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1/1/22.

Given a set S of points in the plane, a line is called happy if it contains at
least 3 points in S. For example, if S is the 3 × 3 grid of points shown at right,
then there are 8 happy lines as shown.

(a) If S is the 3× 9 grid shown below, how many happy lines are there?

(b) Find, with proof, a set S (in the plane) with 27 points that has exactly 49 happy lines.

(a) We count the happy lines in sets. First notice that there are three horizontal happy
lines.

Any other happy line must contain a point in the second row. We count the remaining
happy lines by counting how many pass through a given middle point. There is exactly
one happy line through the leftmost point.

There are three happy lines through the second point.

There are five happy lines through the third point.

The other points have 7, 9, 7, 5, 3, and 1 happy lines respectively.
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The total number of happy lines in the diagram is

3 + (1 + 3 + 5 + 7 + 9 + 7 + 5 + 3 + 1) = 44 .

(b) There are many solutions to this problem. For instance, we can take a 3× 3× 3 cube
of dots in space and project its 33 = 27 vertices onto the plane in such a way that all of
the lines in space which contain three vertices are taken to distinct lines in the plane
and no new lines are created 1. We let S be the projection and count the happy lines.

First we may count the lines which all lie on “horizontal” planes. This gives 24 lines.

The remaining lines must intersect each of the three horizontal planes one time, so
must contain one vertex on each plane. We enumerate these by considering which of
the 9 vertices are on the line. By the “center square” we will mean the nine vertices
on the central horizontal plane. Each of the four corner vertices of the central square
meet only one non-horizontal line (in red, below). Each of the four edge vertices of the
center square are found on three non-horizontal lines (in blue below).

Finally, there are nine non-horizontal lines through the center vertex.

This gives a total of 24 + 4 · 1 + 4 · 3 + 9 = 49 happy lines.

1We can always do this: the noncollinear subsets of 3 points from our 27 points generate a set of at most�27
3

�
planes. If we project to a plane that is not perpendicular to any plane in this set, we will not create

any new lines. Further, if we project to a plane that is not perpendicular to any of our existing lines, we will
not lose any lines upon projection.
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2/1/22. You’re at vertex A of triangle ABC, where ∠B = ∠C = 65◦. The sides of the triangle
are perfectly reflective; if you shoot a laser from A to the midpoint of BC, it will reflect
once and return to A. Suppose you fire at a point on BC other than its midpoint, and the
beam still returns to A after reflecting some number of times. What is the smallest number
of reflections the beam can make before returning to A? What is the smallest angle between
AB and the initial beam that produces this number of reflections?

We label the edge opposite A as a, the edge opposite B as b and the edge opposite C as
c. We will measure the initial angle θ from AB, where 0 < θ < 50◦.

Since the room is perfectly reflective, standing at point A we see an infinite region in
which many copies of A, B, and C appear. We are looking for the minimum number of walls
that the beam may cross before returning to A. Furthermore, from the point of view of the
beam, it is traveling in a straight line and passing through a number of consecutive isosceles
chambers.

Notice that the solution set is symmetric, so any closed path with
angle θ > 25◦ is the horizontal reflection of a closed path with angle
50 − θ. Therefore we may assume that the path which passes the
fewest faces meets a and then c. The sum of the three acute angles
at B is 3 · 65◦ = 195◦ > 180◦, so the beam must subsequently pass
through edge b. The shaded region shows where the beam may pass.

The continuation of the beam’s possible paths at left includes
the set of all chambers that the beam can visit in five or fewer
reflections with an initial angle less that 25◦. Since there is one
reflection of A other than A′, the minimum number of reflections
must be five. Since B and C ′ are both reflex angles, the beam
cannot reach A′′.
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We now know that the minimum number of reflections is 5 and is
achieved by the path at left. Let M denote the midpoint of the beam
AA′′. By symmetry M lies on CA′, and the beam intersects this wall
with angle 90◦. Now consider the quadrilateral AMC ′B. This quadri-
lateral has total angle

360◦ = A+ 90◦ + 65◦ + (3 · 65◦) = A+ 350◦.

Therefore we must fire the beam at an angle 10◦ in order to return in
the fewest number of reflections (other than firing at the midpoint of
BC).
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3/1/22. Find c > 0 such that if r, s, and t are the roots of the cubic

f(x) = x3 − 4x2 + 6x+ c,

then

1 =
1

r2 + s2
+

1

s2 + t2
+

1

t2 + r2
.

We know that x3 − 4x2 + 6x+ c = (x− r)(x− s)(x− t), therefore

r + s+ t = 4, (1)

rs+ rt+ st = 6, (2)

rst = −c. (3)

Next we compute the sum of the squares of the roots using (1) and (2) above:

r2 + s2 + t2 = (r + s+ t)2 − 2(rs+ rt+ st) = 42 − 2(6) = 4. (4)

Thus, using (4), our identity becomes

1 =
1

r2 + s2
+

1

s2 + t2
+

1

t2 + r2

=
1

4− t2 +
1

4− r2 +
1

4− s2

=
(4− r2)(4− s2) + (4− s2)(4− t2) + (4− t2)(4− r2)

(4− r2)(4− s2)(4− t2)

=
48− 8(r2 + s2 + t2) + r2s2 + r2t2 + s2t2

64− 16(r2 + s2 + t2) + 4(r2s2 + r2t2 + s2t2)− r2s2t2 . (5)

Substituting using (3) and (4) gives

1 =
48− 8(4) + r2s2 + r2t2 + s2t2

64− 16(4) + 4(r2s2 + r2t2 + s2t2)− c2 =
16 + r2s2 + r2t2 + s2t2

4(r2s2 + r2t2 + s2t2)− c2 . (6)

Next, observe that by (2)

36 = (rs+ rt+ st)2 = r2s2 + r2t2 + s2t2 + 2rst(r + s+ t) = r2s2 + r2t2 + s2t2 − 8c,

so that
r2s2 + r2t2 + s2t2 = 36 + 8c. (7)

Combining (6) and (7) gives

1 =
16 + (36 + 8c)

4(36 + 8c)− c2 =
52 + 8c

144 + 32c− c2 ,

and hence c2 − 24c− 92 = 0. The solutions to this quadratic are

c =
24±
È

242 + 4(92)

2

and the only positive solution is c = 12 + 2
√

59 .
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4/1/22. Sasha has a compass with fixed radius s and Rebecca has a compass with fixed radius r.
Sasha draws a circle (with his compass) and Rebecca then draws a circle (with her compass)
that intersects Sasha’s circle twice. We call these intersection points C and D.

Charlie draws a common tangent to both circles, meeting Sasha’s circle at point A and
Rebecca’s circle at point B, and then draws the circle passing through A, B, and C. Prove
that the radius of Charlie’s circle does not depend on where Sasha and Rebecca choose to
draw their circles, or which of the two common tangents Charlie draws.

A
B

D

C

S

R

D′

Let Sasha’s circle be S and Rebecca’s be R. Once S and
R are chosen, Charlie has two choices for the common tangent.
Suppose he chooses the tangent such that the tangent is closer
to C than to D, as shown in the diagram at the right. Had he
chosen the other tangent, the resulting circumcircle of 4ABC
would be congruent to the shown circumcircle of 4ABD, by
symmetry. So, we will show that Charlie’s two options for the
common tangent produce the same circumradius by showing
that the circumradii of 4ABC and 4ABD are equal. We do
so by showing that the circumcircle of 4ABC is the reflection
of the circumcircle of 4ABD over

←→
AB.

Clearly the reflections of A and B over
←→
AB are on the cir-

cumcircle of 4ABD. We need only show that the reflection of D over
←→
AB, which we call

D′, is on the circumcircle of 4ABC. Since angles ∠ADC and ∠CAB are both inscribed in
arc øAC of S, we have ∠ADC = ∠CAB. Similarly, we have ∠CDB = ∠CBA because these
two angles are inscribed in arc øCB of R. Therefore, we have

∠ADB + ∠ACB = ∠ADC + ∠CDB + ∠ACB = ∠CAB + ∠CBA+ ∠ACB = 180◦,

so ∠ADB is supplementary to ∠ACB, which means ∠AD′B and ∠ACB are supplementary.
Since D and C are on the same side of

←→
AB, points D′ and C are on opposite sides of

←→
AB.

Combining this with the fact that ∠AD′B+∠ACB = 180◦, we know that AD′BC is a cyclic
quadrilateral, so D′ is on the circumcircle of 4ACB.
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A
B

D

C

S

R

E

Y

Z

X

Let Charlie’s circle be E . Let X, Y , Z be the centers of
S, R, E , respectively. We will find the radius of E in terms
of r and s. Since ∠CAB is inscribed in øAC of S, we have
∠CXA = øAC = 2∠CAB. Similarly, since ∠CAB is inscribed
in øBC of E , we have ∠CZB = øBC = 2∠CAB. Therefore,
we have ∠CZB = ∠CXA, so ∠CZY = ∠CXZ (because ZY
bisects ∠CZB and XZ bisects ∠CXA). Similarly, we have
∠BY C = 2∠CBA = ∠CZA, so ∠CY Z = ∠CZX. Combining
∠CZY = ∠CXZ and ∠CY Z = ∠CZX, we have 4CXZ ∼
4CZY . Therefore, we have CZ

CX
= CY

CZ
, so CZ2 = CX · CY =

rs, which means that the radius of E is
√
rs. We conclude

that Charlie’s circle has radius
√
rs no matter where Sasha and

Rebecca locate their circles (as long as the circles intersect).
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5/1/22. A convex polygon P is called peculiar if: (a) for some n ≥ 3, the vertices of P are a
subset of the vertices of a regular n-gon with sides of length 1; (b) the center O of the n-gon
lies outside of P ; and (c) for every integer k with 0 < k ≤ n

2
, the quantity 2kπ

n
is the measure

of exactly one ∠AOB, where A and B are vertices of P . Find the number of non-congruent
peculiar polygons.

We notice first that if n is even, then letting k = n
2

tells us we need
one central angle of 2πn

k
= π. However if this is the case then the diameter

between the two corresponding points is a subset of the peculiar polygon,
so the center of the n-gon lies in P , which violates condition (b). Therefore
n must be odd. First we give two examples of peculiar polygons. To the
right we have a peculiar triangle for n = 7, and below we have a peculiar
quadrilateral for n = 13.

Let v be the number of vertices of P , and let r = n−1
2

(note r is an
integer because n is odd). Each pair of vertices describes a unique central
angle less than π. Since this set of angles is�

2 · 1π
n

,
2 · 2π
n

, . . . ,
2 · rπ
n

�
,

there are r such angles. Therefore
�
v
2

�
= r, or

n = v2 − v + 1.

We intend to show that there are no peculiar polygons beyond the two given above.

A
B

Assume we have a peculiar polygon. This polygon must contain
a pair of vertices, A and B, of maximal central angle ∠AOB =
(n−1)π

n
. The chord AB separates the remaining vertices of the n-gon

into two sets of size r−1 and r. If any points from the larger set are
also vertices of P , then the center will be interior to P . Therefore,
all vertices of P must lie on the short side of AB. In particular, AB
is an edge of P .

We now relabel the vertices from A to B as A = A0, A1, . . . , Ar = B. Next we look for a
pair of vertices forming an angle of (n−3)π

n
. Such a pair is only possible if one member of the

pair is either A0 or Ar. We may assume this is A0 by congruence. Then, the other vertex
must be Ar−1. Therefore P must have vertices A0, Ar−1, and Ar.

In the case v = 3, these three vertices above describe the peculiar triangle. We now
assume that v > 3.
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Notice that, by the uniqueness condition of property (c), the points A1 and Ar−2 cannot

be vertices of P since úA0A1 and ÿAr−2Ar−1 are both congruent to üAr−1Ar.
The only arcs of angle (n−5)π

n
that lie above AB are

üA0Ar−2, üA1Ar−1, and úA2Ar.

Since A1 and Ar−2 are not vertices of P , we have that A2 must be a vertex. Therefore, P
must have the vertices A0, A2, Ar−1, and Ar. If v = 4 then n = 42 − 4 + 1 = 13 gives the
peculiar quadrilateral above.

A0

A2Ar−1

Ar

Now we assume that v > 4. We have the four vertices from
above, and these four vertices span the six angles

2π

n
,

4π

n
,

(n− 7)π

n
,

(n− 5)π

n
,

(n− 3)π

n
, and

(n− 1)π

n
.

We claim that there is no way to add a vertex (or more) in

order to get the angle (n−9)π
n

without creating another angle
we have already constructed.

The only arcs of angle (n−9)π
n

which lie above A0Ar are

üA0Ar−4, üA1Ar−3, üA2Ar−2, üA3Ar−1, and úA4Ar.

The only new vertex on this list not at an angle 2π
n

or 4π
n

from an existing vertex is Ar−4.
Therefore any peculiar polygon must contain this point as well.

If v = 5 then r = 10, so the vertices are A0, A2, A6, A9, and A10. However this is not
a possible peculiar polygon as the angle from A2 to A6 is the same as that from A6 to A10.
There is no peculiar pentagon.

Assume that v > 5 and that we have the vertices A0, A2, Ar−4, Ar−1, and Ar. We need
to place a point to give an angle of (n−9)π

n
. The only possiblilites are

üA0Ar−5,üA1Ar−4,üA2Ar−3,üA3Ar−2,üA4Ar−1,úA5Ar.

None of these pairs is a subset of the current vertices since

r − 5 =
v2 − v

2
− 5 >

52 − 5

2
− 5 = 5.

Furthermore, each of the new potential vertices is an angle of 2π
n

, 4π
n

, or 6π
n

from an existing
vertex, so is not permissible. Therefore there are no peculiar polygons with 5 or more
vertices.

By our construction, there is exactly one peculiar triangle, one peculiar quadrilateral,
and zero other peculiar polygons, up to congruence. Therefore, the answer is 2 .
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6/1/22. There are 50 people (numbered 1 to 50) and 50 identically wrapped presents around
a table at a party. Each present contains an integer dollar amount from $1 to $50, and no
two presents contain the same amount. Each person is randomly given one of the presents.
Beginning with player #1, each player in turn does one of the following:

1. Opens his present and shows everyone the contents; or

2. If another player at the table has an open present, the player whose turn it is may
swap presents with that player, and leave the table with the open present. The other
player then immediately opens his new present and shows everyone the contents.

For example, the game could begin as follows:

• Player #1 opens his present. (The game must always begin this way, as there are no
open presents with which to swap.)

• Player #2 decides to swap her present with Player #1. Player #2 takes the money
from her newly acquired present and leaves the table. Player #1 opens his new present
(which used to belong to Player #2).

• Player #3 opens her present. (Now Players #1 and #3 have open presents, and Player
#2 is still away from the table.)

• Player #4 decides to swap his present with Player #1. Player #4 takes the money
from his newly acquired present and leaves the table. Player #1 opens his new present
(which used to belong to Player #4).

The game ends after all the presents are opened, and all players keep the money in their
currently held presents.

Suppose each player follows a strategy that maximizes the expected value that the player
keeps at the end of the game.

(a) Find, with proof, the strategy each player follows. That is, describe when each player
will choose to swap presents with someone, or keep her original present.

(b) What is the expected number of swaps?

(a) At all times, each player knows the set of amounts in the unopened presents. We
prove the following:

Lemma: The optimal is strategy is: if the largest opened present in play (that
is, available to be swapped) is greater than the amount of at least one unopened
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present, the player whose turn it is should swap his present for the largest opened
present in play. Otherwise, he should open his present. If all players follow this
strategy, then any player who opens his own present will end the game with the
lowest amount of those unopened at the time of his turn.

Proof of Lemma: We prove by induction, in reverse order of the players’ numbers.

Base case: Player #50 will clearly benefit by following the strategy: if there is a present
in play that is larger than the final unopened present, then she should swap for the larger
amount. Otherwise, the unopened present is the largest amount available to her, so she
should open it: the game will immediately end and she will get to keep the amount that she
just opened.

Inductive step: Let 1 ≤ k < 50 be an integer, and assume that it is Player #k’s turn,
and that (by inductive hypothesis) Players #(k+ 1) through #50 will follow the strategy as
outlined in the Lemma.

If all the available amounts are less than all the unopened amounts, then Player #k
will do strictly worse by swapping than by opening: swapping is guaranteed to result in a
lower amount than opening. So Player #k should open his present; after this, all subsequent
players will swap with Player #k as long as there is a smaller-valued present remaining
unopened, hence Player #k is guaranteed to be stuck with the smallest remaining unopened
amount at the end of the game.

On the other hand, suppose that Player #m, with m < k, holds an opened present with
an amount M that is larger than some amount(s) that are currently unopened. If Player
#k chooses the opposite strategy to the Lemma’s, and opens his present, there are two
possibilities:

Case 1: Player #k opens an amount less than M . Players will only swap with Player
#k if he has the largest opened present and there is an unopened present with smaller value.
Once they start swapping with Player #k, they will keep swapping until Player #k either
receives that unopened present or is no longer the largest opened present; in either case
Player #k’s value will decrease, and will still be less than M .

Case 2: Player #k opens an amount greater thanM . Then since there is still an unopened
present of value less than M , all subsequent players will follow the strategy and swap with
Player #k, until Player #k is stuck with a present with amount less than M , at which point
we revert to Case 1.

In any event, Player #k ends up with a final amount less than M if he does not swap,
whereas he ends up with M if he swaps. So he should swap.

This completes the proof. 2

(b) Based on the Lemma, there is no swap if and only if all of the opened presents are
less than all of the unopened presents. (Note this includes Player #1’s non-swap.) So we
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count the expected number of non-swaps and subtract from n.

Player #1’s turn is always a non-swap, and the next non-swap occurs after the player
who holds (and swaps away) the present with $1. The next non-swap occurs after the player
holding the minimum value of all those remaining, and so on. This allows us to set up a
recurrence.

Let Ek denote the expected number of non-swaps in the k-player version of the game.
Note that E0 = 0 and E1 = 1. If the $1 present is held by person #j, then there are Ek−j
swaps expected after the initial swap. Therefore, since the $1 present is equally likely to be
held by any player, the recurrence is

Ek = 1 +
1

k
(Ek−1 + Ek−2 + · · ·+ E1 + E0) = 1 +

1

k

k−1X
j=0

Ej.

We prove by induction that

Ek = 1 +
1

2
+

1

3
+ · · ·+ 1

k
=

kX
j=1

1

j
.

It suffices to show that Ek − Ek−1 = 1
k

(since E1 = 1) but this follows from:

Ek − Ek−1 =

�
1 +

1

k

k−1X
j=0

Ej

�
−
�

1 +
1

k − 1

k−2X
j=0

Ej

�

=
1

k
Ek−1 +

�
1

k
− 1

k − 1

� k−2X
j=0

Ej

=
1

k
Ek−1 −

1

k(k − 1)

k−2X
j=0

Ej

=
1

k
Ek−1 −

1

k

�
1 +

1

k − 1

k−2X
j=0

Ej − 1

�
=

1

k
Ek−1 −

1

k
(Ek−1 − 1)

=
1

k
,

proving the formula.

Thus, the expected number of swaps in the 50-person game is 50 minus the expected
number of non-swaps, which is

50− E50 = 50−
�

1 +
1

2
+ · · ·+ 1

50

�
=

141008987635075780359241

3099044504245996706400
≈ 45.501.
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