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.PREFACE

It becomes a tradition to publish an English version of the most interesting
problems given at the Romanian Mathematical Olympiad and other Romanian
Mathematical Competitions in a booklet form.

We present the nineth edition of this collection, realized in cooperation by
the Romanian Mathematical Society and the Theta Foundation.

We would like to thank some of the sponsors of the Romanian Mathemat-
ical Olympiad and of the Romanian Team for the International Mathematical
Olympiad and the Balkan Competitions. These thanks are due to “Winsoft”,
“The Theta Foundation”, “The Gill Publishing House” and “The Sigma Founda-
tion”.

Thanks are also due to Luminita Stafi and Barbara Ionescu, from the The
Theta Foundation, for their excellent typing.

Bucharest . Mircea Becheanu
July 1%, 2003 Radu Gologan
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Part I. THE 54'® NATIONAL MATHEMATICAL OLYMPIAD
PROPOSED PROBLEMS

L1. FIRST ROUND — CITY OF BUCHAREST
March 26, 2003

9th GRADE

ProOBLEM 1. Find the integer part of the number

3 }nroots
24+ /244 + V24 ,

where n > 1.
* ¥ %

PROBLEM 2. Let  and y be real numbers so that z° +y2, 23 + 33 and z¢ +y*
are rational numbers. Prove that z + y and zy are also rationals.
Sorin Radulescu, Costel Chites

PrOBLEM 3. Find the function f: R — R with the properties:
(a) f(z) = 2% for all z € [0,1);
(b) f(z+1) = f(z) + z for all z € R.
Laurentiu Panaitopol

PrOBLEM 4. Consider the points 4, B,C,D in a plane, not three of them
collinear. Points H; and Hy are the orthocenters of the triangles ABC and ABD,
respectively.

Prove that A, B,C, D lie on the same circle if and only if

—
H H, =CD.

Marian Andronache

PROBLEM 5. An arbitrary point M is considered on the side BC of the
triangle ABC. Let Co,C1,C2 be the incircles of the triangles ABC, ABM, ACM s
respectively.

(a) Prove that C; and C, are tangent if and only if M € Cy.
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(b) Suppose M € E‘} and let S and D be the midpoints of the segments AM
and BC. Prove that pAI = aAS + (p — a)AD. Furthermore, derive that points
1,5, D are collinear and {5 = ba,

Virgil Nicula

10* GRADE

PROBLEM 1. Let ABCD be a convex quadrilateral and let M be the mid-
point of the side CD. Lines BM and AM are perpendicular and AB = BC + AD.
Prove that lines BC and AD are parallel.
Laurentiu Panaitopol
PROBLEM 2. Let a,b,c,d be complex numbers with equal absolute values
such that a + b+ ¢ = d.
Prove that d is equal to one of the numbers a,bore.
Marcel Tena

PROBLEM 3. Let n and P be positive integers with p > 2. Prove that the
n
integer part of the number Y Vl + (}) is equal to n + 1.
k=0
Virgil Nicula

PROBLEM 4. Prove that in any triangle the following inequality holds:

1 1 1
+—+ < \/§'
MpMe MMy Mgmy, S

Gheorghe Szsllosy

11** GRADE

PROBLEM 1. Let A be an 2n-order matrix with integer entries such that all
entries of the principal diagonal have different parity from the rest of the entries.

Prove that det A cannot be zero.
Dinu Serbdnescu

PROBLEM 2. Consider a sequence (an)ny1 of positive real numbers such that

(@nt1—an)® =a, foralln>1.

FIRST ROUND — CITY OF BUCHAREST 3

Find the limit L = lim a,, knowing that this exists.
n—oo
Valentin Vornicu

PROBLEM 3. (a) Find all 3-order real matrices which commutes with

01 2
A=(003 .
000

(b) Let n be a positive integer. Solve in M3(R) the equation X™ = 4.
Laurentiu Panaitopol

3

k
55

PROBLEM 4. Consider the sequence a, = 3
1

n 2> 1. Prove that
k

. L2 _
n]g{.loa,. =2 and nlggo ﬁ@ —ap) =e.

Virgil Nicula
PROBLEM 5. Let a be a real number and let f:R — R be a function such
that
f@)-f@) + f@) + f) = f(zy) +a forall 2,y € R.
(a) If f is bijective, find the number a and compute f(—1), £(0) and f(1).
(b) Find all functions f which are continuous and bijective.
Marcel Chirita

12» GRADE

PROBLEM 1. Let (G, ) be a group and consider H a proper subset of G
such that:
Ifa:eHa.ndyEG\H,thenxyeG\H.

Prove that H is a subgroup of G.
. Marcel Tena
PrOBLEM 2. Compute [ £E=2 dz, z € (0, 00).
Ioan V. Maftei

PROBLEM 3. Consider the function f : R — R, f(z) = (2% + 1)e*. Find the
T 1 22y _ )
limit JLrgonfo (f( =) 1) dz.

* % %

PROBLEM 4. Suppose A = {f € Q[X] | f(n) € Z for all n € Z}. Prove that:
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(a) A is a subring of Q[X];
(b) Z[X] is not isomorphic to A.

I.2. SECOND ROUND - DISTRICT LEVEL
March 26, 2003

7" GRADE

PROBLEM 1. Find the disjoint sets B and C such that BUC = {1,2,...,10}
and the product of the elements of C' equals the sum of elements of B.
Ioan Bogdan

ProBLEM 2. Consider a right triangle ABC (m(/A) = 90°). Let D be the
intersection of the bisector line of A with the line BC, and P, Q the orthogonal
projections of D onto lines AB and AC, respectively. If BQNDP = {M},
CPNDQ ={N} and BQNCP = {H}, prove that:

(a) PM = DN;
(b) MN || BC;
(c) AH L BC.

Mircea Fianu

PROBLEM 3. A grid consists of 2n vertical and 2n horizontal lines, each
group disposed at equal distances. The lines are all painted in red and black, such
that exactly n vertical and n horizontal lines are red.

Find the smallest n such that for any painting satisfying the above condition,
there is a square formed by the intersection of two vertical and two horizontal lines,
all of the same colour.

Radu Gologan

PROBLEM 4. Consider a triangle ABC. Let B’ the reflection of B with
respect to C, C' the reflection of C' with respect to A and A’ the reflection of A
with respect to B.

(a) Prove that the area of AC'A’ is two times the area of ABC.

(b) If we erase the points 4, B, C, is it possible to reconstruct them? Justify!
* % %

SECOND ROUND - DISTRICT LEVEL 5

8th GRADE

PROBLEM 1. Let ABC be an equilateral triangle. The perpendiculars 4.4’
and BB’ on the plane containing ABC at the points A and B are AA’ = AB and
BB'=1AB.

Find the angle between the planes (ABC) and (4'B'C").

Neculai Solomon

PROBLEM 2. Let M C R be a finite set containing at least two elements.
We say that the function f has property P if f : M — M and there are a € R*
and b € R such that f(z) = az + b.

(a) Show that there is at least a function having property P.

(b) Show that there are at most two functions having property P.

(c) If M has 2003 elements with sum 0 and if there are two functions with
property P, prove that 0 € M.

Gabriel Popa

ProBLEM 3. Consider an array nxn (n > 2) with n2 integers. In how many
ways one can complete the array if the product of the numbers on any row and
column is 5 or =57

Mariana Coadi

PROBLEM 4. (a) Let MNP be a triangle with ZM NP > 60°. Prove that
MP is not the smallest side of the triangle.

(b) A plane contains an equilateral triangle ABC. The point V', that doesn’t
belong to the plane (ABC) is such that /ZVAB = /VBC = /VCA. Prove that if
V A = AB, then all sides of the piramid VABC are equal.

Valentin Vornicu

9th GRADE

PROBLEM 1. Find all functions f : N* — N* such that for any n,n > 1,
the number

FO+f@+-+f(n)

is the cube of a number at most equal to n.!
Lucian Dragomir

! N* is the set of positive integers
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PrOBLEM 2. Find n € N, n > 2 and digits a1, a2, ..., an, such that

Vaiaz .. an — /@183 - Gp—1 = Qn.

(@1@3 -~ @, is the n-digit number with digits a;,as, ..., axn).
* L

PROBLEM 3. On the blackboard there are given points A, B,C,D. Vlad
constructs the points A’, B',C", D' in the following manner: A’ is the reflexion of
A with respect to B, B' is the reflexion of B with respect to C', C' is the reflexion
of C' with respect to D and D' is the reflexion of D with respect to A. Maria
eliminates from the blackboard the points A, B,C, D.

Can Vlad reconstruct the positions of these pomts? Justify; vectors can be

used.
L

PROBLEM 4. A set A of nonzero vectors in the plane have propert_y) (§2 if it
consists of at least three_) elenle;nts _a).nd for any u E A there are vectors v,w € A
such that v # w and v = v + w.

(a) Prove that, for any n > 6, there is a set of vectors having property (S).

(b) Prove that any finite set of vectors with property (S) has at least six
elements.

Mihai Baluna

10t* GRADE

PROBLEM 1. In the interior of a cube there are 2003 points. Prove that, one
can divide the cube in more than 2003% smaller cubes, such that any of the given

points is in the interior of a small cube (not on the borders).
* * *

PROBLEM 2. Determine all functions f : N* — M having the property that
1+ f(n)f(n+1) =20° (f(n+1) - f(n)),

for any n € N*, in any of the situations
(a) M =N;
(b) M = Q.

Dinu Serbanescu

SECOND ROUND - DISTRICT LEVEL 7

PROBLEM 3. Let ABC be a triangle.
(a) Prove that if M is any point in its plane, then

AMsinA { BMsinB 4+ CMsinC.

(b) Let A;, B, C} be points on the sides BC, AC and AB respectively, such
that the angles of the triangle A, B,C are in this order a, B,~v. Prove that

ZAA1 sina < ZBCsina.

Dan Marinescu, Vasile Cornea

PROBLEM 4. Given positive numbers a,b,¢,d such that a > ¢ > d > b >1
and ab > cd, prove that the function f : [0,00) — R, f(x) =a® +b° —c* —d*, is
strictly increasing.

Cristinel Mortici

11** GRADE

PROBLEM 1. In the Cartesian plane zOy consider the collinear points
Ai(z:,y:), i = 1,4, such that there are invertible matrices M € M4(C) having the
first two rows (z1,z2,z3,24) and respectively (Y1, Y2, Y3, Ya).

Prove that for such a matrix M the sum of elements of M ! is independent
of M.

Marian Andronache

PRrOBLEM 2. Let f : [0,1] — [0,1] be a function that is continuous at the
points 0 and 1, has limits from the left and from the right at any point and verifies
f(z - 0) < f(z) < f(z +0) for any € (0,1).

Prove that there is zo € (0, 1) such that f(zo) = mo.

Mihai Piticari

PROBLEM 3. (a) Prove that any matrix A € M,,(C) is the sum of n matrices
of rank 1.

(b) Prove that I, cannot be written as the sum of less than n matrices of
rank 1.

Ion Savu, Manuela Prajea

PROBLEM 4. Let & > 1 and let f : [1,a] — [L,a] a bijective function.
Suppose that f~!(z) = ﬁ, for any z € [L,a]. Prove that:
(a) f has at least a discontinuity point;
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(b) if f is continuous at 1, than f has an infinity of discontinuity points;
(c) there is a function f verifying the given conditions and possesing only a
finite number of discontinuity points.
Radu Miculescu

12" GRADE

PROBLEM 1. Let (G,-) be a finite group with unity e. The least positive
integer with the property that z" = e, for any z € G, is called the ezponent of the
group G.

(a) For any prime p, p > 3, show that the multiplicative group G, consisting
of those matrices of the form

i
(o
0

is noncommutative and has exponent p.

o -

e) with @,b,¢ € Z,
i

L3

(b) Show that, if (G, o) and (H, e) are finite groups with exponents m respec-
tively n, than the group (G x H, *) defined by (g,h) = (¢, ') = (gog',he '), for
any (g,h),(¢',h') € G x H, has the exponent equal to the least common multiple
of m and n.

(c) Deduce that any natural number n, n > 3 is the exponent of some finite
noncommutative group.

* * *

PROBLEM 2. Consider two different continuous functions f,g : [0,1] —
(0, 00), such that fol f(z)dz = fnl g(z) dz.

Let (zn)n3o the sequence defined by z, = 01 (f(;z);;: L dz.

(a) Prove that lim z, = oo.
n—0oo
(b) Show that the sequence (Zn)n3o is increasing.
Dan Marinescu, Vasile Cornea

PROBLEM 3. Let K be a finite field in which the polynomial X2 — 5 is
irreducible in K[X]. Show that:
(a) 1+1#0;
(b) for any a € K, the polynomial X® + a is reducible in K[X].
Marian Andronache

FINAL ROUND ' 9

PRrOBLEM 4. Consider the continuous functions f : [0,00) — R and
g:[0,1] = R. If lim f(z) = L € R, prove that

nlgr;o%/oﬂ f(z)g (%) dz = L/o1 g(z) dz.

Laurentiu Panaitopol

1.3. FINAL ROUND
Sibiu, April 21, 2003

7*h GRADE

PrOBLEM 1. Find the maximum number of elements which can be chosen
from the set {1,2,3,...,2003} such that the sum of any two chosen elements is
not divisible by 3.

*  x X

PROBLEM 2. Compute the maximum area of a triangle having a median of
length 1 and a median of length 2.

ProBLEM 3. For every positive integer n consider

Ap = /4902 +0,35n.

(a) Find the first three digits after the decimal point for A;.
(b) Prove that the first three digits after the decimal point of A, and A, are

the same, for every n.
* * *

PROBLEM 4. In triangle ABC, P is the midpoint of side BC. Let M € (AB),
N € (AC) be such that MN || BC and {Q} be the common point of MP and
BN. The perpendicular from @ on AC intersects AC in R and the parallel from
B to AC in T. Prove that:
(2) TP || ME;
(b) ZMRQ = LPRQ.
Mircea Fianu
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8th GRADE

PROBLEM 1. Let m,n be positive integers. Prove that the number 57 + 5™
can be represented as sum of two perfect squares if and only if n — m is even.
Vasile Zidaru

PROBLEM 2. In a meeting there are 6 participants. It is known that among
them there are seven pairs of friends and in any group of three persons there are
at least two friends. Prove that:

(a) there exists a person who has at least three friends;

(b) there exists three persons who are friends with each other.

Valentin Vornicu

PROBLEM 3. The real numbers a, b fulfil the conditions

(i)0<a<a+%§b;

(i) @ +p10 = 1.

Prove that b has the first 12 digits after the, decimal point equal to 9.
Mircea Fianu

PROBLEM 4. In tetrahedron ABCD, Gy, G2 and G'3 are barycenters of the
faces ACD, ABD and BCD respectively.

(a) Prove that the straight lines BG,, CG and AG3 are concurent.

(b) Knowing that AG; = 8, BG; = 12 and CG5 = 20 compute the maximum
possible value of the volume of ABCD.

9" GRADE

ProBLEM 1. Find positive integers a, b if for every z,y € [a, 8], +iefan

EE

PROBLEM 2. An integer n, n > 2 is called friendly if there exists a family
A1, As, ..., A, of subsets of the set {1,2,... ,n} such that:

(1) i € A; for every i = 1, n;

(2) i € A; if and only if j ¢ A;, for every distinct i,j €{1,2,...,n};

(3) AiN A; is non-empty, for every i,j € {1,2,...,n}.

Prove that:

(a) 7 is a friendly number;

(b) n is friendly if and only if n > 7.

Valentin Vornicu

FiNAL RoUND 11

PROBLEM 3. Prove that the midpoints of the altitudes of a triangle are
collinear if and only if the triangle is right.

Dorin Popovici

PROBLEM 4. Let P be a plane. Prove that there exists no function
f: P — P such that for every convex quadrilateral ABC D, the points f (4), f(B),
f(C), f(D) are the vertices of a concave quadrilateral.

Dinu Serbanescu

10" GRADE

PROBLEM 1. Let OABC be a tetrahedron such that OA 1 OB 1 OC L OA,
7 be the radius of its inscribed sphere and H be the orthocenter of triangle ABC.
Prove that OH < r(\/?_y+ 1).

X k%
PROBLEM 2. The complex numbers z;, i = 1,...,5, have the same non-nil
modulus and i zi= 25: 22 =0.
Prove tﬁ:é zl,z:.l ..,25 are the complex coordinates of the vertices of a
regular pentagon.
* k%

PROBLEM 3. Let a,b,c be the complex coordinates of the vertices A, B,C
of a triangle. It is known that |a| = |b| = |¢| = 1 and that there exists o € (0, %)
such that a + beosa + csina = 0. Prove that 1 < area(ABC) < %

Gheorghe Turea

PROBLEM 4. A finite set A of complex numbers has the property: z € A
implies 2 € A for every positive integer n.

(a) Prove that Y- z is an integer.
€A

z
(b) Prove that for every integer k one can chose a set A which fulfils the
above condition and ) z =k.
z€A
Paltin Ionescu
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11** GRADE

PRrROBLEM 1. Find the locus of the points M from the plane of a rhombus
ABCD such that
MA-MC+MB-MD = AB?.

Ovidiu Pop
PROBLEM 2. Consider the real numbers 1 € a1 < a2 < a3 < a4, T; < T3 <

z3 < 74 and the matrix M = (¢]"), ;c73-

Prove that det M > 0.
* * %

PROBLEM 3. The real functions f,g are such that f is continuous and g is
increasing and unbounded. It is known that for every sequence (z,) of rational
numbers with (z,), — 00, lim f(z,)g(zs) = 1.

n—oc
Prove that lim f(z)g(z) = 1.
T—00
Radu Gologan

PROBLEM 4. Let A be a 3 x 3 matrix with real entries. Prove that:
(a) if f is a real polynomial without real roots then f(A) # 03;
(b) there exists a positive integer n such that

(A+A~)2n =A2n+(A*)2n

if and only if det A = 0.
Laurentiu Panaitopol

12t GRADE

PROBLEM 1. (a) Let K be a field and n > 2 be an integer. Describe the set
Z(Mn(K)) = {A € Mu(K) | AX = XA for every X € M,(K)}

and prove that the ring Z(M,(K)) is isomorphic to K.
(b) Prove that the rings M, (R) and M,(C) are not isomorphic.

FINAL ROUND 13

PROBLEM 2. Let n > 3 be an odd integer. Find all continuous functions
f:[0,1] - R such that

[ mya-t,

for every k € {1,...,n — 1}.
Titu Andreescu

PROBLEM 3. A continuous function f+R — R fulfils the condition z f(z) >
Jo £(t) dt, for every real z.

(a) Prove that the function g : R* — R, g(z) = %f; f(t)dt is increasing on
(=00,0) and on (0, ).

(b) Prove that if f has also the property

241 @
/ ft)dt= / f(t)dt for all real ,
z z—1

then f is constant.
Mihai Piticari
PROBLEM 4. For a finite commutative group (G, +) denote by n(G) its car-
dinal and by i(G) the number of algebraic operations (G, *) such that (G, +,%) is
a ring (with unity). Prove that:
(2) i(Z12) = 4;
(b) i(A x B) > i(A)i(B), for every finite commutative groups A and B;
(c) there exist two sequences of finite commutative groups (G)ixi, (Hi)ps:
such that B
n(Gr)

_ . n(Hg)
3% 3(Cr) =0 and lim 0.

koo W(Hy)

Barbu Berceanu
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Part II. THE 54tF NATIONAL MATHEMATICAL OLYMPIAD
SOLUTIONS

1I.1. FIRST ROUND - CITY OF BUCHAREST

9th GRADE

PROBLEM 1. Find the integer part of the number
} n roots

Vod+ {24+ + V24 ,

where n > 1.

} n roots
Solution. Set an = \3/ 24+ 24+ + 24 for any n > 1. We
have 2 < ¥/24 = a; < 3 and apt1 = ¥/24+ a,. By induction on n it is easy to
prove that

2<a, <3 foralln>1.

Indeed, any1 = V24 + a, < V24 +3 =3 and an > /24 > 2. Thus [an)=2 for all
n>1

PROBLEM 2. Let z and y be real numbers so that 2% +y2, z® +y° and 2% +3*
are rational numbers. Prove that z +y and zy are also rationals.

Solution. For z = 0 or y = 0 the claim is obvious. For zy # 0, notice that
@ @’y = %[(z2 +17)’ - (' +y"] € Q.
On the other hand, z8 + 3® = (2 +1?)® — 32%y*(2? + %) € Q and then
@ 2 = 5[+ - @+ €Q
From (1) and (2) we derive that
28y

zy:z—Q?};EQ.

Finally, z +y = (—1—3"';”3_— €Q.

z2+y?)—zy

FIRsT ROUND — CITY OF BUCHAREST

15
PROBLEM 3. Find the function f : R — R with the properties:
(a) f(z) =2? for all z € [0,1);
(b) flx+1)=f(z) +zforall z € R.
Solution. Let n be a positive integer. Then
flz+n)=fle+n-1)+(x+n-1)
=flz+n-2)+(@+n-2)+(@+n-1)
=f@)+az+(+)+--+(@+n-1)
2 -1
=f($)+n‘(x+2n ) for all z € R.
Consider # < 0 an arbitrary real number and n = —[z], n € N*. Since

z+n=2g-[z] = {z} €[0,1), it follows that f(z +n) = (z + n)? = {z}2 and

$@) = fo+m) - MEERZD _ g [el2e—fel -1

_ Ao+ @~ {e)@+{z} -1) _2>+{a}? -2+ {z}
2 - 2

for all real z < 0.

Now, consider a real number z > 1 and let n = [z] € N*. We have

1(@) = f({a} +n) = f({a)) + 2L D)

2y Blet{a} -1 2+ {zP-z+{a
={z}*+ 3 = > {=}

for all real z > 1.
2
Finally, as 2% = ﬁ-{i};;’{i}- for any z € [0,1), then

PRNEE10 T R,

ProBLEM 4. Consider the points A, B,C,D in a plane, not three of them

collinear. Points H; and Hj are the orthocenters of the triangles ABC and ABD,
respectively.

Prove that 4, B,C, D lie on the same circle if and only if

— —
H H, =CD.
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Solution. Let O; and O, be the circumcenters of the triangles ABC and
ABD. By Sylvester formula,

—_— = = — _— = = —
O01H1 = 01A+0,B+0,C and O;Hs = 024+ 028 + 0,D
Subtracting the relations implies

—_— = —— = —
O1H, — 02:Hy = 20102 + 01C 02
— — —
< O1H, — (0201 01H2) = 20102 + 01 — (0201 + 01D)
—
< H.H; = 20102 + DC
— = —
& HyHy; — CD =2020,.

— =
Then Oy = O3 & HyHy = CD, as desired.

PROBLEM 5. An arbitrary point M is considered on the side BC' of the
triangle ABC. Let Co,Cs,Cs be the incircles of the triangles ABC, ABM, ACM,
respectively.

(a) Prove that C; and Cp are tangent if and only if M € Co.

(b) Suppose M € Cy and let S and D tﬂhe midpoints of the segments AM
and BC. Prove that pAI = aAS + (p — a)AD. Furthermore, derive that points

1,8, D are collinear and 15 = 222

Solution. (a) First recall a usefull result:

Suppose the incircle of triangle ABC touch the sides AB, BC,C A at points
C1, A1, By, respectively. Then
AB+ AC - BC
AB = AC = =222 (=p-a).
Let the line AM touches the circles C; and Cp at Ty and T5, respectively.
The circles C; and Cs are tangent if and only if T; = T»; that is when AT, = AT>.
Using the above result, this is equivalent to

AM + AB-BM _ AM +AC-CM
2 - 2

& AB - BM = AC — (BC — BM)
BM + AC — AC
2

< BM =
& M € (o,

as needed.
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B ML C

(b) Let a,b, ¢ be the side lengths of the triangle and let L be the intersection
point of BC with the internal bisector Al of LBAC.

By angle bisector theorem, L8 Lc = Ag and LB = 4 équo

The key 1d_e>a is to represent vectors AD, AS and AI as linear combinations
of the vectors AB and AC. Thus,

— —
AD = i(AB + AC),
- 1,
=L@ = —(% A_B>+E— ZZ‘) (0= 4B + (o HAC
2 BC 2a
and
— L
= C AB+£§ A = AC -A—)B+ AB Zb)_bAB+c4C
BC BC AB + AC AB + AC - b+e
As BI is the bisector of ZABL, then
Al AB c b+c Al b+
Te=—=_= and — = ¢
IL  BL & a AL 2p
Consequently,
— —
- ;
v bAB + cAC-
2p
A short algebraic manipulation shows that p/?I = a;lT)S‘ +(p— a)A_B’ Since
] + ”_ = 1, it follows that point I lies on the line segment SD such that ,’ g = u
10** GRADE

PrOBLEM 1. Let ABCD be a convex quadrilateral and let M be the mid-
point of the side CD. Lines BM and AM are perpendicular and AB = BC + AD
Prove that lines BC and AD are parallel. ‘
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Solution. Reflect M at P across the midpoint of the segment AB. The angle
LAMB of the parallelogram AM BP is right, hence AMBP is a rectangle and

1) MP = AB = AD + BC.

On the other hand
—_— — —  — — —_— = — —
2) MP=MA+MB:(MD+DA)+(MC+CB)=DA+CB,
— —
since MD + MC = 0.
The relations (1) and (2) give AD || BC || M P, as needed.
PROBLEM 2. Let a,b,c,d be complex numbers with equal absolute values

such that a + b +c =d.
Prove that d is equal to one of the numbers a, b or c.

Solution. It suffices to prove that (d — a)(d ~ b)(d — ¢) = 0, which is equiva-
lent to

(1) &@~d*(a+b+c)+d(ab+be+ca)—abe=0 or d(ab+ be+ ca) = abe.

bb = ¢¢ = dd. The condition

Put 7 = |a| = |b] = |¢| = |d|. Then r? = a7 =
Ly % + = By multiplying out, the

d=a+b+cgivesd=a+b+¢, then I =
last equality reduces to (1), as desired.

PROBLEM 3. Let n and p be positive integers with p > 27. Prove that the
n
integer part of the number 3 {1+ (%) is equal to n + 1.
k=0

Solution. We have to prove that

n
nelgy 1+(Z)<2.

k=0

The left inequality is obvious, since {/1+ (}) > 1. For the second we use Bernoulli
inequality. We have

(1% Oer30-6)

hence 1 + c/ ) for all k = 0,7. Summing up yiels

n n
> 1+(n> n+1+ (n)=n+1+2—<n+2,
k s k P

k=0
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PROBLEM 4. Prove that in any triangle the following inequality holds:

1 1 1. V3
+—+ <
MpMe  McMa  MaMyp S

Solution. With the medians of a triangle one can form another triangle, as

shown below:

(A1M = BB, and AM = CC}).

Furthermore, the area of the triangle formed by medians is S,, = %S . Indeed,

Swm _ 2avealAALN] _ AN _3
S 7 2area[AA,C]  AC 4

Thus, the inequality becomes

1 1 1 3f
+ +

MMy  MpMme  MeMg 4S

1)
Writting a,b, ¢, S for m,,mp, me, Sm, the inequality (1) reduces to

s,5,5 3
ab  be  ca 4

or

sin A + sin B +sinC < L\IEY

which is a known inequality. (For a short proof, notice that the sine function is

concave down on [0, 7].)
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11*" GRADE

PROBLEM 1. Let A be an 2n-order matrix with integer entries such that all
entries of the principal diagonal have different parity from the rest of the entries.
Prove that det A cannot be zero.

Solution. First, assume that all entries of the principal diagonal are odd, and
the rest are even. Then A = Ir,(mod 2), hence det A = 1(mod 2). Thus, det A is
an odd number, so det A # 0.

Now, assume that the numbers of the principal diagonal are even, and the
rest are odd. Notice that A2 has all the entries of the principal diagonal odd and
the rest even, so again det A% is an odd number. Since (det A)? = det A2, the
claim follows.

PrOBLEM 2. Consider a sequence (@n)n31 of positive real numbers such that
.
(@n+1 — @)  =a, foralln31.

Find the limit L = lim a,, knowing that this exists.
n—oo .

Solution. Suppose L € R. Then (L — L)2 = L, hence L = 0. We prove that
this assumption leads to contradiction.

Put b, = 2%, n > 1. The relation (an+1 — an)? = a, becomes (b, — 1)% =
t. Asby 2 |bp—1|-1= \/LE; —1— oo, by d’Alembert criterion yields a, — oo,
contradiction.

Thus L ¢ R, and since a,, > 0 we obtain L = co.

PROBLEM 3. (a) Find all 3-order real matrices which commutes with

01 2
A=(003 .
000

(b) Let n be a positive integer. Solve in M3(R) the equation X" = A.

a b ¢
Solution. (a) Consider X = (d e f ) From AX = XA follows that
g h i

d=g=h=0,a=e=1i, f = 3b, thus

a b ¢
X=(0 a 3], abceR.

00 a
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(b) Let X be a solution of the equation X = 4. Then AX = X" X =

X -X™= XA, hence -
a b ¢
X= (0 a Sb).
00 a

Since det(X™) = det A = 0, we have det X — 0. Hence @ = 0 and X =

0 b ¢ 0 0 3p

00 3b),X=(O 0 0 ,andX3=03.Ast#Aa,ndX"=03¢A
00 0 00 o

for n > 3, we infer that the equation has no solution for n 22 Forn =1,

obviously X = A.

n

PROBLEM 4. Consider the sequence a, = Y k
E

. o n 2 1. Prove that

. . pAS
,}l,";o an, =2 and nlgrgo ﬁ@ —ap) =e.

Solution. We have

1 1 ok ok LI n g n
Za, = - +1 1
an = a, — =a, = — — — = -
2T k4 Z D Z EL T +
2 k=1 2 k=1 20F k=1 2 Icz=; 2 k=1 24+
_z":l_n+1_1 n+2
- 2k 9n+¥1 on+1

hence a, =2 — "2—*,,"’ and lim a, = 2.
n—oo

Furthermore, 2"+! — 27, = 4+ 2 and

im ——— = Jim (- . _%
n—00 /n! n—oo 3/n! n—oo \ #/pl += il

lim 2@ —an) _ont2 (" 2)=e

PROBLEM 5. Let a be a real number and let f : R - R be a function
such that

F@) - fW)+ f@) + f) = fzy) +a forall z,y € R.

(a) If f is bijective, find the number a and compute f(—1), £(0) and £(1).
(b) Find all functions f which are continuous and bijective.

Solution. Setting y = 1 yields fl@)-f(1) =a-fQ). It f(1) #0, then f is
a constant function, false. Thus f (1) =0 and then @ = 0.

Setting & = y = —1 yields f2(—1) + 2f(=1) = 0. Since f(~1) # f(1) = 0,
we obtain f(—1) = -2, Finally, put y = 0 and = = —1. It follows that f(0) = —1.
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(b) Consider the function g : R = R, g(z) = f(2) +1. As (f(z) +1)-
(f(y) +1) = f(zy) + 1, we have

9(z) - 9(y) = g(zy).

Moreover, g(0) = 0 and g(—1) = —1, hence g(2?) = g*(z) > 0and g(—z) = —g(z);
in other words, g is an odd function and g(z) > 0 for all real z > 0.
Let h(z) = Ing(e®) for € R. Then

h(z) + h(y) = Ing(e®) + In g(e¥) = In(g(€")g(e")) = Ing(e**¥) = h(z +y)

for all z,y € R. Since h is continuous, we have h(z) = bz for some b € R".
Then g(e®) = e%* and so g(z) = z* for z > 0. Using the continuity of g yields
0 = g(0) = lim z®, thus b > 0. Consequently,

N0

zb, z>0,
9(@) = { —(-z)b, =<0,

then

zb -1, x>0,
f@) = { —(-z)* -1, =<0

for some b > 0.

12t GRADE

PROBLEM 1. Let (G, -) be a group and consider H a proper subset of G
such that:
IfzeHandy€e G\ H,thenzy € G\ H.

Prove that H is a subgroup of G.

Solution. To prove that H is a subgroup of G it suffices to show that z7lye
H, for all z,y € H.

Let z,y € H and assume by contradiction that z='y € G\ H. Then y =
z(z~'y) € G\ H, a contradiction.

PROBLEM 2. Compute [ f—(;(,%dz z € (0,00).
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Solution. We have

/e"‘z— dz _/'31; +ez+mez_332_3exd
2% +e7) z(z? + ev) *

(z® +a:e’)’
_/ & taer _3/ dz
z? +e*

=In(2? +zem)—3lnz+C=lnﬁ2+C.
T

PROBLEM 3. Consider the function f : R - R, f (z) = (22 + 1)e®. Find the
limit hm "fo ( (—) )dz

Solution. We have

As0g Ozen dz < efoz4d:t—5n,1tfollowsthat hm lf zhe dz—O

Hence it remains to compute "lglgo n fo (e - l)ldz. Since Z T e  —1<

2 22
ﬁ]—2+§:74; for all z € [0, 1], then 1 gnj;)l (eT —1) dz < 1+ & By the squeeze
theorem we obtain lim nfol (e’iv-_2 - 1) dz = 1.

PROBLEM 4. Suppose A = {f € Q[X] | f(n) € Z foralln € Z}. Prove that:
(a) A is a subring of Q[X];
(b) Z[X] is not isomorphic to A.

Solution. (a) Let f,g € A. Since (f — 9)(n) = f(n) — g(n) € Z, (fg)(n) =
f(n)g(n) € Z for all integers n, and 1 € A, the conclusion follows.

(b) Suppose by contradiction that F : Z[X] — A is an isomorphism. From
F(1) =1and F(f +g) = F(f) + F(g) for f,g € Z[X] we derive that F(a) =a
for all a € Z. Let h € A such that F(X) = h. Then F(a, X" + a,_ X4
a1X +a0) = anh™ + an_1h" "+ 4 a1h +ao for n > 0 and ag,ai,...,a, € Z.
Consequently, deg F(f) = deg f - degh, for all f € Z[X]. The function F is
surjective, hence there exists fo € Z[X] with F(fo) = X. Then 1 = degz =
deg F(fo) = deg fo - deg h, so degh =1 and h = aX +b. Moreover, b = h(0) € Z
and a+b = h(1) € Z, therefore h € Z[X] and F(f) € Z[X] for all f € Z[X]. Since
f is surjective, A = Z[X]. This is contradiction, since X(Y'H) € A\ Z[X].

Alternative solution. It is easy to prove that the polynomials X ‘X X(X+1) ,X+1
and 2 are irreducible in A. It follows that X2 + X has two decomposmons in
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irreducible factors: X - (X + 1) and 2- ﬂ% Thus A is not a factorial ring,
while Z[X] is factorial; contradiction.

II.2. SECOND ROUND - DISTRICT LEVEL

7" GRADE

ProBLEM 1. Find the disjoint sets B and C such that BUC = {1,2,...,10}
and the product of the elements of C' equals the sum of elements of B.

Solution. Remark that the sum of the elements in B is not greater than
1+2+---410 = 55, that is C has at most four elements. Otherwise the product
of elements in C should be at least 1-2-3-4-5 = 120.

We are imposed to consider the following situations:

(i) C consists of a single element. This is obviously not possible as the
product of elements in C is at most 9 and the sum of elements in B is at least
55— 9 — 46.

(ii) C consists of two elements z,y. Suppose z < y. One obtains zy =
55 — x — y which can be written (z + 1)(y +1) =56. Asz+1 < y+1< 11,
the only possibility is # + 1 = 7 and y + 1 = 8, giving the sets C = {6,7} and
B ={1,2,3,4,5,8,9,10}.

(iii) C consists of three elements, say # < y < z. The given condition
becomes zyz =55 -z —y — 2.

For z = 1, using the same techniques as above we obtain y = 4 and z = 10,
thus C = {1,4,10} and B = {2,3,5,6,7,8,9}.

For x = 2, we have 2yz + y + z = 53, or (2y + 1)(2z + 1) = 107, a prime
number. Thus there are no solutions in this case.

.Form23itiseasytoseethatzyz;3-4-5:60>55—sz—z. No
solutions.

(iv) C consists of four elements ¢ < y < y < ¢t. We are forced for = = 1;
otherwise zyzt > 2-3-4-5 = 120 > 55. We have y2t = 54 —y — z — t and
2 <y < z < t. The case y > 3 implies a contradiction as in (iii). So y = 2 and
22t 4+ z+t =>520r (2z+1)(2t+1) = 105. Thus 2z+1=7and 2t +1 = 15
which implies z = 3 and ¢ = 7, giving the solutions C' = {1,2,3,7} and B =
{4,5,6,8,9,10}.

PROBLEM 2. Consider a right triangle ABC' (m(ZA) = 90°). Let D be the
intersection of the bisector line of A with the line BC, and P, Q the orthogonal
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" projections of D onto lines AB and AC, respectively. If BQ N DP = {M},

CPNDQ ={N} and BQNCP = {H}, prove that:
(a) PM = DN;
(b) MN || BC;
(c) AH L BC.

Solution. (a) It is easy to see that APDQ is a square. As triangles BPM
and BAQ, CND, and CPB, CDQ and CBA are respectively similar, we have

PM  BP
1 - ==
o 0 = BA’
and
@ DN*CD_BQ DN _ BP

BP CB BA * DQ  BA

B
P M ND
E
ul
A [¢) C

From (1), (2) and AQ = DQ we obtain PM = DN.
(b) By Thales theorem we have

PN DN
3) Nc = o

As DN = PM and NQ = DQ — DN = PD — PM = MD, relation (3) reads

PN PM
NC T MD’
that is MN || BC.
(c) Triangles APM and PDN are equal. Let E be the intersection of lines
PC and AM. We have JAEP = (EPM + (PME = /NPD + (PND = 90°,
that is NH L AM and analogously MH L AN. Thus H is the orthocenter of the
triangle AMN and AH L MN. From MN || BC the conclusion is obvious.
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PROBLEM 3. A grid consists of 2n vertical and 2n horizontal lines, each
group disposed at equal distances. The lines are all painted in red and black, such
that exactly n vertical and n horizontal lines are red.

Find the smallest n such that for any painting satisfying the above condition,
there is a square formed by the intersection of two vertical and two horizontal lines,
all of the same colour.

Solution. It is clear that for n = 1 the vertical bars and the horizontal ones
can be differently painted. For n = 2 we paint the extreme vertical bars in black
and the middle two horizontal in red. We obtain thus a configuration with no
square of the same colour.

We prove that the answer is n = 3.

6
5

1 2 3 4 5 6

Let @ < b < c the vertical bars and z' < y < z the horizontal ones painted in
black. If in any of the three numbers sets there are two consecutive numbers. we
are done.

Suppose that this is not the case. Then the numbers b— a,c—band c—a can
be only 2,2,4 or 2,3, 5. It will suffice to show that in any way we choose z < y < z
from the set {1,2,3,4,5,6}, one of the numbers Yy—2,2—Y,z—zis 2 or one of
the pairs is 3,4 or 4,5 which is obvious by writing down any case.

PRrROBLEM 4. Consider a triangle ABC. Let B’ the reflection of B with
respect to C, C' the reflection of C' with respect to A and A’ the reflection of A
with respect to B.

(a) Prove that the area of AC'A’ is two times the area of ABC.

(b) If we erase the points A, B, C, is it possible to reconstruct them? Justify!

Solution. (a) Use the obvious fact that a median divides the triangle in two
triangles of the same area. As BA and C'B are medians in the triangles CBC' and
AC'A" we find 0(ABC) = 0(ABC') = o(BC'A") that is o(AC'A") = 20(ABC).

SECOND ROUND — DISTRICT LEVEL 27

c

A

(b) Consider the points M, N, P which are respectively the intersections of
lines AA', BB',CC" with B'C’',C'A’, A'B'. The parallel line to BC that contains
A cuts A'C" in D. It follows that AD is middle line in the triangle CC'N and BN
is middle line in the triangle AA'D, thus C'D = DN = NA'.

We conclude that, given the points A’, B',C’ we choose points N, M, P on
the segments C'A’, B'C’, A'B’ respectively such that

AN _CM _BP 1

aC'TCB T BA 3
It is clear that A, B,C can be recovered as the points of intersection of pairs of
lines A'M and C'N, A'M and B'P, B'P and C'N respectively.

8th GRADE

PROBLEM 1. Let ABC be an equilateral triangle. The perpendiculars AA’
and BB’ on the plane containing ABC at the points A and B are AA' = AB and
BB' = 1AB.

Find the angle between the planes (ABC) and (4'B'C").

Solution. Let D be the point of intersection of lines AB and A'B'.

Ax B’

SE
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It is easy to see that BB’ is middle line in the triangle AA'D and thus
AB = BD. In the triangle CAD the median CB is half of AD, thus ZACD = 90°.
By the Three perpendicular theorem we conclude A'C L CD and LA'CA = 45°
is the angle made by the planes (ABC) and (A'B'C).

PROBLEM 2. Let M C R be a finite set containing at least two elements.
We say that the function f has property P if f : M — M and there are a € R*
and b € R such that f(z) = az +b.

(a) Show that there is at least a function having property P.

(b) Show that there are at most two functions having property P.

(c) If M has 2003 elements with sum 0 and if there are two functions with
property P, prove that 0 € M.

Solution. (a) Let n be the cardinality of M and order its elements as z; <
Ty < -+ < zp. fa>0and f(z) = az + b has property P, then azy + b <
azy +b <+ <azp+b, thus f(z1) < f(z2) <--- < f(xa). As f(z;) € M for any
i=1,2,...,n we must have f(z;) = z; for any i = 1,2. Then z;(a — 1)+ b =
@z(a — 1) + b = 0, thus (z; — x2)(a — 1) = 0, implying @ = 1 and b = 0. We
conclude f(z) = z, for any = € M in this case.

If a < 0 we deduce f(zn) < f(Tn-1) < --- < f(z1) which implies f(®,) =
z1, f(@n-1) = Za,...,f(x1) = z,. As in the preceeding case we must have
a(x1 — xn) = &n — x1 which implies e = —1 and b = z, — az; = 7, + Tp.

We conclude that there are at most two functions (the last case gives a
function with property P if and only if 22 — 2 =23 —2a =--- =z, — ZTn_1).

(c) Let &3 < z2 < -++ < Tagoz the elements of M having sum 0. The
two functions that one can define are given by fi(z) = z and fo(z) = —z + b
where b = 21 + Z003. We have from the preceeding remarks that fo(z;) = 2003,
F2(22) = 2002, - - -; f2(T2003) = @1, thus fo(z1) + fa(z2) + -+ fa(T2003) = 0. This
implies b = 0 and in turn fy(z) = —=z. It follows fa(z1002) = —Z1002 and on the
other side fa(21002) = T1002. We conclude z19p2 = 0 € M.

PROBLEM 3. Consider an array nxn (n > 2) with n? integers. In how many
ways one can complete the array if the product of the numbers on any row and
column is 5 or —5?

Solution. The number of ways one can choose entries with =+5 is n!. The +
signs of the 5-th and the + 1’s can then be chosen in 27" ways. Thus the total
number of array completions is 27 n!.

PROBLEM 4. (a) Let MNP be a triangle with ZM NP > 60°. Prove that
M P is not the smallest side of the triangle.
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(b) A plane contains an equilateral triangle ABC. The point V', that doesn’t
belong to the plane (ABC) is such that /VAB = LVBC = LVCA. Prove that if
VA = AB, then all sides of the piramid VABC are equal.

Solution. (a) In a triangle the side opposing a smaller angle is smaller. As
the sum of the angles in a triangle is 180°, the smallest angle cannot be larger than

) 60°. Thus, if L/MNP > 60°, then M P is not the smallest side of the triangle.

(b) It will be enough to prove that /VAB = LVBC = LVCA = 60°. These
will simply imply that AB = VB =VA4 and VA = VC as asked.

By way of contradiction, suppose LVAB = [VBC = (VCA > 60°. From
(a) we must have VB > VA = AB = BC. In the triangle VBC we have /VBC >
60°, thus V'C is not the smallest side. Then VC > BC = CA. In the triangle V AC
we have ZVCA > 60°, thus VA is not the smallest side. But VA = CA < Ve,
a contradiction. The case ZVAB = (VBC = /VCA < 60° can be treated in a

similar manner using a): if /MNP < 60°, then M P is not the largest side of the
triangle. -

9" GRADE .

PROBLEM 1. Find all functions f: N* = N* such that for any n,n > 1
the number

FO+F@)+--+ f(n)
is the cube of a number at most equal to n.!

Solution. As the function f takes only positive values we have (1) < f()+
f2) << f) + £(2) +---+ f(n), for any n > 1. The n listed numbers are by
hypothesis elements of the set {1%,2%,...,7%}. In conclusion O+ Ff2)+---+
f(3) =n® for any n > 1. Thus £(1) = 1 and

fl) = (F) + @) + -+ f(n) — (F(1) + £(2) +o+ f(n-1)
=n®-(n-1P%=3n2-3n+1

for any n > 1.

PROBLEM 2. Find n € N, n > 2 and digits a1,as,...,a,, such that

Va8 an — \/@1G3 .. a1 = Ap.

! N* is the set of positive integers
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(at@z - <-a, is the n-digit number with digits a1,as,...,ax,).

Solution. Let © = @1az...ap—1 € N. We get @1a3...a, = 10z + a,; and
VI0z ¥ an — /T = a, or 10z + a, = = + a2 + 2a,/7.

The last relation rewrites 9z = an(an + 2y/Z — 1). As a, < 9 we get = <
an + 2z —1or (yz —1)? < a, < 9 which implies /= < 4 or z < 16.

On the other side a,, # 0 (otherwise z = 0) and \/z = ‘%J'Z“—a"n_“: is a rational
number. Thus z must be a perfect square. As v/10z + a, = a, + /7 we get that
10z + ay, is a perfect square. Considering the possible case z = 1,4,9,16 we find

z =16, a, =9 and n = 3. It is easy to verify that v/169 — /16 = 9.

PROBLEM 3. On the blackboard there are given points A, B,C,D. Vlad
constructs the points A’, B',C’, D' in the following manner: A4’ is the reflexion of
A with respect to B, B’ is the reflexion of B with respect to C, C’ is the reflexion
of C with respect to D and D’ is the reflexion of D with respect to A. Maria
eliminates from the blackboard the points A, B,C, D.

Can Vlad reconstruct the positions of these points? Justify; vectors can

be used.
— ey ——
Solution.‘l)let a, b,_)c, d denote the vectors AB, BC,CD, DA respectivel;n
We have @ + b + ¢ + d = 0. Denote also by z, y, z the vectors A'B’, B'C",

—
C'D'. We have

e T S - -

z =AB =AB+BB =-a +20b

- = = = 2 =

y=B'C'=BC+CC"=-b +2¢

= — - o o - 3 >

z=CD=c+2d=-c+2(-a-b—-c)=-2a—-2b-3c¢c).

e T T T T S S S = -

5 Itﬁ(})llowsb:_%c—_)y,a:2{)_)—z:é)c —z)y - and z = 8¢ +
4y+2z—4c+2y—-3c.Finally,c:%6y+2z—z).

&
5|

To recover D we consider the vector — ¢ = C'D, with C’ as origin. Then A
is the middle of DD’, B the middle of AA’ and C the middle of BB'.

PROBLEM 4. A set A of nonzero vectors in the plane have propert_y) (§2 if it
consists of at least three elerrﬁnts _)a.nd for any u € A there are vectors v, w € A
such that v # w and v = v + w.

(a) Prove that, for any n > 6, there is a set of vectors having property (S).

(b) Prove that any finite set of vectors with property (S) has at least six
elements.

Solution. (a) Proceed by induction on n 2_6’ For n = 6 consider a triangle

— = —
ABC and the vectors AB, BC, CA, BA, CB, AC.

!
S
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For n > 6 and A a set of n nonzero vectors vy,...,v, with property (S),
let v;, v; two different vectors from A which realize the minimum angle between
vectors in A.

We have v; +v; € A, otherwise the minimality conditions is brocken. Thus
the set AU {v; + v} has n + 1 vectors and satisfies property (S).

(b) Consider a configuration with all vectors having common origin O, thus
A= iOX Loeos 0X,}. Congder tv_ve non-parallel directions given by vectors u
and v, in such a way that u nor v are parallel with any of the vectors in A or
with any of the vectors XiXj,i# 5.

e —

Denote OX; = a;u +b; v the decomposition of OX; for i = 1,.. .,n. The
set of real numbers M = {ay,ay,... ,a,} has a property similar to (S). Let a be
the maximum of M. It is clear that a > 0 and there are b,c > Osuch thata = b+c
and b # c. If not a cannot be the largest element of M.

In a similar way, for the minimum of M , say a', we can find b',¢’ € M with

b,¢' < 0and b # ¢ such that a’ = b + ¢. We have thus produced six different
elements of M.

10" GRADE

PROBLEM 1. In the interior of a cube there are 2003 points. Prove that, one
can divide the cube in more than 20033 smaller cubes, such that any of the given
points is in the interior of a small cube (not on the borders).

Solution. There are many obvious ways in proving the result. The following
is maybe the most elegant.

Consider a partition of the cube in n® equal small cubes. Take n as large
such that all the small cubes which have a face in common with the faces of the
given cube did not contain points in the interior or on the faces. Choose then n
such that n? > 20033 to answer the condition is the problem for the small cubes
discussed and the remaining cube.

PROBLEM 2. Determine all functions f : N* — M having the property that
L+ fm)f(n+1) =20 (f(n + 1) - f(n)),
for any n € N*, in any of the situations

(a) M =N;
(b) M =Q.
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Solution. Let f: N* = R be the given function. If f(n + 1)f(n) = —1 then
f(n+1) = f(n) and f?(n) + 1 = 0 which is not possible
We can thus write the recurrence relation as

fe+t1)—f(n) _ 1

1+ f(n)f(n+1)  2n%
Put z, = arctan f(n) or f(n) = tanz,. The given relation rewrites
1
tan(Tpi1 — Tn) = e
or
+ pnT

1
Tpi1 — Ln = arctan —— o

with p, € Z. But
n—1 . r
Z arctan — 2k2 Z(a.rcta.n(% + 1) — arctan(2k — 1)) = arctan(2n — 1) — 1
k=1

Thus

n—1
arctan(2n — 1) — — Z(($n+1 — Tn) = PkT) = T — Ty — laT,

where I, € Z. We obtain

m
&, = arctan(2n — 1) + z; — 2t Inm

and as a consequence

) _nla+1)-1
) a-na-1)

2n —1+tan (z; — §

f(n) = tana, = 1-(2n—1)tan (2

where a = tanz; = f(1). We must have
a¢{———|neN n> }

(a) If f: N* = N, for a > 2 we have f(3) = 342 < 0, a contradiction. If
a =0 then f(2) = i ¢ N. Thus a =1 and f(n) = 2n — 1 which verifies the given
relation. )

(b) Denote f(1) =a€ Q,a ¢ { ;lneN,n> } The function given by

nla+1) -1
fln) = a—n(a—1)
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verifies the given relation.
PROBLEM 3. Let ABC be a triangle.
(a) Prove that if M is any point in its plane, then

AMsinA < BMsinB + CM sinC.

(b) Let Ay, By, Cy be points on the sides BC, AC and AB respectively, such
that the angles of the triangle A; B1C; are in this order a, 3,+. Prove that

Z AA;sina < Z BC'sina.

Solution. (a) Consider a complex plane with origin in M. Denote by a,b,¢
the complex coordinates of A, B, C, respectively. As a(b—c¢) = b(a — c) + c(b - a)
we have |a| |b—a| = |b(a —c) + c(b—a)| < |b]|a—¢| +|c| |b—a|. Thus AM - BC <
BM-AC+CM-ABor 2R-AM -sinA < 2R-BM -sin B+ 2R -CM -sin C which
gives AM -sinA < BMsinB +CM -sinC.

(b) From (a) we have

AA;sina < AB;sin 8+ AC) siny

BB sinf3 < BA;sina + BC siny
CCysiny < CA;sina+ CB;sinf8
which summed up give the desired conclusion.

PROBLEM 4. Given positive numbers a,b,c,d such that a > ¢ >d>b > 1
and ab > cd, prove that the function f : [0,00) = R, f(z) = a® + b® — ¢* — d*, is
strictly increasing.

Solution. Write

f(z)=a® +b’—c—(c)z ( )—dm x
=@ e - @ e () -]
= [ (6 -+ (%) 1]

Asb>1,2>1,£>1,d>1and % > 1, all functions involved are increasing
and positive, hence f is increasing.
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11** GRADE

PrOBLEM 1. In the Cartesian plane zOy consider the collinear points
Ai(=i,yi), i = 1,4, such that there are invertible matrices M € M,(C) having the
first two rows (1, %2, 3, 24) and respectively (y1,v2,93,Ys).

Prove that for such a matrix M the sum of elements of M1 is independent
of M.

Solution. Let az + by + ¢ = 0 be the equation of the line that contains the
points 4;, i = 1,2,3,4. Remark that ¢ # 0; otherwise az; + by; = 0 for i = 1,2,3,4
implies det M = 0.

Let M~! = (214), that is

4 4
thzhk = §1k, and thzhk = 62k for k = 1,2,3,4.

h=1 h=1
We deduce
4
> (azn + byn)znk = adi + b6 for k=1,2,3,4.
h=1
Thus .
> = —‘“‘”‘—jb‘&i for k=1,2,3,4.

Summing over k we conclude that the sum of elements of M~ is —lﬂc'—”.

PROBLEM 2. Let f : [0,1] — [0,1] be a function that is continuous at the
points 0 and 1, has limits from the left and from the right at any point and verifies
f(z - 0) < f(z) < f(z+0) for any z € (0,1).

Prove that there is zo € (0,1) such that f(zo) = .

Solution. Denote A = {z € [0,1] | f(z) > z}. As £(0) > 0 we deduce 0 € A.
Consider zo = sup A € [0, 1]. We have the following posibilities:
(i) zo = 0. Consider z, € (0,1], limz, = 0. As f(z,) < z, and fis
continuous we get f(0) < 0 or f(0) = 0.
(i) o = 1. As above, let z, € A with limz,, = 1. From f(z,) > z, we
deduce by continuity £(1) > 1 which together with £(1) < 1 reads f1)y=1
(i) z0 € (0,1). If z, € (20,1) with limz, = zo from f(20,0) < zo and
f(zn) < 2y we get f(zo) < @
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Suppose f(zo) < zo. Then zo ¢ A and as zp = supA we find y, € A,
limy, = 9. But y, < zo and f(yn) > y, implies f(zo — 0) > zo. In conclusion
f(z0) > @0, a contradiction. Thus only f(zo) = =, is possible.

PROBLEM 3. (a) Prove that any matrix A € M,,(C) is the sum of n matrices
of rank 1.

(b) Prove that I, cannot be written as the sum of less than n matrices of
rank 1.

Solution. (a) Let for A € M,,(C). Ay, denote the matrix obtained replacing
by 0 all rows except the k*. If any of the rows of 4 is nonzero, then rank 4, # 0,

k=1,...,nand 4 = E A is a possibility of writting A as in the problem.
=1
If the matrix has p nonzero rows and n — p zero ones consider

=(m—p+1)B+ A, +--+ A,

where B = *11 7=pri 4k, and ky, ..., k, correspond to the nonzero rows. For A = 0,
the result is obvious.

(b) Suppose that I,, = By + - - - + By, where Bj,i=1,...,k, k < n are rank
1 matrices. As rank (A4 + B) rank A + rank B for any matrices 4, B, we obtain
n =rank I, < rank(B;) + --- +rank (Bg) = k < n, a contradiction.

PROBLEM 4. Let a > Landlet f:[£,a] = [1,a] be a bijective function.
Suppose that f~1(z) = f(m) for any z € [1,a]. Prove that:

(a) f has at least a discontinuity point;

(b) if f is continuous at 1, than f has an infinity of discontinuity points;

(c) there is a function f verifying the given conditions and possesing only a
finite number of discontinuity points.

Solution. (a) As fo f = id we find that for any z € [%,a] we have
that is f(f(z)) =

If fis contmuous then, being injective, it is strictly monotone. Thus fofis
increasing but; is decreasing, a contradlctmn

(b) As f(f( 2) =2z = f(f(2)) we get f7'(z) = f(L) implying f(x) -

f(i)=1foranyz e [1,a]. We obtam f2(1) =1 and as £(1) > 0 we conclude

f(l) = 1. If f has a finite number of points of discontinuity we can find a,b € R,
a <a<1<b<asuch that f is continuous on [a,b]. As above, we obtain that
f is monotone on [a, b], say increasing. Suppose f([a,b]) = [c, d. Thus c< 1< d.
Let 2o € (max(a €),1). From f(zo)f " (zo) = 1 and f(z) < f(l) =1 we get
FHzo) = f(%) > 1= f~1(1), a contradiction with the fact that f~1is increasing
on [c, b].

1 —
TG@y =%
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(c) Consider f : [4,3] — [3,3] defined by f(}) =2, f(}) = L, f(1) =1,
F2)=3, f(3) =1 and /() = = forz € (2,3).

Put f(z) = +—= (z) ST forz € (4, 1) As f(3,1) = (4, 1) and the inverse
on (%,1)is f- 1(z 5E we get f(2) = iy = £% on (4, 1). In the same way
we are imposed to define f(z) = —+ 5 = =z for T e (1,2).

=

12th GRADE

PROBLEM 1. Let (G,-) be a finite group with unity e. The least positive
integer with the property that 2™ = e, for any z € G, is called the ezponent of the
group G.

(a) For any prime p, p > 3, show that the multiplicative group G, consisting
of those matrices of the form

1
0
0

is noncommutative and has exponent p.

(b) Show that, if (G, o) and (H, e) are finite groups with exponents m respec-
tively n, than the group (G x H, ) defined by (g, k) * (¢',h') = (gog',heh'), for
any (g,h),(g',h') € G x H, has the exponent equal to the least common multiple
of m and n.

IS
o

e) with @,b,é € Z,,
i

(c) Deduce that any natural number n, n > 3 is the exponent of some finite
noncommutative group.

Solution. (a) Let

i00 iio
A=10 11 B=(0 1 0].
001 00 1
A short computation shor ows that AB # BA, thus G, is noncommutative. Let
0 0 b
X =I5+ C where C = (ﬁ 0 ¢ . Weobtain X7 =I5 + pC + 22002 As)p
000

is prime, 2 | p— 1 and as pY’
exponent of G is p.

(b) Denote by k the exponent of G x H. If e; € G, e, € H are the unities of
the two groups, from (g*, h¥) = (g, h)* = (e;,es) for any g € G and h € H we get
gF =), hk =e,.

03 for any Y in G, we conclude X? = I, thus the
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Let c,r be positive integers such that r < m and k = mec + r. We have
e1 = gk = (¢g™)-g" = g" for any g € G, and as m is exponent of G, we have
r =0, thus m | k. In the same way r | k, concluding [m, n} | k. As m | [m,n] and
n | [m,n] we deduce k = [m,n].

c) Let Dy the group with 8 elements of the isometries in the plane that keep
invariant the vertices of a square. Dy is not commutative and its exponent is 4.

If n is not a power of 2, let p > 3, p | n. Consider G, x Z,, with exponent n.
Ifn=2Fk>3 consider Dy X Zn.

ProBLEM 2. Consider two different continuous functions f,g : [0,1] —
(0,00), such that fol f(z)dz = fol g(z) dz.

Let (zn)n30 the sequence defined by z, = [; ! ({;2);;: L dz.

(a) Prove that nlgxgo ZTp = 00.

(b) Show that the sequence (2,),30 is increasing.

Solution. (a) Suppose f < g. The function h = f — g is continuous, not
identically zero and h < 0. Thus fol h(z)dz < 0, a contradiction. Thus, we can
find ¢ € [0,1] with f(c) > g(c) or g{g > 1.

As 5 is continuous, let [a, 8] be an interval where % > A > 1. We have

[10(48) 10> [ 50 (15) e [ s

As A >1and ff f(z)dz = 0 we get limz,, = oo.
(b) Ty — zn = [ (fnﬂ(’)‘93:152))(’(1)_9(’)) dz > 0, as the difference
"+ (z) — g"*1(z) has the same sign as f(z) — g().

PROBLEM 3. Let K be a finite field in which the polynomial X2 — 5 is
irreducible in K[X]. Show that:

(a) 1+1#0; -

(b) for any a € K, the polynomial X® + a is reducible in K[X].

Solution. (a) f1+1=0then5=1andz’-5=2>~1(z—1)(z+1), a
contradiction.

(b) If a = 0 the result is obvious. For a # 0 consider f : K* — K*,
f(z) = 2. A straightfull calculation in K[X] gives that f(z) = 1is equivalent to

(z-D@'+2° +22+2+1)=0

or
4712%(z - 1)[(2z + 2271 +1)2 - 5] = 0.
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But (22 + 2z~! + 1)2 cannot be 5 because otherwise the polynomial 2 — 5 should
have a root in K, contradicting the irreducibility. )

Thus f(z) = 1 implies = 1 property that simply implies that f is injective,
thus bijective as defined on a finite set. In conclusion for any a € K, a # 0 there
is a b € K such that b° = a, proving thus that the polynomial z° — a has a root
which implies that it is reducible.

PrOBLEM 4. Consider the continuous functions f : [0,00) — R and
g:[0,1] = R. If lim f(z)= L € R, prove that
z—00

lmoxo—/ f(z)g dz—L/ g(z)dz.

Solution. We can suppose L = 1 and let h = f — 1. We have
1 /M z 1"z
/ f(a:)g dz = _/o h(z)g (;) dz + E/) g (—n-) dz
n 1
z
= ;/0 h(z)g (;l)’dz:+/0 g(z) dz.

Let M = max |g(z)|. Then

o
<z / Ih(z)| dz.

- on (z)g (%) dz

Denote by H : [0,00) — R the antiderivative H(z) = [; |h(t)| dt. By the Hospital
rule, as H' = |h| we get:
lim —/ |h(z)|dz = hm A=) _ lim |h|(z) =0,

T T—00

n—00

finishing then the proof.
11.3. FINAL ROUND

7th GRADE

PrOBLEM 1. Find the maximum number of elements which can be chosen
from thk set {1,2,3,...,2003} such that the sum of any two chosen elements is
not divisible by 3.
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Solution. Consider the sets A = {3,6,9,...,2001}, B = {1,4,7,..., 2002},
and C = {2,5,8,...,2003}.

The choice of a set as stipulated allows to use at most one element from A
and elements from either B or C. Since |B| = |C| = 668, we can obtain at most
669 elements; an example is BU {3}.

PROBLEM 2. Compute the maximum area of a triangle having a median of
length 1 and a median of length 2.

Solution. Let ABC be the triangle, G be its barycenter and BG = 2
CG = £. 1t follows

uw
wm-

area(ABC) = 3 - area(BCG) < 3- T = %"
the equality being obtained when BG L CG.

PROBLEM 3. For every positive integer n consider

A, =1/49n2 +0,35n.

(a) Find the first three digits after the decimal point for A;.
(b) Prove that the first three digits after the decimal point A, and A; are
the same, for every n.

Solution. (a) A; = /49,35=17,024....
(b) We have to prove that an+0,024 < 4, < a, +0,025, where a, = |4,].
From (7n)? < 49n2+0,35n < (7n+1)? it follows that a, = 7n, and the inequalities

(7n +0,024)* < 49n% + 0,35n < (7n + 0, 025)?

can be easily checked.

PROBLEM 4. In triangle ABC, P is the midpoint of side BC. Let M € (AB),
N € (AC) be such that MN || BC and {Q} be the common point of MP and
BN. The perpendicular from Q on AC intersects AC in R and the parallel from
B to AC in T. Prove that:

(a) TP || ME;

(b) LM RQ = LPRQ.

Solution. (a) The conclusion says & 9— QP

This relation is obtained from 9— (usmg similar triangles QRN and
QT B) and from %% = g% (in simila.r triangles QMN and QPB).
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A

T

(b) Let {S} = TP N AC; TBSC is a parallelogram. In the right triangle
TRS, the median [RP] is equal to PS, whence /PRS = /PSR = /MRA. 1t
follows m(ZM RQ) = 90° — m({MRA) = 90° — m(/PRS) = m(LPRQ).

8th GRADE

PROBLEM 1. Let m,n be positive integers. Prove that the number 5" + 5™
can be represented as sum of two perfect squares if and only if n —m is even.

Solution. Tf m and n are both even then m = 2k, n = 2l and 5°* 4 5% =
(5k)2 rt)'l

If m and n are both odd then m = 2k + 1, n = 2l + 1 and 5%%+1 4 524! =
(5k +2- 51)2 + (5’ —9. 5k)2.

For the converse, notice that if m and n have different parity then 5™ +5" =
52k+1 4 521 = §(mod 8) and, since the residues of the squares (mod 8) are 0,1,4,
the sum of two squares cannot be 6(mod 8).

PROBLEM 2. In a meeting there are 6 participants. It is known that among
them there are seven pairs of friends and in any group of three persons there are
at least two friends. Prove that:

(a) there exists a person who has at least three friends;

(b) there exists three persons who are friends with each other.

Solution. (a) If every per%on has at most 2 friends then the maximum number
of pairs of friends would be &2 = 6.

(b) Suppose A is friend wmh B, C and D. Since among {B,C, D} there are
at least two friends X,Y, the group {4, X,Y} fulfils the requirements.

PROBLEM 3. The real numbers a, b fulfil the conditions

{)0<a<a+i<h

(ii) a®® + % = 1.

Prove that b has the first 12 digits after the decimal point equal to 9.
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Solution. Cearly 0 < a <b< 1, whence b> 5% =1~ a**
Therefore, in order to prove the conclusion it is euough to show that a® <
1z, that is a!® < o5+ This follows from a < <b-1< 1 whencea'® < v < o5

PROBLEM 4. In tetrahedron ABCD, G1, G» and G3 are barycenters of the
faces ACD, ABD and BCD respectively.

(a) Prove that the straight lines BG:, CG, and AG3 are concurent.

(b) Knowing that AG3 =8, BG1 =12 and CG3 = 20 compute the maximum
possible value of the volume of ABCD.

Solution. (a) Let M be the midpoint of [CD]. Using mangle ABM we get
G1G || AB and [AGa), [BG:] have a common point G such that 2 G(,] = A8 -

6,02

BM. = 3. In the same way CGj intersects [BG1] in a point G such that 5 —— =3.
2

This shows that G = G'; also &% = 4% = &% =3-

(b) From (a) we get GA =6, GB =9, GC = 15. Therefore,

GA-GB-GC 6-9-15
vol (ABCD) = 4vol (ABCG) < 4- 5 =42 =540,

and the equality is obtained when GA L GB L GC LGA.

9th GRADE

PROBLEM 1. Find positive integers a, b if for every z,y € [a,b], %+§ € [a,b].

Solution. From z =y = b we get > a,henceab < 2,andz =y = a
leads to % < b, therefore ab > 2. It follows ab = 2, whence a = 1, b = 2. Also
z,y € [1,2] implies § + 3 < 3+ < 14 1, which shows that a = 1, b=21is a

T
solution.

PROBLEM 2. An integer n, n > 2 is called friendly if there exists a family
Ay, A, ..., Ay of subsets of the set {1,2,... ,n} such that:

(1) i € A; for every i = T,n;

(2) i € A; if and only if j € A;, for every distinct i,j€{1,2,...,n}

(3) A; N A; is non-empty, for every i,j € {1,2,...,n}.

Prove that:

(a) 7 is a friendly number;

(b) n is friendly if and only if n > 7.

Solution. (a) For n =7 we can take

A ={2,3,4}, A;=1{3,5,6}, As={4,57}, Ai={2,6,7}
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A5 ={1,4,6}, A¢={1,3,7}, A7={1,2,5).

(b) We can prove that every n > 7 is friendly using induction on n. The
starting step has already been proven.

Suppose now that for some n > 7 there exists a family of sets 4;,..., A,
which shows that n is friendly. Then the family By = Ay,...,B, = A, and
Bni1={1,2,...,n} proves that n + 1 is also friendly. .

It remains now to prove that every friendly number n is at least 7. We firstly
notice that if Ay, A,,..., A, is a family of sets which shows that n is friendly then
each A; has at least 3 elements. Indeed, if 4; C {4k} then A; N 4; = {k} and
A;N Ay, = {j}, whence k € A; and j € Ay, contradiction.

Consider now a n x n table with elements 0 or 1, where the element in row i
and column j is 1 if and only if j € A;. This table has 0 on the principal diagonal
and, for the remaining elements, the number of zeros equals the number of ones
for (i # j we have a;; = 0 if and only if a;j = 1). Hence the sum of the table’s
elements is (n? — n)/2. Since the sum of the elements in each row is at least 3, it
follows n? — n > 6n, whence n >T.

PROBLEM 3. Prove that the midpoints of the altitudes of a triangle are
collinear if and only if the triangle is right.

Solution. In triangle ABC, the midpoints A’, B',C" of the altitudes belong
to the sides (produced if needed) of the median triangle M NP.

If triangle ABC is acute then A’, B',C" are on the sides of M N P, therefore
they cannot be collinear.

If triangle ABC is obtuse then two of A’, B',C" are on the productions of
two sides of M NP and the third is on the third side, that is they are not collinear.

- Finally, if ABC is right-angled then A’, B’,C" are on the straight line drawn

between the midpoints of the legs.

PROBLEM 4. Let P be a plane. Prove that there exists no function f:P—>
P such that for every convex quadrilateral ABCD, the points f(4), f(B), f(C),
f(D) are the vertices of a concave quadrilateral.

Solution. Suppose that such a function exists. Consider a convex pentagon
ABCDE and let f(A) = A', f(B) = B', f(C) =", f(D) = D', f(E) = E'. The
quadrilateral A'B'C'D’ is concave; without loss of generality we can assume that
D' € int A'B'C". Since A', B',C", E' are the vertices of a concave quadrilateral, it
follows that E’ € int A’B'C" or, for instance, A’ € int B'C'E".

In the first case one of the quadrilaterals with vertices (4',B",D",E"),
(B',C',D',E") or (A',C",D', E') is convex and in the second case (B',D", 4", E")
or (C',D', A', E') lead to a convex quadrilateral.
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10t* GRADE

PROBLEM 1. Let OABC be a tetrahedron such that OA 1 OB 1 OC 1 O. A,
r be the radius of its inscribed sphere and H be the orthocenter of triangle ABC.
Prove that OH < 7(v/3 + 1).

Solution. From OC L OA and OC L OB we get OC L (OAB), hence
OC L AB. From CH 1 AB it follows (OCH) L AB, therefore OH 1 AB. In
the same way OH L AC, whence OH L (ABC). Denote now OA4 = a, OB = b,
OC = c. Then

area(4BC) = %\/22,432 -AC? - Y AB

4\/2 D@ +b)(a2 + )~ (a2 + 122 = -,/zazb‘-’.
From 3vol (ABCO) = OH - area(ABC) = r(area(AOB) + area(40C) +
area(BOC) + area(ABC)) we get OH - 3" a2h? = T(Zab +VY azbz) and we
have to prove that )" ab < /33 262, which is (almost) obvious.

PROBLEM 2. The complex numbers z;, i = 1,...,5, have the same non-nil
modulus and Z Z= 2 27 =0.
i=1
Prove that zl,zz, -,25 are the complex coordinates of the vertices of a

regular pentagon.

Solution. Consider the polynomial P(X) = X5 +aX* +bX3 + X2 4 dX + e
with roots z¢, k = T,5. Thena = —3Y 2 = 0 and b = Sz = -(221) -
5 iy2=0. Denoting by r the common modulus and taking conjugates we get
also 0=Yz =3 5 = m > 21222324, whence d = 0 and 0 = Y7z =

4
> ZTZZ = Ihmm L 412273, therefore ¢ = 0. It follows P(X) = X% e, so
21,22,...,25 are the fifth roots of e and the conclusion is proved.

PROBLEM 3. Let a,b,c be the complex coordinates of the vertices A, B, C'
of a triangle. It is known that |a| = [b] = |¢| = 1 and that there exists a € (0,3)
such that a + bcosa + csina = 0. Prove that 1 < area(ABC) < ”‘/_

Solution. Taking moduli we get, using bb=ce=1,1 = [a?] = [bcosa +
csinal? = (beosa + csina)(beosa + esin a)=1+sinacosa ( +£).

This shows that b* + ¢* = 0, whence b = +ci, so m(ZBOC) = 90°.

Noticing now that the vector ()M =cosa OB +sina-0C correspond to

a point M belonging to the small arc BC of the unit circle, we see that A is the
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reflection of M into O. This proves that the altitude from A of triangle ABC is
larger then /2 but at most 1 + %, therefore

%.\/5.\/5<area(ABC) < %(1*'?)‘/5: 1+2\/§’

PROBLEM 4. A finite set A of complex numbers has the property: z € 4
implies 2 € A for every positive integer n.
(a) Prove that ) z is an integer.

2€EA
(b) Prove that for every integer k one can choose a set A which fulfils the

above condition and ) z =k.
z€A

Solution. We will denote by S(X) the sum of the elements of a finite set X .
Suppose 0 # z € A. Since A is finite, there exists positive integers m < n such
that 2™ = 2", whence 2"~™ = 1. Let d be the smallest positive integer k such
that z¥ € 1. Then 1,z,22,...,2%" are different and their d-th power is equal
to 1, therefore these numbers are the d-th roots of the unity. This shows that

A\{0} = U Up,, where U, = {z € C | 2# = 1} Since S(U,) = 0 for p > 2,
k=1
S(U1) =1 and U, NU, = Uy,,q) we get

S(A) =" S(Un) = Y SWn, NUn) + Y. S(Un, NUn,NUy,) +--- = integer.
k k<l k<I<s

(b) Suppose that for some integer k there exists A = L"J Uy, such that

k=1
S(A) = k. Let p1,ps,...,pe be the distinct primes which are not divisors of any
ng. Then
S(AUU,,) =5(4) + S(Up,) = S(ANUp,) =k-SU1) =k -1,

Also

S(AU Upipaps Y Upypaps Y Upapaps Y Upspspe)
=5(4) + S(Umpzm) + S(Ummps) + S(UP?IMPG) + S(Upspsps)
= S(ANUpipaps) =+ + S(ANUpypaps N Upypaps) + - -
- S(A n Upnpzpa n Ummps n Umpwe n Upspspe)
6
=k+4-0-4-SU1) - > 5(Up,)

k=1
+10S(Uy) = 5S(Uy) + S(U1) =k —4+10—5+1=k+2.
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Hence, if there exists A such that S(A) = k then there exist B and C such
that S(B) = k — 1 and S(C) = k + 2; the conclusion follows now easily.

11** GRADE

PRrROBLEM 1.- Find the locus of the points M from the plane of a rhombus
ABCD such that
MA-MC+MB-MD = AB?.

Solution. Take coordinates such that A(a,0), B(0,b), C(—a,0), D(0,-b),
and let M(z,y). Then

ViE—a?+y2 - Ve+a)?2+y2 + Va2 + (y =02 Va2 + (y +b)? = a® + b7

Using Cauchy’s inequality we get

VeE=a?+y? V@ +a? + 12+ /2 + (y—b)* - Va? + (y + )2
>(a—z)(a+z)+y2+22+ (b—y)(b+y) = a® + 2.

Therefore, if M belongs to the locus then (a—=z)y = (a+z)y, that is zy = 0.

If y = 0, the equation of the locus reduces to a® + y? + |y — b*| = a? + b2,
which is equivalent to y € [—b, b].

In the same way, y = 0 implies z € [—a,a).

Finally, the locus is [AC] U [BD].

PROBLEM 2. Consider the real numbers 1 < a; < as <az < a4, 11 < zp <
z3 < 74 and the matrix M = (a}’)
Prove that det M > 0.

ijETd"

Solution. We will prove inductively that det My > 0 for k € {2, 3,4}, where

Mj, is obtained from M by taking the first k£ rows and columns. Denote b; = “;’;‘ s

~whence 1 < b < by <bs.

For k=2,
1 1

— o122
det My = af b g2
1 2

> 0.

For k =3,

1 1 1
bfl bfz bi’s
byt b3 b3?

det M3 = o T2t = af‘“’”“D(zl,xg,zg).
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Consider the function f: R = R, f(z) = D(z1, 2, ). Its derivative is

11 .
fl@)=bmby |y oy | = biInbs = ab — b,
1 1

1

b3t b3?
with a, 3 > 0, has exactly one root 7 and is positive for z > r (because by > b;).
Since f(z1) = f(z2) = 0 it follows that r € (z1,z2) and, because f is strictly

increasing on (r,00), z > z2 = f(z) > f(zs) = 0.
For k = 4, as above

1 1 1 1
BB b b
BB b3 byt

T1 T2 3 T4
b bER BES B2

det My = a»;l+12+18+3‘ = af1+rz+rs+z4D(Ih

T, T3, T4).

The function g(z) = D(z1, 22,23, ) has derivative of the form

9@ =aig =5+ 05 =5 (a (2) =5 () +9) =sinie)

and h'(z) = 0 has exactly one root. This show that ¢’(z) = 0 has at most two roots
1,725 since g(z1) = g(x2) = g(z3) = 0 it follows that z; <71 < zo < 1y < T3.
The conclusion comes now from the fact that g is a continuous function which
does not vanish for z > z3 and lim g(z) = oo.
T—00

PROBLEM 3. The real functions f, g are such that f is continuous and g is
increasing and unbounded. It is known that for every sequence (z,,) of rational
numbers with (z,), = oo, lim f(z,)g(z,) = 1.

n—00

Prove that xl}én;o fl@)g(z) =1.

Solution. We firstly notice that there exists My such that g(z) > 0 for
z > My and there exists M > M, such that f(z) > 0 for & > M, (if this is
not the case, then there exists a real sequence (yn)n — 00, ¥y > My, such that
f(yn) < 0 and, taking for each y, a rational 2, such that y,, — 1 < z, < yn + 1
and f(zn) < 0 — this is possible because f is continous in y, — we get a rational
sequence (z,), — 0o such that f(z,) - g(zn) < 0).

We will now prove that for every € > 0 there exists § > M such that for every
rational > 4, |f(z)g(z) — 1| < e. Indeed, if for each &, := n there exist some
rational z, > d, such that [f(z,)g(zn) — 1| > € then (z,), would be a rational
sequence such that (z,), — oo and f(zn)g(z,) # 1, contradiction.

Takenow e > 0and § > M such that for every rational z > 8, | f(z)g(z)—1| <
5. Consider a real =g > d and choose z; > zo. Since zli_'n;0 f(z) = f(xo), there
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exists rationals a,b > & such that a < z < b and [f(a) = f(z0)] < e
1)~ £(z0)| < 558 e

It follows

H0ole) > F(an)a(@) > ( (o) - ) 9@ > @o(@) - £ > 1 ¢

and
f(@o)g(zo) < f(wo)g(b) < (f ®) + 29(6—“» 9(b) < f(b)g(b) + g <l+e.

This shows that for an arbitrary real zg > 4, |f (z0)g(z0)
the proof.

—1] < € and ends

PROBLEM 4. Let A be a 3 x 3 matrix with real entries. Prove that:
(a) if f is a real polynomial without real roots then f(4) # 0s;
(b) there exists a positive integer n such that

(A+ A7y2n = g2n (A7)
if and only if det A = 0.

Solution. (a) If f has no real roots then f(z) has a constant sign; we can

» assume that f(z) > 0 for every z € R; since . EIEM f(x) = oo it follows that the

continuous function f has a minimum m > 0. The polynomial g(X) = f (X)-m

p its i : 2
has no real roots, therefore its irreducible real factors are of the form X2 + 24X +
a® + b2, We notice now that for real a,b

det(4 + 204+ (a® + %) I5) = det(A + aly + bily) - det(A + al; — bil3) > 0

as a product of two complex conjugate numbers, and det(—213) = —%8 <0,
therefore the equality 9(A) = =215 is impossible.

(b) If det A = 0 then A - A% = A* . A = 0, hence (A+A4%)2 = A% 4 (472,

For the converse, if (A + A*)2" = A2n 4 (A*)*™ and d = det A # 0, then
multiplying with A%" we get (A2 +dI3)2" = Atn +d”" I3, whence f(A) = 03, where
F(X) = (X2 +d)> — X" — 2" Since FI(X) = 4nX[(X2 + q)2n-1 X4n=2] hag
only the simple root 0, it follows that 0 is the only root of f, that is f(X) =
dX? . g(X), where g is a polynomial without real roots. From f(A4) = 03 we get
now dA? - g(A) = 03, whence 9(4) = 503 - A~! = 03, which contradicts a)
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12t GRADE

PROBLEM 1. (a) Let K be a field and n > 2 be an integer. Describe the set
Z(Mn(K)) = {A € Mu(K)| AX = X A for every X € M,(K)}

and prove that the ring Z(M,,(K)) is isomorphic to K.

(b) Prove that the rings M,(R) and M,(C) are not isomorphic.

Solution. (a) Let Ey; = (e;k)1<k‘,<n, where ey = 1 for k = 1,1 = i and
e = 0 otherwise, and A = (ar1)1<kign € Z(Mn(K)). Then AEy; = Eq; 4, leads
t0 @iy = Qig =+ = @jj—1 = Qiip1 = -+ = Qin = 0 and ay1 = a;;. This shows that
A is of the form al,, a € K; for such 4 we have indeed AX = XA = aX for every
X € Mu(K).

Moreover, the function f : K — Z(Mu(K)), f(a) = al, is an isomorphism
from the field K to the ring Z(M,(K)).

(b) Suppose there exists an isomorphism f : M,(R) - M,(C). Then it
follows easily that f(Z(My,(R))) = Z (M,(C)); using (a) we obtain that the
fields R and C must be isomorphic. But for an isomorphism g : R — C and
a=g~!(i) € R we would get a®> = g~'(i?) = g7 (~1) = —1, contradiction.

PROBLEM 2. Let n > 3 be an odd integer. Find all continuous functions
f:[0,1] - R such that

k

[y e=t,

for every k € {1,...,n—1}.

Solution. The substition z = #* leads to
! . 1
/ @)t e =,
0

for every k € {1,2,...,n — 1} and also for k¥ = n. Therefore

S nr(n ] [ vortera= e (R ) = Lot <o
k—1/ Jo T n k-1) " n -

k=1 k=1

which leads to f; (f(t) =)' dt = 0. From n—1 = even > 0 and f — Idjp 1|

continuous we obtain f = Idjp i

PROBLEM 3. A continuous function f : R — R fulfils the condition z f(z) >
fo t) dt, for every real z.
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(a) Prove that the function g : R* = R, g(z) = L [¥ £(¢) d¢ is increasing on
(—00,0) and on (0, 0).
(b) Prove that if f has also the property

z+1 T
/ f(t)dt = / f(t)dt for all real
Ed z—1

then f is constant.
Solution. Let F(xz) = [ f(t)dt.

(a) We have ( Ea) ) = 2E@-FE) 50 for every z # 0.
(b) The given property says that F(z+1)— F(z) = F(z)— F(z — 1) = K(z).
It follows F'(z + n) — F(z) = nK(z), whence le’L") Fm = K(z).

From (a) the limit tl_i)m F; ) exists; denotmg it by Z we get for fixed z,

lim F(x+n) = lim z+nF(z+n)
n—o0 n n—00 n T4+ n

=1-£=L.

n = 0 we obtain, for arbitrary z # 0, K(z) = ¢ (this proves also
that Z € R) Therefore K (z) is a constant for z # 0 (and from continuity, for
z € R), and f has period 1.

Suppose that f is not a constant and let m = mm f(:c) Then F(1)-F(0

fo f(t)dt > m, whence ¢ = llm J— =K(1)= F(0) > m. From f(x) >

—i~ if 2 > 0 it follows that there exists § > O such that z > § = f(z) > F—ff‘ >m
which contradicts the periodicity of f.

PROBLEM 4. For a finite commutative group (G, +) denote by n(QG) its car-
dinal and by i(G) the number of algebraic operations (G, %) such that (G,+, ) is
a ring (with unity). Prove that:

(a) i(Z12) = 4;

(b) i(A x B) > i(A)i(B), for every finite commutative groups 4 and B;

(c) there exist two sequences of finite commutative groups (Gr)i>1, (Hy)

k>1
such that

nGr) _ nHy) _
k—o0 Z(Gk) =0 and kliblgo Z(Hk)

Solution. (a) If (Z12, +, %) is a ring then

Fxg=0+---+1)« i+~-+i)=zy(i*i)

 times ytimes
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for every z,y € 0,n—1, so “4” is determined if we define 1% 1. If 4 is the
multiplicative identity of the ring (Z12, +, %) and 1% = al,ac 0,11, then a1 = 1
implies ual = 1, whence ua = 1(mod 12). This shows that a can be 1,5,7,11, so
there are 4 posibilities to define 1 1 (and they all work!) and i(Z12) = 4.

(b) If “4” and “A” are such that (A, +,%) and (B,+,A) are rings then
(4 x B, +,0), where (a1,b1) o (a2, b2) = (ay * az,b1Aby) is a ring. Also, if “xp”
and “x,” are different algebraic operations on A then the corresponding “o;” and
“os” are different. This shows that i(A x B) > i(A) -i(B).

(c) Consider Klein group (K,+), where K = {0,a,b,c}. Taking a as a
multiplicative identity we can obtain at least two different structures of ring:

—onewithb>=b, 2 =c,bc=ch=0 (corresponding to the ring (Zy x Z),
with e = (1,1), b= (1,0), c = (0,1) and 0 = (0, 0));

—onewith®> =¢, 2 =b, bec=ch=aqa (corresponding to the field with 4
elements).

In the same way, taking b or ¢ as multiplicative identity we can obtain other
four different structures of ring, therefore i(K) > 6. Using (b) we get, for G, =
(K,+)?, i(Gp) > 6P, therefore

n(Gp) 4P - n(Gy)
Gy S5 and plgr;o iGy) =0.

For the last part we notice that the same reasoning as in (a) shows that
i(Zn) = p(n).

For ny. equal to the product of the first k prime numbers, n, =2-3.5... Dr
and Hy = Z,, we get i(Hy) = (2 — 1B =1)---(px — 1), whence

MH) _vrom
i(He) — pi—1

The sequence (ar)iz1 is clearly increasing so, if we prove that it is un-
bounded, we get klim ar = o0o. Indeed, if M is an arbitrary real then there exists
N—> 00
an integer n such that 1 4 % + et % > M. Let py,... , Pk, be the primes which
appear in the decomposition of 2,3,4,...,n and I be their largest exponent in
these decompositions. Then

kn 1 kn 1 1 ! 1
wcllm o (e perg)= > L
=l i=1 Ppi P} a1 yeryak, =0 28 "'pk:

Among the denominators appear all the positive integers from 1 to n, there-
fore ay,, >1+%+"~+%>M.
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Part III. SELECTION EXAMINATIONS FOR.
THE INTERNATIONAL MATHEMATICAL OLYMPIAD
BALKAN MATHEMATICAL OLYMPIAD AND
JUNIOR BALKAN MATHEMATICAL OLYMPIAD

III.1. PROPOSED PROBLEMS

First selection examination for the 44th IMO and the 20** BMO
Sibiu, April 24, 2003

PROBLEM 1. Let (@n)n>1 be the sequence defined by a1 = é and apy; =

2 .
az—f{;‘-ﬁ for n. > 1. Prove that for any integer n, n > 1, we have

i ap < 1.
k=1

Titu Andreescu

PROBLEM 2. A triangle ABC has /A = 60°. Suppose that P is a point with

PA=1,PB=2, PC = 3. Find the maximal value of the area of triangle ABC.
* * *

PROBLEM 3. Let n, k be positive integers such that n* > (k+1)! and consider
the set
M={(z1,...,2,) | z; € {1,2,...,n},i= 1,...,k}.

Suppose A is a subset of M with (k+1)!41 elements. Prove that there are a =
(a1,...,0,) and B = (Bi,-..,Bn) in A such that (k + 1)! divides
(Br = e1)(B2 = a2) -+ (B, — ap).

Vasile Zidaru

Second selection examination for the 44'® IMO and the 20th BMO
Sibiu, April 25, 2003

PROBLEM 4. Consider the sequence (ay),>, defined by a,, = [n\/mj for

n 2 1. Prove that for any integers m and p, the sequence contains m elements in
geometrical progresion of ratio greater than p.

Radu Gologan
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PROBLEM 5. Let f be a irreducible polynomial, in Z[X] having highest
degree coefficient 1 and such that |f(0)| is not the square of an integer.

Prove that the polynomial g, given by g(X) = f(X?), is also irreducible.

- Mihai Piticari

PROBLEM 6. In a mathematical competition 2n students take part. Each of
the students submit a problem and all 2n problems collected in this way are given,
one to one to the participants. The competition is considered “fair” if there are n
competitors receaving the problems proposed by the other n competitors.

Prove that the number of ways in which the problems can be distributed in

a “fair” competition is a perfect square.

Third selection examination for the 44" IMO
Pitesti, May 24, 2003

PROBLEM 7. Find all integers a,b,m,n, with m > n > 1, for which the
polynomial f(X)= X" + aX + b divides the polynomial g(X) = X™ + aX + b.

Laurentiu Panaitopol

PROBLEM 8. Two circles w; and we with radii r; and o, 75 > 7, are
externally tangent. The line #; is tangent to the circles w; and wy at points A
and D respectively. The parallel line ¢, to the line #; is tangent to the circle w,
and intersects the circle wy at points E and F. The line t3 passing through D
intersects the line ¢, and the circle w in B and C respectively, both different of
E and F respectively. Prove that the circumcircle of the triangle ABC' is tangent
to the line ¢;.

Dinu Serbanescu

PROBLEM 9. Let n > 3 be a positive integer. Inside a n x n array there are
placed n? positive numbers with sum n3. Prove that we can find a square 2 x 2 of
4 elements of the array, having the sides parallel with the sides of the array, and
for which the sum of the elements in the square is greater than 3n.

Radu Gologan
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Fourth selection examination for the 44t» IMO
Pitesti, April 25, 2003

PROBLEM 10. Let P the set of all the primes and let M be a subset of P,
having at least three elements, and such that for any proper subset A of M all of
the prime factors of the number

-1+ ]]»

PEA

are found in M. Prove that M = P.

Valentin Vornicu

PROBLEM 11. In a square of side 6 the points 4, B, C, D are given such that
the distance between any two of the four points is at least 5. Prove that A,B,C,D
form a convex quadrilateral and its area is greater than 21.

Laurentiu Panaitopol

PROBLEM 12. A word consists of n letters from the alphabet {a, b, c,d}. One
says that a word is complicated if it has two consecutive identical groups of letters
(i.e. caab or cababdc are complicated words, but abeab is not a complicated word).
A word that is not complicated is called a simple word.

Prove that the number of simple words with n letters is greater than 27,
* * *

Fifth selection examination for the 44th IMO
Bucharest, June 19, 2003

PROBLEM 13. A country’s parliament has n members. Each belongs to
exactly one party and exactly one commission. -

Find the minimum value of n for which in any numerical distribution of the
parties and the commissions, there is a numerotation with numbers 1,2, ... ,10
of the parties and of the commissions such that at least 11 members belong to a
party and a commission with the same number each.

Marian Andronache, Radu Gologan

PROBLEM 14. Consider a rhombus ABCD of side 1. On sides BC and

CD there are points M, N respectively, such that CM + MN + NC = 2 and
{MAN = {/BAD.
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Find the angles of the rhombus.
Cristinel Mortici

PRrROBLEM 15. In a Cartesian plane XOY a point A(z,y) is called a lattice
point if = and y are integers. A lattice point B is called invisible if on the open
segment (OA) there is a lattice point.

Prove that for any positive integer n.there is a square of side n having all
points in the interior or on the boundary invisible.

France qualification tests, 2003

Sixth selection examination for the 44" IMO
Bucharest, June 20, 2003

PROBLEM 16. Let ABCDEF be a convex hexagon and denote by A', B',C’,
D', E', F' the middle points of the sides AB, BC, CD, DE, EF and F A respec-
tively. Given are the areas of the triangles ABC', BCD', CDE', DEF', EF A’

and FAB'. Find the area of the hexagon.
Kvant

PROBLEM 17. A permutation o : {1,2,...,n} = {1,2,...,n} is called
straight if and only if for each integer k, 1 < k < n — 1 the following inequal-
ity is fulfilled

lo(k) —o(k+1)] < 2.

Find the smallest positive integer n for which there exist at least 2003 straight

permutations.
Valentin Vornicu

PROBLEM 18. For every positive integer n we denote by d(n) the sum of its
digits in the decimal representation. Prove that for each positive integer k there
exists a positive integer m such that the equation z + d(x) = m has exactly k

solutions in the set of positive integers.
Mihai Manea

PROPOSED PROBLEMS

First team selection test for
the Junior Balkan Mathematical Olympiad
Sibiu, May 23, 2003

o PROBLEM 1. Consider a rhombus ABCD with center O. A point P is given
inside the rhombus, but not situated on the diagonals. Let M. N Q, R be the
p.rO‘]eCtlofl of P on the sides (4B), (BC),(CD),(DA4), respectively. The perpen-
dfcular bisectors of the segments MN and RQ meet at S and the perpendicul

bisectors of the segments N\ Q and MR meet at T. e

Prove that P,S,T and O are the vertices of a rectangle.
Mircea Fianu

PROBLEM 2. Consider the prime numbers n; < ny < --
if 30 divides nf + ng + .-
consecutive primes.

< - < ngz;. Prove that
"+ 13, then among these numbers one can find three

Vasile Berghea

PROBLEM 3. Let n be a positive inte,

. ger. Prove that there are no positi
integers  and y such as pese

Vit VnF 1< Vo + 5 < Vin ¥,

Dinu Serbinescu

PROBLEM 4. Show that one can color all the points of a plane using only
two colors such that no line segment has all points of the same color.

Valentin Vornicu

Second team selection test for
the Junior Balkan Mathematical Olympiad
Pitesti, May 24, 2003

PROBLEM 5. Let a,b,c be positive real numbers with abe = 1. Prove that

3 6

+4—> 5 6
a+b+c” ab+bc+ca’

Mircea Lascu and Vasile Cartoaje
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PROBLEM 6. Two circles C1(01) and Ca(02) with distinct radii meet at
points A and B. The tangent from A to C; intersects the tangent from B to C; at
point M.

Show that both circles are seen from M under the same angle.

Dinu Serbanescu

PROBLEM 7. Five real numbers of absolute values not greater than 1 and
having the sum equal to 1 are written on the circumference of a circle.
Prove that one can choose three consecutively disposed numbers a, b, ¢, such
that all the sums a + b,b+ ¢ and a + b + ¢ are nonnegative.
Dinu Serbanescu

PROBLEM 8. Let E be the midpoint of the side CD of a square ABCD.
Consider the point M inside the square such that

/MAB = (MBC = (BME =u.

Find the angle .
Laurentiu Panaitopol

Third team selection test for
the Junior Balkan Mathematical Olympiad
Pitesti, May 25, 2003

PROBLEM 9. Suppose ABCD and AEFG are rectangles such that the points

B, E, D, G are collinear (in this order). Let the lines BC and GF intersect at point

T and let the lines DC and EF intersect at point H. Prove that points A, H and
T are collinear.

Mircea Fianu

PrOBLEM 10. Let a be a positive integer such that the number a” has an
odd number of digits in the decimal representation, for all n > 0. Prove that the
number a is an even power of 10.

Vasile Zidaru

PROBLEM 11. A set of 2003 positive integers is given. Show that one can
find two elements such that their sum is not a divisor of the sum of the other
elements.

Valentin Vornicu
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PrOBLEM 12. Two unit squares with parallel sides overlap by a rectangle
of area 1/8. Find the extreme values of the distance between the centers of the
squares.

Radu Gologan

II1.2. SELECTION EXAMINATIONS - SOLUTIONS
First selection examination for the 44*® IMO and the 20'" BMO

02PROBLEM 1. Let (an)n31 be the sequence defined by a; = § and apy1 =
sy for n > 1. Prove that for any integer n, n > 1, we have

n
Zak <1
k=1

Solution. If b, = i then by = 1 and bp41 = b2 — b, + 1 for any n > 1. We
deduce bpy1 — 1 = bp(by, — 1). By multiplication

bpt1 =b1---bp+1

or
1 1 1

+ =
bu+1 " breobpbpgr bieeoba

Summing up one obtain

by by byocbn
whence the conclusion holds. .

PROBLEM 2. A triangle ABC has /A = 60°. Suppose that P is a point with
PA=1, PB=2, PC = 3. Find the maximal value of the area of triangle ABC.

Solution. Consider the parallelograms ABCD and APCE. Then BEDP is
also a parallelogram. We have:

1
o(ABC) = 5AB - AC sin60° = ?AB - AC
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and by Ptolemey’s relation

3
?AB-AC:?CD-PEQ?(DE-PCW—C’E-PD): %

On the other side

(6 + PD).

1 1
PA? + PD? - PB? — PC? = 2P0* + 5.»4D2 —2P0% - EBCZ
=2AB-AC -sin60° = AB - AC

PD2=12+AB~AC=12+C’D~PE<12+PC’-ED+PD-CE.

Thus PD? <12+ 6+ PD and PD < 13,
The maximum is this omax(ABC) = ‘/75(13 +V/73) and we have equality
when PCED is cyclic, that is /PCA = /PBA

PROBLEM 3. Let n, k be positive integers such that n* > (k+1)! and consider

the set
M ={(z1,...,zn) | 2; € {1,2,...,n},i = 1,...,k}.

Suppose A is a subset of M with (k+1)!+1 elements. Prove that there area =
(ar,...,an) and B = (Br,-.-,Ba) in A such that (k + 1)! divides
(B1 —a1)(B2 — a2) -+ (Bn — an).

Solution. Consider that function f : 4 — Zy X -+ X Zyyy = B (here
Zir = {0,1,...,k} defined by

FOs ) = (T Fas -5 7e)-

As card A = (k+1)!+1 and card B = (k + 1), the function is not injective. The
fact that f(aq,...,a) = f(Bi,--.,Bk) gives the result.

Second selection examination for the 44" IMO and the 20*" BMO

PROBLEM 4. Consider the sequence (@n)nz1 defined by a, = [nv/2003] for
n 2 1. Prove that for any integers m and p, the sequence contains m elements in
geometrical progresion of ratio greater than p.

Solution. By any irrational z, by Kronecker’s theorem we can find a positive
integer n such that nz = N, + a,, where Ny, is a positive integer and 0 < a, <
s=7r- Then 2fng = 28N, 4+ 2a, and [2%nz) = 2¢ [nz| for k =0,... m. Thus
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(12¥n))kmo,...m is a geometrical progresion of ratio 2. For a longer ratio it is
sufficient to use the result for a subprogresion of ratio say 2" > p.

PROBLEM 5. Let f be a irreducible polynomial in Z[X] having highest degree
coefficient 1 and such that [£(0)] is not the square of an integer.
Prove that the polynomial 9, given by g(X) = f(X 2), is also irreducible.

Solution. Suppose that we can find non-constant polynomials in Z[X ] with
degp,deggq < 2n, where n = deg f, such that g =p - q. .

If a € C such that f(a) = 0 we have p(v/@) = 0. We thus obtain integer
polynomials ¢,u such that B

@) + Vau(a) =0

with degt,degu < 2n < %degp <n. Asu#0and u, f are relatively prime, there
are 5,7 € Q[X] such that

su+rf=1.

Thus s(a)u(a) = 1 which implies va=—t(a)s(a) or a = *(a)s*(a). If m is the
polynomial #2s* — X then m(a) = 0 which implies f | m.

If a1,...,a, € C are the zeros of f then m(a;) = 0, § = 1,...,n, and
a; = t2(a;)s*(a;). We deduce

- an = (t5)* (1) (t5)(02) - - (ts)* (an)

the square of a rational number. As £(0) is an integer and FO0) = (-1)"a; ---ay,
we get a contradiction.

PROBLEM 6. Ina mathematical competition 2n students take part. Each of
the students submit a problem and all 2n problems collected in this way are given,
one to one to the participants. The competition is considered “fair” if there are n
competitors receaving the problems proposed by the other n competitors.

Prove that the number of ways in which the problems can be distributed in
a “fair” competition is a perfect square.

Solution. Any distribution of the problems corresponds to a permutation of
theset {1,2,...,2n} = 4,. Any such permutation is associated with a fair contest
if the set A, can be written as the union of disjoint sets M; and M, each of n
elements such that elements in M; have images in M,. This corresponds to the
fact that the permutation has only even cycles.

Let a,, be the number of such permutations. The number of permutations
for which 1 is an element of a cycle of order 2k is (3r70) - (2k— Dlap_g. In fact,

we can choose the elements of the cycle in (3r=1), we can order them in (2k —1)!
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ways and the rest of the permutation can be completed in a,_; ways. It is easy
to see that ap = 1, a; = 1 and then

an = i (gz )(2k — Dlan_g = (20— Dan_s + Z (2k )(2k ~ Dlans

= (2n=1)an + (20— 1)2n - 2) Z (2" 3) @k = lan_p_,
=(2n—-1)ap—1 +(2n - 1)(2n - 2)an_l =(2n-1)%a,;

which complets the result by induction.

Third selection examination for the 44t% IMO

PROBLEM 7. Find all integers a,b,m,n, with m > n > 1, for which the
polynomial f(X) = X"+ aX + b divides the polynomial g(X)=X"+aX +b.

Solution. It is obvious that the solutions (0,0,m,n) work. fa =0, b # 0
then X™ 4+ b | X™ + b, thus all the roots of f are also the roots of g, and thus
[b| = 1. If b = —1 then we must have X" —1 | X™ —1 and using Euclid’s algorithm
we obtain that ged(X™ — 1, X™ — 1) = X8dmn) _ 1 thys n | m. It follows that
another set of solutions is (0, —1, kn, n), with k being any positive integer.

If b = 1 then the roots of f have the form

2k = COS (&r— +7r) +isin<&+w), Vk=0,n-1
n n
and they must also be the roots of g thus we have
2k:
I (2—@+w)m=(2k'+1)n:¢T’"+m:2k’+1_
n

It follows from (1) that n | 2km for each k = 0,n — 1. In particularly, for k = 1
which means that 2m = an. Therefore (1) becomes ka +m = 2k’ + 1. But if a is
not even, then for even k and odd k be obtain different parities of 2&' + 1 which is
a contradiction; thus a = 2a’ and m is odd, which also leads to m = a'n implying
that n and o' are also odd. Thus the third set of solutions are (0,1, (2k +1)n,n),
for any positive integer k.

If =0 and a # 0 then we have X"~ 4+ a | X™~1 4 a, and using the same
arguments as above we find two new sets of solutions: (—1,0,kn — k + 1,n) and
(1,0,(2k + 1)(n — 1) + 1,n).
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Finally, suppose that a # 0 # b. Then f(z) | g(x) implies that flz) | g(z) —
f(), thus X" +aX+b | X™— X", and furthermore X" +aX +b | X™="—1. The
last relation implies that all of f’s roots are unit roots, thus bl=1=>be {-1,1}.
Furthermore if z; is a root of X™=" — 1 and a root of fi=T1n, then z; = —
is also a root of f (because f has real coefficients). From Vitte’s relationships we
obtain that

a=(-1)"" IHZ, (Z ) =>a=(-1)*"" lez

i=1 i=1
Butifn>2thenZT+Z+ - +Z =21 +---+2, = 0 thus a = 0 and we have
returned to one of the previous cases. Thus we must have n = 2, and in that case
a=(=b)-(-a)=b=1 Wealsohave 2> +az +1=0& |a| = Jaz| = |1+ 22|
1+[z|* = 2, thusa € {~2,-1,1,2}. fa = 20ra = —2 then X™"_1 would have
a double root — which is a contradiction, thus the only possibilities are a = —1
and a = 1. If a = 1, it is easy to see that m — 2 = 3k and thus the solutions are
(1,1,3k+2,2), for all positive integers k and if a = —1 we have m — 2 = 6k, which
leads to the solutions (—1,1,6k + 2,2) for all positive integers k.

PROBLEM 8. Two circles w; and w,, with radii ry and 79, 72 > 7, are
externally tangent. The line ¢, is tangent to the circles wy and wy at points A
and D respectively. The parallel line ¢, to the line t1 is tangent to the circle w;
and intersects the circle wy at points E and F. The line t3 passing through D
intersects the line ¢, and the circle w, in B and C respectively, both different of
E and F respectively. Prove that the circumcircle of the triangle ABC is tangent
to the line ¢;.

Solution. Tt is enough to prove that AD?> = DB - DC. Tt is easy to compute
the length of the common tangent: AD? = 4r,r,.

Let now DM L EF, M € EF and N = DM N wy. Then the right-angled
triangles DBM and DNC are similar, hence DB-DC = DM - DN = 2r; - 2r2 =
4ri7s.

PROBLEM 9. Let n n>3bea posmve mteger Inside a n x n array there are
placed n? positive numbers with sum n8. Prove that we can find a square 2 x 2 of
4 elements of the array, having the sides parallel with the sides of the array, and
for which the sum of the elements in the square is greater than 3n.

Solution. Let a1, a,...,a,2 be the array’s elements and S, S, ..., Sy be all
the sums of the elements of the possible squares. If S; < 3n for all i, then

nn+1)(2n+1)

S+ S+ + S <3n 3
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On the other hand, by counting the number of times each element of the array
,

appears in the above sum, one obtains:

S1+S2 4+ Sk
> (n—1)(a1 + - +aan-1) + (0 +1)(@an—s + - +agn-18) + -

> (n—l)Zai

i=1

3, 2
=6(n—1)(n+1)>° <3 (n+1)(2n+1) emd+2m’-2m-2<2m®+n

which is false for n > 3, and thus the problem is solved.

Fourth selection examination for the 44'" IMO

PROBLEM 10. Let P the set of all the primes and let M be a subset of P,
having at least three elements, and such that for any proper subset A of M all of
the prime factors of the number

-1+ []»

PEA

are found in M. Prove that M = P.

Solution. If 2 ¢ M, then take A = {p}, with p € M. Because p — 1 is an

even number, it follows that 2 € M, contradiction, thus 2 € M. o
First let us suppose that M is finite. Then let M be {2,ps,...,p}, ,f/M.

" Let A be {2,p3,...,pr}, and denote by P the product of all the elements of M.

Then we have:

P o p_ o atl .
e —1l=— —-1= =P=py" +p2
()] 2p3- - pr— 1 7 b23
and if we consider A = {ps,...,px} then we obtain:
@ pepi—1= o~ 1= 25 = P = 2a(2p] + D).
P2

From (1) and (2) it follows that

PS4 pp = 2p2(2%p] + 1) = pra+ 1=2°F1p] + 2 = 1 = 2(mod p2)
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contradiction, thus indeed M has an infinite number of elements.
Suppose now that there is a prime g such that ¢ ¢ M. Let

M= {27172:173;“- ,pk,..‘}.

From the Pigeonhole principle it follows that from the numbers 2-1,2-py —
L...,2ps--pey1 — 1 at least two of them have the same residue modulo q, let
them b92-~~p,-—152--~p]-——1, 1<i<j<g+1. But then we have

2 pi(piy1---pj — 1) E‘O(modq) = Pit1pj —1=0(modq) = g€ M

which is a contradiction. Therefore the supposition was false and M is the set of
all primes.

PROBLEM 11. In a square of side 6 the points 4, B, C, D are given such that
the distance between any two of the four points is at least 5. Prove that 4,B,C,D
form a convex quadrilateral and its area is greater than 21.

Solution. First of all we observe that no angle formed with 3 of the 4 points
can be greater of equal with 120°, because otherwise if we suppose that WLOG
LABC > 120°, then from AB 2 5 and BC > 5 we deduce AC > 5V3 > 6v2
contradiction.

Therefore if the quadrilateral ABCD is not convex, then one of the 4 points
lies inside the triangle formed by the other 3. Suppose WLOG that D €int[4BC].
But then one of the angles LADB, [BDC and /CD A would be, by the Pigeonhole
principle, greater or equal than 120°, contradiction. Thus ABCD is a convex
quadrilateral.

Now because each angle of the triangle ABC is smaller than 120° and there
is at least one angle, say ZABC, which is greater than 60° it follows that

V3

sin /ABC > 5

=>a[ABC]=%AB~BC~sinLABCZ\/T§'25>%@625>12-49:588.

Analogously one can prove that d[ACD] > %, and thus o[ABCD] > 21.

PROBLEM 12. A word consists of n letters from the alphabet {a, b, ¢, d}. One
says that a word is complicated if it has two consecutive identical groups of letters
(i-e. caab or cababdc are complicated words, but abcab is not a complicated word).
A word that is not complicated is called a simple word.

Prove that the number of simple words with 7 letters is greater than 27,



64 SELECTION EXAMINATIONS FOR IMO, BMO anp JBMO

Solution. Let us denote by S(n) the set of simple words with n letters and
-by s, the number of elements in S(n). If we put a letter at the end of each of the
simple words from S(n) we obtain a set T(n+1) of tpy1 words of length n+1, their
number being t,41 = 48,. Obviously, S(n+1)CcT(n+1),S(n+1)# T(n+1).
Let Tj(n + 1) be the set of those words from T'(n + 1) which have the last
two letters the same, Ti(n + 1) the set of T'(n +1) which end in two consecutive

1
identical groups of k letters, for each k € {1,2,...,m}, where m = %J
Obviously
F+1) 3 tags — [Tiln+ D = [To(n+ D] = = [Tm(n + 1)

We have toe1 = 4f(n), [Ti(n + 1| = f(n), and furthermore |Tx(n + 1)] <
f(n +1— k), because of the fact that the mapping of S(n + 1 — k) into T(n +1)
given by adding to a simple word of n + 1 — k letters its own last k letters is
obviously surjective.

We have f(1) = 4, f(2) = 12> 4. By induction we want to prove flk+1) >
2f(k). We have

Fln+ 1) > 47(n) = fln) — 37() = 3£ () === > 2f(w)

from which the conclusion follows.

Fifth selection examination for the 44t IMO

PROBLEM 13. A country’s parliament has n members. Each belongs to
exactly one party and exactly one commission.

Find the minimum value of n for which in any numerical distribution of the
parties and the commissions, there is a numerotation with numbers 1,2,...,10
of the parties and of the commissions such that at least 11 members belong to a
party and a commission with the same number each.

Solution. Tt is clear that if n = 100 we can consider a configuration where
each party has exactly ten members, each belonging to a different commission.
Suppose that parties are numbered 1, ...,10. In any numbering of the commission
there will be exactly 10 parliament members having the same party-commission
number. It is then clear that any smaller 7 does not satisfy the condition. Thus
n > 100.

Let us prove that n = 101 is a “good” number.

SOLUTIONS
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. Consider Ay,..., Ao the party partition and By,..., By the commission

partition of the parliament. It is clear that we can consider that A Ajp is
FRERRR: ST}

a . . .
Iso a fixed numbering of parties. By way of contradiction suppose that for any
numbering of the commissions there are less than 11 members with same numbers

Asa numbering of the B; corres, a i 1 0}, wa
ponds to permutation o of
) { yeeey }, e should

10
Y l4in By < 10.
i=1

Summing over ¢ we get

10
> S l4in Byl < 10- 10!

g€Syp i=1

It is easy to see that the left sum is 9! - 101. This is because each element of the
set of parlament members appears in 9! sets of the form AiN By
* (i)
We thus get 9!- 101 < 10- 10! or 101 < 100, a contradiction.

PROBLEM 14. Consider a rhombus ABCD of side 1. On sides BC' and

CD there are points M, N res i
N pectively, such that CM + MN =
LMAN = }/BAD. PG = Bl

Find the angles of the rhombus.

Solution. Let ADC'D' the rhombus i
obtained by rotating the initi
around A with angle BAD. e the it one
By hypothesis, triangles AMN and AM'N are equal, thus M'N = MN =
z +y, because the perimeter of MNC is 2. -

‘ ?n conclusion, M'N = z +y = M'D + DN, thus M',D,N are collinear
implying that ABCD is a square. ’

) Reciprocaly, if ABCD is a square, by the same construction, if /M AN =
5/BAD then the perimeter of MCN is 2. -

4 I.DROBLEM 15. In a Cartesian plane XOY a point A(z,y) is called a lutti‘ce
point if z and y are integers. A lattice point B is called invisible if on the open
segment (OA) there is a lattice point.

. Prove that for any positive integer n there is a square of side n having all
points in the interior or on the boundary invisible.
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Solution. Consider an array A = (p;;) =L consisting of disting primes p;;
ot

and o the cyclic permutation (1,...,n) — (n,

,...,n —1). Define the numbers:
n
a; = Hpik, i=1,...,n
k=1
n
b = Hp,wi-l(k), i=1,...,n.
k=1

It is clear that (a;,a;) = 1, (b;,b;) = 1 for i # j and that (a;,b;) # 1 for any
i,j€{1,...,n}.
By the Remainder Chimise Lemma we can find z,y positive integers such
that
z=—(k—1)(moday) fork=1,...,n

and
=—(k—1)(modby) fork=1,...,n.
These mean that there are nonnegative integers ki, ..., kn, l1,...,1, such that
kiy10ip1 = kiai +1  and  lipbip = Libi +1
foranyi=1,...,n—1.

The square ABCD defined by A(kiai,l1b1), B(knan,l1b1), Clknan,lnb,)
and D(kjaq,l,b,) has the desired properties.

Sixth selection examination for the 44t* IMO

PROBLEM 16. Let ABCDEF be a convex hexagon and denote by A', B, C",
D', E', F' the middle points of the sides AB, BC, CD, DE, EF and FA respec-
tively. Given are the areas of the triangles ABC', BCD', CDE', DEF', EFA’
and FAB'. Find the area of the hexagon.

Solution. Let us denote by o[ABC] the area of the triangle ABC and by S
the area of the hexagon ABCDEF. We shall use the following lemma:

LEMMA. In a quadrilateral ABCD take M to be the middle point of the side
CD. Then the area of the triangle ABM is the arithmetic mean value of the areas
of the triangles ABC and ABD.
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Proof of the lemma is obtained easily by drawing the altitudes from C, M, D
to the side AB, and using the fact that the altitude from M is the middle line in
the right-angled trapezoid formed with the altitudes from C and D.

Now we split the area of the hexagon in 4 areas of triangles:

(1) S = o[ABD] + o[ADE) + 6{BCD] + o[AEF)]
@ S = 0[BCE] + o[BEF) + o[CDE] + o{F AB]
(3) S = o[DEA] + o[ACD] + o[ABC] + ¢|DEF).

Using the lemma and summing up all the relationships (1), (2) and (3) we obtain:
35 = 20[ABC'| + 20[BCD'| + 20[CDE'] + 20[DEF'] + 20(EF A'] + 20[F AB']

=S= ; (6[ABC'] + o[BCD'| + 6[CDE'] + 6| DEF"| + o[EF A'] + o[FAB')) .

PROBLEM 17. A permutation ¢ : {1,2,...,n} — {1,2,...,n} is called
straight if and only if for each integer k, 1 < k < n — 1 the following inequal-
ity is fulfilled

lo(k) —o(k +1)| < 2.

Find the smallest positive integer n for which there exist at least 2003 straight
permutations.

Solution. The main ideea is to look where n is positioned. In that idea
let us denote by z, the number of all the straight permutations and by a,, the
number of straight permutations having n on the first or on the last position, i.e.
a(1) =n or o(n) = n. Also let us denote by b, the difference z,, — a, and by a,
the number of permutations having n on the first position, and by a!, the number
of permitations having n on the last position. From symmetry we have that
2a), = 2a), = a, + a}, = a,, for all n-s. Therefore finding a recurrence relationship
for {an}n is equivalent with finding one for {al },.

One can simply compute: ay = 1, a§ = 2, ay = 4. Suppose that n > 5. We
have two possibilities for the second position: if ¢(2) = n—1 then we must complete
the remaining positions with 3,4,...,n thus the number of ways in which we can
do that is aj,_, (because the permutation o’ : {1,2,...,n—1} = {1,2,...,n—1},
o'(k) = o(k+1), for all k, 1 <k <n—1,is also a straight permutation).

If on the second position we have n —2, 0(2) = n—2, then n — 1 can only be
in the last position of the permutation or on the third position, i.e. ¢(3) =n — 1
or o(n) = n—1. If o(n) = n — 1, then we can only have o(n — 1) = n — 3
thus 0(3) = n — 4 and so on, thus there is only one permutation of this kind.
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On the other hand, if ¢(3) = n — 1 then it follows that (4) = n — 3 and now
we can complete the permutation in a/,_, ways (because the permutation ¢’ :
{1,2,...,n =3} =+ {1,2,...,n = 3}, o' (k) =o(k+3),forallk, 1<k<n-23,is
also a straight permutation).

Summing all up we get the recurrence:

(1) ap=an_ 1 +1+a, 3= an=apn_; +an_3+2, Vn>5.
n = Qp_y n—3

The recurrence relationship for {b,} can be obtained by observing that for
each straight permutation 7 : {1,2,...,n + 1} = {1,2,...,n + 1} for which
2 < 771(n +1) < n we can obtain a straight permutation o : {1,2,...,n} =
{1,2,...,n} by removing n + 1. Indeed n + 1 is “surrounded” by n and n — 1,
so by removing it, n and n — 1 become neighbours, and thus the newly formed
permutation is indeed straight. Now, if 7='n € {1,n + 1} then the newly formed
permutation o was counted as one of the a,-s, minus the two special cases in which
n and n — 1 are on the first and last positions, and also minus the permutations
which begin or end with a sequence of the form n,n—2,n—1,n-3,...thus n and
n — 1 not being neighbours. If 7~ (n) & {1,n + 1} then certainly o was counted
with the b,-s. Also, from any straight permutation of n elements, not having n
and n—1 in the first and last position, thus n certainly being neighbour with n—1,
we can make a straight n + 1-element permutation by inserting n + 1 between n
and n — 1. '

Therefore we have obtained the following relationship:

bnt1 = an —2—ap_g + by = an_; + by,
=bp =an-2+an-3+---+ay+bs
= Tn=an+apn2+an-3+---+ay+by, Vn>4.

It is obvious that {z,}, is a “fast” increasing sequence, so it is easy to
compute the first terms using the relationships obtained above, which will prove
that the number that we are looking for is n = 16.

PROBLEM 18. For every positive integer n we denote by d(n) the sum of its
digits in the decimal representation. Prove that for each positive integer k there
exists a positive integer m such that the equation z + d(z) = m has exactly k
solutions in the set of positive integers.

Solution. Let us denote by f(z) = « + d(x), for each positive integer z. We
shall prove by induction after k that we can find the numbers Ty <Tp < - <y,
such that z; begins with the digit 1, and has at least two digits, and f(z1) =

fl@s) == f(ax).

SOLUTIONS 69

For k =1 just take z; = 11.

Suppose that the statement holds for k, and let 21 < zy < --- < 7y the
numbers for which the statement holds. Let n be the number of digits of zy.
Obviously we have

(1) : f(zy +a~10")+f(:cg+a-10”)=---=f(xk.10n)

for all positive integers a, because if z; is increased by a-10™ then d(z;) is increased
by d(a).

Let b = 99...9 = 10" — 1. We have f(h) > f(zx) because b > =z and
d(b) > d(xx). Moreover, if a = f(b) ~ f(z) then from b — >8-10""! > 9n,
and from the fact that d(b) > d(z;) it follows that

) “a>9n.

But f(b+1)~ f(b) = 2—9n thus f(b+1)— f(zx) = a+2-9n > 0 (using (2)).

Let us consider a positive integer ¢ such that 9 > a +2—9n > 9(t—1) and
let us denote by y; the number 99...9- 10" + z; = (10* — 1) - 10" + z; and by ¢
the number (10* — 1) - 10" + b. It is easy to see that fy) = f(y2) = -+ = flwx)
and -9 < f(c+1) - f(yr) =a+2—9n - 9 < 0. .

It fle+1) = f(ye) = =2, 1 € {0,1,2,3,4}, then fle+1+10) - f(y) =
fle+1) = f(yx) + 20 = 0, thus yry1 = c + 1 + I satisfies the requirements.

It fle+ 1)~ flyx) = =20+ 1, 1 € {1,2,3,4}, then fle+1+1+4)—
flye) = fle+1) — flye) +2(0+4) = =20 +14+2+8 = 9. Therefore, if we
put another 9 in front of each of y;-s and in front of ¢ we obtain the numbers
2; = Jy; and d = Jc for which we have f(z) = f(z2) =--- = f(2) and for which
Fl@+1+1+4)— f(z) = fle+1+1 +4) ~ 9 — f(yx) = 0. Finally we observe
that the first digit of zp41 =d+1+1+4is 1, and also the first digit of yj,1, and
obviously these numbers have at least two digits thus the statement is proved.

First team selection test for
the Junior Balkan Mathematical Olympiad

PROBLEM 1. Consider a thombus ABCD with center O. A point P is given
inside the rhombus, but not situated on the diagonals. Let M,N,Q, R be the
projections of P on the sides (AB), (BC), (CD), (DA), respectively. The perpen-
dicular bisectors of the segments MN and RQ meet at S and the perpendicular
bisectors of the segments NQ and MR meet at T.
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Prove that P,S,T and O are the vertices of a rectangle.

Solution. First, observe that triangles RSN and QSM are congruent (S.S.5.),
hence ZPMS = /PNS and /PQS = LPQS. 1t follows that P, S, M,N are con-
cyclic and P, S,Q, R are concyclic.

On the other hand, as ZBNP + /BMP = 180°, points B, N, S, M are con-
cyclic, thus P, S, N, B, M are points on the circle Cy (01) of diameter BP. Likewise,
points P, S,Q, D, R lie on the circle C3(02) of diameter DP.

Since PS is the common chord of the circles C1 and Cs, lines PS and 0,0
are perpendicular. As O; and O, are the midpoints of the segments BP and DP,
lines 010> and BD are parallel, so PS L BD and then PS || AC. Likewise,
PT || BD and consequently PS L PT.

Furthermore, because O; O is middle line in the triangle PBD one find that
S lies on the segment BD. Analogously, T € (AC). Thus, PSOT is a rectangle.

PROBLEM 2. Consider the prime numbers n; < ng < --- < nz;. Prove that
if 30 divides n4 + n4 + - -- + n};, then among these numbers one can find three

consecutive primes.

Solution. Denote S = n? +n$ +---+nf; and A= {n1,nz,...,na1}.

First, observe that 2 € A, otherwise all numbers n;, i = 1,31 are odd and
consequently S is odd; contradiction.

Then, 3 € A, else n; = —1(mod3) and 7} = 1(mod3) for all i = Tn It
follows that S = 31 = 1(mod 3), contradiction.

Finally, we prove that 5 € A. Indeed, if not, then n; = £1(mod5) or n; =
£2(mod 5) for all i = T,31. Consequently, n? = +1(mod5) and 7} = 1(mod5) for
all i = 1, 31. Thus, S = 31 = 1(mod 5), a contradiction.

PROBLEM 3. Let n be a positive integer. Prove that there are no positive
integers  and y such as

VA+VRFI<VE+ < Vin+2.
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Solution. Assume that such numbers exist. By squaring,
(1) 2n+142vVn?+n<z+y+2/7y <4n+2.

Since dn+1 < z+y+2,/7y < 2(z +y), we obtain z + y>2n+ % Numbers
x and y are integers, so

T+y>=2n+1.

Seta=z+y— (2n+1) >0, where a is an integer. The second inequality
from (1) gives 2,/Zy < 2n + 1 — a, hence 4zy < (2n + 1 = a)®. Numbers 4zy
and 2n + 1 — a are also integers, therefore 4zy < (2n + 1= a)? — 1 and then

27y < /(2n +1—a)? — 1. From (1) we have
2Vt +n<a+2y/ay<a+/(2n+1-a)2 -1,

hence

(2) \/(2n+1)2—1—a§\/(2n+1—a)2—1.

Asz+y <4n+2,thena=z+y—(2n+1)<2nandsoa < V(n+1)2 -1,
By squaring both sides of the relation (2) we obtain

(n+1)?—1+a®-2a/@n+12 -1 <(@2n+1-a)?-1
& —2ay/(2n+1)2 - 1< —2a(2n + 1),

a contradiction.

PROBLEM 4. Show that one can color all the points of a plane using only
two colors such that no line segment has all points of the same color.

Solution. Choose an arbitrary point A4 in the plane. Points located in the
plane at a rational distance from A are colored in red, while the others are colored
in blue. Consider an arbitrary segment PQ. We may assume that AP < AQ); if
not, take instead of P another point of the line segment (PQ).

Recall that between two real numbers one can find a rational number q and
an irational number r. The circles centered at A and having the radii ¢ and r
intersect the segment PQ at the points M and N respectively. It is obvious that
M is colored in red and N in blue, so the claim is proved.
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Second team selection test for
the Junior Balkan Mathematical Olympiad

PROBLEM 5. Let a,b,c be positive real numbers with abc = 1. Prove that

3 6

L. S N R—
I+ o bre” abtbetea

, 2= %, we have zyz = 1. The inequality

o=

Solution. Setting z = 1;7 y=

rewrites as 6

Y rverm o atyte

Since (z +y + 2)2 > 3(zy + yz + 2x), it follows that
3 _ 9

TR TR

1t suffices to observe that
6

9
@ry+2? " zty+a

2
o) s0
T+y+tz

PROBLEM 6. Two circles C1(01) and C5(02) with distinct radii meat at
points A and B. The tangent from A to C; intersects the tangent from B to Cy at

point M. l
Show that both circles are seen from M under the same angle.

Solution. We have to prove that 2.0:MA = 2/05BM, which is equiva-

lent to

1+

which reduces to

014 _0:B
@ AM ~ BM'
B

SOLUTIONS 3

The lenght of the common chord AB is equal to 20, A - sin l AAB= 20, A

sin LBAM, regardless if AB is the small asc or the great arc AB Sxmllarly,
AB = 20,B -sin LABM, hence

o 014 OB
@ sin /ABM " sin L[BAM"
By the Law of Sines in the triangle ABM we derive that
MA MB
(3)

sin LABM ~ sm/ZBAM'

From the relations (2) and (3) we obtain QAWA = QB%B, as desired.

PROBLEM 7. Five real numbers of absolute values not greater than 1 and
having the sum equal to 1 are written on the circumference of a circle.

Prove that one can choose three consecutively disposed numbers a, b, ¢, such
that all the sums a + b,b+ ¢ and a + b + ¢ are nonnegative.

Solution. First, we prove that at most two of the sums a + b, b+ ¢, c+d,
d + e and e + a can be negative.

d

Indeed, assume that two non-consecutive sums (say a + b and ¢ + d) are
less than 0. Then 1 —e = (a+b) + (c+d) < 0 and so 1 < e, a contradiction.
Thus, if three sums are negative, then two of them are not consecutive, which is
false. Moreover, if two sums are negative, then these must be consecutive; in other
words, at least three consecutive sums are nonnegative.

Let a+b, b+ ¢, ¢+ d be greater than or equal to zero. If one of the sums
d+eore+ais negative, thena+b+c=1—-(d+e)orb+c+d=1—- (e +a)
are at least 1, hence is positive and we are done.

Finally, consider the case when all sums a + b, b+¢, c+d, d+e, e +a are
positive. Suppose that a + b+ ¢ < 0; then b > (a +b) + (b+ ¢) > 0. Thus, if
a+b+c, b+c+d, c+d+ e are negative, then b, ¢, d are positive and we are done.
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PROBLEM 8. Let E be the midpoint of the side CD of a square ABCD.
Consider the point M inside the square such that

/MAB=(MBC = (BME =z.

Find the angle z.
Solution. Observe that ZMAB + /MBA = (MBC + /MBA = 90°, hence
LAMB = 90°.
D C

A B

=1
Let F be the midpoint of the side AB. Then MF = FA = FB = 5AB,
so LZMBF = (MBF. 1t follows that /ZEMF = (EMB + (BMF = (MAB +
LMBA = 90°.
In the right triangle MEF, the leg MF is equal to %EF, hence LM EF =
30°. We obtain ZMBF =}/ MFA= LMEF =15° and z = 75°.

Third team selection test for
the Junior Balkan Mathematical Olympiad

PROBLEM 9. Suppose ABCD and AEFG are rectangles such that the points
B, E, D, G are collinear (in this order). Let the lines BC' and GF intersect at point
T and let the lines DC and EF intersect at point H. Prove that points A, H and

T are collinear.

Solution. Let the lines CD and FG intersect at M and let the lines BC and
EF intersect at N. As DHEA and FHCT are cyclic quadrilaterals,

[FTC =180° — /FHC = LDAE and (DAH = (DEH.

SoOLUTIONS 75

Since LDMG = 90° — LFTC = 90° — /DAE = LDAG, it follows that
the quadrilateral ADGM is cyclic. Hence /DAM = /FGE and consequently
LMAH = [DAM + /DAH = [FGE + /DEH = 90°. Likewise, ZNAH = 90°
and therefore points M, A, N are collinear.

In the triangle TM N, point H is the orthocenter. Thus A,H,T lie on the
altitude of the triangle, as desired.

PROBLEM 10. Let a be a positive integer such that the number a" has an
odd number of digits in the decimal representation for all n > 0. Prove that the
number a is an even power of 10.

Solution. Number a has an odd number of digits, hence 10%* < o < 102++!
for some integer k > 0. It suffices to prove that a = 102*,

First, observe that 10% < a? < 10°*+2, Number a? has also an odd number
of digits, hence 10%* < a < 10%*+3. Next, 10%* < a* < 10%%+2 and consequently
10%* < a < 10%*+1. Inducting on n we obtain 102 < a < 10%+5 for all n > 0.

Assume by contradiction that a > 10% + 1. Then 10%+2 > 102 41 «
10% 4 (10% ~1) > 1 10% > 1+ e 10> (14 )™, for all 1 > 0.

On- the other hand, using Bernoulli inequality we find that

1 2n on
(1+m) >1+W for all n > 0.

For sufficiently large n we have 1 + %—; > 10, a contradiction.

PROBLEM 11. A set of 2003 positive integers is given. Show that one can
find two elements such that their sum is not a divisor of the sum of the other
elements.

Solution. Let a1 < az < -+ < asgo3 be the elements of the set. We prove the
claim by contradiction. Numbers a; + A2003, 02 + @2003, - - -, G2002 + 003 divide
the sum S = a; +az + - - - + a3, sincea+b|S—a—bifandonlyifa+b|S.
Hence S = k;(a; + agops) for all i = T1,2002, where k; are integers.
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SOLUTIONS 7
. . ' 2
Since a; + asgos < S < 2003ag003 < 2003(a; + asoo3), it follows that k; € . AB? < % —V2+ 14§ = % V2= (2 - ﬁ) . Thus AB < 2 %Y with equality
{2,3,...,2002} for all i = T,2002. By Pigeonhole principle, there is a pair of when z =y = \1[ .
R . Y
indices i # j such that k; = kj, a contradiction. Consequently, ‘/Tg <AB<2- ‘/Lf )

PROBLEM 12. Two unit squares with parallel sides overlap by a rectangle
of area 1/8. Find the extreme values of the distance between the centers of the
squares.

Solution. Let M N PQ be the rectangle at the intersection of the unit squares
with centers A and B. Set MN =z and PQ = y, hence

Ty = %, z,y € [0,1].

The parallel from A to M N intersects the parallel from B to NP at point
C. 1t is easy to observe that AC =1—z and BC =1-y, so

AB?=(1-2)?+(1 -y’ =a*+y* -2 +y) +2
1
=z2+2zy+y2—2(z+y)-Z+2+(z+y)2—2(z+y)+%
3
- EETY I
=(z+y-1) +4‘

It follows that the minimal value of the distance between the centers A and B is
equal to 4, and it is obtained forz +y =1, zy = %; ie. z = 2;";‘/_—2, y= 2—_4‘2 or
z= 2-v2 — 242
=22 y=2 .
To find the maximal value of AB observe that 0 < (1 —z)(1-y) = 1—

z-y+zy=23—(z+y),s0z+y < § On the other hand, we have z +y >

2
2./75 = L, therefore L. —1 < z+y—1< L. As (1)” < (L — 1), we find that
V2 V2 8 8 V2
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Part IV. SELECTION OF PROBLEMS SUMITTED IN
MATHEMATICAL REGIONAL COMPETITIONS

IV.1. PROPOSED PROBLEMS

7th GRADE

PrROBLEM 1. There are 8 particip;;ms to a chess competition which take
place in 7 rounds. The marks are distributed after well-known rules: 1 point for
winning game, % points for draw and 0 points for lost game. N

(a) Show that after each of the first three rounds at least two participants
have the same score. ' ‘ -

(b) In the final ranking of participants there are no two with the same score.
Find the least number of points the winer should }vlave. .

(Contest Unirea, Focgani; Lucian Buliga and Corneliu Savu)

PROBLEM 2. Let ABC be a triangle. For any interior point M of the triangle
we denote by s(M) the sum of distances of M to the sides AB, BC, CA. Show
that if M, N are interior points of AABC such that s(M) = s(N) then for any
point P of the segment M N one has s(M) = s(P) = s(N). . ,

(Contest Unirea, Focgani; Corneliu Savu)

PROBLEM 3. Find all integer numbers a, b, c,d such that a* + b* = 2(c + d)

and ¢ +d® = 2(a +b). .
(Contest Alexandru Myller, Iasi; Gheorghe Iurea)

PROBLEM 4. Let ABCD be a square and M, N be interior variable points
on the sides BC, CD respectively, such that MN = BM + DN. Show that the

le NAM has constant measure.
" (Contest Alexandru Myller, Tasi; Gheorghe Iurea)

PROBLEM 5. Let a, b, ¢ be nonnegative real numbers, not greater than 1 and
such that ab + bc + ac = 1. Show that a® +'b* +c? < 2.
(Contest Alexandru Myller, Tagi; Mircea Becheanu)

PROPOSED PROBLEMS
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8th GRADE

PROBLEM 1. Show that the fractional part of the number 4% + 7 is not
greater than 0.25.

(Contest Unirea, Focgani; Lucian Buliga and Corneliu Savu)

PROBLEM 2. Let k be a positive integer and a = 3k2 + 3k + 1.
(i) Show that 2a and o2 are sums of three perfect squares.
(ii) Show that if a is a divisor of a positive integer b and b is a sum of three
perfect squares then any power 5" is a sum of three perfect squares.
(Contest Unirea, Focgani; Lucian Buliga and Corneliu Savu)
PROBLEM 3. Find positive integers x, y, z which verify conditions: T+y V; 2z
and 2% + 3% - 2,2 = 8.
(Contest Alexandru Myller, Iasi; Adrian Zanoschi)
PROBLEM 4. A regular tetrahedron whose edge has length 1 is projected on
a plane. Show that the area of the obtained polygon is not greater than i;
(Contest Alexandru Myller, Iasi)

PROBLEM 5. Let ABCD be a tetrahedron such that AB = CD =q, AC =
BD =b, AD = BC = ¢ and let G4,GpB,Ge,
BCD, CDA, DAB, ABC respectively.

Find the minimal length of a path on the faces of the tetrahedron and which
passes through the points G4, G B,Gc and Gp.

Gp be the centroids of the triangles

(Contest Alexandru Myller, Tasi)

PROBLEM 6. Let n > 3 be a positive integer. ‘Show that it is possible to

eliminate at most two numbers among the elements of the set {1,2,. ..,n} such
that the sum of remaining numbers is a perfect square.

(Contest Alexandru Myller, Tasi; Mihai Baluni)

9" GRADE

PROBLEM 1. Let ABCD be a convex quadrilateral. Show that the following
conditions are ﬂxivalent: _ _

(a) ﬁ-AB+%~BC+ﬁ-CD+ﬁ-DA=O.
(b) ABCD is a parallelogram.

(Contest Unirea, Focsani)
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ProBLEM 2. Find all positive integers n for which

n§+8n2+1j
©3n

is a prime number.
(Contest Unirea, Focsani; Gabriel Popa)

PROBLEM 3. Let ABC be a triangle, A, B1,C1 be points on the sides
BC,CA, AB and A, B3,C> be pointﬁ' on the sides B, C},C1 A1, A1 By respectively.
The following triples of lines are considered:

Ty: (A4, BB,,CCy) |

Ty: (A1As, B1B,C1Cs)

Ts: (AAs, BB,,CCy).

Show that if the lines of two t.riples'are concurrent then the lines of the third
triple are concurrent t00.

(Contest Unirea, Focsani; Dan Brénzei)

PROBLEM 4. Let a,b,c,d be positive numbers such that abed = 1. Show
that the following inequality holds:

1+ab+1+bc+1+cd l+da
1+a  1+b  1+4c  14+d 77

(Contest Unirea, Focsani; Andrei Nedelcu)

PROBLEM 5. Let ABCD be a convex quadrilateral and O be an interior
point. Let denote a,b,c,d,e, f the area of the triangle OAB, OBC, OCD, ODA,
OAC, OBD, respectively. Show that |ac — bd| =ef.

(Contest Alexandru Myller, Tasi; published by
Al. Myller in Gazeta Matematica, 1949)

PROBLEM 6. (a) Show that there exist quadratic functions f(z) = az? +
bz + ¢ such that f(f(k)) = k, for any k=1,2,3.
(b) Show that if f is a quadratic function as above then the numbers a,b, ¢
cannot be all integers.
(Contest Alexandru Myller, Iasi; Gheorghe Turea)

PROBLEM 7. Let a,b,c,z,y,2 be real numbers such that
2+’ +2=a+bt+c=1

Show that a(z 4+ b) +b(y +¢) +c(z +a) < L.
(Contest Nicolae Paun, Ramnicu V alcea)

PROPOSED PROBLEMS
. 81

PROBLEM 8. Let a,b be positive integers such that a < b and C = {c1,¢2
] »C2,

---,Cn} a set of integer numbers such that a < ¢; < g < -+ < ¢y < band
n X

b—at1l ;
n > =3 Show that there are ¢;, ¢; in C such that ¢; +¢; = b+ a.

(Contest Nicolae Pdun, Ramnicu Valcea; Radu Miculescu)

10" GRADE

PROBLEM 1. Given integer polynomial f(X)=X"42Xn-143xXn—24... 4

nX +(n+1) and &= cos 2% +1i sin ;2% show that

FEFE) - fe™) = (n+2)".

(Contest Alexandru Myller, Iasi; Mihai Piticari)

PROBLEM 2. In a contest there are five examinations and the result is either
passed or failed. Find the least number of contestants such that for any conf 'l;-
ration of their responses there exist at least two contestants, say A and B. sfch
that A passed all examinations in which B passed as well. o h

(Contest Alexandru Myller, Tagi)

11** GRADE

PROBLEM 1. The sequence (an)n3 is defined by conditions:

1+a2

a; =1 and Qpy1 = , Vn>1.

(a) Show that lim a, = 0.
n—oo
(b) Find the limit lim %td2t--tan
n—oo "
(Contest Unirea, Focsani; Laurentiu Panaitopol)

PRf)BLEM 2. We are given a function f : (0,00) — R and a nonconstant
polynomial P(X) € R[X] such that:
for all real z > 0, there exists and it is finite lim Z{Z
t—oo P(1) "
Find the function g : (0, 00) — R, defined by g(z) = lim f;("))
t—o0 D
(Contest Unirea, Focsani; Laurentiu Panaitopol)
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PROBLEM 3. Let A,B € MQ(Z) be two matrices, with integer entries of
dimension 2 x 2 such that AB = BA and det A = det B = 0. Show that det(A® +
B3) is a cube of an integer number.

(Contest Unirea, Focgani; Mircea Becheanu)

PROBLEM 4. Let A,B € M3(R) be two real matrices of dimension 3 x 3
with the following property:

zy
any vector X = | z» | which is a solution of the system AX =0 is also a

T3
solution of the system BX =0.

Show that there exists a 3 x 3 matrix C such that B = CA.
(Contest Alexandru Myller, Iasi; Mircea Becheanu)

PROBLEM 5. Show that for any positive integer n, there exist positive ratio-
nal numbers ag < a; < --- < a, which satisfy the following conditions:

(@)% +%+--+2=1
(b) ag+a1+-++an < &

(Contest Alexandru Myller, Iasi; Dorin Andrica)

PROBLEM 6. Find all derivable functions f : [0,00) — R which have the
properties:
(2) f(0) =0;
(b) f'(z) = 3f'(Z) + 2f(%), for all z > 0.
(Contest Alexandru Myller, Iasi; Mihai Piticari)

12* GRADE

PROBLEM 1. Let K be a finite field with 27 elements. Show that there exists
a, a € K, such that a® = a + 2.
(Contest Unirea, Focsani; Mircea Becheanu)

PROBLEM 2. Let f(X), g(X) be irreducible rational polynomials and a,b
complex numbers such that f(a) = g(b) = 0. Show that, if a + b € Q, then f(X)
and g(X) have same degree.

(Contest Alexandru Myller, Iasi; Bodgan Enescu)

PROBLEM 3. (a) Let n > 0 be an integer number. Show that

SOLUTIONS 83

exists and it is finite.
(b) Compute lim 1,,.
n—oo

(Contest Alexandru Myller, Iagi; Mihai Piticari)

IV.2. SOLUTIONS
7" GRADE

PROBLEM 1. There are 8 participants to a chess competition which take
place in 7 rounds. The marks are distributed after well-known rules: 1 point for
winning game, % points for draw and 0 points for lost game.

(a) Show that after each of the first three rounds at least two participants
have the same score.

(b) In the final ranking qf participants there are no two with the same score.
Find the least number of points the winer should have.

Solution. (a) The result is obvious after first two rounds. When we are after

first three rounds, a player should obtain one of the following total number of
points:

1,1} 2,01 5

1
03 27 %

3
Since there are 8 participants, by the Pigeonhole principle, there are two which
have the same score.

(b) Let p be the final score of the winner in the described situation. The

others, can have in a descending order, at most the following scores:

1 3 5 7
P—,P—1,p—=,p=2,p—=, p—3, p— ~.
P3P P=5 P=2p 3 P=30p 3

In this case, the total number of obtained points is 8p — 14. Since 28 points

are given after 7 rounds, it follows that 8p — 14 > 28 and then p > 5,5 points.
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The following table of scores shows that the case p = 5,5 can be obtained:

1 2 3 4 5 6 7 8  Total
1 R 51
2 |} Pl [a i s
3 5|3 RN EEREE 43
AEENNE RN
5101 51353 i ERE 3
6 ool 1] 3| % 23
T 0o 0o 3|53 3 2
8 lojo oo i ]L]1L 13

PROBLEM 2. Let ABC be a triangle. For any interior point M of the triangle
we denote by s(M) the sum of distances of M to the sides AB, BC, CA. Show
that if M, N are interior points of AABC such that s(M) = s(N) then for any
point P of the segment MN one has s(M) = s(P) = s(N).

Solution. Let My, Mp, Mc be the perpendicular projection of the point
M on the sides BC, CA, AB, respectively. In the same way we introduce the
points Na, N, Nc and P4, Pp,Pc. Let 84 = k. Then PP, = NNathMMa
PP = Mﬁ'fﬂ’v—”ﬂ, and PPc = M‘%’I‘CMQ By adding these equalities one
obtains
PPs+PPg+PPc=3y MMy=Y NNa=s(M).

PROBLEM 3. Find all integer numbers a, b, ¢, d such that a2 + b2 = 2(c+d)
and ¢® + & = 2(a + b).

Solution. We add the equalities and obtain:
(a=12+ (-1 +(c=1)>+(d-1)*=4.

A solution can be given by a—1 = +2 and b = ¢ = d = 1 which gives either a = 3,
b=c=d=1ora=0,b=c=d=1. In both cases, the original conditions are
not verified.

Another solution can be given by a —1 = +1, b — 1 = £l c—1= +1,
d—1 = £1. By checking all posibilities one obtains solutions: (0,0,0,0), (2,0,2,0),
(0,2,0,2), (2,0,0,2), (0,2,2,0) and (2,2,2,2).
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PROBLEM 4. Let ABCD be a square and M , N be interior variable points
on the sides BC, CD respectively, such that MN = BM + DN. Show that the
angle NAM has constant measure.

Solution. Extend the side BC by a segment BP such that BP = DN. Then
AADN = AABP. So, AN = AP and /DAN = LBAP. 1t follows that the
triangle M AP is right isosceles triangle.

Since NM = MP it follows that AM is orthogonal on NP. So /NAM = 45°.

PROBLEM 5. Let a,b,c be nonnegative real numbers, not greater than 1 and
such that ab+ bc + ac = 1. Show that a2 + b2 + ¢? < 2.

Solution. Since 0 < a,b,c < 1 we have a? + b2 + ¢2 <a+b+ec So,itis
sufficient to prove a + b+ ¢ < 2. Since (a=1)(b—1)(c~ 1) < 0 we have:

a+b+cs1—abc+ab+bc+ca=2—abcg2.

8th GRADE

PROBLEM 1. Show that the fractional part of the number v4n2 + 1 is not
greater than 0.25.

Solution. From inequalities 4n> < 4n2 + n < 4n® + 1 + 1 one obtains 2n <
V4n® +n < 2n+1. So, [VEnZ+n) = 2n. We have to prove that v4nZ +n <
2n +0.25.

This is obvious, since by squaring the inequality one obtains: 4n2 + n <
4 +n+ = . '

PROBLEM 2. Let k be a positive integer and a = 3k2 + 3k + 1.

(i) Show that 2a and a? are sums of three perfect squares.

(ii) Show that if @ is a divisor of a positive integer b and b is a sum of three
perfect squares then any power b™ is a sum of three perfect squares.

Solution. (i) 2a = 6k* + 6k +2 = (2k + 1) + (k+1)2 + k% and @ =
9k? +18k° +15k% + 6k +1 = (k2 + k)2 + (242 + 3k + 1?+E2(2k+1) = a} +a +a2.

(i) Let b = ca. Then b= b2 +b3+b2 and b2 = a2 = c*(a?+a3+a3). Toend
the proof, we proceed as follows: for n. = 2p+1 we have b2P+! — (BP)2 (b3 + b3 +b2)
and for n = 2p + 2, b = (b*)?b? = (bp)2c2(a? + a3 + aj).

PROBLEM 3. Find positive integers x,y, z which verify conditions: T+y > 22
and 2% 4+ % — 222 = 8.
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Solution. There are two possible cases:

Casel.z >y > 2.

We denote z —z=a >0,y — 2z =05>0, a >b. One obtains the equation
22(a +b) + a® + b = 8. When z > 3, there are no solutions. For z = 2, we get
(a+2)%+(b+2)? = 16, which again has no solution. When z = 1 we obtain solutions
(z,y,2) ’ =
(3,1,1) or (z,9,2) = (1,3,1). When z = 0, a® + > = 8 and we get the solu-
tion (z,y,2) = (2,2,0).

Casell.z>2z2y.

Note again  — z = a, y — z = b and obtain the solution (z,y,2) = (n+2,n—
2,n) or (z,y,2) = (n—2,n+2,n).

PROBLEM 4. A regular tetrahedron whose edge has length 1 is projected on
a plane. Show that the area of the obtained polygon is not greater than %

Solution. The obtained polygon is a triangle or a quadrilateral. The maximal
area of a triangle is %5—. The area of the quadrilateral is %duiz sin ¢, where d;, d>
are the lengths of its diagonals and ¢ is the angle between them. Therefore, the
area of the quadrilateral is not greater than %

PROBLEM 5. Let ABCD be a tetrahedron such that AB = CD =a, AC =
BD =b, AD = BC = c and let G4,Gp,Gc,Gp be the centroids of the triangles
BCD, CDA, DAB, ABC respectively.

Find the minimal length of a path on the faces of the tetrahedron and which
passes through the points G4,Gp,Gc and Gp.

Solution. The tetrahedron has congruent faces. Therefore, the sum of angles
is each vertex of the tetrahedron is 180°. When we unfold it on a plane we
obtain either a triangle or a parallelogram. Therefore, we can choose the path
GpGaGpGe whose length is 2(my +ma +m3) where my, mg, ms are the lengths
of medians in the triangle ABC.

PROBLEM 6. Let n > 3 be a positive integer. Show that it is possible to
eliminate at most two numbers among the elements of the set {1,2,...,n} such
that the sum of remaining numbers is a perfect square.

Solution. Let m = 1\,/1‘%‘1‘ From m? < 1(";—1) < (m + 1) we obtain

n2ntl) 2 < (m o+ 1)2 — m? = 2m + 1. Therefore, we have:
2 .

o
Mn—;l—mzs‘.lmg\/2n2+2n<2n—l.
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Since, any number &, k < 2n — 1 can be obtained by adding at most two numbers
from {1,2,...,n}, we obtain the result.

9" GRADE

‘l:.'ROBLEM 1. Let ABCD be a convex quadrilateral. Show that the followin,

conditions are ﬂmivalent: ¢
—

(a) 75 AB + 3o -BC+ &5 - CD + 1 - DA =0,

(b) ABCD is a parallelogram. '

Solution. The vectors a = ﬁ . ZB, b= B_lc - B—C)‘ c= L C—‘B and

- 1 N RS

d = P_ADA are unit ‘vectors and have the same directions as the sides of the
q.uadnlateral, respectively. Since a +b+c+d =0, it follows that a b,c,d are the
sides of a rhombus. Then ABCD is a parallelogram. o

PROBLEM 2. Find all positive integers n for which

[
3n

is a prime number.

§ :;S'olution. Since the denominator is divisible by 3 we consider the division of
n by 3.

If n = 3p, then
n®+8n2+1 ,
T an | T S =p(3p+8);

this is a prime number only for p=1.
When n =3p+1,

3 8- 2
[%J =@3p+1)(p+3),

which is a prime number only for p=0.
When n =3p+2,

[n3+8n2+1J _ | 270° +126p° + 132p + 1 ,
3n 9% +6 J:3P +12p+6=3(p> +4p+2)

is a composite number.



88 SELECTION OF PROBLEMS SUMITTED IN MATHEMATICAL REGIONAL COMPETITIONS

PROBLEM 3. Let ABC be a triangle, Ay, By,Cy be points on the sides
BC,CA, AB and Ay, B>, C> be points on the sides B1C1, C1 Ay, Ay B respectively.
The following triples of lines are considered:

Ty: (AA;, BBy, CC1)

Ty: (A1As, B1Bs,C1C2)

Ts: (AAs, BB,,CCy). .

Show that if the lines of two triples are concurrent then the lines of the third

triple are concurrent too.
Solution. We introduce the intersection points As, B3,C3 to be A3 = AA>N
BC, etc. Let assume that triples Ty, T are concurrent. By Ceva theorem, one has

A,B B,C CiA _ A;Bi B:Ci Codr _
A4,C BA CB A0 By Gy

- BgA
AC _ AzBy | AC1 . AC  Gimilar expressions can be obtained for 25 and
Then 4% = 256, " 4B, ~ AB" Similar exp BaC

‘2,3—3%. Let denote:
4C 5 04 B
4,8 T OB C14,

a=

where the products are taken by cyclic permutations. When multiply, we obtain
v = afB. This proves the result.

PROBLEM 4. Let a,b,c,d be positive numbers such that abed = 1. Show
that the following inequality holds:

1+ab+l+bc+1+cd l+du>4.
1+a 1+ 1+c 1+d

1 .
Solution. We replace cd = ﬁ and da = ;. The expression turn out to be

1+ab 14ab  14+bc  1+bc
T +
Tra T abtabe T 140 | bo+bed

1 1 1 1 )
= (1+ab) (m+m>+(1+bc)(1+b+bc+bcd

Using the inequality L + § > 74 we obtain:

E=

+ (1 +bc)

4
T+a+be+bed

4
E=(+a) Tt abe

1+ab 1+be )
=4(1+a+ab+abc+ 1+ a+be+bed

1+ab a+ abe )
=4(1+a+ab+abc @+ ab+ abe + abed
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ProBLEM 5. Let ABC'D be a convex quadrilateral and O be an interior
point. Let denote a,b,¢,d, e, f the area of the triangle OAB, OBC, OCD, ODA,
OAC, OBD, respectively. Show that |ac — bd| = ef.

Solution. Let I be the intersection point of diagonals AC' and BD. We may
assume that I is inside the triangle BIC.

We denote by a, 8,7, the angles AOB, BOC, COD,DOA, respectively.
Then, we have to prove the equality:

ac=bd + ef.
It is equivalent to:

OA-OBsina-0D-0C -siny=0B-0Csinf-0D-0A -siné
+ 0D - OBsin(a +4)- OA-OC -sin(é + 7).

This is succesively equivalent to:

sin asiny = sin Bsin § + sin(a — ) sin(d — 7)

& cos(a — ) — cos(@ + ) = cos(B — b) ~ cos(B + &) + 2sin(a + §) sin(d + )
& cos(a —7) — cos(8 — §) = 2sin(a + &) sin(d + 7)
C!_7_ﬂ+(5sino‘_’Y;-ﬂ_é = 2sin(a + §) sin(d + )

& —sin(m — (y + B)) sin(w — (y +6)) = sin(a + dsin(d + v)

& sin(y + ) = sin(a + §).

& —2sin

Last equality is valid because v + 8 = 27 — (a + 4).

PROBLEM 6. (a) Show that there exist quadratic functions fla) = ax® +
bz + ¢ such that f(f(k)) =k, for any k = 1,2, 3.

(b) Show that f is a quadratic function as above then the numbers a,b,c
cannot be all integers.

Solution. (a) We look for a function f such that f(1) = 1, f2)=2,f3)=3.
By solving the obtained system one obtains: a = —%, b= 12—3, c=—4.

(b) Assume by contrary that such a function exists, where a,b,c € Z. Since
z—y | f(z)— f(y), for all distinct z,y € Z we obtain that F() = £(2), £(2) - f(3),
f(1)~f(3) are in the set {1, £2}. But (f(1)~f(2)+(f(2)—f(3)+(f(3)-F(1)) =
0. So, f(1) = £(2) = £1, f(2) — £(3) = £1 and f(3) — f(1) = F2. After replacing
this, we obtain a = 0, which contradicts f is a quadratic function.
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PROBLEM 7. Let a,b,c¢,z,y, 2z be real numbers such that
4y’ +22=a+b+e=1

Show that a(z +b) + b(y +¢) + c¢(z+a) < 1.
(Contest Nicolae P&un, Ramnicu Valcea)

Solution. Let denote p = a® + b? + ¢>. Then one has:
2(ab+bc+ca)=1—p and (az+by+cz)®<p.

It follows that:

- 1 1-p\2
a(z+0b)+b(y+c)+c(z+a) < -2-(1-—p)+\/1_J= 1- ( 2\/-> <1
PROBLEM 8. Let a,b be positive integers such that a < b and C = {z;, 22,

...,Tn} a set of integer numbers such that @ < ; < 23 < -+ < ,, < b and
n > =2+l Show that there are ;,x; in C such that z; + z; = b+ a.

Solution. Let C = {zy,3,...,2Z,} such that n > b’—;ﬂ Consider also the
set C' = {a+b—=,...,a+b—z,}. Onehas |CNC'| =|C|+|C'| - |CuUC|.
Since |C| = |C'| = n, n > =4 and CUC' C [a,5] NN one obtains easily that
|CNC'| > 1. This shows that there exist x;,z; € C such that a + b — z; = z;,
that is a + b = z; + z;.

10" GRADE

PROBLEM 1. Given integer polynomial f(X) = X" +2X" "1 4+3X" 2 4... 4

nX + (n+1) and & = cos 2% +1i sin ;2% show that

FEfED) - fE™) = (n+2)™
Solution. Let g(X) = X™*1 4+ X" +..-4 X +1 be the polynomial whose roots
are €,€%,...,e™!. We mention the key equality: g(X) = (X — 1)f(X) +n +2.
From it we obtain:
g ") = (€ = 1)f(eF) +n+2, Yk=1,...,n+1.

After writting them under the form

(1-eMfE*)=n+1, VEk=1,...,n+1
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and by multiplication of all these equalities, we obtain:

.

n+1
1-e)(1-e)--- (1 - ] £e") = (n+ 2+

k=1
Since (1 —¢)(1—¢€?)--- (1 — &™) = g(1) = n + 2, the result is done.

PROBLEM 2. In a contest there are five examinations and the result is either
passed or failed. Find the least number of contestants such that for any configu-
ration of their responses there exist at least two contestants, say A and B, such
that A passed all examinations in which B passed as well.

Solution. Let a,b,c,d,e be the five examinations. In the case of at most 10
contestants it is possible that each contestant has passed exactly two examinations.
In this case, it is possible that two distinct contestants pass distinct examinations,
since (3) = 10.

When assume that there are at least 11 contestants we may consider the
following ten families of subsets of the set {a,b,c,d, e}:

{0, a,abd, abc, abed, abede};  {b,bc, bed, bede};  {c,ac,acd, acde}; {d,cd, cde};

{e,de,ade}; {ad,abd}; {ac,ace,abce}; {ae,abe}; {be,bde}; {ce,bee}.

Since there exist two contestants which passed the same examinations, the result
follows.

11** GRADE

PROBLEM 1. The sequence (a5)n31 is defined by conditions:

11a2
a; =1 and ap4y = -;a", Vn>1.

(a) Show that lim a, = 0.
n—oo
(b) Find the limit lim euteztten,
n—oo

Solution. (a) By induction, we show that a, < 3,Vn. We havea; =ay =1,
a3 = £ and from n > 3 and a,, < 3 we get:

<3.

1+a2 10
Any1 = < —
n n
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(b) The following inequalities hold:

1 1 11
— — —— -], Va>1L
— <an <~ 1+100(n_l =), vn

After summing up to n we obtain:

1 1 Z 1 1
e —— e —— 101.
1+(1+2+ +n_1)<§ak<(l+2+ +o—g) 10

Since Lat 41
lim T2ty .
n—oo Inn
we obtain i Lty
lim 1.
n—oo Inn

PROBLEM 2. We are given a function f : (0,00) = R and a nonconstant
polynomial P(X) € R[X] such that:

for all real z > 0, there exists and it is finite lmolo P(t)

Find the function g : (0,00) = R, defined by g(z) = 1_1“rr°1o P(”

Solution. Let P(X) = apX™ + --- + a1 X + ao the algebraic expression of
the polynomial. Let zt = y a new variable, where ¢t > 0 is a parameter and z is
arbitrary, but fixed. Since t = § we get

) _ IC) I z"

n T4 zn
vqwzak# !Hooy ¥ ap +an-1y + oo+ a0

Therefore, it exists lim Ly(i’—) = {. Hence, g(z) = E% = bz™ where b = TL:.'
y—oo

PROBLEM 3. Let A,B € M(Z) be two matrices, with integer entries of
dimension 2 x 2 such that AB = BA and det A = det B = 0. Show that det(A% +
B3) is a cube of an integer number.

Solution. Let x be areal variable. Then, det(A+zB) is an integer polynomial
of the form:
P(z) = det(A + zB) = det Bz? + mz + det A.

Since det A = det B = 0, we get det(4 + zB) = mz = P(z).
From the algebraic decomposition:

A%+ B® = (A+ B)(A+¢B)(A+¢°B),
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where € = cos %" +1isin %", we obtain:

det(A® + B%) = P(1) - P(¢) - P(¢?) = m - me - me? = m®.
PROBLEM 4. Let A, B € M3(R) two real matrices of dimension 3 x 3 with
the following property:
Ty
any vector X = | x5 | which is a solution of the system AX = 0 is also a

T3
solution of the system BX = 0.
Show that there exists a 3 x 3 matrix C such that B = CA.

Solution. If A is nonsingular matrix, we may take C' = BA~1, So, we have
to consider only the case det A = 0. The condition B = C'A means: the columns
of B are linear combination of columns of A, when take them as vectors in R3.

Let a1, a3, a3 be the columns of A and by, by, b3 be the columns of B. Since
rank A < 3, there exists real numbers, not all zeros, such that

(1) May + Asaz + Azaz = 0.

By the hypothesis, the columns of B satisfy the same relation:

(2) Arby + A2ba + Azbs = 0.

Condition (1) represents the equation of either a plane or a line in R3. Since
vectors by, by, by belong to that plane (or line) they are a linear combination of a
base of it. But a base can be chosen from the columns of A.

PROBLEM 5. Show that for any positive integer n, there exist positive ratio-
nal numbers ap < a1 < -+~ < a,, which satisfy the following conditions:

(a) %{.l+%!1+---+1<;~="l

(b) ag+a1+---+a, < .

Solution. We have the well-known formula:

n

n!
S =
= kl(n —k)!
From it we obtain:

i
K2 n—k)' n

So, we may take a; = m, and obviously one has ag < a; < --- < a,.
(b) Moreover,

1 1 1 1 1 3
Eﬂ“k kzo(n—k)!‘z_ﬂ<1+ﬁ+"'+a) RETRRRETS
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PROBLEM 6. Find all derivable functions f : [0,00) = R which have the
properties:

(a) £(0) =0;

) f'(z) = 1f'(5) + 37 (), allz>0.

Solution. We have f(z) = f(2) + f(2£), Va > 0. Consider the function:

(z .
Gla) = { £, >0,
f'(0), z=0.

The function G is continuous on [0, 00) and G(z) = $G(%) + 3G (%)

Let @ > 0 and denote M = s?p]G(z). There exists 79, 0 < 7o < a,

z€[0,a]

such that G(zo) = M. Since G(z) = 1G(z) + 3G(%) it. follows that M
1G(%) + 2G(%0), s0 G(%) = M.

In a similar way, we obtain G(52) = M, Vn.

We deduce that M = f'(0). In the same way, one can deduce that f'(0)
Iéx[a{ﬂ]G(z). So, G(z) = f'(0) and f(2) = f'(0) -z, Va.

1]

12th GRADE

PROBLEM 1. Let K be a finite field with 27 elements. Show that there exists
a, a € K, such that a® = a+2.

Solution. The field K is commutative of characteristic 3. The group G = K*
is abelian of order 26. So, for any z € K*, we have z°¢ — 1 = 0. The polynomial
X206 _ 1 has the divisor X® — X + 1, so among all solutions z € K* of the equation
226 — 1 =0, there are a such that a®> =a—1=a+2.

PROBLEM 2. Let f(X), g(X) be irreducible rational polynomials and a,b
complex numbers such that f(a) = g(b) = 0. Show that, if a + b € Q, then f(X)
and g(X) have same degree.

Solution. Let a+b=r € Q. Then f(a) = f(r — b) = 0. The polynomial
R(X) = f(r — X) has rational coefficients and degh = deg f. Moreover, h(X) is
irreducible in Q[X].

Since h(b) = g(b) = 0 and they are irreducible, it follows that h(X) = ag(X);
so deg f = degg.

PROBLEM 3. Let n > 0 be an integer number.

SOLUTIONS
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(a) Show that
.
to=lim [ g,
t—o0 1 "

exists and it is finite.
(b) Compute lim £,.
n—oo

. ; A v t si
. ..S'olutonL. (a) We consider F,(t) = J; $223L dz. The function F,(t) is mono-
tonic increasing, so tlim F,(t) exists.
—00
From the inequalities:

t o ) 2
Fnt</_dg
()\lz"z o Vn>0

= < o0 it follows that £,, < co.

e t g

(b) From f1 T,,ldzgfl &Iﬁﬂdz < ltz%dac we obtain ——1- < ¢, < -1
So, tlim £, =0.

—00

we obtain that lim F,(t) < co. Since lim [ =1
t—o00 t—o0 Y1

1
1S 1
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Part V. THE INSTITUTE OF MATHEMATICS TEST
FOR HIGH-SCHOOL STUDENTS
Bucharest, January 19, 2003

PROBLEM 1. Prove that the interior of a convex pentagon ABCDE, having
all sides of equal length, cannot be entirely covered by the open discs having the

sides of the pentagon as diameters.
* kX

Solution. Let us denote by 2R the side length of ABCDE. Tt follows directly
from the Pigeonhole principle that there are two consecutive angles of the pentagon
greater than 60°. Suppose that these angles are ZEAB and LABC. It follows
that BE and AC are greater than 2R.

Let M be the middle point of the segment EC. The point M is on the
semicircle of diameter DE and DC, therefore it lies in their exterior. We shall
prove that M also lies in the exterior of the semicircle of diameter AE. Indeed,
MF = % > R, where F is the middle point of the segment AC. The same
follows for the semicircle of diameter BC'.

All we have left to prove is that M is in the exterior of the semicircle of
diameter AB. Suppose otherwise, which means that LAMB > 90°. Then 4B is
the greatest side in the triangle AM B, thus AM < 2R. But from

EM = éEC < %(ED +DC) =2R,

it follows that EA = 2R > EM and EA > AM and thus LEMA > 60°. In the
same way ZBMC > 60°, therefore 180° < LZEMA + LAMB + (BMC, which is
a contradiction.

PROBLEM 2. Prove that in any triangle ABC' the following inequality holds:
V3> lo 4+l +le

where lq, Iy, lc are the lengths of the interior angle bisectors of ZBAC, LABC and
[ AC B respectively, and p is the semi-perimeter of the triangle ABC.
Valentin Vornicu
Solution. We will use the following:

LEMMA. In any such triangle AABC one has 2 < plp—a).
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Proof of Lemma. Indeed because

4bc
= WI’(F —a)

/

using the AM-GM inequality for b and ¢ the claim is obvious.

Now, using the Cauchy-Schwartz inequality and the lemma previously estab-
lished one gets:

(la+l+1)’ <32+ +12) <3[3p* —pla+b+0)] =3p°
which gives us exactly the required inequality.

PROBLEM 3. Let T be the circumcircle of a triangle ABC and I the incircle
of the same triangle. Consider the circle tangent to the sides CA, CB respectively
in D, E and interior tangent to the circle I. Prove that I is the middle point of
the segment DE.

IMO Short List 1993

Solution. Tt is obvious that if we succeed in proving that, I lies of the segment
DE then the problem is solved, because the triangle DEF is isosceles, and CT is
an angle bisector which means that it is a median line in the same time.

Let us denote by = and y the lengths of the segments BE respectively AD.
From Casey’s theorem applied to the points A, B,C and the circle Q we obtain
that:

zb+ya = (a—z)c.

But CE = CD thus a—z =b—y = y = b—a+x. Solving the above system
we obtain:

1) ap=b 4 y=22=9
p p

The fact that I lies on DE can be expressed using the transversal theorem that

, BE AD C'I
IeDE & AC' - — = = L2
FC+BC DC AB IC

where C' = CI N AB. We know from the bisector theorem that

or_ e
IC ~ a+b
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therefore we want to prove that

cb ¢ y _ ¢
b+a a-z a+b b—y a+b
b
4 & +_a,y =c
a—z b-y

—Pr P
a— o=t Ty be—a) T
P ?

ba(p-b)  ba(p-a) _
pa—ap+ab pb—bp+ba

the last equality being obviously true.

PROBLEM 4. On an island there are n, n > 2, natives. Any two natives are
either friends, either enemies. Each native is ordered by the tribes’ chief to wear
a necklace with colored stones such that any pair of native friends to each have

_at least a stone of the same color and any pair of native enemies to have no stone
of the same color in their necklaces. It is possible that some of the necklaces are
without any stones.

What is the minimal number of required colors so that the natives can paint
the stones in order to respect their chief’s order, no matter what the relationships
between the natives are?

Belarussian Olympiad

Solution. The case in which n is even and the natives divide themselves into
2 equal groups, in each group being only relative enemies and each native being
friend with each native from the other group, suggests the answer n = "4—2 .

We shall prove that the above claim by induction from n to n + 2. The
verification step for n =1 and n = 2 is easy.

Let us suppose that the statement holds for n natives and let us prove it for
n + 2. If all the natives are enemies there are no stones required. Thus let us
consider two friends A and B. The need at most a new color. The other need

"TQJ types of stones, from our supposition. If C' is one of these natives, he can be

friends with both A and B, or enemy of both, or just a friend of one and enemy of
the other one. In each of the cases at most one new color is required. But C' was
randomly chosen from the other n natives different from A and B, thus at most n
more colors are required. In total we need

F;JJrH-n: l"‘1—2+n+1J = l@}

colors, which proves our initial statement.
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