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Problems

Problem 1. Determine all functions f: R — R such that the equality

f(lzly) = f(=)| f(y)]

holds for all z,y € R. (Here |z] denotes the greatest integer less than or equal to z.)

Problem 2. Let I be the incentre of triangle ABC' and let T be its circumcircle. Let the line Al
intersect I' again at D. Let E be a point on the arc BDC' and F' a point on the side BC' such that

/BAF = /CAE < 1/BAC.

Finally, let G be the midpoint of the segment [ F'. Prove that the lines DG and ET intersect on I.

Problem 3. Let N be the set of positive integers. Determine all functions g: N — N such that

(g(m) +n)(m+ g(n))

is a perfect square for all m,n € N.

Problem 4. Let P be a point inside the triangle ABC. The lines AP, BP and CP intersect the
circumcircle I' of triangle ABC' again at the points K, L and M respectively. The tangent to I' at C'
intersects the line AB at S. Suppose that SC' = SP. Prove that MK = M L.

Problem 5. In each of six boxes Bi, By, Bs, By, Bs, Bg there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box B; with 1 < j <5. Remove one coin from B; and add two
coins to Bj;.

Type 2: Choose a nonempty box By with 1 < k < 4. Remove one coin from By and exchange
the contents of (possibly empty) boxes Byi1 and Bjo.

Determine whether there is a finite sequence of such operations that results in boxes By, Bs, B3, By, Bs
being empty and box Bg containing exactly 20102010*" ¢oins. (Note that a** = a®).)

Problem 6. Let aj,as,as3,... be a sequence of positive real numbers. Suppose that for some
positive integer s, we have
a, =max{ay + ap_ | 1 <k <n-1}

for all n > s. Prove that there exist positive integers £ and N, with £ < s and such that a,, = ay+a,_;
for all n > N.






Solutions

Problem 1. Determine all functions f: R — R such that the equality

F(lzly) = (@) f(y)] (1)

holds for all z,y € R. (Here |z] denotes the greatest integer less than or equal to z.)
Answer. f(z) = const =C, where C =0o0r1<C <2.
Solution 1. First, setting z = 0 in (1) we get

f(0) = f(0)Lf(y)] (2)

for all y € R. Now, two cases are possible.

Case 1. Assume that f(0) # 0. Then from (2) we conclude that |f(y)] = 1 for all y € R.
Therefore, equation (1) becomes f(|x|y) = f(x), and substituting y = 0 we have f(z) = f(0) =
C # 0. Finally, from | f(y)] =1 = [C] we obtain that 1 < C < 2.

Case 2. Now we have f(0) = 0. Here we consider two subcases.

Subcase 2a. Suppose that there exists 0 < o < 1 such that f(«) # 0. Then setting x = « in (1)
we obtain 0 = f(0) = f(«)|f(y)] for all y € R. Hence, | f(y)] = 0 for all y € R. Finally, substituting
x =11in (1) provides f(y) = 0 for all y € R, thus contradicting the condition f(«) # 0.

Subcase 2b. Conversely, we have f(a) =0 for all 0 < a < 1. Consider any real z; there exists an
integer N such that o = % €[0,1) (one may set N = |z| +1if 2 >0 and N = |z| — 1 otherwise).
Now, from (1) we get f(z) = f(|N]a) = f(N)|[f(a)] =0 for all z € R.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that [f(y)] = 0 for some y; then the substitution x = 1 provides f(y) =
f()[f(y)] = 0. Hence, if |f(y)] = 0 for all y, then f(y) = 0 for all y. This function obviously
satisfies the problem conditions.

So we are left to consider the case when | f(a)] # 0 for some a. Then we have

f(lz]a) = f(@)[f(a)],  or flz)= (3)
This means that f(z1) = f(z3) whenever |z1| = |z3], hence f(x) = f(|z]), and we may assume
that a is an integer.

Now we have

fla)=f(2a-3) = f(20) [ f (3)] = F(20)[(0));

this implies | f(0)] # 0, so we may even assume that a = 0. Therefore equation (3) provides

o)
fe)=Troy =970



for each z. Now, condition (1) becomes equivalent to the equation C' = C'|C'| which holds exactly
when |C'| = 1.

Problem 2. Let I be the incentre of triangle ABC' and let ' be its circumcircle. Let the line Al
intersect I' again at D. Let E be a point on the arc BDC' and F' a point on the side BC' such that

ZBAF = LOAFE < %ABAC.

Finally, let G be the midpoint of the segment [ F'. Prove that the lines DG and ET intersect on I.

Solution 1. Let X be the second point of intersection of line EI with I'; and L be the foot of the
bisector of angle BAC. Let G’ and T be the points of intersection of segment DX with lines I F
and AF', respectively. We are to prove that G = G’, or IG' = G'F. By the Menelaus theorem
applied to triangle AIF and line DX, it means that we need the relation

G'F TF AD TF ID
“iG¢ AT b " AT AD
Let the line AF intersect I' at point K # A (see Fig. 1); since ZBAK = ZCAE we have

BEK = CFE, hence KE || BC. Notice that ZIAT = /DAK = /EAD = /EXD = /IXT, so
the points I, A, X, T are concyclic. Hence we have /ITA = /IXA = /EXA = /EKA, so

1

TF IL
IT || KE || BC. Theref btain — = —.
I | BC erefore we obtain — = —- . .
Since C1 is the bisector of ZACL, we get 1 = Ac Furthermore, /DCL = /DCB =

LDAB = ZCAD = %ABAC, hence the triangles DC'L and DAC' are similar; therefore we get

L D
fl’C' = Alc)’ Finally, it is known that the midpoint D of arc BC' is equidistant from points I, B, C,
DC

hence 2¢ _ ID
CUD T AD
Summarizing all these equalities, we get

TF_IL_CL_DC _ID
AT A  AC  AD AD’
as desired.

Fig. 1 Fig. 2



Al AD
Comment. The equality 7= DI is known and can be obtained in many different ways. For instance,

one can consider the inversion with center D and radius DC = DI. This inversion takes BAC to the

segment BC, so point A goes to L. Hence — which is the desired equality.

DI~ AD’
Solution 2. As in the previous solution, we introduce the points X, T and K and note that it
suffice to prove the equality

TF DI TF+ AT DI+ AD AT AF
AT~ AD AT AD 7 AD DI+ AD
Since LZFAD = LZFAI and /TDA = /XDA = /XFEA = ZIFA, we get that the triangles AT D
and AIE are similar, therefore £ _ Al
AD ~ AE’

Next, we also use the relation DB = DC = DI. Let J be the point on the extension of
segment AD over point D such that DJ = DI = DC (see Fig. 2). Then ZDJC = ZJCD =
i(m— 2JDC) = §/ADC = 1 Z/ABC = ZABI. Moreover, ZBAI = ZJAC, hence triangles ABI

AB Al
and AJC are similar, so - A0 ™" AB-AC =AJ-Al =(DI+ AD) - Al
On the other hand, we get ZABF = ZABC = ZAEC and /BAF = /CAE, so triangles ABF
AF  AB
and AEC are also similar, which implies — 1C = AR’ or AB- AC = AF - AE.
Summarizing we get
Al AF AT AF

as desired.

Comment. In fact, point J is an excenter of triangle ABC.

Problem 3. Let N be the set of positive integers. Determine all functions ¢: N — N such that

(g(m) + n) (m + g(n))

is a perfect square for all m,n € N.
Answer. All functions of the form g(n) = n + ¢, where ¢ € NU {0}.

Solution. First, it is clear that all functions of the form g(n) = n + ¢ with a constant nonnegative
integer ¢ satisfy the problem conditions since (g(m) +n)(g(n) +m) = (n+ m+ c)? is a square.
We are left to prove that there are no other functions. We start with the following
Lemma. Suppose that p ‘ g(k) — g(¢) for some prime p and positive integers k, £. Then p ‘ k—{.
Proof. Suppose first that p? | g(k) — g(¢), so g(¢) = g(k) + p*a for some integer a. Take some positive
integer D > max{g(k), g(¢)} which is not divisible by p and set n = pD — g(k). Then the positive
numbers n + g(k) = pD and n + g(¢) = pD + (g(¢) — g(k)) = p(D + pa) are both divisible by p but
not by p?. Now, applying the problem conditions, we get that both the numbers (g(k)+n) (g9(n)+k)
and (g(¢) 4+ n) (g(n) + ) are squares divisible by p (and thus by p?); this means that the multipliers
g(n) + k and g(n) + ¢ are also divisible by p, therefore p | (g(n) + k) — (g9(n) + ¢) = k — € as well.
On the other hand, if g(k)—g(¢) is divisible by p but not by p?, then choose the same number D and
set n = p* D — g(k). Then the positive numbers g(k)+n = p*D and g({)+n = p*D+ (g(¢) — g(k)) are
respectively divisible by p* (but not by p!) and by p (but not by p?). Hence in analogous way we obtain
that the numbers g(n)+k and g(n)+ ¢ are divisible by p, therefore p ‘ n)+k)—(g(n)+¢) = k—".
]
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We turn to the problem. First, suppose that g(k) = g(¢) for some k,¢ € N. Then by Lemma we
have that k — £ is divisible by every prime number, so k — ¢ = 0, or kK = £. Therefore, the function g
is injective.

Next, consider the numbers g(k) and g(k + 1). Since the number (k + 1) — k = 1 has no prime
divisors, by Lemma the same holds for g(k + 1) — g(k); thus |g(k + 1) — g(k)| =

Now, let g(2) — g(1) = q, |¢| = 1. Then we prove by induction that g(n) = g(l) +q(n—1). The
base for n = 1,2 holds by the definition of ¢. For the step, if n > 1 we have g(n + 1) = g(n) £ ¢ =
g(1) +q(n — 1) £ ¢q. Since g(n) # g(n —2) = g(1) + g(n — 2), we get g(n) = g(1) + ¢gn, as desired.

Finally, we have g(n) = ¢g(1) + ¢(n — 1). Then ¢ cannot be —1 since otherwise for n > ¢(1) + 1
we have g(n) < 0 which is impossible. Hence ¢ = 1 and g(n) = (¢(1) — 1) + n for each n € N, and
g(1) =1 >0, as desired.

Problem 4. Let P be a point inside the triangle ABC. The lines AP, BP and CP intersect the
circumcircle I' of triangle ABC' again at the points K, L and M respectively. The tangent to I' at C'
intersects the line AB at S. Suppose that SC = SP. Prove that MK = ML.

Solution 1. We assume that CA > C'B, so point S lies on the ray AB.

PM  PA
From the similar triangles APKM ~ APCA and APLM ~ APCB we get —— M CA and
LM CB Multipl th t liti t
B — pp- Multip ying these two equalities, we ge
LM CB PA
KM CA PB’
CB PB
H he rel MK =ML i 1 — =
ence, the relation is equivalent to c A PA
Denote by F the foot of the bisector of angle B in triangle ABC. Recall that the locus of points X
XA CA
for which XE-CB is the Apollonius circle €2 with the center () on the line AB, and this circle

passes through C' and E. Hence, we have M K = ML if and only if P lies on €, that is QP = QC.
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Now we prove that S = @, thus establishing the problem statement. We have ZCES = ZCAE +

LACE = /BCS+ ZECB = ZECS, so SC = SE. Hence, the point S lies on AB as well as on the
perpendicular bisector of C'E and therefore coincides with Q).

Comment. In this solution we proved more general fact: SC = SP if and only if MK = M L.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

Let P be an arbitrary point inside both the circumcircle w of the triangle ABC' and the angle
ASC, the points K, L, M defined as in the problem.

Let E and F' be the points of intersection of the line SP with w, point F lying on the segment S P
(see Fig. 2).

We have SP? = SC? = SA- SB, so gg = gf}, and hence APSA ~ ABSP. Then /BPS =

/SAP. Since 2/BPS = BE + LF and 2/SAP = BE + EK we have

LF = EK. (4)
On the other hand, from /SPC = ZSCP we have EC+MF =EC + E/]\\J, or
MF = EM. (5)

From (4) and (5) we get MFL=MF+FL=ME +EK = MEK and hence MK = ML. The
claim is proved.

Problem 5. In each of six boxes Bj, By, Bs, By, Bs, Bg there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box B; with 1 < 7 < 5. Remove one coin from B; and add two
coins to Bj;.

Type 2: Choose a nonempty box By with 1 < k£ < 4. Remove one coin from Bj and exchange
the contents of (possibly empty) boxes By,1 and By.s.
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Determine whether there is a finite sequence of such operations that results in boxes By, Bs, Bs, B4, Bs
being empty and box Bg containing exactly 20102019""” coins. (Note that a** = a®).)

Answer. Yes. There exists such a sequence of moves.

Solution. Denote by (ay,as,...,a,) — (a},d),... al) the following: if some consecutive boxes
contain aq,...,a, coins, then it is possible to perform several allowed moves such that the boxes
contain a}, ..., a, coins respectively, whereas the contents of the other boxes remain unchanged.

Let A= 201020102010, respectively. Our goal is to show that

(1,1,1,1,1,1) — (0,0,0,0,0, A).

First we prove two auxiliary observations.
Lemma 1. (a,0,0) — (0,2%,0) for every a > 1.

Proof. We prove by induction that (a,0,0) — (a — k,2%,0) for every 1 < k < a. For k = 1, apply
Type 1 to the first box:

(a,0,0) — (a—1,2,0) = (a — 1,2",0).

Now assume that k < a and the statement holds for some k < a. Starting from (a — k,2¥,0),
apply Type 1 to the middle box 2* times, until it becomes empty. Then apply Type 2 to the first
box:

(a—k,25,0) = (a— k.2~ 1,2) = - — (@ — £,0,25) = (a — k — 1,21,0).

Hence,
(a,0,0) — (a —k,2%,0) — (a — k — 1,2"%0). O

_2
Lemma 2. For every positive integer n, let P, = 22 (e.g. P3 = 22* = 16). Then (a,0,0,0) —

n

(0, P,,0,0) for every a > 1.

Proof. Similarly to Lemma 1, we prove that (a,0,0,0) — (a — k, Py, 0,0) for every 1 <k < a.
For k =1, apply Type 1 to the first box:

(a,0,0,0) = (a —1,2,0,0) = (a — 1, P, 0,0).

Now assume that the lemma holds for some k < a. Starting from (a—k, Py, 0,0), apply Lemma 1,
then apply Type 1 to the first box:

(a —k, Py, 0,0) — (a — k,0,27 0) = (a — k,0, Poy1,0) — (@ — k — 1, Pry1,0,0).

Therefore,
(a,0,0,0) = (a — k, P, 0,0) = (a — k — 1, P31, 0,0). O
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Now we prove the statement of the problem.
First apply Type 1 to box 5, then apply Type 2 to boxes By, B3, By and By in this order. Then
apply Lemma 2 twice:

(1,1,1,1,1,1) — (1,1,1,1,0,3) — (1,1,1,0,3,0) — (1,1,0,3,0,0) — (1,0,3,0,0,0) —
—(0,3,0,0,0,0) — (0,0, P5,0,0,0) = (0,0, 16,0,0,0) — (0,0,0, Pyg,0,0).

We already have more than A coins in box By, since

211)2011 o 2211-2011

2010 2010 . 2010 2011 215
A S 20102010 < (211)2010 —_ 211 2010 < 22010 < 2( < 22 < P16-

To decrease the number of coins in box By, apply Type 2 to this stack repeatedly until its size
decreases to A/4. (In every step, we remove a coin from By and exchange the empty boxes Bs
and Bg.)

<O70707P167070)—>(070707P16_17070> _)(070707P16_27070)—>
— -+ —(0,0,0,A/4,0,0).

Finally, apply Type 1 repeatedly to empty boxes B, and Bs:

(0,0,0, 4/4,0,0) — - -+ — (0,0,0,0, 4/2,0) — --- — (0,0,0,0,0, A).

Comment. Starting with only 4 boxes, it is not hard to check manually that we can achieve at most 28
coins in the last position. However, around 5 and 6 boxes the maximal number of coins explodes. With 5
boxes it is possible to achieve more than 22" coins. With 6 boxes the maximum is greater than PP2 -

Problem 6. Let aj,aq,as,... be a sequence of positive real numbers. Suppose that for some
positive integer s, we have
a, = max{ay + ap_ | 1 <k <n-1} (6)

for all n > s. Prove that there exist positive integers £ and N, with £ < s and such that a,, = ay+a,_¢
for all n > N.

Solution 1. First, from the problem conditions we have that each a, (n > s) can be expressed as
a, = aj, + a;, with ji,jo < n, j1 + jo = n. If, say, j1 > s then we can proceed in the same way
with a;,, and so on. Finally, we represent a, in a form

(p, = Qjy + o0+ Qg (7)

Moreover, if a;, and a;, are the numbers in (7) obtained on the last step, then i; + iy > s. Hence we
can adjust (8) as
1§ij§8, 21++11€:n, 11+ 19 > 8. (9)

On the other hand, suppose that the indices iy, ..., i satisfy the conditions (9). Then, denoting
s; =11 + - +1;, from (6) we have

an = ask Z ask_l +a’ik Z ask_g +aik_1 _'_aik Z Z ail ++a’7,k

Summarizing these observations we get the following
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Claim. For every n > s, we have

a, = max{a;, + ---+ a;, : the collection (i1, ...,14;) satisfies (9)}. O
Now we denote @
m = max —
1<i<s 4

a
and fix some index ¢ < s such that m = ?é

Consider some n > s*( + 2s and choose an expansion of a, in the form (7), (9). Then we have
n=ri +- -+ <sk,sok>n/s>sl+2 Suppose that none of the numbers is, ..., equals /.
Then by the pigeonhole principle there is an index 1 < 5 < s which appears among i3, ...,%; at
least ¢ times, and surely j # (. Let us delete these ¢ occurrences of j from (iy,...,4), and add
j occurrences of ¢ instead, obtaining a sequence (i1, 42,1, ... ,4},) also satisfying (9). By Claim, we
have

Ay ++a1k = ap Zail +6Li2 +aig+"‘+ai;€/,
a;

=. By the definition of ¢, this means
J

. N . Qy
or, after removing the coinciding terms, fa; > jas, so 7 <

that fa; = ja,, hence
(p = Qi + Qjy + Q4 —i—---—i—ai;/.

Thus, for every n > s*( 4+ 2s we have found a representation of the form (7), (9) with i; = ¢ for
some j > 3. Rearranging the indices we may assume that i = £.

Finally, observe that in this representation, the indices (i1, ...,ix_1) satisfy the conditions (9)
with n replaced by n — £. Thus, from the Claim we get

Ang +ag > (a;, + - +a;,_,)+a = ay,

which by (6) implies
Qp = Qg + ay for each n > s%¢ + 2s,

as desired.

Solution 2. As in the previous solution, we involve the expansion (7), (8), and we fix some index
1 < ¢ < s such that

Qy Q;

— =m = max —.

14 1<i<s
Now, we introduce the sequence (b,) as b, = a,, — mn; then b, = 0.

We prove by induction on n that b, < 0, and (b,) satisfies the same recurrence relation as (ay).

The base cases n < s follow from the definition of m. Now, for n > s from the induction hypothesis
we have

b, = max (ap+an—r) —nm= max (by+b,_r +nm)—nm= max (by+b,—) <0,
1<k<n—1 1<k<n—1 1<k<n—1

as required.

Now, if b, = 0 for all 1 < k < s, then b, = 0 for all n, hence a,, = mn, and the statement is
trivial. Otherwise, define

M = max b;], e=min{|b;]:1<i<s, b <0}
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Then for n > s we obtain

bn = max (bk + bn—k) Z bg + bn_g = bn_g7
1<k<n—1

SO
Oanan—éan—zzZZ—M

Thus, in view of the expansion (7), (8) applied to the sequence (b,), we get that each b, is
contained in a set
T:{bzl+b12++bzk . 7:1,...7an S S}ﬂ[—M,O]

We claim that this set is finite. Actually, for any x € T, let x = b;, + -+ b;, (i1,...,i < ). Then

M M
among b;,’s there are at most — nonzero terms (otherwise x < — - (—¢) < —M). Thus x can be
£ €

expressed in the same way with k& < —, and there is only a finite number of such sums.
3

Finally, for every t = 1,2,..., ¢ we get that the sequence

bs+t7 bs—i—t—&-[a bs+t+2@a LY

is non-decreasing and attains the finite number of values; therefore it is constant from some index.
Thus, the sequence (b,) is periodic with period ¢ from some index N, which means that

by =bp_¢ =bp_¢+ b, foralln > N 4+ ¢,
and hence
an =by +nm = (by,_g+ (n—0)m) + (bg + Im) = a,—¢ + ay for alln > N + ¢,

as desired.



