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1. Solution by Titu Andreescu: Let T be the foot of the perpendicular from Y to line

AB. We note the P,Q, T are the feet of the perpendiculars from Y to the sides of triangle

ABX. Because Y lies on the circumcircle of triangle ABX, points P,Q, T are collinear,

by Simson’s theorem. Likewise, points S, R, T are collinear.

We need to show that ∠XOZ = 2∠PTS or

∠PTS =
∠XOZ

2
=

_

XZ

2
=

_

XY

2
+

_

Y Z

2
= ∠XAY + ∠ZBY = ∠PAY + ∠SBY.

Because ∠PTS = ∠PTY + ∠STY , it suffices to prove that

∠PTY = ∠PAY and ∠STY = ∠SBY ;

that is, to show that quadrilaterals APY T and BSY T are cyclic, which is evident, because

∠APY = ∠ATY = 90◦ and ∠BTY = ∠BSY = 90◦.

Alternate Solution from Lenny Ng and Richard Stong: Since Y Q, Y R are per-

pendicular to BX, AZ respectively, ∠RY Q is equal to the acute angle between lines BX

and AZ, which is 1
2
(
︷ ︷
AX +

︷ ︷
BZ) = 1

2
(180◦−

︷ ︷
XZ) since X,Z lie on the circle with diameter

AB. Also, ∠AXB = ∠AZB = 90◦ and so PXQY and SZRY are rectangles, whence

∠PQY = 90◦ − ∠Y XB = 90◦ −
︷ ︷
Y B /2 and ∠Y RS = 90◦ − ∠AZY = 90◦ −

︷︷
AY /2.

Finally, the angle between PQ and RS is

∠PQY + ∠Y RS − ∠RY Q = (90◦ −
︷ ︷
Y B /2) + (90◦ −

︷︷
AY /2)− (90◦ −

︷ ︷
XZ /2)

=
︷ ︷
XZ /2

= (∠XOZ)/2,



as desired.

This problem was proposed by Titu Andreescu.

2. Solution from Kiran Kedlaya: Let hi also denote the student with height hi. We prove

that for 1 ≤ i < j ≤ n, hj can switch with hi at most j − i − 1 times. We proceed by

induction on j− i, the base case j− i = 1 being evident because hi is not allowed to switch

with hi−1.

For the inductive step, note that hi, hj−1, hj can be positioned on the circle either in

this order or in the order hi, hj, hj−1. Since hj−1 and hj cannot switch, the only way to

change the relative order of these three students is for hi to switch with either hj−1 or hj.

Consequently, any two switches of hi with hj must be separated by a switch of hi with

hj−1. Since there are at most j − i − 2 of the latter, there are at most j − i − 1 of the

former.

The total number of switches is thus at most

n−1∑
i=1

n∑
j=i+1

(j − i− 1) =
n−1∑
i=1

n−i−1∑
j=0

j

=
n−1∑
i=1

(
n− i

2

)

=
n−1∑
i=1

((
n− i + 1

3

)
−

(
n− i

3

))

=

(
n

3

)
.

Note: One can also ask to prove that the number of switches before no more are possible

depends only on the original ordering, or to find all initial positions for which
(

n
3

)
switches

are possible (the only one is when the students are sorted in increasing order).

Alternative Solution from Warut Suksompong: For i = 1, 2, . . . , n− 1, let si be the

number of students with height no more than hi+1 standing (possibly not directly) behind

the student with height hi and (possibly not directly) in front of the one with height hi+1.

Note that si ≤ i− 1 for all i.

Now we take a look what happens when two students switch places.

• If the student with height hn is involved in the switch, sn−1 decreases by 1, while all

the other si’s remain the same.



• Otherwise, suppose the students with heights ha and hb are switched, with a + 1 <

b < n, then sb−1 decreases by 1, while sb increases by 1. All the other si’s remain the

same.

Since si ≤ i− 1 for all i = 1, 2, . . . , n− 1, the maximal number of switches is no more than

the number of switches in the case where initially si = i − 1 for all i. In that case, the

number of switches is
∑n−2

i=1 i(n− 1− i) =
(

n
3

)
.

Note: With this solution, it is also easy to see that the number of switches until no more

are possible depends only on the original ordering.

This problem was proposed by Kiran Kedlaya jointly with Travis Schedler and David

Speyer.

3. Solution from Gabriel Carroll: Multiplying together the inequalities a2i−1a2i ≤ 4i− 1

for i = 1, 2, . . . , 1005, we get

a1a2 · · · a2010 ≤ 3 · 7 · 11 · · · 4019. (1)

The tricky part is to show that this bound can be attained.

Let

a2008 =

√
4017 · 4018

4019
, a2009 =

√
4019 · 4017

4018
, a2010 =

√
4018 · 4019

4017
,

and define ai for i < 2008 by downward induction using the recursion

ai = (2i + 1)/ai+1.

We then have

aiaj = i + j whenever j = i + 1 or i = 2008, j = 2010. (2)

We will show that (2) implies aiaj ≤ i + j for all i < j, so that this sequence satisfies the

hypotheses of the problem. Since a2i−1a2i = 4i − 1 for i = 1, . . . , 1005, the inequality (1)

is an equality, so the bound is attained.

We show that aiaj ≤ i + j for i < j by downward induction on i + j. There are several

cases:

• If j = i + 1, or i = 2008, j = 2010, then aiaj = i + j, from (2).



• If i = 2007, j = 2009, then

aiai+2 =
(aiai+1)(ai+2ai+3)

(ai+1ai+3)
=

(2i + 1)(2i + 5)

2i + 4
< 2i + 2.

Here the second equality comes from (2), and the inequality is checked by multiplying

out: (2i + 1)(2i + 5) = 4i2 + 12i + 5 < 4i2 + 12i + 8 = (2i + 2)(2i + 4).

• If i < 2007 and j = i + 2, then we have

aiai+2 =
(aiai+1)(ai+2ai+3)(ai+2ai+4)

(ai+1ai+2)(ai+3ai+4)
≤ (2i + 1)(2i + 5)(2i + 6)

(2i + 3)(2i + 7)
< 2i + 2.

The first inequality holds by applying the induction hypothesis for (i + 2, i + 4), and

(2) for the other pairs. The second inequality can again be checked by multiplying

out: (2i + 1)(2i + 5)(2i + 6) = 8i3 + 48i2 + 82i + 30 < 8i3 + 48i2 + 82i + 42 =

(2i + 2)(2i + 3)(2i + 7).

• If j − i > 2, then

aiaj =
(aiai+1)(ai+2aj)

ai+1ai+2

≤ (2i + 1)(i + 2 + j)

2i + 3
< i + j.

Here we have used the induction hypothesis for (i + 2, j), and again we check the

last inequality by multiplying out: (2i + 1)(i + 2 + j) = 2i2 + 5i + 2 + 2ij + j <

2i2 + 3i + 2ij + 3j = (2i + 3)(i + j).

This covers all the cases and shows that aiaj ≤ i + j for all i < j, as required.

Variant Solution by Paul Zeitz: It is possible to come up with a semi-alternative

solution, after constructing the sequence, by observing that when the two indices differ by

an even number, you can divide out precisely. For example, if you wanted to look at a3a8,

you would use the fact that a3a4a5a6a7a8 = (7)(11)(15) and a4a5a6a7 = (9)(13). Hence we

need to check that (7)(11)(15)/((9)(13)) < 11, which is easy AMGM/ Symmetry.

However, this attractive method requires much more subtlety when the indices differ by

an odd number. It can be pulled off, but now you need, as far as I know, either to use the

precise value of a2010 or establish inequalities for (ak)
2 for all values of k. It is ugly, but it

may be attempted.

This problem was suggested by Gabriel Carroll.

4. Solution from Zuming Feng: The answer is no, it is not possible for segments AB,

BC, BI, ID, CI, IE to all have integer lengths.



Assume on the contrary that these segments do have integer side lengths. We set α =

∠ABD = ∠DBC and β = ∠ACE = ∠ECB. Note that I is the incenter of triangle ABC,

and so ∠BAI = ∠CAI = 45◦. Applying the Law of Sines to triangle ABI yields

AB

BI
=

sin(45◦ + α)

sin 45◦
= sin α + cos α,

by the addition formula (for the sine function). In particular, we conclude that s =

sin α+cos α is rational. It is clear that α+β = 45◦. By the subtraction formulas, we have

s = sin(45◦ − β) + cos(45◦ − β) =
√

2 cos β,

from which it follows that cos β is not rational. On the other hand, from right triangle

ACE, we have cos β = AC/EC, which is rational by assumption. Because cos β cannot

not be both rational and irrational, our assumption was wrong and not all the segments

AB, BC, BI, ID, CI, IE can have integer lengths.

Alternate Solution from Jacek Fabrykowski: Using notations as introduced in the

problem, let BD = m, AD = x, DC = y, AB = c, BC = a and AC = b. The angle

bisector theorem implies
x

b− x
=

c

a

and the Pythagorean Theorem yields m2 = x2 + c2. Both equations imply that

2ac =
(bc)2

m2 − c2
− a2 − c2

and since a2 = b2 + c2 is rational, a is rational too (observe that to reach this conclusion,

we only need to assume that b, c, and m are integers). Therefore, x = bc
a+c

is also rational,

and so is y. Let now (similarly to the notations above from the solution by Zuming Feng)

∠ABD = α and ∠ACE = β where α + β = π/4. It is obvious that cos α and cos βare

both rational and the above shows that also sin α = x/m is rational. On the other hand,

cos β = cos(π/4 − α) = (
√

2/2)(sin α + sin β), which is a contradiction. The solution

shows that a stronger statement holds true: There is no right triangle with both legs and

bisectors of acute angles all having integer lengths.

Alternate Solution from Zuming Feng: Prove an even stronger result: there is no

such right triangle with AB, AC, IB, IC having rational side lengths. Assume on the

contrary, that AB,AC, IB, IC have rational side lengths. Then BC2 = AB2 + AC2 is

rational. On the other hand, in triangle BIC, ∠BIC = 135◦. Applying the law of cosines

to triangle BIC yields

BC2 = BI2 + CI2 −
√

2BI · CI



which is irrational. Because BC2 cannot be both rational and irrational, we conclude that

our assumption was wrong and that not all of the segments AB, AC, IB, IC can have

rational lengths.

This problem was proposed by Zuming Feng.

5. Solution by Titu Andreescu: We have

2

k(k + 1)(k + 2)
=

(k + 2)− k

k(k + 1)(k + 2)
=

1

k(k + 1)
− 1

(k + 1)(k + 2)

=
1

k
− 1

k + 1
−

(
1

k + 1
− 1

k + 2

)

=
1

k
+

1

k + 1
+

1

k + 2
− 3

k + 1
.

Hence

2Sq =

(
1

2
+

1

3
+

1

4
+ . . . +

1

q
+

1

q + 1
+

1

q + 2

)
− 3

(
1

3
+

1

6
+ . . . +

1

q + 1

)

=

(
1

2
+

1

3
+ . . . +

1
3p−1

2

)
−

(
1 +

1

2
+ . . . +

1
p−1
2

)
,

and so

1− m

n
= 1 + 2Sq − 1

p
=

1
p+1
2

+ . . . +
1

p− 1
+

1

p + 1
+ . . . +

1
3p−1

2

=

(
1

p+1
2

+
1

3p−1
2

)
+ . . . +

(
1

p− 1
+

1

p + 1

)

=
p(

p+1
2

) (
3p−1

2

) + . . . +
p

(p− 1)(p + 1)
.

Because all denominators are relatively prime with p, it follows that n−m is divisible by

p and we are done.

This problem was suggested by Titu Andreescu.

6. Solution by Zuming Feng and Paul Zeitz: The answer is 43.

We first show that we can always get 43 points. Without loss of generality, we assume

that the value of x is positive for every pair of the form (x, x) (otherwise, replace every

occurrence of x on the blackboard by −x, and every occurrence of −x by x). Consider the

ordered n-tuple (a1, a2, . . . , an) where a1, a2, . . . , an denote all the distinct absolute values

of the integers written on the board.

Let φ =
√

5−1
2

, which is the positive root of φ2+φ = 1. We consider 2n possible underlining

strategies: Every strategy corresponds to an ordered n-tuple s = (s1, . . . , sn) with si = φ



or si = 1 − φ (1 ≤ i ≤ n). If si = φ, then we underline all occurrences of ai on the

blackboard. If si = 1 − φ, then we underline all occurrences of −ai on the blackboard.

The weight w(s) of strategy s equals the product
∏n

i=1 si. It is easy to see that the sum

of weights of all 2n strategies is equal to
∑

s w(s) =
∏n

i=1[φ + (1− φ)] = 1.

For every pair p on the blackboard and every strategy s, we define a corresponding cost

coefficient c(p, s): If s scores a point on p, then c(p, s) equals the weight w(s). If s does

not score on p, then c(p, s) equals 0. Let c(p) denote the the sum of of coefficients c(p, s)

taken over all s. Now consider a fixed pair p = (x, y):

(a) In this case, we assume that x = y = aj. Then every strategy that underlines aj

scores a point on this pair. Then c(p) = φ
∏n

i 6=j[φ + (1− φ)] = φ.

(b) In this case, we assume that x 6= y. We have

c(p) =





φ2 + φ(1− φ) + (1− φ)φ = 3φ− 1, (x, y) = (ak, a`);
φ(1− φ) + (1− φ)φ + (1− φ)2 = φ, (x, y) = (−ak,−a`);
φ2 + φ(1− φ) + (1− φ)2 = 2− 2φ, (x, y) = (±ak,∓a`).

By noting that φ ≈ 0.618, we can easily conclude that c(p) ≥ φ.

We let C denote the sum of the coefficients c(p, s) taken over all p and s. These observations

yield that

C =
∑
p,s

c(p, s) =
∑

p

c(p) ≥
∑

p

φ = 68φ > 42.

Suppose for the sake of contradiction that every strategy s scores at most 42 points.

Then every s contributes at most 42w(s) to C, and we get C ≤ 42
∑

s w(s) = 42, which

contradicts C > 42.

To complete our proof, we now show that we cannot always get 44 points. Consider the

blackboard contains the following 68 pairs: For each of m = 1, . . . , 8, five pairs of (m, m)

(for a total of 40 pairs of type (a)); For every 1 ≤ m < n ≤ 8, one pair of (−m,−n) (for a

total of
(
8
2

)
= 28 pairs of type (b)). We claim that we cannot get 44 points from this initial

stage. Indeed, assume that exactly k of the integers 1, 2, . . . , 8 are underlined. Then we

get at most 5k points on the pairs of type (a), and at most 28 − (
k
2

)
points on the pairs

of type (b). We can get at most 5k + 28 − (
k
2

)
points. Note that the quadratic function

5k + 28− (
k
2

)
= −k2

2
+ 11k

2
+ 28 obtains its maximum 43 (for integers k) at k = 5 or k = 6.

Thus, we can get at most 43 points with this initial distribution, establishing our claim

and completing our solution.

This problem was suggested by Zuming Feng.
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