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A–1 The hypothesis implies
���������	�
�����
�
�������	�����

for all
���������

(by replacing
�

by
�����

), and hence�
���������	��� �
for all

�����!�"�
(using

�������	�#���$�%�
).

A–2 Let &#' denote the desired probability. Then &�( �*),+.- ,
and, for /�0 ) ,& ' �21 3 /3 /54 )	6 & '879( 4 1 )3 /�4 ):6 ��)<; & '879( ��21 3 / ;=)3 /54 )	6 & '879( 4 )3 /54 )?>
The recurrence yields &A@ � 3 +CB , &#D �E-.+.F , and by a
simple induction, one then checks that for general / one
has & ' � / +:� 3 /54 ),� .
Note: Richard Stanley points out the following nonin-
ductive argument. Put G ��H����JI 'KML ( ��H 4 3.N ��+:� 3.N 4 ),� ;
then the coefficient of

HPO
in G ��HP� is the probability of

getting exactly Q heads. Thus the desired number is� G �R),�S; G �T;U),���R+ 3 , and both values of G can be com-
puted directly: G ��),���V) , andG �T;U),�$� )-XW -BXWZY,Y[YCW 3 / ;�)3 /54 ) � )3 /54 ) >

A–3 By the quadratic formula, if &]\ ��HP�^�`_ , then
H @ �acb 3Cd 3 a 4 3 , and hence the four roots of & \ are

given by
�e�gf b d ahb d 3	i . If &#\ factors into two

nonconstant polynomials over the integers, then some
subset of

�
consisting of one or two elements form the

roots of a polynomial with integer coefficients.
First suppose this subset has a single element, sayd ajb d 3 ; this element must be a rational number.
Then

� d ahb d 3 � @ � 3 4 aEb 3Cd 3 a is an integer,
so a is twice a perfect square, say a � 3 / @ . But thend a�b d 3 �V� / b ),� d 3 is only rational if / � b ) , i.e.,
if a � 3 .
Next, suppose that the subset contains two elements;
then we can take it to be one of

f d a*b d 3ki , f d 3 bd a i or
f b � d a 4 d 3 � i . In all cases, the sum and the

product of the elements of the subset must be a ratio-
nal number. In the first case, this means 3 d a �Vl ,
so a is a perfect square. In the second case, we have3 d 3 ��l , contradiction. In the third case, we have� d a 4 d 3 � @ �el , or a 4 3 4 3Cd 3 a �%l , which
means that a is twice a perfect square.
We conclude that & \ ��H�� factors into two nonconstant
polynomials over the integers if and only if a is either
a square or twice a square.

Note: a more sophisticated interpretation of this argu-
ment can be given using Galois theory. Namely, if a
is neither a square nor twice a square, then the number
fields

lm� d a � and
lm� d 3 � are distinct quadratic fields,

so their compositum is a number field of degree 4,
whose Galois group acts transitively on

f b d a=b d 3	i .
Thus & \ is irreducible.

A–4 Choose n ��oC�Tp so that qUr � nMsUr ��t
u �eo r u���v s �p rUs , and let w x
y�z${ denote the area of trianglex^y�z . Then w u s�q�{ � w u|t q�{ since the tri-
angles have the same altitude and base. Alsow u sUq|{ �}� s�q + sUr � w u sUr|{ �2)�; n , and w~qUr t { �� q�r + sUr ��� r t<+ r u|� w u sUr�{ � n ��)�;�o[� (e.g., by the
law of sines). Adding this all up yields)<� w u sUq�{:4=w u s t {k4=w~qUr t {� 3 �R)$; n � 4�n �R)$;�o,��� 3 ; n ; n o
or n �R) 4 o,���V) . Similarly

oC�R) 4 p�����p,�R) 4�n ����) .
Let G���w _8�����Z� w _:����� be the function given byG ��H����`)[+:��) 4 HP� ; then G � G � G � n ���R�m� n . However,G ��H�� is strictly decreasing in

H
, so G � G ��HP��� is increas-

ing and G � G � G ��H��R��� is decreasing. Thus there is at most
one
H

such that G � G � G ��H��R����� H ; in fact, since the equa-
tion G ���C��� � has a positive root

������;�) 4 d B.��+ 3 , we
must have n � o���p���� .
We now compute w u s t { ����u|t<+�u r � w u sUr�{ ��� ,w u sU�!{ � � sU� + s tU� w u s t { � �.+ 3 , analogouslyw~sUr � { � w~r u�� { ���.+ 3 , and w~� �9� { ��� w u sUr�{ ;w u sU�!{ ; w~sUr � { ; w~r u�� { �[�*��)�;�-.�C+ 3 �,�E� 7 D�� �� .

Note: the key relation n ��) 4 o[�^��) can also be de-
rived by computing using homogeneous coordinates or
vectors.

A–5 Suppose
� '��#( ;2��� 4 )[� ' � 3 _._8) . Notice that� '��#( 4=w ��� 4 )[� ' ;�) { is a multiple of

�
; thus

�
divides3 _C_ 3 � 3 W F W )C) W )[- .

Since 3 _C_:) is divisible by 3, we must have
�h��)�����	 �-.�

, otherwise one of
� '��#( and

��� 4 ),� ' is a mul-
tiple of 3 and the other is not, so their difference cannot
be divisible by 3. Now

� '	�#( ��)X�����	 
-.� , so we must
have

��� 4 )[� ' �V)X�����	 ^-.� , which forces / to be even,
and in particular at least 2.

If
�

is even, then
� '��#( ;U��� 4 ),� ' �¡;U��� 4 ),� ' �����	 �¢�� .

Since / is even,
;U��� 4 ),� ' �£;U)X������ �¢�� . Since



3 _._8)U�E)¤�����	 �¢	� , this is impossible. Thus
�

is odd,
and so must divide

),_C_:)m�2F W ).) W )[- . Moreover,� '	�#( ;¥��� 4 ),� ' � �������	 �¢�� , so
�U�V)¤�����	 �¢	�

.

Of the divisors of
F W )C) W ),- , those congruent to 1 mod

3 are precisely those not divisible by 11 (since 7 and 13
are both congruent to 1 mod 3). Thus

�
divides

F W )[- .
Now

����)X������ �¢��
is only possible if

�
divides

),-
.

We cannot have
�¤�j)

, since
)�; 3 ' ¦� 3 _._8) for any/ . Thus the only possibility is
�*�§)[-

. One eas-
ily checks that

�=�£),-8� / � 3 is a solution; all that
remains is to check that no other / works. In fact,
if /¨0 3 , then

)[- '��#( � 3 _C_:)���)Z�����	 �©.� . But),- '	�#( ��)[-������	 
©C� since / is even, contradiction.
Thus

�5�e)[-:� / � 3 is the unique solution.

Note: once one has that / is even, one can use that3 _._ 3 �ª� '��#( 4 )�;���� 4 ),� ' is divisible by
� 4 )

to rule out cases.

A–6 The answer is yes. Consider the arc of the parabola« �¬u|H @ inside the circle
H @ 4 � « ;%),� @ �j) , where

we initially assume that
u 0 )[+ 3 . This intersects the

circle in three points,
��_:��_.�

and
� b d 3 u�;=)[+­u��,� 3 u�;),�R+�u|�

. We claim that for
u

sufficiently large, the
length ® of the parabolic arc between

��_:��_.�
and� d 3 u�;�),+�u5�[� 3 u¤;X),�R+�u|� is greater than 3 , which im-

plies the desired result by symmetry. We express ® us-
ing the usual formula for arclength:® ��¯ � @�° 7#(²± °³ ´ ) 4 � 3 u|H�� @?µ H� )3 u ¯ @ � @�° 7#(³ ´ ) 4 H @ µ H� 3 4 )3 u·¶ ¯ @ � @�° 79(³ � ´ ) 4 H @ ;�HP� µ H�; 3¹¸ �
where we have artificially introduced

;!H
into the inte-

grand in the last step. Now, for
H�º=_

,´ ) 4 H @ ;!H�� )d ) 4 H @ 4 H 0 )3 d ) 4 H @ º )3 ��H 4 ),�	»
since ¼¾½³ µ H�+:� 3 ��H 4 ),���

diverges, so does¼]½³ � d ) 4 H @ ;�H�� µ H . Hence, for sufficiently largeu
, we have ¼ @ � @�° 7#(³ � d ) 4 H @ ;
H�� µ H 0 3 , and hence®�0 3 .

Note: a numerical computation shows that one must
take
u 0 -M¢ > F to obtain ®�0 3 , and that the maximum

value of ® is about
¢ > _C_ 3 F , achieved for

u%¿%À¹¢ > ) .
B–1 Let � (resp. s ) denote the set of red (resp. black)

squares in such a coloring, and for
o � ��Á�s , letG ��o,� /�4�Â ��o[� 4 ) denote the number written in square

o
,

where
_�Ã G ��o,��� Â ��o[��Ã / ;�) . Then it is clear that the

value of G ��o,� depends only on the row of
o
, while the

value of Â ��o,� depends only on the column of
o
. Since

every row contains exactly / + 3 elements of � and / + 3
elements of s , Ä

ÅÇÆÉÈ G ��o[���
Ä
Å�ÆMÊ G ��o[� >

Similarly, because every column contains exactly / + 3
elements of � and / + 3 elements of s ,Ä

ÅÇÆMÈ Â ��o[���
Ä
Å�ÆMÊ Â ��o[� >

It follows thatÄ
Å�ÆMÈ G ��o[� /�4ËÂ ��o,� 4 )��

Ä
Å�ÆMÊ G ��o[� /�4XÂ ��o[� 4 ).�

as desired.

Note: Richard Stanley points out a theorem of Ryser
(see Ryser, Combinatorial Mathematics, Theorem 3.1)
that can also be applied. Namely, if

u
and s are

_�;=)
matrices with the same row and column sums, then
there is a sequence of operations on 3 W 3 matrices of
the form 1 _h))%_ 6 � 1 ) __¬) 6
or vice versa, which transforms

u
into s . If we iden-

tify 0 and 1 with red and black, then the given color-
ing and the checkerboard coloring both satisfy the sum
condition. Since the desired result is clearly true for the
checkerboard coloring, and performing the matrix op-
erations does not affect this, the desired result follows
in general.

B–2 By adding and subtracting the two given equations, we
obtain the equivalent pair of equations3 +.H��%H � 4 )[_.H @ « @ 4 B « �),+ « �%BCH � 4 ),_CH @ « @ 4 « � >
Multiplying the former by

H
and the latter by « , then

adding and subtracting the two resulting equations, we
obtain another pair of equations equivalent to the given
ones, -|�V��H 4 « � � � )��¡��HÌ; « � � >
It follows that

H�����- (�± � 4 ),��+ 3 and « ����- (R± � ;=),�R+ 3
is the unique solution satisfying the given equations.

B–3 Since
� N ;%),+ 3 � @ � N @ ; N 4 )[+M¢ and

� N 4 ),+ 3 � @ �N @ 4 N 4 )[+M¢ , we have that ÍT/?Î � N if and only if

2



N @ ; N 4 )�Ã / Ã N @ 4 N . Hence½Ä' L ( 3CÏ '�Ð 4 3 7 Ï '�Ð3 ' � ½ÄKÉL (
Ä
':Ñ Ï '�Ð L�K 3CÏ '�Ð 4 3 7 Ï '�Ð3 '� ½ÄKÉL (
KÉÒ � KÄ' L�K Ò 7 K �#( 3 K 4 3 7 K3 '� ½ÄKÉL ( � 3 K 4 3 7 K ��� 3 7 K Ò � K ; 3 7 K Ò 7 K �� ½ÄKÉL ( � 3 7 KCÓÔK 7 @�Õ ; 3 7 KCÓÔK � @�Õ �� ½ÄKÉL ( 3 7 K.Ó�K 7 @�Õ ; ½

ÄKÉL D 3 7 K.ÓÔK 7 @�Õ��- >
Alternate solution: rewrite the sum asÖ ½' L ( 3 7 Ó '�� Ï '	Ð Õ 4 Ö ½' L ( 3 7 Ó ':7 Ï '�Ð Õ . Note that Í²/?Î ¦�Í²/Z4 ) Î if and only if / � a @ 4 a for some a .
Thus /�4=ÍT/?Î and / ; Í²/?Î each increase by 1 except at/ � a @ 4 a , where the former skips from a @ 4 3 a toa @ 4 3 a 4 3 and the latter repeats the value a @ . Thus
the sums are½Ä' L ( 3 7P' ; ½

Ä
\ L ( 3 7P\ Ò 4 ½

Ä
' L ³ 3 7P' 4 ½

Ä
\ L ( 3 7P\ Ò � 3 4 )��=- >

B–4 For a rational number × +.Ø expressed in lowest terms,
define its height Ù � × +.ØM� to be

� × � 4 � Ø:� . Then for
any × +.Øj��� expressed in lowest terms, we haveÙ � G � × +.ØM�R�^��� Ø @ ; × @ � 4 � × Ø:� ; since by assumption× and

Ø
are nonzero integers with

� × � ¦�*� Ø:� , we haveÙ � G � × +CØM�R��; Ù � × +CØM�¾��� Ø @ ; × @ � 4 � × Ø:��;�� × ��;�� Ø:�º�- 4 � × Ø:��;=� × �[;=� Ø:������ × �[;�),�­��� Ø:��;�)[� 4 3 º 3 >
It follows that G Ó ' Õ ���¾� consists solely of numbers of
height strictly larger than 3 /�4 3 , and henceÚ ½' L ( G Ó ' Õ ���¾��� Û >
Note: many choices for the height function are possible:
one can take Ù � × +.ØM�
�*�^ÜMÝ|� × �Ô�M� Ø:� , or Ù � × +.ØM� equal
to the total number of prime factors of × and

Ø
, and so

on. The key properties of the height function are that
on one hand, there are only finitely many rationals with
height below any finite bound, and on the other hand,
the height function is a sufficiently “algebraic” function
of its argument that one can relate the heights of × +CØ
and G � × +.ØM� .

B–5 Note that Â ��H��<� Â � « � implies that Â � Â ��H��R�<� Â � Â � « �R�
and hence

H
� « from the given equation. That is, Â is

injective. Since Â is also continuous, Â is either strictly
increasing or strictly decreasing. Moreover, Â cannot
tend to a finite limit ® as

H�� 4 � , or else we’d haveÂ � Â ��HP����;�� Â ��H��<�*�­H , with the left side bounded and
the right side unbounded. Similarly, Â cannot tend to a
finite limit as

H��Þ;��
. Together with monotonicity,

this yields that Â is also surjective.

Pick
H ³ arbitrary, and define

H ' for all / �eß recur-
sively by

H '��#( � Â ��H ' � for /�0 _ , and
H ':79( �Â 7#( ��H ' � for /jà _ . Let n¹( �Þ��� 4 d � @ 4 ¢	���R+ 3

and n @ �����"; d � @ 4 ¢	�­�R+ 3 and n @ be the roots ofH @ ;��	HX;e�¥�£_ , so that n ( 0 _ 0án,@ and
) 0� nM( � 0 � n @ � . Then there exist âÉ( � â @ �gã such thatH ' � â ( n ' ( 4�â�@,n '@ for all / �^ß .

Suppose Â is strictly increasing. If â,@ ¦�ä_ for some
choice of

H ³ , then
H ' is dominated by n '@ for / suffi-

ciently negative. But taking
H ' and

H '�� @ for / suffi-
ciently negative of the right parity, we get

_ à H '=àH '�� @ but Â ��H ' � 0%Â ��H '�� @ � , contradiction. Thus â @ �_
; since

H ³ � âÉ( and
H ( � âÉ(�nM( , we have Â ��H���� n¹( H

for all
H

. Analogously, if Â is strictly decreasing, thenâ­@ �e_ or else
H ' is dominated by n ' ( for / sufficiently

positive. But taking
H ' and

H '�� @ for / sufficiently pos-
itive of the right parity, we get

_ à H '�� @Ëà H ' butÂ ��H '	� @ � à�Â ��H ' � , contradiction. Thus in that case,Â ��HP�¾� n,@ H for all
H

.

B–6 Yes, there must exist infinitely many such / . Let
�

be
the convex hull of the set of points

� / ��� ' � for / º�_ .
Geometrically,

�
is the intersection of all convex sets

(or even all halfplanes) containing the points
� / ��� ' � ;

algebraically,
�

is the set of points
��H#� « � which can

be written as â ( � / ( ��� ':å � 4 Y,Y[Y 4�â K � / K ��� '�æ � for someâ[( � >[>,> � â K which are nonnegative of sum 1.

We prove that for infinitely many / , � / ��� ' � is a vertex
on the upper boundary of

�
, and that these / satisfy the

given condition. The condition that
� / ��� ' � is a vertex

on the upper boundary of
�

is equivalent to the exis-
tence of a line passing through

� / ��� ' � with all other
points of

�
below it. That is, there should exist a 0 _

such that � K à � ' 4 a � N ; / � ç N ºe) > (1)

We first show that / �ä) satisfies (1). The condition� K + N �`_ as N �ä� implies that
��� K ;�� ( ��+:� N ;m),���_

as well. Thus the set
f���� K ;5� ( �R+8� N ;�),� i has an upper

bound a , and now
� K Ã=� ( 4 a � N ;�),� , as desired.

Next, we show that given one / satisfying (1), there
exists a larger one also satisfying (1). Again, the con-
dition

� K + N � _
as N � �

implies that
��� K ;� ' �R+:� N ; / �Z� _ as N � � . Thus the sequencef���� K ;Ì� ' ��+:� N ; / � i K.è ' has a maximum element; sup-

pose N � n is the largest value of N that achieves this
maximum, and put a �h���Cé!;¥� ' ��+:� n ; / � . Then the
line through

� n ����é,� of slope a lies strictly above
� N ��� K �

for N 0*n and passes through or lies above
� N ��� K � for

3



N àhn . Thus (1) holds for / � n with a replaced bya ;Ëê for suitably small
ê 0 _ .

By induction, we have that (1) holds for infinitely many/ . For any such / there exists a 0 _ such that

for Q �ë).� >,>[> � / ;h) , the points
� / ; Q ��� '87 O � and� /�4mQ ��� '�� O � lie below the line through
� / ��� ' � of slopea . That means

� '�� O à � ' 4 a Q and
� '87 O à � ' ; a Q ;

adding these together gives
� ':7 O 4 � '�� O à 3 � ' , as de-

sired.
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