Stanford PhD Qualifying Exam in Algebra Fall 2004 (Morning Session)

General Instructions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

- 1. Classify all finite groups of order $147 = 3 \cdot 7^2$.
- 2. Let $A, B \in \operatorname{Mat}_n(\mathbb{R})$ be a pair of commuting matrices.
- (a) Suppose that A and B are both nilpotent. Show that they have a nonzero common nullvector.
- (b) Suppose that n is odd. Show that A and B have a common eigenvector. (It is no longer assumed that they are nilpotent.)
- 3. (a) Find the minimal polynomial of $\sqrt{4+\sqrt{7}}$ over \mathbb{Q} .
- (b) Find the Galois group of that polynomial's splitting field over Q.

Hint: Check that $\sqrt{4+\sqrt{7}} = \frac{1}{2}(\sqrt{2} + \sqrt{14})$.

- 4. Recall the following definitions: If R is a commutative ring and \mathfrak{a} is an ideal, then the radical $r(\mathfrak{a}) = \{x \in R \mid x^n \in \mathfrak{a}\}$. An ideal \mathfrak{q} is primary if $xy \in \mathfrak{q}$ implies that either $x \in \mathfrak{q}$ or $y \in r(\mathfrak{q})$. Prove that if $r(\mathfrak{q})$ is a maximal ideal, then \mathfrak{q} is primary.
- 5. Let G be a nonabelian group of order pq where p and q are distinct primes such that p < q.
- (a) Show that p divides q-1, and show that the number of conjugacy classes of G is exactly $p+\frac{q-1}{p}$.
- (b) Determine the number and degrees of the irreducible complex characters of G.

Stanford PhD Qualifying Exam in Algebra Fall 2004 (Afternoon Session)

General Instructions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

- 1. Let $G = \langle x \rangle$ be a cyclic group of order 2^n , and let $R = \mathbb{F}_2[G]$ be the group algebra.
- (a) Show that

$$J = \left\{ \sum_{i=0}^{2^{n}-1} a_i x^i \mid \sum a_i = 0 \right\}$$

is a nilpotent ideal in the commutative ring R, and deduce that

$$\Gamma = 1 + J = \left\{ \sum_{i=0}^{2^n - 1} a_i x^i \mid \sum_{i=0}^{n} a_i x^i \mid$$

is an abelian group of order 2^{2^n-1} .

(b) Consider $\Gamma^{2^k} = \{u^{2^k} \mid u \in \Gamma\}$. Show that

$$|\Gamma^{2^k}| = \begin{cases} 2^{2^{n-k}-1} & \text{if } k \leq n; \\ 1 & \text{if } k \geqslant n. \end{cases}$$

- (c) There is enough information in this fact to determine the structure of Γ . Illustrate this by determining the structure of Γ when n=4.
- 2. Let r > 0, and let q be a prime power. If $a \in \mathbb{F}_{q^r}$ let $T(a) : \mathbb{F}_{q^r} \longrightarrow \mathbb{F}_{q^r}$ be the map T(a)x = ax. Regarding \mathbb{F}_{q^r} as a r-dimensional vector space over \mathbb{F}_q , we may think of T(a) as an element of $GL(r, \mathbb{F}_q)$.
- (a) Show that the composite $\det \circ T$ coincides with the norm map $\mathbb{F}_{q^r} \longrightarrow \mathbb{F}_q$.
- (b) Show that if $b \in \mathbb{F}_q^{\times}$, then there exists $a \in \mathbb{F}_{q^r}^{\times}$ such that det T(a) = b.
- 3. Let G be a finite group and H a subgroup. Let $\rho: H \longrightarrow GL_n(\mathbb{C})$ be an irreducible representation. Show that if ρ_1 and ρ_2 are extensions of ρ to G, and if the characters χ_1 and χ_2 of ρ_1 and ρ_2 are the same, then $\rho_1(g) = \rho_2(g)$ for all $g \in G$.

- 4. Let A be a Noetherian local commutative ring with maximal ideal \mathfrak{m} . Assume that \mathfrak{m} is principal. Show that every nonzero ideal of A is of the form \mathfrak{m}^k for some k.
- 5. Let $\zeta = e^{2\pi i/40}$ and let $K = \mathbb{Q}(\zeta)$. (a) Determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
- (b) Find all quadratic extensions of $\mathbb Q$ contained in K. Express them in the form $\mathbb Q(\sqrt{D})$ for $D\in\mathbb Z$.