l. The distance

between lines l′1 and l2 is equal to a half difference of the lengths of chords intercepted by l
on circles S1 and S2. Therefore, in order to construct l, we have to construct the circle of
radius 1

2
a with center O′

1; line l2 is tangent to this circle. Having constructed l2, drop the
perpendicular from point A to l2; this perpendicular is line l.

16.21. Let B1, B2, . . . , Bm be the midpoints of sides A1A2, A2A3, . . . , AmA1 of polygon
A1A2 . . . Am. Then SB1(A1) = A2, SB2(A2) = A3, . . . , SBm(Am) = A1. It follows that
SBm ◦ · · · ◦ SB1(A1) = A1, i.e., A1 is a fixed point of the composition of symmetries SBm ◦
SBm−1 ◦ · · · ◦SB1 . By Problem 16.9 the composition of an odd number of central symmetries
is a central symmetry, i.e., has a unique fixed point. This point can be constructed as the
midpoint of the segment that connects points X and SBm ◦ SBm−1 ◦ · · · ◦ SB1(X), where X
is an arbitrary point.





Chapter 17. THE SYMMETRY THROUGH A LINE

Background

1. The symmetry through a line l (notation: Sl) is a transformation of the plane which
sends point X into point X ′ such that l is the midperpendicular to segment XX ′. Such a
transformation is also called the axial symmetry and l is called the axis of the symmetry.

2. If a figure turns into itself under the symmetry through line l, then l is called the axis

of symmetry of this figure.
3. The composition of two symmetries through axes is a parallel translation, if the axes

are parallel, and a rotation, if they are not parallel, cf. Problem 17.22.
Axial symmetries are a sort of “bricks” all the other motions of the plane are constructed

from: any motion is a composition of not more than three axial symmetries (Problem 17.35).
Therefore, the composition of axial symmetries give much more powerful method for solving
problems than compositions of central symmetries. Moreover, it is often convenient to de-
compose a rotation into a composition of two symmetries with one of the axes of symmetry
being a line passing through the center of the rotation.

Introductory problems

1. Prove that any axial symmetry sends any circle into a circle.
2. A quadrilateral has an axis of symmetry. Prove that this quadrilateral is either an

equilateral trapezoid or is symmetric through a diagonal.
3. An axis of symmetry of a polygon intersects its sides at points A and B. Prove that

either point A is a vertex of the polygon or the midpoint of a side perpendicular to the axis
of symmetry.

4. Prove that if a figure has two perpendicular axes of symmetry, it has a center of
symmetry.

§1. Solving problems with the help of a symmetry

17.1. Point M belongs to a diameter AB of a circle. Chord CD passes through M and
intersects AB at an angle of 45◦. Prove that the sum CM2 + DM2 does not depend on the
choice of point M .

17.2. Equal circles S1 and S2 are tangent to circle S from the inside at points A1 and
A2, respectively. An arbitrary point C of circle S is connected by segments with points A1

and A2. These segments intersect S1 and S2 at points B1 and B2, respectively. Prove that
A1A2 ‖ B1B2.

17.3. Through point M on base AB of an isosceles triangle ABC a line is drawn. It
intersects sides CA and CB (or their extensions) at points A1 and B1. Prove that A1A :
A1M = B1B : B1M .

335
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§2. Constructions

17.4. Construct quadrilateral ABCD whose diagonal AC is the bisector of angle ∠A
knowing the lengths of its sides.

17.5. Construct quadrilateral ABCD in which a circle can be inscribed knowing the
lengths of two neighbouring sides AB and AD and the angles at vertices B and D.

17.6. Construct triangle ABC knowing a, b and the difference of angles ∠A − ∠B.
17.7. Construct triangle ABC given its side c, height hc and the difference of angles

∠A − ∠B.
17.8. Construct triangle ABC given a) c, a − b (a > b) and angle ∠C; b) c, a + b and

angle ∠C.
17.9. Given line l and points A and B on one side of it. Construct point X on l such

that AX + XB = a, where a is given.
17.10. Given acute angle ∠MON and points A and B inside it. Find point X on leg

OM such that triangle XY Z, where Y and Z are the intersection points of lines XA and
XB with ON , were isosceles, i.e., XY = XZ.

17.11. Given line MN and two points A and B on one side of it. Construct point X on
MN such that ∠AXM = 2∠BXN .

* * *

17.12. Given three lines l1, l2 and l3 intersecting at one point and point A1 on l1.
Construct triangle ABC so that A1 is the midpoint of its side BC and lines l1, l2 and l3 are
the midperpendiculars to the sides.

17.13. Construct triangle ABC given points A, B and the line on which the bisector of
angle ∠C lies.

17.14. Given three lines l1, l2 and l3 intersecting at one point and point A on line l1.
Construct triangle ABC so that A is its vertex and the bisectors of the triangle lie on lines
l1, l2 and l3.

17.15. Construct a triangle given the midpoints of two of its sides and the line that
contains the bisector drawn to one of these sides.

§3. Inequalities and extremals

17.16. On the bisector of the exterior angle ∠C of triangle ABC point M distinct from
C is taken. Prove that MA + MB > CA + CB.

17.17. In triangle ABC median AM is drawn. Prove that 2AM ≥ (b + c) cos(1
2
α).

17.18. The inscribed circle of triangle ABC is tangent to sides AC and BC at points
B1 and A1. Prove that if AC > BC, then AA1 > BB1.

17.19. Prove that the area of any convex quadrilateral does not exceed a half-sum of
the products of opposite sides.

17.20. Given line l and two points A and B on one side of it, find point X on line l such
that the length of segment AXB of the broken line was minimal.

17.21. Inscribe a triangle of the least perimeter in a given acute triangle.

§4. Compositions of symmetries

17.22. a) Lines l1 and l2 are parallel. Prove that Sl1 ◦Sl2 = T2a, where Ta is the parallel
translation that sends l1 to l2 and such that a ⊥ l1.

b) Lines l1 and l2 intersect at point O. Prove that Sl2 ◦ Sl1 = R2α
O , where Rα

O is the
rotation about O through the angle of α that sends l1 to l2.
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17.23. On the plane, there are given three lines a, b, c. Let T = Sa ◦Sb ◦ Sc. Prove that
T ◦ T is a parallel translation (or the identity map).

17.24. Let l3 = Sl1(l2). Prove that Sl3 = Sl1 ◦ Sl2 ◦ Sl1 .
17.25. The inscribed circle is tangent to the sides of triangle ABC at points A1, B1

and C1. Points A2, B2 and C2 are symmetric to these points through the bisectors of the
corresponding angles of the triangle. Prove that A2B2 ‖ AB and lines AA2, BB2 and CC2

intersect at one point.
17.26. Two lines intersect at an angle of γ. A grasshopper hops from one line to another

one; the length of each jump is equal to 1 m and the grasshopper does not jump backwards
whenever possible. Prove that the sequence of jumps is periodic if and only if γ/π is a
rational number.

17.27. a) Given a circle and n lines. Inscribe into the circle an n-gon whose sides are
parallel to given lines.

b) n lines go through the center O of a circle. Construct an n-gon circumscribed about
this circle such that the vertices of the n-gon belong to these lines.

17.28. Given n lines, construct an n-gon for which these lines are a) the midperpendic-
ulars to the sides; b) the bisectors of the inner or outer angles at the vertices.

17.29. Given a circle, a point and n lines. Into the circle inscribe an n-gon one of whose
sides passes through the given point and the other sides are parallel to the given lines.

§5. Properties of symmetries and axes of symmetries

17.30. Point A lies at the distance of 50 cm from the center of the disk of radius 1 cm.
It is allowed to reflect point A symmetrically through any line intersecting the disk. Prove
that a) after 25 reflexions point A can be driven inside the given circle; b) it is impossible
to perform this in 24 reflexions.

17.31. On a circle with center O points A1, . . . , An which divide the circle into equal
archs and a point X are given. Prove that the points symmetric to X through lines OA1,
. . . , OAn constitute a regular polygon.

17.32. Prove that if a planar figure has exactly two axes of symmetry, then these axes
are perpendicular to each other.

17.33. Prove that if a polygon has several (more than 2) axes of symmetry, then all of
them intersect at one point.

17.34. Prove that if a polygon has an even number of axes of symmetry, then it has a
center of symmetry.

§6. Chasles’s theorem

A transformation which preserves distances between points (i.e., such that if A′ and B′

are the images of points A and B, respectively, then A′B′ = AB) is called a movement. A
movement of the plane that preserves 3 points which do not belong to one line preserves all
the other points.

17.35. Prove that any movement of the plane is a composition of not more than three
symmetries through lines.

A movement which is the composition of an even number of symmetries through lines is
called a first type movement or a movement that preserves the orientation of the plane.

A movement which is the composition of an odd number of symmetries through lines is
called a second type movement or a movement inversing the orientation of the plane.
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We will not prove that the composition of an odd number of symmetries through lines
is impossible to represent in the form of the composition of an odd number of symmetries
through lines and the other way round because this fact, though true, is beyond the scope
of our book.

17.36. Prove that any first type movement is either a rotation or a parallel translation.

The composition of a symmetry through line l and the translation by a vector parallel
to l (this vector might be the zero one) is called a transvection.

17.37. Prove that any second type movement is a transvection.

Problems for independent study

17.38. Given a nonconvex quadrilateral of perimeter P . Prove that there exists a convex
quadrilateral of the same perimeter but of greater area.

17.39. Can a bounded figure have a center of symmetry and exactly one axis of symme-
try?

17.40. Point M belongs to the circumscribed circle of triangle ABC. Prove that the
lines symmetric to the lines AM , BM and CM through the bisectors of angles ∠A, ∠B and
∠C are parallel to each other.

17.41. The vertices of a convex quadrilateral belong to different sides of a square. Prove
that the perimeter of this quadrilateral is not shorter than 2

√
2a, where a is the length of

the square’s side.
17.42. A ball lies on a rectangular billiard table. Construct a trajectory traversing along

which the ball would return to the initial position after one reflexion from each side of the
table.

Solutions

17.1. Denote the points symmetric to points C and D through line AB by C ′ and D′,
respectively. Since ∠C ′MD = 90◦, it follows that CM2 + MD2 = C ′M2 + MD2 = C ′D2.
Since ∠C ′CD = 45◦, chord C ′D is of constant length.

17.2. In circle S, draw the diameter which is at the same time the axis of symmetry
of circles S1 and S2. Let points C ′ and B′

2 be symmetric to points C and B2 through this
diameter: see Fig. 17.

Figure 159 (Sol. 17.2)

Circles S1 and S are homothetic with the center of homothety at point A1; let this
homothety send line B1B

′
2 into line CC ′. Therefore, these lines are parallel to each other. It

is also clear that B2B
′
2 ‖ CC ′. Therefore, points B1, B′

2 and B2 belong to one line and this
line is parallel to line CC ′.
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17.3. Let the line symmetric to line A1B1 through line AB intersect sides CA and CB
(or their extensions) at points A2 and B2, respectively. Since ∠A1AM = ∠B2BM and
∠A1MA = ∠B2MB, it follows that A1AM ∼ B2BM , i.e., A1A : A1M = B2B : B2M .
Moreover, since MB is a bisector in triangle B1MB2, it follows that B2B : B2M = B1B :
B1M .

17.4. Suppose that quadrilateral ABCD is constructed. Let, for definiteness sake,
AD > AB. Denote by B′ the point symmetric to B through diagonal AC. Point B′ belongs
to side AD and B′D = AD −AB. In triangle B′CD, the lengths of all the sides are known:
B′D = AD − AB and B′C = BC. Constructing triangle B′CD on the extension of side
B′D beyond B′ let us construct point A.

Further construction is obvious.
17.5. Suppose that quadrilateral ABCD is constructed. For definiteness sake, assume

that AD > AB. Let O be the center of the circumscribed circle; let point D′ be symmetric
to D through line AO; let A′ be the intersection point of lines AO and DC; let C ′ be the
intersection point of lines BC and A′D′ (Fig. 18).

Figure 160 (Sol. 17.5)

In triangle BC ′D′, side BD′ and adjacent angles are known: ∠D′BC ′ = 180◦ −∠B and
∠BD′C ′ = ∠D. Let us construct triangle BC ′D′ given these elements. Since AD′ = AD,
we can construct point A. Further, let us construct O — the intersection point of bisectors
of angles ABC ′ and BD′C ′. Knowing the position of O we can construct point D and the
inscribed circle. Point C is the intersection point of line BC ′ and the tangent to the circle
drawn from D.

17.6. Suppose that triangle ABC is constructed. Let C ′ be the point symmetric to C
through the midperpendicular to segment AB. In triangle ACC ′ there are known AC = b,
AC ′ = a and ∠CAC ′ = ∠A − ∠B. Therefore, the triangle can be constructed. Point B is
symmetric to A through the midperpendicular to segment CC ′.

17.7. Suppose that triangle ABC is constructed. Denote by C ′ the point symmetric to
C through the midperpendicular to side AB and by B′ the point symmetric to B through
line CC ′. For definiteness, let us assume that AC < BC. Then

∠ACB′ = ∠ACC ′ + ∠C ′CB = 180◦ − ∠A + ∠C ′CB = 180◦ − (∠A − ∠B)

i.e., angle ∠ACB′ is known.
Triangle ABB′ can be constructed because AB = c, BB′ = 2hc and ∠ABB′ = 90◦.

Point C is the intersection point of the midperpendicular to segment BB′ and the arc of
the circle whose points serve as vertices of angles of value 180◦ − (∠A − ∠B) that subtend
segment AB′.
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17.8. a) Suppose triangle ABC is constructed. Let C ′ be the point symmetric to A
through the bisector of angle ∠C. Then

∠BC ′A = 180◦ − ∠AC ′C = 180◦ − 1

2
(180◦ − ∠C) = 90◦ +

1

2
∠C

and BC ′ = a − b.
In triangle ABC ′, there are known AB = c, BC ′ = a − b and ∠C ′ = 90◦ + 1

2
∠C. Since

∠C ′ > 90◦, triangle ABC ′ is uniquely constructed from these elements. Point C is the
intersection point of the midperpendicular to segment AC ′ with line BC ′.

b) The solution is similar to that of heading a). For C ′ we should take the point symmetric
to A through the bisector of the outer angle ∠C in triangle ABC.

Since ∠AC ′B = 1
2
∠C < 90◦, the problem can have two solutions.

17.9. Let S be the circle of radius a centered at B, let S ′ be the circle of radius AX
with center X and A′ the point symmetric to A through line l. Then circle S ′ is tangent
to circle S and point A′ belongs to circle S ′. It remains to draw circle S ′ through the given
points A and A′ tangent to the given circle S and find its center X, cf. Problem 8.56 b).

Figure 161 (Sol. 17.10)

17.10. Let the projection of point A to line ON be closer to point O than the projection
of point B. Suppose that the isosceles triangle XY Z is constructed. Let us consider point
A′ symmetric to point A through line OM . Let us drop perpendicular XH from point X to
line ON (Fig. 19). Since

∠A′XB = ∠A′XO + ∠OXA + ∠Y XH + ∠HXZ =

2∠OXY + 2∠Y XH = 2∠OXH = 180◦ − 2∠MON,

angle ∠A′XB is known. Point X is the intersection point of line OM and the arc whose
points serve as vertices of angles of 180◦ − 2∠MON that subtend A′B. In addition, the
projection of X onto ON must lie between the projections of A and B.

Conversely, if ∠A′XB = 180◦−∠MON and the projection of X to line ON lies between
the projections of A and B, then triangle XY Z is an isosceles one.

17.11. Suppose that point X is constructed. Let B′ be the point symmetric to point B
through line MN ; the circle of radius AB′ with center B′ intersects line MN at point A′.
Then ray B′X is the bisector of angle ∠AB′A′. It follows that X is the intersection point of
lines B′O and MN , where O is the midpoint of segment AA′.

17.12. Through point A1 draw line BC perpendicular to line l1. Vertex A of triangle
ABC to be found is the intersection point of lines symmetric to line BC through lines l2
and l3.

17.13. Let point A′ be symmetric to A through the bisector of angle ∠C. Then C is the
intersection point of line A′B and the line on which the bisector of angle ∠C lies.
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17.14. Let A2 and A3 be points symmetric to A through lines l2 and l3, respectively.
Then points A2 and A3 belong to line BC. Therefore, points B and C are the intersection
points of line A2A3 with lines l2 and l3, respectively.

17.15. Suppose that triangle ABC is constructed and N is the midpoint of AC, M the
midpoint of BC and the bisector of angle ∠A lies on the given line, l. Let us construct
point N ′ symmetric to N through line l. Line BA passes through point N ′ and is parallel
to MN . In this way we find vertex A and line BA. Having drawn line AN , we get line AC.
It remains to construct a segment whose endpoints belong to the legs of angle ∠BAC and
whose midpoint is M , cf. the solution of Problem 16.15.

17.16. Let points A′ and B′ be symmetric to A and B, respectively, through line CM .
Then AM + MB = A′M + MB > A′B = A′C + CB = AC + CB.

17.17. Let points B′, C ′ and M ′ be symmetric to points B, C and M through the
bisector of the outer angle at vertex A. Then

AM + AM ′ = MM ′ =
1

2
(BB′ + CC ′) = (b + c) sin(90◦ − 1

2
α) = (b + c) cos(

1

2
α).

17.18. Let point B′ be symmetric to B through the bisector of angle ∠ACB. Then
B′A1 = BB1, i.e., it remains to verify that B′A1 < AA1. To this end it suffices to notice
that ∠AB′A1 > ∠AB′B > 90◦.

17.19. Let D′ be the point symmetric to D through the midperpendicular to segment
AC. Then

SABCD = SABCD′ = SBAD′ + SBCD′ ≤ 1

2
AB · AD′ +

1

2
BC · CD′ =

1

2
(AB · CD + BC · AD).

17.20. Let point A′ be symmetric to A through line l. Let X be a point on line l. Then
AX + XB = A′X + XB ≥ A′B and the equality is attained only if X belongs to segment
A′B. Therefore, the point to be found is the intersection point of line l with segment A′B.

17.21. Let PQR be the triangle determined by the bases of the heights of triangle ABC
and let P ′Q′R′ be any other triangle inscribed in triangle ABC. Further, let points P1 and
P2 (respectively P ′

1 and P ′
2) be symmetric to point P (resp. P ′) through lines AB and AC,

respectively (Fig. 20).

Figure 162 (Sol. 17.21)

Points Q and R belong to segment P1P2 (see Problem 1.57) and, therefore, the perimeter
of triangle PQR is equal to the length of segment P1P2. The perimeter of triangle P ′Q′R′

is, however, equal to the length of the broken segment P ′
1R

′Q′P ′
2, i.e., it is not shorter than
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the length of segment P ′
1P

′
2. It remains to notice that (P ′

1P
′
2)

2 = P1P
2
2 + 4d2, where d is the

distance from point P ′
1 to line P1P2.

17.22. Let X be an arbitrary point, X1 = Sl1(X) and X2 = Sl2(X1).
a) On line l1, select an arbitrary point O and consider a coordinate system with O as the

origin and the absciss axis directed along line l1. Line l2 is given in this coordinate system
by the equation y = a. Let y, y1 and y2 be ordinates of points X, X1 and X2, respectively.
It is clear that y1 = −y and y2 = (a − y1) + a = y + 2a. Since points X, X1 and X2 have
identical abscisses, it follows that X2 = T2a(X), where Ta is the translation that sends l1 to
l2, and a ⊥ l1.

b) Consider a coordinate system with O as the origin and the absciss axis directed along
line l1. Let the angle of rotation from line l1 to l2 in this coordinate system be equal to
α and the angles of rotation from the absciss axes to rays OX, OX1 and OX2 be equal to
ϕ, ϕ1 and ϕ2, respectively. Clearly, ϕ1 = −ϕ and ϕ2 = (α − ϕ1) + α = ϕ + 2α. Since
OX = OX1 = OX2, it follows that X2 = R2α

O (X), where Rα
O is the translation that sends l1

to l2.
17.23. Let us represent T ◦ T as the composition of three transformations:

T ◦ T = (Sa ◦ Sb ◦ Sc) ◦ (Sa ◦ Sb ◦ Sc) = (Sa ◦ Sb) ◦ (Sc ◦ Sa) ◦ (Sb ◦ Sc).

Here Sa ◦ Sb, Sc ◦ Sa and Sb ◦ Sc are rotations through the angles of 2∠(b, a), 2∠(a, c) and
2∠(c, b), respectively. The sum of the angles of the rotations is equal to

2(∠(b, a) + ∠(a, c) + ∠(c, b)) = 2∠(b, b) = 0◦

and this value is determined up to 2 · 180◦ = 360◦. It follows that this composition of
rotations is a parallel translation, cf. Problem 18.33.

17.24. If points X and Y are symmetric through line l3, then points Sl1(X) and Sl1(Y )
are symmetric through line l2, i.e., Sl1(X) = Sl2 ◦ Sl1(Y ). It follows that Sl1 ◦ Sl3 = Sl2 ◦ Sl1

and Sl3 = Sl1 ◦ Sl2 ◦ Sl1 .
17.25. Let O be the center of the inscribed circle; let a and b be lines OA and OB.

Then Sa ◦ Sb(C1) = Sa(A1) = A2 and Sb ◦ Sa(C1) = Sb(B1) = B2. Points A2 and B2 are
obtained from point C1 by rotations with center O through opposite angles and, therefore,
A2B2 ‖ AB.

Similar arguments show that the sides of triangles ABC and A2B2C2 are parallel and,
therefore, these triangles are homothetic. Lines AA2, BB2 and CC2 pass through the center
of homothety which sends triangle ABC to A2B2C2. Notice that this homothety sends the
circumscribed circle of triangle ABC into the inscribed circle, i.e., the center of homothety
belongs to the line that connects the centers of these circles.

17.26. For every jump vector there are precisely two positions of a grasshopper for which
the jump is given by this vector. Therefore, a sequence of jumps is periodic if and only if
there exists but a finite number of distinct jump vectors.

Let a1 be the jump vector of the grasshopper from line l2 to line l1; let a2, a3, a4,. . . be
vectors of the successive jumps. Then a2 = Sl2(a1), a3 = Sl1(a2), a4 = Sl2(a3) , . . . Since the
composition Sl1 ◦Sl2 is a rotation through an angle of 2γ (or 2π−2γ), it follows that vectors
a3, a5, a7, . . . are obtained from a1 by rotations through angles of 2γ, 4γ, 6γ, . . . (or through
angles of 2(π− γ), 4(π− γ), 6(π− γ), . . . ). Therefore, the set a1, a3, a5, . . . contains a finite
number of distinct vectors if and only if γ/π is a rational number. The set a2, a4, a6, . . . is
similarly considered.

17.27. a) Suppose polygon A1A2 . . . An is constructed. Let us draw through the center
O of the circle the midperpendiculars l1, l2, . . . , ln to chords A1A2, A2A3, . . . , AnA1,
respectively. Lines l1, . . . , ln are known since they pass through O and are perpendicular to
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the given lines. Moreover, A2 = Sl1(A1), A3 = Sl2(A2), . . . , A1 = Sln(An), i.e., point A1 is
a fixed point of the composition of symmetries Sln ◦ · · · ◦ Sl1 . For n odd there are precisely
two fixed points on the circle; for n even there are either no fixed points or all the points are
fixed.

b) Suppose the desired polygon A1 . . . An is constructed. Consider polygon B1 . . . Bn

formed by the tangent points of the circumscribed polygon with the circle. The sides of
polygon B1 . . . Bn are perpendicular to the given lines, i.e., they have prescribed directions
and, therefore, the polygon can be constructed (see heading a)); it remains to draw the
tangents to the circle at points B1, . . . , Bn.

17.28. Consider the composition of consecutive symmetries through given lines l1, . . . ,
ln. In heading a) for vertex A1 of the desired n-gon we have to take a fixed point of this
composition, and in heading b) for line A1An we have to take the(a) fixed line.

17.29. The consecutive symmetries through lines l1, . . . , ln−1 perpendicular to given
lines and passing through the center of the circle send vertex A1 of the desired polygon to
vertex An.

If n is odd, then the composition of these symmetries is a rotation through a known angle
and, therefore, we have to draw through point M chord A1An of known length.

If n is even, then the considered composition is a symmetry through a line and, therefore,
from M we have to drop perpendicular to this line.

17.30. Let O be the center of the given disk, DR the disk of radius R with center O. Let
us prove that the symmetries through the lines passing through D1 send the set of images of
points of DR into disk DR+2. Indeed, the images of point O under the indicated symmetries
fill in disk D2 and the disks of radius R with centers in D2 fill in disk DR+2.

It follows that after n reflexions we can obtain from points of D1 any point of D2n+1 and
only them. It remains to notice that point A can be “herded” inside DR after n reflexions if
and only if we can transform any point of DR into A after n reflexions.

17.31. Denote symmetries through lines OA1, . . . , OAn by S1, . . . , Sn, respectively. Let
Xk = Sk(X) for k = 1, . . . , n. We have to prove that under a rotation through point O the
system of points X1, . . . , Xn turns into itself. Clearly,

Sk+1 ◦ Sk(Xk) = Sk+1 ◦ Sk ◦ Sk(X) = Xk+1.

Transformations Sk+1 ◦ Sk are rotations about O through an angle of 4π
n

, see Problem 17.22
b).

Remark. For n even we get an n
2
-gon.

17.32. Let lines l1 and l2 be axes of symmetry of a plane figure. This means that if point
X belongs to the figure, then points Sl1(X) and Sl2(X) also belong to the figure. Consider
line l3 = Sl1(l2). Thanks to Problem 17.24 Sl3(X) = Sl1 ◦ Sl2 ◦ Sl1(X) and, therefore, l3 is
also an axis of symmetry.

If the figure has precisely two axes of symmetry, then either l3 = l1 or l3 = l2. Clearly,
l3 6= l1 and, therefore, l3 = l2 i.e., line l2 is perpendicular to line l1.

17.33. Suppose that the polygon has three axes of symmetry which do not intersect at
one point, i.e., they form a triangle. Let X be the point of the polygon most distant from
an inner point M of this triangle. Points X and M lie on one side of one of the considered
axes of symmetry, l. If X ′ is the point symmetric to X through l, then M ′X > MX and
point X ′ is distant from M further than X. The obtained contradiction implies that all the
axes of symmetry of a polygon intersect at one point.

17.34. All the axes of symmetry pass through one point O (Problem 17.33). If l1 and
l2 are axes of symmetry, then l3 = Sl1(l2) is also an axis of symmetry, see Problem 17.24.
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Select one of the axes of symmetry l of our polygon. The odd axes of symmetry are divided
into pairs of lines symmetric through l. If line l1 perpendicular to l and passing through O
is not an axis of symmetry, then there is an odd number of axes of symmetry. Therefore, l1
is an axis of symmetry. Clearly, Sl1 ◦ Sl = R180◦

O is a central symmetry i.e., O is the center
of symmetry.

17.35. Let F be a movement sending point A into A′ and such that A and A′ are distinct;
S the symmetry through the midperpendicular l to segment AA′. Then S ◦ F (A) = A, i.e.,
A is a fixed point of S ◦ F . Moreover, if X is a fixed point of transformation F , then
AX = A′X, i.e., point X belongs to line l; hence, X is a fixed point of S ◦ F . Thus, point
A and all the fixed points of F are fixed points of the transformation S ◦ F .

Take points A, B and C not on one line and consider their images under the given
movement G. We can construct transformations S1, S2 and S3 which are either symmetries
through lines or identity transformations such that S3 ◦ S2 ◦ S1 ◦ G preserves points A, B
and C, i.e., is the identity transformation E. Multiplying the equality S3 ◦ S2 ◦ S1 ◦ G = E
from the left consecutively by S3, S2 and S1 and taking into account that Si ◦Si = E we get
G = S1 ◦ S2 ◦ S3.

17.36. Thanks to Problem 17.35 any first type movement is a composition of two
symmetries through lines. It remains to make use of the result of Problem 17.22.

17.37. By Problem 17.35 any second type movement can be represented in the form
S3 ◦ S2 ◦ S1, where S1, S2 and S3 are symmetries through lines l1, l2 and l3, respectively.
First, suppose that the lines l2 and l3 are not parallel. Then under the rotation of the lines
l2 and l3 about their intersection point through any angle the composition S3 ◦ S2 does not
change (see Problem 17.22 b)), consequently, we can assume that l2 ⊥ l1. It remains to
rotate lines l1 and l2 about their intersection point so that line l2 became parallel to line l3.

Now, suppose that l2 ‖ l3. If line l1 is not parallel to these lines, then it is possible to
rotate l1 and l2 about their intersection point so that lines l2 and l3 become nonparallel. If
l1 ‖ l2, then it is possible to perform a parallel transport of l1 and l2 so that lines l2 and l3
coincide.



Chapter 18. ROTATIONS

Background

1. We will not give a rigorous definition of a rotation. To solve the problems it suffices
to have the following idea on the notion of the rotation: a rotation with center O (or about

the point O) through an angle of ϕ is the transformation of the plane which sends point X
into point X ′ such that:

a) OX ′ = OX;

b) the angle from vector
−−→
OX to vector

−−→
OX ′ is equal to ϕ.

2. In this chapter we make use of the following notations for the transformations and
their compositions:

Ta is a translation by vector a;
SO is the symmetry through point O;
Sl is the symmetry through line l;
Rϕ

O is the rotation with center O through an angle of ϕ;
F ◦G is the composition of transformations F and G defined as (F ◦G)(X) = F (G(X)).
3. The problems solvable with the help of rotations can be divided into two big classes:

problems which do not use the properties of compositions of rotations and properties which
make use of these properties. To solve the problems which make use of the properties of the
compositions of rotations the following result of Problem 18.33 is handy: Rβ

B ◦ Rα
A = Rγ

C ,
where γ = α + β and ∠BAC = 1

2
α, ∠ABC = 1

2
β.

Introductory problems

1. Prove that any rotation sends any circle into a circle.
2. Prove that a convex n-gon is a regular one if and only if it turns into itself under the

rotation through an angle of 360◦

n
about a point.

3. Prove that triangle ABC is an equilateral one if and only if under the rotation through
60◦ (either clockwise or counterclockwise) about point A vertex B turns into vertex C.

4. Prove that the midpoints of the sides of a regular polygon determine a regular polygon.
5. Through the center of a square two perpendicular lines are drawn. Prove that their

intersection points with the sides of the square determine a square.

§1. Rotation by 90◦

18.1. On sides BC and CD of square ABCD points M and K, respectively, are taken
so that ∠BAM = ∠MAK. Prove that BM + KD = AK.

18.2. In triangle ABC median CM and height CH are drawn. Through an arbitrary
point P of the plane in which ABC lies the lines are drawn perpendicularly to CA, CM and
CB. They intersect CH at points A1, M1 and B1, respectively. Prove that A1M1 = B1M1.

18.3. Two squares BCDA and BKMN have a common vertex B. Prove that median
BE of triangle ABK and height BF of triangle CBH belong to one line.

The vertices of each square are counted clockwise.

345
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18.4. Inside square A1A2A3A4 point P is taken. From vertex A1 we drop the perpen-
dicular on A2P ; from A2 on A3P ; from A3 on A4P and from A4 on A1P . Prove that all four
perpendiculars (or their extensions) intersect at one point.

18.5. On sides CB and CD of square ABCD points M and K are taken so that the
perimeter of triangle CMK is equal to the doubled length of the square’s side. Find the
value of angle ∠MAK.

18.6. On the plane three squares (with same orientation) are given: ABCD, AB1C1D1

and A2B2CD2; the first square has common vertices A and C with the two other squares.
Prove that median BM of triangle BB1B2 is perpendicular to segment D1D2.

18.7. Triangle ABC is given. On its sides AB and BC squares ABMN and BCPQ are
constructed outwards. Prove that the centers of these squares and the midpoints of segments
MQ and AC form a square.

18.8. A parallelogram is circumscribed about a square. Prove that the perpendiculars
dropped from the vertices of the parallelograms to the sides of the square form a square.

§2. Rotation by 60◦

18.9. On segment AE, on one side of it, equilateral triangles ABC and CDE are
constructed; M and P are the midpoints of segments AD and BE. Prove that triangle
CPM is an equilateral one.

18.10. Given three parallel lines. Construct an equilateral triangle so that its vertices
belong to the given lines.

18.11. Geven a square, consider all possible equilateral triangles PKM with fixed vertex
P and vertex K belonging to the square. Find the locus of vertices M .

18.12. On sides BC and CD of parallelogram ABCD, equilateral triangles BCP and
CDQ are constructed outwards. Prove that triangle APQ is an equilateral one.

18.13. Point M belongs to arc ⌣ AB of the circle circumscribed about an equilateral
triangle ABC. Prove that MC = MA + MB.

18.14. Find the locus of points M that lie inside equilateral triangle ABC and such that
MA2 = MB2 + MC2.

18.15. Hexagon ABCDEF is a regular one, K and M are the midpoints of segments
BD and EF , respectively. Prove that triangle AMK is an equilateral one.

18.16. Let M and N be the midpoints of sides CD and DE, respectively, of regular
hexagon ABCDEF , let P be the intersection point of segments AM and BN .

a) Find the value of the angle between lines AM and BN .
b) Prove that SABP = SMDNP .
18.17. On sides AB and BC of an equilateral triangle ABC points M and N are taken

so that MN ‖ AC; let E be the midpoint of segment AN and D the center of mass of
triangle BMN . Find the values of the angles of triangle CDE.

18.18. On the sides of triangle ABC equilateral triangles ABC1, AB1C and A1BC are
constructed outwards. Let P and Q be the midpoints of segments A1B1 and A1C1. Prove
that triangle APQ is an equilateral one.

18.19. On sides AB and AC of triangle ABC equilateral triangles ABC ′ and AB′C are
constructed outwards. Point M divides side BC in the ratio of BM : MC = 3 : 1; points
K and L are the midpoints of sides AC ′ and B′C, respectively. Prove that the angles of
triangle KLM are equal to 30◦, 60◦ and 90◦.

18.20. Equilateral triangles ABC, CDE, EHK (vertices are circumvent counterclock-

wise) are placed on the plane so that
−−→
AD =

−−→
DK. Prove that triangle BHD is also an

equilateral one.
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18.21. a) Inside an acute triangle find a point the sum of distances from which to the
vertices is the least one.

b) Inside triangle ABC all the angles of which are smaller than 120◦ a point O is taken; it
serves as vertex of the angles of 120◦ that subtend the sides. Prove that the sum of distances
from O to the vertices is equal to 1

2
(a2 + b2 + c2) + 2

√
3S.

18.22. Hexagon ABCDEF is inscribed in a circle of radius R and AB = CD = EF = R.
Prove that the midpoints of sides BC, DE and FA determine an equilateral triangle.

18.23. On sides of a convex centrally symmetric hexagon ABCDEF equilateral triangles
are constructed outwards. Prove that the midpoints of the segments connecting the vertices
of neighbouring triangles determine a regular hexagon.

§3. Rotations through arbitrary angles

18.24. Given points A and B and circle S construct points C and D on S so that
AC ‖ BD and the value of arc ⌣ CD is a given quantity α.

18.25. A rotation with center O transforms line l1 into line l2 and point A1 on l1 into point
A2. Prove that the intersection point of lines l1 and l2 belongs to the circle circumscribed
about triangle A1OA2.

18.26. Two equal letters Γ lie on the plane. Denote by A and A′ the endpoints of
the shorter segments of these letters. Points A1, . . . , An−1 and A′

1, . . . , A′
n−1 divide the

longer segments into n equal parts (the division points are numbered starting from the outer
endpoints of longer segments). Lines AAi and A′A′

i intersect at point Xi. Prove that points
X1, . . . , Xn−1 determine a convex polygon.

18.27. Along two lines that intersect at point P two points are moving with the same
speed: point A along one line and point B along the other one. They pass P not simultane-
ously. Prove that at all times the circle circumscribed about triangle ABP passes through
a fixed point distinct from P .

18.28. Triangle A1B1C1 is obtained from triangle ABC by a rotation through an angle
of α (α < 180◦) about the center of its circumscribed circle. Prove that the intersection
points of sides AB and A1B1, BC and B1C1, CA and C1A1 (or their extensions) are the
vertices of a triangle similar to triangle ABC.

18.29. Given triangle ABC construct a line which divides the area and perimeter of
triangle ABC in halves.

18.30. On vectors
−−→
AiBi, where i = 1, . . . , k similarly oriented regular n-gons AiBiCiDi . . .

(n ≥ 4) are constructed (a given vector serving as a side). Prove that k-gons C1 . . . Ck and
D1 . . . Dk are regular and similarly oriented ones if and only if the k-gons A1 . . . Ak and
B1 . . . Bk are regular and similarly oriented ones.

18.31. Consider a triangle. Consider three lines symmetric through the triangles sides
to an arbitrary line passing through the intersection point of the triangle’s heights. Prove
that the three lines intersect at one point.

18.32. A lion runs over the arena of a circus which is a disk of radius 10 m. Moving
along a broken line the lion covered 30 km. Prove that the sum of all the angles of his turns
is not less than 2998 radian.

§4. Compositions of rotations

18.33. Prove that the composition of two rotations through angles whose sum is not
proportional to 360◦ is a rotation. In which point is its center and what is the angle of the
rotation equal to? Investigate also the case when the sum of the angles of rotations is a
multiple of 360◦.
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* * *

18.34. On the sides of an arbitrary convex quadrilateral squares are constructed out-
wards. Prove that the segments that connect the centers of opposite squares have equal
lengths and are perpendicular to each other.

18.35. On the sides of a parallelogram squares are constructed outwards. Prove that
their centers form a square.

18.36. On sides of triangle ABC squares with centers P , Q and R are constructed
outwards. On the sides of triangle PQR squares are constructed inwards. Prove that their
centers are the midpoints of the sides of triangle ABC.

18.37. Inside a convex quadrilateral ABCD isosceles right triangles ABO1, BCO2,
CDO3 and DAO4 are constructed. Prove that if O1 = O3, then O2 = O4.

* * *

18.38. a) On the sides of an arbitrary triangle equilateral triangles are constructed
outwards. Prove that their centers form an equilateral triangle.

b) Prove a similar statement for triangles constructed inwards.
c) Prove that the difference of the areas of equilateral triangles obtained in headings a)

and b) is equal to the area of the initial triangle.
18.39. On sides of triangle ABC equilateral triangles A′BC and B′AC are constructed

outwards and C ′AB inwards; M is the center of mass of triangle C ′AB. Prove that A′B′M
is an isosceles triangle such that ∠A′MB′ = 120◦.

18.40. Let angles α, β, γ be such that 0 < α, β, γ < π and α + β + γ = π. Prove that if
the composition of rotations R2γ

C ◦ R2β
B ◦ R2α

A is the identity transformation, then the angles
of triangle ABC are equal to α, β, γ.

18.41. Construct an n-gon given n points which are the vertices of isosceles triangles
constructed on the sides of this n-gon and such that the angles of these triangles at the
vertices are equal to α1, . . . , αn.

18.42. On the sides of an arbitrary triangle ABC isosceles triangles A′BC, AB′C and
ABC ′ are constructed outwards with angles α, β and γ at vertices A′, B′ and C ′, respectively,
such that α + β + γ = 2π. Prove that the angles of triangle A′B′C ′ are equal to 1

2
α, 1

2
β and

1
2
γ.

18.43. Let AKL and AMN be similar isosceles triangles with vertex A and angle α at
the vertex; GNK and G′LM similar isosceles triangles with angle π−α at the vertex. Prove
that G = G′. (All the triangles are oriented ones.)

18.44. On sides AB, BC and CA of triangle ABC points P , Q and R, respectively, are
taken. Prove that the centers of the circles circumscribed about triangles APR, BPQ and
CQR constitute a triangle similar to triangle ABC.

Problems for independent study

18.45. On the plane, the unit circle with center at O is drawn. Two neighbouring
vertices of a square belong to this circle. What is the maximal distance from point O that
the two other of the square’s vertices can have?

18.46. On the sides of convex quadrilateral ABCD, equilateral triangles ABM , CDP
are constructed outwards and BCN , ADK inwards. Prove that MN = AC.

18.47. On the sides of a convex quadrilateral ABCD, squares with centers M , N , P ,
Q are constructed outwards. Prove that the midpoints of the diagonals of quadrilaterals
ABCD and MNPQ form a square.
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18.48. Inside an equilateral triangle ABC lies point O. It is known that ∠AOB = 113◦,
∠BOC = 123◦. Find the angles of the triangle whose sides are equal to segments OA, OB,
OC.

18.49. On the plane, there are drawn n lines (n > 2) so that no two of them are parallel
and no three intersect at one point. It is known that it is possible to rotate the plane about
a point O through an angle of α (α < 180◦) so that each of the drawn lines coincides with
some other of the drawn lines. Indicate all n for which this is possible.

18.50. Ten gears of distinct shapes are placed so that the first gear is meshed with the
second one, the second one with the third one, etc., the tenth is meshed with the first one.
Is it possible for such a system to rotate? Can a similar system of 11 gears rotate?

18.51. Given a circle and a point. a) Construct an equilateral triangle whose heights
intersect at the given point and two vertices belong to the given circle.

b) Construct a square two vertices of which belong to the given circle and the diagonals
intersect at the given point.

Solutions

18.1. Let us rotate square ABCD about point A through 90◦ so that B turns into
D. This rotation sends point M into point M ′ and point K into point K ′. It is clear
that ∠BMA = ∠DM ′A. Since ∠MAK = ∠MAB = ∠M ′AD, it follows that ∠MAD =
∠M ′AK. Therefore,

∠MA′K = ∠MAD = ∠BMA = ∠DM ′A.

Hence, AK = KM ′ = KD + DM ′ = KD + BM .
18.2. Under the rotation through 90◦ about point P lines PA1, PB1, PM1 and CH

turn into lines parallel to CA, CB, CM and AB, respectively. It follows that under such a
rotation of triangle PA1B1 segment PM1 turns into a median of the (rotated) triangle.

18.3. Consider a rotation through 90◦ about point B which sends vertex K into vertex
N and vertex C into A. This rotation sends point A into point A′ and point E into point
E ′. Since E ′ and B are the midpoints of sides A′N and A′C of triangle A′NC, it follows
that BE ′ ‖ NC. But ∠EBE ′ = 90◦ and, therefore, BE ⊥ NC.

18.4. A rotation through an angle of 90◦ about the center of the square sends point A1

to point A2. This rotation sends the perpendiculars dropped from points A1, A2, A3 and
A4 into lines A2P , A3P , A4P and A1P , respectively. Therefore, the intersection point is the
image of point P under the inverse rotation.

18.5. Let us turn the given square through an angle of 90◦ about point A so that vertex
B would coincide with D. Let M ′ be the image of M under this rotation. Since by the
hypothesis

MK + MC + CK = (BM + MC) + (KD + CK),

it follows that MK = BM + KD = DM ′ + KD = KM ′. Moreover, AM = AM ′; hence,
△AMK = △AM ′K, consequently, ∠MAK = ∠M ′AK = 1

2
∠MAM ′ = 45◦.

18.6. Let R be the rotation through an angle of 90◦ that sends
−−→
BC to

−→
BA. Further,

let
−−→
BC = a,

−−→
CB2 = b and

−−→
AB1 = c. Then

−→
BA = Ra,

−−→
D2C = Rb and

−−→
AD1 = Rc. Hence,−−−→

D2D1 = Rb − a + Ra + Rc and 2
−−→
BM = a + b + Ra + c. Therefore, R(2

−−→
BM) =

−−−→
D2D1

because R(Ra) = −a.

18.7. Let us introduce the following notations: a =
−−→
BM , b =

−−→
BC; let Ra and Rb be

the vectors obtained from vectors a and b under a rotation through an angle of 90◦, i.e.,

Ra =
−→
BA, Rb =

−−→
BQ. Let O1, O2, O3 and O4 be the midpoints of segments AM , MQ, QC
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and CA, respectively. Then

−−→
BO1 =

(a + Ra)

2
,
−−→
BO2 =

(a + Rb)

2
,

−−→
BO3 =

(b − Rb)

2
,
−−→
BO4 =

(b + Ra)

2
.

Therefore,
−−−→
O1O2 = 1

2
(Rb − Ra) = −−−−→

O3O4 and
−−−→
O2O3 = 1

2
(b − a) = −O4O1. Moreover,

−−−→
O1O2 = R(

−−−→
O2O3).

18.8. Parallelogram A1B1C1D1 is circumscribed around square ABCD so that point A
belongs to side A1B1, B to side B1C1, etc. Let us drop perpendiculars l1, l2, l3 and l4 from
vertices A1, B1, C1 and D1, respectively to the sides of the square. To prove that these
perpendiculars form a square, it suffices to verify that under a rotation through an angle of
90◦ about the center O of square ABCD lines l1, l2, l3 and l4 turn into each other. Under
the rotation about O through an angle of 90◦ points A1, B1, C1 and D1 turn into points A2,
B2, C2 and D2 (Fig. 21).

Figure 163 (Sol. 18.8)

Since AA2 ⊥ B1B and BA2 ⊥ B1A, it follows that B1A2 ⊥ AB. This means that line
l1 turns under the rotation through an angle of 90◦ about O into l2. For the other lines the
proof is similar.

18.9. Let us consider a rotation through an angle of 60◦ about point C that turns E
into D. Under this rotation B turns into A, i.e., segment BE turns into AD. Therefore, the
midpoint P of segment BE turns into the midpoint M of segment AD, i.e., triangle CPM
is an equilateral one.

18.10. Suppose that we have constructed triangle ABC so that its vertices A, B and C
lie on lines l1, l2 and l3, respectively. Under the rotation through an angle of 60◦ with center
A point B turns into point C and, therefore, C is the intersection point of l3 and the image
of l2 under the rotation through an angle of 60◦ about A.

18.11. The locus to be found consists of two squares obtained from the given one by
rotations through angles of ±60◦ about P .
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18.12. Under the rotation through an angle of 60◦ vectors
−→
QC and

−→
CP turn into

−−→
QD

and
−−→
CB =

−−→
DA, respectively. Therefore, under this rotation vector

−→
QP =

−→
QC +

−→
CP turns

into vector
−−→
QD +

−−→
DA =

−→
QA.

18.13. Let M ′ be the image of M under the rotation through an angle of 60◦ about B
that turns A into C. Then ∠CM ′B = ∠AMB = 120◦. Triangle MM ′B is an equilateral
one and, therefore, ∠BM ′M = 60◦. Since ∠CM ′B + ∠BM ′M = 180◦, point M ′ belongs to
segment MC. Therefore, MC = MM ′ + M ′C = MB + MA.

18.14. Under the rotation through an angle of 60◦ about A sending B to C point M turns
into point M ′ and point C into point D. The equality MA2 = MB2 + MC2 is equivalent to
the equality M ′M2 = M ′C2 + MC2, i.e., ∠MCM ′ = 90◦ and, therefore,

∠MCB + ∠MBC = ∠MCB + ∠M ′CD = 120◦ − 90◦ = 30◦

that is ∠BMC = 150◦. The locus to be found is the arc of the circle situated inside the
triangle and such that the pionts of the arc serve as vertices of angles of 150◦ subtending
segment BC.

18.15. Let O be the center of a hexagon. Consider a rotation about A through an angle
of 60◦ sending B to O. This rotation sends segment OC into segment FE. Point K is the
midpoint of diagonal BD of parallelogram BCDO because it is the midpoint of diagonal
CO. Therefore, point K turns into M under our rotation; in other words, triangle AMK is
an equilateral one.

18.16. There is a rotation through an angle of 60◦ about the center of the given hexagon
that sends A into B. It sends segment CD into DE and, therefore, sends M into N .
Therefore, this rotation sends AM into BN , that is to say, the angle between these segments
is equal to 60◦. Moreover, this rotation turns pentagon AMDEF into BNEFA; hence, the
areas of the pentagons are equal. Cutting from these congruent pentagons the common part,
pentagon APNEF , we get two figures of the same area: triangle ABP and quadrilateral
MDNP .

18.17. Consider the rotation through an angle of 60◦ about C sending B to A. It sends
points M , N and D into M ′, N ′ and D′, respectively. Since AMNN ′ is a parallelogram,
the midpoint E of diagonal AN is its center of symmetry. Therefore, under the symmetry
through point E triangle BMN turns into M ′AN ′ and, therefore, D turns into D′. Hence,
E is the midpoint of segment DD′. Since triangle CDD′ is an equilateral one, the angles of
triangle CDE are equal to 30◦, 60◦ and 90◦.

18.18. Consider a rotation about A sending point C1 into B. Under this rotation
equilateral triangle A1BC turns into triangle A2FB1 and segment A1C1 into segment A2B.
It remains to notice that BA1A2B1 is a parallelogram, i.e., the midpoint of segment A2B
coincides with the midpoint of segment A1B1.

18.19. Let
−→
AB = 4a,

−→
CA = 4b. Further, let R be the rotation sending vector

−→
AB

into
−−→
AC ′ (and, therefore, sending

−→
CA into

−−→
CB′). Then

−−→
LM = (a + b) − 2Rb and

−−→
LK =

−2Rb + 4b + 2Ra. It is easy to verify that b + R2b = Rb. Hence, 2R(
−−→
LM) =

−−→
LK which

implies the required statement.
18.20. Under the rotation about point C through an angle of 60◦ counterclockwise point

A turns into B and D into E and, therefore, vector
−−→
DK =

−−→
AD turns into

−−→
BE. Since the

rotation about point H through an angle of 60◦ counterclockwise sends K into E and
−−→
DK

into
−−→
BE, it sends D into B which means that triangle BHD is an equilateral one.

18.21. a) Let O be a point inside triangle ABC. The rotation through an angle of 60◦

about A sends B, C and O into some points B′, C ′ and O′, respectively, see Fig. 22. Since
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Figure 164 (Sol. 18.21)

AO = OO′ and OC = O′C ′, we have:

BO + AO + CO = BO + OO′ + O′C ′.

The length of the broken line BOO′C ′ is minimal if and only if this broken line is a segment,
i.e., if ∠AOB = ∠AO′C ′ = ∠AOC = 120◦. To construct the desired point, we can make
use of the result of Problem 2.8.

b) The sum of distances from O to the vertices is equal to the length of segment BC ′

obtained in heading a). It is also clear that

(BC ′)2 = b2 + c2 − 2bc cos(α + 60◦) =

b2 + c2 − bc cos α + bc
√

3 sin α =
1
2
(a2 + b2 + c2) + 2

√
3S.

18.22. Let P , Q and R be the midpoints of sides BC, DE and FA; let O be the center
of the circumscribed circle. Suppose that triangle PQR is an equilateral one. Let us prove
then that the midpoints of sides BC, DE ′ and F ′A of hexagon ABCDE ′F ′ in which vertices
E ′ and F ′ are obtained from vertices E and F after a rotation through an angle about point
O also form an equilateral triangle.

This will complete the proof since for a regular hexagon the midpoints of sides BC,
DE and FA constitute an equilateral triangle and any of the considered hexagons can be
obtained from a regular one with the help of rotations of triangles OCD and OEF .

Figure 165 (Sol. 18.22)

Let Q′ and R′ be the midpoints of sides DE ′ and AF ′, see Fig. 23. Under the rotation

through an angle of 60◦ vector
−−→
EE ′ turns into

−−→
FF ′. Since

−−→
QQ′ = 1

2

−−→
EE ′ and

−−→
RR′ = 1

2

−−→
FF ′,

this rotation sends
−−→
QQ′ into

−−→
RR′. By hypothesis, triangle PQR is an equilateral one, i.e.,

under the rotation through an angle of 60◦ vector
−→
PQ turns into

−→
PR. Therefore, vector
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−−→
PQ′ =

−→
PQ +

−−→
QQ′ turns into vector

−−→
PR′ =

−→
PR +

−−→
RR′ under a rotation through an angle of

60◦. This means that triangle PQ′R′ is an equilateral one.
18.23. Let K, L, M and N be vertices of equilateral triangles constructed (wherewards?)

on sides BC, AB, AF and FE, respectively; let also B1, A1 and F1 be the midpoints of
segments KL, LM and MN (see Fig. 24).

Figure 166 (Sol. 18.23)

Further, let a =
−−→
BC =

−→
FE, b =

−→
AB and c =

−→
AF ; let R be the rotation through an

angle of 60◦ that sends
−−→
BC into

−−→
BK. Then

−−→
AM = −R2c and

−−→
FN = −R2a. Therefore,

2
−−−→
A1B1 = R2c + Ra + b and 2

−−−→
F1A1 = R2a − c + Rb, i.e.,

−−−→
F1A1 = R(

−−−→
A1B1).

18.24. Suppose a rotation through an angle of α about the center of circle S sends C
into D. This rotation sends point A into point A′. Then ∠(BD,DA′) = α, i.e., point D
belongs to the arc of the circle whose points serve as vertices of the angles of α that subtend
segment A′B.

18.25. Let P be the intersection point of lines l1 and l2. Then

∠(OA1, A1P ) = ∠(OA1, l1) = ∠(OA2, l2) = ∠(OA2, A2P ).

Therefore, points O, A1, A2 and P belong to one circle.
18.26. It is possible to identify similar letters Γ after a rotation about O (unless they

can be identified by a parallel translation in which case AAi ‖ A′A′
i). Thanks to Problem

18.25 point Xi belongs to the circle circumscribed about triangle A′OA. It is clear that the
points that belong to one circle constitute a convex polygon.

18.27. Let O be the center of rotation R that sends segment A(t1)A(t2) into segment
B(t1)B(t2), where t1 and t2 are certain time moments. Then this rotation sends A(t) into
B(t) at any moment t. Therefore, by Problem 18.25 point O belongs to the circle circum-
scribed about triangle APB.

18.28. Let A and B be points on the circle with center O; let A1 and B1 be the images
of these points under the rotation through an angle of α about O. Let P and P1 be the
midpoints of segments AB and A1B1; let M be the intersection point of lines AB and
A1B1. The right triangles POM and P1OM have a common hypothenuse and equal legs
PO = P1O, therefore, these triangles are equal and ∠MOP = ∠MOP1 = 1

2
α. Point M is

obtained from point P under a rotation through an angle of 1
2
α and a subsequent homothety

with coefficient 1
cos( 1

2
α)

and center O.

The intersection points of lines AB and A1B1, AC and A1C1, BC and B1C1 are the
vertices of a triangle which is homothetic with coefficient 1

cos( 1
2
α)

to the triangle determined
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by the midpoints of the sides of triangle ABC. It is clear that the triangle determined by
the midpoints of the sides of triangle ABC is similar to triangle ABC.

18.29. By Problem 5.50 the line which divides in halves both the area and the perimeter
of a triangle passes through the center of its inscribed circle. It is also clear that if the line
passes through the center of the inscribed circle of a triangle and divides its perimeter in
halves, then it divides in halves its area as well. Therefore, we have to draw a line passing
through the center of the inscribed circle of the triangle and dividing its perimeter in halves.

Suppose we have constructed points M and N on sides AB and AC of triangle ABC so
that line MN passes through the center O of the inscribed circle and divides the perimeter
of the triangle in halves. On ray AC construct point D so that AD = p, where p is a
semiperimeter of triangle ABC. Then AM = ND. Let Q be the center of rotation R
that sends segment AM into segment DN (so that A goes to D and M to N). Since the
angle between lines AM and CN is known, it is possible to construct Q: it is the vertex
of isosceles triangle AQD, where ∠AQD = 180◦ − ∠A and points B and Q lie on one side
of line AD. The rotation R sends segment OM into segment O′N . We can now construct
point O′. Clearly, ∠ONO′ = ∠A because the angle between lines OM and O′N is equal to
∠A. Therefore, point N is the intersection point of line AC and the arc of the circle whose
points serve as vertices for the angles equal to ∠A that subtend segment OO′. Constructing
point N , draw line ON and find point M .

It is easy to verify that if the constructed points M and N belong to sides AB and AC,
then MN is the desired line. The main point of the proof is the proof of the fact that the
rotation about Q through an angle of 180◦ − ∠A sends M into N . To prove this fact, one
has to make use of the fact that ∠ONO′ = ∠A, i.e., this rotation sends line OM into line
O′N .

18.30. Suppose that the k-gons C1 . . . Ck and D1 . . . Dk are regular and similarly oriented.

Let C and D be the centers of these k-gons; let ci =
−−→
CCi and di =

−−→
DDi. Then

−−→
CiDi =

−−→
CiC +

−−→
CD +

−−→
DDi = −ci +

−−→
CD + di.

The rotation Rϕ, where ϕ is the angle at a vertex of a regular n-gon, sends
−−→
CiDi into

−−→
CiBi.

Therefore,
−−→
XBi =

−−→
XC + ci +

−−→
CiBi =

−−→
XC + ci + Rϕ(−ci +

−−→
CD + di).

Let us select point X so that
−−→
XC + Rϕ(

−−→
CD) =

−→
0 . Then

−−→
XBi = ci + Rϕ(di − ci) = Riψu,

where u = ck + Rϕ(dk − ck) and Rψ is the rotation sending ck to c1. Hence, B1 . . . Bk is a
regular k-gon with center X.

We similarly prove that A1 . . . Ak is a regular k-gon.
The converse statement is similarly proved.
18.31. Let H be the intersection point of heights of triangle ABC; let H1, H2 and H3 be

points symmetric to H through sides BC, CA and AB, respectively. Points H1, H2 and H3

belong to the circle circumscribed about triangle ABC (Problem 5.9). Let l be a line passing
through H. The line symmetric to l through BC (resp. through CA and AB) intersects the
circumscribed circle at point H1 (resp. H2 and H3) and at a point P1 (resp. P2 and P3).

Consider another line l′ passing through H. Let ϕ be the angle between l and l′. Let
us construct points P ′

1, P ′
2 and P ′

3 for line l′ in the same way as points P1, P2 and P3 were
constructed for line l. Then ∠PiHiP

′
i = ϕ, i.e., the value of arc ⌣ PiP

′
i is equal to 2ϕ

(the direction of the rotation from Pi to P ′
i is opposite to that of the rotation from l to

l′). Therefore, points P ′
1, P ′

2 and P ′
3 are the images of points P1, P2 and P3 under a certain

rotation. It is clear that if for l′ we take the height of the triangle dropped from vertex A,
then P ′

1 = P ′
2 = P ′

3 = A, and, therefore, P1 = P2 = P3.



SOLUTIONS 355

18.32. Suppose that the lion ran along the broken line A1A2 . . . An. Let us rectify the
lion’s trajectory as follows. Let us rotate the arena of the circus and all(?) the further
trajectory about point A2 so that point A3 would lie on ray A1A2. Then let us rotate the
arena and the further trajectory about point A3 so that point A4 were on ray A1A2, and so
on. The center O of the arena turns consecutively into points O1 = O, O2, . . . , On−1; and
points A1, . . . , An into points A′

1, . . . , A′
n all on one line (Fig. 25).

Figure 167 (Sol. 18.32)

Let αi−1 be the angle of through which the lion turned at point A′
i. Then ∠Oi−1A

′
iOi =

αi−1 and A′
iOi−1 = A′

iOi ≤ 10; hence, OiOi−1 ≤ 10αi−1. Hence,

30000 = A′
1A

′
n ≤ A′

1O1 + O1O2 + · · · + On−2On−1 + On−1A
′
n ≤

10 + 10(α1 + · · · + αn−2) + 10

i.e., α1 + · · · + αn−2 ≥ 2998.
18.33. Consider the composition of the rotations Rβ

B ◦Rα
A. If A = B, then the statement

of the problem is obvious and, therefore, let us assume that A 6= B. Let l = AB; let lines
a and b pass through points A and B, respectively, so that ∠(a, l) = 1

2
α and ∠(l, b) = 1

2
β.

Then
Rβ

B ◦ Rα
A = Sb ◦ Sl ◦ Sl ◦ Sa = Sb ◦ Sa.

If a ‖ b, then Sa ◦ Sb = T2u, where Tu is a parallel translation sending a into b and such
that u ⊥ a. If lines a and b are not parallel and O is their intersection point, then Sa ◦ Sb is
the rotation through an angle of α + β with center O. It is also clear that a ‖ b if and only
if 1

2
α + 1

2
β = kπ, i.e., α + β = 2kπ.

18.34. Let P , Q, R and S be the centers of squares constructed outwards on sides
AB, BC, CD and DA, respectively. On segments QR and SP , construct inwards isosceles
right triangles with vertices O1 and O2. Then D = R90◦

R ◦ R90◦

Q (B) = R180◦

O1
(B) and B =

R90◦

P ◦ R90◦

S (D) = R180◦

O2
(D), i.e., O1 = O2 is the midpoint of segment BD.

The rotation through an angle of 90◦ about point O = O1 = O2 that sends Q into R
sends point S into P , i.e., it sends segment QS into RP and, therefore, these segments are
equal and perpendicular to each other.

18.35. Let P , Q, R and S be the centers of squares constructed outwards on the sides
AB, BC, CD and DA of parallelogram ABCD. By the previous problem PR = QS and
PR ⊥ QS. Moreover, the center of symmetry of parallelogram ABCD is the center of
symmetry of quadrilateral PQRS. This means that PQRS is a parallelogram with equal
and perpendicular diagonals, hence, a square.

18.36. Let P , Q and R be the centers of squares constructed outwards on sides AB, BC
and CA. Let us consider a rotation through an angle of 90◦ with center R that sends C to
A. Under the rotation about P through an angle of 90◦ in the same direction point A turns
into B. The composition of these two rotations is a rotation through an angle of 180◦ and,
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therefore, the center of this rotation is the midpoint of segment BC. On the other hand,
the center of this rotation is a vertex of an isoscceles right triangle with base PR, i.e., it is
the center of a square constructed on PR. This square is constructed inwards on a side of
triangle PQR.

18.37. If O1 = O3, then R90◦

D ◦ R90◦

C ◦ R90◦

B ◦ R90◦

A = R180◦

O3
◦ R180◦

O1
= E. Therefore,

E = R90◦

A ◦ E ◦ R−90◦

A = R90◦

A ◦ R90◦

D R90◦

C ◦ R90◦

B = R180◦

O4
◦ R180◦

O2
,

where E is the identity transformation, i.e., O4 = O2.
18.38. a) See solution of a more general Problem 18.42 (it suffices to set α = β = γ =

120◦). In case b) proof is analogous.
b) Let Q and R (resp. Q1 and R1) be the centers of equilateral triangles constructed

outwards (resp. inwards) on sides AC and AB. Since AQ = 1√
3
b, AR = 1√

3
c and ∠QAR =

60◦ + α, it follows that 3QR2 = b2 + c2 − 2bc cos(α + 60◦). Similarly, 3Q1R
2
1 = b2 + c2 −

2bc cos(α − 60◦). Therefore, the difference of areas of the obtained equilateral triangles is
equal to

(QR2 − Q1R
2
1)
√

3

4
=

bc sin α sin 60◦√
3

= SABC .

18.39. The combination of a rotation through an angle of 60◦ about A′ that sends B to
C, a rotation through an angle of 60◦ about B′ that sends C to A and a rotation through
an angle of 120◦ about M that sends A to B has B as a fixed point. Since the first two
rotations are performed in the direction opposite to the direction of the last rotation, it
follows that the composition of these rotations is a parallel translation with a fixed point,
i.e., the identity transformation:

R−120◦

M ◦ R60◦

B′ ◦ R60◦

A′ = E.

Therefore, R60◦

B′ ◦ R60◦

A′ = R120◦

M , i.e., M is the center of the rotation R60◦

B′ ◦ R60◦

A′ . It follows
that ∠MA′B′ = ∠MB′A′ = 30◦, i.e., A′B′M is an isosceles triangle and ∠A′MB′ = 120◦.

18.40. The conditions of the problem imply that R−2γ
C = R2β

B ◦ R2α
A , i.e., point C is

the center of the composition of rotations R2β
B ◦ R2α

A . This means that ∠BAC = α and
∠ABC = β (see Problem 18.33). Therefore, ∠ACB = π − α − β = γ.

18.41. Denote the given points by M1, . . . , Mn. Suppose that we have constructed
polygon A1A2 . . . An so that triangles A1M1A2, A2M2A3, . . . , AnMnA1 are isosceles, where
∠AiMiAi+1 = αi and the sides of the polygon are bases of these isosceles triangles. Clearly,
Rαn

Mn
◦ · · · ◦ Rα1

M1
(A1) = A1. If α1 + · · · + αn 6= k · 360◦, then point A1 is the center of the

rotation Rαn
Mn

◦ · · · ◦ Rα1
M1

.
We can construct the center of the composition of rotations. The construction of the

other vertices of the polygon is done in an obvious way. If α1 + · · ·+ αn = k · 360◦, then the
problem is ill-posed: either an arbitrary point A1 determines a polygon with the required
property or there are no solutions.

18.42. Since Rγ
C′ ◦ Rβ

B′ ◦ Rα
A′(B) = Rγ

C′ ◦ Rβ
B′(C) = Rγ

C′(A) = B, it follows that B is a

fixed point of the composition Rγ
C′ ◦ Rβ

B′ ◦ Rα
A′ . Since α + β + γ = 2π, it follows that this

composition is a parallel translation with a fixed point, i.e., the identity transformation. It
remains to make use of the result of Problem 18.40.

18.43. Since Rπ−α
G′ ◦ Rα

A(N) = L and Rπ−α
G ◦ Rα

A(L) = N , it follows that the transfor-
mations Rπ−α

G′ ◦ Rα
A and Rπ−α

G ◦ Rα
A are central symmetries with respect to the midpoint of

segment LN , i.e., Rπ−α
G′ ◦ Rα

A = Rπ−α
G ◦ Rα

A. Therefore, Rπ−α
G′ = Rπ−α

G and G′ = G.
18.44. Let A1, B1 and C1 be the centers of the circumscribed circles of triangles APR,

BPQ and CQR. Under the successive rotations with centers A1, B1 and C1 through angles
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2α, 2β and 2γ point R turns first into P , then into Q, and then returns home. Since
2α+2β+2γ = 360◦, the composition of the indicated rotations is the identity transformation.
It follows that the angles of triangle A1B1C1 are equal to α, β and γ (see Problem 18.40).





Chapter 19. HOMOTHETY AND ROTATIONAL
HOMOTHETY

Background

1. A homothety is a transformation of the plane sending point X into point X ′ such that−−→
OX ′ = k

−−→
OX, where point O and the number k are fixed. Point O is called the center of

homothety and the number k the coefficient of homothety.
We will denote the homothety with center O and coefficient k by Hk

O.
2. Two figures are called homothetic if one of them turns into the other one under a

homothety.
3. A rotational homothety is the composition of a homothety and a rotation with a

common center. The order of the composition is inessential since Rϕ
O ◦ Hk

O = Hk
O ◦ Rϕ

O.
We may assume that the coefficient of a rotational homothety is positive since R180◦

O ◦
Hk

O = H−k
O .

4. The composition of two homotheties with coefficients k1 and k2, where k1k2 6= 1, is a
homothety with coefficient k1k2 and its center belongs to the line that connects the centers
of these homotheties (see Problem 19.23).

5. The center of a rotational homothety that sends segment AB into segment CD is the
intersection point of the circles circumscribed about triangles ACP and BDP , where P is
the intersection point of lines AB and CD (see Problem 19.41).

Introductory problems

1. Prove that a homothety sends a circle into a circle.
2. Two circles are tangent at point K. A line passing through K intersects these circles

at points A and B. Prove that the tangents to the circles through A and B are parallel to
each other.

3. Two circles are tangent at point K. Through K two lines are drawn that intersect the
first circle at points A and B and the second one at points C and D. Prove that AB ‖ CD.

4. Prove that points symmetric to an arbitrary point with respect to the midpoints of a
square’s sides are vertices of a square.

5. Two points A and B and a line l on the plane are given. What is the trajectory of
movement of the intersection point of medians of triangle ABC when C moves along l?

§1. Homothetic polygons

19.1. A quadrilateral is cut by diagonals into four triangles. Prove that the intersection
points of their medians form a parallelogram.

19.2. The extensions of the lateral sides AB and CD of trapezoid ABCD intersect at
point K and its diagonals intersect at point L. Prove that points K, L, M and N , where
M and N are the midpoints of bases BC and AD, respectively, belong to one line.

19.3. The intersection point of diagonals of a trapezoid is equidistant from the lines to
which the sides of the trapezoid belong. Prove that the trapezoid is an isosceles one.

359
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19.4. Medians AA1, BB1 and CC1 of triangle ABC meet at point M ; let P be an
arbitrary point. Line la passes through point A parallel to line PA1; lines lb and lc are
similarly defined. Prove that:

a) lines la, lb and lc meet at one point, Q;
b) point M belongs to segment PQ and PM : MQ = 1 : 2.
19.5. Circle S is tangent to equal sides AB and BC of an isosceles triangle ABC at

points P and K, respectively, and is also tangent from the inside to the circle circumscribed
about triangle ABC. Prove that the midpoint of segment PK is the center of the circle
inscribed into triangle ABC.

19.6. A convex polygon possesses the following property: if all its sides are pushed by
distance 1 outwards and extended, then the obtained lines form a polygon similar to the
initial one. Prove that this polygon is a circumscribed one.

19.7. Let R and r be the radii of the circumscribed and inscribed circles of a triangle.
Prove that R ≥ 2r and the equality is only attained for an equilateral triangle.

19.8. Let M be the center of mass of an n-gon A1 . . . An; let M1, . . . , Mn be the centers
of mass of the (n−1)-gons obtained from the given n-gon by discarding vertices A1, . . . , An,
respectively. Prove that polygons A1 . . . An and M1 . . . Mn are homothetic to each other.

19.9. Prove that any convex polygon Φ contains two nonintersecting polygons Φ1 and
Φ2 similar to Φ with coefficient 1

2
.

See also Problem 5.87.

§2. Homothetic circles

19.10. On a circle, points A and B are fixed and point C moves along this circle. Find
the locus of the intersection points of the medians of triangles ABC.

19.11. a) A circle inscribed into triangle ABC is tangent to side AC at point D, and
DM is its diameter. Line BM intersects side AC at point K. Prove that AK = DC.

b) In the circle, perpendicular diameters AB and CD are drawn. From point M outside
the circle there are drawn tangents to the circle that intersect AB at points E and H and
also lines MC and MD that intersect AB at points F and K, respectively. Prove that
EF = KH.

19.12. Let O be the center of the circle inscribed into triangle ABC, let D be the point
where the circle is tangent to side AC and B1 the midpoint of AC. Prove that line B1O
divides segment BD in halves.

19.13. The circles α, β and γ are of the same radius and are tangent to the sides of
angles A, B and C of triangle ABC, respectively. Circle δ is tangent from the outside to all
the three circles α, β and γ. Prove that the center of δ belongs to the line passing through
the centers of the circles inscribed into and circumscribed about triangle ABC.

19.14. Consider triangle ABC. Four circles of the same radius ρ are constructed so that
one of them is tangent to the three other ones and each of those three is tangent to two sides
of the triangle. Find ρ given the radii r and R of the circles inscribed into and circumscribed
about the triangle.

§3. Costructions and loci

19.15. Consider angle ∠ABC and point M inside it. Construct a circle tangent to the
legs of the angle and passing through M .

19.16. Inscribe two equal circles in a triangle so that each of the circles were tangent to
two sides of the triangle and the other circle.
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19.17. Consider acute triangle ABC. Construct points X and Y on sides AB and BC,
respectively, so that a) AX = XY = Y C; b) BX = XY = Y C.

19.18. Construct triangle ABC given sides AB and AC and bisector AD.
19.19. Solve Problem 16.18 with the help of homothety.
19.20. On side BC of given triangle ABC, construct a point such that the line that

connects the bases of perpendiculars dropped from this point to sides AB and AC is parallel
to BC.

* * *

19.21. Right triangle ABC is modified so that vertex A of the right angle is fixed
whereas vertices B and C slide along fixed circles S1 and S2 tangent to each other at A from
the outside. Find the locus of bases D of heights AD of triangles ABC.

See also problems 7.26–7.29, 8.15, 8.16, 8.70.

§4. Composition of homotheties

19.22. A transformation f has the following property: if A′ and B′ are the images of

points A and B, then
−−→
A′B′ = k

−→
AB, where k is a constant. Prove that:

a) if k = 1, then f is a parallel translation;
b) if k 6= 1, then f is a homothety.
19.23. Prove that the composition of two homotheties with coefficients k1 and k2, where

k1k2 6= 1, is a homothety with coefficient k1k2 and its center belongs to the line that connects
the centers of these homotheties. Investigate the case k1k2 = 1.

19.24. Common outer tangents to the pairs of circles S1 and S2, S2 and S3, S3 and S1

intersect at points A, B and C, respectively. Prove that points A, B and C belong to one
line.

19.25. Trapezoids ABCD and APQD have a common base AD and the length of all
their bases are distinct. Prove that the intersections points of the following pairs of lines
belong to one line:

a) AB and CD, AP and DQ, BP and CQ;
b) AB and CD, AQ and DP , BQ and CP .

§5. Rotational homothety

19.26. Circles S1 and S2 intersect at points A and B. Lines p and q passing through
point A intersect circle S1 at points P1 and Q1 and circle S2 at points P2 and Q2. Prove
that the angle between lines P1Q1 and P2Q2 is equal to the angle between circles S1 and S2.

19.27. Circles S1 and S2 intersect at points A and B. Under the rotational homothety
P with center A that sends S1 into S2 point M1 from circle S1 turns into M2. Prove that
line M1M2 passes through B.

19.28. Circles S1, . . . , Sn pass through point O. A grasshopper hops from point Xi

on circle Si to point Xi+1 on circle Si+1 so that line XiXi+1 passes through the intersection
point of circles Si and Si+1 distinct from O. Prove that after n hops (from S1 to S2 from S2

to S3, . . . , from Sn to S1) the grasshopper returns to the initial position.
19.29. Two circles intersect at points A and B and chords AM and AN are tangent to

these circles. Let us complete triangle MAN to parallelogram MANC and divide segments
BN and MC by points P and Q in equal proportions. Prove then that ∠APQ = ∠ANC.

19.30. Consider two nonconcentric circles S1 and S2. Prove that there exist precisely
two rotational homotheties with the angle of rotation of 90◦ that send S1 into S2.
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* * *

19.31. Consider square ABCD and points P and Q on sides AB and BC, respectively,
so that BP = BQ. Let H be the base of the perpendicular dropped from B on PC. Prove
that ∠DHQ = 90◦.

19.32. On the sides of triangle ABC similar triangles are constructed outwards: △A1BC ∼
△B1CA ∼ △C1AB. Prove that the intersection points of medians of triangles ABC and
A1B1C1 coincide.

19.33. The midpoints of sides BC and B1C1 of equilateral triangles ABC and A1B1C1

coincide (the vertices of both triangles are listed clockwise). Find the value of the angle
between lines AA1 and BB1 and also the ratio of the lengths of segments AA1 and BB1.

19.34. Triangle ABC turns under a rotational homothety into triangle A1B1C1; let O
be an arbitrary point. Let A2 be the vertex of parallelogram OAA1A2; let points B2 and C2

be similarly defined. Prove that △A2B2C2 ∼ △ABC.
19.35. On top of a rectangular map lies a map of the same locality but of lesser scale.

Prove that it is possible to pierce by a needle both maps so that the points where both maps
are pierced depict the same point of the locality.

19.36. Rotational homotheties P1 and P2 with centers A1 and A2 have the same angle
of rotation and the product of their coefficients is equal to 1. Prove that the composition
P2 ◦ P1 is a rotation and its center coincides with the center of another rotation that sends

A1 into A2 and whose angle of rotation is equal to 2∠(
−−−→
MA1,

−−→
MN), where M is an arbitrary

point and N = P1(M).
19.37. Triangles MAB and MCD are similar but have opposite orientations. Let O1 be

the center of rotation through an angle of 2∠(
−→
AB,

−−→
BM) that sends A to C and O2 the center

of rotation through an angle of 2∠(
−→
AB,

−−→
AM) that sends B to D. Prove that O1 = O2.

* * *

19.38. Consider a half circle with diameter AB. For every point X on this half circle a
point Y is placed on ray XA so that XY = kXB. Find the locus of points Y .

19.39. Consider point P on side AB of (unknown?) triangle ABC and triangle LMN .
Inscribe triangle PXY similar to LMN into triangle ABC.

19.40. Construct quadrilateral ABCD given ∠B+∠D and the lengths a = AB, b = BC,
c = CD and d = DA.

See also Problem 5.122.

§6. The center of a rotational homothety

19.41. a) Let P be the intersection point of lines AB and A1B1. Prove that if no points
among A, B, A1, B1 and P coincide, then the common point of circles circumscribed about
triangles PAA1 and PBB1 is the center of a rotational homothety that sends A to A1 and
B to B1 and that such a rotational homothety is unique.

b) Prove that the center of a rotational homothety that sends segment AB to segment
BC is the intersection point of circles passing through point A and tangent to line BC at
point B and the circle passing through C and tangent to line AB at point B.

19.42. Points A and B move along two intersecting lines with constant but distinct
speeds. Prove that there exists a point, P , such that at any moment AP : BP = k, where
k is the ratio of the speeds.

19.43. Construct the center O of a rotational homothety with a given coefficient k 6= 1
that sends line l1 into line l2 and point A1 that belongs to l1 into point A2. (?)
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19.44. Prove that the center of a rotational homothety that sends segment AB into
segment A1B1 coincides with the center of a rotational homothety that sends segment AA1

into segment BB1.
19.45. Four intersecting lines form four triangles. Prove that the four circles circum-

scribed about these triangles have one common point.
19.46. Parallelogram ABCD is not a rhombus. Lines symmetric to lines AB and CD

through diagonals AC and DB, respectively, intersect at point Q. Prove that Q is the center
of a rotational homothety that sends segment AO into segment OD, where O is the center
of the parallelogram.

19.47. Consider wo regular pentagons with a common vertex. The vertices of each
pentagon are numbered 1 to 5 clockwise so that the common vertex has number 1. Vertices
with equal numbers are connected by straight lines. Prove that the four lines thus obtained
intersect at one point.

19.48. On sides BC, CA and AB of triangle ABC points A1, B1 and C1 are taken so
that △ABC ∼ △A1B1C1. Pairs of segments BB1 and CC1, CC1 and AA1, AA1 and BB1

intersect at points A2, B2 and C2, respectively. Prove that the circles circumscribed about
triangles ABC2, BCA2, CAB2, A1B1C2, B1C1A2 and C1A1B2 intersect at one point.

§7. The similarity circle of three figures

Let F1, F2 and F3 be three similar figures, O1 the center of a rotational homothety that
sends F2 to F3. Let points O2 and O3 be similarly defined. If O1, O2 and O3 do not belong
to one line, then triangle O1O2O3 is called the similarity triangle of figures F1, F2 and F3 and
its circumscribed circle is called the similarity circle of these figures. In case points O1, O2

and O3 coincide the similarity circle degenerates into the center of similarity and in case
when not all these points coincide but belong to one line the similarity circle degenerates
into the axis of similarity.

In the problems of this section we assume that the similarity circle of the figures consid-
ered is not degenerate.

19.49. Lines A2B2 and A3B3, A3B3 and A1B1, A1B1 and A2B2 intersect at points P1,
P2, P3, respectively.

a) Prove that the circumscribed circles of triangles A1A2P3, A1A3P2 and A2A3P1 intersect
at one point that belongs to the similarity circle of segments A1B1, A2B2 and A3B3.

b) Let O1 be the center of rotational homothety that sends segment A2B2 into segment
A3B3; points O2 and O3 be similarly defined. Prove that lines P1O1, P2O2 and P3O3 intersect
at one point that belongs to the similarity circle of segments A1B1, A2B2 and A3B3.

Points A1 and A2 are called correspondent points of similar figures F1 and F2 if the
rotational symmetry that sends F1 to F2 transforms A1 into A2. Correspondent lines and
correspondent segments are analogously defined.

19.50. Let A1B1, A2B2 and A3B3 and also A1C1, A2C2 and A3C3 be correspondent
segments of similar figures F1, F2 and F3. Prove that the triangle formed by lines A1B1,
A2B2 and A3B3 is similar to the triangle formed by lines A1C1, A2C2 and A3C3 and the
center of the rotational homothety that sends one of these triangles into another one belongs
to the similarity circle of figures F1, F2 and F3.

19.51. Let l1, l2 and l3 be the correspondent lines of similar figures F1, F2 and F3 and
let the lines intersect at point W .

a) Prove that W belongs to the similarity circle of F1, F2 and F3.
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b) Let J1, J2 and J3 be distinct from W intersection points of lines l1, l2 and l3 with the
similarity circle. Prove that these points only depend on figures F1, F2 and F3 and do not
depend on the choice of lines l1, l2 and l3.

Points J1, J2 and J3 are called constant points of similar figures F1, F2 and F3 and
triangle J1J2J3 is called the constant triangle of similar figures.

19.52. Prove that the constant triangle of three similar figures is similar to the triangle
formed by their correspondent lines and these triangles have opposite orientations.

19.53. Prove that constant points of three similar figures are their correspondent points.

The similarity circle of triangle ABC is the similarity circle of segments AB, BC and
CA (or of any three similar triangles constructed from these segments). Constant points of

a triangle are the constant points of the three figures considered.

19.54. Prove that the similarity circle of triangle ABC is the circle with diameter KO,
where K is Lemoin’s point and O is the center of the circumscribed circle.

19.55. Let O be the center of the circumscribed circle of triangle ABC, K Lemoin’s
point, P and Q Brokar’s points, ϕ Brokar’s angle (see Problems 5.115 and 5.117). Prove
that points P and Q belong to the circle of diameter KO and OP = OQ and ∠POQ = 2ϕ.

Problems for independent study

19.56. Given triangles ABC and KLM . Inscribe triangle A1B1C1 into triangle ABC
so that the sides of A1B1C1 wre parallel to the respective sides of triangle KLM .

19.57. On the plane, there are given points A and E. Construct a rhombus ABCD
with a given height for which E is the midpoint of BC.

19.58. Consider a quadrilateral. Inscribe a rombus in it so that the sides of the rombus
are parallel to the diagonals of the quandrangle.

19.59. Consider acute angle ∠AOB and point C inside it. Find point M on leg OB
equidistant from leg OA and from point C.

19.60. Consider acute triangle ABC. Let O be the intersection point of its heights; ω the
circle with center O situated inside the triangle. Construct triangle A1B1C1 circumscribed
about ω and inscribed in triangle ABC.

19.61. Consider three lines a, b, c and three points A, B, C each on the respective line.
Construct points X, Y , Z on lines a, b, c, respectively, so that BY : AX = 2, CZ : AX = 3
and so that X, Y , Z are all on one line.

Solutions

19.1. A homothety with the center at the intersection point of the diagonals of the
quadrilateral and with coefficient 3/2 sends the intersection points of the medians of the
triangles in question into the midpoints of the sides of the quadrilateral. It remains to make
use of the result of Problem 1.2.

19.2. The homothety with center K that sends △KBC into △KAD sends point M into
N and, therefore, K belongs to line MN . The homothety with center L that sends △LBC
into △LDA sends M into N . Therefore, L belongs to line MN .

19.3. Suppose the continuations of the lateral sides AB and CD intersect at point K
and the diagonals of the trapezoid intersect at point L. By the preceding problem line KL
passes through the midpoint of segment AD and by the hypothesis this line divides angle
∠AKD in halves. Therefore, triangle AKD is an isosceles one (see Problem 16.1); hence, so
is trapezoid ABCD.
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19.4. The homothety with center M and coefficient −2 sends lines PA1, PB1 and PC1

into lines la, lb and lc, respectively, and, therefore, the point Q to be found is the image of
P under this homothety.

19.5. Consider homothety Hk
B with center B that sends segment AC into segment A′C ′

tangent to the circumscribed circle of triangle ABC. Denote the midpoints of segments PK
and A′C ′ by O1 and D, respectively, and the center of S by O.

Circle S is the inscribed circle of triangle A′BC ′ and, therefore, it suffices to show that
homothety Hk

B sends O1 to O. To this end it suffices to verify that BO1 : BO = BA : BA′.
This equality follows from the fact that PO1 and DA are heights of similar right triangles
BPO and BDA′.

19.6. Let k be the similarity coefficient of polygons and k < 1. Shifting the sides of
the initial polygon inside consecutively by k, k2, k3, . . . units of length we get a contracting
system of embedded convex polygons similar to the initial one with coefficients k, k2, k3,
. . . . The only common point of these polygons is the center of the inscribed circle of the
initial polygon.

19.7. Let A1, B1 and C1 be the midpoints of sides BC, AC and AB, respectively. The
homothety with center at the intersection point of the medians of triangle ABC and with
coefficient −1

2
sends the circumscribed circle S of triangle ABC into the circumscribed circle

S1 of triangle A1B1C1. Since S1 passes through all the vertices of triangle ABC, we can
construct triangle A′B′C ′ whose sides are parallel to the respective sides of triangle ABC
and for which S1 is the inscribed circle, see Fig. 26.

Figure 68 (Sol. 19.7)

Let r and r′ be the radii of the inscribed circles of triangles ABC and A′B′C ′; let R
and R1 be the radii of S and S1, respectively. Clearly, r ≤ r′ = R1 = R/2. The equality is
attained if triangles A′B′C ′ and ABC coincide, i.e., if S1 is the inscribed circle of triangle
ABC. In this case AB1 = AC1 and, therefore, AB = AC. Similarly, AB = BC.

19.8. Since
−−−→
MMi =

−−−→
MA1 + · · · + −−−→

MAn −−−→
MAi

n − 1
= −

−−→
MAi

n − 1
,

it follows that the homothety with center M and coefficient − 1
n−1

sends Ai into Mi.
19.9. Let A and B be a pair of most distant from each other points of polygon Φ. Then

Φ1 = H
1/2
A (Φ) and Φ2 = H

1/2
B (Φ) are the required figures.

Indeed, Φ1 and Φ2 do not intersect because they lie on different sides of the midperpen-
dicular to segment AB. Moreover, Φ1 and Φ2 are contained in Φ because Φ is a convex
polygon.

19.10. Let M be the intersection point of the medians of triangle ABC, O the midpoints

of segment AB. Clearly, 3
−−→
OM =

−→
OC and, therefore, points M fill in the circle obtained

from the initial circle under the homothety with coefficient 1
3

and center O.
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19.11. a) The homothety with center B that sends the inscribed circle into the escribed
circle tangent to side AC sends point M into point M ′. Point M ′ is the endpoint of the
diameter perpendicular to AC and, therefore, M ′ is the tangent point of the inscribed circle
with AC, hence, it is the intersection point of BM with AC. Therefore, K = M ′ and K
is the tangent point of the escribed circle with side AC. Now it is easy to compute that
AK = 1

2
(a + b − c) = CD, where a, b and c are the lengths of the sides of triangle ABC.

b) Consider a homothety with center M that sends line EH into a line tangent to the
given circle. This homothety sends points E, F , K and H into points E ′, F ′, K ′ and H ′,
respectively. By heading a) E ′F ′ = K ′H ′; hence, EF = KH.

19.12. Let us make use of the solution and notations of Problem 19.11 a). Since
AK = DC, then B1K = B1D and, therefore, B1O is the midline of triangle MKD.

19.13. Let Oα, Oβ, Oγ and Oδ be the centers of circles α, β, γ and δ, respectively, O1

and O2 the centers of the inscribed and circumscribed circles, respectively, of triangle ABC.
A homothety with center O1 sends triangle OαOβOγ into triangle ABC. This homothety
sends point O2 into the center of the circumscribed circle of triangle OαOβOγ; this latter
center coincides with Oδ. Therefore, points O1, O2 and Oδ belong to one line.

19.14. Let A1, B1 and C1 be the centers of the given circles tangent to the sides of
the triangle, O the center of the circle tangent to these circles, O1 and O2 the centers of
the inscribed and circumscribed circles of triangle ABC. Lines AA1, BB1 and CC1 are the
bisectors of triangle ABC and, therefore, they intersect at point O1. It follows that triangle
A1B1C1 turns into triangle ABC under a homothety with center O1 and the coefficient of
the homothety is equal to the ratio of distances from O1 to the sides of triangles ABC and
A1B1C1, i.e., is equal to r−ρ

r
.

Under this homothety the circumscribed circle of triangle ABC turns into the circum-
scribed circle of triangle A1B1C1. Since OA1 = OB1 = OC1 = 2ρ, the radius of the
circumscribed circle of triangle A1B1C1 is equal to 2ρ. Hence, R r−ρ

r
= 2ρ, i.e., ρ = rR

2r+R
.

19.15. On the bisector of angle ∠ABC take an arbitrary point O and construct a circle
S with center O tangent to the legs of the angle. Line BM intersects circle S at points M1

and M2. The problem has two solutions: circle S turns into the circles passing through M
and tangent to the legs of the angle under the homothety with center B that sends M1 into
M and under the homothety with center B that sends M2 into M .

19.16. Clearly, both circles are tangent to one of the triangle’s sides. Let us show how to
construct circles tangent to side AB. Let us take line c′ parallel to line AB. Let us construct
circles S ′

1 and S ′
2 of the same radius tangent to each other and to line c′. Let us construct

tangents a′ and b′ to these circles parallel to lines BC and AC, respectively. The sides of
triangle A′B′C ′ formed by lines a′, b′ and c′ are parallel to respective sides of triangle ABC.
Therefore, there exists a homothety sending triangle A′B′C ′ into triangle ABC. The desired
circles are the images of circles S ′

1 and S ′
2 with respect to this homothety.

19.17. a) On sides AB and BC of triangle ABC fix segments AX1 and CY1 of equal
length a.Through point Y1 draw a line l parallel to side AC. Let Y2 be the intersection point
of l and the circle of radius a with center X1 situated(who?) inside the triangle. Then point
Y to be found is the intersection point of line AY2 with side BC and X is a point on ray
AB such that AX = CY .

b) On side AB, take an arbitrary point X1 distinct from B. The circle of radius BX1

with center X1 intersects ray BC at points B and Y1. Construct point C1 on line BC such
that Y1C1 = BX1 and such that Y1 lies between B and C1. The homothety with center B
that sends point C1 into C sends X1 and Y1 into points X and Y to be found.
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19.18. Take segment AD and draw circles S1 and S2 with center A and radii AB and
AC, respectively. Vertex B is the intersection point of S1 with the image of S2 under the
homothety with center D and coefficient −DB

DC
= −AB

AC
.

19.19. On the great circle S2 take an arbitrary point X. Let S ′
2 be the image of S2

under the homothety with center X and coefficient 1
3
, let Y be the intersection point of S ′

2

and S1. Then XY is the line to be found.
19.20. From points B and C draw perpendiculars to lines AB and AC and let P be

their intersection point. Then the intersection point of lines AP and BC is the desired one.
19.21. Let us draw common exterior tangents l1 and l2 to circles S1 and S2, respectively.

Lines l1 and l2 intersect at a point K which is the center of a homothety H that sends
S1 to S2. Let A1 = H(A). Points A and K lie on a line that connects the centers of the
circles and, therefore, AA1 is a diameter of S2, i.e., ∠ACA1 = 90◦ and A1C ‖ AB. It
follows that segment AB goes into A1C under H. Therefore, line BC passes through K and
∠ADK = 90◦. Point D belongs to circle S with diameter AK. It is also clear that point D
lies inside the angle formed by lines l1 and l2. Therefore, the locus of points D is the arc of
S cut off by l1 and l2.

19.22. The hypothesis of the problem implies that the map f is one-to-one.
a) Suppose f sends point A to point A′ and B to B′. Then

−−→
BB′ =

−→
BA +

−−→
AA′ +

−−→
A′B′ = −−→

AB +
−−→
AA′ +

−→
AB =

−−→
AA′,

i.e., f is a parallel translation.
b) Consider three points A, B and C not on one line. Let A′, B′ and C ′ be their images

under f . Lines AB, BC and CA cannot coincide with lines A′B′, B′C ′ and C ′A′, respectively,
since in this case A = A′, B = B′ and C = C ′. Let AB 6= A′B′. Lines AA′ and BB′ are
not parallel because otherwise quandrilateral ABB′A′ would have been a parallelogram and−→
AB =

−−→
A′B′. Let O be the intersection point of AA′ and BB′. Triangles AOB and A′OB′

are similar with similarity coefficient k and, therefore,
−−→
OA′ = k

−→
OA, i.e., O is a fixed point

of the transformation f . Therefore,
−−−−→
Of(X) =

−−−−−−−→
f(O)f(X) = k

−−→
OX

for any X which means that f is a homothety with coefficient k and center O.
19.23. Let H = H2 ◦H1, where H1 and H2 are homotheties with centers O1 and O2 and

coefficients k1 and k2, respectively. Denote:

A′ = H1(A), B′ = H1(B), A′′ = H2(A
′), B′′ = H2(B

′).

Then
−−→
A′B′ = k1

−→
AB and

−−−→
A′′B′′ = k2

−−→
A′B′, i.e.,

−−−→
A′′B′′ = k1k2

−→
AB. With the help of the

preceding problem this implies that for k1k2 6= 1 the transformation H is a homothety with
coefficient k1k2 and if k1k2 = 1, then H is a parallel translation.

It remains to verify that the fixed point of H belongs to the line that connects the centers

of homotheties H1 and H2. Since
−−−→
O1A

′ = k1
−−→
O1A and

−−−→
O2A

′′ = k2

−−−→
O2A

′, it follows that

−−−→
O2A

′′ = k2(
−−−→
O2O1 +

−−−→
O1A

′) = k2(
−−−→
O2O1 + k1

−−→
O1A) =

k2
−−−→
O2O1 + k1k2

−−−→
O1O2 + k1k2

−−→
O2A.

For a fixed point X we get the equation
−−→
O2X = (k1k2 − k2)

−−−→
O1O2 + k1k2

−−→
O2X
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and, therefore,
−−→
O2X = λ

−−−→
O1O2, where λ = k1k2−k2

1−k1k2
.

19.24. Point A is the center of homothety that sends S1 to S2 and B is the center of
homothety that sends S2 to S3. The composition of these homotheties sends S1 to S3 and
its center belongs to line AB. On the other hand, the center of homothety that sends S1

to S3 is point C. Indeed, to the intersection point of the outer tangents there corresponds
a homothety with any positive coefficient and a composition of homotheties with positive
coefficients is a homothety with a positive coefficient.

19.25. a) Let K, L, M be the intersection points of lines AB and CD, AP and DQ,
BP and CQ, respectively. These points are the centers of homotheties HK , HL and HM

with positive coefficients that consequtively send segments BC to AD, AD to PQ and BC
to PQ. Clearly, HL ◦ HK = HM . Therefore, points K, L and M belong to one line.

b) Let K, L, M be the intersection points of lines AB and CD, AQ and DP , BQ
and CP , respectively. These points are the centers of homotheties, HK , HL and HM that
consequtively send segments BC to AD, AD to QP , BC to QP ; the coefficient of the
first homothety is a positive one those of two other homotheties are negative ones. Clearly,
HL ◦ HK = HM . Therefore, points K, L and M belong to one line.

19.26. Since ∠(P1A,AB) = ∠(P2A,AB), the oriented angle values of arcs ⌣ BP1 and
⌣ BP2 are equal. Therefore, the rotational homothety with center B that sends S1 to S2

sends point P1 to P2 and line P1Q1 into line P2Q2.
19.27. Oriented angle values of arcs ⌣ AM1 and ⌣ AM2 are equal, consequently,

∠(M1B,BA) = ∠(M2B,BA) and, therefore, points M1, M2 and B belong to one line.
19.28. Let Pi be a rotational homothety with center O that sends circle Si to Si+1.

Then Xi+1 = Pi(Xi) (see Problem 19.27). It remains to observe that the composition
Pn ◦ · · · ◦ P2 ◦ P1 is a rotational homothety with center O that sends S1 to S1, i.e., is an
identity transformation.

19.29. Since ∠AMB = ∠NAB and ∠BAM = ∠BNA, we have △AMB ∼ △NAB
and, therefore, AN : AB = MA : MB = CN : MB. Moreover, ∠ABM = 180◦−∠MAN =
∠ANC. It follows that △AMB ∼ △ACN , i.e., the rotational homothety with center A
sending M to B sends C to N and, therefore, it maps Q to P .

19.30. Let O1 and O2 be the centers of given circles, r1 and r2 be their radii. The
coefficient k of the rotational homothety which maps S1 to S2 is equal to r1/r2 and its
center O belongs to the circle with diameter O1O2. Moreover, OO1 : OO2 = k = r1/r2. It
remains to verify that the circle with diameter O1O2 and the locus of points O such that
OO1 : OO2 = k have precisely two common points. For k = 1 it is obvious and for k 6= 1 the
locus in question is described in the solution of Problem 7.14: it is the(A?) circle and one of
its intersection points with line O1O2 is an inner point of segment O1O2 whereas the other
intersection point lies outside the segment.

19.31. Consider a transformation which sends triangle BHC to triangle PHB, i.e., the
composition of the rotation through an angle of 90◦ about point H and the homothety with
coefficient BP : CB and center H. Since this transformation maps the vertices of any square
into vertices of a square, it maps points C and B to points B and P , respectively. Then it
maps point D to Q, i.e., ∠DHQ = 90◦.

19.32. Let P be a rotational homothety that sends
−−→
CB to

−−→
CA1. Then

−−→
AA1 +

−−→
BB1 +

−−→
CC1 =

−→
AC + P (

−−→
CB) +

−−→
CB + P (

−→
BA) +

−→
BA + P (

−→
AC) =

−→
0 .
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Hence, if M is the center of mass of triangle ABC, then

−−−→
MA1 +

−−−→
MB1 +

−−−→
MC1 =

(
−−→
MA +

−−→
MB +

−−→
MC) + (

−−→
AA1 +

−−→
BB1 +

−−→
CC1) =

−→
0 .

19.33. Let M be the common midpoint of sides BC and B1C1,x =
−−→
MB and y =

−−−→
MB1.

Further, let P be the rotational homothety with center M , the angle of rotation 90◦ and

coefficient
√

3 that sends B to A and B1 to A1. Then
−−→
BB1 = y − x and

−−→
AA1 = P (y) −

P (x) = P (
−−→
BB1). Therefore, the angle between vectors

−−→
AA1 and

−−→
BB1 is equal to 90◦ and

AA1 : BB1 =
√

3.
19.34. Let P be the rotational homothety that sends triangle ABC to triangle A1B1C1.

Then

−−−→
A2B2 =

−−→
A2O +

−−→
OB2 =

−−→
A1A +

−−→
BB1 =

−→
BA +

−−−→
A1B1 =

−−→
AB + P (

−→
AB).

Similarly, the transformation f(a) = −a + P (a) sends the other vectors of the sides of
triangle ABC to the vectors of the sides of triangle A2B2C2.

19.35. Let the initial map be rectangle K0 on the plane, the smaller map rectangle
K1 contained in K0. Let us consider a rotational homothety f that maps K0 to K1. Let
Ki+1 = f(Ki) for i > 1. Since the sequence Ki for i = 1, 2, . . . is a contracting sequence of
embedded polygons, there exists (by Helly’s theorem) a unique fixed point X that belongs
to all the rectangles Ki.

Let us prove that X is the required point, i.e., f(X) = X. Indeed, since X belongs to
Ki, point f(X) belongs to Ki+1, i.e., point f(X) belongs also to all rectangles Ki. Since
there is just one point that belongs to all rectangles, we deduce that f(X) = X.

19.36. Since the product of coefficients of rotational homotheties P1 and P2 is equal to
1, their composition is a rotation (cf. Problem 17.36). Let O be the center of rotation P2◦P1

and R = P1(O). Since P2 ◦ P1(O) = O, it follows that P2(R) = O. Therefore, by hypothesis
A1O : A1R = A2O : A2R and ∠OA1R = ∠OA2R, i.e., △OA1R ∼ △OA2R. Moreover, OR is
a common side of these similar triangles; hence, △OA1R = △OA2R. Therefore, OA1 = OA2

and

∠(
−−→
OA1,

−−→
OA2) = 2∠(

−−→
OA1,

−→
OR) = 2∠(

−−−→
MA1,

−−→
MN),

i.e., O is the center of rotation through an angle of 2∠(
−−−→
MA1,

−−→
MN) that maps A1 to A2.

19.37. Let P1 be the rotational homothety with center B sending A to M and P2 be
rotational homothety with center D sending M to C. Since the product of coefficients of
these rotational homotheties is equal to (BM : BA) · (DC : DM) = 1, their composition
P2 ◦ P1 is a rotation (sending A to C) through an angle of

∠(
−→
AB,

−−→
BM) + ∠(

−−→
DM,

−−→
DC) = 2∠(

−→
AB,

−−→
BM).

On the other hand, the center of the rotation P2 ◦ P1 coincides with the center of the

rotation through an angle of 2∠(
−→
AB,

−−→
AM) that sends B to D (cf. Problem 19.36).

19.38. It is easy to verify that tan∠XBY = k and BY : BX =
√

k2 + 1, i.e., Y is
obtained from X under the rotational homothety with center B and coefficient

√
k2 + 1, the
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angle of rotation being of value arctan k. The locus to be found is the image of the given
half circle under this rotational homothety.

19.39. Suppose that triangle PXY is constructed and points X and Y belong to sides
AC and CB, respectively. We know a transformation that maps X to Y , namely, the
rotational homothety with center P , the angle of rotation ϕ = ∠XPY = ∠MLN and the
homothety coefficient k = PY : PX = LN · LM . Point Y to be found is the intersection
point of segment BC and the image of segment AC under this transformation.

19.40. Suppose that rectangle ABCD is constructed. Consider the rotational homothety
with center A that sends B to D. Let C ′ be the image of point C under this homothety.
Then ∠CDC ′ = ∠B + ∠D and DC ′ = BC·AD

AB
= bd

a
.

We can recover triangle CDC ′ from CD, DC ′ and ∠CDC ′. Point A is the intersection
point of the circle of radius d with center D and the locus of points X such that C ′X : CX =
d : a (this locus is a circle, see Problem 7.14). The further construction is obvious.

19.41. a) If O is the center of a rotational homothety that sends segment AB to segment
A1B1, then

∠(PA,AO) = ∠(PA1, A1O) and ∠(PB,BO) = ∠(PB1, B1O) (1)

and, therefore, point O is the intersection point of the inscribed circles of triangles PAA1

and PBB1.
The case when these circles have only one common point P is clear: this is when segment

AB turns into segment A1B1 under a homothety with center P .
If P and O are two intersection points of the circles considered, then equalities (1) imply

that △OAB ∼ △OA1B1 and, therefore, O is the center of a rotational homothety that maps
segment AB into segment A1B1.

b) It suffices to notice that point O is the center of a rotational homothety that maps
segment AB to segment BC if and only if ∠(BA,AO) = ∠(CB,BO) and ∠(AB,BO) =
∠(BC,CO).

19.42. Let A1 and B1 be the positions of the points at one moment, A2 and B2 the
position of the points at another moment. Then for point P we can take the center of a
rotational homothety that maps segment A1A2 to segment B1B2.

19.43. Let P be the intersection point of lines l1 and l2. By Problem 19.41 point O
belongs to the circumscribed circle S1 of triangle A1A2P . On the other hand, OA2 : OA1 = k.
The locus of points X such that XA2 : XA1 = k is circle S2 (by Problem 7.14). Point O is
the intersection point of circles S1 and S2 (there are two such points).

19.44. Let O be the center of a rotational homothety that maps segment AB to segment
A1B1. Then △ABO ∼ △A1B1O, i.e., ∠AOB = ∠A1OB1 and AO : BO = A1O : B1O.
Therefore, ∠AOA1 = ∠BOB1 and AO : A1O = BO : B1O, i.e., △AA1O ∼ △BB1O. Hence,
point O is the center of the rotational homothety that maps segment AA1 to segment BB1.

19.45. Let lines AB and DE intersect at point C and lines BD and AE intersect at
point F . The center of rotational homothety that maps segment AB to segment ED is
the distinct from C intersection point of the circumscribed circles of triangles AEC and
BDC (see Problem 19.41) and the center of rotational homothety sending AE to BD is
the intersection point of circles circumscribed about triangles ABF and EDF . By Problem
19.44 the centers of these rotational homotheties coincide, i.e., all the four circumscribed
circles have a common point.

19.46. The center O of parallelogram ABCD is equidistant from the following pairs of
lines: AQ and AB, AB and CD, CD and DQ and, therefore, QO is the bisector of angle
∠AQD. Let α = ∠BAO, β = ∠CDO and ϕ = ∠AQO = ∠DQO. Then α + β = ∠AOD =
360◦ − α − β − 2ϕ, i.e., α + β + ϕ = 180◦ and, therefore, △QAO ∼ △QOD.
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19.47. Let us solve a slightly more general problem. Suppose point O is taken on circle
S and H is a rotational homothety with center O. Let us prove that then all lines XX ′,
where X is a point from S and X ′ = H(X), intersect at one point.

Let P be the intersection point of lines X1X
′
1 and X2X

′
2. By Problem 19.41 points O, P ,

X1 and X2 lie on one circle and points O, P , X ′
1 and X ′

2 also belong to one circle. Therefore,
P is an intersection point of circles S and H(S), i.e., all lines XX ′ pass through the distinct
from O intersection point of circles S and H(S).

19.48. Let O be the center of a rotational homothety sending triangle A1B1C1 to triangle
ABC. Let us prove that, for instance, the circumscribed circles of triangles ABC2 and
A1B1C2 pass through point O. Under the considered homothety segment AB goes into
segment A1B1; therefore, point O coincides with the center of the rotational homothety that
maps segment AA1 to segment BB1 (see Problem 19.44). By problem 19.41 the center of the
latter homothety is the second intersection point of the circles circumscribed about triangles
ABC2 and A1B1C2 (or is their tangent point).

Figure 169 (Sol. 19.48)

19.49. Points A1, A2 and A3 belong to lines P2P3, P3P1 and P1P2 (Fig. 27). Therefore,
the circles circumscribed about triangles A1A2P3, A1A3P2 and A2A3P1 have a common point
V (see Problem 2.80 a)), and points O3, O2 and O1 lie on these circles (see Problem 19.41).
Similarly, the circles circumscribed about triangles B1B2P3, B1B3P2 and B2B3P1 have a
common point V ′. Let U be the intersection point of lines P2O2 and P3O3. Let us prove
that point V belongs to the circle circumscribed about triangle O2O3U . Indeed,

∠(O2V, V O3) = ∠(V O2, O2P2) + ∠(O2P2, P3O3) + ∠(P3O3, O3V ) =
∠(V A1, A1P2) + ∠(O2U,UO3) + ∠(P3A1, A1V ) = ∠(O2U,UO3).

Analogous arguments show that point V ′ belongs to the circle circumscribed about triangle
O2O3U . In particular, points O2, O3, V and V ′ belong to one circle. Similarly, points O1,
O2, V and V ′ belong to one circle and, therefore, points V and V ′ belong to the circle
circumscribed about triangle O1O2O3; point U also belongs to this circle.

We can similarly prove that lines P1O1 and P2O2 intersect at one point that belongs
to the similarity circle. Line P2O2 intersects the similarity circle at points U and O2 and,
therefore, line P1O1 passes through point U .

19.50. Let P1 be the intersection point of lines A2B2 and A3B3, let P ′
1 be the intersection

point of lines A2C2 and A3C3; let points P2, P3, P ′
2 and P ′

3 be similarly defined. The
rotational homothety that sends F1 to F2 sends lines A1B1 and A1C1 to lines A2B2 and
A2C2, respectively, and, therefore, ∠(A1B1, A2B2) = ∠(A1C1, A2C2). Similar arguments
show that △P1P2P3 ∼ △P ′

1P
′
2P

′
3.
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The center of the rotational homothety that maps segment P2P3 to P ′
2P

′
3 belongs to the

circle circumscribed about triangle A1P3P
′
3 (see Problem 19.41). Since

∠(P3A1, A1P
′
3) = ∠(A1B1, A1C1) = ∠(A2B2, A2C2) = ∠(P3A2, A2P

′
3),

the circle circumscribed about triangle A1P3P
′
3 coincides with the circle circumscribed about

triangle A1A2P3. Similar arguments show that the center of the considered rotational homo-
thety is the intersection point of the circles circumscribed about triangles A1A2P3, A1A3P2

and A2A3P1; this point belongs to the similarity circle of figures F1, F2 and F3 (see Problem
19.49 a)).

19.51. a) Let l′1, l′2 and l′3 be the corresponding lines of figures F1, F2 and F3 such
that l′i ‖ li. These lines form triangle P1P2P3. The rotational homothety with center O3

that maps F1 to F2 sends lines l1 and l′1 to lines l2 and l′2, respectively, and, therefore, the
homothety with center O3 that maps l1 to l′1 sends line l2 to l′2. Therefore, line P3O3 passes
through point W .

Similarly, lines P1O1 and P2O2 pass through point W ; hence, W belongs to the similarity
circle of figures F1, F2 and F3 (see Problem 19.49 b)).

Figure 170 (Sol. 19.51 a))

b) The ratio of the distances from point O1 to lines l′2 and l′3 is equal to the coefficient
of the rotational homothety that maps F2 to F3 and the angle ∠P1 of triangle P1P2P3 is
equal to the angle of the rotation. Therefore, ∠(O1P1, P1P2) only depends on figures F2 and
F3. Since ∠(O1W,WJ3) = ∠(O1P1, P1P2), arc ⌣ O1J3 is fixed (see Fig. 28) and, therefore,
point J3 is fixed. We similarly prove that points J1 and J2 are fixed.

19.52. Let us make use of notations from Problem 19.51. Clearly,

∠(J1J2, J2J3) = ∠(J1W,WJ3) = ∠(P3P2, P2P1).

For the other angles of the triangle the proof is similar.
19.53. Let us prove, for instance, that under the rotational homothety with center O1

that maps F2 to F3 point J2 goes to J3. Indeed, ∠(J2O1, O1J3) = ∠(J2W,WJ3). Moreover,
lines J2W and J3W are the corresponding lines of figures F2 and F3 and, therefore, the
distance from lines J2W and J3W to point O1 is equal to the similarity coefficient k1; hence,
O1J2

O1J3
= k1.

19.54. Let Oa be the intersection point of the circle passing through point B and tangent
to line AC at point A and the circle passing through point C and tangent to line AB at
point A.

By Problem 19.41 b) point Oa is the center of rotational homothety that sends segment
BA to segment AC. Having similarly defined points Ob and Oc and making use of the result
of Problem 19.49 b) we see that lines AOa, BOb and COc intersect at a point that belongs
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to the similarity circle S. On the other hand, these lines intersect at Lemoin’s point K (see
Problem 5.128).

The midperpendiculars to the sides of the triangle are the corresponding lines of the
considered similar figures. The midperpendiculars intersect at point O; hence, O belongs to
the similarity circle S (see Problem 19.51 a)). Moreover, the midperpendiculars intersect S
at fixed points A1, B1 and C1 of triangle ABC (see Problem 19.51 b)). On the other hand,
the lines passing through point K parallel to BC, CA and AB are also corresponding lines
of the considered figures (see solution to Problem 5.132), therefore, they also intersect circle
S at points A1, B1 and C1. Hence, OA1 ⊥ A1K, i.e., OK is a diameter of S.

19.55. If P is the first of Brokar’s points of triangle ABC, then CP , AP and BP are the
corresponding lines for similar figures constructed on segments BC, CA and AB. Therefore,
point P belongs to the similarity circle S (see Problem 19.51 a)). Similarly, point Q belongs
to S. Moreover, lines CP , AP and BP intersect S at fixed points A1, B1 and C1 of triangle
ABC (cf. Problem 19.51 b)). Since KA1 ‖ BC (see the solution of Problem 19.54), it
follows that ∠(PA1, A1K) = ∠(PC,CB) = ϕ, i.e., ⌣ PK = 2ϕ. Similarly, ⌣ KQ = 2ϕ.
Therefore, PQ ⊥ KO; hence, OP = OQ and ∠POQ = 1

2
⌣ PQ = 2ϕ.





Chapter 20. THE PRINCIPLE OF AN EXTREMAL ELEMENT

Background

1. Solving various problems it is often convenient to consider a certain extremal or
“boundary” element, i.e., an element at which a certain function takes its maximal or minimal
value. For instance, the longest or the shortest side a triangle, the greatest or the smallest
angle, etc. This method for solving problems is sometimes called the principle (or the rule)
of an extremal element; this term, however, is not conventional.

Figure 171

2. Let O be the intersection point of the diagonals of a convex quadrilateral. Its vertices
can be denoted so that CO ≤ AO and BO ≤ DO (see Fig. *). Then under symmetries
with respect to point O triangle BOC is mapped inside triangle AOD, i.e., in a certain sense
triangle BOC is the smallest and triangle AOD is the greatest (see §4).

3. The vertices of the convex hull and the basic lines are also extremal elements; to an
extent these notions are used in §5 where they are defined and where their main properties
are listed.

§1. The least and the greatest angles

20.1. Prove that if the lengths of all the sides of a triangle are smaller than 1, then its
area is smaller than 1

4

√
3.

20.2. Prove that the disks constructed on the sides of a convex quadrilateral as on
diameters completely cover this quadrilateral.

20.3. In a country, there are 100 airports such that all the pairwise distances between
them are distinct. From each airport a plane lifts up and flies to the nearest airport. Prove
that there is no airport to which more than five planes can arrive.

20.4. Inside a disk of radius 1, eight points are placed. Prove that the distance between
some two of them is smaller than 1.

20.5. Six disks are placed on the plane so that point O is inside each of them. Prove
that one of these disks contains the center of some other disk.

20.6. Inside an acute triangle point P is taken. Prove that the greatest distance from
P to the vertices of this triangle is smaller than twice the shortest of the distances from P
to the sides of the triangle.

375
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20.7. The lengths of a triangle’s bisectors do not exceed 1. Prove that the area of the
triangle does not exceed 1√

3
.

§2. The least and the greatest distances

20.8. Given n ≥ 3 points on the plane not all of them on one line. Prove that there is a
circle passing through three of the given points such that none of the remaining points lies
inside the circle.

20.9. Several points are placed on the plane so that all the pairwise distances between
them are distinct. Each of these points is connected with the nearest one by a line segment.
Do some of these segments constitute a closed broken line?

20.10. Prove that at least one of the bases of perpendiculars dropped from an interior
point of a convex polygon to its sides is on the side itself and not on its extension.

20.11. Prove that in any convex pentagon there are three diagonals from which one can
construct a triangle.

20.12. Prove that it is impossible to cover a polygon with two polygons which are
homothetic to the given one with coefficient k for 0 < k < 1.

20.13. Given finitely many points on the plane such that any line passing through two
of the given points contains one more of the given points. Prove that all the given points
belong to one line.

20.14. In plane, there are given finitely many pairwise non-parallel lines such that
through the intersection point of any two of them one more of the given lines passes. Prove
that all these lines pass through one point.

20.15. In plane, there are given n points. The midpoints of all the segments with both
endpoints in these points are marked, the given points are also marked. Prove that there
are not less than 2n − 3 marked points.

See also Problems 9.17, 9.19.

§3. The least and the greatest areas

20.16. In plane, there are n points. The area of any triangle with vertices in these points
does not exceed 1. Prove that all these points can be placed in a triangle whose area is equal
to 4.

20.17. Polygon M ′ is homothetic to a polygon M with homothety coefficient equal to
−1

2
. Prove that there exists a parallel translation that sends M ′ inside M .

§4. The greatest triangle

20.18. Let O be the intersection point of diagonals of convex quadrilateral ABCD. Prove
that if the perimeters of triangles ABO, BCO, CDO and DAO are equal, then ABCD is a
rhombus.

20.19. Prove that if the center of the inscribed circle of a quadrilateral coincides with
the intersection point of the diagonals, then this quadrilateral is a rhombus.

20.20. Let O be the intersection point of the diagonals of convex quadrilateral ABCD.
Prove that if the radii of inscribed circles of triangles ABO, BCO, CDO and DAO are
equal, then ABCD is a rhombus.

§5. The convex hull and the base lines

While solving problems of this section we will consider convex hulls of systems of points
and base lines of convex polygons.
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The convex hull of a finite set of points is the least convex polygon which contains all
these points. The word “least” means that the polygon is not contained in any other such
polygon. Any finite system of points possesses a unique convex hull (Fig. 29).

Figure 171

A base line of a convex polygon is a line passing through its vertex and with the property
that the polygon is situated on one side of it. It is easy to verify that for any convex polygon
there exist precisely two base lines parallel to a given line (Fig. 30).

Figure 172

20.21. Solve Problem 20.8 making use of the notion of the convex hull.
20.22. Given 2n + 3 points on a plane no three of which belong to one line and no four

of which belong to one circle. Prove that one can select three points among these so that n
of the remaining points lie inside the circle drawn through the selected points and n of the
points lie outside the circle.

20.23. Prove that any convex polygon of area 1 can be placed inside a rectangle of area
2.

20.24. Given a finite set of points in plane prove that there always exists a point among
them for which not more than three of the given points are the nearest to it.

20.25. On the table lie n cardboard and n plastic squares so that no two cardboard and
no two plastic squares have common points, the boundary points included. It turned out
that the set of vertices of the cardboard squares coincides with that of the plastic squares.
Is it necessarily true that every cardboard square coincides with a plastic one?

20.26. Given n ≥ 4 points in plane so that no three of them belong to one line. Prove
that if for any 3 of them there exists a fourth (among the given ones) together with which
they form vertices of a parallelogram, then n = 4.
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§6. Miscellaneous problems

20.27. In plane, there are given a finite set of (not necessarily convex) polygons each
two of which have a common point. Prove that there exists a line having a common point
with all these polygons.

20.28. Is it possible to place 1000 segments on the plane so that the endpoints of every
segment are interior points of certain other of these segments?

20.29. Given four points in plane not on one line. Prove that at least one of the triangles
with vertices in these points is not an acute one.

20.30. Given an infinite set of rectangles in plane. The vertices of each of the rectangles
lie in points with coordinates (0, 0), (0,m), (n, 0), (n,m), where n and m are positive integers
(each rectangle has its own numbers). Prove that among these rectangles one can select such
a pair that one is contained inside the other one.

20.31. Given a convex polygon A1 . . . An, prove that the circumscribed circle of triangle
AiAi+1Ai+2 contains the whole polygon.

Solutions

20.1. Let α be the least angle of the triangle. Then α ≤ 60◦. Therefore, S = bc sin α
2

≤
sin 60◦

2
=

√
3

4
.

20.2. Let X be an arbitrary point inside a convex quadrilateral. Since

∠AXB + ∠BXC + ∠CXD + ∠AXD = 360◦,

the maximal of these angles is not less than 90◦. Let, for definiteness sake, ∠AXB ≥ 90◦.
Then point X is inside the circle with diameter AB.

20.3. If airplanes from points A and B arrived to point O, then AB is the longest side
of triangle AOB, i.e., ∠AOB > 60◦. Suppose that airplanes from points A1, . . . , An arrived
to point O. Then one of the angles ∠AiOAj does not exceed 360◦

n
. Therefore, 360◦

n
> 60◦,

i.e., n < 6.
20.4. At least seven points are distinct from the center O of the circle. Therefore, the

least of the angles ∠AiOAj, where Ai and Aj are given points, does not exceed 360◦

7
< 60◦. If

A and B are points corresponding to the least angle, then AB < 1 because AO ≤ 1, BO ≤ 1
and angle ∠AOB cannot be the largest angle of triangle AOB.

20.5. One of the angles between the six segments that connect point O with the centers
of the disks does not exceed 360◦

6
= 60◦. Let ∠O1OO2 ≤ 60◦, where O1 and O2 are the

centers of the disks of radius r1 and r2, respectively. Since ∠O1OO2 ≤ 60◦, this angle is not
the largest angle in triangle O1OO2 and, therefore, either O1O2 ≤ O1O or O1O2 ≤ O2O.
Let, for definiteness, O1O2 ≤ O1O. Since point O is inside the circles, O1O < r1. Therefore,
O1O2 ≤ O1O < r1, i.e., point O2 is inside the disk of radius r1 with center O1.

20.6. Let us drop perpendiculars PA1, PB1 and PC1 from point P to sides BC, CA and
AB, respectively, and select the greatest of the angles formed by these perpendiculars and
rays PA, PB and PC. Let, for definiteness sake, this be angle ∠APC1. Then ∠APC1 ≥ 60◦;
hence, PC1 : AP = cos APC1 ≤ cos 60◦ = 1

2
, i.e., AP ≥ 2PC1. Clearly, the inequality still

holds if AP is replaced with the greatest of the numbers AP , BP and CP and PC1 is
replaced with the smallest of the numbers PA1, PB1 and PC1.

20.7. Let, for definiteness, α be the smallest angle of triangle ABC; let AD be the
bisector. One of sides AB and AC does not exceed AD/ cos(α/2) since otherwise segment
BC does not pass through point D. Let, for definiteness,

AB ≤ AD

cos(α/2)
≤ AD

cos 30◦
≤ 2√

3
.
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Then SABC = 1
2
hcAB ≤ 1

2
lcAB ≤ 1√

3
.

20.8. Let A and B be those of the given points for which the distance between them is
minimal. Then inside the circle with diameter AB there are no given points. Let C be the
remaining point — the vertex of the greatest angle that subtends segment AB. Then inside
the circle passing through points A, B and C there are no given points.

20.9. Suppose that we have obtained a closed broken line. Then AB is the longest link
of this broken line and AC and BD are the links neighbouring to AB. Then AC < AB,
i.e., B is not the point closest to A and BD < AB, i.e., A is not the point closest to B.
Therefore, points A and B cannot be connected. Contradiction.

20.10. Let O be the given point. Let us draw lines containing the sides of the polygon
and select among them the one which is the least distant from point O. Let this line contain
side AB. Let us prove that the base of the perpendicular dropped from O to AB belongs
to side AB itself. Suppose that the base of the perpendicular dropped from O to line AB is
point P lying outside segment AB. Since O belongs to the interior of the convex polygon,
segment OP intersects side CD at point Q. Clearly, OQ < OP and the distance from O to
line CD is smaller than OQ. Therefore, line CD is less distant from point O than line AB.
This contradicts the choice of line AB.

20.11. Let BE be the longest diagonal of pentagon ABCDE. Let us prove then that
from segments BE, EC and BD one can construct a triangle. To this end, it suffices to
verify that BE < EC + BD. Let O be the intersection point of diagonals BD and EC.
Then

BE < BO + OE < BD + EC.

20.12. Let O1 and O2 be the centers of homotheties, each with coefficient k, sending
polygon M to polygons M1 and M2, respectively. Then a point from M the most distant
from line O1O2 is not covered by polygons M1 and M2.

20.13. Suppose that not all of the given points lie on one line. Through every pair of
given points draw a line (there are finitely many of such lines) and select the least nonzero
distance from the given points to these lines. Let the least distance be the one from point
A to line BC, where points B and C are among given ones.

On line BC, there lies one more of the given points, D. Drop perpendicular AQ from
point A to line BC. Two of the points B, C and D lie to one side of point Q, let these be
C and D. Let, for definiteness, CQ < DQ (Fig. 31).

Figure 173 (Sol. 20.13)

Then the distance from point C to line AD is smaller than that from A to line BC which
contradicts to the choice of point A and line BC.

20.14. Suppose that not all lines pass through one point. Consider the intersection
points of lines and select the least nonzero distance from these points to the given lines. Let
the least distance be the one from point A to line l. Through point A at least three of given
lines pass. Let them intersect line l at points B, C and D. From point A drop perpendicular
AQ to line l.
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Figure 174 (Sol. 20.14)

Two of the points B, C and D lie on one side of point Q, let them be C and D. Let,
for definiteness, CQ < DQ (Fig. 32). Then the distance from point C to line AD is smaller
than the distance from point A to line l which contradicts the choice of A and l.

20.15. Let A and B be the most distant from each other given points. The midpoints
of the segments that connect point A (resp. B) with the other points are all distinct and lie
inside the circle of radius 1

2
AB with center A (resp. B). The two disks obtained have only

one common point and, therefore, there are no less than 2(n− 1)− 1 = 2n− 3 distinct fixed
points.

20.16. Among all the triangles with vertices in the given points select a triangle of the
greatest area. Let this be triangle ABC. Let us draw through vertex C line lc so that
lc ‖ AB. If points X and A lie on different sides of line lc, then SABX > SABC . Therefore,
all the given points lie on one side of lc.

Similarly, drawing lines lb and la through points B and A so that lb ‖ AC and la ‖ BC
we see that all given points lie inside (or on the boundary of) the triangle formed by lines la,
lb and lc. The area of this triangle is exactly four times that of triangle ABC and, therefore,
it does not exceed 4.

20.17. Let ABC be the triangle of the greatest area among these with vertices in the
vertices of polygon M . Then M is contained inside triangle A1B1C1 the midpoints of whose
sides are points A, B and C. The homothety with center in the center of mass of triangle
ABC and with coefficient −1

2
sends triangle A1B1C1 to triangle ABC and, therefore, sends

polygon M inside triangle ABC.
20.18. For definiteness, we may assume that AO ≥ CO and DO ≥ BO. Let points B1

and C1 be symmetric to points B and C through point O (Fig. 33).

Figure 175 (Sol. 20.18)

Since triangle B1OC1 lies inside triangle AOD, it follows that PAOD ≥ PB1OC1 = PBOC

and the equality is attained only if B1 = D and C1 = A (see Problem 9.27 b)). Therefore,
ABCD is a parallelogram. Therefore, AB − BC = PABO − PBCO = 0, i.e., ABCD is a
rhombus.
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20.19. Let O be the intersection point of the diagonals of quadrilateral ABCD. For
definiteness, we may assume that AO ≥ CO and DO ≥ BO. Let points B1 and C1 be
symmetric to points B and C, respectively, through point O. Since O is the center of the
circle inscribed into the quadrilateral, we see that segment B1C1 is tangent to this circle.
Therefore, segment AD can be tangent to this circle only if B1 = D and C1 = A, i.e.,
if ABCD is a parallelogram. One can inscribe a circle into this parallelogram since this
parallelogram is a rhombus.

20.20. For definiteness, we may assume that AO ≥ CO and DO ≥ BO. Let points B1

and C1 be symmetric to points B and C through point O. Then triangle C1OB1 is contained
inside triangle AOD and, therefore, the inscribed circle S of triangle C1OB1 is contained
inside triangle AOD. Suppose that segment AD does not coincide with segment C1B1. Then
circle S turns into the inscribed circle of triangle AOD under the homothety with center O
and coefficient greater than 1, i.e., rAOD > rC1OB1 = rCOB. We have got a contradiction;
hence, A = C1 and D = B1, i.e., ABCD is a parallelogram.

In parallelogram ABCD, the areas of triangles AOB and BOC are equal and, therefore,
if the inscribed circles have equal radii, then they have equal perimeters since S = pr. It
follows that AB = BC, i.e., ABCD is a rhombus.

20.21. Let AB be the side of the convex hull of the given points, B1 be the nearest to
A of all the given points that lie on AB. Select the one of the remaining points that is the
vertex of the greatest angle that subtends segment AB1. Let this be point C. Then the
circumscribed circle of triangle AB1C is the one to be found.

20.22. Let AB be one of the sides of the convex hull of the set of given points. Let us
enumerate the remaining points in the order of increase of the angles with vertex in these
points that subtend segment AB, i.e., denote them by C1, C2, . . . , C2n+1 so that

∠AC1B < ∠AC2B ≤ · · · < ∠AC2n+1B.

Then points C1, . . . , Cn lie outside the circle circumscribed about triangle ABCn+1 and
points Cn+2, . . . , C2n+1 lie inside it, i.e., this is the circle to be constructed.

20.23. Let AB be the greatest diagonal (or side) of the polygon. Through points A
and B draw lines a and b perpendicular to line AB. If X is a vertex of the polygon, then
AX ≤ AB and XB ≤ AB, therefore, the polygon lies inside the band formed by lines a and
b.

Figure 176 (Sol. 20.23)

Draw the base lines of the polygon parallel to AB. Let these lines pass through vertices
C and D and together with a and b form rectangle KLMN (see Fig. 34). Then

SKLMN = 2SABC + 2SABD = 2SACBD.

Since quadrilateral ACBD is contained in the initial polygon whose area is equal to 1,
SKLMN ≤ 2.
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20.24. Select the least of all the distances between the given points and consider points
which have neighbours at this distance. Clearly, it suffices to prove the required statement
for these points. Let P be the vertex of the convex hull of these points. If Ai and Aj are the
points nearest to P , then AiAj ≥ AiP and AiAj ≥ AjP and, therefore, ∠AiPAj ≥ 60◦. It
follows that P cannot have four nearest neighbours since otherwise one of the angles ∠AiPAj

would have been smaller than 180◦

3
= 60◦. Therefore, P is the point to be found.

20.25. Suppose that there are cardboard squares that do not coincide with the plastic
ones. Let us discard all the coinciding squares and consider the convex hull of the vertices
of the remaining squares. Let A be a vertex of this convex hull. Then A is a vertex of
two distinct squares, a cardboard one and a plastic one. It is easy to verify that one of the
vertices of the smaller of these squares lies inside the larger one (Fig. 35).

Let, for definiteness, vertex B of the cardboard square lie inside the plastic one. Then
point B lies inside a plastic square and is a vertex of another plastic square, which is im-
possible. This is a contradiction, hence, every cardboard square coincides with a plastic
one.

20.26. Let us consider the convex hull of the given points. The two cases are possible:
1) The convex hull is a parallelogram, ABCD. If point M lies inside parallelogram

ABCD, then the vertices of all three parallelograms with vertices at A, B, and M lie
outside ABCD (Fig. 36). Hence, in this case there can be no other points except A, B, C
and D.

2) The convex hull is not a parallelogram. Let AB and BC be edges of the convex hull.
Let us draw base lines parallel to AB and BC. Let these base lines pass through vertices
P and Q. Then the vertices of all the three parallelograms with vertices at B, P and Q lie
outside the convex hull (Fig. 37).

They even lie outside the parallelogram formed by the base lines except for the case
when P and Q are vertices of this parallelogram. In this last case the fourth vertex of the
parallelogram does not belong to the convex hull since the convex hull is not a parallelogram.

20.27. In plane, take an arbitrary straight line l and project all the polygons to it. We
will get several segments any two of which have a common point. Let us order line l; consider
left endpoints of the segments-projections and select the right-most left endpoint. The point
belongs to all the segments and, therefore, the perpendicular drawn through it to l intersects
all the given polygons.

20.28. Let 1000 segments lie in plane. Take an arbitrary line l not perpendicular to any
of them and consider the projections of the endpoints of all these segments on l. It is clear
that the endpoint of the segment whose projection is the left-most of the obtained points
cannot belong to the interior of another segment.

20.29. Two variants of disposition of these four points are possible:
(1) The points are vertices of a convex quadrilateral, ABCD. Take the largest of the

angles of its vertices. Let this be angle ∠ABC. Then ∠ABC ≥ 90◦, i.e., triangle ABC is
not an acute one.

(2) Point D lies inside triangle ABC. Select the greatest of the angles ∠ADB, ∠BDC
and ∠ADC. Let this be angle ∠ADB. Then ∠ADB ≥ 120◦, i.e., triangle ADB is an obtuse
one.

We can prove in the following way that there are no other positions of the four points.
The lines that pass through three of given points divide the plane into seven parts (Fig. 38).
If the fourth given point belongs to the 2nd, 4th or 6th part, then we are in situation (1); if
it belongs to the 1st, 3rd, 5th or 7th part, then we are in situation (2).

20.30. The rectangle with vertices at points (0, 0), (0,m), (n, 0) and (n,m) the horizontal
side is equal to n and vertical side is equal to m. From the given set select a rectangle with
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Figure 177 (Sol. 20.25)
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Figure 178 (Sol. 20.26)

Figure 179 (Sol. 20.26)

Figure 180 (Sol. 20.29)

the least horizontal side. Let the length of its vertical side be equal to m1. Consider any
side m1 of the remaining rectangles. The two cases are possible:

1) The vertical sides of two of these m1-rectangles are equal. Then one of them is
contained in another one.

2) The vertical sides of all these rectangles are distinct. Then the vertical side of one of
them is greater than m1 and, therefore, it contains the rectangle with the least horizontal
side.

20.31. Consider all the circles passing through two neighbouring vertices Ai and Ai+1

and a vertex Aj such that ∠AiAjAi+1 < 90◦. At least one such circle exists. Indeed, one of
the angles ∠AiAi+2Ai+1 and ∠Ai+1AiAi+2 is smaller than 90◦; in the first case set Aj = Ai+2

and in the second case set Aj = Ai. Among all such circles (for all i and j) select a circle S
of the largest radius; let, for definiteness, it pass through points A1, A2 and Ak.

Suppose that vertex Ap lies outside S. Then points Ap and Ak lie on one side of line
A1A2 and ∠A1ApA2 < ∠A1AkA2 ≤ 90◦. The law of sines implies that the radius of the cir-
cumscribed circle of triangle A1ApA2 is greater than that of A1AkA2. This is a contradiction
and, therefore, S contains the whole polygon A1 . . . An.

Let, for definiteness sake, ∠A2A1Ak ≤ ∠A1A2Ak. Let us prove then that A2 and Ak are
neighbouring vertices. If Ak 6= A3, then

180◦ − ∠A2A3Ak ≤ ∠A2A1Ak ≤ 90◦

and, therefore, the radius of the circumscribed circle of triangle A2A3Ak is greater than the
radius of the circumscribed circle of triangle A1A2Ak. Contradiction implies that S passes
through neighbouring vertices A1, A2 and A3.



Chapter 21. DIRICHLET’S PRINCIPLE

Background

1. The most popular (Russian) formulation of Dirichlet’s or pigeonhole principle is the
following one: “If m rabbits sit in n hatches and m > n, then at least one hatch contains at
least two rabbits.”

It is even unclear at first glance why this absolutely transparent remark is a quite effective
method for solving problems. The point is that in every concrete problem it is sometimes
difficult to see what should we designate as the rabbits and the hatches and why there are
more rabbits than the hatches. The choice of rabbits and hatches is often obscured; and
from the formulation of the problem it is not often clear how to immediately deduce that
one should apply Dirichlet’s principle. What is very important is that this method gives a
nonconstructive proof (naturally, we cannot say which precisely hatch contains two rabbits
and only know that such a hatch exists) and an attempt to give a constructive proof, i.e.,
the proof by explicitly constructing or indicating the desired object can lead to far greater
difficulties (and more profound results).

2. Certain problems are also solved by methods in a way similar to Dirichlet’s principle.
Let us formulate the corresponding statements (all of them are easily proved by the rule of
contraries).

a) If several segments the sum of whose lengths is greater than 1 lie on a segment of
length 1, then at least two of them have a common point.

b) If several arcs the sum of whose lengths is greater than 2π lie on the circle of radius
1, then at least two of them have a common point.

c) If several figures the sum of whose areas is greater than 1 are inside a figure of area 1,
then at least two of them have a common point.

§1. The case when there are finitely many points, lines, etc.

21.1. The nodes of an infinite graph paper are painted two colours. Prove that there
exist two horizontal and two vertical lines on whose intersection lie points of the same colour.

21.2. Inside an equilateral triangle with side 1 five points are placed. Prove that the
distance between certain two of them is shorter than 0.5.

21.3. In a 3 × 4 rectangle there are placed 6 points. Prove that among them there are
two points the distance between which does not exceed

√
5.

21.4. On an 8 × 8 checkboard the centers of all the cells are marked. Is it possible to
divide the board by 13 straight lines so that in each part there are not more than 1 of marked
points?

21.5. Given 25 points in plane so that among any three of them there are two the
distance between which is smaller than 1, prove that there exists a circle of radius 1 that
contains not less than 13 of the given points.

21.6. In a unit square, there are 51 points. Prove that certain three of them can be
covered by a disk of radius 1

7
.

385
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21.7. Each of two equal disks is divided into 1985 equal sectors and on each of the disks
some 200 sectors are painted (one colour). One of the disks was placed upon the other one
and they began rotating one of the disks through multiples of 360◦

1985
. Prove that there exists

at least 80 positions for which not more than 20 of the painted sectors of the disks coincide.
21.8. Each of 9 straight lines divides a square into two quadrilaterals the ratio of whose

areas is 2 : 3. Prove that at least three of those nine straight lines pass through one point.
21.9. In a park, there grow 10, 000 trees planted by a so-called square-cluster method

(100 rows of 100 trees each). What is the largest number of trees one has to cut down in
order to satisfy the following condition: if one stands on any stump, then no other stump is
seen (one may assume the trees to be sufficiently thin).

21.10. What is the least number of points one has to mark inside a convex n-gon in
order for the interior of any triangle with the vertices at vertices of the n-gon to contain at
least one of the marked points?

21.11. Point P is taken inside a convex 2n-gon. Through every vertex of the polygon
and P a line is drawn. Prove that there exists a side of the polygon which has no common
interior points with neither of the drawn straight lines.

21.12. Prove that any convex 2n-gon has a diagonal non-parallel to either of its sides.
21.13. The nodes of an infinite graph paper are painted three colours. Prove that there

exists an isosceles right triangle with vertices of one colour.

§2. Angles and lengths

21.14. Given n pairwise nonparallel lines in plane. Prove that the angle between certain
two of them does not exceed 180◦

n
.

21.15. In a circle of radius 1 several chords are drawn. Prove that if every diameter
intersects not more than k chords, then the sum of the length of the chords is shorter than
kπ.

21.16. In plane, point O is marked. Is it possible to place in plane a) five disks; b) four
disks that do not cover O and so that any ray with the beginning in O would intersect not
less than two disks? (“Intersect” means has a common point.)

21.17. Given a line l and a circle of radius n. Inside the circle lie 4n segments of length
1. Prove that it is possible to draw a line which is either parallel or perpendicular to the
given line and intersects at least two of the given segments.

21.18. Inside a unit square there lie several circles the sum of their lengths being equal
to 10. Prove that there exists a straight line intersecting at least four of these circles.

21.19. On a segment of length 1 several segments are marked so that the distance
between any two marked points is not equal to 0.1. Prove that the sum of the lengths of the
marked segments does not exceed 0.5.

21.20. Given two circles the length of each of which is equal to 100 cm. On one of
them 100 points are marked, on the other one there are marked several arcs with the sum
of their lengths less than 1 cm. Prove that these circles can be identified so that no one of
the marked points would be on a marked arc.

21.21. Given are two identical circles; on each of them k arcs are marked, the angle
value of each of the arcs is > 1

k2−k+1
· 180◦. The circles can be identified(?) so that the

marked arcs of one circle would coincide with the marked arcs of the other one. Prove that
these circles can be identified so that all the marked arcs would lie on unmarked arcs.
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§3. Area

21.22. In square of side 15 there lie 20 pairwise nonintersecting unit squares. Prove that
it is possible to place in the large square a unit disk so that it would not intersect any of the
small squares.

21.23. Given an infinite graph paper and a figure whose area is smaller than the area of
a small cell prove that it is possible to place this figure on the paper without covering any
of the nodes of the mesh.

21.24. Let us call the figure formed by the diagonals of a unit square (Fig. 39) a cross.
Prove that it is possible to place only a finite number of nonintersecting crosses in a disk of
radius 100.

Figure 181 (21.24)

21.25. Pairwise distances between points A1, . . . , An is greater than 2. Prove that any
figure whose area is smaller than π can be shifted by a vector not longer than 1 so that it
would not contain points A1, . . . , An.

21.26. In a circle of radius 16 there are placed 650 points. Prove that there exists a ring
(annulus) of inner radius 2 and outer radius 3 which contains not less than 10 of the given
points.

21.27. There are given n figures in plane. Let Si1...ik be the area of the intersection of
figures indexed by i1, . . . , ik and S be the area of the part of the plane covered by the given
figures; Mk the sum of all the Si1...ik . Prove that:

a) S = M1 − M2 + M3 − · · · + (−1)n+1Mn;
b) S ≥ M1 − M2 + M3 − · · · + (−1)m+1Mm for m even and S ≤ M1 − M2 + M3 − · · · +

(−1)m+1Mm for m odd.
21.28. a) In a square of area 6 there are three polygons of total area 3. Prove that

among them there are two polygons such that the area of their intersection is not less than
1.

b) In a square of area 5 there are nine polygons of total area 1. Prove that among them
there are two polygons the area of whose intersection is not less than 1

9
.

21.29. On a rug of area 1 there are 5 patches the area of each of them being not less
than 0.5. Prove that there are two patches such that the area of their intersection is not less
than 0.2.

Solutions

21.1. Let us take three vertical lines and nine horizontal lines. Let us consider only
intersection points of these lines. Since there are only 23 = 8 variants to paint three points
two colours, there are two horizontal lines on which lie similarly coloured triples of points.
Among three points painted two colours there are, by Dirichlet’s principle, two similarly
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coloured points. The vertical lines passing through these points together with the two
horizontal lines selected earlier are the ones to be found.

21.2. The midlines of an equilateral triangle with side 1 separate it into four equilateral
triangles with side 0.5. Therefore, one of the triangles contains at least two of the given points
and these points cannot be vertices of the triangle. The distance between these points is less
than 0.5.

21.3. Let us cut the rectangle into five figures as indicated on Fig. 40. One of the figures
contains at least two points and the distance between any two points of each of the figures
does not exceed

√
5.

Figure 182 (Sol. 21.3)

21.4. 28 fields are adjacent to a side of an 8 × 8 chessboard. Let us draw 28 segments
that connect the centers of neighbouring end(?) fields. Every line can intersect not more
than 2 such segments and, therefore, 13 lines can intersect not more than 26 segments, i.e.,
there are at least 2 segments that do not intersect any of 13 drawn lines. Therefore, it is
impossible to split the chessboard by 13 lines so that in each part there would be not more
than 1 marked point since both endpoints of the segment that does not intersect with the
lines belongs to one of the parts.

21.5. Let A be one of the given points. If all the remaining points lie in disk S1 of radius
1 with center A, then we have nothing more to prove.

Now, let B be a given point that lies outside S1, i.e., AB > 1. Consider disk S2 of radius
1 with center B. Among points A, B and C, where C is any of the given points, there are
two at a distance less than 1 and these cannot be points A and B. Therefore, disks S1 and
S2 contain all the given points, i.e., one of them contains not less than 13 points.

21.6. Let us divide a given square into 25 similar small squares with side 0.2. By Dirich-
let’s principle one of them contains no less than 3 points. The radius of the circumscribed
circle of the square with side 0.2 is equal to 1

5

√
2 < 1

7
and, therefore, it can be covered by a

disk of radius 1
7
.

21.7. Let us take 1985 disks painted as the second of our disks and place them upon the
first disk so that they would take all possible positions. Then over every painted sector of
the first disk there lie 200 painted sectors, i.e., there are altogether2002 pairs of coinciding
painted sectors. Let there be n positions of the second disk when not less 21 pairs of painted
sectors coincide. Then the number of coincidences of painted sectors is not less than 21n.
Therefore, 21n ≤ 2002, i.e., n ≤ 1904.8. Since n is an integer, n ≤ 1904. Therefore, at least
for 1985 − 1904 = 81 positions not more than 20 pairs of painted sectors coincide.

21.8. The given lines cannot intersect neighbouring sides of square ABCD since other-
wise we would have not two quadrilaterals but a triangle and a pentagon. Let a line intersect
sides BC and AD at points M and N , respectively. Trapezoids ABMN and CDNM have
equal heights, and, therefore, the ratio of their areas is equal to that of their midlines, i.e.,
MN divides the segment that connects the midpoints of sides AB and CD in the ratio of
2 : 3. There are precisely 4 points that divide the midlines of the square in the ratio of 2 : 3.
Since the given nine lines pass through these four points, then through one of the points at
least three lines pass.
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Figure 183 (Sol. 21.8)

21.9. Let us divide the trees into 2500 quadruples as shown in Fig. 41. In each such
quadruple it is impossible to chop off more than 1 tree. On the other hand, one can chop
off all the trees that grow in the left upper corners of the squares formed by our quadruples.
Therefore, the largest number of trees that can be chopped off is equal to 2500.

21.10. Since any diagonal that goes out of one vertex divides an n-gon into n − 2
triangles, then n − 2 points are necessary.

Figure 184 (Sol. 21.10)

From Fig. 42 one can deduce that n − 2 points are sufficient: it suffices to mark one
points in each shaded triangle. Indeed, inside triangle ApAqAr, where p < q < r, there is
always contained a shaded triangle adjacent to vertex Aq.

21.11. The two cases are possible.
(1) Point P lies on diagonal AB. Then lines PA and PB coincide and do not intersect

the sides. There remain 2n − 2 lines; they intersect not more than 2n − 2 sides.
(2) Point P does not belong to a diagonal of polygon A1A2 . . . A2n. Let us draw diagonal

A1An+1. On both sides of it there lie n sides. Let, for definiteness, point P be inside polygon
A1 . . . An+1 (Fig. 43).

Then lines PAn+1, PAn+2, . . . , PA2n, PA1 (there are n + 1 such lines) cannot intersect
sides An+1An+2, An+2An+3, . . . , A2nA1, respectively. Therefore, the remaining straight lines
can intersect not more than n − 1 of these n sides.

21.12. The number of diagonals of a 2n-gon is equal to 2n(2n−3)
2

= n(2n − 3). It is easy
to verify that there are not more than n − 2 diagonals parallel to the given one. Therefore,
there are not more than 2n(n−2) diagonals parallel to the sides. Since 2n(n−2) < n(2n−3),
there exists a diagonal which is not parallel to any side.
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Figure 185 (Sol. 21.11)

21.13. Suppose that there does not exist an equilateral right triangle whose legs are
parallel to the sides of the cells and with vertices of the same colour. For convenience we
may assume that it is the cells which are painted, not the nodes.

Let us divide the paper into squares of side 4; then on the diagonal of each such square
there are two cells of the same colour. Let n be greater than the number of distinct colorings
of the square of side 4. Consider a square consisting of n2 squares of side 4. On its diagonal
we can find two similarly painted squares of side 4. Finally, take square K on whose diagonal
we can find two similarly painted squares of side 4n.

Figure 186 (Sol. 21.13)

Considering the square with side 4n and in it two similarly painted squares with side 4
we get four cells of the first colour, two cells of the second colour and one cell of the third
colour, see Fig. 44. Similarly, considering square K we get a cell which cannot be of the
first, or second, or third colour.

21.14. In plane, take an arbitrary point and draw through it lines parallel to the given
ones. They divide the plane into 2n angles whose sum is equal to 360◦. Therefore, one of
these angles does not exceed 180◦

n
.

21.15. Suppose the sum of the length of the chords is not shorter than πk. Let us prove
that then there exists a diameter which intersects with at least k+1 chords. Since the length
of the arc corresponding to the chord is greater than the length of this chord, the sum of the
lengths of the archs corresponding to given chords is longer than πk. If we add to these arcs
the arcs symmetric to them through the center of the circle, then the sum of the lengths of
all these arcs becomes longer than 2πk. Therefore, there exists a point covered by at least
k + 1 of these arcs. The diameter drawn through this point intersects with at least k + 1
chord.
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21.16. a) It is possible. Let O be the center of regular pentagon ABCDE. Then the
disks inscribed in angles ∠AOC, ∠BOD, ∠COD, ∠DOA and ∠EOB possess the required
property.

b) It is impossible. For each of the four disks consider the angle formed by the tangents
to the disk drawn through point O. Since each of these four angles is smaller than 180◦,
their sum is less than 2 · 360◦. Therefore, there exists a point on the plane covered by not
more than 1 of these angles. The ray drawn through this point intersects with not more
than one disk.

21.17. Let l1 be an arbitrary line perpendicular to l. Denote the lengths of the pro-
jections of the i-th segment to l and l1 by ai and bi, respectively. Since the length of each
segment is equal to 1, we have ai + bi ≥ 1. Therefore,

(a1 + · · · + a4n) + (b1 + · · · + b4n) ≥ 4n.

Let, for definiteness,
a1 + · · · + a4n ≥ b1 + · · · + b4n.

Then a1 + · · ·+a4n ≥ 2n. The projection of any of the given segment is of length 2n because
all of them lie inside the circle of radius n. If the projections of the given segments to l
would have had no common points, then we would had a1 + · · · + a4n < 2n. Therefore, on
l there exists a point which is the image under the projection of at least two of the given
segments. The perpendicular to l drawn through this point intersects with at least two of
given segments.

21.18. Let us project all the given circles on side AB of square ABCD. The projection
of the circle of length l is a segment of length l

π
. Therefore, the sum of the lengths of the

projections of all the given circles is equal to 10
π

. Since 10
π

> 3 = 3AB, on segment AB there
is a point which belongs to projections of at least four circles. The perpendicular to AB
drawn through this point intersects at least four circles.

21.19. Let us cut the segment into ten segments of length 0.1, stack them in a pile and
consider their projection to a similar segment as shown on Fig. 45.

Figure 187 (Sol. 21.19)

Since the distance between any two painted points is not equal to 0.1, the painted points
of neighbouring segments cannot be projected into one point. Therefore, neither of the
points can be the image under the projection of painted points of more than 5 segments. It
follows that the sum of the lengths of the projections of the painted segments (equal to the
sum of their lengths) does not exceed 5 · 0.1 = 0.5.

21.20. Let us identify the given circles and let us place a painter in a fixed point of one
of them. Let us rotate this circle and let the painter paint a point of the other circle each
time when it is a marked point that belongs to a marked arc. We have to prove that after a
complete revolution a part of the circle would remain unpainted.

The final result of the painter’s job will be the same as if he were rotated 100 times and
(s)he was asked to paint the other circle on the i-th revolution so that (s)he would have to
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paint the i-th marked point that belongs to one of the marked arcs. Since in this case at
each revolution less than 1 cm is being painted, it follows that after 100 revolutions there
will be painted less than 100 cm. Therefore, a part of the circle will be unpainted.

21.21. Let us identify(?) our circles and place a painter into a fixed point of one of
them. Let us rotate this circle and let the painter paint the point of the other circle against
which he moves each time when some of the marked arcs intersect. We have to prove that
after a full revolution a part of the circle will be unpainted.

The final result of the painter’s job would be the same as if (s)he were rotated k times
and was asked to paint the circle on the i-th revolution when the i-th marked arc on which
the painter resides would intersect with a marked arc of the other circle.

Let ϕ1, . . . , ϕn be the angle parameters of the marked arcs. By the hypothesis ϕ1 < α ,
. . . , ϕn < α, where α = 180◦

k2−k+1
. During the time when the marked arcs with counters i and

j intersect the painter paints an arc of length ϕi + ϕj.
Therefore, the sum of the angle values of the arcs painted during the i-th revolution does

not exceed kϕi(ϕ1 + · · · + ϕk) and the sum of the angle values of the arcs painted during
all k revolutions does not exceed 2k(ϕ1 + · · · + ϕk). Observe that during all this we have
actually counted the intersection of arcs with similar(?) counters k times.

In particular, point A across which the painter moves at the moment when the marked
arcs coincide has, definitely, k coats of paint. Therefore, it is desirable to disregard the arcs
that the painter paints at the moment when some of the marked arcs with similar counters
intersect. Since all these arcs contain point A, we actually disregard only one arc and the
angle value of this arc does not exceed 2α.

The sum of the angle values of the remaining part of the arcs painted during the i-th
revolution does not exceed (k − 1)ϕ1 + (ϕ1 + · · ·+ ϕk − ϕi) and the sum of the angle values
of the remaining part of the arcs painted through all k revolutions does not exceed

(2k − 2) · (ϕ1 + · · · + ϕk) < (2k2 − 2k)α.

A part of the circle will be unpainted if (2k2 − 2k)α ≤ 360◦ − 2α, i.e., α ≤ 180◦

k2−k+1
.

21.22. Let us consider a figure consisting of all the points whose distance from the small
unit square is not greater than 1 (Fig. 46).

Figure 188 (Sol. 21.22)

It is clear that no unit disk whose center is outside this figure intersects the small square.
The area of such a figure is equal to π + 5. The center of the needed disk should also lie
at a distance greater than 1 from the sides of the large square, i.e., inside the square of
side 13. Obviously, 20 figures of total area π + 5 cannot cover a square of side 13 because
20(π + 5) < 132. The disk with the center in an uncovered point possesses the desired
property.

21.23. Let us paint the figure to(?) the graph paper arbitrarily, cut the paper along
the cells of the mesh and stack them in a pile moving them parallelly with themselves and



SOLUTIONS 393

without turning. Let us consider the projection of this stack on a cell. The projections of
parts of the figure cannot cover the whole cell since their area is smaller. Now, let us recall
how the figure was placed on the graph paper and move the graph paper parallelly with
itself so that its vertices would be in the points whose projection is an uncovered point. As
a result we get the desired position of the figure.

21.24. For every cross consider a disk of radius 1
2

√
2 with center in the center of the

cross. Let us prove that if two such disks intersect, then the crosses themselves also intersect.
The distance between the centers of equal intersecting disks does not exceed the doubled
radius of any of them and, therefore, the distance between the centers of the corresponding
crosses does not exceed 1√

2
. Let us consider a rectangle given by bars of the first cross and

the center of the second one (Fig. 47).

Figure 189 (Sol. 21.24)

One of the bars of the second cross passes through this rectangle and, therefore, it
intersects the first cross since the length of the bar is equal to 1√

2
and the length of the

diagonal of the rectangle does not exceed 1√
2
. In the disk of a finite radius one can only

place finitely many non-intersecting disks of radius 1
2

√
2.

21.25. Let Φ be a given figure, S1, . . . , Sn unit disks with centers at points A1, . . . , An.
Since disks S1, . . . , Sn do not intersect, then neither do figures Vi = Φ ∩ Si, consequently,
the sum of their areas does not exceed the area of figure Φ, i.e., it is smaller than π. Let

O be an arbitrary point and Wi the image of Vi under the translation by vector
−−→
AiO. The

figures Wi lie inside the unit disk S centered at O and the sum of their areas is smaller than
the area of this disk. Therefore, point B of disk S does not belong to any of the figures Wi.

It is clear that the translation by vector
−−→
BO is the desired one.

21.26. First, notice that point X belongs to the ring with center O if and only if point
O belongs to a similar ring centered at X. Therefore, it suffices to show that if we construct
rings with centers at given points, then not less than 10 rings will cover one of the points of
the considered disk. The considered rings lie inside a disk of radius 16 + 3 = 19 whose area
is equal to 361π. It remains to notice that 9 · 361π = 3249π and the total area of the rings
is equal to 650 · 5π = 3250π.

21.27. a) Let
(

n
k

)

be the number of ways to choose k elements from n indistinguishable
ones. One can verify the following Newton binomial formula

(x + y)n =
n

∑

k=0

(

n

k

)

xkyn−k.

Denote by Wm the area of the part of the plane covered by exactly m figures. This part
consists of pieces each of which is covered by certain m figures. The area of each such piece
has been counted

(

n
k

)

times in calculation of Mk because from m figures we can form
(

n
k

)
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intersections of k figures. Therefore,

Mk =

(

n

k

)

Wk +

(

k + 1

k

)

Wk+1 + · · · +
(

n

k

)

Wn.

It follows that

M1 − M2 + M3 − · · · =
(

1

1

)

W1 + (

(

2

1

)

−
(

2

2

)

)W2 + · · · + (

(

n

1

)

−
(

n

2

)

+

(

n

3

)

− . . . )Wn =

W1 + · · · + Wn

since

(

m

1

)

−
(

m

2

)

+

(

m

3

)

− · · · − (−1)m

(

m

m

)

=

(−1 +

(

m

1

)

−
(

m

2

)

+ . . . ) + 1) = −(1 − 1)m + 1 = 1.

It remains to observe that S = W1 + · · · + Wn.
b) According to heading a)

S − (M1 − M2 + · · · + (−1)m+1Mm) =

(−1)m+2Mm+1 + (−1)m+3Mm+2 + . . . · · · + (−1)n+1Mn =
n

∑

i=1

((−1)m+2

(

i

m + 1

)

+ · · · + (−1)n+1

(

i

n

)

)Wi

(it is convenient to assume that
(

n
k

)

is defined for k > n so that
(

n
k

)

= 0). Therefore, it
suffices to verify that

(

i

m + 1

)

−
(

i

m + 2

)

+

(

i

m + 3

)

− · · · + (−1)m+n+1

(

i

n

)

≥ 0 for i ≤ n.

The identity
(x + y)i = (x + y)i−1(x + y)

implies that
(

i
j

)

=
(

i−1
j−1

)

+
(

i−1
j

)

. Hence,
(

i

m + 1

)

−
(

i

m + 2

)

+ · · · + (−1)m+n+1

(

i

n

)

=

(

i − 1

m

)

±
(

i − 1

n

)

.

It remains to notice that
(

i−1
n

)

= 0 for i ≤ n.
21.28. a) By Problem 21.27 a) we have

6 = 9 − (S12 + S23 + S13) + S123,

i.e.,
S12 + S23 + S13 = 3 + S123 ≥ 3.

Hence, one of the numbers S12, S23, S13 is not less than 1.
b) By Problem 21.27 b) 5 ≥ 9 − M2, i.e., M2 ≥ 4. Since from 9 polygons one can form

9 · 8
2

= 36 pairs, the area of the common part of one of such pairs is not less than M2

36
≥ 1

9
.
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21.29. Let the area of the rug be equal to M , the area of the intersection of the patches
indexed by i1, . . . , ik is equal to Si1...ik and Mk =

∑

Si1...ik . By Problem 21.27 a)

M − M1 + M2 − M3 + M4 − M5 ≥ 0

since M ≥ S. One can write similar inequalities not only for the whole rug but also for every
patch: if we consider the patch S1 as the rug with patches S12, S13, S14, S15 we get

S1 −
∑

i

S1i +
∑

i<j

S1ij −
∑

i<j<k

S1ijk + S12345 ≥ 0.

Adding such inequalities for all five patches we get

M1 − 2M2 + 3M3 − 4M4 + 5M5 ≥ 0

(the summand Si1...ik enters the inequality for patches i1, . . . , ik and, therefore, it enters the
sum of all inequalities with coefficient k). Adding the inequalities

3(M − M1 + M2 − M3 + M4 − M5) ≥ 0 and M1 − 2M2 + 3M3 − 4M4 + 5M5 ≥ 0

we get
3M − 2M1 + M2 − M4 + 2M5 ≥ 0.

Adding to this the inequality M4 − 2M5 ≥ 0 (which follows from the fact that S12345 enters
every Si1i2i3i4 , i.e., M4 ≥ 5M5 ≥ 2M5) we get 3M − 2M1 + M2 ≥ 0, i.e., M2 ≥ 2M1 − 3M ≥
5 − 3 = 2.

Since from five patches we can form ten pairs, the area of the intersection of patches from
one of these pairs is not less than 1

10
M2 ≥ 0.2.





Chapter 22. CONVEX AND NONCONVEX POLYGONS

Background

1. There are several different (nonequivalent) definitions of a convex polygon. Let us
give the most known and most often encountered definitions. A polygon is called convex if
one of the following conditions is satisfied:

a) the polygon lies on one side of any of its sides (i.e., the intersections of the sides of
the polygon do not intersect its other sides);

b) the polygon is the intersection (i.e., the common part) of several half planes;
c) any segment whose endpoints belong to the polygon wholly belongs to the polygon.
2. A figure is called a convex one if any segment with the endpoints in the points of a

figure belongs to the figure.
3. In solutions of several problems of this chapter we make use of the notion of the convex

hull and the basic line.

§1. Convex polygons

22.1. Given n points in plane such that any four of them are the vertices of a convex
quadrilateral, prove that these points are the vertices of a convex n-gon.

22.2. Given five points in plane no three of which belong to one line, prove that four of
these points are placed in the vertices of a convex quadrilateral.

22.3. Given several regular n-gons in plane prove that the convex hull of their vertices
has not less than n angles.

22.4. Among all numbers n such that any convex 100-gon can be represented as an
intersection (i.e., the common part) of n triangles find the least number.

22.5. A convex heptagon will be called singular if three of its diagonals intersect at one
point. Prove that by a slight movement of one of the vertices of a singular heptagon one can
obtain a nonsingular heptagon.

22.6. In plane lie two convex polygons, F and G. Denote by H the set of midpoints
of the segments one endpoint of each of which belongs to F and the other one to G. Prove
that H is a convex polygon.

a) How many sides can H have if F and G have n1 and n2 sides, respectively?
b) What value can the perimeter of H have if the perimeters of F and G are equal to P1

and P2, respectively?
22.7. Prove that there exists a number N such that among any N points no three of

which lie on one line one can select 100 points which are vertices of a convex polygon.

* * *

22.8. Prove that in any convex polygon except parallelogram one can select three sides
whose extensions form a triangle which is ambient(?) with respect to the given polygon.

22.9. Given a convex n-gon no two sides of which are parallel, prove that there are not
less than n − 2 distinct triangles such as discussed in Problem 22.8.

397
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22.10. A point O is inside a convex n-gon, A1 . . . An. Prove that among the angles
∠AiOAj there are not fewer than n − 1 acute ones.

22.11. Convex n-gon A1 . . . An is inscribed in a circle and among the vertices of the
polygon there are no diametrically opposite points. Prove that among the triangles ApAqAr

there is at least one acute triangle, then there are not fewer than n− 2 such acute triangles.

§2. Helly’s theorem

22.12. a) Given four convex figures in plane such that any three of them have a common
point, prove that all of them have a common point.

b) (Helly’s theorem.) Given n convex figures in plane such that any three of them have
a common point, prove that all n figures have a common point.

22.13. Given n points in plane such that any three of them can be covered by a unit
disk, prove that all n points can be covered by a unit disk.

22.14. Prove that inside any convex heptagon there is a point that does not belong to
any of quadrilaterals formed by quadruples of its neighbouring vertices.

22.15. Given several parallel segments such that for any three of them there is a line
that intersects them, prove that there exists a line that intersects all the points.

§3. Non-convex polygons

In this section all polygons considered are non-convex unless otherwise mentioned.
22.16. Is it true that any pentagon lies on one side of not fewer than two of its sides?
22.17. a) Draw a polygon and point O inside it so that the polygon’s angle with vertex

in O would not subtend any side without intersecting some of the other of the polygon’s
sides.

b) Draw a polygon and point O outside it so that the polygon’s angle with vertex in O
would not subtend any side without intersecting some of the other of the polygon’s sides.

22.18. Prove that if a polygon is such that point O is the vertex of an angle that subtends
its entire contour, then any point of the plane is the vertex of an angle that entirely subtends
at least one of its sides.

22.19. Prove that for any polygon the sum of the outer angles adjacent to the inner
ones that are smaller than 180◦ is ≥ 360◦.

22.20. a) Prove that any n-gon (n ≥ 4) has at least one diagonal that completely lies
inside it.

b) Find out what is the least number of such diagonals for an n-gon.
22.21. What is the maximal number of vertices of an n-gon from which one cannot draw

a diagonal?
22.22. Prove that any n-gon can be cut into triangles by nonintersecting diagonals.
22.23. Prove that the sum of the inner angles of any n-gon is equal to (n − 2)180◦.
22.24. Prove that the number of triangles into which an n-gon is cut by nonintersecting

diagonals is equal to n − 2.
22.25. A polygon is cut by nonintersecting diagonals into triangles. Prove that at least

two of these diagonals cut triangles off it.
22.26. Prove that for any 13-gon there exists a line containing exactly one of its sides;

however, for any n > 13 there exists an n-gon for which the similar statement is false.
22.27. What is the largest number of acute angles in a nonconvex n-gon?
22.28. The following operations are done over a nonconvex non-selfintersecting polygon.

If it lies on one side of line AB, where A and B are non-neighbouring vertices, then we reflect
one of the parts into which points A and B divide the contour of the polygon through the
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midpoint of segment AB. Prove that after several such operations the polygon becomes a
convex one.

22.29. The numbers α1, . . . , αn whose sum is equal to (n − 2)π satisfy inequalities
0 < αi ≤ 2π. Prove that there exists an n-gon A1 . . . An with anagles α1, . . . , αn at vertices
A1, . . . , An, respectively.

Solutions

22.1. Consider the convex hull of given points. It is a convex polygon. We have to prove
that all the given points are its vertices. Suppose one of the given points (point A) is not
a vertex, i.e., it lies inside or on the side of the polygon. The diagonals that go out of this
vertex cut the convex hull into triangles; point A belongs to one of the triangles. The vertices
of this triangle and point A cannot be vertices of a convex quadrilateral. Contradiction.

22.2. Consider the convex hull of given points. If it is a quadrilateral or a pentagon,
then all is clear. Now, suppose that the convex hull is triangle ABC and points D and E
lie inside it. Point E lies inside one of the triangles ABD, BCD, CAD; let for definiteness
sake it belong to the interior of triangle ABC. Let H be the intersection point of lines CD
and AB. Point E lies inside one of the triangles ADH and BDH. If, for example, E lies
inside triangle ADH, then AEDC is a convex quadrilateral (Fig. 48).

Figure 190 (Sol. 22.2)

22.3. Let the convex hull of the vertices of the given n-gons be an m-gon and ϕ1, . . . ,
ϕm its angles. Since to every angle of the convex hull an angle of a regular n-gon is adjacent,
ϕi ≥ (1−( 2

n
))π (in the right-hand side there stands the value of an angle of a regular n-gon).

Therefore,

ϕ1 + · · · + ϕm ≥ m(1 − (
2

n
))π = (m − (

2m

n
))π.

On the other hand, ϕ1 + · · ·+ ϕm = (m− 2)π; hence, (m− 2)π ≥ (m− (2m
n

))π, i.e., m ≥ n.
22.4. First, notice that it suffices to take 50 triangles. Indeed, let ∆k be the triangle

whose sides lie on rays AkAk−1 and AkAk+1 and which contains convex polygon A1 . . . A100.
Then this polygon is the intersection of the triangles ∆2, ∆4, . . . , ∆100.

Figure 191 (Sol. 22.4)
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On the other hand, the 100-gon depicted on Fig. 49 cannot be represented as the inter-
section of less than 50 triangles. Indeed, if three of its sides lie on the sides of one triangle,
then one of these sides is side A1A2. All the sides of this polygon lie on the sides of n
triangles and, therefore, 2n + 1 ≥ 100, i.e., n ≥ 50.

22.5. Let P be the intersection point of diagonals A1A4 and A2A5 of convex heptagon
A1 . . . A7. One of the diagonals A3A7 or A3A6, let, for definiteness, this be A3A6, does not
pass through point P . There are finitely many intersection points of the diagonals of hexagon
A1 . . . A6 and, therefore, in a vicinity of point A7 one can select a point A′

7 such that lines
A1A

′
7, . . . , A6A

′
7 do not pass through these points, i.e., heptagon A1 . . . A′

7 is a nonsingular
one.

22.6. First, let us prove that H is a convex figure. Let points A and B belong to H,
i.e., A and B be the midpoints of segments C1D1 and C2D2, where C1 and C2 belong to F
and D1, respectively, and D2 belong to G. We have to prove that the whole segment AB
belongs to H. It is clear that segments C1C2 and D1D2 belong to F and G, respectively.
The locus of the midpoints of segments with the endpoints on segments C1C2 and D1D2 is
the parallelogram with diagonal AB (Fig. 50); this follows from the fact that the locus of
the midpoints of segments CD, where C is fixed and D moves along segment D1D2, is the
midline of triangle CD1D2.

Figure 192 (Sol. 22.6)

In plane, take an arbitrary coordinate axis Ox. The set of all the points of the polygon
whose projections to the axis have the largest value (Fig. 51) will be called the basic set of
the polygon with respect to axis Ox.

Figure 193 (Sol. 22.6)

The convex polygon is given by its basic sets for all possible axes Ox. If basic sets F
and G with respect to an axis are segments of length a and b, then the basic set of H with
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respect to the same axis is a segment of length a+b
2

(here we assume that a point is segment

of zero length). Therefore, the perimeter of H is equal to P1+P2

2
and the number of H’s sides

can take any value from the largest — n1 or n2 — to n1 + n2 depending on for how many
axes both basic sets of F and G are sides and not vertices simultaneously.

22.7. We will prove a more general statement. Recall that cardinality of a set is (for a
finite set) the number of its element.

(Ramsey’s theorem.) Let p, q and r be positive integers such that p, q ≥ r. Then there
exists a number N = N(p, q, r) with the following property: if r-tuples from a set S of
cardinality N are divided at random into two nonintersecting families α and β, then either
there exists a p-tuple of elements from S all subsets of cardinality r of which are contained
in α or there exists a q-tuple all subsets of cardinality r of which are contained in β.

The desired statement follows easily from Ramsey’s theorem. Indeed, let N = N(p, 5, 4)
and family α consist of quadruples of elements of an N -element set of points whose convex
hulls are quadrilaterals. Then there exists a subset of n elements of the given set of points
the convex hulls of any its four-elements subset being quadrilaterals because there is no five-
element subset such that the convex hulls of any four-element subsets of which are triangles
(see Problem 22.2). It remains to make use of the result of Problem 22.1.

Now, let us prove Ramsey’s theorem. It is easy to verify that for N(p, q, 1), N(r, q, r)
and N(p, r, r) one can take numbers p + q − 1, q and p, respectively.

Now, let us prove that if p > r and q > r, then for N(p, q, r) one can take numbers
N(p1, q1, r − 1) + 1, where p1 = N(p − 1, q, r) and q1 = N(p, q − 1, r). Indeed, let us delete
from the N(p, q, r)-element set S one element and divide the (r − 1)-element subsets of the
obtained set S ′ into two families: family α′ (resp. β′) consists of subsets whose union with
the deleted element enters α (resp. β). Then either (1) there exists a p1-element subset of
S ′ all (r − 1)-element subsets of which are contained in α′ or (2) there exists a q1-element
subset all whose (r − 1) element subsets are contained in family β′.

Consider case (1). Since p1 = N(p−1, q, r), it follows that either there exists a q-element
subset of S ′ all r-element subsets of which belong to β (then these q elements are the desired
one) or there exists a (p − 1)-element subset of S ′ all the r-element subsets of which are
contained in α (then these p− 1 elements together with the deleted element are the desired
ones).

Case (2) is treated similarly.
Thus, the proof of Ramsey’s theorem can be carried out by induction on r, where in the

proof of the inductive step we make use of induction on p + q.
22.8. If the polygon is not a triangle or parallelogram, then it has two nonparallel

non-neighbouring sides. Extending them until they intersect, we get a new polygon which
contains the initial one and has fewer number of sides. After several such operations we get
a triangle or a parallelogram.

If we have got a triangle, then everything is proved; therefore, let us assume that we have
got a parallelogram, ABCD. On each of its sides there lies a side of the initial polygon and
one of its vertices, say A, does not belong to the initial polygon (Fig. 52). Let K be a vertex
of the polygon nearest to A and lying on AD; let KL be the side that does not lie on AD.
Then the polygon is confined inside the triangle formed by lines KL, BC and CD.

22.9. The proof will be carried out by induction on n. For n = 3 the statement is
obvious. Let n ≥ 4. By Problem 22.8 there exist lines a, b and c which are extensions of
the sides of the given n-gon that constitute triangle T which contains the given n-gon. Let
line l be the extension of some other side of the given n-gon. The extensions of all the sides
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Figure 194 (Sol. 22.8)

of the n-gon except the side which lies on line l form a convex (n − 1)-gon that lies inside
triangle T .

By the inductive hypothesis for this (n − 1)-gon there exist n − 3 required triangles.
Moreover, line l and two of the lines a, b and c also form a required triangle.

Remark. If points A2, . . . , An belong to a circle with center at A1, where ∠A2A1An <
90◦ and the n-gon A1 . . . An is a convex one, then for this n-gon there exist precisely n − 2
triangles required.

22.10. Proof will be carried out by induction on n. For n = 3 the proof is obvious.
Now, let us consider n-gons A1 . . . An, where n ≥ 4. Point O lies inside triangle ApAqAr.
Let Ak be a vertex of the given n-gon distinct from points Ap, Aq and Ar. Selecting vertex
Ak in n-gon A1 . . . An we get a (n − 1)-gon to which the inductive hypothesis is applicable.
Moreover, the angles ∠AkOAp, ∠AkOAq and ∠AkOAr cannot all be acute ones because the
sum of certain two of them is greater than 180◦.

22.11. Proof will be carried out by induction on n. For n = 3 the statement is obvious.
Let n ≥ 4. Fix one acute triangle ApAqAr and let us discard vertex Ak distinct from the
vertices of this triangle. The inductive hypothesis is applicable to the obtained (n − 1)-
gon. Moreover, if, for instance, point Ak lies on arc ApAq and ∠AkApAr ≤ ∠AkAqAr, then
triangle AkApAr is an acute one.

Indeed, ∠ApAkAr = ∠ApAqAr, ∠ApArAk < ∠ApArAq and ∠AkApAr ≤ 90◦; hence,
∠AkApAr < 90◦.

22.12. a) Denote the given figures by M1, M2, M3 and M4. Let Ai be the intersection
point of all the figures except Mi. Two variants of arrangements of points Ai are possible.

1) One of the points, for example, A4 lies inside the triangle formed by the remaining
points. Since points A1, A2, A3 belong to the convex figure M4, all points of A1A2A3 also
belong to M4. Therefore, point A4 belongs to M4 and it belongs to the other figures by its
definition.

2) A1A2A3A4 is a convex quadrilateral. Let C be the intersection point of diagonals A1A3

and A2A4. Let us prove that C belongs to all the given figures. Both points A1 and A3 belong
to figures M2 and M4, therefore, segment A1A3 belongs to these figures. Similarly, segment
A2A4 belongs to figures M1 and M3. It follows that the intersection point of segments A1A3

and A2A4 belongs to all the given figures.
b) Proof will be carried out by induction on the number of figures. For n = 4 the

statement is proved in the preceding problem. Let us prove that if the statement holds for
n ≥ 4 figures, then it holds also for n + 1 figures. Given convex figures Φ1, . . . , Φn, Φn+1

every three of which have a common point, consider instead of them figures Φ1, . . . , Φn−1,
Φ′

n, where Φ′
n is the intersection of Φn and Φn+1. It is clear that Φ′

n is also a convex figure.
Let us prove that any three of the new figures have a common point. One can only doubt

this for the triple of figures that contain Φ′
n but the preceding problem implies that figures
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Φi, Φj, Φn and Φn+1 always have a common point. Therefore, by the inductive hypothesis
Φ1, . . . , Φn−1, Φ′

n have a common point; hence, Φ1, . . . , Φn, Φn+1 have a common point.
22.13. A unit disk centered at O covers certain points if and only if unit disks centered

at these points contain point O. Therefore, our problem admits the following reformulation:
Given n points in plane such that any three unit disks centered at these points have a

common point, prove that all these disks have a common point.
This statement clearly follows from Helley’s theorem.
22.14. Consider pentagons that remain after deleting pairs of neighbouring vertices of

a heptagon. It suffices to verify that any three of the pentagons have a common point. For
three pentagons we delete not more than 6 distinct vertices, i.e., one vertex remains. If
vertex A is not deleted, then the triangle shaded in Fig. 53 belongs to all three pentagons.

Figure 195 (Sol. 22.14)

22.15. Let us introduce the coordinate system with Oy-axis parallel to the given seg-
ments. For every segment consider the set of all points (a, b) such that the line y = ax + b
intersects it. It suffices to verify that these sets are convex ones and apply to them Helley’s
theorem. For the segment with endpoints (x0, y1) and (x0, y2) the considered set is a band
between parallel lines ax0 + b = y1 and ax0 + b = y2.

22.16. Wrong. A counterexample is given on Fig. 54.

Figure 196 (Sol. 22.16)

22.17. The required polygons and points are drawn on Fig. 55.

Figure 197 (Sol. 22.17)
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22.18. Let the whole contour of polygon A1 . . . An subtend an angle with vertex O. Then
no other side of the polygon except AiAi+1 lies inside angle ∠AiOAi+1; hence, point O lies
inside the polygon (Fig. 56). Any point X in plane belongs to one of the angles ∠AiOAi+1

and, therefore, side AiAi+1 subtends an angle with vertex in X.

Figure 198 (Sol. 22.18)

22.19. Since all the inner angles of a convex n-gon are smaller than 180◦ and their sum
is equal to (n − 2) · 180◦, the sum of the exterior angles is equal to 360◦, i.e., for a convex
polygon we attain the equality.

Figure 199 (Sol. 22.19)

Now, let M be the convex hull of polygon N . Each angle of M contains an angle of
N smaller than 180◦ and the angle of M can be only greater than the angle of N , i.e., the
exterior angle of N is not less than the exterior angle of M (Fig. 57). Therefore, even
restricting to the angles of N adjacent to the angles of M we will get not less than 360◦.

22.20. a) If the polygon is a convex one, then the statement is proved. Now, suppose
that the exterior angle of the polygon at vertex A is greater than 180◦. The visible part of
the side subtends an angle smaller than 180◦ with vertex at point A, therefore, parts of at
least two sides subtend an angle with vertex at A. Therefore, there exist rays exiting point
A and such that on these rays the change of (parts of) sides visible from A occurs (on Fig.
58 all such rays are depicted). Each of such rays determines a diagonal that lies entirely
inside the polygon.

b) On Fig. 59 it is plotted how to construct an n-gon with exactly n− 3 diagonals inside
it. It remains to demonstrate that any n-gon has at least n − 3 diagonals. For n = 3 this
statement is obvious.

Suppose the statement holds for all k-gons, where k < n and let us prove it for an n-gon.
By heading a) it is possible to divide an n-gon by its diagonal into two polygons: a (k + 1)-
gon and an (n − k + 1)-gon, where k + 1 < n and n − k + 1 < n. These parts have at least
(k + 1)− 3 and (n− k + 1)− 3 diagonals, respectively, that lie inside these parts. Therefore,
the n-gon has at least 1 + (k − 2) + (n − k − 2) = n − 3 diagonals that lie inside it.

22.21. First, let us prove that if A and B are neighbouring vertices of the n-gon, then
either from A or from B it is possible to draw a diagonal. The case when the inner angle
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Figure 200 (Sol. 22.20 a))

Figure 201 (Sol. 22.20 b))

of the polygon at A is greater than 180◦ is considered in the solution of Problem 22.20 a).
Now, suppose that the angle at vertex A is smaller than 180◦. Let B and C be vertices
neighbouring A.

If inside triangle ABC there are no other vertices of the polygon, then BC is the diagonal
and if P is the nearest to A vertex of the polygon lying inside triangle ABC, then AP is the
diagonal. Hence, the number of vertices from which it is impossible to draw the diagonal
does not exceed [n

2
] (the integer part of n

2
). On the other hand, there exist n-gons for which

this estimate is attained, see Fig. 60.

Figure 202 (Sol. 22.21)

22.22. Let us prove the statement by induction on n. For n = 3 it is obvious. Let n ≥ 4.
Suppose the statement is proved for all k-gons, where k < n; let us prove it for an n-gon.
Any n-gon can be divided by a diagonal into two polygons (see Problem 22.20 a)) and the
number of vertices of every of the smaller polygons is strictly less than n, i.e., they can be
divided into triangles by the inductive hypothesis.

22.23. Let us prove the statement by induction. For n = 3 it is obvious. Let n ≥ 4.
Suppose it is proved for all k-gons, where k < n, and let us prove it for an n-gon. Any n-gon
can be divided by a diagonal into two polygons (see Problem 22.20 a)). If the number of
sides of one of the smaller polygons is equal to k + 1, then the number of sides of the other
one is equal to n − k + 1 and both numbers are smaller than n. Therefore, the sum of the
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angles of these polygons are equal to (k − 1) · 180◦ and (n − k − 1) · 180◦, respectively. It is
also clear that the sum of the angles of a n-gon is equal to the sum of the angles of these
polygons, i.e., it is equal to

(k − 1 + n − k − 1) · 180◦ = (n − 2) · 180◦.

22.24. The sum of all the angles of the obtained triangles is equal to the sum of the
angles of the polygon, i.e., it is equal to (n − 2) · 180◦, see Problem 22.23. Therefore, the
number of triangles is equal to n − 2.

22.25. Let ki be the number of triangles in the given partition for which precisely i sides
are the sides of the polygon. We have to prove that k2 ≥ 2. The number of sides of the
n-gon is equal to n and the number of the triangles of the partition is equal to n − 2, see
Problem 22.24. Therefore, 2k2 + k1 = n and k2 + k1 + k0 = n − 2. Subtracting the second
equality from the first one we get k2 = k0 + 2 ≥ 2.

22.26. Suppose that there exists a 13-gon for which on any line that contains its side
there lies at least one side. Let us draw lines through all the sides of this 13-gon. Since the
number of sides is equal to 13, it is clear that one of the lines contains an odd number of
sides, i.e., one of the lines has at least 3 sides. On these sides lie 6 vertices and through each
vertex a line passes on which there lie at least 2 sides. Therefore, this 13-gon has not less
than 3 + 2 · 6 = 15 sides but this is impossible.

Figure 203 (Sol. 22.26)

For n even, n ≥ 10, the required example is the contour of a “star” (Fig. 61 a)) and an
idea of how to construct an example for n odd is illustrated on Fig. 61 b).

22.27. Let k be the number of acute angles of the n-gon. Then the number of its angles
is smaller than k ·90◦+(n−k) ·360◦. On the other hand, the sum of the angles of an n-gon is
equal to (n−2)·180◦ (see Problem 22.23) and, therefore, k ·90◦+(n−k)·360◦ > (n−2)·180◦,
i.e., 3k < 2n + 4. It follows that k ≤ [2n

3
] + 1, where [x] denotes the largest integer not

exceeding x.

Figure 204 (Sol. 22.27)

Examples of n-gons with [2n
3

] + 1 acute angles are given on Fig. 62.
22.28. Under these operations the vectors of the sides of a polygon remain the same only

their order changes (Fig. 63). Therefore, there exists only a finite number of polygons that
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Figure 205 (Sol. 22.28)

may be obtained. Moreover, after each operation the area of the polygon strictly increases.
Hence, the process terminates.

22.29. Let us carry out the proof by induction on n. For n = 3 the statement is obvious.
Let n ≥ 4. If one of the numbers αi is equal to π, then the inductive step is obvious and,
therefore, we may assume that all the numbers αi are distinct from π. If n ≥ 4, then

1

n

n
∑

i=1

(αi + αi+1) = 2(n − 2)
π

n
≥ π,

where the equality is only attained for a quadrilateral. Hence, in any case except for a
parallelogram (α1 = π − α2 = α3 = π − α4), and (?) there exist two neighbouring numbers
whose sum is greater than π. Moreover, there exist numbers αi and αi+1 such that π <
αi + αi+1 < 3π. Indeed, if all the given numbers are smaller than π, then we can take the
above-mentioned pair of numbers; if αj > π, then we can take numbers αi and αi+1 such
that αi < π and αi+1 > π. Let α∗

i = αi + αi+1 − 1. Then 0 < α∗
i < 2π and, therefore, by the

inductive hypothesis there exists an (n − 1)-gon M with angles α1, . . . , αi−1, α∗
i , αi+2, . . . ,

αn.
Three cases might occur: 1) α∗

i < π, 2) α∗
i = π, 3) π < α∗

i < 2π.
In the first case αi + αi+1 < 2π and, therefore, one of these numbers, say αi, is smaller

than π. If αi+1 < π, then let us cut from M a triangle with angles π −αi, π −αi+1, α∗
i (Fig.

64 a)). If αi+1 > π, then let us juxtapose to M a triangle with angles αi, αi+1 − π, π − α∗
i

(Fig. 64 b)).
In the second case let us cut from M a trapezoid with the base that belongs to side

Ai−1A
∗
i Ai+2 (Fig. 64 c)).

In the third case αi + αi+1 > π and, therefore, one of these numbers, say αi, is greater
than π. If αi+1 > π, then let us juxtapose to M a triangle with angles αi − π, αi+1 − π,
2π−α∗

i (Fig. 64 d)), and if αi+1 < π let us cut off M a triangle with angles 2π−αi, π−αi+1

and α∗
i − π (Fig. 64 e)).
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Figure 206 (Sol. 22.29)



Chapter 23. DIVISIBILITY, INVARIANTS, COLORINGS

Background

1. In a number of problems we encounter the following situation. A certain system
consecutively changes its state and we have to find out something at its final state. It
might be difficult or impossible to trace the whole intermediate processes but sometimes it
is possible to answer the question with the help of a quantity that characterizes the state of
the system and is preserved during all the transitions (such a quantity is sometimes called
an invariant of the system considered). Clearly, in the final state the value of the invariant
is the same as in the initial one, i.e., the system cannot occur in any state with another value
of the invariant.

2. In practice this method reduces to the following. A quantity is calculated in two ways:
first, it is simply calculated in the initial and final states and then its variation is studied
under consecutive elementary transitions.

3. The simplest and most often encountered invariant is the parity of a number; the
residue after a division not only by 2 but some other number can also be an invariant.

In the construction of invariants certain auxiliary colorings are sometimes convenient,
i.e., partitions of considered objects into several groups, where each group consists of the
objects of the same colour.

§1. Even and odd

23.1. Can a line intersect (in inner points) all the sides of a nonconvex a) (2n + 1)-gon;
b) 2n-gon?

23.2. Given a closed broken plane line with a finite number of links and a line l that
intersects it at 1985 points, prove that there exists a line that intersects this broken line in
more than 1985 points.

23.3. In plane, there lie three pucks A, B and C. A hockey player hits one of the pucks
so that it passes (along the straight line) between the other two and stands at some point.
Is it possible that after 25 hits all the pucks return to the original places?

23.4. Is it possible to paint 25 small cells of the graph paper so that each of them has
an odd number of painted neighbours? (Riddled cells are called neighbouring if they have a
common side).

23.5. A circle is divided by points into 3k arcs so that there are k arcs of length 1, 2,
and 3. Prove that there are 2 diametrically opposite division points.

23.6. In plane, there is given a non-selfintersecting closed broken line no three vertices
of which lie on one line. A pair of non-neighbouring links of the broken will be called a
singular one if the extension of one of them intersects the other one. Prove that the number
of singular pairs is always even.

23.7. (Sperner’s lemma.) The vertices of a triangle are labeled by figures 0, 1 and
2. This triangle is divided into several triangles so that no vertex of one triangle lies on
a side of the other one. The vertices of the initial triangle retain their old labels and the
additional vertices get labels 0, 1, 2 so that any vertex on a side of the initial triangle should

409
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be labelled by one of the vertices of this side, see Fig. 65. Prove that there exists a triangle
in the partition labelled by 0, 1, 2.

Figure 207 (23.6)

23.7. The vertices of a regular 2n-gon A1 . . . A2n are divided into n pairs. Prove that if
n = 4m+2 or n = 4m+3, then the two pairs of vertices are the endpoints of equal segments.

§2. Divisibility

23.9. On Fig. 66 there is depicted a hexagon divided into black and white triangles
so that any two triangles have either a common side (and then they are painted different
colours) or a common vertex, or they have no common points and every side of the hexagon
is a side of one of the black triangles. Prove that it is impossible to find a similar partition
for a 10-gon.

Figure 208 (23.9)

23.10. A square sheet of graph paper is divided into smaller squares by segments that
follow the sides of the small cells. Prove that the sum of the lengths of these segments is
divisible by 4. (The length of a side of a small cell is equal to 1).

§3. Invariants

23.11. Given a chess board, it is allowed to simultaneously repaint into the opposite
colour either all the cells of one row or those of a column. Can we obtain in this way a board
with precisely one black small cell?

23.12. Given a chess board, it is allowed to simultaneously repaint into the opposite
colour all the small cells situated inside a 2×2 square. Is it possible that after such repaintings
there will be exactly one small black cell left?

23.13. Given a convex 2m-gon A1 . . . A2m and point P inside it not belonging to any of
the diagonals, prove that P belongs to an even number of triangles with vertices at points
A1, . . . , A2m.
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23.14. In the center of every cell of a chess board stands a chip. Chips were interchanged
so that the pairwise distances between them did not diminish. Prove that the pairwise
distances did not actually alter at all.

23.15. A polygon is cut into several polygons so that the vertices of the obtained
polygons do not belong to the sides of the initial polygon nor to the sides of the obtained
polygons. Let p be the number of the obtained smaller polygons, q the number of segments
which serve as the sides of the smaller polygons, r the number of points which are their
vertices. Prove that

p − q + r = 1. (Euler’s formula)

23.16. A square field is divided into 100 equal square patches 9 of which are overgrown
with weeds. It is known that during a year the weeds spread to those patches that have not
less than two neighbouring (i.e., having a common side) patches that are already overgrown
with weeds and only to them. Prove that the field will never overgrow completely with
weeds.

23.17. Prove that there exist polygons of equal size and impossible to divide into poly-
gons (perhaps, nonconvex ones) which can be translated into each other by a parallel trans-
lation.

23.18. Prove that it is impossible to cut a convex polygon into finitely many nonconvex
quadrilaterals.

23.18. Given points A1, . . . , An. We considered a circle of radius R encircling some of
them. Next, we constructed a circle of radius R with center in the center of mass of points
that lie inside the first circle, etc. Prove that this process eventually terminates, i.e., the
circles will start to coincide.

§4. Auxiliary colorings

23.20. In every small cell of a 5 × 5 chess board sits a bug. At certain moment all the
bugs crawl to neighbouring (via a horizontal or a vertical) cells. Is it necessary that some
cell to become empty at the next moment?

23.21. Is it possible to tile by 1 × 2 domino chips a 8 × 8 chess board from which two
opposite corner cells are cut out?

23.22. Prove that it is impossible to cut a 10 × 10 chess board into T -shaped figures
consisting of four cells.

23.23. The parts of a toy railroad’s line are of the form of a quarter of a circle of radius
R. Prove that joining them consecutively so that they would smoothly turn into each other it
is impossible to construct a closed path whose first and last links form the dead end depicted
on Fig. 67.

Figure 209 (23.23)
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23.24. At three vertices of a square sit three grasshoppers playing the leap frog as
follows. If a grasshopper A jumps over a grasshopper B, then after the jump it lands at the
same distance from B but, naturally, on the other side and on the same line. Is it possible
that after several jumps one of the grasshoppers gets to the fourth vertex of the square?

23.25. Given a square sheet of graph paper of size 100× 100 cells. Several nonselfinter-
secting broken lines passing along the sides of the small cells and without common points are
drawn. These broken lines are all strictly inside the square but their endpoints are invariably
on the boundary. Prove that apart from the vertices of the square there will be one more
node (of the graph paper inside the square or on the boundary) that does not belong to any
of the broken lines.

§5. More auxiliary colorings

23.26. An equilateral triangle is divided into n2 equal equilateral triangles (Fig. 68).
Some of them are numbered by numbers 1, 2, . . . , m and consecutively numbered triangles
have adjacent sides. Prove that m ≤ n2 − n + 1.

Figure 210 (23.26)

23.27. The bottom of a parallelepipedal box is tiled with tiles of size 2 × 2 and 1 × 4.
The tiles had been removed from the box and in the process one tile of size 2 × 2 was lost.
We replaced it with a tile of size 1 × 4. Prove that it will be impossible to tile now the
bottom of the box.

23.28. Of a piece of graph paper of size 29 × 29 (of unit cells) 99 squares of size 2 × 2
were cut. Prove that it is still possible to cut off one more such square.

23.29. Nonintersecting diagonals divide a convex n-gon into triangles and at each of the
n-gon’s vertex an odd number of triangles meet. Prove that n is divisible by 3.

* * *

23.30. Is it possible to tile a 10 × 10 graph board by tiles of size 2 × 4?
23.31. On a graph paper some arbitrary n cells are fixed. Prove that from them it is

possible to select not less than n
4

cells without common points.
23.32. Prove that if the vertices of a convex n-gon lie in the nodes of graph paper and

there are no other nodes inside or on the sides of the n-gon, then n ≤ 4.
23.33. From 16 tiles of size 1×3 and one tile of size 1×1 one constructed a 7×7 square.

Prove that the 1× 1 tile either sits in the center of the square or is adjacent to its boundary.
23.34. A picture gallery is of the form of a nonconvex n-gon. Prove that in order to

overview the whole gallery [n
3
] guards suffices.

§6. Problems on colorings

23.35. A plane is painted two colours. Prove that there exist two points of the same
colour the distance between which is equal to 1.
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23.36. A plane is painted three colours. Prove that there are two points of the same
colour the distance between which is equal to 1.

23.37. The plane is painted seven colours. Are there necessarily two points of the same
colour the distance between which is equal to 1?

(?)23.38. The points on sides of an equilateral triangle are painted two colours. Prove
that there exists a right triangle with vertices of the same colour.

* * *

A triangulation of a polygon is its partition into triangles with the property that these
triangles have either a common side or a common vertex or have no common points (i.e.,
the vertex of one triangle cannot belong to a side of the other one).

23.39. Prove that it is possible to paint the triangles of a triangulation three colours so
that the triangles with a common side would be of different colours.

23.40. A polygon is cut by nonintersecting diagonals into triangles. Prove that the
vertices of the polygon can be painted three colours so that all the vertices of each of the
obtained triangles would be of different colours.

23.41. Several disks of the same radius were put on the table so that no two of them
overlap. Prove that it is possible to paint disks four colours so that any two tangent disks
would be of different colours.

Solutions

23.1. a) Let a line intersect all the sides of the polygon. Consider all the vertices on
one side of the line. To each of these vertices we can assign a pair of sides that intersect
at it. Thus we get a partition of all the sides of the polygon into pairs. Therefore, if a line
intersects all the sides of an m-gon, then m is even.

Figure 211 (Sol. 23.1)

b) It is clear from Fig. 69 how to construct 2n-gon and a line that intersects all its sides
for any n.

23.2. A line l determines two half planes; one of them will be called upper the other one
lower. Let n1 (resp. n2) be the number of the vertices of the broken line that lie on l for
which both links that intersect at this point belong to the upper (resp. lower) half plane
and m the number of all the remaining intersection points of l and the broken line. Let us
circumvent the broken line starting from a point that does not lie on l (and returning to
the same point). In the process we pass from one half plane to the other one only passing
through any of m intersection points. Since we will have returned to the same point from
which we have started, m is even.

By the hypothesis n1 + n2 + m = 1985 and, therefore, n1 + n2 is odd, i.e., n1 6= n2.
Let for definiteness n1 > n2. Then let us draw in the upper halfplane a line l1 parallel to

l and distant from it by a distance smaller than any nonzero distance from l to any of the
vertices of the broken line (Fig. 70). The number of intersection points of the broken line
with l1 is equal to 2n1 + m > n1 + n2 + m = 1985, i.e., l1 is the desired line.
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Figure 212 (Sol. 23.2)

23.3. No, they cannot. After each hit the orientation (i.e., the direction of the circum-
venting pass) of triangle ABC changes.

23.4. Let on a graph paper several cells be painted and nk be the number of painted
cells with exactly k painted neighbours. Let N be the number of common sides of painted
cells. Since each of them belongs to exactly two painted cells,

N =
n1 + 2n2 + 3n3 + 4n4

2
=

n1 + n3

2
+ n2 + n3 + 2n4.

Since N is an integer, n1 + n3 is even.
(?) We have proved that the number of painted cells with an odd number of painted cells

is always even. Therefore, it is impossible to paint 25 cells so that each of them would have
had an odd number of painted neighbours.

23.5. Suppose that the circle is divided into arcs as indicated and there are no diamet-
rically opposite division points. Then against the endpoints of any arc of length 1 there are
no division points and, therefore, against it there lies an arc of length 3. Let us delete one
of the arcs of length 1 and the opposite arc of length 3. Then the circle is divided into two
arcs.

If on one of them there lie m arcs of length 1 and n arcs of length 3, then on the other
one there lie m arcs of length 3 and n arcs of length 1. The total number of arcs of length
1 and 3 lying on these two “great” arcs is equal to 2(k − 1) and, therefore, n + m = k − 1.

Since beside arcs of length 1 and 3 there are only arcs of even length, the parity of the
length of each of the considered arcs coincides with the parity of k − 1. On the other hand,
the length of each of them is equal to 6k−1−3

2
= 3k − 2. We have obtained a contradiction

since numbers k − 1 and 3k − 2 are of opposite parities.
23.6. Take neighbouring links AB and BC and call the angle symmetric to angle ∠ABC

through point B a little angle (on Fig. 71 the little angle is shaded).

Figure 213 (Sol. 23.6)

We can consider similar little angles for all vertices of the broken line. It is clear that
the number of singular pairs is equal to the number of intersection points of links with little
angles. It remains to notice that the number of links of the broken line which intersect one
angle is even because during the passage from A to C the broken line goes into the little
angle as many times as it goes out of it.
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23.7. Let us consider segments into which side 01 is divided. Let a be the number of
segments of the form 00 and b the number of segments of the form 01. For every segment
consider the number of zeros at its ends and add all these numbers. We get 2a + b. On the
other hand, all the “inner” zeros enter this sum twice and there is one more zero at a vertex
of the initial triangle. Consequently, the number 2a + b is odd, i.e., b is odd.

Let us now divide the triangle. Let a1 be the total number of triangles of the form 001
and 011 and b1 the total number of triangles of the form 012. For every triangle consider the
number of its sides of the form 01 and add all these numbers. We get 2a1 + b1. On the other
hand all “inner” sides enter twice the sum and all the “boundary” sides lie on the side 01
of the initial triangle and their number is odd by above arguments. Therefore, the number
2a1 + b1 is odd in particular b1 6= 0.

23.8. Suppose that all the pairs of vertices determine segments of distinct lengths. Let
us assign to segment ApAq the least of the numbers |p− q| and 2n− |p− q|. As a result, for
the given n pairs of vertices we get numbers 1, 2, . . . , n; let among these numbers there be
k even and n − k odd ones. To odd numbers segments ApAq, where numbers p and q are
of opposite parity, correspond. Therefore, among vertices of the other segments there are
k vertices with even numbers and k vertices with odd numbers and the segments connect
vertices with numbers of the same parity. Therefore, k is even. For numbers n of the form
4m, 4m + 1, 4m + 2 and 4m + 3 the number k of even numbers is equal to 2m, 2m, 2m + 1
and 2m + 1, respectively, and therefore, either n = 4m or n = 4m + 1.

23.9. Suppose we have succeded to cut the decagon as required. Let n be the number of
sides of black triangles, m the number of sides of white triangles. Since every side of an odd
triangle (except the sides of a polygon) is also a side of a white triangle, then n − m = 10.
On the other hand, both n and m are divisible by 3. Contradiction.

23.10. Let Q be a square sheet of paper, L(Q) the sum of lengths of the sides of the
small cells that lie inside it. Then L(Q) is divisible by 4 since all the considered sides split
into quadruples of sides obtained from each other by rotations through angles of ±90◦ and
180◦ about the center of the square.

If Q is divided into squares Q1, . . . , Qn, then the sum of the lengths of the segments of
the partition is equal to L(Q) − L(Q1) − · · · − L(Qn). Clearly, this number is divisible by 4
since the numbers L(Q), L(Q1), . . . , L(Qn) are divisible by 4.

23.11. Repainting the horizontal or vertical containing k black and 8 − k white cells
we get 8 − k black and k white cells. Therefore, the number of black cells changes by
(8 − k) − k = 8 − 2k, i.e., by an even number. Since the parity of the number of black cells
is preserved, we cannot get one black cell from the initial 32 black cells.

23.12. After repainting the 2 × 2 square containing k black and 4 − k white cells
we get 4 − k black and k white cells. Therefore, the number of black cells changes by
(4 − k) − k = 4 − 2k, i.e., by an even number. Since the parity of the number of black cells
is preserved, we cannot get one black cell from the initial 32 black cells.

23.13. The diagonals divide a polygon into several parts. Parts that have a common
side are called neighbouring. Clearly, from any inner point of the polygon we can get into any
other point passing each time only from a neighbouring part to a neighbouring part. A part
of the plane that lies outside the polygon can also be considered as one of these parts. The
number of the considered triangles for the points of this part is equal to zero and, therefore,
it suffices to prove that under the passage from a neighbouring part to a neighbouring one
the parity of the number of triangles is preserved.

Let the common side of two neighbouring parts lie on diagonal (or side) PQ. Then for
all the triangles considered, except the triangles with PQ as a side, both these parts either
simultaneously belong to or do not belong to. Therefore, under the passage from one part to
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the other one the number of triangles changes by k1 − k2, where k1 is the number of vertices
of the polygon situated on one side of PQ and k2 is the number of vertices situated on the
other side of PQ. Since k1 + k2 = 2m − 2, it follows that k1 − k2 is even.

23.14. If at least one of the distances between chips would increase, then the sum of
the pairwise distances between chips would have also increased but the sum of all pairwise
distances between chips does not vary under any permutation.

23.15. Let n be the number of vertices of the initial polygon, n1, . . . , np the number of
vertices of the obtained polygons. On the one hand, the sum of angles of all the obtained
polygons is equal to

p
∑

i=1

(ni − 2)π =

p
∑

i=1

niπ − 2pπ.

On the other hand, it is equal to

2(r − n)π + (n − 2)π.

It remains to observe that
p

∑

i=1

ni = 2(q − n) + n.

23.16. It is easy to verify that the length of the boundary of the whole patch (of several
patches) overgrown with weeds does not increase. Since in the initial moment it did not
surpass 9 · 4 = 36, then at the final moment it cannot be equal to 40.

23.17. In plane, fix ray AB. To any polygon M assign a number F (M) (depending on
AB) as follows. Consider all the sides of M perpendicular to AB and to each of them assign
the number ±l, where l is the length of this side and the sine “plus” is taken if following
this side in the direction of ray AB we get inside M and “minus” if we get outside M , see
Fig. 72.

Figure 214 (Sol. 23.17)

Let us denote the sum of all the obtained numbers by F (M); if M has no sides perpen-
dicular to AB, then F (M) = 0.

It is easy to see that if polygon M is divided into the union of polygons M1 and M2,
then F (M) = F (M1) + F (M2) and if M ′ is obtained from M by a parallel translation, then
F (M ′) = F (M). Therefore, if M1 and M2 can be cut into parts that can be transformed
into each other by a parallel translation, then F (M1) = F (M2).

On Fig. 73 there are depicted congruent equilateral triangles PQR and PQS and ray
AB perpendicular to side PQ. It is easy to see that F (PQR) = a and F (PQS) = −a, where
a is the length of the side of these equilateral triangles. Therefore, it is impossible to divide
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Figure 215 (Sol. 23.17)

congruent triangles PQR and PQS into parts that can be translated into each other by a
parallel translation.

23.18. Suppose that a convex polygon M is divided into nonconvex quadrilaterals M1,
. . . , Mn. To every polygon N assign the number f(N) equal to the difference between
the sum of its inner angles smaller than 180◦ and the sum of the angles that complements
its angles greater than 180◦ to 360◦. Let us compare the numbers A = f(M) and B =
f(M1) + · · · + f(Mn). To this end consider all the points that are vertices of triangles M1,
. . . , Mn. These points can be divided into four types:

1) The (inner?) points of M . These points contribute equally to A and to B.
2) The points on sides of M or Mi. The contribution of each such point to B exceeds

the contribution to A by 180◦.
(?)3) The inner points of the polygon in which the angles of the quadrilateral smaller

than 180◦ in it. The contribution of every such point to B is smaller than that to A by 360◦.
4) The inner points of polygon M in which the angles of the quadrilaterals meet and one

of the angles is greater than 180◦. Such points give zero contribution to both A and B.
As a result we see that A ≤ B. On the other hand, A > 0 and B = 0. The inequality

A > 0 is obvious and to prove that B = 0 it suffices to verify that if N is a nonconvex
quadrilateral, then f(N) = 0. Let the angles of N be equal to α, β, γ and δ, where
α ≥ β ≥ γ ≥ δ. Any nonconvex quadrilateral has exactly one angle greater than 180◦ and,
therefore,

f(N) = β + γ + δ − (360◦ − α) = α + β + γ + δ − 360◦ = 0◦.

We have obtained a contradiction and, therefore, it is impossible to cut a convex polygon
into a finite number of nonconvex quadrilaterals.

23.19. Let Sn be the circle constructed at the n-th step; On its center. Consider the
quantity Fn =

∑

(R2 − OnA2
i ), where the sum runs over points that are inside Sn only. Let

us denote the points lying inside circles Sn and Sn+1 by letters B with an index; the points
that lie inside Sn but outside Sn+1 by letters C with an index and points lying inside Sn+1

but outside Sn by letters D with an index. Then

Fn =
∑

(R2 − OnB2
i ) +

∑

(R2 − OnC
2
i )

and

Fn+1 =
∑

(R2 − On+1B
2
i ) +

∑

(R2 − On+1D
2
i ).

Since On+1 is the center of mass of the system of points B and C, it follows that
∑

OnB
2
i +

∑

OnC2
i = qOnO

2
n+1 +

∑

On+1B
2
i +

∑

On+1C
2
i ,

where q is the total number of points of type B and C. It follows that

Fn+1 − Fn = qOnO
2
n+1 +

∑

(R2 − On+1D
2
i ) −

∑

(R2 − On+1C
2
i ).
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All the three summands are nonnegative and, therefore, Fn+1 ≥ Fn. In particular, Fn ≥
F1 > 0, i.e., q > 0.

There is a finite number of centers of mass of distinct subsets of given points and, there-
fore, there is also only finitely many distinct positions of circles Si. Hence, Fn+1 = Fn for
some n and, therefore, qOnO

2
n+1 = 0, i.e., On = On+1.

23.20. Since the total number of cells of a 5× 5 chessboard is odd, the number of black
fields cannot be equal to the number of white fields. Let, for definiteness, there be more
black fields than white fields. Then there are less bugs that sit on white fields than there
are black fields. Therefore, at least one of black fields will be empty since only bugs that sit
on white fields crawl to black fields.

23.21. Since the fields are cut of one colour only, say, of black colour, there remain 32
white and 30 black fields. Since a domino piece always covers one white and one black field,
it is impossible to tile with domino chips a 8 × 8 chessboard without two opposite corner
fields.

23.22. Suppose that a 10 × 10 chessboard is divided into such tiles. Every tile contains
either 1 or 3 black fields, i.e., always an odd number of them. The total number of figures
themselves should be equal to 100

4
= 25. Therefore, they contain an odd number of black

fields and the total of black fields is 100
2

= 50 copies. Contradiction.
(?)23.23. Let us divide the plane into equal squares with side 2R and paint them in a

staggered order. Let us inscribe a circle into each of them. Then the details of the railway
can be considered placed on these circles and the movement of the train that follows from
the beginning to the end is performed clockwise on white fields and counterclockwise on
black fields (or the other way round, see Fig. 74).

Figure 216 (Sol. 23.23)

Therefore, a deadend cannot arise since along both links of the deadend the movement
is performed in the same fashion (clockwise or counterclockwise).

23.24. Let us consider the lattice depicted on Fig. 75 and paint it two colours as
indicated in Fig. (white nodes are not painted on this Fig. and the initial square is shaded
so that the grasshoppers sit in its white vertices). Let us prove that the grasshoppers can
only reach white nodes, i.e., under the symmetry through a white node any white node turns
into a white one. To prove this, it suffices to prove that under a symmetry through a white
node a black node turns into a black one.

Let A be a black node, B a white one and A1 the image of A under the symmetry through

B. Point A1 is a black node if and only if
−−→
AA1 = 2me1 + 2ne2, where m and n are integers.
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Figure 217 (Sol. 23.24)

It is clear that −−→
AA1 = 2

−→
AB = 2(me1 + ne2)

and, therefore, A1 is a black node. Therefore, a grasshopper cannot reach the fourth vertex
of the square.

Figure 218 (Sol. 23.25)

23.25. Let us paint the nodes of the graph paper in a (?)chess order (Fig. 76). Since the
endpoints of any unit segment are of different colours, the broken line with the endpoints
of the same colour contains an odd number of nodes and an even number of nodes if its
endpoints are of the same colour. Suppose that broken lines go out of all the nodes of the
boundary (except for the vertices of the square). Let us prove then that all the broken lines
together contain an even number of nodes. To this end it suffices to show that the number
of broken lines with the endpoints of the same colour is even.

Let 4m white and 4n black nodes (the vertices of the square are not counted) are placed on
the boundary of the square. Let k be the number of broken lines with both endpoints white.

Then there are 4m − 2k broken lines with endpoints of different colours and 4n−(4m−2k)
2

=
2(n−m)+ k broken lines with black endpoints. It follows that there are k +2(n−m)+ k =
2(n − m + k) — an even number — of broken lines with the endpoints of the same colour.
It remains to notice that a 100 × 100 piece of paper contains an odd number of nodes.
Therefore, the broken lines with an even number of nodes cannot pass through all the nodes.

Figure 219 (Sol. 23.25)
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23.26. Let us paint the triangles as shown on Fig. 77. Then there are 1 + 2 + · · ·+ n =
1
2
n(n+1) black triangles and 1+2+ · · ·+(n−1) = 1

2
n(n−1) white triangles. It is clear that

two triangles with consecutive indices are of distinct colours. Hence, among the numbered
triangles the number of black triangles is only by 1 greater than that of white ones.

Therefore, the total number of numbered triangles does not exceed n(n − 1) + 1.

Figure 220 (Sol. 23.27)

23.27. Let us paint the bottom of the box two colours as shown on Fig. 78. Then every
2 × 2 tile covers exactly one black cell and a 1 × 4 tile covers 2 or 0 of them. Hence, the
parity of the number of odd cells on the bottom of the box coincides with the parity of the
number of 2× 2 tiles. Since under the change of a 2× 2 tile by a 1× 4 tile the parity of the
number of 2 × 2 tiles changes, we will not be able to tile the bottom of the box.

Figure 221 (Sol. 23.28)

23.28. In the given square piece of graph paper, let us shade 2× 2 squares as shown on
Fig. 79. We thus get 100 shaded squares. Every cut off square touches precisely one shaded
square and therefore, at least one shaded square remains intact and can be cut off(?).

23.29. If a polygon is divided into parts by several diagonals, then these parts can be
painted two colours so that parts with a common side were of distinct colours. This can be
done as follows.

Figure 222 (Sol. 23.29)

Let us consecutively draw diagonals. Every diagonal splits the polygon into two parts.
In one of them retain its painting and repaint the other one changing everywhere the white
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colour to black and black to white. Performing this operation under all the needed diagonals,
we get the desired coloring.

Since in the other case at every vertex an odd number of triangles meet, then under
such a coloring all the sides of the polygon would belong to triangles of the same colour, for
example, black, Fig. 80.

Denote the number of sides of white triangles by m. It is clear that m is divisible by 3.
Since every side of a white triangle is also a side of a black triangle and all the sides of the
polygon are sides of the black triangles, it follows that the number of sides of black triangles
is equal to n + m. Hence, n + m is divisible by 3 and since m is divisible by 3, then n is
divisible by 3.

23.30. Let us paint the chessboard four colours as shown on Fig. 81. It is easy to count
the number of cells of the second colour: it is 26; that of the fourth is 24.

Figure 223 (Sol. 23.30)

Every 1× 4 tile covers one cell of each colour. Therefore, it is impossible to tile a 10× 10
chessboard with tiles of size 1 × 4 since otherwise there would have been an equal number
of cells of every colour.

23.31. Let us paint the graph paper four colours as shown on Fig. 82. Among the given
n cells there are not less than n

4
cells of the same colour and such cells do not have common

points.

Figure 224 (Sol. 23.32)

23.32. Let us paint the nodes of graph paper four colours in the same order as the cells
on Fig. 82 are painted. If n ≥ 5, then there exist two vertices of an n-gon of the same colour.
The midpoint of the segment with the endpoints in the nodes of the same colour is a node
itself. Since the n-gon is a convex one, then the midpoint of the segment with the endpoints
at its nodes lies either inside it or on its side.
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23.33. Let us divide the obtained square into cells of size 1 × 1 and paint them three
colours as shown on Fig. 83. It is easy to verify that it is possible to divide tiles of size 1× 3
into two types: a tile of the first type covers one cell of the first colour and two cells of the
second colour and a tile of the second type covers one cell of the second colour and two cells
of the third colour.

Figure 225 (Sol. 23.33)

Suppose that all the cells of the first colour are covered by tiles 1 × 3. Then there are 9
tiles of the first type and 7 tiles of the second type. Hence, they cover 9 · 2 + 7 = 25 cells of
the second colour and 7 · 2 = 14 cells of the third colour. We have reached a contradiction
and, therefore, one of the cells of the first colour is covered by the tile of size 1 × 1.

23.34. Let us cut the given n-gon by nonintersecting diagonals into triangles (cf. Prob-
lem 22.22). The vertices of the n-gon can be painted 3 colours so that all the vertices of each
of the obtained triangles are of distinct colours (see Problem 23.40). There are not more
than [n

3
] vertices of any colour; and it suffices to place guards at these points.

23.35. Let us consider an equilateral triangle with side 1. All of its three vertices cannot
be of distinct colours and, therefore, two of the vertices are of the same colour; the distance
between them is equal to 1.

23.36. Suppose that any two points situated at distance 1 are painted distinct colours.
Consider an equilateral triangle ABC with side 1; all its vertices are of distinct colours. Let
point A1 be symmetric to A through line BC. Since A1B = A1C = 1, the colour of A1 is
distinct from that of B and C and A1 is painted the same colour as A.

These arguments show that if AA1 =
√

3, then points A and A1 are of the same colour.
Therefore, all the points on the circle of radius

√
3 with center A are of the same colour.

It is clear that on this circle there are two points the distance between which is equal to 1.
Contradiction.

23.37. Let us give an example of a seven-colour coloring of the plane for which the
distance between any two points of the same colour is not equal to 1. Let us divide the plane
into equal hexagons with side a and paint them as shown on Fig. 84 (the points belonging
to two or three hexagons can be painted any of the colours of these hexagons).

The greatest distance between points of the same colour that belong to one hexagon
does not exceed 2a and the least distance between points of the same colour lying in distinct
hexagons is not less than the length of segment AB (see Fig. 84). It is clear that

AB2 = AC2 + BC2 = 4a2 + 3a2 = 7a2 > (2a)2.

Therefore, if 2a < 1 <
√

7a, i.e., 1√
7

< a < 1
2
, then the distance between points of the same

colour cannot be equal to 1.
23.38. Suppose there does not exist a right triangle with vertices of the same colour. Let

us divide every side of an equilateral triangle into three parts by two points. These points
form a right hexagon. If two of its opposite vertices are of the same colour, then all the other
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Figure 226 (Sol. 23.37)

vertices are of the second colour and therefore, there exists a right triangle with vertices of
the second colour. Hence, the opposite vertices of the hexagon must be of distinct colours.

Therefore, there exist two neighbouring vertices of distinct colours; the vertices opposite
to them are also of distinct colours. One of these pairs of vertices of distinct colours lies on a
side of the triangle. The points of this side distinct from the vertices of the hexagon cannot
be of either first or second colour. Contradiction.

23.39. Let us prove this statement by induction on the number of triangles of the
triangulation. For one triangle the needed coloring exists. Now, let us suppose that it is
possible to paint in the required way any triangulation consisting of less than n triangles;
let us prove that then we can paint any triangulation consisting of n triangles.

Let us delete a triangle one of the sides of which lies on a side of the triangulated figure.
The remaining part can be painted by the inductive hypothesis. (It is clear that this part
can consist of several disjoint pieces but this does not matter.) Only two sides of the deleted
triangle can be neighbouring with the other triangles. Therefore, it can be coloured the
colour distinct from the colours of its two neighbouring triangles.

23.40. Proof is similar to that of Problem 23.39. The main difference is in that one
must delete a triangle with two sides of the boundary of the polygon (cf. Problem 22.25).

23.41. Proof will be carried out by induction on the number of disks n. For n = 1 the
statement is obvious. Let M be any point, O the most distant from M center of a(?) given
disk. Then the disk centered at O is tangent to not more than 3 other given disks. Let us
delete it and paint the other disks; this is possible thanks to the inductive hypothesis. Now,
let us paint the deleted disk the colour distinct from the colours of the disks tangent to it.
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In plane, consider a system of lines given by equations x = m and y = n, where m and n
are integers. These lines form a lattice of squares or an integer lattice. The vertices of these
squares, i.e., the points with integer coordinates, are called the nodes of the integer lattice.

§1. Polygons with vertices in the nodes of a lattice

24.1. Is there an equilateral triangle with vertices in the nodes of an integer lattice?
24.2. Prove that for n 6= 4 a regular n-gon is impossible to place so that its vertices

would lie in the nodes of an integer lattice.
24.3. Is it possible to place a right triangle with integer sides (i.e., with sides of integer

length) so that its vertices would be in nodes of an integer lattice but none of its sides would
pass along the lines of the lattice?

24.4. Is there a closed broken line with an odd number of links of equal length all vertices
of which lie in the nodes of an integer lattice?

24.5. The vertices of a polygon (not necessarily convex one) are in nodes of an integer
lattice. Inside the polygon lie n nodes of the lattice and m nodes lie on the polygon’s
boundary. Prove that the polygon’s area is equal to n + m

2
− 1. (Pick’s formula.)

24.6. The vertices of triangle ABC lie in nodes of an integer lattice and there are no
other nodes on its sides whereas inside it there is precisely one node, O. Prove that O is the
intersection point of the medians of triangle ABC.

See also Problem 23.32.

§2. Miscellaneous problems

24.7. On an infinite sheet of graph paper N , cells are painted black. Prove that it
is possible to cut off a finite number of squares from this sheet so that the following two
conditions are satisfied:

1) all black cells belong to the cut-off squares;
2) in any cut-off square K, the area of black cells constitutes not less than 0.2 and not

more than 0.8 of the area of K.
24.8. The origin is the center of symmetry of a convex figure whose area is greater than

4. Prove that this figure contains at least one distinct from the origin point with integer
coordinates. (Minkowski’s theorem.)

24.9. In all the nodes of an integer lattice except one, in which a hunter stands, trees
are growing and the trunks of these trees are of radius r each. Prove that the hunter will
not be able to see a hare that sits further than 1

r
of the unit length from it.

24.10. Inside a convex figure of area S and semiperimeter p there are n nodes of a
lattice. Prove that n > S − p.

24.11. Prove that for any n there exists a circle inside which there are exactly (not more
nor less) n integer points.

24.12. Prove that for any n there exists a circle on which lies exactly (not more nor less)
n integer points.

425



426 CHAPTER 24. INTEGER LATTICES

Solutions

24.1. Suppose that the vertices of an equilateral triangle ABC are in nodes of an integer
lattice. Then the tangents of all the angles formed by sides AB and AC with the lines of
the lattice are rational. For any position of triangle ABC either the sum or the difference
of certain two of such angles α and β is equal to 60◦. Hence,

√
3 = tan 60◦ = tan(α ± β) =

tan α ± tan β

1 ∓ tan α tan β

is a rational number. Contradiction.
24.2. For n = 3 and n = 6 the statement follows from the preceding problem and,

therefore, in what follows we will assume that n 6= 3, 4, 6. Suppose that there exist regular
n-gons with vertices in nodes of an integer lattice (n 6= 3, 4, 6). Among all such n-gons we can
select one with the shortest side. (To prove that we can do it, it suffices to observe that if a is
the length of a segment with the endpoints in nodes of the lattice, then a =

√
n2 + m2, where

n and m are integers, i.e., there is only a finite number of distinct length of segments with

the endpoints in nodes of the lattice shorter than the given length.) Let
−−→
AiBi =

−−−−−−→
Ai+1Ai+2.

Then B1 . . . Bn is a regular n-gon whose vertices lie in nodes of the integer lattice and its
side is shorter than any side of the n-gon A1 . . . An. For n = 5 this is clear from Fig. 85 and
for n ≥ 7 look at Fig. 86. We have arrived to a contradiction with the choice of the n-gon
A1 . . . An.

Figure 227 (Sol. 24.2)

Figure 228 (Sol. 24.2)

24.3. It is easy to verify that the triangle with the vertices at points with coordinates
(0, 0), (12, 16) and (−12, 9) possesses the required properties.

24.4. Suppose that there exists a closed broken line A1 . . . An with an odd number of
links of equal length all the vertices of which lie in nodes of an integer lattice. Let ai and
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bi be coordinates of the projections of vector
−−−−→
AiAi+1 to the horizontal and vertical axes,

respectively. Let c be the length of the link of the broken line. Then c2 = a2
i + b2

i .
Hence, the residue after the division of c2 by 4 is equal to 0, 1 or 2. If c2 is divisible by

4, then ai and bi are divisible by 4 (this is proved by a simple case-by-case checking of all
possible residues after the division of ai and bi by 4). Therefore, the homothety centered
at A1 with coefficient 0.5 sends our broken line into a broken line with a shorter links but
whose vertices are also in the nodes of the lattice. After several such operations we get a
broken line for which c2 is not divisible by 4, i.e., the corresponding residue is equal to either
1 or 2.

Let us consider these variants, but first observe that

a1 + · · · + am = b1 + · · · + bm = 0.

1) The residue after division of c2 by 4 is equal to 1. Then one of the numbers ai and bi

is odd and the other one is even; hence, the number a1 + · · · + am is odd and cannot equal
to zero.

2) The residue after division of c2 by 4 is equal to 2. Then the numbers ai and bi are
both odd; hence, a1 + · · · + am + b1 + · · · + bm is odd and cannot equal to zero.

24.5. To every polygon N with vertices in nodes of an integer lattice assign the number
f(N) = n + m

2
− 1. Let polygon M be cut into polygons M1 and M2 with vertices in nodes

of the lattice. Let us prove that if Pick’s formula holds for two of the polygons M , M1 and
M2, then it is true for the third one as well.

To this end it suffices to prove that f(M) = f(M1)+f(M2). The nodes which lie outside
the line of cut contribute equally to f(M) and f(M1) + f(M2). “Nonterminal” nodes of the
cut contribute 1 to f(M) and 0.5 to f(M1) and f(M2). Each of the two terminal nodes of
the cut contributes 0.5 to each of f(M), f(M1) and f(M2) and, therefore, the contribution
of the terminal nodes to f(M) is by 1 less than to f(M1) + f(M2). Since we have to deduct
1 from each contribution to f(M) and two from each contribution to f(M1) + f(M2), it
follows that f(M) = f(M1) + f(M2).

Now, let us prove the validity of Pick’s formula for an arbitrary triangle. If M is a
rectangle with sides of length p and q directed along the lines of the lattice, then

f(M) = (p − 1)(q − 1) +
2(p + q)

2
− 1 = pq,

i.e., Pick’s formula holds for M . Cutting triangle M into triangles M1 and M2 by a diagonal
and making use of the fact that f(M) = f(M1) + f(M2) and f(M1) = f(M2) it is easy to
prove the validity of Pick’s formula for any right triangle with legs directed along the lines
of the lattice. Cutting several such triangles from the rectangle we can get any triangle (Fig.
87).

Figure 229 (Sol. 24.5)

To complete the proof of Pick’s formula, it remains to notice that any polygon can be
cut by diagonals into triangles.
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24.6. Thanks to Pick’s formula SAOB = SBOC = SCOA = 1
2
; hence, O is the intersection

point of medians of triangle ABC (cf. Problem 4.2).
24.7. Take a sufficiently large square with side 2n so that all the black cells are inside it

and constitute less than 0.2 of its area. Let us divide this square into four identical squares.
The painted area of each of them is less than 0.8 of the total. Let us leave those of them
whose painted part constitutes more than 0.2 of the total and cut the remaining ones in the
same way.

The painted area of the obtained 2× 2 squares will be 1
4
, 1

2
or 3

4
of the total or they will

not be painted at all. Now, we have to cut off those of the obtained squares which contain
painted cells.

24.8. Consider all the convex figures obtained from the given one by translations by
vectors with both coordinates even. Let us prove that at least two of these figures intersect.
The initial figure can be squeezed in the disk of radius R centered in the origin, where for R
we can take an integer. Take those of the considered figures the coordinates of whose centers
are nonnegative integers not greater than 2n.

There are precisely (n + 1)2 of such figures and all of them lie inside a square with side
2(n + R). If they do not intersect, then for any n we would have had (n + 1)2S < 4(n + R)2,
where S is the area of the given figure. Since S > 4, we can select n so that the inequality
n+R
n+1

<
√

S
4

holds.

Figure 230 (Sol. 24.8)

Let now figures with centers O1 and O2 have a common point A (Fig. 88). Let us prove
that then the midpoint M of segment O1O2 belongs to both figures (it is clear that the

coordinates of M are integers). Let
−−→
O1B = −−−→

O2A.
Since the given figure is centrally symmetric, point B belongs to the figure with center

O1. This figure is convex and points A and B belong to it and, therefore, the midpoint of
segment AB also belongs to it. Clearly, the midpoint of segment AB coincides with the
midpoint of segment O1O2.

24.9. Let the hunter sit at point O and the hare at point A; let A1 be the point symmetric
to A with respect to O. Consider figure Φ that contains all the points the distance from
which to segment AA1 does not exceed r (Fig. 89).

Figure 231 (Sol. 24.9)

It suffices to prove that Φ contains at least one node of the lattice (if the node gets into
the shaded part, then point A belongs to the trunk).

The area of Φ is equal to 4rh + πr2, where h is the distance from the hunter to the hare.
If h > 1

r
, then 4rh + πr2 > 4. By Minkowski’s theorem Φ contains an integer point.
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24.10. Consider the integer lattice given by equations x = k + 1
2

and y = l + 1
2
, where

k and l are integers. Let us prove that each small square of this lattice gives a nonnegative
contribution to n − S + p. Consider two cases:

1) The figure contains the center of the square. Then n′ = 1 and S ′ ≤ 1; hence,
n′ − S ′ + p′ ≥ 0.

2) The figure intersects the square but does not contain its center. Let us prove that in
this case S ′ ≤ p′ and we can confine ourselves with the study of the cases depicted on Fig.
90 (i.e., we may assume that the center O of the square lies on the boundary of the figure).
Since the distances from the center of the square to its sides are equal to 1

2
, it follows that

p′ ≥ 1
2
. Draw the base line through O to this figure; we get S ′ ≤ 1

2
.

Figure 232 (Sol. 24.10)

It is also clear that all the contributions of the squares cannot be zero simultaneously.
24.11. First, let us prove that on the circle with center A = (

√
2, 1

3
) there cannot lie

more than one integer point. If m and n are integers, then

(m −
√

2)2 + (n − 1

3
)2 = q − 2m

√
2,

where q is a rational number. Therefore, the equality

(m1 −
√

2)2 + (n1 −
1

3
)2 = (m2 −

√
2)2 + (n2 −

1

3
)2

implies that m1 = m2. By Vièta’s theorem the sum of roots of equation (n − 1
3
)2 = d is

equal to 2
3
; hence, at least one root can be integer.

Now, let us arrange the radii of the circles with center A passing through integer points
in the increasing order: R1 < R2 < R3 < . . . . If Rn < R < Rn+1, then inside the circle of
radius R with center A there are n integer points.

24.12. First. let us prove that the equation x2 + y2 = 5k has 4(k + 1) integer solutions.
For k = 0 and k = 1 this statement is obvious. Let us prove that the equation x2 + y2 = 5k

has exactly 8 solutions (x, y) such that x and y are not divisible by 5. Together with 4(k−1)
solutions of the form (5a, 5b), where (a, b) is a solution of the equation a2 + b2 = 5k−2, they
give the needed number of solutions.

These solutions are obtained from each other by permutations of x and y and changes of
signs; we will call them nontrivial solutions.

Let x2 + y2 be divisible by 5. Then (x + 2y)(x − 2y) = x2 + y2 − 5y2 is also divisible by
5. Hence, one of the numbers x + 2y and x − 2y is divisible by 5. It is also easy to verify
that if x + 2y and x − 2y are divisible by 5, then both x and y are divisible by 5.

If (x, y) is a nontrivial solution of equation x2 + y2 = 5k, then (x + 2y, 2x − y) and
(x − 2y, 2x + y) are solutions of equation ξ2 + η2 = 5k+1 and precisely one of them is
nontrivial. It remains to prove that a nontrivial solution is unique up to permutations of x
and y and changes of signs.
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Let (x, y) be a nontrivial solution of the equation x2 + y2 = 5k. Then the pairs
(

±2x − y

5
,±x + 2y

5

)

and

(

±x + 2y

5
,±2x − y

5

)

(1)

together with the pairs
(

±2x + y

5
,±x − 2y

5

)

and

(

±x − 2y

5
,±2x + y

5

)

(2)

are solutions of the equation ξ2 + η2 = 5k−1 but the pairs of exactly one of these types will
be integer since exactly one of the numbers x + 2y and x − 2y is divisible by 5. Thus, we
will get a nontrivial solution because

(x + 2y)(x − 2y) = (x2 + y2) − 5y2

for k ≥ 2 is divisible by 5 but is not divisible by 25.
Therefore, each of the 8 nontrivial solutions of the equation x2+y2 = 5k yields 8 nontrivial

solutions of the equation ξ2 + η2 = 5k−1 where for one half of the solutions we have to make
use of formulas (1) and for the other half of the formulas (2).

Now, let us pass directly to the solution of the problem. Let n = 2k + 1. Let us prove

that on the circle of radius 5k

3
with center (1

3
, 0) there lie exactly (not more nor less) n

integer points. The equation x2 + y2 = 52k has 4(2k + 1) integer solutions. Moreover, after
the division of 52k by 3 we have residue 1; hence, one of the numbers x and y is divisible
by 3 and the residue after the division of the other one by 3 is equal to ±1. Therefore, in
precisely one of the pairs (x, y), (x,−y), (y, x) and (−y, x) the residues after the divisionof
the first and the second number by 3 are equal to −1 and 0, respectively. Hence, the equation
(3z − 1)2 + (3t)2 = 52k has precisely 2k + 1 integer solutions.

Let n = 2k. Let us prove that on the circle of radius 5(k−1)/2

2
with center (1

2
, 0) there lie

n integer points. The equation x2 + y2 = 5k−1 has 4k integer solutions; for them one of the
numbers x and y is even and the other one is odd. Hence, the equation (2z−1)2+(2t)2 = 5k−1

has 2k integer solutions.



Chapter 25. CUTTINGS

§1. Cuttings into parallelograms

25.1. Prove that the following properties of convex polygon F are equivalent:
1) F has a center of symmetry;
2) F can be cut into parallelograms.
25.2. Prove that if a convex polygon can be cut into centrally symmetric polygons, then

it has a center of symmetry.
25.3. Prove that any regular 2n-gon can be cut into rhombuss.
25.4. A regular octagon with side 1 is cut into parallelograms. Prove that among the

parallelograms there is at least two rectangles and the sum of areas of all the rectangles is
equal to 2.

§2. How lines cut the plane

In plane, let there be drawn n pairwise nonparallel lines no three of which intersect at
one point. In Problems 25.5–25.9 we will consider properties of figures into which these lines
cut the plane. A figure is called an n-linked one if it is bounded by n links (i.e., a link is a
line segment or a ray).

25.5. Prove that for n = 4 among the obtained parts of the plane there is a quadrilateral.
25.6. a) Find the total number of all the obtained figures.
b) Find the total number of bounded figures, i.e., of polygons.
25.7. a) Prove that for n = 2k there are not more than 2k−1 angles among the obtained

figures.
b) Is it possible that for n = 100 there are only three angles among the obtained figures?
25.8. Prove that if among the obtained figures there is a p-linked and a q-linked ones,

then p + q ≤ n + 4.
25.9. Prove that for n ≥ 3 there are not less than 2n−2

3
triangles among the obtained

parts.

Now, let us abandon the assumption that no three of the considered lines intersect at
one point. If P is the intersection point of two or several lines, then the number of lines of
the given system passing through point P will be denoted by λ(P ).

25.10. Prove that the number of segments into which the given lines are divided by their
intersection points is equal to n +

∑

λ(P ).
25.11. Prove that the number of parts into which given lines divide the plane is equal

to 1 + n +
∑

(λ(P ) − 1) and among these parts there are 2n unbounded ones.
25.12. The parts into which the plane is cut by lines are painted red and blue so that

the neighbouring parts are of distinct colours (cf. Problem 27.1). Let r be the number of
red parts, b the number of blue parts. Prove that

r ≤ 2b − 2 −
∑

(λ(P ) − 2)

where the equality is attained if and only if the red parts are triangles and angles.
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Solutions

25.1. Consider a convex polygon A1 . . . An. Prove that each of the properties 1) and 2)
is equivalent to the following property:

3) For any vector
−−−−→
AiAi+1 there exists a vector

−−−−→
AjAj+1 = −−−−−→

AiAi+1.
Property 1) clearly implies property 3). Let us prove that property 3) implies prop-

erty 1). If a convex polygon A1 . . . An possesses property 3), then n = 2m and
−−−−→
AiAi+1 =

−−−−−−−−−→
Am+iAm+i+1. Let Oi be the midpoint of segment AiAm+i. Since AiAi+1Am+iAm+i+1 is a

parallelogram, we have Oi = Oi+1. Hence, all the points Oi coincide and this point is the
center of symmetry of the polygon.

Let us prove that property 2) implies property 3). Let a convex polygon F be divided
into parallelograms. We have to prove that for any side of F there exists another side parallel
and equal to it. From every side of F a chain of parallelograms departs, i.e., this side sort
of moves along them parallelly so that it can be split into several parts (Fig. 91).

Figure 233 (Sol. 25.1)

Since a convex polygon can have only one more side parallel to the given one, all the
bifurcations of the chain terminate in the same side which is not shorter than the side from
which the chain starts. We can equally well begin the chain of parallelograms from the first
side to the second one or from the second one to the first one; hence, the lengths of these
sides are equal.

It remains to prove that property 3) implies property 2). A way of cutting a polygon
with equal and parallel opposite sides is indicated on Fig. 92.

Figure 234 (Sol. 25.1)

After each such operation we get a polygon with a lesser number of sides which still
possesses property 3) and by applying the same process to this polygon we eventually get a
parallelogram.

25.2. Let us make use of the result of the preceding problem. If a convex polygon M
is cut into convex centrally symmetric polygons, then they can be cut into parallelograms.
Therefore, M can be cut into parallelograms, i.e., M has a center of symmetry.
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25.3. Let us prove by induction on n that any 2n-gon whose sides have the same length
and opposite sides are parallel can be cut into rhombs. For n = 2 this is obvious and from
Fig. 92 it is clear how to perform the inductive step.

25.4. Let us single out two perpendicular pairs of opposite sides in a regular octagon and,
as in Problem 25.1, consider chains of parallelograms that connect the opposite sides. On
the intersection of these chains rectangles stand. By considering two other pairs of opposite
sides we will get at least one more rectangle.

It is possible to additionally cut parallelograms from every chain so that the chain would
split into several “passes” and in each pass the neighbouring parallelograms are neighboring
to each other along the whole sides, not a part of a side. The union of rectangles of a new
partition coincides with the union of rectangles of the initial partition and, therefore, it
suffices to carry out the proof for the new partition.

Every pass has a constant width; hence, the length of one side of each rectangle that
enters a path is equal to the width of the path, and the sum of length of all the other sides
is equal to the sum of the widths of the passes corresponding to the other pair of sides.

Therefore, the area of all the rectangles that constitute one path is equal to the product
of the width of the path by the length of the side of the polygon, i.e., its value is equal to the
width of the path. Hence, the area of all the rectangles corresponding to two perpendicular
pairs of opposite sides is equal to 1 and the area of the union of the rectangles is equal to 2.

25.5. Denote the intersections points of one of the given lines with the other ones by A,
B and C. For definiteness, let us assume that point B lies between A and C. Let D be the
intersection point of lines through A and C. Then any line passing through point B and not
passing through D cuts triangle ACD into a triangle and a quadrilateral.

25.6. a) Let n lines divide the plane into an parts. Let us draw one more line. This
will increase the number of parts by n + 1 since the new line has n intersection points
with the already drawn lines. Therefore, an+1 = an + n + 1. Since a1 = 2, it follows that

an = 2 + 2 + 3 + · · · + n = n2+n+2
2

.
b) Encircle all the intersection points of the given lines. It is easy to verify that the

number of unbounded figures is equal to 2n. Therefore, the number of bounded figures is
equal to

n2 + n + 2

2
− 2n =

n2 − 3n + 2

2
.

25.7. a) All intersection points of given lines can be encircled in a circle. Lines divide this
circle into 4k arcs. Clearly, two neighbouring arcs cannot simultaneously belong to angles;
hence, the number of angles does not exceed 2k, where the equality can only be attained if
the arcs belonging to the angles alternate. It remains to prove that the equality cannot be
attained. Suppose that the arcs belonging to angles alternate. Since on both sides from any
of the given lines lie 2k arcs, the opposite arcs (i.e., the arcs determined by two lines) must
belong to angles (Fig. 93) which is impossible.

b) For any n there can be three angles among the obtained figures. On Fig. 94 it is
shown how to construct the corresponding division of the plane.

25.8. Let us call a line which is the continuation of a segment or a ray that bounds a
figure a (border?)bounding line of the figure. It suffices to show that two considered figures
cannot have more than 4 common bounding lines. If two figures have 4 common bounding
lines, then one of the figures lies in domain 1 and the other one lies in domain 2 (Fig. 95).

The fifth bounding line of the figure that lies in domain 1 must intersect two neighbouring
sides of the quadrilateral 1; but then it cannot be bounding line for the figure that belongs
to domain 2.
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Figure 235 (Sol. 25.7 a))

Figure 236 (Sol. 25.7 b))

Figure 237 (Sol. 25.8)

25.9. Consider all the intersection points of the given lines. Let us prove that these
points may lie on one side of not more than two given lines. Suppose that all the intersection
points lie on one side of three given lines. These lines constitute triangle ABC. The fourth
line cannot intersect the sides of this triangle only, i.e., it intersects at least one extension
of a side. Let, for definiteness, it intersect the continuation of side AB beyond point B;
let the intersection point be M . Then points A and M lie on distinct sides of line BC.
Contradiction. Hence, there exist at least n − 2 lines on both sides of which there are
intersection points.

If in the half plane given by line l we select the nearest l intersection point, then this
point is a vertex of a triangle adjacent to l. Thus, there exists not less than n − 2 lines to
each of which at least two triangles are adjacent and there are two lines to each of which at
least one triangle is adjacent. Since every triangle is adjacent to exactly 3 lines, there are

not less than 2(n−2)+2
3

triangles.
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25.10. If P is the intersection point of given lines, then 2λ(P ) segments or rays go out
of P . Moreover, each of x segments have two boundary points and each of 2n rays has one
boundary point. Hence, 2x + 2n = 2

∑

λ(P ), i.e., x = −n +
∑

λ(P ).
25.11. Let us carry out the proof by induction on n. For two lines the statement is

obvious. Suppose that the statement holds for n − 1 line and consider a system consisting
of n lines. Let f be the number of parts into which the given n lines divide the plane;
g = 1 + n +

∑

(λ(P )− 1). Let us delete one line from the given system and define similarly
numbers f ′ and g′ for the system obtained. If on the deleted line there lie k intersection
points of lines, then f ′ = f − k − 1 and g′ = 1 + (n− 1) +

∑

(λ′(P )− 1). It is easy to verify
that

∑

(λ(P ) − 1) = −k +
∑

(λ′(P ) − 1). By inductive hypothesis f ′ = g′.
Therefore, f = f ′ + k +1 = g′ + k +1 = g. It is also clear that the number of unbounded

parts is equal to 2n.
25.12. Let r′k be the number of red k-gons, r′ the number of bounded red domains and

the number of segments into which the given lines are divided by their intersection points
be equal to

∑

λ(P ) − n, cf. Problem 25.10. Each segment is a side of not more than 1 red
polygon, hence, 3r′ ≤ ∑

k≥3 kr′k ≤ ∑

λ(P ) − n, where the left inequality is only attained if
and only if there are no red k-gons for k > 3, and the right inequality is only attained if and
only if any segment is a side of a red k-gon, i.e., any unbounded red domain is an angle.

The number of bounded domains is equal to 1 − n +
∑

(λ(P ) − 1) = c (see Problem
25.11), hence, the number b′ of bounded blue domaions is equal to

c − r′ ≥ 1 − n +
∑

(λ(P ) − 1) −
∑

λ(P ) − n

3
= 1 − 2n

3
+

∑

(
2λ(P )

3
− 1).

The colours of 2n unbounded domains alternate; hence,

b = b′ + n ≥ 1 +
n

3
+

∑

(
2λ(P )

3
− 1)

and

r = r′ + n ≤ 2n +
∑

λ(P )

3
and, therefore, 2b − r ≥ 2 +

∑

(λ(P ) − 2).





Chapter 26. SYSTEMS OF POINTS AND SEGMENTS.
EXAMPLES AND COUNTEREXAMPLES

§1. Systems of points

26.1. a) An architect wants to place four sky-scrapers so that any sightseer can see their
spires in an arbitrary order. In other words, if the sky-scrapers are numbered, then for any
ordered set (i, j, k, l) of sky-scrapers one can stand at an arbitrary place in the town and
by turning either clockwise or counterclockwise see first the spire of the sky-scraper i, next,
that of j, k and, lastly, l. Is it possible for the architect to perform this?

b) The same question for five sky-scrapers.
26.2. In plane, there are given n points so that from any foresome of these points one

can delete one point so that the remaining three points lie on one line. Prove that it is
possible to delete one of the given points so that all the remaining points lie on one line.

26.3. Given 400 points in plane, prove that there are not fewer than 15 distinct distances
between them.

26.4. In plane, there are given n ≥ 3 points. Let d be the greatest distance between any
two of these points. Prove that there are not more than n pairs of points with the distance
between the points of any pair equal to d.

26.5. In plane, there are given 4000 points no three of which lie on one line. Prove
that there are 1000 nonintersecting quadrilaterals (perhaps, nonconvex ones) with vertices
at these points.

26.6. In plane, there are given 22 points no three of which lie on one line. Prove that it
is possible to divide them into pairs so that the segments determined by pairs intersect at
least at 5 points.

26.7. Prove that for any positive integer N there exist N points no three of which lie
on one line and all the pairwise distances between them are integers.

See also Problems 20.13-20.15, 22.7.

§2. Systems of segments, lines and circles

26.8. Construct a closed broken line of six links that intersects each of its links precisely
once.

26.9. Is it possible to draw six points in plane and to connect them with nonintersecting
segments so that each point is connected with precisely four other ones?

26.10. Point O inside convex polygon A1 . . . An possesses a property that any line OAi

contains one more vertex Aj. Prove that no point except O possesses such a property.
26.11. On a circle, 4n points are marked and painted alternatedly red and blue. Points

of the same colour are divided into pairs and points from each pair are connected by segments
of the same colour. Prove that if no three segments intersect at one point, then there exist
at least n intersection points of red segments with blue segments.

26.12. In plane, n ≥ 5 circles are placed so that any three of them have a common
point. Prove that then all the circles have a common point.
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§3. Examples and counterexamples

There are many wrong statements that at first glance seem to be true. To refute such
statements we have to construct the corresponding example; such examples are called coun-

terexamples.
26.13. Is there a triangle all the hights of which are shorter than 1 cm and the area is

greater than 1 m 2?
26.14. In a convex quandrilateral ABCD sides AB and CD are equal and angles A and

C are equal. Must this quandrilateral be a parallelogram?
26.15. The list of sides and diagonals of a convex quandrilateral ordered with respect

to length coincides with a similar list for another quandrilateral. Must these quandrilaterals
be equal?

26.16. Let n ≥ 3. Do there exist n points that do not belong to one line and such
that pairwise distances between which are irrational while the areas of all the triangles with
vertices in these points are rational?

26.17. Do there exist three points A, B and C in plane such that for any point X the
length of at least one of the segments XA, XB and XC is irrational?

26.18. In an acute triangle ABC, median AM , bisector BK and hight CH are drawn.
Can the area of the triangle formed by the intersection points of these segments be greater
than 0.499 · SABC?

26.19. On an infinite list of graph paper (with small cells of size 1×1) the domino chips
of size 1 × 2 are placed so that they cover all the cells. Is it possible to make it so that any
line that follows the lines of the mash cuts only a finite number of chips?

26.20. Is it possible for a finite set of points to contain for every of its points precisely
100 points whose distance from the point is equal to 1?

26.21. In plane, there are several nonintersecting segments. Is it always possible to
connect the endpoints of some of them by segments so that we get a closed nonselfintersecting
broken line?

26.22. Consider a triangle. Must the triangle be an isosceles one if the center of its
inscribed circle is equidistant from the midpoints of two of its sides?

26.23. The arena of a circus is illuminated by n distinct spotlights. Each spotlight
illuminates a convex figure. It is known that if any of the spotlights is turned off, then the
arena is still completely illuminated, but if any two spotlights are turned off, then the arena
is not completely illuminated. For which n this is possible?

See also problems 22.16–22.18, 22.26, 22.27, 22.29, 23.37, 24.11, 24.12.

Solutions

26.1. a) It is easy to verify that constructing the fourth building inside the triangle
formed by the three other buildings we get the desired position of the buildings.

b) It is impossible to place in the desired way five buildings. Indeed, if we consecutively
see buildings A1, A2, . . . , An, then A1A2 . . . An is a nonselfintersecting broken line. Therefore,
if ABCD is a convex quandrilateral, then it is impossible to see its vertices in the following
order: A, C, D, B. It remains to notice that of five points no three of which lie on one
line it is always possible to select four points which are vertices of a convex quandrilateral
(Problem 22.2).

26.2. It is possible to assume that n ≥ 4 and not all the points lie on one line. Then we
can select four points A, B, C and D not on one line. By the hypothesis, three of them lie
on one line. Let, for definiteness, points A, B and C lie on line l and D does not lie on l.
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We have to prove that all the points except for D lie on l. Suppose that a point E does not
belong to l. Let us consider points A, B, D, E. Both triples A, B, D and A, B, E do not
lie on one line. Therefore, on one line there lies either triple (A,D,E) or triple (B,D,E).
Let, for definiteness, points A, D and E lie on one line. Then no three of the points B, C,
D, E lie on one line. Contradiction.

26.3. Let the number of distinct distances between points be equal to k. Fix two
points. Then all the other points are intersection points of two families of concentric circles
containing k circles each. Hence, the total number of points does not exceed 2k2 + 2. It
remains to notice that 2 · 142 + 2 = 394 < 400.

26.4. A segment of length d connecting a pair of given points will be called a diameter.
The endpoints of all the diameters that begin at point A lie on the circle centered in A and
of radius d. Since the distance between any two points does not exceed d, the endpoints of
all the diameters beginning in A belong to an arc whose angle value does not exceed 60◦.
Therefore, if three diameters AB, AC and AD begin in point A, then one of the endpoints
of these diameters lies inside the angle formed by the other two endpoints.

Let, for definiteness, point C lie inside angle ∠BAD. Let us prove that then not more
than one diameter begins in point C. Suppose that there is another diameter, CP , and points
B and P lie on different sides of line AC (Fig. 96). Then ABCP is a convex quadrilateral;
hence, AB+CP < AC+BP (see Problem 9.14), i.e., d+d < d+BP and, therefore, BP > d
which is impossible.

Figure 238 (Sol. 26.4)

As a result we see that either from each point there goes not more than two diameters or
there exists a point from which there goes not more than one diameter. Now, the required
statement can be proved by induction on the number of points. For n = 3 it is obvious.

Suppose the statement is proved for any system of n points; let us prove it for a system
of n + 1 points. In this system either there is a point from which there goes not more than
one diameter or from each point there goes not more than two diameters. In the first case
we delete this point and, making use of the fact that in the remaining system there are not
more than n diameters, get the desired.

The second case is obvious.
26.5. Let us draw all the lines that connect pairs of given points and select a line, l, not

parallel to either of them. It is possible to divide the given points into quadruples with the
help of lines parallel to l. The quadrilaterals with vertices in these quadruples of points are
the desired ones (Fig. 97).

26.6. Let us divide the given points in an arbitrary way into six groups: four groups of
four points each, a group of five points and a group of one point. Let us consider the group
of five points. From these points we can select four points which are vertices of a convex
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Figure 239 (Sol. 26.5)

quadrilateral ABCD (see Problem 22.2). Let us unite points A, C and B, D into pairs.
Then segments AC and BD given by pairs intersect. One of the five points is free. Let us
adjoin it to the foursome of points and perform the same with the obtained 5-tuple of points,
etc. After five of such operations there remain two points and we can unite them in a pair.

26.7. Since
(

2n
n2+1

)2
+

(

n2−1
n2+1

)2

= 1, there exists an angle ϕ with the property that

sin ϕ = 2n
n2+1

and cos ϕ = n2−1
n2+1

, where 0 < 2Nϕ < π
2

for a sufficiently large n. Let us
consider the circle of radius R centered at O and points A0, A1, . . . , AN−1 on it such that
∠A0OAk = 2kϕ. Then AiAj = 2R sin(|i − j|ϕ). Making use of the formulas

sin(m + 1)ϕ = sin mϕ cos ϕ + sin ϕ cos mϕ,

cos(m + 1)ϕ = cos mϕ cos ϕ − sin mϕ sin ϕ

it is easy to prove that the numbers sinmϕ and cos mϕ are rational for all positive integers
m. Let us take for R the greatest common divisor of all the denominators of the rational
numbers sin ϕ, . . . , sin(N − 1)ϕ. Then A0, . . . , AN−1 is the required system of points.

26.8. An example is depicted on Fig. 98.

Figure 240 (Sol. 26.8)

26.9. It is possible. An example is plotted on Fig. 99.
26.10. The hypothesis implies that all the vertices of the polygon are divided into

pairs that determine diagonals AiAj which pass through point O. Therefore, the number of
vertices is even and on both parts of each of such diagonals AiAj there are an equal number
of vertices. Hence, j = i + m, where m is a half of the total number of vertices. Therefore,
point O is the intersection point of diagonals that connect opposite vertices. It is clear that
the intersection point of these diagonals is unique.

26.11. If AC and BD are intersecting red segments, then the number of intersection
points of any line with segments AB and CD does not exceed the number of intersection
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Figure 241 (Sol. 26.9)

points of this line with segments AC and BD. Therefore, by replacing red segments AC
and BD with segments AB and CD we do not increase the number of intersection points of
red segments with blue ones and diminish the number of intersection points of red segments
with red ones because the intersection point of AC and BD vanishes. After several such
operations all red segments become nonintersecting ones and it remains to prove that in this
case the number of intersection points of red segments with blue ones is not smaller than n.

Let us consider an arbitrary red segment. Since the other red segments do not intersect
it, we deduce that on both sides of it there lies an even number of red points or, equivalently,
an odd number of blue points. Therefore, there exists a blue segment that intersects the
given red segment. Therefore, the number of intersection points of red segments with blue
ones is not fewer than the number of red segments i.e., is not less than n.

26.12. Let A be a common point of the first three circles S1, S2 and S3. Denote the
intersection points of S1 and S2, S2 and S3, S3 and S1 by B, C, D, respectively. Suppose
there exists a circle S not passing through point A. Then S passes through points B, C and
D. Let S ′ be the fifth circle. Each pair of points from the collection A, B, C, D is a pair of
intersection points of two of the circles S1, S2, S3, S. Therefore, S ′ passes through one point
from each pair of points A, B, C, D. On the other hand, S ′ cannot pass through three points
from the set A, B, C, D because each triple of these points determines one of the circles S1,
S2, S3, S. Hence, S ′ does not pass through certain two of these points. Contradiction.

26.13. Let us consider rectangle ABCD with sides AB = 1 cm and BC = 500 m. Let
O be the intersection point of the rectangle’s diagonals. It is easy to verify that the area of
AOD is greater than 1 m2 and all its hights are shorter than 1 cm.

26.14. No, not necessarily. On Fig. 100 it is shown how to get the required quadrilateral
ABCD.

Figure 242 (Sol. 26.14)

26.15. Not necessarily. It is easy to verify that the list of the lengths of sides and
diagonals for an isosceles trapezoid with height 1 and bases 2 and 4 coincides with the
similar list for the quadrilateral with perpendicular diagonals of length 2 and 4 that are
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divided by their intersection point into segments of length 1 and 1 and 1 and 3, respectively
(Fig. 101).

Figure 243 (Sol. 26.15)

26.16. Yes, there exist. Let us consider points Pi = (i, i2), where i = 1, . . . , n. The
areas of all the triangles with vertices in the nodes of an integer lattice are rational (see

Problem 24.5) and the numbers PiPj = |i − j|
√

1 + (i + j)2 are irrational.
26.17. Yes, there exist. Let C be the midpoint of segment AB. Then

XC2 =
2XA2 + 2XB2 − AB2

2
.

If the number AB2 is irrational, then the numbers XA, XB and XC cannot simultaneously
be rational.

26.18. It can. Consider right triangle ABC1 with legs AB = 1 and BC1 = 2n. In this
triangle draw median AM1, bisector BK1 and hight C1H1. The area of the triangle formed
by these segments is greater than SABM1 − SABK1 . Clearly, SABK1 < 1

2
and SABM1 = n

2
, i.e.,

SABM1 − SABK1 > (S
2
)− ( S

2n
), where S = SABC1 . Hence, for a sufficiently large n the area of

the triangle formed by segments AM1, BK1 and C1H1 will be greater than 0.499 · S.
Slightly moving point C1 we turn triangle ABC1 into an acute triangle ABC and the

area of the triangle formed by the intersection points of segments remains greater than
0.499 · SABC .

26.19. It is possible. Let us pave, for instance, infinite angles illustrated on Fig. 102.

Figure 244 (Sol. 26.19)

26.20. Yes, it can. Let us prove the statement by induction replacing 100 with n.
For n = 1 we can take the endpoints of a segment of length 1. Suppose that the statement

is proved for n and A1, . . . , Ak is the required set of points. Let A′
1, . . . , A′

k be the images
of points A1, . . . , Ak under the parallel transport by unit vector a. To prove the inductive

step it suffices to select the unit vector a so that a 6= −−−→
AiAj and AjA

′
i 6= 1 for i 6= j, i.e.,

|−−−→AjAi + a| 6= 1 for i 6= j. Each of these restrictions excludes from the unit circle not more
than 1 point.
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Figure 245 (Sol. 26.21)

26.21. Not always. Consider the segments plotted on Fig. 103. The endpoints of each
short segment can be connected with the endpoints of the nearest to it long segment only.
It is clear that in this way we cannot get a closed nonselfintersecting broken line.

26.22. Not necessarily. Let us prove that the center O of the circle inscribed in triangle
ABC with sides AB = 6, BC = 4 and CA = 8 is equidistant from the midpoints of sides
AC and BC. Denote the midpoints of sides AC and BC by B1 and A1 and the bases of
the perpendiculars dropped from O to AC and BC by B2 and A2, see Fig. 104. Since
A1A2 = 1 = B1B2 (cf. Problem 3.2) and OA2 = OB2, it follows that △OA1A2 = △OB1B2,
i.e., OA1 = OB1.

Figure 246 (Sol. 26.22)

26.23. This is possible for any n ≥ 2. Indeed, let us inscribe into the arena a regular
k-gon, where k is the number of distinct pairs that can be composed of n spotlights, i.e.,

k = n(n−1)
2

. Then we can establish a one-to-one correspondence between the segments cut off
by the sides of the k-gon and the pairs of spotlights. Let each spotlight illuminate the whole
k-gon and the segments that correspond to pairs of spotlights in which it enters. (Yeah?)It
is easy to verify that this illumination possesses the required properties.





Chapter 27. INDUCTION AND COMBINATORICS

§1. Induction

27.1. Prove that if the plane is divided into parts (“countries”) by lines and circles, then
the obtained map can be painted two colours so that the parts separated by an arc or a
segment are of distinct colours.

27.2. Prove that in a convex n-gon it is impossible to select more than n diagonals so
that any two of them have a common point.

27.3. Let E be the intersection point of lateral sides AD and BC of trapezoid ABCD, let
Bn+1 be the intersection point of lines AnC and BD (A0 = A); let An+1 be the intersection
point of lines EBn+1 and AB. Prove that AnB = 1

n+1
AB.

27.4. On a line, there are given points A1, . . . , An and B1, . . . , Bn−1. Prove that

n
∑

i=1

(

∏

1≤k≤n−1 AiBk
∏

j 6=i AiAj

)

= 1.

27.5. Prove that if n points do not lie on one line, then among the lines that connect
them there are not fewer than n distinct points.

See also Problems 2.12, 5.98, 22.7, 22.9–22.12, 22.20 b, 22.22, 22.23, 22.29, 23.39–23.41,
26.20.

§2. Combinatorics

27.6. Several points are marked on a circle, A is one of them. Which convex polygons
with vertices in these points are more numerous: those that contain A or those that do not
contain it?

27.7. On a circle, nine points are fixed. How many non-closed non-selfintersecting broken
lines of nine links with vertices in these points are there?

27.8. In a convex n-gon (n ≥ 4) there are drawn all the diagonals and no three of them
intersect at one point. Find the number of intersection points of the diagonals.

27.9. In a convex n-gon (n ≥ 4) all the diagonals are drawn. Into how many parts do
they divide an n-gon if no three of them intersect at one point?

27.10. Given n points in plane no three of which lie on one line, prove that there exist

not fewer than
(n

5)
n−4

distinct convex quadrilaterals with vertices in these points.
27.11. Prove that the number of nonequal triangles with the vertices in vertices of a

regular n-gon is equal to the integer nearest to n2

12
.

See also Problem 25.6.

Solutions

27.1. Let us carry out the proof by induction on the total number of lines and circles.
For one line or circle the statement is obvious. Now, suppose that it is possible to paint any
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map given by n lines and circles in the required way and show how to paint a map given by
n + 1 lines and circles.

Let us delete one of these lines (or circles) and paint the map given by the remaining n
lines and circles thanks to the inductive hypothesis. Then retain the colours of all the parts
lying on one side of the deleted line (or circle) and replace the colours of all the parts lying
on the other side of the deleted line (or circle) with opposite ones.

27.2. Let us prove by induction on n that in a convex n-gon it is impossible to select
more than n sides and diagonals so that any two of them have a common point.

For n = 3 this is obvious. Suppose that the statement holds for any convex n-gon
and prove it for an (n + 1)-gon. If from every vertex of the (n + 1)-gon there goes not
more than two of the selected sides or diagonals, then the total number of selected sides
or diagonals does not exceed n + 1. Hence, let us assume that from vertex A there goes
three of the selected sides or diagonals AB1, AB2 and AB3, where AB2 lies between AB1

and AB3. Since a diagonal or a side coming from point B2 and distinct from AB2 cannot
simultaneously intersect AB1 and AB3, it is clear that only one of the chosen diagonals can
go from B2. Therefore, it is possible to delete point B2 together with diagonal AB2 and
apply the inductive hypothesis.

27.3. Clearly, A0B = AB. Let Cn be the intersection point of lines EAn and DC, where
DC : AB = k, AB = a, AnB = an and An+1B = x. Since CCn+1 : AnAn+1 = DCn+1 :
BAn+1, it follows that kx : (an − x) = (ka − kx) : x, i.e., x = aan

a+an
. If an = a

n+1
, then

x = a
n+2

.

27.4. First, let us prove the desired statement for n = 2. Since
−−−→
A1B1+

−−−→
B1A2+

−−−→
A2A1 =

−→
0 ,

it follows that A1B1

A1A2
+ A2B1

A2A1
= 1.

To prove the inductive step let us do as follows. Fix points A1, . . . , An and B1, . . . , Bn−2

and consider point Bn−1 variable. Consider the function

f(Bn−1) =
n

∑

i=1

(

∏

1≤k≤n−1 AiBk
∏

j 6=i AiAj

)

= 1.

This function is a linear one and by the inductive hypothesis f(Bn−1) = 1 if Bn−1 coincides
with one of the points A1, . . . , An. Therefore, this function is identically equal to 1.

27.5. Induction on n. For n = 3 the statement is obvious. Suppose we have proved it for
n− 1 and let us prove it then for n points. If on every line passing through two of the given
points lies one more given point, then all the given points belong to one line (cf. Problem
20.13). Therefore, there exists a line on which there are exactly two given points A and B.
Let us delete point A. The two cases are possible:

1) All the remaining points lie on one line l. Then there will be precisely n distinct lines:
l and n − 1 line passing through A.

2) The remaining points do not belong to one line. Then among the lines that connect
them there are not fewer than n − 1 distinct ones that connect them and all of them differ
from l. Together with AB they constitute not fewer than n lines.

27.6. To any polygon, P , that does not contain point A we can assign a polygon that
contains A by adding A to the vertices of P . The inverse operation, however, that is deleting
of the point A, can be only performed for n-gons with n ≥ 4. Therefore, there are more
polygons that contain A than polygons without A and the difference is equal to the number

of triangles with A as a vertex, i.e., (n−1)(n−2)
2

.
27.7. The first point can be selected in 10 ways. Each of the following 8 points can be

selected in two ways because it must be neighbouring to one of the points selected earlier
(otherwise we get a self-intersecting broken line). Since the beginning and the end do not
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differ in this method of calculation, the result should be divided by 2. Hence, the total
number of the broken lines is equal to 10·28

2
= 1280.

27.8. Any intersection point of diagonals determines two diagonals whose intersection
point it serves and the endpoints of these diagonals fix a convex quadrilateral. Conversely,
any four vertices of a polygon determine one intersection point of diagonals. Therefore, the
total number of intersection points of diagonals is equal to the number of ways to choose 4

points of n, i.e., is equal to n(n−1)(n−2)(n−3)
2·3·4 .

27.9. Let us consecutively draw diagonals. When we draw a diagonal, the number of
parts into which the earlier drawn diagonals divide the polygon increases by m+1, where m
is the number of intersection points of the new diagonals with the previously drawn ones, i.e.,
each new diagonal and each new intersection point of diagonals increase the number of parts
by 1. Therefore, the total number of parts into which the diagonals divide an n-gon is equal
to D + P + 1, where D is the number of diagonals, P is the number of intersection points of

the diagonals. It is clear that D = n(n−3)
2

. By the above problem P = n(n−1)(n−2)(n−3)
24

.
27.10. If we choose any five points, then there exists a convex quadrilateral with vertices

in these points (Problem 22.2). It remains to notice that a quadruple of points can be
complemented to a 5-tuple in n − 4 distinct ways.

27.11. Let there be N nonequal triangles with vertices in vertices of a regular n-gon so
that among them there are N1 equailateral, N2 non-equailateral isosceles, and N3 scalane
ones. Each equailateral triangle is equal to a triangle with fixed vertex A, a non-equailateral
isosceles is equal to three triangles with vertex A and a scalane one is equal to 6 triangles.

Since the total number of triangles with vertex A is equal to (n−1)(n−2)
2

, it follows that
(n−1)(n−2)

2
= N1 + 3N2 + 6N3.

Clearly, the number of nonequal equailateral triangles is equal to either 0 or 1 and the
number of nonequal isosceles triangles is equal to either n−1

2
or (n

2
)− 1, i.e., N1 = 1− c and

N1 + N2 = n−2+d
2

, where c and d are equal to either 0 or 1. Therefore,

12N = 12(N1 + N2 + N3) = 2(N1 + 3N2 + 6N3) + 6(N1 + N2) + 4N1 =

(n − 1)(n − 2) + 3(n − 2 + d) + 4(1 − c) = n2 + 3d − 4c.

Since |3d − 4c| < 6, it follows that N coincides with the nearest integer to n2

12
.





Chapter 28. INVERSION

Background

1. All the geometric transformations that we have encountered in this book so far turned
lines into lines and circles into circles. The inversion is a transformation of another type
which also preserves the class of lines and circles but can transform a line into a circle and
a circle into a line. This and other remarkable properties of inversion serve as a foundation
for its astounding effectiveness in solving various geometric problems.

2. In plane, consider circle S centered at O with radius R. We call the transformation
that sends an arbitrary point A distinct from O into point A∗ lying on ray OA at distance
OA∗ = R2

OA
from O the inversion relative S. The inversion relative S will be also called the

inversion with center O and degree R2 and S will be called the circle of inversion.
3. It follows directly from the definition of inversion that it fixes points of S, moves

points from inside S outside it and points from outside S inside it. If point A turns into A∗

under the inversion, then the inversion sends A∗ into A, i.e., (A∗)∗ = A. The image of a line
passing through the center of the inversion is this line itself.

Here we should make a reservation connected with the fact that, strictly speaking, the
inversion is not a transformation of the plane because O has no image. Therefore, formally
speaking, we cannot speak about the “image of the line through O” and should consider
instead the union of two rays obtained from the line by deleting point O. Similar is the case
with the circles containing point O. Nevertheless, we will use these loose but more graphic
formulations and hope that the reader will easily rectify them when necessary.

4. Everywhere in this chapter the image of point A under an inversion is denoted by A∗.
5. Let us formulate the most important properties of inversion that are constantly used

in the solution of problems.
Under an inversion with center O:
a) a line l not containing O turns into a circle passing through O (Problem 28.2);
b) a circle centered at C and passing through O turns into a line perpendicular to OC

(Problem 28.3);
c) a circle not passing through O turns into a circle not passing through O (Problem

28.3);
d) the tangency of circles with lines is preserved only if the tangent point does not coincide

with the center of inversion; otherwise, the circle and a line turn into a pair of parallel lines
(Problem 28.4);

e) the value of the angle between two circles (or between a circle and a line, or between
two lines) is preserved (Problem 28.5).

§1. Properties of inversions

28.1. Let an inversion with center O send point A to A∗ and B to B∗. Prove that
triangles OAB and OB∗A∗ are similar.

28.2. Prove that under any inversion with center O any line l not passing through O
turns into a circle passing through O.

449
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28.3. Prove that under any inversion with center O any circle passing through O turns
into a line and any circle not passing through O into a circle.

28.4. Prove that tangent circles (any circle tangent to a line) turn under any inversion
into tangent circles or in a circle and a line or in a pair of parallel lines.

Let two circles intersect at point A. The angle between the circles is the angle between
the tangents to the circles at point A. (Clearly, if the circles intersect at points A and B,
then the angle between the tangents at point A is equal to the angle between the tangents
at point B). The angle between a line and a circle is similarly defined (as the angle between
the line and the tangent to the circle at one of the intersection points).

28.5. Prove that inversion preserves the angle between circles (and also between a circle
and a line, and between lines).

28.6. Prove that two nonintersecting circles S1 and S2 (or a circle and a line) can be
transported under an inversion into a pair of concentric circles.

28.7. Let S be centered in O. Through point A a line l intersecting S at points M and
N and not passing through O is drawn. Let M ′ and N ′ be points symmetric to M and N ,
respectively, through OA and let A′ be the intersection point of lines MN ′ and M ′N . Prove
that A′ coincides with the image of A under the inversion with respect to S (and, therefore,
does not depend on the choice of line l).

§2. Construction of circles

While solving problems of this section we will often say “let us perform an inversion . . . ”
. Being translated into a more formal language this should sound as: “Let us construct with
the help of a ruler and a compass the images of all the given points, lines and circles under
the inversion relative to the given circle”. The possibility to perform such constructions
follows from properties of inversion and Problem 28.8.

In problems on construction we often make use of the existence of inversion that sends
two nonintersecting circles into concentric circles. The solution of Problem 28.6 implies
that the center and radius of such an inversion (hence, the images of the circles) can be
constructed by a ruler and a compass.

28.8. Construct the image of point A under the inversion relative circle S centered in
O.

28.9. Construct the circle passing through two given points and tangent to the given
circle (or line).

28.10. Through a given point draw the circle tangent to two given circles (or a circle
and a line).

28.11. (Apollonius’ problem.) Construct a circle tangent to the three given circles.
28.12. Through a given point draw a circle perpendicular to two given circles.
28.13. Construct a circle tangent to a given circle S and perpendicular to the two given

circles (S1 and S2).
28.14. Through given points A and B draw a circle intersecting a given circle S under

the angle of α.

§3. Constructions with the help of a compass only

According to the tradition that stems from ancient Greece, in geometry they usually
consider constructions with the help of ruler and compass. But we can also make construc-
tions with the help of other instruments, or we can, for instance, consider constructions with
the help of one compass only, without a ruler. Clearly, with the help of a compass only one



§4. LET US PERFORM AN INVERSION 451

cannot simultaneously construct all the points of a line. Therefore, let us make a convention:
we will consider a line constructed if two of its points are constructed.

It turns out that under such convention we can perform with the help of a compass all
the constructions which can be performed with the help of a compass and a ruler. This
follows from the possibility to construct using only a compass the intersection points of any
line given by two points with a given circle (Problem 28.21 a)) and the intersection point of
two lines (Problem 28.21 b)). Indeed, any construction with the help of ruler and compass
is a sequence of determinations of the intersection points of circles and lines.

In this section we will only consider constructions with a compass only, without a ruler,
i.e., the word “construct” means “construct with the help of a compass only”. We will
consider a segment constructed if its endpoints are constructed.

28.15. a) Construct a segment twice longer than a given segment.
b) Construct a segment n times longer than a given segment.
28.16. Construct the point symmetric to point A through the line passing through given

points B and C.
28.17. Construct the image of point A under the inversion relative a given circle S

centered in a given point O.
28.18. Construct the midpoint of the segment with given endpoints.
28.19. Construct the circle into which the given line AB turns into under the inversion

relative a given circle with given center O.
28.20. Construct the circle passing through three given points.
28.21. a) Construct the intersection points of the given circle S and the line passing

through given points A and B.
b) Construct the intersection point of lines A1B1 and A2B2, where A1, B1, A2 and B2

are given points.

§4. Let us perform an inversion

28.22. In a disk segment, all possible pairs of tangent circles (Fig. 105) are inscribed.
Find the locus of their tangent points.

Figure 247 (28.22)

28.23. Find the set of tangent points of pairs of circles that are tangent to the legs of
the given angle at given points A and B.

28.24. Prove that the inversion with the center at vertex A of an isosceles triangle ABC,
where AB = AC, of degree AB2 sends the base BC of the triangle into the arc ⌣ BC of
the circumscribed circle.

28.25. In a circle segment, all the possible pairs of intersecting circles are inscribed and
for each pair a line is drawn through their intersection point. Prove that all these lines pass
through one point, cf. Problem 3.44.

28.26. No three of the four points A, B, C, D lie on one line. Prove that the angle
between the circumscribed circles of triangles ABC and ABD is equal to the angle between
the circumscribed circles of triangles ACD and BCD.

28.27. Through points A and B there are drawn circles S1 and S2 tangent to circle S
and circle S3 perpendicular to S. Prove that S3 forms equal angles with circles S1 and S2.
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28.28. Two circles intersecting at point A are tangent to the circle (or line) S1 at points
B1 and C1 and to the circle (or line) S2 at points B2 and C2 (and the tangency at B2 and C2

is the same as at respective points B1 and C1, i.e., either inner or outer). Prove that circles
circumscribed about triangles AB1C1 and AB2C2 are tangent to each other.

28.29. Prove that the circle passing through the midpoints of triangle’s sides is tangent
to its inscribed and three escribed circles. (Feuerbach’s theorem.)

§5. Points that lie on one circle and circles passing through one point

28.30. Given four circles, S1, S2, S3, S4, where circles S1 and S3 intersect with both
circles S2 and S4. Prove that if the intersection points of S1 with S2 and S3 with S4 lie on
one circle or line, then the intersection points of S1 with S4 and S2 with S3 lie on one circle
or line (Fig. 106).

Figure 248 (28.30)

28.31. Given four circles S1, S2, S3, S4 such that S1 and S2 intersect at points A1 and
A2, S2 and S3 at points B1 and B2, S3 and S4 at points C1 and C2, S4 and S1 at points D1

and D2 (Fig. 107).

Figure 249 (28.31)

Prove that if points A1, B1, C1, D1 lie on one circle (or line) S, then points A2, B2, C2,
D2 lie on one circle (or line).

28.32. The sides of convex pentagon ABCDE are extended so that five-angled star
AHBKCLDMEN (Fig. 108) is formed. The circles are circumscribed about triangles —
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the rays of the star. Prove that the five intersection points of these circles distinct from A,
B, C, D, E lie on one circle.

Figure 250 (28.32)

28.33. In plane, six points A1, A2, A3, B1, B2, B3 are fixed. Prove that if the circles
circumscribed about triangles A1A2B3, A1B2A3 and B1A2A3 pass through one point, then
the circles circumscribed about triangles B1B2A3, B1A2B3 and A1B2B3 intersect at one
point.

28.34. In plane, six points A1, A2, B1, B2, C1, C2 are fixed. Prove that if the circles cir-
cumscribed about triangles A1B1C1, A1B2C2, A2B1C2, A2B2C1 pass through one point, then
the circles circumscribed about triangles A2B2C2, A2B1C1, A1B2C1, A1B1C2 pass through
one point.

28.35. In this problem we will consider tuples of n generic lines, i.e., sets of lines no two
of which are parallel and no three pass through one point.

To a tuple of two generic lines assign their intersection point and to a tuple of two generic
lines assign the circle passing through the three points of their pairwise intersections. If l1,
l2, l3, l4 are four generic lines, then the four circles Si corresponding to four triples of lines
obtained by discarding li pass through one point (cf. Problem 2.83 a)) that we will assign
to the foursome of lines.

This construction can be extended:
a) Let li, i = 1, . . . , 5 be five generic points. Prove that five points Ai corresponding to

the foursome of lines obtained by discarding li lie on one circle.
b) Prove that this construction can be continued in the following way: to every tuple of

n generic points assign a point if n is even or a circle if n is odd so that n circles (points)
corresponding to tuples of n − 1 lines pass through this point (belong to this circle).

28.36. On two intersecting lines l1 and l2, select points M1 and M2 not coinciding with
the intersection point M of these lines. Assign to this set of lines and points the circle
passing through M1, M2 and M .

If (l1,M1), (l2,M2), (l3,M3) are three generic lines with fixed points, then by Problem 2.80
a) the three circles corresponding to pairs (l1,M1) and (l2,M2), (l2,M2), (l3,M3), (l3,M3)
and (l1,M1) intersect at one point that we will assign to the triple of lines with a fixed point.

a) Let l1, l2, l3, l4 be four generic lines on each of which a point is fixed so that these
points lie on one circle. Prove that four points corresponding to the triples obtained by
deleting one of the lines lie on one circle.

b) Prove that to every tuple of n generic lines with a point fixed on each of them so that
the fixed points lie on one circle one can assign a point (if n is odd) or a circle (if n is even)
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so that n circles (if n is odd) or points (if n is even) corresponding to the tuples of n − 1
lines pass through this point (resp. lie on this circle).

§6. Chains of circles

28.37. Circles S1, S2, . . . , Sn are tangent to circles R1 and R2 and, moreover, S1 is
tangent to S2 at point A1, S2 is tangent to S3 at point A2, . . . , Sn−1 is tangent to Sn at
point An−1. Prove that points A1, A2, . . . , An−1 lie on one circle.

28.38. Prove that if there exists a chain of circles S1, S2, . . . , Sn each of which is tangent
to two neighbouring ones (Sn is tangent to Sn−1 and S1) and two given nonintersecting circles
R1 and R2, then there are infinitely many such chains.

(?)Namely, for any circle T1 tangent to R1 and R2 (in the same fashion if R1 and R2 do
not lie inside each other, by an inner or an outer way, otherwise) there exists a similar chain
of n tangent circles T1, T2, . . . , Tn. (Steiner’s porism.)

28.39. Prove that for two nonintersecting circles R1 and R2 a chain of n tangent circles
(cf. the preceding problem) exists if and only if the angle between the circles T1 and T2

tangent to R1 and R2 at their intersection points with the line that connects the centers of
R1 and R2 is equal to an integer multiple of 360◦

n
(Fig. 109).

Figure 251 (28.39)

28.40. Each of six circles is tangent to four of the remaining five circles, see Fig. 110.

Figure 252 (28.40)

Prove that for any pair of nonintersecting circles (of these six circles) the radii and the
distance between their centers are related by the formula

d2 = r2
1 + r2

2 ± 6r1r2,

where “plus” is taken if the circles are not inside each other and “minus” otherwise.
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Solutions

28.1. Let R2 be the degree of the inversion. Then

OA · OA∗ = OB · OB∗ = R2

whence, OA : OB = OB∗ : OA∗ and △OAB ∼ △OB∗A∗ because ∠AOB = ∠B∗OA∗.
28.2. Let us drop perpendicular OC from point O to line l and take an arbitrary point M

on l. Since triangles OCM and OM∗C∗ are similar (Problem 28.1), ∠OM∗C∗ = ∠OCM =
90◦, i.e., point M∗ lies on circle S with diameter OC∗. If X is a point of S distinct from
O, then it is the image under the inversion of the intersection point Y of l and OX (since
the image of Y lies, on the one hand, on ray OX and, on the other hand, on circle S, as is
already proved). Thus, the inversion sends line l into circle S (without point O).

28.3. The case when circle S passes through O is actually considered in the preceding
problem (and formally follows from it since (M∗)∗ = M).

Now, suppose that O does not belong to S. Let A and B be the intersection points of
circle S with the line passing through O and the center of S, let M be an arbitrary point
of S. Let us prove that the circle with diameter A∗B∗ is the image of S. To this end it
suffices to show that ∠A∗M∗B∗ = 90◦. But by Problem 28.1 △OAM ∼ △OM∗A∗ and
△OBM ∼ △OM∗B∗; hence, ∠OMA = ∠OA∗M∗ and ∠OMB = ∠OB∗M∗; more exactly,
∠(OM,MA) = −∠(OA∗,M∗A∗) and ∠(OM,MB) = −∠(OB∗,M∗B∗). (In order not to
consider various cases of points’ disposition we will make use of the properties of oriented
angles between lines discussed in Chapter 2.) Therefore,

∠(A∗M∗,M∗B∗) = ∠(A∗M∗, OA∗) + ∠(OB∗,M∗B∗) =

∠(OM,MA) + ∠(MB,OM) = ∠(MB,MA) = 90◦.

28.4. If the tangent point does not coincide with the center of inversion, then after the
inversion these circles (the circle and the line) will still have one common point, i.e., the
tangency is preserved.

If the circles with centers A and B are tangent at point O, then under the inversion with
center O they turn into a pair of lines perpendicular to AB. Finally, if line l is tangent to
the circle centered at A at point O, then under the inversion with center O the line l turns
into itself and the circle into a line perpendicular to OA. In each of these two cases we get
a pair of parallel lines.

28.5. Let us draw tangents l1 and l2 through the intersection point of the circles. Since
under the inversion the tangent circles or a circle and a line pass into tangent ones (cf.
Problem 28.4), the angle between the images of circles is equal to the angle between the
images of the tangents to them. Under the inversion centered at O line li turns into itself
or into a circle the tangent to which at O is parallel to li. Therefore, the angle between the
images of l1 and l2 under the inversion with center O is equal to the angle between these
lines.

28.6. First solution. Let us draw the coordinate axis through the centers of the circles.
Let a1 and a2 be the coordinates of the intersection points of the axes with S1, let b1 and b2

be the coordinates of the intersection points of the axes with S2. Let O be the point on the
axis whose coordinate is x. Then under the inversion with center O and degree k our circles
turn into the circles whose diameters lie on the axis and whose endpoints have coordinates
a′

1, a′
2 and b′1, b′2, respectively, where

a′
1 = x +

k

a1 − x
, a′

2 = x +
k

a2 − x
, b′1 = x +

k

b1 − x
, b′2 = x +

k

b2 − x
.
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The obtained circles are concentric if
a′

1+a′

2

2
=

b′1+b′2
2

, i.e.,

1

a1 − x
+

1

a2 − x
=

1

b1 − x
+

1

b2 − x
,

wherefrom we have

(b1 + b2 − a1 − a2)x
2 + 2(a1a2 − b1b2)x + b1b2(a1 + a2) − a1a2(b + b2) = 0.

The discriminant of this quadratic in x is equal to 4(b1 − a1)(b1 − a2)(b2 − a1)(b2 − a2). It is
positive precisely when the circles do not intersect; this proves the existence of the required
inversion.

The existence of such an inversion for the case of a circle and a line is similarly proved.
Another solution. On the line that connects centers O1 and O2 of the circles take

point C such that the tangents drawn to the circles from C are equal. This point C can
be constructed by drawing the radical axis of the circles (cf. Problem 3.53). Let l be the
length of these tangents. The circle S of radius l centered in C is perpendicular to S1 and S2.
Therefore, under the inversion with center O, where O is any of the intersection points of S
with line O1O2, circle S turns into a line perpendicular to circles S∗

1 and S∗
2 and, therefore,

passing through their centers. But line O1O2 also passes through centers of S∗
1 and S∗

2 ; hence,
circles S∗

1 and S∗
2 are concentric, i.e., O is the center of the desired inversion.

If S2 is not a circle but a line, the role of line O1O2 is played by the perpendicular dropped
from O1 to S2, point C is its intersection point with S2, and l is the length of the tangent
dropped from C to S1.

28.7. Let point A lie outside S. Then A′ lies inside S and we see that ∠MA′N = 1
2
(⌣

MN+ ⌣ M ′N ′) =⌣ MN = ∠MON , i.e., quadrilateral MNOA′ is an inscribed one. But
under the inversion with respect to S line MN turns into the circle passing through points
M , N , O (Problem 28.2). Therefore, point A∗ (the image of A under the inversion) lies on
the circle circumscribed about quadrilateral MNOA′. By the same reason points A′ and A∗

belong to the circle passing through M ′, N ′ and O. But these two circles cannot have other
common points except O and A′. Hence, A∗ = A′.

If A lies inside S, we can apply the already proved to line MN ′ and point A′ (which is
outside S). We get A = (A′)∗. But then A′ = A∗.

28.8. Let point A lie outside S. Through A, draw a line tangent to S at point M . Let
MA′ be a height of triangle OMA. Right triangles OMA and OA′M are similar, hence,
A′O : OM = OM : OA and OA′ = R2

OA
, i.e., point A′ is the one to be found.

If A lies inside S, then we can perform the construction in the reverse order: we drop
perpendicular AM to OA (point M lies on the circle). Then the tangent to S at point M
intersects with ray OA at the desired point, A∗.

Proof is repeated literally.
28.9. If both given points A and B lie on the given circle (or line) S, then the problem

has no solutions. Let now A not lie to S. Under the inversion with center A the circle to be
found turns into the line passing through B∗ and tangent to S∗. This implies the following
construction. Let us perform the inversion with respect to an arbitrary circle with center A.
Through B∗ draw the tangent l to S∗. Perform an inversion once again. Then l turns into
the circle to be constructed.

If point B∗ lies on S∗, then the problem has a unique solution; if B∗ lies outside S∗, then
there are two solutions, and if B∗ lies inside S∗, then there are no solutions.

28.10. The inversion with center at the given point sends circles S1 and S2 into a pair of
circles S∗

1 and S∗
2 (or into circle S∗ and line l; or into a pair of lines l1 and l2), respectively;

the circle tangent to them turns into the common tangent to S∗
1 and S∗

2 (resp. into the
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tangent to S∗ parallel to l; or into a line parallel to l1 and l2). Therefore, to construct the
desired circle we have to construct a line tangent to S∗

1 and S∗
2 (resp. tangent to S∗ and

parallel to l; or parallel to l1 and l2) and perform an inversion once again.
28.11. Let us reduce this problem to Problem 28.10. Let circle S of radius r be tangent

to circles S1, S2, S3 of radii r1, r2, r3, respectively. Since the tangency of S with each of Si

(i = 1, 2, 3) can be either outer or inner, there are eight possible distinct cases to consider.
Let, for instance, S be tangent to S1 and S3 from the outside and to S2 from the inside (Fig.
111).

Figure 253 (Sol. 28.11)

Let us replace the circles S, S2, S3 with the concentric to them circles S ′, S ′
2 and S ′

3,
respectively, so that S ′ is tangent to S ′

2 and S ′
3 and passes through the center O1 of S1.

To this end it suffices that the radii of S ′, S ′
2, S ′

3 were equal to r + r1, r2 + r1, |r3 − r1|,
respectively.

Conversely, from circle S ′ passing through O1 and tangent to S ′
2 and S ′

3 (from the outside
if r3 − r1 ≥ 0 and from the inside if r3 − r1 < 0) we can construct circle S — a solution of
the problem — by diminishing the radius of S ′ by r1. The construction of such a circle S ′ is
described in the solution of Problem 28.10 (if the type of tangency is given, then the circle
is uniquely constructed).

One can similarly perform the construction for the other possible types of tangency.
28.12. Under the inversion with center at the given point A the circle to be constructed

turns into the line perpendicular to the images of both circles S1 and S2, i.e., into the line
connecting the centers of S∗

1 and S∗
2 . Therefore, the circle circle to be constructed is the

image under this inversion of an arbitrary line passing through the centers of S∗
1 and S∗

2 .
28.13. Let us perform an inversion that sends circles S1 and S2 into a pair of lines (if they

have a common point) or in a pair of concentric circles (cf. Problem 28.6) with a common
center A. In the latter case the circle perpendicular to both circles S1 and S2 turns into a
line passing through A (since there are no circles perpendicular to two concentric circles);
the tangent drawn from A to S∗ is the image of the circle circle to be constructed under this
inversion.

If S∗
1 and S∗

2 are parallel lines, then the image of the circle circle to be constructed is any
of the two lines perpendicular to S∗

1 and S∗
2 and tangent to S∗. Finally, if S∗

1 and S∗
2 are

lines intersecting at a point B, then the circle circle to be constructed is the image under
the inversion of any of the two circles with center B and tangent to S∗.

28.14. Under the inversion with center at point A the problem reduces to the con-
struction of a line l passing through B∗ and intersecting circle S∗ at an angle of α, i.e., to
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construction of a point X on S∗ such that ∠B∗XO = 90◦ − α, where O is the center of S∗.
This point X lies on the intersection of S∗ with the arc whose points serve as the vertices of
angles of 90◦ − α subtending segment B∗O.

28.15. a) Let AB be the given segment. Let us draw the circle with center B and
radius AB. On this circle, mark chords AX,XY and Y Z of the same length as AB; we get
equilateral triangles ABX, XBY and Y BZ. Hence, ∠ABZ = 180◦ and AZ = 2AB.

b) In the solution of heading a) we have described how to construct a segment BZ equal
to AB on line AB. Repeating this procedure n − 1 times we get segment AC such that
AC = nAB.

28.16. Let us draw circles with centers B and C passing through A. Then the distinct
from A intersection point of these circles is the desired one.

28.17. First, suppose that point A lies outside circle S. Let B and C be the intersection
points of S and the circle of radius AO and with center A. Let us draw circles with centers
B and C of radius BO = CO; let O and A′ be their intersection points. Let us prove that
A′ is the desired point.

Indeed, under the symmetry through line OA the circles with centers B and C turn
into each other and, therefore, point A′ is fixed. Hence, A′ lies on line OA. Isosceles
triangles OAB and OBA′ are similar because they have equal angles at the base. Therefore,
OA′ : OB = OB : OA or OA′ = OB2

OA
, as required.

Now, let point A lie inside S. With the help of the construction from Problem 28.15 a)
let us construct on ray OA segments AA2, A2A3, . . . , An−1An, . . . of length OA until one of
the points An becomes outside S. Applying to An the above-described construction we get
a point A∗

n on OA such that OA∗
n = R2

n·OA
= 1

n
OA∗. In order to construct point A∗ it only

remains to enlarge segment OA∗
n n times, cf. Problem 28.15 b).

28.18. Let A and B be two given points. If point C lies on ray AB and AC = 2AB,
then under the inversion with respect to the circle of radius AB centered at A point C turns
into the midpoint of segment AB. The construction is reduced to Problems 28.15 a) and
28.17.

28.19. The center of this circle is the image under an inversion of point O′ symmetric
to O through AB. It remains to apply Problems 28.16 and 28.17.

28.20. Let A, B, C be given points. Let us construct (Problem 28.17) the images of B
and C under the inversion with center A and of arbitrary degree. Then the circle passing
through A, B and C is the image of line B∗C∗ under this inversion and its center can be
constructed thanks to the preceding problem.

28.21. a) Making use of the preceding problem construct the center O of circle S. Next,
construct points A∗ and B∗ — the images of A and B under the inversion with respect to S.
The image of AB is circle S1 passing through points A∗, B∗ and O. Making use of Problem
28.19 we construct S1. The desired points are the images of the intersection points of circles
S and S1, i.e., just intersection points of S and S1.

b) Let us consider an inversion with center A1. Line A2B2 turns under this inversion
into the circle S passing through points A1, A∗

2 and B∗
2 . We can construct S making use of

Problem 28.19. Further, let us construct the intersection points of S and line A1B1 making
use of the solution of heading a). The desired point is the image of the intersection point
distinct from A1 under the inversion considered.

28.22. Under the inversion centered in the endpoint A of the segment the configuration
plotted on Fig. 105 turns into the pair of tangent circles inscribed into the angle at vertex
B∗. Clearly, the set of the tangent points of such circles is the bisector of the angle and the
desired locus is the image of the bisector under the inversion — the arc of the circle with
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endpoints A and B that divides in halves the angle between the arc of the segment and
chord AB.

28.23. Let C be the vertex of the given angle. Under the inversion with center in A line
CB turns into circle S; circles S1 and S2 turn into circle S∗

1 centered in O1 tangent to S at
point B∗ and line l parallel to C∗A and tangent to S∗

1 at X, respectively (Fig. 112).

Figure 254 (Sol. 28.23)

In S, draw radius OD perpendicular to C∗A. Points O, B∗ and O1 lie on one line and
OD ‖ O1X. Hence,

∠OB∗D = 90◦ − ∠DOB∗

2
= 90◦ − ∠XO1B

∗

2
= ∠O1B

∗X,

therefore, point X lies on line DB∗. Applying inversion once again we see that the desired
locus of tangent points is arc ⌣ AB of the circle passing through points A, B and D∗.

28.24. The given inversion sends line BC into the circle passing through points A, B
and C so that the image of segment BC should remain inside angle ∠BAC.

28.25. Let S1 and S2 be circles inscribed into the segment; M , N their intersection
points (Fig. 113). Let us show that line MN passes through point P of the circle of the
segment equidistant from its endpoints A and B.

Figure 255 (Sol. 28.25)

Indeed, thanks to the preceding problem the inversion with center P and of degree PA2

sends segment AB to arc ⌣ AB and circles S1 and S2 to circles S∗
1 and S∗

2 , still inscribed into
a segment, respectively. But the tangents to S1 drawn from P are tangent also to S∗

1 ; hence,
S∗

1 = S1 (since both these circles are similarly tangent to the three fixed points). Analogously,
S∗

2 = S2; hence, points M and N change places under the inversion, i.e., M∗ = N and MN
passes through the center of inversion.

28.26. Let us perform an inversion with center A. The angles of interest to us are then
equal (by Problem 28.5) to the respective angles between lines B∗C∗ and B∗D∗ or between
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line C∗D∗ and the circle circumscribed about triangle B∗C∗D∗. Both these angles are equal
to a half arc ⌣ C∗D∗.

28.27. Performing an inversion with center A we get three lines passing through B: lines
S∗

1 and S∗
2 are tangent to S∗ and S∗

3 is perpendicular to it. Thus, line S∗
3 passes through

the center of S∗ and is the bisector of the angle formed by S∗
1 and S∗

2 . Therefore, circle S3

divides the angle between S1 and S2 in halves.
28.28. The condition of the types of tangency implies that after an inversion with center

A we get either two circles inscribed into the same angle or a pair of vertical angles. In either
case a homothety with center A turns circles S∗

1 and S∗
2 into each other. This homothety

sends one segment that connects tangent points into another one. Hence, lines B∗
1C

∗
1 and

B∗
2C

∗
2 are parallel and their images under the inversion are tangent at point A.

28.29. Let A1, B1 and C1 be the midpoints of sides BC, CA and AB, respectively.
Let us prove that, for instance, the circle circumscribed about triangle A1B1C1 is tangent
to the inscribed circle S and escribed circle Sa tangent to BC. Let points B′ and C ′ be
symmetric to B and C, respectively, through the bisector of angle ∠A (i.e., B′C ′ is the
second common inner tangent to S and Sa), let P and Q be the tangent points of circles S
and Sa, respectively, with side BC and let D and E be the intersection points of lines A1B1

and A1C1, respectively, with line B′C ′.
By Problem 3.2 BQ = CP = p − c and, therefore, A1P = A1Q = 1

2
|b − c|. It suffices

to prove that the inversion with center A1 and degree A1P
2 sends points B1 and C1 into

D and E, respectively, (this inversion sends circles S and Sa into themselves, and the circle
circumscribed about triangle A1B1C1 into line B′C ′).

Let K be the midpoint of segment CC ′. Point K lies on line A1B1 and

A1K =
BC ′

2
=

|b − c|
2

= A1P.

Moreover,
A1D : A1K = BC ′ : BA = A1K : A1B1,

i.e., A1D · A1B1 = A1K
2 = A1P

2. Similarly, A1E · A1C1 = A1P
2.

28.30. After an inversion with center at the intersection point of S1 and S2 we get lines
l1, l2 and l intersecting at one point. Line l1 intersects circle S∗

4 at points A and B, line l2
intersects S∗

3 at points C and D and line l passes through the intersection points of these
circles. Hence, points A, B, C, D lie on one circle (Problem 3.9).

28.31. Let us make an inversion with center at point A1. Then circles S1, S2 and S4

turn into lines A∗
2D

∗
1, B∗

1A
∗
2 and D∗

1B
∗
1 ; circles S3 and S4 into circles S∗

3 and S∗
4 circumscribed

about triangles B∗
2C

∗
1B

∗
1 and C∗

1D
∗
1D

∗
2, respectively (Fig. 114).

Figure 256 (Sol. 28.31)
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Let us draw the circle through points B∗
2 , D∗

2 and A∗
2. By Problem 2.80 a) it passes

through the intersection point C∗
2 of circles S∗

3 and S∗
4 . Thus, points A∗

2, B∗
2 , C∗

2 , D∗
2 lie on

one circle. It follows, that points A2, B2, C2, D2 lie on one circle or line.
28.32. Let P , Q, R, S, T be the intersection points of circles S1, S2, S3, S4, S5 spoken

about in the formulation of the problem (cf. Fig. 108).
Let us prove, for instance, that points P , Q, R, S lie on one circle. Let us draw circle Σ

circumscribed about triangle NKD. Applying the result of Problem 2.83 a) (which coincides
with that of Problem 19.45) to quadrilaterals AKDE and BNDC we see that circles S4, S5

and Σ intersect at one point (namely, P ) and circles S2, S3, Σ also intersect at one point
(namely, S).

Therefore, circle Σ passes through points P and S. Now, observe that of eight intersection
points of circles Σ, S1, S2, S5 four, namely, N , A, B, K, lie on one line. It follows that by
Problem 28.31 the remaining four points P , Q, R, S lie on one circle.

28.33. An inversion with center at the intersection point of circumscribed circles of
triangles A1A2B3, A1B2A3 and B1A2A3 sends these circles into lines and the statement of
the problem reduces to the statement that the circles circumscribed about triangles B∗

1B
∗
2A

∗
3,

B∗
1A

∗
2B

∗
3 and A∗

1B
∗
2B

∗
3 pass through one point, i.e., the statement of Problem 2.80 a).

28.34. Under an inversion with center at the intersection point of circles circumscribed
about triangles A1B1C1, A1B2C2, A2B1C2 and A2B2C1 we get four lines and four circles
circumscribed about triangles formed by these lines. By Problem 2.83 a) these circles pass
through one point.

28.35. a) Denote by Mij the intersection point of lines li and lj and by Sij the circle
corresponding to the three remaining lines. Then point A1 is distinct from the intersection
point M34 of circles S15 and S12.

Repeating this argument for each point Ai, we see that thanks to Problem 28.32 they lie
on one circle.

b) Let us prove the statement of the problem by induction and considere separately the
cases of even and odd n.

Let n be odd. Denote by Ai the point corresponding to the tuple of n− 1 lines obtained
by deleting line li and by Aijk the point corresponding to the tuple of n given lines without
li, lj and lk. Similarly, denote by Sij and Sijkm the circles corresponding to tuples of n − 2
and n − 4 lines obtained by deleting li and lj or li, lj, lk and lm, respectively.

In order to prove that n points A1, A2, . . . , An lie on the same circle, it suffices to prove
that any four of them lie on one circle. Let us prove this, for instance, for points A1, A2,
A3 and A4. Since points Ai and Aijk lie on Sij, it follows that circles S12 and S23 intersect
at points A2 and A123; circles S23 and S34 intersect at points A3 and A234; circles S34 and
S41 at points A4 and A134; circles S41 and S12 at points A1 and A124. But points A123, A234,
A134 and A124 lie on one circle — circle S1234 — hence, by Problem 28.31 points A1, A2, A3

and A4 lie on one circle.
Let n be even. Let Si, Aij, Sijk, Aijkm be circles and points corresponding to tuples of

n − 1, n − 2, n − 3 and n − 4 lines, respectively. In order to prove that circles S1, S2, . . . ,
Sn intersect at one point, let us prove that this holds for any three of them. (This suffices
for n ≥ 5, cf. Problem 26.12.) Let us prove, for instance, that S1, S2 and S3 intersect at
one point. By definition of points Aij and circles Si and Sijk, points A12, A13 and A14 lie on
circle S1; points A12, A23 and A24 on S2; points A13, A14 and A34 on S3; points A12, A14 and
A24 on S124; points A13, A14, A34 on S134; points A23, A24, A34 on S234.

But the three circles S124, S134 and S234 pass through point A1234; hence, by Problem
28.33 circles S1, S2 and S3 also intersect at one point.
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28.36. a) Denote by Mij the intersection point of lines li and lj. Then point A1 corre-
sponding to the triple (l2, l3, l4) is the intersection point of the circles circumscribed about
triangles M2M3M23 and M3M4M34. By the similar arguments applied to A2, A3 and A4 we
see that points A1, A2, A3 and A4 lie on one circle thanks to Problem 28.31 because points
M1, M2, M3, M4 lie on one circle.

b) As in Problem 28.35 b), let us prove our statement by induction; consider the cases
of even and odd n separately.

Let n be even; let Ai, Sij, Aijk and Sijkm denote points and circles corresponding to
tuples of n − 1, n − 2, n − 3 and n − 4 lines, respectively. Let us prove that points A1, A2,
A3, A4 lie on one circle. By definition of points Ai and Aijk, circles S12 and S23 intersect at
points A2 and A123; circles S23 and S34 at points A3 and A234; circles S34 and S41 at points
A4 and A134; circles S41 and S12 at points A1 and A124.

Points A123, A234, A134 and A124 lie on circle S1234; hence, by Problem 28.31 points A1,
A2, A3, A4 lie on one circle. We similarly prove that any four of points Ai (hence, all of
them) lie on one circle.

Proof for n odd, n ≥ 5, literally repeats the proof of heading b) of Problem 28.35 for the
case of n even.

28.37. If circles R1 and R2 intersect or are tangent to each other, then an inversion with
the center at their intersection point sends circles S1, S2, . . . , Sn into the circles that are
tangent to a pair of straight lines and to each other at points A∗

1, A∗
2, . . . , A∗

n−1 lying on the
bisector of the angle formed by lines R∗

1 and R∗
2 if R∗

1 and R∗
2 intersect, or on the line parallel

to R∗
1 and R∗

2 if these lines do not intersect. Applying the inversion once again we see that
points A∗

1, A∗
2, . . . , A∗

n−1 lie on one circle.
If circles R1 and R2 do not intersect, then by Problem 28.6 there is an inversion sending

them into a pair of concentric circles. In this case points A∗
1, A∗

2, . . . , A∗
n−1 lie on a circle

concentric with R∗
1 and R∗

2; hence, points A1, A2, . . . , An−1 lie on one circle.
28.37. Let us make an inversion sending R1 and R2 into a pair of concentric circles.

Then circles S∗
1 , S∗

2 , . . . , S∗
n and T ∗

1 are equal (Fig. 115).

Figure 257 (Sol. 28.37)

Turning the chain of circles S∗
1 , . . . , S∗

n about the center of the circle R∗
1 so that S∗

1

becomes T ∗
1 and making an inversion once again we get the desired chain T1, T2, . . . , Tn.

28.39. The center of inversion that sends circles R1 and R2 into concentric circles lies
(see the solution of Problem 28.6) on the line that connects their centers. Therefore, making
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this inversion and taking into account that the angle between circles, as well as the type of
tangency, are preserved under an inversion, we reduce the proof to the case of concentric
circles R1 and R2 with center O and radii r1 and r2, respectively.

Let us draw circle S with center P and of radius 1
2
(r1 − r2) tangent to R1 from the inside

and to R2 from the outside and let us draw circles S ′ and S ′′ each of radius 1
2
(r1 + r2) with

centers A and B, respectively, tangent to R1 and R2 at their intersection points with line
OP (Fig. 116).

Figure 258 (Sol. 28.39)

Let OM and ON be tangent to S drawn at O. Clearly, the chain of n circles tangent to
R1 and R2 exists if and only if ∠MON = m360◦

n
. (In this case the circles of the chain run m

times about the circle R2.)
Therefore, it remains to prove that the angle between circles S ′ and S ′′ is equal to

∠MON . But the angle between S ′ and S ′′ is equal to the angle between their radii drawn
to the intersection point C. Moreover, since

PO = r1 −
r1 − r2

2
=

r1 + r2

2
= AC,

PN =
r1 − r2

2
= r1 −

r1 + r2

2
= OA,

∠PNO = ∠AOC = 90◦,

we have △ACO = △PON . Therefore,

∠ACB = 2∠ACO = 2∠PON = ∠NOM.

28.40. Let R1 and R2 be a pair of circles without common points. The remaining four
circles constitute a chain and, therefore, by the preceding problem circles S ′ and S ′′ tangent
to R1 and R2 at the intersection points of the latter with the line connecting their centers
intersect at right angle (Fig. 117). If R2 lies inside R1, then the radii r′ and r′′ of circles S ′

and S ′′ are equal to 1
2
(r1 + r2 + d) and 1

2
(r1 + r2 − d), respectively, and the distance between

their centers is equal to d′ = 2r1 − r1 − r2 = r1 − r2. The angle between S ′ and S ′′ is equal
to the angle between the radii drawn to the intersection point, hence, (d′)2 = (r′)2 + (r′′)2

or, after simplification, d2 = r2
1 + r2

2 − 6r1r2.
If R1 and R2 are not inside one another, then the radii of S ′ and S ′′ are equal to 1

2
(d +

(r1 − r2)) and 1
2
(d − (r1 − r2)), respectively, and the distance between their centers is d′ =

r1 + r2 + d − (r′1 + r′2) = r1 + r2. As a result we get d2 = r2
1 + r2

2 + 6r1r2.
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Figure 259 (Sol. 28.40)



Chapter 29. AFFINE TRANSFORMATIONS

§1. Affine transformations

A transformation of the plane is called an affine one if it is continuous, one-to-one, and
the image of every line is a line.

Shifts and similarity transformations are particular cases of affine transformations.
A dilation of the plane relative axis l with coefficient k is a transformation of the plane

under which point M turns into point M ′ such that
−−→
OM ′ = k

−−→
OM , where O is the projection

of M to l. (A dilation with coefficient smaller than 1 is called a contraction.)
29.1. Prove that a dilation of the plane is an affine transformation.
29.2. Prove that under an affine transformation parallel lines turn into parallel ones.
29.3. Let A1, B1, C1, D1 be images of points A, B, C, D, respectively, under an affine

transformation. Prove that if
−→
AB =

−−→
CD, then

−−−→
A1B1 =

−−−→
C1D1.

Problem 29.3 implies that we can define the image of vector
−→
AB under an affine trans-

formation L as
−−−−−−−→
L(A)L(B) and this definition does not depend on the choice of points A and

B that determine equal vectors.
29.4. Prove that if L is an affine transformation, then

a) L(
−→
0 ) =

−→
0 ;

b) L(a + b) = L(a) + L(b);
c) L(ka) = kL(a).
29.5. Let A′, B′, C ′ be images of points A, B, C under an affine transformation L.

Prove that if C divides segment AB in the ratio AC : CB = p : q, then C ′ divides segment
A′B′ in the same ratio.

29.6. Given two points O and O′ in plane and two bases {e1, e2} and {e′
1, e

′
2}.

a) Prove that there exists a unique affine transformation that sends O into O′ and a the
basis {e1, e2} into the basis {e′

1, e
′
2}.

b) Given two triangles ABC and A1B1C1 prove that there exists a unique affine trans-
formation that sends A into A1, B into B1 and C into C1.

c) Given two parallelograms, prove that there exists a unique affine transformation that
sends one of them into another one.

29.7. Prove that if a non-identity affine transformation L sends each point of line l into
itself, then all the lines of the form ML(M), where M is an arbitrary point not on l, are
parallel to each other.

29.8. Prove that any affine transformation can be represented as a composition of two
dilations and an affine transformation that sends any triangle into a similar triangle.

29.9. Prove that any affine transformation can be represented as a composition of a
dilation (contraction) and an affine transformation that sends any triangle into a similar
triangle.

29.10. Prove that if an affine transformation sends a circle into itself, then it is either a
rotation or a symmetry.
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29.11. Prove that if M ′ and N ′ are the images of polygons M and N , respectively, under
an affine transformation, then the ratio of areas of M and N is equal to the ratio of areas of
M ′ and N ′.

§2. How to solve problems with the help of affine transformations

29.12. Through every vertex of a triangle two lines are drawn. The lines divide the
opposite side of the triangle into three equal parts. Prove that the diagonals connecting
opposite vertices of the hexagon formed by these lines intersect at one point.

29.13. On sides AB, BC and CD of parallelogram ABCD points K, L and M , respec-
tively, are taken. The points divide the sides in the same ratio. Let b, c, d be lines passing
through points B, C, D parallel to lines KL, KM , ML, respectively. Prove that lines b, c,
d pass through one point.

29.14. Given triangle ABC, let O be the intersection point of its medians and M , N
and P be points on sides AB, BC and CA, respectively, that divide these sides in the same
ratio (i.e., AM : MB = BN : NC = CP : PA = p : q). Prove that:

a) O is the intersection point of the medians of triangle MNP ;
b) O is the intersection point of the medians of the triangle formed by lines AN , BP

and CM .
29.15. In trapezoid ABCD with bases AD and BC, a line is drawn through point B

parallel to side CD and intersecting diagonal AC at point P ; through point C a line is drawn
parallel to AB and intersecting diagonal BD at Q. Prove that PQ is parallel to the bases
of the trapezoid.

29.16. In parallelogram ABCD, points A1, B1, C1, D1 lie on sides AB, BC, CD, DA,
respectively. On sides A1B1, B1C1, C1D1, D1A1 of quadrilateral A1B1C1D1 points A2, B2,
C2, D2, respectively, are taken. It is known that

AA1

BA1

=
BB1

CB1

=
CC1

DC1

=
DD1

AD
=

AD2

D1D2

=
D1C2

C1C2

=
C1B2

B1B2

=
B1A2

A1A2

.

Prove that A2B2C2D2 is a parallelogram with sides parallel to the sides of ABCD.
29.17. On sides AB, BC and AC of triangle ABC, points M , N and P , respectively,

are taken. Prove that:
a) if points M1, N1 and P1 are symmetric to points M , N and P through the midpoints

of the corresponding sides, then SMNP = SM1N1P1 .
b) if M1, N1 and P1 are points on sides AC, BA and CB, respectively, such that MM1 ‖

BC, NN1 ‖ CA and PP1 ‖ AB, then SMNP = SM1N1P1 .

Solutions

29.1. We have to prove that if A′, B′, C ′ are images of points A, B, C under the dilation
with respect to line l with coefficient k and point C lies on line AB, then point C ′ lies on line

A′B′. Let
−→
AC = t

−→
AB. Denote by A1, B1, C1 the projections of points A, B, C, respectively,

on line l and let

a =
−−→
A1A, b =

−−→
B1B, c =

−−→
C1C,

a′ =
−−→
A1A

′, b′ =
−−−→
B1B

′, c′ =
−−→
C1C

′,

x =
−−−→
A1B1, y =

−−−→
A1C1.
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Since the ratio of lengths of proportional vectors under the projection on line l is preserved,
then y = tx and y + (c − a) = t(y + (b − a)). By subtracting the first equality from the
second one we get (c − a) = t(b − a). By definition of a dilation a′ = ka, b′ = kb, c′ = kc;
hence,

−−→
A′C ′ = y + k(c − a) = tx + k(t(b − a)) = t(x + k(b − a)) = t

−−→
A′B′.

29.2. By definition, the images of lines are lines and from the property of an affine
transformation to be one-to-one it follows that the images of nonintersecting lines do not
intersect.

29.3. Let
−→
AB =

−−→
CD. First, consider the case when points A, B, C, D do not lie on

one line. Then ABCD is a parallelogram. The preceding problem implies that A1B1C1D1

is also a parallelogram; hence,
−−−→
A1B1 =

−−−→
C1D1.

Now, let points A, B, C, D lie on one line. Take points E and F that do not lie on this

line and such that
−→
EF =

−→
AB. Let E1 and F1 be their images. Then

−−−→
A1B1 =

−−−→
E1F1 =

−−−→
C1D1.

29.4. a) L(
−→
0 ) = L(

−→
AA) =

−−−−−−→
L(A)L(A) =

−→
0 .

b) L(
−→
AB +

−−→
BC) = L(

−→
AC) =

−−−−−−−→
L(A)L(C) =

−−−−−−−→
L(A)L(B) +

−−−−−−−→
L(B)L(C) =

L(
−→
AB) + L(

−−→
BC).

c) First, suppose k is an integer. Then

L(ka) = L(a + · · · + a) = L(a) + · · · + L(a) = kL(a).

Now, let k = m
n

be a rational number. Then

nL(ka) = L(nka) = L(ma) = mL(a);

hence,

L(ka) =
mL(a)

n
= kL(a).

Finally, if k is an irrational number, then there always exists a sequence kn (n ∈ N) of
rational numbers tending to k (for instance, the sequence of decimal approximations of k).
Since L is continuous,

L(ka) = L( lim
n→∞

kna) = lim
n→∞

knL(a) = kL(a).

29.5. By Problem 29.4 c) the condition q
−→
AC = p

−−→
CB implies that

q
−−→
A′C ′ = qL(

−→
AC) = L(q

−→
AC) = L(p

−−→
CB) = pL(

−−→
CB) = p

−−→
C ′B′.

29.6. a) Define the map L as follows. Let X be an arbitrary point. Since e1, e2 is
a basis, it follows that there exist the uniquely determined numbers x1 and x2 such that−−→
OX = x1e1 + x2e2. Assign to X point X ′ = L(X) such that

−−−→
O′X ′ = x1e

′
1 + x2e

′
2. Since e′

1,
e′

2 is also a basis, the obtained map is one-to-one. (The inverse map is similarly constructed.)
Let us prove that the image of any line AB under L is a line. Let A′ = L(A), B′ = L(B);

let a1, a2, and b1, b2 be the coordinates of points A and B, respectively, in the basis e1, e2,

i.e.,
−→
OA = a1e1 + a2e2,

−−→
OB = b1e1 + b2e2. Let us consider an arbitrary point C on line AB.
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Then
−→
AC = k

−→
AB for some k, i.e.,

−→
OC =

−→
OA + k(

−−→
OB −−→

OA) =

((1 − k)a1 + kb1)e1 + ((1 − k)a2 + kb2)e2.

Hence, if C ′ = L(C), then

−−→
O′C ′ = ((1 − k)a1 + kb1)e

′
1 + ((1 − k)a2 + kb2)e

′
2 =

−−→
O′A′ + k(

−−→
O′B′ −

−−→
O′A′),

i.e., point C ′ lies on line A′B′.

The uniqueness of L follows from the result of Problem 29.4. Indeed, L(
−−→
OX) = x1L(e1)+

x2L(e2), i.e., the image of X is uniquely determined by the images of vectors e1, e2 and point
O.

b) To prove it, it suffices to make use of the previous heading setting O = A, e1 =
−→
AB,

e2 =
−→
AC, O′ = A1, e′

1 =
−−−→
A1B1, e′

2 =
−−−→
A1C1.

c) Follows from heading b) and the fact that parallel lines turn into parallel lines.
29.7. Let M and N be arbitrary points not on line l. Denote by M0 and N0 their

projections to l and by M ′ and N ′ the images of M and N under L. Lines M0M and N0N
are parallel because both of them are perpendicular to l, i.e., there exists a number k such

that
−−−→
M0M = k

−−→
N0N . Then by Problem 29.4 c)

−−−→
M0M

′ = k
−−−→
N0N

′. Hence, the image of triangle

M0MM ′ under the parallel translation by vector
−−−→
M0N0 is homothetic with coefficient k to

triangle N0NN ′ and, therefore, lines MM ′ and NN ′ are parallel.
29.8. Since an affine map is uniquely determined by the images of vertices of any fixed

triangle (see Problem 29.6 b)), it suffices to prove that with the help of two dilations one
can get from any triangle an arbitrary triangle similar to any before given one, for instance,
to an isosceles right triangle. Let us prove this.

Let ABC be an arbitrary triangle, BN the bisector of the outer angle ∠B adjacent to
side BC. Then under the dilation with respect to BN with coefficient tan 45◦

tan ∠CBN
we get from

triangle ABC triangle A′B′C ′ with right angle ∠B′. With the help of a dilation with respect
to one of the legs of a right triangle one can always get from this triangle an isosceles right
triangle.

29.9. Let L be a given affine transformation, O an arbitrary point, T the shift by vector−−−−→
L(O)O and L1 = T◦L. Then O is a fixed point of L1. Among the points of the unit circle with

center O, select a point A for which the vector L(
−→
OA) is the longest. Let H be a rotational

homothety with center O that sends point L1(A) into A and let L2 = H ◦ L1 = H ◦ T ◦ L.
Then L2 is an affine transformation that preserves points O and A; hence, by Problem 29.4
c) it preserves all the other points of line OA and thanks to the choice of point A for all

points M we have |−−→OM | ≥ |L(
−−→
OM)|.

Let us prove (which will imply the statement of the problem) that L2 is a contraction
with respect to line OA. If L2 is the identity transformation, then it is a contraction with
coefficient 1, so let us assume that L2 is not the identity.

By Problem 29.9 all the lines of the form
−−−−−−→
ML2(M), where M is an arbitrary point not on

OA, are parallel to each other. Let
−−→
OB be the unit vector perpendicular to all these lines.
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Then B is a fixed point of L2 because otherwise we would have had

|−−−−−→OL2(B)| =
√

OB2 + BL2(B)2 > |OB|.
If B does not lie on line OA, then by Problem 29.6 b) transformation L2 is the identity. If
B lies on OA, then all the lines of the form ML2(M) are perpendicular to the fixed line of
transformation L2. With the help of Problem 29.4 c) it is not difficult to show that the map
with such a property is either a dilation or a contraction.

29.10. First, let us prove that an affine transformation L that sends a given circle into
itself sends diametrically opposite points into diametrically opposite ones. To this end let
us notice that the tangent to the circle at point A turns into the line that, thanks to the
property of L to be one-to-one, intersects with the circle at a (uniquely determined) point
L(A), i.e., is the tangent at point L(A). Therefore, if the tangents at points A and B are
parallel to each other (i.e., AB is a diameter), then the tangents at points L(A) and L(B)
are also parallel, i.e., L(A)L(B) is also a diameter.

Fix a diameter AB of the given circle. Since L(A)L(B) is also a diameter, there exists
a movement P of the plane which is either a rotation or a symmetry that sends A and B
into L(A) and L(B), respectively, and each of the arcs α and β into which points A and B
divide the given circle into the image of these arcs under L.

Let us prove that the map F = P−1◦L is the identity. Indeed, F (A) = A and F (B) = B;
hence, all points of line AB are fixed. Hence, if X is an arbitrary point of the circle, then the
tangent at X intersects line AB at the same place where the tangent at point X ′ = F (X)
does because the intersection point is fixed. Since X and X ′ lie on one and the same of the
two arcs α or β, it follows that X coincides with X ′. Thus, P−1 ◦ L = E, i.e., L = P .

29.11. Let a1 and a2 be two perpendicular lines. Since an affine transformation pre-
serves the ratio of the lengths of (the segments of the) parallel lines, the lengths of all the
segments parallel to one line are multiplied by the same coefficient. Denote by k1 and k2

these coefficients for lines a1 and a2. Let ϕ be the angle between the images of these lines.
Let us prove that the given affine transformation multiplies the areas of all polygons by k,
where k = k1k2 sin ϕ.

For rectangles with sides parallel to a1 and a2 and also for a right triangle with legs
parallel to a1 and a2 the statement is obvious. Any other triangle can be obtained by
cuttting off the rectangle with sides parallel to a1 and a2 several right triangles with legs
parallel to a1 and a2 as shown on Fig. 118 and, finally, by Problem 22.22 any polygon can
be cut into triangles.

Figure 260 (Sol. 29.11)

29.12. Since an affine transformation sends an arbitrary triangle into an equilateral one
(Problem 29.6 b)), the ratio of lengths of parallel segments are preserved (Problem 29.5). It
suffices to prove the statement of the problem for an equilateral triangle ABC. Let points
A1, A2, B1, B2, C1, C2 divide the sides of the triangle into equal parts and A′, B′, C ′ be
the midpoints of the sides (Fig. 119). Under the symmetry through AA′ line BB1 turns
into CC2 and BB2 into CC1. Since symmetric lines intersect on the axis of symmetry, AA′

contains a diagonal of the considered hexagon. Similarly, the remaining diagonals lie on BB′

and CC ′. It is clear that the medians AA′, BB′, CC ′ intersect at one point.
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Figure 161 (Sol. 29.12)

29.13. Problem 29.6 b) implies that an affine transformation sends an arbitrary parallel-
ogram into a square. Since this preserves the ratio of lengths of parallel segments (Problem
29.5), it suffices to prove the statement of the problem for the case when ABCD is a square.
Denote by P the intersection point of lines b and d. It suffices to prove that PC ‖ MK. Seg-
ment KL turns under the rotation through the angle of 90◦ about the center of square ABCD
into LM , hence, lines b and d which are parallel to these respective segments are perpendic-
ular; hence, P lies on the circle circumscribed about ABCD. Then ∠CPD = ∠CBD = 45◦.
Therefore, the angle between lines CP and b is equal to 45◦ but the angle between lines MK
and KL is also equal to 45◦ and b ‖ KL implying CP ‖ MK.

29.14. a) Let us consider an affine transformation that sends triangle ABC into a
equilateral triangle A′B′C ′. Let O′, M ′, N ′, P ′ be the images of points O, M , N , P . Under
the rotation through the angle of 120◦ about point O′ triangle M ′N ′P ′ turns into itself and,
therefore, this triangle is a equilateral one and O′ is the intersection point of its medians.
Since under an affine transformation any median turns into a median, O is the intersection
point of the medians of triangle MNP .

b) Solution is similar to the solution of heading a).
29.15. Let us consider an affine transformation that sends ABCD into an isosceles

trapezoid A′B′C ′D′. For such a transformation one can take the affine transformation that
sends triangle ADE, where E is the intersection point of AB and CD, into an isosceles
triangle. Then the symmetry through the midperpendicular to A′D′ sends point P ′ into
point Q′, i.e., lines P ′Q′ and A′D′ are parallel.

29.16. Any parallelogram ABCD can be translated by an affine transformation into a
square (for this we only have to transform triangle ABC into an isosceles right triangle).
Since the problem only deals with parallel lines and ratios of segments that lie on one line,
we may assume that ABCD is a square. Let us consider a rotation through an angle of
90◦ sending ABCD into itself. This rotation sends quadrilaterals A1B1C1D1 and A2B2C2D2

into themselves; hence, the quadrilaterals are also squares. We also have

tan ∠BA1B1 = BB1 : BA1 = A1D2 : A1A2 = tan ∠A1A2D2,

i.e., AB ‖ A2D2 (Fig. 120).
29.17. a) Since an affine transformation sends any triangle into a equilateral one, the

midpoints of the sides into the midpoints, the centrally symmetric points into centrally
symmetric and triangles of the same area into triangles of the same area (Problem 29.11),
it follows that we can assume that triangle ABC is an equilateral one with side a. Denote
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Figure 262 (Sol. 29.16)

the lengths of segments AM , BN , CP by p, q, r, respectively. Then

SABC − SMNP = SAMP + SBMN + SCNP =

1

2
sin 60◦ · (p(a − r) + q(a − p) + r(a − q)) =

1

2
sin 60◦ · (a(p + q + r) − (pq + qr + rp)).

Similarly,

SABC − SM1N1P1 =
1

2
sin 60◦ · (r(a − p) + p(a − q) + q(a − r)) =

1

2
sin 60◦ · (a(p + q + r) − (pq + qr + rp)).

b) By the same reasons as in heading a) let us assume that ABC is an equilateral triangle.
Let M2N2P2 be the image of triangle M1N1P1 under the rotation about the center of triangle
ABC through the angle of 120◦ in the direction from A to B (Fig. 121).

Figure 263 (Sol. 29.17)

Then AM2 = CM1 = BM . Similarly, BN2 = CN and CP2 = AP , i.e., points M2,
N2, P2 are symmetric to points M , N , P through the midpoints of the corresponding sides.
Therefore, this heading is reduced to heading a).





Chapter 30. PROJECTIVE TRANSFORMATIONS

§1. Projective transformations of the line

1. Let l1 and l2 be two lines on the plane, O a point that does not lie on any of these
lines. The central projection of line l1 to line l2 with center O is the map that to point A1

on line l1 assigns the intersection point of lines OA1 and l2.
2. Let l1 and l2 be two lines on the plane, l a line not parallel to either of the lines.

The parallel projection of l1 to l2 along l is the map that to point A1 of line l1 assigns the
intersection point of l2 with the line passing through A1 parallel to l.

3. A map P of line a to line b is called a projective one if it is the composition of central
or parallel projections, i.e., if there exist lines a0 = a, a1, . . . , an = b and maps Pi of the line
ai to ai+1 each of which is either a central or a parallel projection and P is the composition of
the maps Pi in some order. If b coincides with a, then P is called a projective transformation

of line a.
30.1. Prove that there exists a projective transformation that sends three given points

on one line into three given points on another line.
The cross ratio of a quadruple of points A, B, C, D lying on one line is the number

(ABCD) =
c − a

c − b
:
d − a

d − b
,

where a, b, c, d are the coordinates of points A, B, C, D, respectively. It is easy to verify
that the cross ratio does not depend on the choice of the coordinate system on the line. We
will also write

(ABCD) =
AC

BC
:

AD

BD

in the sence that AC
BC

(resp. AD
BD

) denotes the ratio of the lengths of these segments, if vectors
−→
AC and

−−→
BC (resp.

−−→
AD and

−−→
BD) are similarly directed or the ratio of the lengths of these

segments taken with minus sign, if these vectors are pointed in the opposite directions.
The double ratio of the quadruple of lines a, b, c, d passing through one point is the

number

(abcd) = ±sin(a, c)

sin(b, c)
:
sin(a, d)

sin(b, d)

whose sign is determined as follows: if one of the angles formed by lines a and b does not
intersect with one of the lines c or d (in this case we say that the pair of lines a and b does

not divide the pair of lines c and d) then (abcd) > 0; otherwise (abcd) < 0.
30.2. a) Given lines a, b, c, d passing through one point and line l that does not pass

through this point. Let A, B, C, D be intersection points of l with lines a, b, c, d, respectively.
Prove that (abcd) = (ABCD).

b) Prove that the double ratio of the quadruple of points is preserved under projective
transformations.

30.3. Prove that if (ABCX) = (ABCY ), then X = Y (all points are assumed to be
pairwise distinct except, perhaps, points X and Y , and lie on one line).

473
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30.4. Prove that any projective transformation of the line is uniquely determined by the
image of three arbitrary points.

30.5. Prove that any non-identity projective transformation of the line has not more
than two fixed points.

30.6. A map sends line a into line b and preserves the double ratio of any quadruple of
points. Prove that this map is a projective one.

30.7. Prove that transformation P of the real line is projective if and only if it can be
represented in the form

P (x) =
ax + b

cx + d
,

where a, b, c, d are numbers such that ad− bc 6= 0. (Such maps are called fractionally-linear

ones.)
30.8. Points A, B, C, D lie on one line. Prove that if (ABCD) = 1, then either A = B

or C = D.
30.9. Given line l, a circle and points M , N that lie on the circle and do not lie on l.

Consider map P of line l to itself,; let P be the composition of the projection of l to the
given circle from point M and the projection of the circle to l from point N . (If point X
lies on line l, then P (X) is the intersection of line NY with line l, where Y is the distinct
from M intersection point of line MX with the given circle.) Prove that P is a projective
transformation.

30.10. Given line l, a circle and point M that lies on the circle and does not lie on l, let
PM be the projection map of l to the given circle from point M (point X of line l is mapped
into the distinct from M intersection point of line XM with the circle), R the movement of
the plane that preserves the given circle (i.e., a rotation of the plane about the center of the
circle or the symmetry through a diameter). Prove that the composition P−1

M ◦ R ◦ PM is a
projective transformation.

Remark. If we assume that the given circle is identified with line l via a projection map
from point M , then the statement of the problem can be reformulated as follows: the map
of a circle to itself with the help of a movement of the plane is a projective transformation
of the line.

§2. Projective transformations of the plane

Let α1 and α2 be two planes in space, O a point that does not belong to any of these
planes. The central projection map of α1 to α2 with center O is the map that to point A1 of
plane α1 assigns the intersection point of OA1 with plane α2.

30.11. Prove that if planes α1 and α2 intersect, then the central projection map of α1

to α2 with center O determines a one-to-one correspondence of plane α1 with deleted line l1
onto plane α2 with deleted line l2, where l1 and l2 are the intersection lines of planes α1 and
α2, respectively, with planes passing through O and parallel to α1 and α2. On l1, the map
is not defined.

A line on which the central projection map is not defined is called the singular line of
the given projection map.

30.12. Prove that under a central projection a nonsingular line is projected to a line.
In order to define a central projection everywhere it is convenient to assume that in

addition to ordinary points every line has one more so-called infinite point sometimes denoted
by ∞. If two points are parallel, then we assume that their infinite points coincide; in other
words, parallel lines intersect at their infinite point.
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We will also assume that on every plane in addition to ordinary lines there is one more,
infinite line, which hosts all the infinite points of the lines of the plane. The infinite line
intersects with every ordinary line l lying in the same plane in the infinite point of l.

If we introduce infinite points and lines, then the central projection map of plane α1 to
plane α2 with center at point O is defined through(?) points of α1 and the singular line is
mapped into the infinite line of α2, namely, the image of point M of the singular line is the
infinite point of line OM ; this is the point at which the lines of plane α2 parallel to OM
intersect.

30.13. Prove that if together with the usual (finite) points and lines we consider infinite
ones, then

a) through any two points only one line passes;
b) any two lines lying in one plane intersect at one point;
c) a central projection map of one plane to another one is a one-to-one correspondence.

A map P of plane α to plane β is called a projective one if it is the composition of central
projections and affine transformations, i.e., if there exist planes α0 = α, α1, . . . , αn = β
and maps Pi of plane αi to αi+1 each of which is either a central projection or an affine
transformation and P is the composition of the Pi. If plane α coincides with β, map P is
called a projective transformation of α. The preimage of the infinite line will be called the
singular line of the given projective transformation.

30.14. a) Prove that a projective transformation P of the plane sending the infinite line
into the infinite line is an affine transformation.

b) Prove that if points A, B, C, D lie on a line parallel to the singular line of a projective
transformation P of plane α, then P (A)P (B) : P (C)P (D) = AB : CD.

c) Prove that if a projective transformation P sends parallel lines l1 and l2 into parallel
lines, then either P is affine or its singular line is parallel to l1 and l2.

d) Let P be a one-to-one transformation of the set of all finite and infinite points of the
plane, let P send every line into a line. Prove that P is a projective map.

30.15. Given points A, B, C, D no three of which lie on one line and points A1, B1, C1,
D1 with the same property.

a) Prove that there exists a projective transformation sending points A, B, C, D to
points A1, B1, C1, D1, respectively.

b) Prove that the transformation from heading a) is unique, i.e., any projective trans-
formation of the plane is determined by the images of four generic points (cf. Problem
30.4).

c) Prove statement of heading a) if points A, B, C lie on one line l and points A1, B1,
C1, D1 on one line l1.

d) Is transformation from heading c) unique?

In space, consider the unit sphere with center in the origin. Let N(0, 0, 1) be the sphere’s
north pole. The stereographic projection of the sphere to the plane is the map that to
every point M of the sphere assigns distinct from N intersection point of line MN with
plane Oxy. It is known (see, for example, Solid Problem 16.19 b)) that the stereographic
projection sends a circle on the sphere into a circle in plane. Make use of this fact while
solving the following two problems:

30.16. Givin a circle and a point inside it.
a) Prove that there exists a projective transformation that sends the given circle into a

circle and the given point into the center of the given circle’s image.
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b) Prove that if a projective transformation sends the given circle into a circle and point
M into the center of the given circle’s image, then the singular line of this transformation is
perpendicular to a diameter through M .

30.17. In plane, there are given a circle and a line that does not intersect the circle.
Prove that there exists a projective transformation sending the given circle into a circle and
the given line into the infinite line.

30.18. Given a circle and a chord in it. Prove that there exists a projective transfor-
mation that sends the given circle into a circle and the given chord into the diameter of the
given circle’s image.

30.19. Given circle S and point O inside it, consider all the projective maps that send
S into a circle and O into the center of the image of S. Prove that all such transformations
map one and the same line into the infinite line.

The preimage of the infinite line under the above transformations is called the polar line

of point O relative circle S.

30.20. A projective transformation sends a circle into itself so that its center is fixed.
Prove that this transformation is either a rotation or a symmetry.

30.21. Given point O and two parallel lines a and b. For every point M we perform the
following construction. Through M draw a line l not passing through O and intersecting
lines a and b. Denote the intersection points pf l with a and b by A and B, respectively, and
let M ′ be the intersection point of OM with the line parallel to OB and passing through A.

a) Prove that point M ′ does not depend on the choice of line l.
b) Prove that the transformation of the plane sending M into M ′ is a projective one.
30.22. Prove that the transformation of the coordinate plane that every point with

coordinates (x, y) sends into the point with coordinates ( 1
x
, y

x
) is a projective one.

(?)30.23. Let O be the center of a lens, π a plane passing through the optic axis a of
the lens, a and f the intersection lines of π with the plane of the lens and the focal plane,
respectively, (a ‖ f). In the school course of physics it is shown that if we neglect the lens,
then the image M ′ of point M that lies in plane π is constructed as follows, see Fig. 122.

Figure 264 (30.23)

Through point M draw an arbitrary line l; let A be the intersection point of lines a and
l, let B be the intersection point of f with the line passing through O parallel to l. Then
M ′ is defined as the intersection point of lines AB and OM .

Prove that the transformation of plane π assigning to every of its points its image is a
projective one.
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Thus, through a magnifying glass we can see the image of our world thanks to projective
transformations.

§3. Let us transform the given line into the infinite one

30.24. Prove that the locus of the intersection points of quadrilaterals ABCD whose
sides AB and CD belong to two given lines l1 and l2 and sides BC and AD intersect at a
given point P is a line passing through the intersection point Q of lines l1 and l2.

30.25. Let O be the intersection point of the diagonals of quadrilateral ABCD; let E
(resp. F ) be the intersection point of the continuations of sides AB and CD (resp. BC and
AD). Line EO intersects sides AD and BC at points K and L, respectively, and line FO
intersects sides AB and CD at points M and N , respectively. Prove that the intersection
point X of lines KN and LM lies on line EF .

30.26. Lines a, b, c intersect at one point O. In triangles A1B1C1 and A2B2C2, vertices
A1 and A2 lie on line a; B1 and B2 lie on line b; C1 and C2 lie on line c. Let A, B, C be the
intersection points of lines B1C1 and B2C2, C1A1 and C2A2, A1B1 and A2B2, respectively.
Prove that points A, B, C lie on one line (Desargue’s theorem.)

30.27. Points A, B, C lie on line l and points A1, B1, C1 on line l1. Prove that the
intersection points of lines AB1 and BA1, BC1 and CB1, CA1 and AC1 lie on one line
(Pappus’s theorem.)

30.28. Given convex quadrilateral ABCD. Let P , Q be the intersection points of the
continuations of the opposite sides AB and CD, AD and BC, respectively, R an arbitrary
point inside the quadrilateral. Let K, L, M be the intersection point of lines BC and PR,
AB and QR, AK and DR, respectively. Prove that points L, M and C lie on one line.

30.29. Given two triangles ABC and A1B1C1 so that lines AA1, BB1 and CC1 intersect
at one point O and lines AB1, BC1 and CA1 intersect at one point O1. Prove that lines AC1,
BA1 and CB1 also intersect at one point O2. (Theorem on doubly perspective triangles.)

30.30. Given two triangles ABC and A1B1C1 so that lines AA1, BB1 and CC1 intersect
at one point O, lines AA1, BC1 and CB1 intersect at one point O1 and lines AC1, BB1 and
CA1 intersect at one point O2, prove that lines AB1, BA1 and CC1 also intersect at one
point O3. (Theorem on triply perspective triangles.)

30.31. Prove that the orthocenters of four triangles formed by four lines lie on one line.
30.32. Given quadrilateral ABCD and line l. Denote by P , Q, R the intersection points

of lines AB and CD, AC and BD, BC and AD, respectively. Denote by P1, Q1, R1 the
midpoints of the segments which these pairs of lines cut off line l. Prove that lines PP1,
QQ1 and RR1 intersect at one point.

30.33. Given triangle ABC and line l. Denote by A1, B1, C1 the midpoints of the
segments cut off line l by angles ∠A, ∠B, ∠C and by A2, B2, C2 the intersection points of
lines AA1 and BC, BB1 and AC, CC1 and AB, respectively. Prove that points A2, B2, C2

lie on one line.
30.34. (Theorem on a complete quadrilateral.) Given four points A, B, C, D and the

intersection points P , Q, R of lines AB and CD, AD and BC, AC and BD, respectively;
the intersection points K and L of line QR with lines AB and CD, respectively. Prove that
(QRKL) = −1.

30.35. Is it possible to paint 1991 points of the plane red and 1991 points blue so that
any line passing through two points of distinct colour contains one more of coloured points?
(We assume that coloured points are distinct and do not belong to one line.)
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§4. Application of projective maps that preserve a circle

The main tools in the solution of problems of this section are the results of Problems
30.16 and 30.17.

30.36. Prove that the lines that connect the opposite tangent points of a circumscribed
quadrilateral pass through the intersection point of the diagonals of this quadrilateral.

30.37. Consider a triangle and the inscribed circle. Prove that the lines that connect
the triangle’s vertices with the tangent points of the opposite sides intersect at one point.

30.38. a) Through point P all secants of circle S are drawn. Find the locus of the
intersection points of the tangents to S drawn through the two intersection points of S with
every secant.

b) Through point P the secants AB and CD of circle S are drawn, where A, B, C, D
are the intersection points of the secants with the circle. Find the locus of the intersection
points of AC and BD.

30.39. Given circle S, line l, point M on S and not on l and point O not on S. Consider
a map P of line l which is the composition of the projection map of l to S from M , of S to
itself from O and S to l from M , i.e., for any point A point P (A) is the intersection point
of lines l and MC, where C is the distinct from B intersection point of S with line OB and
B is the distinct from A intersection point of S with line MA. Prove that P is a projective
map.

Remark. If we assume that a projection map from point M identifies circle S with line
l, then the statement of the problem can be reformulated as follows: every central projection
of a circle to itself is a projective transformation.

30.40. Consider disk S, point P outside S and line l passing through P and intersecting
the circle at points A and B. Denote the intersection point of the tangents to the disk at
points A and B by K.

a) Consider all the lines passing through P and intersecting AK and BK at points M
and N , respectively. Prove that the locus of the tangents to S drawn through M and N and
distinct from AK and BK is a line passing through K and having the empty intersection
with the interior of S.

b) Let us select various points R on the circle and draw the line that connects the distinct
from R intersection points of lines RK and RP with S. Prove that all the obtained lines
pass through one point and this point belongs to l.

30.41. An escribed circle of triangle ABC is tangent to side BC at point D and to the
extensions of sides AB and AC at points E and F , respectively. Let T be the intersection
point of lines BF and CE. Prove that points A, D and T lie on one line.

30.42. Let ABCDEF be a circumscribed hexagon. Prove that its diagonals AD, BE
and CF intersect at one point. (Brianchon’s theorem.)

30.43. Hexagon ABCDEF is inscribed in circle S. Prove that the intersection points
of lines AB and DE, BC and EF , CD and FA lie on one line. (Pascal’s theorem.)

30.44. Let O be the midpoint of chord AB of circle S, let MN and PQ be arbitrary
chords through O such that points P and N lie on one side of AB; let E and F be the
intersection points of chord AB with chords MP and NQ, respectively. Prove that O is the
midpoint of segment EF . (The butterfly problem.)

30.45. Points A, B, C and D lie on a circle, SA and SD are tangents to this circle, P
and Q are the intersection points of lines AB and CD, AC and BD, respectively. Prove
that points P , Q and S lie on line line.
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§5. Application of projective transformations of the line

30.46. On side AB of quadrilateral ABCD point M1 is taken. Let M2 be the projection
of M1 to line BC from D, let M3 be the projection of M2 to CD from A, M4 the projection
of M3 on DA from B, M5 the projection of M4 to AB from C, etc. Prove that M13 = M1

(hence, M14 = M2, M15 = M3, etc.).
30.47. Making use of projective transformations of the line prove the theorem on a

complete quadrilateral (Problem 30.34).
30.48. Making use of projective transformations of the line prove Pappus’s theorem

(Problem 30.27).
30.49. Making use of projective transformations of the line prove the butterfly problem

(Problem 30.44).
30.50. Points A, B, C, D, E, F lie on one circle. Prove that the intersection points of

lines AB and DE, BC and EF , CD and FA lie on one line. (Pascal’s theorem.)
30.51. Given triangle ABC and point T , let P and Q be the bases of perpendiculars

dropped from point T to lines AB and AC, respectively; let R and S be the bases of
perpendiculars dropped from point A to lines TC and TB, respectively. Prove that the
intersection point X of lines PR and QS lies on line BC.

§6. Application of projective transformations of the line in problems on
construction

30.52. Given a circle, a line, and points A, A′, B, B′, C, C ′, M on this line. By
Problems 30.1 and 30.3 there exists a unique projective transformation of the given line to
itself that maps points A, B, C into A′, B′, C ′, respectively. Denote this transformation by
P . Construct with the help of a ruler only a) point P (M); b) fixed points of map P . (J.
Steiner’s problem.)

The problem of constructing fixed points of a projective transformation is the key one
for this section in the sense that all the other problems can be reduced to it, cf. also remarks
after Problems 30.10 and 30.39.

30.53. Given two lines l1 and l2, two points A and B not on these lines, and point E
of line l2. Construct with a ruler and compass point X on l1 such that lines AX and BX
intercept on line l2 a segment a) of given length a; b) divisible in halves by E.

30.54. Points A and B lie on lines a and b, respectively, and point P does not lie on any
of these lines. With the help of a ruler and compass draw through P a line that intersects
lines a and b at points X and Y , respectively, so that the lengths of segments AX and BY
a) are of given ratio; b) have a given product.

30.55. With the help of a ruler and compass draw through a given point a line on which
three given lines intercept equal segments.

30.56. Consider a circle S, two chords AB and CD on it, and point E of chord CD.
Construct with a ruler and compass point X on S so that lines AX and BX intercept on
CD a segment a) of given length a; b) divided in halves by E.

30.57. a) Given line l, point P outside it, a given length, and a given angle α. Construct
with a ruler and compass segment XY on l of the given length and subtending an angle of
value α and with vertex in P .

b) Given two lines l1 and l2, points P and Q outside them, and given angles α and β.
Construct with the help of a ruler and compass point X on l1 and point Y on l2 such that
segment XY subtends an angle of value α with vertex in P and another angle equal to β
with vertex in Q.
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30.58. a) Given a circle, n points and n lines. Construct with the help of a ruler only an
n-gon whose sides pass through the given points and whose vertices lie on the given lines.

b) With the help of ruler only inscribe in the given circle an n-gon whose sides pass
through n given points.

c) With the help of a ruler and compass inscribe in a given circle a polygon certain sides
of which pass through the given points, certain other sides are parallel to the given lines and
the remaining sides are of prescribed lengths (about each side we have an information of one
of the above three types).

§7. Impossibility of construction with the help of a ruler only

30.59. Prove that with the help of a ruler only it is impossible to divide a given segment
in halves.

30.60. Given a circle on the plane, prove that its center is impossible to construct with
the help of a ruler only.

Solutions

30.1. Denote the given lines by l0 and l, the given points on l0 by A0, B0, C0 and the
given points on l by A, B, C. Let l1 be an arbitrary line not passing through A. Take an
arbitrary point O0 not on lines l0 and l1. Denote by P0 the central projection map of l0 to
l1 with center at O0 and by A1, B1, C1 the projections of points A0, B0, C0, respectively,
under P0.

Let l2 be an arbitrary line through point A not coinciding with l and not passing through
A1. Take point O1 on line AA1 and consider the central projection map P1 of l1 to l2 with
center at O1. Denote by A2, B2, C2 the projections of points A1, B1, C1, respectively, under
P1. Clearly, A2 coincides with A.

Finally, let P2 be the projection map of l2 to l which in the case when lines BB2 and
CC2 are not parallel is the central projection with center at the intersection point of these
lines; if lines BB2 and CC2 are parallel this is the parallel projection along either of these
lines.

The composition P2 ◦ P1 ◦ P0 is the required projective transformation.
30.2. a) Denote the intersection point of the four given lines by O; let H be the projection

of H on l and h = OH. Then

2SOAC = OA · OC sin(a, c) = h · AC,
2SOBC = OB · OC sin(b, c) = h · BC,
2SOAD = OA · OD sin(a, d) = h · AD,
2SOBD = OB · OD sin(b, d) = h · BD.

Dividing the first equality by the second one and the third one by the fourth one we get

OA sin(a, c)

OB sin(b, c)
=

AC

BC
,

OA sin(a, d)

OB sin(b, d)
=

AD

BD
.

Dividing the first of the obtained equalities by the second one we get |(ABCD)| = |(abcd)|.
To prove that the numbers (ABCD) and (abcd) are of the same sign, we can, for example,
write down all the possible ways to arrange points on the line (24 ways altogether) and verify
case by case that (ABCD) is positive if and only if the pair of lines a, b does not separate
the pair of lines c, d.

b) follows immediately from heading a).
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30.3. Let a, b, c, x, y be the coordinates of points A, B, C, X, Y , respectively. Then

x − a

x − b
:
c − a

c − b
=

y − a

y − b
:
c − a

c − b
.

Therefore, since all the points are distinct, (x − a)(y − b) = (x − b)(y − a). By simplifying
we get ax − bx = ay − by. Dividing this equality by a − b we get x = y.

30.4. Let the image of each of the three given points under one projective transformation
coincide with the image of this point under another projective transformation. Let us prove
then that the images of any other point under these transformations coincide. Let us denote
the images of the given points by A, B, C. Take an arbitrary point and denote by X and Y
its images under the given projective transformations. Then by Problem 30.2 (ABCX) =
(ABCY ) and, therefore, X = Y by Problem 30.3.

30.5. This problem is a corollary of the preceding one.
30.6. On line a, fix three distinct points. By Problem 30.1 there exists a projective

map P which maps these points in the same way as the given map. But in the solution
of Problem 30.4 we actually proved that any map that preserves the cross ratio is uniquely
determined by the images of three points. Therefore, the given map coincides with P .

30.7. First, let us show that the fractionally linear transformation

P (x) =
ax + b

cx + d
, ad − bc 6= 0

preserves the cross ratio. Indeed, let x1, x2, x3, x4 be arbitrary numbers and yi = P (xi).
Then

yi − yj =
axi + b

cxi + d
− axj + b

cxj + d
=

(ad − bc)(xi − xj)

(cxi + d)(cxj + d)
;

hence, (y1y2y3y4) = (x1x2x3x4).
In the solution of Problem 30.4 we have actually proved that if a transformation of the

line preserves the cross ratio, then it is uniquely determined by the images of three arbitrary
distinct points. By Problem 30.2 b) projective transformations preserve the cross ratio. It
remains to prove that for any two triples of pairwise distinct points x1, x2, x3 and y1, y2, y3

there exists a fractionally linear transformation P such that P (xi) = yi.
For this, in turn, it suffices to prove that for any three pairwise distinct points there exists

a fractionally linear transformation that sends them into points z1 = 0, z2 = 1, z3 = ∞.
Indeed, if P1 and P2 be fractionally linear transformations such that P1(xi) = zi and

P2(yi) = zi, then P−1
2 (P1(xi)) = yi. The inverse to a fractionally linear transformation is a

fractionally linear transformation itself because if y = ax+c
cx+d

, then x = dy−b
−cy+a

; the verification

of the fact that the composition of fractionally linear transformations is a fractionally linear
transformation is left for the reader.

Thus, we have to prove that if x1, x2, x3 are arbitrary distinct numbers, then there exist
numbers a, b, c, d such that ad − bc 6= 0 and

ax1 + b = 0, ax2 + b = cx2 + d, cx3 + d = 0.

Find b and d from the first and third equations and substitute the result into the third one;
we get

a(x2 − x1) = c(x2 − x3)

wherefrom we find the solution: a = (x2−x3), b = x1(x3−x2), c = (x2−x1), d = x3(x1−x2).
We, clearly, have ad − bc = (x1 − x2)(x2 − x3)(x3 − x1) 6= 0.

30.8. First solution. Let a, b, c, d be the coordinates of the given points. Then by
the hypothesis (c− a)(d− b) = (c− b)(d− a). After simplification we get cb + ad = ca + bd.
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Transfer everything to the left-hand side and factorize; we get (d− c)(b− a) = 0, i.e., either
a = b or c = d.

Second solution. Suppose that C 6= D, let us prove that in this case A = B. Consider
the central projection map of the given line to another line, let the projection send point D
into ∞. Let A′, B′, C ′ be the projections of points A, B, C, respectively. By Problem 30.2

(ABCD) = (A′B′C ′∞) = 1, i.e.,
−→
AC =

−−→
BC. But this means that A = B.

30.9. By Problem 30.6 it suffices to prove that the map P preserves the cross ratio.
Let A, B, C, D be arbitrary points on line l. Denote by A′, B′, C ′, D′ their respective
images under P and by a, b, c, d and a′, b′, c′, d′ the lines MA, MB, MC, MD and
NA′, NB′, NC ′, ND′, respectively. Then by Problem 30.2 a) we have (ABCD) = (abcd)
and (A′B′C ′D′) = (a′b′c′d′) and by the theorem on an inscribed angle ∠(a, c) = ∠(a′, c′),
∠(b, c) = ∠(b′, c′), etc.; hence, (abcd) = (a′b′c′d′).

30.10. Let N = R−1(M), m = R(l), PN be the projection map of l to the circle
from point N , Q the projection map of line m to l from point M . Then P−1

M ◦ R ◦ PM =
Q ◦ R ◦ P−1

N ◦ PM . But by the preceding problem the map P−1
N ◦ PM is a projective one.

30.11. Lines passing through O and parallel to plane α1 (resp. α2) intersect plane α2

(resp. α1) at points of line l2 (resp. l1). Therefore, if a point lies on one of the planes α1, α2

and does not lie on lines l1, l2, then its projection to another plane is well-defined. Clearly,
the distinct points have distinct images.

30.12. The central projection to plane α2 with center O sends line l into the intersection
of the plane passing through O and l with α2.

30.13. This problem is a direct corollary of the axioms of geometry and the definition
of infinite lines and points.

30.14. a) Problem 30.13 c) implies that if together with the ordinary (finite) points we
consider infinite ones, then P is a one-to-one correspondence. Under such an assumption the
infinite line is mapped to the infinite line. Therefore, the set of finite points is also mapped
one-to-one to the set of finite points. Since P sends lines into lines, P is an affine map.

b) Denote by l the line on which points A, B, C, D lie and by l0 the singular line of map
P . Take an arbitrary point O outside plane α and consider plane β that passes through line
l and is parallel to the plane passing through line l0 and point O. Let Q be the composition
of the central projection of α on β with center O with the subsequent rotation of the space
about axis l that sends β into α. The singular line of map Q is l0.

Therefore, the projective transformation R = P ◦ Q−1 of α sends the infinite line into
the infinite line and by heading a) is an affine transformation, in particular, it preserves the
ratio of segments that lie on line l. It only remains to notice that transformation Q preserves
the points of line l.

c) The fact that the images of parallel lines l1 and l2 are parallel lines means that the
infinite point A of these lines turns into an infinite point, i.e., A lies on the preimage l of
the infinite line. Therefore, either l is the infinite line and then by heading a) P is an affine
transformation or l is parallel to lines l1 and l2.

d) Denote by l∞ the infinite line. If P (l∞) = l∞, then P determines a one-to-one
transformation of the plane that sends every line into a line and, therefore, by definition is
an affine one.

Otherwise denote P (l∞) by a and consider an arbitrary projective transformation Q for
which a is the singular line. Denote Q ◦ P by R. Then R(l∞) = l∞ and, therefore, as was
shown above, R is an affine map. Hence, P = Q−1 ◦ R is a projective map.

30.15. a) It suffices to prove that points A, B, C, D can be transformed by a projective
transformation into vertices of a square. Let E and F be (perhaps, infinite) intersection
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points of line AB with line CD and BC with AD, respectively. If line EF is not infinite,
then there exists a central projection of plane ABC to a plane α for which EF is the singular
line. For the center of projection one may take an arbitrary point O outside plane ABC
and for plane α an arbitrary plane parallel to plane OEF and not coinciding with it. This
projection maps points A, B, C, D into the vertices of a parallelogram which can be now
transformed into a square with the help of an affine transformation.

If line EF is an infinite one, then ABCD is already a parallelogram.
b) Thanks to heading a) it suffices to consider the case when ABCD and A1B1C1D1 is

one and the same parallelogram. In this case its vertices are fixed and, therefore, two points
on an infinite line in which the extensions of the opposite sides of the parallelogram intersect
are also fixed. Hence, by Problem 30.14 a) the map should be an affine one and, therefore,
by Problem 20.6 the identity one.

c) Since with the help of a projection we can send lines l and l1 into the infinit line (see
the solution of heading a)), it suffices to prove that there exists an affine transformation that
maps every point O into a given point O1 and lines parallel to given lines a, b, c into lines
parallel to given lines a1, b1, c1, respectively.

We may assume that lines a, b, c pass through O and lines a1, b1, c1 pass through
O1. On c and c1, select arbitrary points C and C1, respectively, and draw through each
of them two lines a′, b′ and a′

1, b′1 parallel to lines a, b and a1, b1, respectively. Then the
affine transformation that sends the parallelogram bounded by lines a, a′, b, b′ into the
parallelogram bounded by lines a1, a′

1, b1, b′1 (see Problem 29.6 c)) is the desired one.
d) Not necessarily. The transformation from Problem 30.21 (as well as the identity

transformation) preserves point O and line a.
30.16. a) On the coordinate plane Oxz consider points O(0, 0), N(0, 1), E(1, 0). For an

arbitrary point M that lies on arc ⌣ NE of the unit circle (see Fig. 123), denote by P the
midpoint of segment EM and by M∗ and P ∗ the intersection points of lines NM and NP ,
respectively, with line OE.

Figure 265 (Sol. 30.16)

Let us prove that for an arbitrary number k > 2 we can select point M soy that M∗E :
P ∗E = k. Let A(a, b) be an arbitrary point on the plane, A∗(t, 0) the intersection point of
lines NA and OE, B(0, b) the projection of point A to line ON . Then

t =
A∗O

ON
=

AB

BN
=

a

1 − b
.

Therefore, if (x, z) are coordinates of point M , then points P , M∗, P ∗ have coordinates

P

(

x + 1

2
,
z

2

)

, M∗
(

x

1 − z
, 0

)

, P ∗
(

(x + 1)/2

1 − (z/2)
, 0

)

,
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respectively, and, therefore,

M∗E : P ∗E =

(

x

1 − z
− 1

)

:

(

x + 1

2 − z
− 1

)

=
x + z − 1

1 − z
:
x + z − 1

2 − z
=

2 − z

1 − z
.

Clearly, the solution of the equation 2−z
1−z

= k is z = k−2
k−1

and, if k > 2, then 0 < z < 1 and,

therefore, point M(
√

1 − z2, z) is the desired one.
Now, let us prove the main statement of the problem. Denote the given circle and

point inside it, respectively, by S and C. If point C is the center of S, then the identity
transformation is the desired projective transformation.

Therefore, let us assume that C is not the center. Denote by AB the diameter that
contains point C. Let, for definiteness, BC > CA. Set k = BA : AC. Then k > 2 and,
therefore, as was proved, we can place point M on the unit circle in plane Oxz so that
M∗E : P ∗E = k = BA : CA. Therefore, by a similarity transformation we can translate
circle S into a circle S1 constructed in plane Oxy with segment EM∗ as a diameter so that
the images of points A, B, C are E, M∗, P ∗, respectively.

The stereographic projection maps S1 into circle S2 on the unit sphere symmetric through
plane Oxz; hence, through line EM as well. Thus, EM is a diameter of S2 and the midpoint
P of EM is the center of S2.

Let α be the plane containing circle S2. Clearly, the central projection of plane Oxy to
plane α from the north pole of the unit sphere sends S1 into S2 and point P ∗ into the center
P of S2.

b) The diameter AB passing through M turns into a diameter. Therefore, the tangents
at points A and B turn into tangents. But if the parallel lines pass into parallel lines, then
the singular line is parallel to them (see Problem 30.14 c)).

30.17. On the coordinate plane Oxz consider points O(0, 0), N(0, 1), E(1, 0). For
an arbitrary point M on arc ⌣ NE of the unit circle denote by P the intersection of
segment EM with line z = 1. Clearly, by moving point M along arc NE we can make
the ratio EM : MP equal to an arbitrary number. Therefore, a similarity transformation
can send the given circle S into circle S1 constructed on segment EM as on diameter in
plane α perpendicular to Oxz so that the given line l turns into the line passing through P
perpendicularly to Oxz. Circle S1 lies on the unit sphere with the center at the origin and,
therefore, the stereographic projection sends S1 to circle S2 in plane Oxy. Thus, the central
projection of plane α to plane Oxy from N sends S1 to S2 and line l into the infinite line.

30.18. Let M be an arbitrary point on the given chord. By Problem 30.16 there exists
a projective transformation that sends the given circle into a circle S and point M into the
center of S. Since under a projective transformation a line turns into a line, the given chord
will turn into a diameter.

30.19. Let us pass through point O two arbitrary chords AC and BD. Let P and Q be
the intersection points of the extensions of opposite sides of quadrilateral ABCD. Consider
an arbitrary projective transformation that maps S into a circle, S1, and O into the center
of S1. It is clear that this transformation sends quadrilateral ABCD into a rectangle and,
therefore, it sends line PQ into the infinite line.

30.20. A projective transformation sends any line into a line and since the center is fixed,
every diameter turns into a diameter. Therefore, every infinite point — the intersection point
of the lines tangent to the circle in diametrically opposite points — turns into an infinite
point. Therefore, by Problem 30.14 a) the given transformation is an affine one and by
Problem 29.12 it is either a rotation or a symmetry.

30.21. a) Point M ′ lies on line OM and, therefore, its position is uniquely determined
by the ratio MO : OM ′. But since triangles MBO and MAM ′ are similar, MO : OM ′ =
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MB : BA and the latter relation does not depend on the choice of line l due to Thales’
theorem.

b) First solution. If we extend the given transformation (let us denote it by P ) by
defining it at point O setting P (O) = O, then, as is easy to verify, P determines a one-
to-one transformation of the set of all finite and infinite points of the plane into itself. (In
order to construct point M from point M ′ we have to take an arbitrary point A on line a
and draw lines AM ′, OB so that it is parallel to AM ′, and AB.) It is clear that every line
passing through O turns into itself. Every line l not passing through O turns into the line
parallel to OB and passing through M . Now, it only remains to make use of Problem 30.14
c).

Second solution (sketch). Denote the given plane by π and let π′ = R(π), where R is
a rotation of the space about axis a. Denote R(O) by O′ and let P be the projection map of
plane π to plane π′ from the intersection point of line OO′ with the plane passing through
b parallel to π′. Then R−1 ◦ P coincides (prove it on your own) with the transformation
mentioned in the formulation of the problem.

30.22. First solution. Denote the given transformation by P . Let us extend it to
points of the line x = 0 and infinite points by setting P (0, k) = Mk, P (Mk) = (0, k), where
Mk is an infinite point on the line y = kx. It is easy to see that the map P extended in this
way is a one-to-one correspondence.

Let us prove that under P every line turns into a line. Indeed, the line x = 0 and the
infinite line turn into each other. Let ax+ by + c = 0 be an arbitrary other line (i.e., either b
or c is nonzero). Since P ◦P = E, the image of any line coincides with its preimage. Clearly,
point P (x, y) lies on the considered line if and only if a

x
+ by

x
+ c = 0, i.e., cx + by + a = 0.

It remains to make use of Problem 30.14 d).
Second solution (sketch). Denote lines x = 1 and x = 0 by a and b, respectively, and

point (−1, 0) by O. Then the given transformation coincides with the transformation from
the preceding problem.

30.23. If we denote line f by b, then the transformation mentioned in this problem is
the inverse to the transformation of Problem 30.21.

30.24. Consider a projective transformation for which line PQ is the singular one. The
images l′1 and l′2 of lines l1 and l2 under this transformation are parallel and the images of
the considered quadrilaterals are parallelograms two sides of which lie on lines l′1 and l′2 and
the other two sides are parallel to a fixed line (the infinite point of this line is the image
of point P ). It is clear that the locus of the intersection points of the diagonals of such
parallelograms is the line equidistant from l′1 and l′2.

30.25. Let us make a projective transformation whose singular line is EF . Then quadri-
lateral ABCD turns into a parallelogram and lines KL and MN into lines parallel to the
sides of the parallelogram and passing through the intersection point of its diagonals, i.e.,
into the midlines. Therefore, the images of points K, L, M , N are the midpoints of the
parallelogram and, therefore, the images of lines KN and LM are parallel, i.e., point X
turns into an infinite point and, therefore, X lies on the singular line EF .

30.26. Let us make the projective transformation with singular line AB. The images
of points under this transformation will be denoted by primed letters. Let us consider a
homothety with center at point O′ (or a parallel translation if O′ is an infinite point) that
sends C ′

1 to C ′
2. Under this homothety segment B′

1C
′
1 turns into segment B′

2C
′
2 because

B′
1C

′
1 ‖ B′

2C
′
2. Similarly, C ′

1A
′
1 turns to C ′

2A
′
2. Therefore, the corresponding sides of triangles

A′
1B

′
1C

′
1 and A′

2B
′
2C

′
2 are parallel, i.e., all three points A′, B′, C ′ lie on the infinite line.
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30.27. Let us consider the projective transformation whose singular line passes through
the intersection points of lines AB1 and BA1, BC1 and CB1 and denote by A′, B′, . . . the
images of points A, B, . . . . Then A′B′

1 ‖ B′A′
1, B′C ′

1 ‖ C ′B′
1 and we have to prove that

C ′A′
1 ‖ A′C ′

1 (see Problem 1.12 a)).
30.28. As a result of the projective transformation with singular line PQ the problem

is reduced to Problem 4.54.
30.29. This problem is a reformulation of the preceding one. Indeed, suppose that the

pair of lines OO1 and OB separates the pair of lines OA and OC and the pair of lines OO1

and O1B separates the pair of lines O1A and O1C (consider on your own in a similar way
the remaining ways of disposition of these lines). Therefore, if we redenote points A1, B,
B1, C1, O, O1 and the intersection point of lines AB1 and CC1 by D, R, L, K, Q, P and B,
respectively, then the preceding problem implies that the needed lines pass through point
M .

30.30. Let us consider the projective transformation with singular line O1O2 and denote
by A′, B′, . . . the images of points A, B, . . . . Then A′C ′

1 ‖ C ′
1A

′
1 ‖ B′B′

1, B′C ′
1 ‖ C ′B′

1 ‖
A′A′

1. Let us, for definiteness sake, assume that point C lies inside angle ∠A′O′B′ (the
remaining cases can be reduced to this one after a renotation). Making, if necessary, an affine
transformation we can assume that the parallelogram O′A′C ′

1B
′ is a square and, therefore,

O′A′
1C

′B′
1 is also a square and the diagonals O′C ′

1 and O′C ′ of these squares lie on one line.
It remains to make use of the symmetry through this line.

30.31. It suffices to prove that the orthocenters of each triple of triangles formed by
the given lines lie on one line. Select some three triangles. It is easy to see that one of the
given lines (denoted by l) is such that one of the sides of each of the chosen triangles lies on
l. Denote the remaining lines by a, b, c and let A, B, C, respectively, be their intersection
points with l.

Denote by l1 the infinite line and by A1 (resp. B1, C1) the infinite points of the lines
perpendicular to a (resp. b, c). Then the fact that the orthocenters of the three selected
triangles lie on one line is a direct corollary of Pappus’s theorem (Problem 30.27).

30.32. Perform a projective transformation with singular line parallel to l and passing
through the intersection point of lines PP1 and QQ1; next, perform an affine transformation
that makes the images of lines l and PP1 perpendicular to each other. We may assume that
lines PP1 and QQ1 are perpendicular to line l and our problem is to prove that line RR1 is
also perpendicular to l (points P1, Q1, R1 are the midpoints of the corresponding segments
because these segments are parallel to the singular line; see Problem 30.14 b)). Segment
PP1 is both a median and a hight, hence, a bisector in the triangle formed by lines l, AB
and CD.

Similarly, QQ1 is a bisector in the triangle formed by lines l, AC and BD. This and the
fact that PP1 ‖ QQ1 imply that ∠BAC = ∠BDC. It follows that quadrilateral ABCD is
an inscribed one and ∠ADB = ∠ACB. Denote the points at which l intersects lines AC
and BD by M and N , respectively (Fig. 124). Then the angle between l and AD is equal
to ∠ADB − ∠QNM = ∠ACB − ∠QMN , i.e., it is equal to the angle between l and BC.
It follows that the triangle bounded by lines l, AD and BC is an isosceles one and segment
RR1 which is its median is also its hight, i.e., it is perpendicular to line l, as required.

30.33. Perform a projective transformation with singular line parallel to l and passing
through point A. We may assume that point A is infinite, i.e., lines AB and AC are
parallel. Then by Problem 30.14 b) points A1, B1, C1 are, as earlier, the midpoints of the
corresponding segments because these segments lie on the line parallel to the singular one.
Two triangles formed by lines l, AB, BC and l, AC, BC are homothetic and, therefore, lines
BB1 and CC1, which are medians of these triangles, are parallel. Therefore, quadrilateral
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Figure 266 (Sol. 30.32)

BB2CC2 is a parallelogram because its opposite sides are parallel. It remains to notice that
point A2 is the midpoint of diagonal BC of this parallelogram and, therefore, it is also the
midpoint of diagonal B2C2.

30.34. Let us make the projective transformation whose singular line is line PQ. De-
note by A′, B′, . . . the images of points A, B, . . . . Then A′B′C ′D′ is a parallelogram, R′

the intersection point of its diagonals, Q′ is the infinite point of line Q′R′, K ′ and L′ the
intersection points of the sides of the parallelogram on line Q′R′. Clearly, points K ′ and L′

are symmetric through point R′. Hence,

(Q′R′K ′L′) =
Q′K ′

Q′L′ :
R′K ′

R′L′ = 1 :
R′K ′

R′L′ = −1.

It remains to notice that (QRKL) = (Q′R′K ′L′) by Problem 30.2 b).
30.35. Answer: It is possible. Indeed, consider the vertices of a regular 1991-gon (red

points) and points at which the extensions of the sides of this polygon intersect the infinite
line (blue points). This set of points has the required properties. Indeed, for any regular
n-gon, where n is odd, the line passing through its vertex and parallel to one of the sides
passes through one more vertex. Any given finite set of points can be transformed by a
projective transformation into a set of finite (i.e., not infinite) points.

30.36. Let us make a projective transformation that sends the circle inscribed into the
quadrilateral into a circle S and the intersection point of the lines connecting the opposite
tangent points into the center of S, cf. Problem 30.16 a). The statement of the problem
now follows from the fact that the obtained quadrilateral is symmetric with respect to the
center of S.

30.37. Let us make a projective transformation that sends the inscribed circle into a
circle S and the intersection point of two of the three lines under consideration into the
center of S, cf. Problem 30.16 a). Then the images of these two lines are simultaneously
bisectors and hights of the image of the given triangle and, therefore, this triangle is an
equilateral one. For an equilateral triangle the statement of the problem is obvious.

30.38. Let us consider, separately, the following two cases.
1) Point P lies outside S. Let us make the projective transformation that sends circle S

into circle S1 and point P into ∞ (see Problem 30.17), i.e., the images of all lines passing
through P are parallel to each other. Then in heading b) the image of the locus to be found
is line l, their common perpendicular passing through the center of S1, and in heading a)
the line l with the diameter of S1 deleted.
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To prove this, we have to make use of the symmetry through line l. Therefore, the locus
itself is: in heading b), the line passing through the tangent points of S with the lines drawn
through point P and in heading a), the part of this line lying outside S.

2) Point P lies inside S. Let us make a projective transformation that sends circle S into
circle S1 and point P into its center, cf. Problem 30.16 a). Then the image of the locus to
be found in both headings is the infinite line. Therefore, the locus itself is a line.

The obtained line coincides for both headings with the polar line of point P relative to
S, cf. Problem 30.19.

30.39. Denote by m the line which is the locus to be found in Problem 30.38 b) and by
N the distinct from M intersection point of S with line OM . Denote by Q the composition
of the projection of l to S from M and S to M from N . By Problem 30.9 this composition
is a projective map.

Let us prove that P is the composition of Q with the projection of m to l from M . Let
A be an arbitrary point on l, B its projection to S from M , C the projection of B to S from
O, D the intersection point of lines BN and CM . By Problem 30.38 b) point D lies on line
m, i.e., D = Q(A). Clearly, P (A) is the projection of D to l from M .

30.40. Both headings of the problem become obvious after a projective transformation
that sends circle S into a circle and line KP into the infinite line, cf. Problem 30.17. The
answer is as follows:

a) The locus to be found lies on the line equidistant from the images of lines AK and
BK.

b) The point to be found is the center of the image of S.
30.41. Let A′, B′, . . . be the images of points A, B, . . . under the projective transforma-

tion that sends an escribed circle of triangle ABC into circle S, and chord EF into a diameter
of S (see Problem 30.18). Then A′ is the infinite point of lines perpendicular to diameter
E ′F ′ and we have to prove that line D′T ′ contains this point, i.e., is also perpendicular to
E ′F ′.

Since △T ′B′E ′ ∼ △T ′F ′C ′, it follows that C ′T ′ : T ′E ′ = C ′F ′ : B′E ′. But C ′D′ = C ′F ′

and B′D′ = B′E ′ as tangents drawn from one point; hence, C ′T ′ : T ′E ′ = C ′D′ : D′B′, i.e.,
D′T ′ ‖ B′E ′.

30.42. By Problem 30.16 a) it suffices to consider the case when diagonals AD and BE
pass through the center of the circle. It remains to make use of the result of Problem 6.83
for n = 3.

30.43. Consider the projective transformation that sends circle S into a circle and the
intersection points of lines AB and DE, BC and EF into infinite points (see Problem 29.17).
Our problem is reduced to Problem 2.11.

30.44. Consider a projective transformation that sends circle S into circle S1 and point
O into the center O′ of S1, cf. Problem 30.16 a). Let A′, B′, . . . be the images of points
A, B, . . . . Then A′B′, M ′N ′ and P ′Q′ are diameters. Therefore, the central symmetry
through O′ sends point E ′ into F ′, i.e., O′ is the midpoint of segment E ′F ′. Since chord AB
is perpendicular to the diameter passing through O, Problem 30.16 b) implies that AB is
parallel to the singular line. Therefore, by Problem 30.14 b) the ratio of the lengths of the
segments that lie on line AB is preserved and, therefore, O is the midpoint of segment EF .

30.45. Let us consider the projective transformation that maps the given circle into
circle S ′ and segment AD into a diameter of S ′ (see Problem 30.18). Let A′, B′, . . . be the
images of A, B, . . . . Then S turns into the infinite point S ′ of lines perpendicular to line
A′D′. But A′C ′ and B′D′ are hights in △A′D′P ′ and, therefore, Q′ is the orthocenter of this
triangle. Therefore, line P ′Q′ is also a hight; hence, it passes through point S ′.
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30.46. By Problem 30.15 it suffices to consider only the case when ABCD is a square.
We have to prove that the composition of projections described in the formulation of the
problem is the identity transformation. By Problem 30.4 a projective transformation is the
identity if it has three distinct fixed points. It is not difficult to verify that points A, B and
the infinite point of line AB are fixed for this composition.

30.47. Under the projection of line QR from point A to line CD points Q, R, K, L are
mapped into points D, C, P , L, respectively. Therefore, by Problem 30.2 b) (QRKL) =
(DCPL). Similarly, by projecting line CD to line QR from point B we get (DCPL) =
(RQKL); hence, (QRKL) = (RQKL). On the other hand,

(RQKL) =
RK

RL
:
QK

QL
=

(

QK

QL
:
RK

RL

)−1

= (QRKL)−1.

These two equalities imply that (QRKL)2 = 1, i.e., either (QRKL) = 1 or (QRKL) =
−1. But by Problem 30.8 the cross ratio of distinct points cannot be equal to one.

30.48. Denote the intersection points of lines AB1 and BA1, BC1 and CB1, CA1 and
AC1 by P , Q, R, respectively, and the intersection point of lines PQ and CA1 by R1. We
have to prove that points R and R1 coincide. Let D be the intersection point of AB1 and
CA1. Let us consider the composition of projections: of line CA1 to line l1 from point A, of
l1 to CB1 from B, and of CB1 to CA1 from P . It is easy to see that the obtained projective
transformation of line CA1 fixes points C, D and A1 and sends R into R1. But by Problem
30.5 a projective transformation with three distinct fixed points is the identity one. Hence,
R1 = R.

30.49. Let F ′ be the point symmetric to F through O. We have to prove that F ′ = F .
By Problem 30.9 the composition of the projection of line AB to circle S from point M
followed by the projection of S back to AB from Q is a projective transformation of line
AB. Consider the composition of this transformation with the symmetry through point
O. This composition sends points A, B, O, E to B, A, F ′, O, respectively. Therefore, by
Problem 30.2 b)

(ABOE) = (BAF ′O).

On the other hand, it is clear that

(BAF ′O) =
BF ′

AF ′ :
BO

AO
=

AO

BO
:

AF ′

BF ′ = (ABOF ′)

i.e., (ABOE) = (ABOF ′); hence, by Problem 30.3, E = F ′.
(?)30.50. Denote the intersection points of lines AB and DE, BC and EF , CD and

FA by P , Q, R, respectively, and the intersection point of lines PQ and CD by R′. We
have to prove that points R and R′ coincide. Let G be the intersection point of AB and
CD. Denote the composition of the projection of line CD on the given circle from point A
with the projection of circle $ to line BC from point E.

By Problem 30.9 this composition is a projective map. It is easy to see that its compo-
sition with the projection of BC to CD from point P fixes points C, D and G and sends
point R to R′. But by Problem 30.5 a projective transformation with three fixed points is
the identity one. Hence, R′ = R.

30.51. Since angles ∠APT , ∠ART , ∠AST and ∠AQT are right ones, points A, P , R,
T , S, Q lie on the circle constructed on segment AT as on diameter. Hence, by Pascal’s
theorem (Problem 30.50) points B, C and X lie on one line.

30.52. Denote the given line and circle by l and S, respectively. Let O be an arbitrary
point of the given circle and let A1, A′

1, B1, B′
1, C1, C ′

1 be the images of points A, A′, B, B′,
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C, C ′ under the projection map of l to S from point O, i.e., A1 (resp. A′
1, B1, . . . ) is the

distinct from O intersection point of line AO (resp. A′O, BO, . . . ) with circle S.
Denote by B2 the intersection point of lines A′

1B1 and A1B
′
1 and by C2 the intersection

point of lines A′
1C1 and A1C

′
1. Let P1 be the composition of the projection of line l to circle S

from point O with the projection of S to line B2C2 from point A′
1; let P2 be the composition

of the projection of B2C2 to S from point A1 with the projection of S to l from point O.
Then by Problem 30.9 transformations P1 and P2 are projective ones and their composition
sends points A, B, C to A′, B′, C ′, respectively.

It is clear that all the considered points can be constructed with the help of a ruler (in
the same order as they were introduced).

a) Let M1 be the distinct from O intersection point of line MO with circle S; M2 = P1(M)
the intersection point of lines A′

1M1 and B2C2; M3 the distinct from A1 intersection point
of line M2A1 with circle S; P (M) = P2(P1(M)) the intersection point of lines l and OM3.

b) Let M1 and N1 be the intersection points of circle S with line B2C2. Then the fixed
points of transformation P are the intersection points of lines OM1 and ON1 with line l.

30.53. a) The point X to be found is the fixed point of the composition of the projection
of l1 to l2 from point A, the translation along line l2 at distance a and the projection of l2
to l1 from point B. The fixed point of this projective map is constructed in Problem 30.52.

b) Replace the shift from the solution of heading a) with the central symmetry with
respect to E.

30.54. a) Denote by k the number to which the ratio AX
BY

should be equal to. Consider
the projective transformation of line a which is the composition of the projection of a to line
b from point P , the movement of the plane that sends b to a and B to A and, finally, the
homothety with center A and coefficient k. The required point X is the fixed point of this
transformation. The construction of point Y is obvious.

b) Denote by k the number to which the product AX · BY should equal to and by Q
the intersection point of the lines passing through points A and B parallel to lines b and a,
respectively; let p = AQ ·BQ. Consider the projective transformation of line a which is the
composition of the projection of a to line b from point P , projection of b to a from Q and
the homothety with center A and coefficient k

p
.

Let X be the fixed point of this transformation, Y its image under the first projection
and X1 the image of Y under the second projection. Let us prove that line XY is the desired
one. Indeed, since △AQX1 ∼ △BY Q, it follows that

AX1 · BY = AQ · BQ = p

and, therefore,

AX · BY =
k

p
· AX1 · BY = k.

30.55. Let P be the given point; A, B, C the points of pairwise intersections of the
given lines a, b, c; let X, Y , Z be the intersection points of the given lines with line l to be
found (Fig. 125).

By the hypothesis XZ = ZY . Let T be the intersection point of line c with the line
passing through X parallel to b. Clearly, XT = AY . Since △XTB ∼ △CAB, it follows
that XB : XT = CB : CA which implies BX : Y A = CB : CA, i.e., the ratio BX : Y A is
known. Thus, our problem is reduced to Problem 30.54 a).

30.56. a) By Problem 30.9 the composition of the projection of CD on S from A with
the projection of S on CD from B is a projective transformation of line CD. Let M be
a fixed point of the composition of this transformation with the shift along line CD by
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Figure 267 (Sol. 30.55)

distance a. Then the projection of M on S from A is the desired point. The fixed point of
any projective transformation is constructed in Problem 30.52.

b) In the solution of heading a) replace the shift by the central symmetry through E.
30.57. a) Let us draw an arbitrary circle S through point P . By Problem 30.10 the

composition of the projection of l to S from P , the rotation about the center of S through
an angle of 2α and the projection of S to l from P is a projective transformation of line
l. Then (by the theorem on an escribed angle) the fixed point of the composition of this
transformation with the shift along line CD by given distance XY is the desired point. The
fixed point of any projective transformation is constructed in Problem 30.52.

b) Let us construct arbitrary circles S1 and S2 passing through points P and Q, respec-
tively. Consider the composition of projection of l1 to S1 from P , the rotation about the
center of S1 through an angle of 2α and the projection of S1 to l2 from P . By Problem 30.10
this composition is a projective map. Similarly, the composition of the projection of l2 to
S2 from Q, the rotation about the center of S2 through an angle of 2β and projection of S2

to l1 from Q is also a projective map. By the theorem on an escribed angle the fixed point
of the composition of these maps is the desired point X and in order to construct it we can
make use of Problem 30.52.

30.58. a) Denote the given points by M1, . . . , Mn and the given lines by l1, . . . , ln. A
vertex of the polygon to be found is the fixed point of the projective transformation of line
l1 which is the composition of projections of l1 to l2 from M1, l2 to l3 from M2, . . . , ln to l1
from Mn. The fixed point of a projective transformation is constructed in Problem 30.52.

b) Select an arbitrary point on a given circle and with the help of projection from the
given point let us identify the given circle with line l. By Problem 30.39 the central projecting
of the circle to itself is a projective transformation of line l under this identification. Clearly,
a vertex of the desired polygon is the fixed point of the composition of consecutive projections
of the given circle to itself from given points. The fixed point of a projective transformation
is constructed in Problem 30.52.

c) In the solution of heading b) certain central projections should be replaced by either
rotations about the center of the circle if the corresponding side is of the given length or by
symmetries if the corresponding side has the prescribed direction (the axis of the symmetry
should be the diameter perpendicular to the given direction).

30.59. Suppose that we managed to find the required construction, i.e., to write an
instruction the result of fulfilment of which is always the midpoint of the given segment.
Let us perform this construction and consider the projective transformation that fixes the
endpoints of the given segment and sends the midpoint to some other point. We can select
this transformation so that the singular line would not pass through neither of the points
obtained in the course of intermediate constructions.
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Let us perform our imaginary procedure once again but now every time that we will
encounter in the instruction words “take an arbitrary point (resp. line)” we shall take the
image of the point (resp. line) that was taken in the course of the first construction.

Since a projective transformation sends any line into a line and the intersection of lines
into the intersection of their images and due to the choice of the projective transformation
this intersection is always a finite point, it follows that at each step of the second construction
we obtain the image of the result of the first construction and, therefore, we will finally get
not the midpoint of the interval but its image instead. Contradiction.

Remark. We have, actually, proved the following statement: if there exists a projective
transformation that sends each of the objects A1, . . . , An into themselves and does not send
an object B into itself, then it is impossible to construct object B from objects A1, . . . , An

with the help of a ruler only.

30.60. The statement of the problem follows directly from Remark 30.59 above and from
Problem 30.16 a).
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(ABCD), see cross-ratio, 473
(abcd), see double ratio, 473
Hk

O, 359
R

ϕ
O, 345

SA, 327
SO, 345
Sl, 345
Ta, 327, 345
∞, 474

basic set, 400
moment of inertia, 307
principle, Dirichlet, 385
principle, pigeonhole, 385

affine transformation, 465
angle between a line and a circle, 450
angle between circles, 450
angle between two intersecting circles, 57
angle, Brokar, 110
angle, oriented, 33, 289
angle, right, 188
Apollonius’ problem, 450
area, oriented, 293
axis of similarity , 363
axis of the symmetry, 335
axis, radical, 63

barycentric coordinates, 310
base line, 377
bounding line, 433
Brachmagupta, 185
Brakhmagupta, 102
Brianchon’s theorem, 64, 478
Brokar’s angle, 110
Brokar’s point, 110
butterfly problem, 478

cardinality, 401
Carnot’s formula, 172
center of a regular polygon, 137
center of homothety, 359
center of mass, 307
center of symmetry, 327
center, radical, 64
center, similarity , 363

central projection, 473
central projection map, 474
central symmetry, 327
Ceva’s theorem, 106
circle of inversion, 449
circle of nine points, 109
circle, circumscribed, 99
circle, escribed, 99
circle, inscribed, 99
circle, similarity , 363
circle, similarity of a triangle, 364
circumscribed circle, 99
complete quadrilateral, 477
constant point of a triangle, 364
constant point of similar figures, 364
constant triangle of similar figures, 364
contraction, 465
convex hull, 207, 377
convex polygon, 397
correspondent line, 363
correspondent point, 363
correspondent segment, 363
counterexample, 438
crescents, 57
cross ratio, 473

degree of point, 63
Desargue’s theorem, 477
Desargues’s theorem, 105
diameter, 439
dilation, 465
Dirichlet’s principle, 385
double ratio, 473
doubly perspective triangles, 477

escribed circle, 99
Euler’s formula, 411
Euler’s line, 109

Feuerbach’s theorem, 452
formula, Euler, 411
formula, Heron, 271, 272
formula, Pick, 425
fractionally-linear map, 474

Gauss line, 84

493



494 INDEX

Helly’s theorem, 398
Heron’s formula, 271, 272
homothety, 359
homothety, the center of, 359
Hyppocratus, 57
Hyppocratus’ crescents, 57

inequality, Ptolmy’s, 210
inequality, triangle, 205
inertia, 307, 309
infinite line, 475
infinite point, 474
inner product, 289
inscribed circle, 99
invariant, 409
inversion, 449
inversion, circle of, 449
isogonally conjugate point, 107
isotomically conjugate point, 106

lattice, 425
Lemoine’s point, 111
length of a curve, 303
Lindemann, 57
line, base , 377
line, bounding, 433
line, correspondent, 363
line, Euler, 109
line, Gauss , 84
line, infinite, 475
line, polar, 61, 476
line, Simson, 107
line, Simson, of the inscribed quadrilateral, 108
line, singular, 475
line, singular , 474
locus, 169

map, central projection, 474
map, fractionally-linear, 474
map, projective, 473
mean arithmetic, 212
mean geometric, 212
Menelaus’s theorem, 106
Michel’s point, 40
Minkowski’s theorem, 425
moment of inertia, 309
Morlie’s theorem, 104
movement, 337
movement, orientation inverting, 337
movement, orientation preserving, 337

node, 425

oriented angle, 33

Pappus’ theorem, 105
Pappus’s theorem, 477
parallel projection, 473

parallel translation, 319
Pascal’s theorem, 145, 478, 479
pedal triangle, 108
Pick’s formula, 425
pigeonhole principle, 385
point, Brokar, 110
point, constant of a triangle, 364
point, constant of similar figures, 364
point, correspondent, 363
point, infinite, 474
point, isogonally conjugate with respect to a tri-

angle, 107
point, isotomically conjugate with respect to a tri-

angle, 106
point, Lemoine, 111
point, Michel, 40
polar line, 476
polygon, circumscribed, 137
polygon, convex, 137, 397
polygon, inscribed, 137
polygon, regular, 137
polygon, regular, the center of, 137
porism, Steiner, 454
problem, Apollonius, 450
problem, butterfly, 478
problem, J. Steiner, 479
product, inner, 289
product, pseudoinner, 293
projection, central, 473
projection, parallel, 473
projection, stereographic, 475
projective map, 473
projective transformation, 473, 475
pseudoinner product, 293
Ptolemey’s inequality, 210
Pythagorean triangle, 102

quadrature of the circle, 57

radical axis, 63
radical center, 64
Ramsey’s theorem, 401
ratio cross, 473
ratio double, 473
rotation, 345
ruler, two-sided, 187

segment, correspondent, 363
set, basic, 400
shift, 465
simedian, 111
similarity axis, 363
similarity center, 363
similarity circle, 363
similarity circle of a triangle, 364
similarity transformation, 465
similarity triangle, 363
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Simson’s line, 107
Simson’s line of the inscribed quadrilateral, 108
singular line, 474, 475
Sperner’s lemma, 410
Steiner’s porism, 454
Steiner’s problem, 479
stereographic projection , 475
symmetry through a line, 335
symmetry through point, 327
symmetry with center, 327
symmetry, axial, 335

tangent line, 57
theorem Brianchon, 478
theorem on a complete quadrilateral, 477
theorem on doubly perspective triangles, 477
theorem on triply perspective triangles, 477
theorem Pascal, 478, 479
theorem, Brianchon, 64
theorem, Ceva, 106
theorem, Desargue, 477
theorem, Desargues, 105
theorem, Feuerbach, 452
theorem, Helly, 398
theorem, Menelaus, 106
theorem, Minkowski, 425
theorem, Morlie, 104
theorem, Pappus, 105, 477
theorem, Pascal, 145
theorem, Ramsey, 401
transformation similarity, 465
transformation, affine, 465
transformation, projective, 473, 475
translation, parallel, 319
transvection, 338
triangle inequality, 205
triangle, constant of similar figures, 364
triangle, pedal, 108
triangle, Pythagorean, 102
triangle, similarity , 363
triangulation, 413
triply perspective triangles, 477


