Contributor Profiles:
Michel Bataille

Michel Bataille was born in 1952 in a small
village near Dieppe in Normandy. His family had a
very modest income (his father was a workman in a
factory), but, with the help of a state scholarship, he
was able to attend secondary studies in Dieppe until
1969 and then graduate at the University of Rouen.
He started teaching secondary school in 1976. In
his spare time he prepared for the “agrégation”
(the highest competitive examination for secondary
school teachers in France), which he passed in 1983.

Apart from two years in Marrakech, Morocco
(from 1977 to 1979), he has always taught in the

suburbs of Rouen, France. He initially taught students between the ages of 12
and 16; but then, for ten years, he prepared students for the “baccalauréat”,
the French school-exit certificate. Since 1994, he has been teaching at the
undergraduate level. Bataille’s students sit competitive entrance examina-
tions to various engineering schools. They are generally from a modest back-
ground, and they specialize in technology during their secondary studies. His
task is to bring them to the required level in mathematics. The challenge of
improving their knowledge is quite enjoyable, since “most of them are well-
motivated”, says Bataille.

He has been married since 1972. His wife is also a math teacher
(however, he claims that her interests lie more in the realm of botany and
gardening nowadays). They have two children.

His hobbies include cinema, reading (in French or English), crosswords,
listening to music (indie rock and electronica), and walking. During the '90s,
his leisure time was spent improving his English, linguistics, and billiards.
Most of these activities have now been replaced by problem solving.

His first published solution appeared in CRUX with MAYHEM in March
1999. Since then, he has developed a real taste for problem solving and
has contributed more and more solutions. Besides CRUX with MAYHEM,
Bataille has become a regular solver and poser in several problem sections
(in the MAA publications, the Mathematical Gazette, and the Bulletin of the
Association of French Math Teachers).

From an Editor’s point of view, having a regular contributor like Michel
Bataille is a real joy. His solutions are always correct and well-organized.
Not only that, but he submits proposals on a regular basis, which are always
well thought out and explained, with just the appropriate amount of detail. It
has been a real pleasure for this Editor-in-Chief to have developed an ongoing
friendship with such a warm human being and such a good mathematician.




EDITORIAL

Jim Totten

I would like to launch an appeal to our readers at this time, especially
to our long-time readers. The Canadian Mathematical Society (CMS), which
publishes CRUX with MAYHEM, has asked our editorial board to provide
a list of favourite problems from past issues of Crux Mathematicorum and
CRUX with MAYHEM. Since many on our editorial board have not been as-
sociated with CRUX for as long as some of our readers, we decided that a
“Readers’ Choice” selection of favourite problems from over the years would
likely be more productive, as well as being more meaningful. We are looking
especially for favourites from the earlier volumes.

I first mentioned this project in my Year End Finale in the December
2006 issue, and I want to reiterate it here. If you have some favourite prob-
lems from the pages of Crux Mathematicorum or CRUX with MAYHEM,
please forward those problem numbers to us. 1 would also appreciate if you
could provide the reference to the volume, issue, and page numbers, in case
a typo creeps into the list of pure problem numbers. Thank you. We are
looking for somewhere between 100 and 200 problems, and we are hoping
to receive your list of favourites by February 28, 2007. Once we have your
favourite problems, the CMS is planning to make them available on CD (or
perhaps a flash memory stick).

Our sincere thanks go out to Shawn Godin, who has been the Mayhem
Editor for the past six years. Shawn has molded that section of our journal
almost single-handedly into an excellent feature for high school students and
teachers. However, he has been juggling many duties for quite some time
now and felt it was time to move on.

Having said that, the Board of CRUX with MAYHEM extends a warm
welcome to Jeff Hooper as the new Mayhem Editor. Jeff has acted as the
Assistant Mayhem Editor for the past year, so the transition should be almost
seamless.

You will have noticed that we introduced a new feature to CRUX with
MAYHEM this past year, namely the “Contributor Profiles” section. It did
not appear in every issue, but only when there was space available. 1 have
received limited feedback on this new feature, but all the feedback has been
positive. I personally have appreciated getting to know a little more about
many of our regular contributors and what they look like.

If you can think of ways for us to produce a better magazine, be sure to
send me those suggestions. We are always interested in ways to improve.

B SN D W



SKOLIAD no. 99
Robert Bilinski

Please send your solutions to the problems in this edition by 1 August,
2007. A copy of MATHEMATICAL MAYHEM Vol. 1 will be presented to
one pre-university reader who sends in solutions before the deadline. The
decision of the editor is final.

—_—r———— ——

Our problems this month come from the Collége Montmorency Contest,
2004-2005. We thank André Labelle, of Colléege Montmorency, who looks
after this contest designed for secondary students from the Laval region.

Montmorency Contest 2004-05
Sec V, November 2004

1. The golden ratio N = %5 ~ 1.618033989... has the remarkable
property that its multiplicative inverse 1/N is equal to its decimal part
0.618033989 .. ... Find another number with this property.

2. Consider a quarter circle of radius 1.

(a) Find a rectangle having the same area and the same i
perimeter as the quarter circle.

1

(b) For a complete circle of radius 1, is it possible to find
such a rectangle, having an area and a perimeter equal
to that of the circle? Justify your answer.

3. Abarrel is filled with water. We empty half of its contents and then add a
litre of water. After doing this operation seven consecutive times, we are left
with three litres of water in the barrel. How many litres were in the barrel
at the beginning?

Q

4. The areas of three faces of a rectangular paral- =~
lelepiped are 18 cm?, 40 cm? and 80 cm?. Find: 47
(a) its volume; (b) the length of its diagonal PQ. =

5. Evaluate /6 + /6 + V6 .

6. Let A, B, C, and D be collinear points such
that AB = BC = CD = 1. Consider three
semi-circles of respective diameters AC, BD and
AD. Let E be the intersection of the semi-circles
with centres B and C. Determine the area of the
curvilinear triangle AE D (shaded in the drawing).

A B c D



7. The oscillation period of a pendulum is pro-
portional to the square root of its length (for ex-
ample, to triple the oscillation period, we multi-
ply the length by nine). Two pendulums of differ-
ent lengths are released from the initial position
shown. The shorter one measures 25 cm, and its
oscillation period is 1 second. The two pendulums
are aligned again for the first time after 7 seconds
in their initial position. Find the length of the
longer pendulum. (Air resistance is neglected.)

8. In a refinery, a cylindrical storage tank has a spiral staircase one meter
wide attached to its exterior. The staircase goes from the bottom to the top
while making exactly 2 complete revolutions. If the tank has a height of 10
m and a diameter of 8 m, find the length of the exterior edge of the staircase.

Concours Montmorency 2004-05
Sec V, novembre 2004

1. Le nombre dor N = Y5 1,618033989 ... a la remarquable
2

propriété que son inverse multiplicatif 1/IV est égal 2 sa partie décimale

0,618033989.... Trouver un autre nombre ayant cette propriété.

2. Considérons un quart de cercle de rayon 1.

(a) Trouver le rectangle qui a a la fois la méme aire et le
méme périmétre que ce quart de cercle.

(b) Est-il possible que pour un cercle complet de rayon 1, on 1
puisse trouver un tel rectangle ayant a la fois la méme
aire et le méme périmétre que ce cercle ? Justifier votre
réponse.

3. Un baril est rempli d’eau. On en vide la moitié et on ajoute un litre d’eau.
Aprés avoir effectué cette opération sept fois, il en reste trois litres. Combien
y avait-il de litres d’eau dans le baril au départ?

4 Les aires de trois des faces d’un parallélépipéde Q

rectangle sont de 18 cm?, 40 cm? et 80 cm?. ool
Trouver : (a) le volume; (b) la longueur de la =
grande diagonale PQ. P

5. Evaluer \/6 +vV6+V6+---.

6. Soit A, B, C et D des points alignés tels que
AB = BC = CD = 1. On considére trois demi-
cercles de diamétres respectifs AC, BD et AD.
Soit E l'intersection des demi-cercles de centres
B et C. Déterminer I'aire du triangle curviligne
AED (partie hachurée sur le dessin).




7. On sait que la période d’oscillation d’un pen-
dule est proportionnelle a la racine carrée de la
longueur de celui-ci (par exemple, pour tripler la
période d’oscillation d’un pendule, il faut multi-
plier par neuf sa longueur). En lachant deux pen-
dules de longueurs différentes a la position initiale
indiquée et en négligeant la résistance de I'air, si
le plus court mesure 25 cm, que sa période d’os-
cillation est de une seconde et que lorsqu’on les
retrouvent a nouveau paralléles pour la premiére
fois au bout de sept secondes, ils occupent leur
position initiale, évaluer la longueur du plus long.

8. Dans une raffinerie, un réservoir d’essence cylindrique est muni d’un es-
calier d’'un métre de large qui longe de bas en haut la paroi extérieure dans
une spirale et en fait exactement deux fois le tour. Sachant que le réservoir a
10 métres de haut et 8 métres de diamétre, trouver la longueur de la rampe
extérieure de I'escalier.

—_—r———— ——

Next we give the solutions to the 2005 BC Colleges Senior High School
Mathematics Contest Final Round Part B [2006 : 193-195].

1. Les chiffres 1, 2, 3, 4 et 5 sont tous utilisés une fois pour écrire un nombre
a cing chiffres abede tel que le nombre A trois chiffres abe est divisible par 4,
bed est divisible par 5, cde est divisible par 3. Quel est le chiffre a ?

Solution par Jean-David Houle, étudiant, Cégep de Drummondyville,
Drummondyville, QC.

Puisque 5 divise bed, nous devons avoir d divisible par 5 et dans les
choix possibles de chiffres, donc d = 5. Puisque 4 divise abc, alors ce nombre
se termine par 2 ou 4, selon que b est pair ou impair. Puisque 3 divise cde,
alors 3 divise la somme ¢+ d + e, et donc ¢+ e = 1 (mod 3) (car d = 5).
Donc deux possibilités s’ offrent 2 nous :

Sic=2,alorse =2 (mod 3) avece € {1, 3, 4}, ce qui est impossible.

Sic =4, alorse =0 (mod 3) avec e € {1, 2, 3}, donc e = 3.

Donc ¢ = 4, ce qui implique que b est pair avec b € {1, 2}. Donc b vaut
2, ce qui laisse a = 1. Donc, abcde = 12453, et a = 1.

Solutioné aussi par Glenier L. Bello-Burguet, étudiant 4to de ESO, Instituto Herma-

nos D’Elhuyar, Logrofio, Espagne ; Natalia Desy, étudiant, SMP Xaverius 1, Palembang, L’In-
donésie; et Alex Remorov, étudiant, William Lyon Mackenzie Collegiate Institute, Toronto, ON.

2. An urn contains three white, six red, and four black balls.

(a) If one ball is selected at random, what is the probability that the ball
selected is red?



(b) If two balls are selected at random, what is the probability that they
are both black?

(c) If two balls are selected at random, what is the probability that they
are both black, given that they are the same colour?

Solution by Glenier L. Bello-Burguet, student 4to de ESO, Instituto
Hermanos D’Elhuyar, Logroiio, Spain.

. # of red _ 6 _ 6
(2) P(red) = total # of outcomes =~ 3+6+4 = 13°
_/4\ /(13 _ 6 _ 1
(b) P(2 black) = (2)/(2) = % = 13
(c) We have

# of black pairs
# of black pairs + # of red pairs + # of white pairs

() :

OECE

Also solved by Jean-David Houle, student, Cégep de Drummondyville, Drummondyville,
QC; Natalia Desy, student, SMP Xaverius 1, Palembang, Indonesia; and Alex Remorov, student,
William Lyon Mackenzie Collegiate Institute, Toronto, ON.

P(2 black|2 same) =

3. Inthe diagram, ABC is a right-triangle B
with AB = 3 and AC = 4. Furthermore,
each line segment A;B; is perpendicular to
AC, A, bisects AC, and A, bisects A;C.
Find the total length of the sequence of the
diagonal segments:

B,

B,
BA, + B1Ay + ByAz + - -- B3

Official solution. A Ay Az Ay C

Since A; bisects line segment AC, the length of the segment AA; is
AA; = 2 and the length of the segment B, A; is B1A; = % The length of

the segment B A, is given by the Theorem of Pythagoras as

BA, = \(BA + A4, = /3222 = V13.

Each of the triangles B;A;A;,, is similar to the triangle BAA,, with all
dimensions reduced by a factor of % at each step. Thus, the total length of




the sequence of diagonal segments is

\/_13+§+\;_3+...+\£—3+...
— \/13(1+1+---+l.+---) — \/13< 11) — 2V13.
2 2 1-1

Also solved by Jean-David Houle, student, Cégep de Drummondyville, Drummondyville,
QC; Natalia Desy, student, SMP Xaverius 1, Palembang, Indonesia; and Alex Remorov, student,
William Lyon Mackenzie Collegiate Institute, Toronto, ON.

4. The equation
2 — 3z +qg =0
has two real roots, o and 3. Knowing that o® + 32 = 81, find the value of q.
Hint: It is best not to use the quadratic formula.

Solution by Natalia Desy, student, SMP Xaverius 1, Palembang, Indonesia.

We have o + 8 = 3 and a3 = q. Since o® + B33 = 81, we have
(e + B)% — 3aB(a + B) = 81 or 27 — 9q = 81, which gives ¢ = —6.
Also solved by Natalia Desy, student, SMP Xaverius 1, Palembang, Indonesia (second

solution); Jean-David Houle, student, Cégep de Drummondville, Drummondville, QC; and Alex
Remorov, student, William Lyon Mackenzie Collegiate Institute, Toronto, ON.

5A four-digit number which is a perfect square is created by writing Anne’s
age in years followed by Tom’s age in years. Similarly, in 31 years, their ages
in the same order will again form a four-digit perfect square. Determine the
present ages of Anne and Tom.

Solved by Alex Remorov, student, William Lyon Mackenzie Collegiate
Institute, Toronto, ON.

Let Anne’s age be a and Tom’s age be ¢. Let a have m digits and let ¢
have n digits. We know that m +n = 4. If m < 2, thenn > 3. But in 31
years, a must be a 2—digit number. Thus, the second 4-digit number would
have at least 5 digits, an impossibility. By symmetry, we cannot have n less
than 2, which means m = n = 2.

Let the squares be 22 and y2 in that order, where 0 < = < y. Since both
squares have 4 digits, we have y? = 243131, or (y —z)(y+x) = 31 x 101.
Since 0 < < y, wegety —x = 31 and y + « = 101. This yields
(z,y) = (35,66). Hence, x> = 1225 and y? = 4356, which implies that
Anne is 12 and Tom is 25.

Also solved by Natalia Desy, student, SMP Xaverius 1, Palembang, Indonesia; and Jean-
David Houle, student, Cégep de Drummondyville, Drummondyville, QC.

—_— N r————

That brings us to the end of another issue. This month’s winners of
a past Volume of Mathematical Mayhem are Jean-David Houle, Natalia
Desy, and Alex Remorov. Congratulations, Jean-David, Natalia, and Alex.
Continue sending in your contests and solutions.



MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Jeff Hooper (Acadia University). The other staff
members are John Grant McLoughlin (University of New Brunswick), ITan
VanderBurgh (University of Waterloo), Larry Rice (University of Waterloo),
and Ron Lancaster (University of Toronto), Eric Robert (Leo Hayes High
School, Fredericton), Monika Khbeis (Father Michael Goetz Secondary School,
Mississauga), Mark Bredin (St. John’s-Ravenscourt School, Winnipeg), and
Ron Lancaster (University of Toronto).

%

Mayhem Problems

Please send your solutions to the problems in this edition by 1 June 2007.
Solutions received after this date will only be considered if there is time before
publication of the solutions.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8§,
French will precede English.

The editor thanks Jean-Marc Terrier and Martin Goldstein of the University of
Montreal for translations of the problems.

—_—r——— ——
M276. Proposed by Babis Stergiou, Chalkida, Greece.

In rectangle ABCD, points E and F divide side DC into three equal
parts DE = EF = FC and points G and H divide side BC into three equal
parts BG = GH = HC'. The line AFE cuts the lines DG and DH at points
K and L, respectively. Similarly, the line AF cuts the lines DG and DH at
points M and N, respectively. Show that KN || CD.

M277. Proposed by Edward ]. Barbeau, University of Toronto, Toronto,
ON.

Let f(n, k) be the number of ways of distributing k& candies to n chil-
dren so that each child receives at most two candies. For example, if n = 3,
then f(3,7) =0, f(3,6) = 1, and f(3,4) = 6. Determine the value of

£(2007,1) + £(2007,4) 4+ f(2007,7) + - - - + £(2007, 4012) .

MZ278. Proposed by J. Walter Lynch, Athens, GA, USA.

Find sixteen 16-digit palindromes, in each of which the product of the
non-zero digits and the sum of the digits are both equal to 16. How many
such numbers are there?



M279. Proposed by K.R.S. Sastry, Bangalore, India.

Determine an infinite set of rational number solutions («, 3) to the
equation o? + 3% = o3 4 33.

M280. Proposed by the Mayhem Staff.

An equilateral triangle lies in the plane with two of its vertices at points
(0,0) and (0,n). Determine the number of points (z, y) with integer coor-
dinates which lie in the interior of the triangle.

M281. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

A square of side length s is inscribed symmetrically inside a sector of a
circle with radius of length r and central angle of 60°, such that two vertices
lie on the straight sides of the sector and two vertices lie on the circular arc
of the sector. Determine the exact value of s/r.

M276. Proposé par Babis Stergiou, Chalkida, Gréce.

Dans un rectangle ABC D on divise le c6té DC en trois parties égales
DE = EF = FC et le coté BC en trois parties égales BG = GH = HC.
La droite AE coupe les droites DG et DH aux points respectifs K et L.
De maniére analogue, la droite AF coupe les droites DG et D H aux points
respectifs M et N. Montrer que KN || CD.

MZ277. Proposé par Edward ]. Barbeau, Université de Toronto, Toronto,
ON.

Soit f(n, k) le nombre de possibilités de distribuer £ bonbons A n en-
fants, de sorte que chaque enfant en recoive au plus deux. Par exemple, si
n = 3, alors f(3,7) = 0, f(3,6) = 1 et f(3,4) = 6. Déterminer la valeur de

£(2007, 1) + £(2007,4) + £(2007,7) + - - - + £(2007,4012) .

M278. Proposé par J. Walter Lynch, Athens, GA, USA.

Trouver seize palindromes, chacun comprenant seize chiffres, de telle
sorte que le produit des chiffres non nuls et la somme des chiffres de chaque
palindrome soient tous deux égaux a seize. Combien y a-t-il de tels nombres ?

M279. Proposé par K.R.S. Sastry, Bangalore, Inde.

Déterminer un ensemble infini de solutions en nombres rationnels («, 3)
de I'équation o? + 32% = o2 4 33.
M280. Proposé par I'Equipe de Mayhem.

Dans le plan, un triangle équilatéral a deux de ses sommets aux points
(0,0) et (0, n). Déterminer le nombre de points (x, y) a coordonnées entiéres
situés a l'intérieur du triangle.
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M281. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

Un carré de coté s est inscrit symétriquement dans un secteur de cercle
de rayon r et d’angle au centre de 60°, de telle sorte que deux de ses sommets
soient sur les parties rectilignes du secteur et les deux autres sur I’arc de
cercle. Déterminer la valeur exacte de s/r.

—_— N r——

Mayhem Solutions

M226. Proposed by John Ciriani, Kamloops, BC.

Antonino has a drawer full of identical black socks and identical white
socks. If he were to select two socks at random from his drawer, the prob-
ability that they match would be % How many of each colour of sock does
Antonino have? (There is more than one answer.)

Solved by Richard 1. Hess, Rancho Palos Verdes, CA, USA.

Let there be b black and w white socks. Let P, be the probability of
getting a black pair of socks, and P,, be the probability of getting a white
pair, when two socks are drawn at random. Then

b b—1 w w—1
. and P, = . .
b+w b+w-—-1 b+w b+w-—-1

P, =

Since P, + P,, = , we have
b b—1 " w w—1 1
b+w b+w-—-1 b+w b+w-—-1 T2
which simplifies to
2b(b—1)+ww—-1)] = (b+w)(b+tw-1),
2b% — 2b + 2w? — 2w b2—b+w2—w+2bw,
b% — 2bw + w? b+ w,
b-—w)? = b+w.

’

By symmetry, we may assume that b > w. Let d = b — w. The above
equation simplifiesto d> —d — 2w = 0, or w = %d(d — 1), which gives us
b=w+d=1d(d+1).

[Ed: The solutions for (b,w) are pairs of consecutive triangular
numbers; that is, they are pairs of consecutive terms from the sequence

{"(";1)} —1,3,6 10,15, ....]

n=1

Also solved by Daniel Tsai, student, Taipei American School, Taipei, Taiwan.
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M227. Proposed by Kenneth S. Williams, Carleton University, Ottawa,
ON.

Let IV be a positive integer such that N leaves a remainder of 2 or 4
when divided by 6 and there are integers  and y such that N = 22 4+ 27y2.
Prove that there exist integers a and b with N = a2 + 3b2 where b is not
divisible by 3.

Solution by Messiah College Problem Solving Group, Messiah College,
Grantham, PA, USA, modified by the editor.

Let z and y be integers such that N = x2 4 27y2. We are given that
N = 2 (mod 6) or N = 4 (mod 6). Therefore, IV is even and is not
divisible by 3. Since N is even, =2 and 27y? must have the same parity
(both even or both odd), which implies that z and y have the same parity.
Since N is not divisible by 3, we see that x is not divisible by 3 (because if =
were divisible by 3, then the same would be true for 22 + 27y% = N).

Define a = 1 (z+9y) and b = 1 (x — 3y). Since = and y have the same
parity, both x+9y and = — 3y are even; therefore, a and b are integers. Note
that a? 4+ 3b% = IV and that b is not divisible by 3 (since z is not divisible by
3). Thus, a and b are examples of the required integers.

There were no other solutions submitted.

M228. Proposed by K.R.S. Sastry, Bangalore, India.

(a) The zeroes of the polynomial P(x) = x? — 5z + 2 are precisely the
dimensions of a rectangle in centimetres. Determine the perimeter and the
area of the rectangle.

(b) The zeroes of the polynomial P(z) = 3 — 7022 4 1629z — 12600
are precisely the inner dimensions of a rectangular room in metres. Find the
total surface area and the volume of the interior of the room (when doors
and windows are closed).

Solution by Lacey K. Moore, student, Angelo State University, San Angelo,
TX, USA.

(a) Let I and w be the dimensions of the rectangle in centimetres. Since
we know that I and w are the zeroes of P(z) = =2 — 5z + 2, we have

Pz) = (x—)(z—w) = 22 — (I +w)x+lw.

Thus,
2 —-54+2 = mz—(l+w)w+lw.

This implies that I + w = 5 and lw = 2; therefore, the perimeter of the
rectangle is 2(I + w) = 2(5) = 10 cm, and the area is lw = 2 cm?.
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(b) Letl, w, and h be the dimensions of the rectangular room in metres.
Since I, w, and h are the zeroes of P(z) = 2% — 70x? + 1629z — 12600, we
have

P(x) = (z—1)(z—w)(x—h)
= 2> — (I +w+h)x? + (Ih + lw + wh)x — lhw.

Thus,

3 — 7022 + 16292 — 12600
= 23 — (I +w+ h)x? + (lh + lw + wh)x — lhw.

This implies that lh + lw 4+ wh = 1629 and lhw = 12600; thus, the surface
area of the interior of the room is 2(lw + lh + wh) = 2(1629) = 3258 m?,
and the volume is lwh = 12600 m3.

Also solved by Alper Cay, Uzman Private School, Kayseri, Turkey; and Richard 1. Hess,
Rancho Palos Verdes, CA, USA.

M229. Proposed by Edward J. Barbeau, University of P
Toronto, Toronto, ON.

An equilateral triangle sits atop a square as in the
diagram. All sides have length 1. A circle passes through
points P, Q, and R. What is the radius of the circle? Q R

Solution by Showadai-cho, Takatsuki City, Osaka, Japan.

Let O be the centre of the circle, and P
let r be its radius. The perpendicular from
point P to side QR bisects segments T'S
and QR at points M and N, respectively.
We know that O lies on the segment M N, M

T S
with OM = r — PM = r — ¥ and o

ON = /72 — ()*. Since OM + ON =1, r

we obtain the equation

r—?—i—,/rz—%:l. Q R

We now solve for r:

r2—1 = 1+‘/7§—r,
7'2—% = (1—1—‘/75)2—27'(14-‘/7?_’)4-7“2,

r(24+v3) = 14+v34+5+1,

from which we conclude that r = 1.

Also solved by Alper Cay, Uzman Private School, Kayseri, Turkey. There were two
incorrect solutions submitted.
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M230. Proposed by the Mayhem Staff.

Al, Betty, Cecil, Dora, and Eugene are going to divide n coins among
themselves knowing that:
1. Everyone receives at least one coin.

2. Al gets fewer coins than Betty, who gets fewer than Cecil, who gets
fewer than Dora, who gets fewer than Eugene.

3. Each person knows only the total » and how many coins he or she got.

What is the smallest possible value of n such that nobody can deduce
the number of coins received by each of the others without more information?

Solved by Richard 1. Hess, Rancho Palos Verdes, CA, USA.

Let the number of coins received by Al, Betty, Cecil, Dora, and Eugene
be A, B, C, D, and E, respectively. Wehave1 < A < B<C < D < E,
and the sum of the coins is n.

Examining values of n in increasing order and all the possible values for
A, B, C, D, and FE for each n gives the following table:

‘n‘A‘B‘C‘D‘E‘Whoknows?‘
15[ 1[2]3]4] 5] Everyone |
l16]1]2[3]4] 6] Everyone |
17| 1|2 | 3| 4| 7 | Dora & Eugene
17| 1|2 | 3| 5 | 6 | Dora & Eugene
18| 1 | 2 | 3 | 4 | 8 | Dora & Eugene
181|235 7 Eugene
18| 1 | 2| 4| 5 | 6 | Cecil & Eugene
19| 1|2 | 3| 4| 9 | Dora & Eugene
19| 1|23 |5 8 Eugene
19 (12|36 7 Dora
19 (12|45 7 Cecil
20| 1| 2| 3| 4 | 10 | Dora & Eugene
2001 (2|3 |5 9 Eugene
20012 |3]|6/| 8 No one
20012 |4|5 | 8 No one
201 (2 |4|6 |7 Eugene

Thus, for the two cases where n = 20 and E = 8, no one can deduce
the number of coins received by each of the others, and 20 is the smallest
such value of n.

There were no other solutions submitted.
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M231. Proposed by Edward ]. Barbeau, University of Toronto, Toronto,
ON.

Cordelia and Kent play the following game. Cordelia goes first and they
take alternate turns. Each selects a number from 1 to 6 inclusive that has not
already been selected; the game ends in six moves. At the end of each move,
the player making the move takes the sum of all the numbers selected by
either player up to that point and claims all of its positive divisors. When
the game is over, the score of each player is the highest number k for which
the player has claimed all the consecutive numbers 1, 2, 3, ..., k from 1 to
k inclusive. The winner is the player with the highest score; if both have
the same score, neither wins and the game is a draw. For example, suppose
the six moves are as follows: C:2; K:4; C:1; K:3; C:5; K:6. The respective
claimsbyCare1, 2;1,7; 1, 3,5,15;and by Kare 1, 2, 3, 6; 1, 2, 5, 10; 1, 3,
7, 21. Cordelia and Kent have the same score, 3, and the game is a draw. The
example does not demonstrate very good play. Is there any way that Cordelia
can be prevented from winning assuming she is playing as an expert?

Solution by the proposer.

Cordelia can assure a win. She begins the game by selecting 5, claiming
1 and 5.

Suppose that Kent selects a number other than 2. Then Cordelia on the
third move can achieve a sum of 12, and altogether claim all the numbers from
1 to 6, inclusive. Kent cannot match this. Note that no sum can exceed 21,
and that sums of 10 and 20 are not possible for Kent. Therefore, to claim 5,
Kent must play 3 on the fourth move to achieve a sum of 15. But then Kent
cannot achieve any sums 8, 12, 16, and 20, and hence cannot claim 4.

Now suppose that, on the second move, Kent selects a 2, claiming 1
and 7. Then on her second move, Cordelia selects 1. So far, Cordelia can
claim 1, 2, 4, 5, and 8. Thus far, the numbers 5, 2, 1 have been selected. In
order to claim 2, Kent must now select an even number to get an even sum
(at the end of Kent’s third move, the sum, 21, is odd).

If Kent selects 4 on his second move, he can now altogether claim 1, 2,
3, 4, 6, 7, and 12, but then Cordelia selects 3 to get a sum of 15 and claims
altogether 1, 2, 3, 4, 5, 8, 15. Kent will never claim 5; whence, Cordelia wins.

On the other hand, if Kent selects 6 for his second move, he makes
the sum 14 and can claim 1, 2, 7. Then Cordelia’s third move is to select 4,
making a sum of 18, altogether claiming 1, 2, 3, 4, 5, 6, 8, 9, 18. Kent cannot
make a sum divisible by 4, and Cordelia again wins.

There were no other solutions submitted.

_—_—m NS —e————
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Problem of the Month
Ian VanderBurgh

Problem (1993 Euclid Contest) In a sequence of p zeroes and g ones, the ith
term, t;, is called a change pointift; #t;_,,fort=2,3,4,..., p+ q. For
example, the sequence 0, 1, 1, 0, 0, 1, 0, 1 has p = q = 4, and five change
points t,, ty4, tg, tr, tg. For all possible sequences of p zeroes and g ones with
1 < p < g, determine

(i) the minimum and maximum number of change points, and

(ii) the average number of change points.

The notation of this problem makes it look scary, but the problem isn’t
really so bad. Basically, we are being asked how many times two consecutive
terms in a sequence of 0s and 1s are different. We are given that the number
of 0s in the sequence is p and the number of 1s is g. If this notation makes
you queasy, try working on a particular case like p = 5 and ¢ = 7. Answering
the two questions in this special case is still an interesting task.

We'll solve (i) first. Before we launch into its solution, the first teaching
point from this problem arises. In order to show that M is the maximum,
we need to do two things: we must justify why we cannot have more than
M change points, and we must show that we can have exactly M change
points. (Why this second step? Well, if there can’t be more than, say, 10
change points in a particular sequence, then there can’'t be more than 1000
either! But M can’t be both 10 and 1000.) Similar things need to be shown
for the minimum, and more generally, in any optimization problem (that is,
maximum or minimum problem).

Solution to (i): Let’s first look for the minimum, m. Certainly m > 0, be-
cause we can't have a negative number of change points. Can there be 0
change points? No. Since any sequence contains both 0s and 1s, there must
be a 0 next to a 1 somewhere. Therefore, m is at least 1.

Could the minimum be 1? Yes—the sequence 0,0, ...,0,1,1,...,1
has only one change point. We have shown that the number of change points
must be at least 1 and can in fact be 1. So the minimum is 1.

How about the maximum, M? This is trickier. Each sequence with p
zeroes and g ones has p + q terms; thus, M is certainly no larger than p + q.
But the first term cannot be a change point (check the definition). Therefore,
M is no larger than p + q — 1.

Could every term but the first be a change point? Try fiddling for a
minute or two to see what you can discover. You could perhaps try a few
different possible values for p and gq.

Any luck? Let’s look first at the case p = q. In this case, yes, there can
be p + g — 1 = 2p — 1 change points, because the sequence could alternate
between 0 and 1—for example, 0, 1, 0, 1, ..., 0, 1. Thus, if p = q, the
maximum number of change pointsis M =p+q—1=2p — 1.

What if p < ¢? Notice that every change point involves a 0, either in
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that position or in the position before. Each of the p zeroes can contribute
to at most two change points (and to exactly two if it has 1s on both sides of
it). Since there are p zeroes, there can be at most 2p change points.

Can this upper bound be achieved? (Oops!—that’s fancy mathematics-
speak for “Can we actually find a sequence with 2p change points?”’) Yes—for
example, 1,0,1,0,1,...,0,1,1, ..., 1is a sequence with p < g which has
2p change points (two for each 0). Therefore, M = 2p if p < q.

Note that the number of 0s controls the maximum number of change
points here. The number of 1s is less important, because there are more 1s
than needed.

We need to look at (ii) next. Enter stage left the second teaching point.
To figure out the average number of change points, we need to figure out
the total number of change points over all sequences and divide by the total
number of sequences. This seems to require looking at individual sequences
and determining the number of change points in each sequence. We might
then have to figure out how many sequences have 1 change point, how many
have 2, and so on. This would actually be really painful. If you're feeling
particularly ambitious, you could of course try this!

There is a sneaky way to do this. If we could determine the total num-
ber of sequences in which position 2 is a change point, the number in which
position 3 is a change point, and so on, we could add these totals to get the
total number of change points. (Of course, we still have to divide by the total
number of sequences.)

Solution to (ii): Let’s first find the total number of sequences. Since there
are p + g positions in total, we can choose p places to put the 0s. This means
that there are (p;q) sequences in total.

Now consider position k in the sequences, where k can be any integer
from 2 to p + q. In order for position k to be a change point, we must have
t, = 0and t,_, = 1, 0ort, = 1 and t,_; = 0. How many sequences are
there with ¢, = 0 and ¢,_; = 1? Such a sequence has p — 1 zeroes and g — 1
ones to put in the remaining p + q — 2 positions; thus, there are (”:3;2) such

sequences. Similarly, there are (”:ﬁ;z) sequences with¢, = 1and ¢,_; = 0.

Therefore, there are 2(”:3;2) sequences with a change point in position k.

Notice that this total is independent of k.

Since there are p + q — 1 possible positions for a change point and the
number of change points in a fixed position is a constant, the total number
of change pointsis 2(p +q — 1) (piﬁzz), which means an average of

2(p+q—1)(p+q—2)!

2p+a-V(%5°) T p-Dig— 1!
(Pra) B (r+9)!
P plq!
2(p+q—1)!plq! 2pq

P+ap—1g—1)! p+aq’
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SPAs and the Harmonic Mean

Bruce Shawyer

Definition: An SPA is a Symmetric Polygonal Arc, consisting of three equal
straight line segments that have equal angles between adjacent segments.
For example:

ANUDVAR T BV A N4

An SPA could be a portion of a regular polygon, or it could be a whole
equilateral triangle, depending on its angle.

In this article, we will explore some properties of SPAs and their
connection with the harmonic mean. My reason for being interested in SPAs
came from a MAYHEM problem where two equilateral triangles were placed
adjacent to one another on the same line (see problem M214 [2005 : 427,
428; 2006 : 428]).

It is convenient to use an external angle as a parameter, say 6. The
other convenient parameter is the length of each line segment, say a. We
will refer to the middle line segment as the base of the SPA.

Place two SPAs with different length parameters a and b and the same
angle parameter 6 on the same base line with one point in common, as shown
below.

Az Al

Copyright © 2007 Canadian Mathematical Society
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Join BA; and AB;. Let P be the point of intersection of the lines BA;
and OB-, and let Q be the point of intersection of the lines AB; and OA,.

A2 Al

ab

ThenOP=0Q=a+

and is independent of the parameter 6.
We will prove this remarkable fact in two different ways, each of which
is instructive.

First Proof: Note that AA; AB and APOB are similar. We therefore have

x This is one half of the harmonic mean of a and b,

OP _ AA;, . _ B N . OP _ a
OB =~ AB- Since A;A = AO = a and OB = b, we obtain b = ot b
giving OP = a‘f > Similarly, using similar triangles By BA and QO A, we
see that 0Q = a(fb'

Second Proof: This proof uses coordinates. Let O = (0,0), A = (a,0),
and B = (—b,0). Note that AA; = OA = a. The coordinates of A;
are (a(1+ cos ), asin@), and the coordinates of A, are (—acos 6, asin6).
The coordinates of B, are (—b cos 6, bsin 0), and the coordinates of B5 are
(bcos8,bsin ).

To determine the coordinates of P, we find the equations of the lines
BA; and OB,. The point of intersection of these lines is

P — (abcos@ absin@)
o a+b ’ a+b ’

Similarly, by finding the equations of the lines AB; and O A,, we obtain the
coordinates of Q:
0 = ( abcos 6 absin0>
o a-+b ’a +b '

From this, it is clear that OP = 0Q = ab_
a+b

Bruce Shawyer

Department of Mathematics and Statistics
Memorial University of Newfoundland

St. John’s, NL, Canada A1C 5S7
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THE OLYMPIAD CORNER
No. 259
R.E. Woodrow

As we begin another year and a new volume of CRUX with MAYHEM,
it is appropriate to look back over the 2006 numbers of the Corner and thank
all those who provided us with problems, comments and solutions:

Arkady Alt José Luis Diaz-Barrero Toshio Seimiya

Houda Anoun Ovidiu Furdui Achilleas Sinefakopoulos
Miguel Amengual Covas Geoffrey A. Kandall Nick Skombris

Michel Bataille Ioannis Katsikis Babis Stergiou

Robert Bilinski Gustavo Krimker B.]. Venkatachala

Pierre Bornsztein Andy Liu Edward T.H. Wang
Christopher ]. Bradley Pavlos Maragoudakis = Kaiming Zhao

Bruce Crofoot Vedula N. Murty Li Zhou

Paolo Custodi

I also want to thank Joanne Canape (née Longworth), who continues to
work miracles with my scribbles, turning them into high quality BTgX files.

—_—— N r—— S ———

We continue now with the remaining problems shortlisted for the
44™ IMO in Japan. My thanks go to Andy Liu, Canadian Team Leader, for
collecting them for our use.

44" INTERNATIONAL MATHEMATICAL OLYMPIAD
Short-listed Problems
Algebra
Al4. let n bea positive integer, and let ¢; < x5 < ... < x, be real
numbers.
@ Prove that ( 35 foi - wj|>2 <22 S (g —ap)n,

i,7=1 ,J=1

(b) Show that the equality holds if and only if =4, ..., x, is an arithmetic
sequence.

A5. Let Rt be the set of all positive real numbers. Find all functions
f : RT — Rt that satisfy the following conditions:

@ f(zyz) +]R{(w) + f) + f(z) = f(Vay)f(Vyz)f(Vzz) for all
x, Y, z € ;

(b) f(z) < f(y) foralll <z <y.
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AOG. Letnbea positive integer, and let (z41,...,z,) and (y1,...,yn) betwo
sequences of positive real numbers. Suppose (za,...,22,) is a sequence of
positive real numbers such that zf_H > wxyy; foralll < 4, j < n. Let
M = max{za, ..., zan}. Prove that

(N{+zz+--~+z%)2 > (m1+--~+mn)(y1+--~+yn).

2n n n
Combinatorics
Ch4. Let Xy, ..., Ty and y, ..., y, be real numbers. Let A = (as;)1<i,j<n

be the matrix with entries
1 ifx; +y; >0;
a;; = .
J 0 if xT; + Yj < 0.

Suppose that B is an n X n matrix with entries 0, 1 such that the sum of the
elements in each row and each column of B is equal to the corresponding
sum for the matrix A. Prove that A = B.

C5. Every point with integer coordinates in the plane is the centre of a disc
with radius 1/1000.

(a) Prove that there exists an equilateral triangle whose vertices lie in
different discs.

(b) Prove that every equilateral triangle with vertices in different discs has
side-length greater than 96.

C6. Let f(k) be the number of integers n that satisfy the following
conditions:

(i) 0 < n < 10F, so that n has exactly k digits (in decimal notation), with
leading zeroes allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer
divisible by 11.

Prove that f(2m) = 10f(2m — 1) for every positive integer m.

Geometry

GS5. Let ABC be an isosceles triangle with AC = BC, whose incentre is I.
Let P be a point on the circumcircle of the triangle AIB lying inside the
triangle ABC. The lines through P parallel to CA and CB meet AB at D
and E, respectively. The line through P parallel to AB meets CA and CB
at F and G, respectively. Prove that the lines DF and EG intersect on the
circumcircle of the triangle ABC.

G6. Each pair of opposite sides of a convex hexagon has the property that
the distance between their mid-points is equal to v/3/2 times the sum of
their lengths. Prove that all the angles of the hexagon are equal.
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G7. Let ABC be a triangle with semiperimeter s and inradius r. The semi-
circles with diameters BC, C A, AB are drawn on the outside of the triangle
ABC. The circle tangent to all three semicircles has radius ¢. Prove that

S S \/g

N

Number Theory

N5. An integer n is said to be good if || is not the square of an integer.
Determine all integers m with the following property: m can be represented,
in infinitely many ways, as a sum of three distinct good integers whose
product is the square of an odd integer.

N6. Let p be a prime number. Prove that there exists a prime number q
such that, for every integer n, the number n? — p is not divisible by q.

N7. The sequence ag, ai, az, ... is defined as follows: ay = 2, and
ax+1 = 2a? — 1 for k > 0. Prove that if an odd prime p divides a,,
then 2713 divides p? — 1.

NS8. Let p be a prime number, and let A be a set of positive integers that
satisfies the following conditions:

(i) the set of prime divisors of the elements in A consists of p—1 elements;

(ii) for any non-empty subset of A, the product of its elements is not a
perfect pth power.

What is the largest possible number of elements in A?

—_—_— N~ S O ————

Before turning to solutions we give a reader’s comment on a solution
published in the October 2006 Corner. The problem is from the Singapore
Mathematical Olympiad [2005 : 215-216; 2006 : 383].

0. Evaluate
2002 g k! 2992 k1 2003!
Z ok _227_22002'

k=1 k=1

Comment by David Bradley, University of Maine, Orono, ME, USA.
The published solution establishes the formula
2": (k =1k  (n41)!
2k o2m—1

1=1

by using induction on n. But it is easier and more enlightening to observe
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that, since (k — 1)k! = (k + 1)k! — 2(k!), we have
" (k —1)k! " (k+1)! O k!
o2k o2k

Z ok - kz: Z ok—1"'

=1 =1 k=1

which telescopes to the stated right-hand side.
_—_—m N~ @ z—

We now shift to readers’ solutions to problems in the November 2005
Corner and the Selection Test for the 7" National Olympiad of Bosnia and
Herzegovina 2002, given at [2005 : 436].

1. Let x, y, and z be real numbers such that
r+y+z =3 and Ty +yz+xr2z = a

(a is a real parameter). Determine the value of the parameter a for which the
difference between the maximum and minimum possible values of z equals 8.

Solved by Pierre Bornsztein, Maisons-Laffitte, France; and Pavlos
Maragoudakis, Pireas, Greece. We given Bornsztein’s solution.

Wehavey+ 2z =3 —z and yz = a — (3 — ). Itis easy to verify that
the system
y+z = s,
Yyz = p,
with unknowns y and z, has a real solution if and only if s2 —4p > 0. Hence,
the unique condition we have to satisfy is (3 — )2 > 4(a — 3z + z?), or
3(x —1)2 < 4(3 — a). Thatis, a < 3 and

1-2\/1—1a < z < 1+2\/1—1a.

The difference between the maximum and minimum possible values of =
equals 8 if and only if 4,/1 — %a = 8, which implies that a = —9.

2. Triangle ABC is given in a plane. Draw the bisectors of all three of its
angles. Then draw the line that connects the points where the bisectors of
angles ABC and AC B meet the sides AC and AB, respectively. Through
the point of intersection of the bisector of angle BAC and the previously
drawn line, draw another line, parallel to the side BC'. Let this line intersect
the sides AB and AC in points M and N. Prove that 2M N = BM + CN.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; and
Geoffrey A. Kandall, Hamden, CT, USA. We give the write-up by Amengual
Covas, modified by the editors.

Lemma. In triangle ABC, the bisector of ZAC B meets the side AB at D,
and the bisector of ZABC meets the side AC at E. Let P be any point on
the segment DE. Let X, Y, and Z be the orthogonal projections of P onto
the sides BC, AC, and AB, respectively. Then PX = PY + PZ.
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Proof: Let R and S be the orthogonal
projections of D onto the sides BC and
AC, respectively. Let T and U be the
orthogonal projections of E onto the
sides BC and AB, respectively. Note
that DR = DS and ET = EU.

Letr = DP/DE. ThenO0 <r <1
and PE/DE =1 — r. Since PY || DS,
we have PY = (1—»)DS = (1—r)DR;
similarly, since PZ || EU, we also have
PZ =rEU = rET. Then

PY +PZ = (1-r)DR+rET = PX,
since DR || PX || ET and DP/PE =r/(1 —r). |

Now we turn to the given problem. A
As in the lemma, we let D and E be
the points where the bisectors of ZACB
and ZABC meet the sides AB and AC,
respectively. Let P be any point on the
segment DE. (Later, we will require P to
be on the bisector of /BAC, as required
in the problem.)

Let [UVW] denote the area of a
triangle UVW. Since MN | BC, we
see that [M BP] = [M XP] and [PCN] = [PXN]. Hence,

[MBP] + [PCN] = [MXP]+[PXN] = [MXN].

Since the area of AM BP may be expressed by %BM . PZ, the area of

APCN by 2CN - PY, and that of AM XN by 1M N - PX, we may write
the above equation as

BM-PZ+CN-PY = MN.PX. 1)

Now assume that P lies on the bisector of /BAC. Then PZ = PY
and, by the lemma, PX = 2PY . Substituting into (1) and dividing by PY,
we obtain the desired result.

3. 1f nis a natural number, prove that the number (n+1)(n+2)--- (n+10)
is not a perfect square.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Assume, for the purpose of contradiction, that n is a natural number
such that (n + 1)(n + 2) ... (n + 10) is a perfect square.

A common divisor of any two of the numbers n +1,n+2,..., n+ 10
is at most 9. Also, among these 10 numbers, at most two can be multiples
of 7 and at most two can be multiples of 5. It follows that at least 6 of these
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numbers have one of the forms z2, 222, 322, and 6z2. By the pigeon-hole
principle, there exist 4, j € {1, 2, ..., 10} with ¢ < j such that n + i = kz?
and n + j = ky? for some positive integers = and y and k € {1, 2, 3, 6}.

Now k(y? —x2) = j — 14, and thus, 1 < k(y? — z?) < 9. Also, we have
kx? = n + 1 > 2. The possibilities for (z, y, k) satisfying these conditions
are as follows: (1,2,2), (1,2,3), (2,3,1), (3,4,1), and (4,5,1). In every
case kx? < 16, and therefore the sequence n + 1, n + 2, ..., n + 10 is
contained in the set {2, 3, ..., 25}. But then the sequence must contain
either 11 or 17. Since no more than one factor of 11 or 17 can be present in
the product (n +1)(n+2) - - - (n + 10), we conclude that this product is not
a perfect square, which contradicts our initial assumption.

4 1eta, b, and c be real numbers such that a2 + b2 + ¢2 = 1. Prove the

inequality .2 52 2 5
1+ 2bc + 1+ 2ca + 1+2ab = 5°

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Pierre
Bornsztein, Maisons-Laffitte, France; Ovidiu Furdui, student, Western
Michigan University, Kalamazoo, MI, USA; Pavlos Maragoudakis, Pireas,
Greece; and Vedula N. Murty, Dover, PA, USA. We give Furdui’s solution.

In view of the inequality 2zy < 22 4+ y2 and the observation that
1+ 2bc = a? + (b + ¢)? > 0, etc., we see that
a’ b? c? a’ b? c?
1—{—2bc+1—|—2ca+1—{—2ab = 1—|—b2—}—c2—l_l—l—cz—l—az_'_1—{—112—|—b2
a’® b? c?
= e ti—mTaoa
Let f: (0,1) — R be defined as f(x) = /(2 — ). Then
’ — 2 n” _ 4
f (ZC) - (2 _ {E)2 and f (.’B) - (2 _ w)g .

Thus, f is convex, since f”/(x) > 0. Using Jensen’s Inequality, we get
f (:c+y+z) <« @+ f)+1(2)
3 - 3 ’
Taking = a2, y = b?, and z = ¢ gives f(a?) + f(b%) + f(c?) > 3f(%);
that is,

a? b2 c? 3
> 3. = —.
2—(12—|_2—b2+2—c2 - 2 5

W=

W=

Note: equality is only possible if a? = b? = ¢2? =

o=

5. Let p and q be different prime numbers. Solve the following system of
equations in the set of integers:
2tp  2-p
T Yy
z4+p z-—p
Yy o Zr

= q,

= q.
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Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Note that zy # 0. Clearing the denominators, we get

(z+pPy+(z—p)z = gqzy,
(z+p)x—(2—ply = qzy.
By first subtracting the equations, then adding them, we get
zy = pz, )
zz+py = qzy. (2)

Multiplying (2) by z and using (1), we get 2% + xp? = gp=x?, which is
equivalent to z2? 4+ p? = gpx. This equation implies that p divides z (since p
is prime). Thus, p? divides gpz. Since g # p and q is prime, it then follows
that p divides =. Let x = pa and z = pc, where a and c are integers and
a # 0. The system is now

cy = pa, 3
pac+y = gqay. @
From (4), we deduce that a divides y, say y = ab. Thus,
cb = p, (5)
pc+b = gqab. (6)

Since p is prime, it follows from (5) that (b,¢c) € {£(p,1), £(1,p)}.
Casel. (b,c) = (p,1).

From (6), we have ga = 2, which implies that ¢ = 2 and @ = 1. Then
(z,vy,z) = (p, p, p), which is a solution for p any odd prime.
Case 2. (b,c) = (—p,—1).

AsinCase 1, we obtaing = 2and a = 1. Thus, (z,y, 2) = (p, —p, —DP).
Case 3. (b,c) = (1,p).

Equation (6) simplifies to p%2 4+ 1 = ga. Then g must be a prime divisor
of p? 4 1, in which case

241 241
(way7z) = (P(pq+ )ap;_ apz) -

Case 4. (b,c) = (—1,—p).
As in Case 3, we find that g must divide p? + 1. Then

241 241
(way7z) = (P(pq+ )a _p;_ s _pz) -

Therefore, the solutions are (z,y,z) € {(p,p,p), (p,—p,—p)}, if
q = 2, for any prime p > 2, and

(@,y,2) € {(p(p2+1),p2+1,p2>, (p(p2+1),_p2+1,_p2)}'

q q q q
for any primes p and g such that q divides p? + 1 (which implies that p # q).



26

6. Let the vertices of the convex quadrilateral ABCD and the intersecting
point S of its diagonals be integer points in the plane. Let P be the area
of the quadrilateral ABCD and P; the area of triangle ABS. Prove the
following inequality:

VP > /P + g
Solution by Pavlos Maragoudakis, Pireas, Greece, modified by the editor.

Lemma. If X;, X5, and X3 are non-collinear points with integer coordinates,
then [X; X, X3] > 1.

Proof: Let X; have coordinates (a;, b;), with a;, b; € Z, fori = 1, 2, 3. Then

aj b1 1
2[X1X2X3] = a2 b2 1 e Zj_ .
as b3 1
Hence, 2[X; X, X3] > 1; that is, [X; X5 X3] > 1. n

Let P,, P3, and P, be the areas of triangles BC'S,
CDS, ADS, respectively. We have P, /P, = AS/CS, A B

because ABAS has the same height from the base v
AS as does ABCS from the base CS. Similarly,

P4/P3 = AS/CS Thus, Pl/Pz = P4/P3. Then

P, = P,Py/P; < 2P, P,, since P3 > % by the lemma. A
Hence, D

2P, < 2¢/P;Py < P, + Py,
using the AM—GM Inequality. Then
P =P +P+P+P;, > Pi+Ps+.2P
> P+ 1l42P = (\/Fl+‘/75)2-
Taking square roots gives the desired result.

—_—— N r—— S ———

Next we look at solutions from our readers to problems of the 4™ Hong
Kong Mathematical Olympiad given at [2005 : 437].

2. Find all positive integers n such that the equation z3+y3+23 = nx2y222
has positive integer solutions. Be sure to give a proof.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Let n > 1 be an integer such that there exist positive integers x, y, and
z satisfying
23 + 9% + 23 = naly?22. 1)
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Without loss of generality, we may assume that z > y > 2. Then we have
nx?y?z2? < 323, which leads to

ny?z? < 3z. 2)
From (1), we also have z2(ny?z2 — ) = y® + 23 > 0, implying that
ny?z2 > x+1. 3)

Note that (y3 — 1)(23 — 1) > 0, which leads to 1 + y323 > y3 + 23.
Using (1) and then (3), we get

149323 > 2?(ny?22 —z) > 2. (4)
Thus, using (2), we deduce that
9(1 + y32%) > n?ytzt. 5)

Casel. y=2=1.
From (4), we see that = 1, and the given equation yields n = 3.

Case 2. yz > 1.

Then y%2z% > 29323 > 1 + y323. This together with (5) implies that
n? < 9. Hence, n =1 orn = 2.

For n = 1, it is easy to verify that (z, y, z) = (8,2, 1) is a solution.

For n = 2, using (5), we have y323(4yz — 9) < 9, which forces yz < 2.
Then yz = 2, which implies that y = 2 and 2 = 1. It follows that x > 2,
and the given equation reduces to 3 + 9 = 8z2. Then x2 must divide 9,
which implies that z = 3. But it is easy to verify that this is not a solution.
Therefore, n = 2 is impossible.

Therefore, the desired values for n are n = 1 and n = 3.

3. For each integer k > 4, prove that if F(x) is a polynomial with integer
coefficients which satisfies the condition 0 < F(e¢) < k for every
c=0,1,...,k+1 then F(0) = F(1) = --- = F(k + 1).

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

This problem is from the IMO 1997 shortlist. A solution can be found
in P. Bornsztein, Mégamath, Vuibert, pb.# A1.27. or D. Djukic, V. Jankovit,
I. Mati¢, N. Petrovit, The IMO Compendium, Springer.

4. There are 212 points inside or on a circle with radius 1. Prove that there
are at least 2001 pairs of these points having distances at most 1.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

We may partition the disk into 6 congruent sectors, each with a central
angle of 60°, by rays from the centre O of the disk. Since the number of
given points is finite, we may choose the rays so that none of the points lie
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on a ray, except that the centre O may be one of the points. In each of the
6 sectors, the distance between any two points is at most 1. Let nq, ..., ng
be the respective number of the given points in each of the 6 sectors (if O is

6
one of the points, it is counted only once, say in ny). Thus, > n; = 212.
=1
In sector 2, the number of pairs of points is %ni(ni — 1), and each of
these pairs has distance at most 1. Hence, the total number N of pairs of
points having distances at most 1 satisfies

6

6
N > Z%ni(ni—l) = ;(an—mz).
=1

=1

Then, using Jensen’s Inequality for the function f(x) = =2, we deduce that

6 2
1(1 A _1/1 2 _
N > 2<6(an> 212) = 2(6(212) 212) > 3639.

=1
Thus, N > 3640, which is better than required.
_—})} N r——~

Next we look at readers’ solutions to problems of the 15% Irish
Mathematical Olympiad, First Paper, given in [2005 : 437-439].

1. na triangle ABC, AB = 20, AC = 21, and BC = 29. The points D
and E lie on the line segment BC, with BD = 8 and EC = 9. Calculate
the angle /DAE.

Solved by Mohammed Aassila, Strasbourg, France; Miguel Amengual
Covas, Cala Figuera, Mallorca, Spain; loannis Katsikis, Athens, Greece;
Pavlos Maragoudakis, Pireas, Greece; and Geoffrey A. Kandall, Hamden, CT,
USA. We give Kandall’s solution.

B+y a+pB
B 8 D 12 E 9 c

leta« = /BAD, 3 = /DAE, and v = ZEAC. Since BA = BE, we
have ZAEB = a + 3; similarly, since CA = CD, we have ZADC = 3+ 1~.
Therefore,

180° = (a+B)+(B+v)+8 = (a+B+7)+28.
But a 4+ 3 + v = 90°, since 202 + 212 = 292. Consequently, 3 = 45°.
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2. (a) A group of people attends a party. Each person has at most three
acquaintances in the group, and if two people do not know each other, then
they have a mutual acquaintance in the group. What is the maximum number
of people present?

(b) If, in addition, the group contains three mutual acquaintances (that
is, three people each of whom knows the other two), what is the maximum
number of people?

Solution by Pierre Bornsztein, Maisons-Laffitte, France, modified by the
editor.

(a) The maximum is 10.

Let A be any person in the group. If A has no acquaintances, then
A must be the only member of the group. If A has only one acquaintance,
say B, then any other member C must be an acquaintance of B (because A
and C must have a mutual acquaintance); then, since B can have at most 3
acquaintances, the group has at most 4 members.

Suppose that A has exactly two acquaintances, say B and C. Each of
B and C can have at most two further acquaintances. Since any person not
acquainted with A must be acquainted with either B or C, we conclude that
there are at most 1 + 2 + 2 - 2 = 7 people in the group.

Now suppose that A has exactly three acquaintances, say B, C, and D.
Any other person in the group must be acquainted with B, C, or D, and for
each of B, C, and D there are at most two further acquaintances. Hence,
there are at most 1 + 3 + 3 - 2 = 10 people in the group.

Thus, the group can have no more than 10 members. On the other
hand, a party with 10 people is possible, as proved by the graph on the left
below (where people are vertices and edges are acquaintances).

A

(b) The maximum is 8.

Let A, B, and C be three mutual acquaintances. If A has no further
acquaintances, then all other persons must be acquainted with either B or
C, and each of them can have at most one further acquaintance. This gives
a maximum of 3 + 1 + 1 = 5 people in the group. If A does have a further
acquaintance, say D, then any other people must be acquainted with B, C,
or D. For each of B and C, there is at most one such acquaintance, and at
most two for D. This leads to at most 4 + 1 + 1 + 2 = 8 people.

A party with 8 people is possible, as proved by the graph on the right
above (where people are vertices and edges are acquaintances).
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3. Find all triples of positive integers (p, g, n), with p and q prime, such that
p(p+3)+q(g+3) = n(n+3).

Solved by Mohammed Aassila, Strasbourg, France; Pierre Bornsztein,
Maisons-Laffitte, France; and Pavlos Maragoudakis, Pireas, Greece. We give
Aassila’s solution.

First of all, we observe that, for any positive integer m, we have
m(m+3) =1 (mod 3) if 3 m, and m(m+3) =0 (mod 3) if 3 | m. Since
we require p(p+3) + g(g+ 3) = n(n+ 3) (mod 3), at least one of p and ¢
must be 3. Thus, we may assume, without loss of generality, that p = 3. We
have n > g+ 1, which means that n(n +3) — qg(g+3) > 2g+4 > 3(3+3)
unless g < 7. Checking the primes ¢ < 7, we find that ¢ = 2 and ¢ = 7 are
the only solutions.

Thus, the only solutions are (p,q,n) = (2,3,4), (p,q,n) = (3,2,4),
(p,g,m) = (3,7,8), and (p, g, n) = (7,3, 8).

4 Letthe sequence aq, az, asz, aq4, ... be defined by
ag =1, az =1, ag =1, and any1an—2 —anapn_1 = 2,
for all n > 3. Prove that a,, is a positive integer for all n > 1.

Solved by Mohammed Aassila, Strasbourg, France; Pierre Bornsztein,
Maisons-Laffitte, France; and Pavlos Maragoudakis, Pireas, Greece. We give
Aassila’s write-up.

An easy induction proves that a,, = 4a,,_1 — a,_» if n is even, and
a, = 2a,_1 — a,_o if n is odd. Thus, a,, is a positive integer for all n > 1.

5. Leto < a, b, c < 1. Prove that

a b c 3V abe
1—a 1—-0 1—c — l_ﬁslabc‘

Determine the case of equality.

Solved by Mohammed Aassila, Strasbourg, France; Miguel Amengual Covas,
Cala Figuera, Mallorca, Spain; Pierre Bornsztein, Maisons-Laffitte, France;
José Luis Diaz-Barrero, Universitat Politécnica de Catalunya, Barcelona,
Spain; Ovidiu Furdui, student, Western Michigan University, Kalamazoo,
MI, USA; Vedula N. Murty, Dover, PA, USA; Pavlos Maragoudakis, Pireas,
Greece; and Henry Ricardo, Medgar Evers College (CUNY), Brooklyn, NY,
USA. We give the write-up of Ricardo.

The function f(x) = «/(1 — x) is convex on the interval (0, 1). In what
follows, we use Jensen’s Inequality and then the AM-GM Inequality:

a_ b L_c > 3. athoe > 3V abc
1—a 1-0 1—c — 1—% - 1_\3/abcl

Equality holds if and only if a = b = c.
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6. A3xn grid is filled as follows. The first row consists of the numbers
from 1 to n arranged from left to right in ascending order. The second row
is a cyclic shift of the top row. Thus, the order goes

t,t1+1,....n—1,n,1,2,...,2—1

for some i. The third row has the numbers 1 to n in some order, subject to
the rule that in each of the n columns, the sum of the three numbers is the
same.

For which values of n is it possible to fill the grid according to the above
rules? For an n for which this is possible, determine the number of different
ways of filling the grid.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Assume that we may fill the grid according to the rules.

Then the sum of the numbers in all the three rows is 3n(n + 1) /2. It
follows that the common sum in each column is 3(n + 1)/2, which forces n
to be odd. Let n = 2p + 1. Then, among the numbers 1, 2, ..., n, there
are p + 1 odd numbers and p even numbers. Let k£ + 1 be the number of the
column containing n in the second row. Then the grid is as follows:

1 2 k E+1 E4+2 ... n
n—k n—k+1 ... n—1 n 1 ... n—k-—-1
al a2 e aj Qp41 ap42 Ay

In each of the columns 1 through k41, the sum of the first two numbers
has the same parity as k& (for example, in column number k, the sum is
n — 1+ k = 2p + k), while in each of the columns k£ + 2 through n, the
sum of the first two numbers has the parity opposite to k. Since the sum of
the numbers in each column is constant, it follows that a4, a2, ..., a1 have
the same parity and ax2, . .., a, have the same parity. Thus, k+1=p+1
or k+ 1 = p. Moreover, since the sum in each column is 3(n + 1)/2, if
the value of k is known, then the value of a; is determined for each ¢, which
means that there is at most one way to fill the grid for a given k.

Casel. n=2p+landk+1=p+1.
We may fill the grid as follows:

1 2 . K kE+1 kE4+2 k43 ... 241
k+1 k+2 ... 2 2k+1 1 2 k
2k+1 2k—1 ... 3 1 2k 2k —2 ... 2

Case2. n=2p+1landk+1=p.
We may fill the grid as follows:

1 2 k E+1 k+4+2 k43 ... 2t+1
k+3 k+4 ... 2k+2 243 1 2 oo k42
2k + 2 2k 4 2 2k+3 2k+1 ... 1

Therefore, the grid may be filled if and only if n is odd. And, for such
an n, there are two ways to fill the grid.



32

7. Suppose n is a product of four distinct primes a, b, ¢, d such that
@) a+c=d;
(b) a(a+ b+ c+d) = c(d — b);
(¢) 1+ be + d = bd.
Determine n.
Solved by Mohammed Aassila, Strasbourg, France; Pierre Bornsztein,

Maisons-Laffitte, France; Geoffrey A. Kandall, Hamden, CT, USA; and Pavlos
Maragoudakis, Pireas, Greece. We give Kandall’s generalization.

More generally, we will determine all integer solutions of the system

at+c = d, ®
ala+b+c+d) = ec(d-0), 2
1+bc+d = bd. (3

If d = 0, it is easy to see that the only solutions for (a, b, c,d) are
(1,1,—1,0) and (—1,—1,1,0).

Let us assume d # 0. From (1) and (2), we have a(b + 2d) = ¢(d — b),
which can be put in the form b(a + ¢) = (¢ — 2a)d. Using (1) again, we get

c = 2a+b. (4)
Then, in view of (1),
d = 3a+b. ®)

Using (4) and (5) in (3), we obtain 1 + b(2a + b) + 3a + b = b(3a + b), which
can be rewritten as b+ 1 = a(b — 3). Therefore, b # 3, and
b+1

4
R T

Thus, 5 4 3 is an integer; that is, b—3 € {£1, £2, +4}. The complete table

of solutions can now be easily constructed:

a b c d
1 1| -1 0
-1 -1 1 0
5 4| 14| 19
-3 2| —4| -7
3 5| 11| 14
-1 1| -—-1|-2
2 71 11| 13
0|—-1|-1]|-1

If we now require that a, b, ¢, d be primes, then (a, b, ¢,d) = (2,7,11,13),
which implies that n = 2-7.11 .13 = 2002.
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8. Denote by @ the set of rational numbers. Determine all functions
f : Q — Q such that

f(a:—+—f(y)) = y+ f(x), foralz yeqQ.

Solved by Mohammed Aassila, Strasbourg, France; Pierre Bornsztein,
Maisons-Laffitte, France; and Pavlos Maragoudakis, Pireas, Greece. We give
Aassila’s write-up.

Setting = 0 in the given condition, we find that f(f(y)) = f(0) + y
for ally € Q. If f(x) = f(y) for some x, y € Q, then f(f(z)) = f(f(v));
hence, f(0) + = = f(0) + y, from which we get x = y. Thus, f is injective.

Setting y = 0 in the given condition, we obtain f(z + f(0)) = f(x)
for all z € Q. Since f is injective, we get z = = + f(0), and thus, £(0) = 0.

Then f(f(y)) = yforally € Q.
Now, forall z, y € Q,

fle+y) = fle+ f(f(v)) = f(=)+ f(y).

Hence, by an easy induction, f(nz) = nf(x) for all n € N*. Now let =
be any positive rational number. Setting x = r/s with r, s € IN*, we have
sf(xz) = f(sx) = f(r) = rf(1); hence, f(x) = (r/s)f(1) = xf(1).

Now we note that, for all z € Q,

0 = f(0) = f(x—=z) = f(z)+ f(—=z),

and therefore, f(—z) = —f(xz) = —=xf(1). Thus, f(x) = xf(1) for all
x € Q. Moreover, by setting x = f(1), we find that f(f(1)) = f(1)f(1).
From above, we have f(f(1)) = 1. Thus, f(1) = £1. We conclude that
either f(xz) =z forallz € Q or f(z) = —xz forall z € Q.

It is now easy to check that f(x) = z and f(x) = —=z are solutions.

9. For each real number x, define |z ]| to be the greatest integer less than or
equal to z. Let o = 2 + /3. Prove that

a”—|a"] =1—-a™™, forn=0,1,2,....

Solved by Mohammed Aassila, Strasbourg, France; Pierre Bornsztein,
Maisons-Laffitte, France; and Pavlos Maragoudakis, Pireas, Greece. We give
Aassila’s solution.

We have o' = 2 — /3 < 1; then 0 < a~™ < 1. By the Binomial
Theorem, the odd powers of v/3 in the expansion of (2 ++v/3)" + (2 — v3)"
cancel out. Hence, a™ + o~™ is an integer. Thus,

a"+a™™ = "]+ 1.

[ Editor’s note: Maragoudakis points out that a solution, albeit with different
integers involved (a = 3 + /5), is published in [2005 : 384].
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10. Let ABC be a triangle whose side lengths are all integers, and let D
and E be the points at which the incircle of ABC touches BC and AC,
respectively. If |]AD? — BE?| < 2, show that AC = BC.

Solved by Mohammed Aassila, Strasbourg, France; and Pavlos Maragoudakis,
Pireas, Greece. We give Aassila’s solution, modified by the editor.

We have CE = CD = (a + b — ¢)/2. By the Cosine Law,
2
AD? = b2+w —bla+b—c)cosC

2
and BE? = a2+W—a(a+b—C)cosC’.

Thus,
BE? — AD? = a®> - b*—(a+b—c)(a—b)cosC.
a?+4+b2 -2

5ab , and hence,
a

By the Cosine Law, we have cos C =

a? + b2 — ¢
2ab

(a®’(—a+b+c)+b*(a—b+c)+P(a+b—2c)).

BE? — AD? = a®*—-b*>—(a+b—c)(a—0b)

a—>b

2ab
For the purpose of contradiction, we assume that a # b. Without loss

of generality, we may assume a > b. If ¢ = 1, then, since a < b+ ¢, we have

b < a < b+ 1, which is impossible for integers a and b. Therefore, ¢ > 2.
Lleta—b=k. If k =1, then

(b+1)%(c—1)+b*(c+1)+2(2b+1—0)

2(b + 1)b .
We must have 2 < ¢ < a+ b — 1 = 2b. It is not hard to show that the
minimum value of f(c) = c?(2b+1—c) for2 < ¢ < 2bis f(2) = 4(2b—1).
Therefore,

BE? — AD? =

(b+1)*(1) +b*(8) +4(2b—1) _ 4b*+10b—3

BE? — AD? >

2(b+1)b 557+ 25
2+32(,)22b7;21b) > 2.
If kK > 2, then
BE? — AD? ﬁmﬂrkﬂc_k)+b2(c+k)+c2(2b+k_c)]
> a0k V] = W -

Thus, in both cases, BE? — AD? > 2, a contradiction. Hence, a = b;
that is, AC = BC.

—_— N r——

That completes the Corner for this issue. Send me your nice solutions
(and soon) for problems that have appeared in 2006 numbers of the Corner.
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BOOK REVIEWS
John Grant McLoughlin

99 Points of Intersection

By Hans Walser, translated from the original German by Peter Hilton and
Jean Pedersen, published by The Mathematical Association of America, 2006.
ISBN 0-88385-553-4, hardcover, 168 pages, US$48.50.

Reviewed by Nora Franzova, Langara College, Vancouver, BC.

If three straight lines pass through a common point, we call the lines
concurrent. We all remember instances from the geometry of triangles where
three lines are concurrent: the three altitudes have a common point, as well
as the three medians, the three perpendicular bisectors of the sides, and the
three angle bisectors.

In this book there are 99 spectacular examples of concurrence given as
pictures-without-words.

The book opens with a broad introduction discussing the intersection of
three or more straight lines and curves. The obvious intersection of
diagonals of a dodecagon is followed by the intersection of circles, Fourier
Flowers (functions from Fourier expansions), and Chebyshev Polynomials.
This introduction seems like a gate opening to a great garden, from which
the author chooses one corner to explore in the main part of the book.

In the second part of the book, 99 pictures-without-words represent
99 examples of concurrence. Some of these pictures/graphs are named (for
example, “Homage to Pythagoras”, “Butterflies”, “Kissing Circles”), some
come with a literature reference, and all come with three pictures that show
the steps leading to their construction. Each page is devoted to one example
only, and no proofs or explanations are given in this part. An obvious reason
for that is emphasized by the author himself in the foreword to the book,
where he explains his hope that the book would encourage the reader to find
the points of intersection on his/her own, possibly with the help of interactive
geometry software. (Software popular in Europe is replaced in the translation
by packages more commonly used in the United States.)

After finding a surprising concurrence, the next step for a mathematician
or any other curious mind is to figure out why the concurrence happens and
look for generalizations. In the third part of the book, the author provides
several proof strategies that explain many of the pictures in the previous
section. The strategies range from simple geometrical steps, through vectors,
to Ceva’s Theorem and Jacobi’s Theorem. Some of these would definitely
engage high school or even elementary school students. Especially exciting
and powerful is the “Pythagoras-free derivation of the Law of Cosines”, which
is a byproduct of an investigation of the Point of Intersection 84.

Some of the algebraic proofs are quite complicated and require the help
of a Computer Algebra System. This, of course, leaves the author and many
other geometry lovers hoping for an elementary geometrical proof. Readers
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are openly invited to help find an elementary geometrical proof for the Point
of Intersection 79 (also called the “Propeller’”), which the author proved with
use of Maple.

With geometry more and more neglected by the school curriculum in
most of North America, this book brings a renewed passion for the subject.
It opens new paths to explore and shows directions for exploring. Those who
like geometry and puzzles will enjoy pondering each picture.

—_—r———— ——

Real Infinite Series

By Daniel D. Bonar and Michael J. Khoury, published by the Mathematical
Association of America, 2006.

ISBN 0-88385-745-6, hardcover, xii+264 pages, US$49.95.

Reviewed by John Grant McLoughlin, University of New Brunswick,
Fredericton, NB.

An entire book dedicated to real infinite series! At first I was surprised
to see such a book. The six chapters and three appendices contain a rich
collection of mathematical ideas. Chapters 1 through 3 combine to provide
a detailed overview of language, convergence tests, techniques, and special
series, with particular attention to the harmonic series. The remaining three
chapters (plus one appendix) made a significant impression, highlights of
which are shared here.

Chapter 4 consists of 107 “Gems”. The authors write: “There are a
number of reasons we may have labeled a result a gem. Gems may confirm
a common intuitive notion with a clarifying proof, or may provide a counter-
example to intuition. They may exhibit a particularly slick or unexpected
proof technique. Some gems were chosen because they seemed to us at first
astonishing but with a moment’s study of the proof became almost common
sense.”

Chapter 5 consists entirely of 63 problems from Putnam Competitions
from 1940 through 2002 inclusive. Detailed solutions are provided.

Yet, most impressive is Chapter 6, Final Diversions, in which the au-
thors share, “as a parting gift . .. a sort of dessert,” puzzles involving infinite
series and pictorial proofs of basic facts about infinite series. Selections from
“Fallacies, Flaws, and Flimflam” (College Math. Journal and/or Ed Barbeau'’s
MAA book by the same name) wind up the chapter: One such example is an
adaptation of a 1996 Crux Mathematicorum problem.

The appendices offer valuable references. Appendix A is unusual in
that it features 101 True/False questions. Detailed explanations are again
provided. This thoroughness and sense of completion pervade the entire
book. Whether you teach calculus, work with Putnam participants, or simply
wish to consider a familiar subject from a refreshing perspective, this book
will not disappoint you. My appreciation for the topic was enhanced by this
book, particularly the blend of gems and diversions.
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A Parity Subtraction Game

Richard Guy

In memory of Robert Barrington Leigh

In the Olympiad Corner No. 222 of CRUX with MAYHEM, 28, no. 4
(May, 2002), a selection of problems from the St. Petersburg Mathematical
Olympiads is given by Oleg Ivrii and Robert Barrington Leigh. The third one
[2, p- 289, Problem 3 (1965)] is

A game starts with a heap of 25 beans. Two players alternately
remove 1, 2, or 3 of them. When all the beans have been taken, the
winner is the player who has an even number of beans. Assuming
perfect play, does the first player or the second have a sure win?

The Olympiad Corner editor recently received a request for a solution.
The problem is from a list of supplementary problems; it may not have been
used, and no solution is given in the book.

This game differs from the usual kind of take-away game in that it is
not impartial. After a move has been made, even if you were not watching,
you can tell which player has moved by noticing who has added to his or her
collection of beans. Thus, we cannot use the Sprague-Grundy Theory; that
is, we cannot calculate nim-values [1, Chap. 2]. On the other hand, it is not
always a last-player-winning game; there is a mixture of normal and misére
(last-player-losing) play [1, Chap. 13], which means that we cannot use the
Conway Theory [1, Chap. 1] either.

We use a rather brute-force method, in effect drawing the whole game
tree, though we save a good deal of space by identifying nodes in our Figure 1.

Here is a solution for the game, played with any odd number of beans.

For heaps of 8k + 3, 8k + 5, or 8k + 7 beans, the first player wins; for
heaps of 8k + 1 beans, the second player wins. Hence, with 25 beans, the
second player can win.

To see that this is the case, we represent positions in the game by
b(f, s), where b is the number of beans remaining in the heap, and f and
s are the total numbers of beans already collected by the first (next) and
second (previous) players, respectively.

We will use d and e for arbitrary odd and even numbers, respectively.
The opening position is of shape d(0, 0), and subsequent positions all satisfy
b+ f + s = d. Notice that, when a move is made, the roles of first (next)
and second (previous) player are interchanged. When the next player takes
t beans from b(f, s), the position becomes b—t (s, f+t). There is need for
someone to devise a more perspicuous notation!

Copyright © 2007 Canadian Mathematical Society
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Detailed Solution

A position in such a game is, with best play, either a win for the first

(next) player, or the second (previous) player. These are often labelled /-
positions and P-positions, respectively.

Solution. In the game described above,

1.
2.

the P—positions are 8k+1 (e, e) and 8k+5 (d, d);

the M-positions are 8k+7 (d, d), 8k+7 (e, e), 8k+6 (d, e), 8k+6 (e, d),
8k+5 (e, e), 8k+3 (e,e), 8k+3(d,d), 8k+2(d,e), 8k+2(e,d) and
8k-+1 (d,d).

. That leaves 8k+4 (d, e) and 8k+4 (e, d), which are wins for d, whoever

starts, and 8k (d, e) and 8k (e, d), which are wins for e, whoever starts.
That is, 8k+4 (d, e) and 8k (e, d) are N—positions, while 8k+4 (e, d)
and 8k (d, e) are P-positions.

Proof: We use induction. To start the induction, we consider k& = 0.

0 (d, e) is a win for e by definition, and hence, 1 (e, e) will be a loss,
and 1 (d, d) a win, for the next player.

2 (d, e) is a win for the next player, if he goes to 1 (e, e), as is 2 (e, d) if
she takes both beans, going to 0 (d, e).

If there are just 3 beans remaining, the first player takes them all if he
is d, but only 2 of them if she is e.

But 4 (d,e) and 4 (e, d) are both wins for d. If d starts, he goes to
1 (e, e), while the only possible moves for e are 3 (d,d), 2(d,e), or
1 (d, d), which are all next-player wins.

Thus, from 5 (e, ), the next player will go to 4 (e, d). But from 5 (d, d),
the next player must go to 4 (d, e), 3 (d, d), or 2 (d, e), which are next-
player wins.

6 (d,e) and 6 (e,d) are N'—positions; d goes to 4 (e,d) or e goes to
5(d, d).

From 7 (e, e), the next player goes to 4 (e, d), where we have seen that
d wins, while from 7 (d, d) the next player can go to the P—position
5(d,d).

From 8 (e, d), e wins by going to 5 (d, d) while from 8 (d, €), d must play
to 7 (e, e), 6 (e,d), or 5 (e, e) and the next player then wins by going to
4 (e,d), 5(d,d), or 4 (e, d), respectively.

In order to get the induction off the ground, we need to go a bit further,

with three cases of k = 1, since the players may remove up to three beans.
From 9 (d, d), the next player wins by going to 8 (d,e), while 9 (e, e) is a
‘P—position, the second player able to go to 5 (d, d) if the first player takes 1

or 3,

or to 4 (e, d) if the first player takes 2.
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N —positions P-positions N —positions

8k+8 (e, d) 8k+8(d,e)

8k+7 (d, d) 8k+7 (e, €)

8k—+6 (e, d) 8k—+6(d,e)
8k—+5 (d,d) 8k—+5 (e, e)

8k-+4(d,e) 8k+4 (e, d)

8k+3 (e, e) 8k+3 (d,d)

8k+2(d,e) 8k+2 (e, d)
8k+1 (e, e) 8k+1(d,d)

8k (e, d) 8k (d, e)

8k—1(d,d) 8k—1(e,e)

8k—2 (e, d) 8k—2(d,e)
8k—3(d,d) 8k—3 (e, e€)

8k—4(d,e) 8k—4 (e, d)

Figure 1: Condensed game tree

From 10 (d, e), d wins with 9 (e,e) and from 10 (e, d), e wins with
8 (d,e). From here on, copy the strategy from 8 beans back; for example,
from 11 (d, d) move to 8 (d, e) and from 11 (e, e) to 9 (e, e).

Check the detailed solution listed above against Figure 1, which is
periodic in the sense that it repeats itself every 8 rows. For example,

the strategy for 8 +3 8k+4 8k+5 8k+6 8k+7
isthesameasfor 8 —5 8k —4 8t—3 8k —2 8k—1

respectively. The arrows in Figure 1 are the only winning moves. There is
an arrow from every A/—position to a P—position. All other legal moves,
of which there are three from each P-position and two non-winning moves
from each M'—position, lead to A/—positions; they are not shown in the figure.
Can anyone supply a general theory for such “four outcome” games?
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PROBLEMS

Solutions to problems in this issue should arrive no later than 1 August 2007.
An asterisk (x) after a number indicates that a problem was proposed without a
solution.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English. In the solutions section, the problem will be stated in
the language of the primary featured solution.

The editor thanks Jean-Marc Terrier and Martin Goldstein of the University of
Montreal for translations of the problems.

We have discovered that some recently posed problems are repeats of
earlier problems: problem 3182 [2006 : 463, 464] is the same as problem 3096
[2005 : 544, 547]; problem 3185 [2006 : 463, 465] is the same as problem 2935
[2004 : 174, 176], and problem 3198 [2006 : 516, 518] is the same problem
as 3187 [2006 : 463, 465]. Since all three duplications have only appeared
within the last two issues, we are replacing them in this issue. Any solutions
for the original problems 3182 and 3185 will be ignored, since solutions to
those problems have already appeared; any solutions to the original 3198 will
be treated as solutions to 3187. Our thanks to Michel Bataille for bringing
this to our attention.

—_—— N r——— S ———
3182. Replacement. Proposed by Arkady Alt, San Jose, CA, USA.

Let a, b, and c be any positive real numbers, and let p be a real number
suchthat 0 < p < 1.

(a) Prove that
a b c 1

> — (@' P+ 6P 4 7P .
bror  (exar (@tbr = gp (@ 7O 4T

(b) Prove that, if p = 1/3, then

a + b + € > L (@a'™P +b'"P + c'7P)
(a+bP (b+c)»p (c+a)p — 2P ’

(¢)* Prove or disprove
a n b n c > 1
va+b Vbtec ecfa T V2

(Va+vo+ve) .

3185. Replacement. Proposed by Shaun White, student, Vincent Massey
Secondary School, Windsor, ON.

Let a,, denote the units digit of (4n)®™

n
n such that > a; > 4n.
=1

Y™™ Find all positive integers
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3198. Replacement. Proposed by Michel Bataille, Rouen, France.

Let p = 2n+1 be a prime, and let s be any integer suchthat1 < s < n.
Prove that:
n—s (25 +2k—1

(a) 4 kzzzo 29— 1 ) =1 (mod p),

) 4 S (5E7) = <1 (mod p).

k=0

3201. Proposed by G.P. Henderson, Garden Hill, Campbellcroft, ON, in
memory of Murray S. Klamkin.

Given positive integers m and n, consider the real monic polynomials
m . n .
P(x) = ) a;xz* and Q(x) = ) bjxz? with non-negative coefficients. We
=0 j=0
are interested in whether P and Q satisfy the condition

m+n

P(x)Q(x) = Z xk .
k=0

(a) Prove that if m and n are both odd, there are no such polynomials.
(b) Prove that if m = n, there are no such polynomials.

(c) Show that for each m there is an infinite set of values of n for which
there do exist such polynomials.

(d) Prove that the coefficients in every such pair of polynomials are either
Oorl.

(Compare problem 266 in Edward ]J. Barbeau, Murray S. Klamkin, and
William O.). Moser, Five Hundred Mathematical Challenges, where
m=n=25.)

3202. Proposed by D.]. Smeenk, Zalthommel, the Netherlands.

Let I" be a circle with radius r, let A be any point on T, and let ¢ be the
tangent line to ' at A. Let B and C be points of £ on opposite sides of A such
that AB = mr and AC = nr for some positive real numbers m and n. Let
P be any point of I different from A. Show that cot ZAPB + cot ZAPC is
a constant for all such points P, and determine this constant value in terms
of m and n.

3203. Proposed by D.]. Smeenk, Zaltbommel, the Netherlands.

Let AB be the diameter of a semicircle I'. Let D be any point on the
tangent to I' at B and lying on the same side of AB as T', and let C be the
mid-point of BD. The segments AC and AD intersect I for the second time
at the points K and L, respectively. If M and IN are the projections onto
KL of A and B, respectively, show that ML = LK = KN.
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3204. Proposed by Mihaly Bencze, Brasov, Romania.

Let A, J € M, x»(R), where J is the matrix all of whose entries are 1,
and let b € R. Set B = bJ, and for kK = 1, 2, ..., n, denote by A the
matrix obtained from A by replacing each element in row k with the value b.
Prove that

det(A + B) det(A — B) = (det A)? — <§n: det Ak> )
k=1

3205. Proposed by Mihaly Bencze and Marian Dinca, Brasov, Romania.

Let A;A5--- A, be a convex polygon, and let P be any interior point
of the polygon. For k =1, 2, ..., n, let Gi be the centroid of the polygon
A1Az---Ag_1Ak+1--- Ay (the polygon obtained by removing vertex Ag
from A; Ay --- A,). If By is the reflection of G, through the point P, prove
that the lines A;B; are concurrent fori =1, 2, ..., n.

3206. Proposed by Mihaly Bencze, Brasov, Romania.

Let n be a positive integer and = a real number. Prove that
2

1|2 -1
n n
if and only if [nz| = ||, where |-| denotes the greatest integer function.

3207. Proposed by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let a convex quadrilateral APQC have its sides AP, PQ, and QC
tangent to a minor circular arc ABC at the points A, B, and C, respectively.
Let E be the projection of B onto AC. Let a semicircle with PQ as diameter
cut AC at H and K, with H between A and K.

Without using trigonometry, prove that BE bisects ZPEQ and that
PH bisects ZAPB.

3208. Proposed by Shaun White, student, Vincent Massey Secondary
School, Windsor, ON.

Find the largest integer k such that for all positive real numbers a, b,
c, we have

(a®+3)(b®> +6)(c®*+12) > k(a+b+c)>.

32009. Proposed by Vasile Cirtoaje, University of Ploiesti, Romania.

Let f be a convex function on an interval I. For: =1, 2, ..., n, let
n
a; € I. Define a = % > a;. Prove that
=1
n(n — 2)

2f(a)+i=zn;f(ai) > 2(nn_1)ZJ‘<a+“’;“j> |

i#g
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3210. Proposed by Vasile Cirtoaje, University of Ploiesti, Romania.

Prove that, for all real numbers a4, as, ..., an, € [%, x/ﬁ}, we have
n n
Z: + 2afz-}-l z:zl + (e 7N} '

where the subscripts are taken modulo n.

3211. Proposed by an anonymous proposer.

Let ABC D be a quadrilateral which is inscribed in a circle T'. Further
suppose that ABCD itself has an incircle. Let EF be the diameter of T'
which is perpendicular to BD, with E lying on the same side of BD as A.
Let BD intersect EF at M and AC at S.

Prove that AS : SC = FEM : MF.

[ Ed: This problem came into the University of Regina’s Math Central
website, but the name of the proposer has subsequently been lost. ]

3212. Proposed by José Luis Diaz-Barrero and Francisco Palacios
Quifionero, Universitat Politécnica de Catalunya, Barcelona, Spain.

Let a4, a2, ..., a, be real numbers such that ap, > 1for1 < k < n.
Prove that

n

1 o

3182. Remplacement. Proposé par Arkady Alt, San Jose, CA, USA.

Soit a, b et c des nombres réels positifs quelconques, et soit p un
nombre réel tel que 0 < p < 1.

(a) Montrer que

a b c 1
> — (@' P+ 0P 4 7P .
brar T etar Taror = @ HETTEET)

(b) Montrer que, si p = 1/3, alors

a b c

@tbyr  Gtor  (ctap

1
o (@a'™P +b'"P 4+ c'7P) .

(c)* Confirmer ou infirmer que

a b c
\/a—I—b+\/b—|—c+\/c—|—a 2 —(\/_+\/_+\/_)

&=
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3185. Remplacement.  Proposé par Shaun White, étudiant, Ecole
secondaire Vincent Massey, Windsor, ON.

Désignons par a,, le chiffre des unités de (4n)™“™" . Trouver tous
n
les entiers positifs n tels que > a; > 4n.
=1
3198. Remplacement. Proposé par Michel Bataille, Rouen, France.

Soit p = 2n + 1 un nombre premier, et soit s un entier quelconque tel
que 1 < s < n. Montrer que :

@+’ (PLET) =1 o)
OR) (225;[21’“) = —1 (mod p).

3201. Proposé par G.P. Henderson, Garden Hill, Campbellcroft, ON en
mémoire de Murray S. Klamkin.

Etant donné des nombres entlers positifs m et n, on considére les

polynémes réels unitaires P(z) = E a;z’ et Q(z) = Z bjz’ avec des
j=0

coefficients non négatifs. La questlon est de savoir si P et @Q peuvent

satisfaire la condition

m+n

P@@)Q(z) = ) a*
k=0

(a) Montrer que si m et n sont tous deux impairs, il n'y a pas de tels
polyndomes.

(b) Montrer que si m = n, il n’y a pas de tels polynémes.

(¢) Montrer que pour tout m, il y a une infinité de valeurs de n pour
lesquelles de tels polynémes existent.

(d) Montrer que dans toute paire de tels polyndmes, les coefficients sont 0
oul.

(Comparer au probléme 266 dans Edward ]. Barbeau, Murray S.
Klamkin, and William O.]. Moser, Five Hundred Mathematical Challenges,
oim=mn=>5.)

3202. Proposé par D.]. Smeenk, Zaltbommel, Pays-Bas.

Soit " un cercle de rayon r, A un point quelconque sur I, et £ 1a tangente
aT en A. Soit B et C deux points sur ¢, de part et d’autre de A, tels que
AB = mr et AC = nr, m et n deux nombres réels positifs. Montrer que
cot ZAPB + cot ZAPC a une valeur constante pour tous les points P sur
T, distincts de A, et déterminer cette valeur en fonction de m and n.
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3203. Proposé par D.]. Smeenk, Zaltbommel, Pays-Bas.

Soit AB le diamétre d'un demi-cercle I'. Soit D un point quelconque
surlatangente 2T en B et situé du méme c6té de AB que T, et soit C le point
milieu de BD. Soit K et L les deuxiémes points d’intersection respectifs des
segments AC et AD avec I'. Si M et N sont les projections respectives de
A et B sur KL, montrer que ML = LK = KN.

3204. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit A, J € M, x»(R), ot J est la matrice dont tous les éléments sont
égaux a1, etsoit b € R. Posons B = bJ et, pourk =1, 2, ..., n, désignons
par A, la matrice obtenue a partir de A en remplacant k par b. Montrer que

det(A + B)det(A — B) = (det A)? — <§n: det Ak> )
k=1

3205. Proposé par Mihaly Bencze et Marian Dinca, Brasov, Roumanie.

Soit A, A5 --- A, un polygone convexe, et soit P un point intérieur
arbitraire du polygone. Pour &k = 1, 2, ..., n, soit G} le centre de gravité
du polygone A1 Az -+ Ap_1Aky1--+ A, (le polygone obtenu en enlevant le
sommet Ay de A; A, --- A,). Si By désigne la réflexion de G, par rapport
a P, montrer que les droites A;B; sont concourantes pourz =1, 2, ..., n.

3206. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit n un nombre positif et  un nombre réel. Montrer que

n—1

1 2 2
|_:cJ2+{:c+—J —|—---—|—{:c+—J = |nz]?
n n
si et seulement si |[nz| = |z, ou |-]| désigne la fonction «partie entiére».

3207. Proposé par Peter Y. Woo, Biola University, La Mirada, CA, USA.

Soit APQC un quadrilatére convexe dont les cotés AP, PQ et QC
sont respectivement tangents 3 un arc circulaire mineur ABC aux points A,
B et C. Soit E la projection de B sur AC. Le demi-cercle de diamétre PQ
coupe AC en H et en K, avec H entre A et K.

Sans trigonométrie, montrer que BE est une bissectrice de I'angle
PEQ et que PH est une bissectrice de I'angle APB.

3208. Proposé par Shaun White, étudiant, Ecole secondaire Vincent
Massey, Windsor, ON.

Trouver le plus grand entier k tel que pour tous les nombres réels po-
sitifs a, b et ¢, on ait

(a®+3)(b®> +6)(c®* +12) > k(a+b+c)>.
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3209. Proposé par Vasile Cirtoaje, Université de Ploiesti, Roumanie.

Soit f une fonction convexe sur un intervalle I. Pour: =1, 2, ..., n,
soit a; € I. On définit a = 1 >~ a;. Montrer que
=1
P02 by + Y fas) > S f (o B
— f(a a; _ a+ — .
2 ‘ — 2(n—-1) & n
=1 1#£]
3210. Proposé par Vasile Cirtoaje, Université de Ploiesti, Roumanie.
Montrer que, pour tous les nombres réels a4, a2, ..., a, € [\;5, \/5] ,
ona . .
3 2
DD nieal) Dbt
o @it 2054 i @i tai

ol les indices sont calculés modulo n.

3211. Proposé par un proposeur anonyme.

Soit ABCD un quadrilatére inscrit dans un cercle I'. On suppose de
plus que ABC D posséde lui-méme un cercle inscrit. Soit EF le diamétre de
I' perpendiculaire 3 BD, E situé du méme coté de BD que A. BD coupe
EF disonsen M et AC en S.

Montrer que AS : SC = EM : MF.

[Ed : Ce probléme est apparu sur le site internet central de Math de
I’Université de Regina, mais le nom du proposeur a disparu par la suite. ]
3212. Proposé par José Luis Diaz-Barrero et Francisco Palacios Quifionero,
Université Polytechnique de Catalogne, Barcelone, Espagne.

Soit ay, as, ..., a, des nombres réels tels que ar, > 1pourl < k < n.
Montrer que

1/2

T (&) P
H a," "ty < exp E In? ay,
k=1 k=1

NN —
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

Yakub N. Aliyev, Baku State University, Baku, Azerbaijan has brought
to our attention a difficulty with the featured solution to 3075 [2006 : 469].
There is a claim made that a® — b® is strictly increasing for a > b > 0 and
x > 0; this claim is not correct. The problem moderator, upon review of the
featured solution, has informed me that in each of the cases where a® — b®
is used in the solution, it is indeed strictly increasing. We apologize for any
confusion this may have generated.

_—_—m NS ——————
3101. [2006 : 44, 47] Proposed by K.R.S. Sastry, Bangalore, India.

The two distinct cevians AP and AQ of AABC satisfy the equation
AQ? = AP? 4 |AC — AB|2.

(a) If BP = CQ, show that AP bisects /BAC.
(b)Xx If AP bisects ZBAC, prove or disprove that BP = CQ.

Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA; and
Joel Schlosberg, Bayside, NY, USA.

If b = ¢, statement (a) of the problem is incorrect. As a counterexample,
choose any cevians AP and AQ such that /ZBAP = ZCAQ # %4BAC.
Then AP and AQ are distinct, since /BAP + /CAQ # /BAC. Since
A ABC is symmetrical under reflection in the bisector of Z/BAC, and since
this reflection interchanges P and Q, we see that AP = AQ. Therefore,
AQ? = AP2 = AP? + (b — ¢)? and BP = CQ.

Hence, we will assume that b # c¢. Let + = CQ = PB. Then, by the
Law of Cosines, we have

AQ? = b2+ 22— 2bxrcosC = b2+sc2—§(a2+b2—cz)
and AP? = c?+x%2—2cxrcosB = cz+m2—§(a2+cz—b2).
Therefore,

(b—0c) = AQ*—AP* = (1-72) (1 — ),

a

a—x _ CP
x  PB’

which simplifies to a(b — ¢) = (a — 2z)(b + ¢). Hence, g =
and the proof is complete.

We show next that part (b) is not true (but almost true). Let z = CQ.
Since BP = %, we get

2 2 2 2
2 _ 2 2 _ 2 ac _cla®+c =b%)
AP? — ¢®> + BP? —2¢cBPcosB = c +(—b+c) e =)
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Also,
AQ2 — m2 + b2 _ (
Substituting these into AQ? = AP? + (b — ¢)?, we get

a? +b* - 2 c((b* — ) (b+c) + a®b)
mz_( a >w+ ®+ o7

2 2 2
a“+b c)w.

a

=0,

which factors into

ac a?+b*-c? ac .
(m+b+c)(w_ a +b—{—c> =0

Hence, x = BP or x = 2bcos C — BP. Note that these two solutions yield
two positions for @ that are symmetric with respect to the altitude on BC.
For a concrete example, if a = 5, b = 4, and ¢ = 3, then BP = 15/7 and
CQ =15/7 or CQ = 149/35.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; ROY BARBARA, University of Beirut, Beirut, Lebanon; MICHEL BATAILLE,

Rouen, France; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; PETER Y. WOO,
Biola University, La Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

——— || NS

3102. [2006 : 44, 47] Proposed by D.]. Smeenk, Zaltbommel, the
Netherlands.

Let D be the mid-point of the side BC of AABC'. Let E and F be the
projections of B onto AC and C onto AB, respectively. Let P be the point
of intersection of AD and EF. Show that, if AD = ? BC, then P is the
mid-point of AD.

1. Composite of similar solutions by Geoffrey A. Kandall, Hamden, CT, USA;
and Titu Zvonaru, Comanesti, Romania, expanded by the editor.

We will employ directed lengths, so as to take account of all possible
cases. (A triangle satisfying the hypotheses of the problem need not be acute;
it may have an obtuse angle at B or at C.) Our proof will establish both the
required implication and its converse.

First we will prove the following (cf. [2000 : 205]):

DP _ 1 (BF CE)
PA )

M

FA T EA
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Let S be the point at which the line EF meets the line BC. (If these

lines are parallel, then take S to be at infinity.) Let z = % and y = %
By Menelaus’ Theorem applied in AABC, we have
BF AE CS _ ..
FA EC SB ’
. (oF} - .
that is, = Bs = Y Writing CS = BS — BC, we obtain
BC
Tps T TY- 2
Now we apply Menelaus’ Theorem in AABD to get
BF AP DS _ .
FA PD SB — !
that is, % = DS . Writing DS = DB + BS and using (2), we get
DP _ _DB+BS _ _BCDB _ (. _.\DB
PA - * Bs ~—®pspctr=@ y) +”’
_ pDB+BC _ DB _ DC  BD
= BC YBec ~ *BCc "YBC
DC BD 1
Since D is the mid-point of BC, we have == B = BE = 3 and (1) follows
immediately.

With the usual notation for sides and angles in triangle ABC, we find,
using (1), that

DP 1 /facosB acosC 1 2accos B + 2abcos C
PA - 2 <bcosA + ccosA) - 2 2bccos A

. 1 (a2+c2—b2)+(a2—|—b2—c2) . a?

T 2 b2 +c2 — a? b2+ c2—qa2?

We now use the well-known relation 44AD? = 2b% + 2¢2? — a? to obtain

DP 2a?

PA = 4AD2 — a2’

from which we see that DP/PA = 1if and only if AD = (v/3/2)a.
I1. Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

Leta = BC,b = CA, and ¢ = AB. Since 4AD? = 2b% + 2¢2 — a?,
the given condition AD = (+/3/2)a is equivalent to b2 + ¢ = 2a?. Let Q
be the mid-point of AD. We will prove that Q, E, F are collinear, which
implies that Q is the point P defined in the problem.

Let AABC be the coordinate triangle of the homogeneous barycentric
coordinate system, with A = (1:0:0),B=(0:1:0),andC = (0:0: 1).
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ThenD=(0:1:1),Q=(2:1:1), E=(b—ccosA:0:ccosA), and
F = (c—bcosA:bcosA:0). Hence,

Q 2 1 1
det | E = det| b—ccos A 0 ccos A
F c—bcosA bcecosA 0

= (b®> 4 c® —4bccos A) cos A
= [2(b® 4+ ¢® — 2bccos A) — b? — c®] cos A
= (2a2—b2—cz)cosA =0,

which means that Q, E, F are collinear.

Also solved by MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern
State University, Joplin, MO, USA; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; TAICHI MAEKAWA, Takatsuki
City, Osaka, Japan; JOEL SCHLOSBERG, Bayside, NY, USA; and the proposer. There was one
incorrect solution.

B WSS D W

3103. [2006 : 44, 47] Proposed by Michel Bataille, Rouen, France.

Let ABC be an acute-angled triangle with circumcentre O. Let the
lines AO, BO, and CO meet the circles BCO, CAO, and ABO for the
second time at A’, B’, and C’, respectively. Let | XY Z| denote the perimeter
and [ XY Z] the area of the triangle XY Z. Prove that

BC CA AB

Bca| T jcap| TjaBc] = Y
(b) [BCO] - [BCA'] + [CAO] - [CAB'] + [ABO] - [ABC'] = [ABC]>.

@)

Solution by D.]. Smeenk, Zaltbommel, the Netherlands.

Since AABC is acute-angled, O A
is in the interior and ZCOA = 2B;
then ZA’OC = 180° — 2B. Similarly,
ZA'OB = 180° — 2C. These two angles
sum to /ZBOC = 2A. Because OBA'C
is cyclic, the angles at O and at A’ are

supplementary, Z/A’'BC = ZA’OC, and
/A'CB = /A’OB. Thus, the angles of R \R \
ANA'BC are Rsin A \N

B psin2A ¢
/BA'C = 180° — 24, \
/A'BC = 180° — 2B,
/A'CB = 180° — 2C.

We denote the circumradius of A A’ BC by
p and apply the Law of Sines to get A’



51

BC 2psin2A . sin2A
|IBCA’| ~ 2p(sin2A 4 sin2B +sin2C)  sin2A +sin2B +sin2C
Result (a) now follows immediately.

For part (b), the Law of Sines applied to the common side BC of
AABC and AA’BC (with circumradii R and p, respectively) implies that
2Rsin A = 2psin 2A, or

R
= . 1
P 2cos A @
We note that
BCO]-[BCA'] = (iBO-BCcosA)(iBC- -BA’sin2B
2 2

= R2sinAcos A -2p?sin2Asin2Bsin2C .
Inserting the value of p from (1) in this last equation gives us
[BCO] - [BCA'] = 1R*sin2Asin2Bsin2CtanA.

Of course, the analogous equations hold for the other pairs of areas. Since
tan A 4+ tan B 4+ tan C = tan A tan B tan C, we find that

Z [BCO]-[BCA'] = 1R*sin2Asin2Bsin2C(tan A + tan B + tanC)
cyclic
= %R‘l sin 2A sin 2B sin 2C tan A tan B tan C

= (2R?*sin Asin BsinC)? = [ABC)?.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; JOHN G. HEUVER, Grande Prairie, AB; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola
University, La Mirada, CA, USA; L1 ZHOU, Polk Community College, Winter Haven, FL, USA;
TITU ZVONARU, Comanesti, Romania; and the proposer.

Y e WSS L W

3104. [2006 : 45, 47] Proposed by D.]. Smeenk, Zaltbommel, the
Netherlands.

In AABC, let D, E, and F be the mid-points of the sides BC, CA,
and AB, respectively. Show that, if AD = ? BC, then /BEC = Z/AFC.

Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.
A




52

We strengthen the problem from “if” to “if and only if”.
Let G be the centroid. Using Apollonius’ Theorem, we get

BE? = %(c2+a2)—(%b)2 = 22+ 1a?— 30 = 1 (2¢®+ 222 —0?) .

Therefore, we have BG-BE = 2BE? =
BF - BA = ;2.
Now the following statements are equivalent:

é (2¢® + 2a® — b?). Note also that

e /BEC = LAFC;
e quadrilateral AEGF is cyclic;
e BG-BE = BF - BA;
. %cz = %(2c2 + 2a? — b?, that is, b2 + ¢? = 24?;
e 2AD? = 2a® — 1a? (using Apollonius’ Theorem);
e AD = (v/3/2)a.

Thus, /ZBEC = AFC if and only if AD = (v/3/2)BC.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern State
University, Joplin, MO, USA; CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX,
USA; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; JOHN G. HEUVER, Grande Prairie,
AB; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; GEOFFREY A. KANDALL,
Hamden, CT, USA; KEE-WAI LAU, Hong Kong, China; VEDULA N. MURTY, Dover, PA, USA;
JOEL SCHLOSBERG, Bayside, NY, USA; BOB SERKEY, Leonia, N], USA; TAICHI MAEKAWA,
Takatsuki City, Osaka, Japan; L1 ZHOU, Polk Community College, Winter Haven, FL, USA; TITU
ZVONARU, Comanesti, Romania; and the proposer.
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3105. [2006 : 45, 48] Proposed by Vasile Cirtoaje, University of Ploiesti,
Romania.

Let a, b, ¢, d be positive real numbers.

(a) Prove that the following inequality holds for 0 < = < (5 — +/17) /2 and
also for z = 1:

3 a > 1.
a+(3—x)b+xzc —

cyclic

(b)* Prove the above inequality for 0 < x < 1.

Solution to (a) by the proposer, expanded by the editor.
Let y = 3 — . Then, by straightforward computations, we find that

a c A

a+by+ca:+c+dy+aa: T A+ B’
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where A and B are defined as follows:

A = a(c+dy+ ax)+ c(a + by + cx)
(a2 + 02):13 + (ad 4 be)y + 2ac,
(a+by+cx)(c+dy+ax)— A
= (ab+ cd)xy — ac(1l — x?) + bdy® .
b + d _ c
b+ cy+dzx d+ ay + bx C+ D'’
C (b2 4+ d*)x + (ab + cd)y + 2bd
and D = (ad+ bc)xy — bd(1 — x?) + acy® .

B

where

Similarly,

Thus, the given inequality can be written as

A C
+ > 1,
A+ B C+ D

which is equivalent to
AC > BD. (1)

Let E = 2ac(xz + 1) + (ad + be)y and F = 2bd(x + 1) + (ab + cd)y.
Since

A—E = (a®*+c®—2ac)x = (a—c)’z > 0
and C—F = (b®+d*>—-2bd)y = (b—d)?y > 0,
we have A > F and C > F. Hence, to prove (1), it suffices to prove that

EF > BD. )
Making the substitutions p = ac, ¢ = bd, r = ad+bc, and s = ab+cd,
we have E = 2p(z+1)+ry, F = 2q(z+1)+sy, B = sxy—p(1—z2)+qy?,
and D = rxzy — q(1 — z2) + py?. Now
EF = 4pq(z+1)*>+rsy®> +2(ps+qr)(z + 1)y
and BD = rsz?y® 4 pq(1 —2*)? + pay* — (pr + ¢s)(1 — 2*)zy
+ (ps + qr)zy® — (0 + ¢*)(1 — )y
By direct but tedious manipulations using y = 3 — x, we get
2z + 1)y —zy® = y2z+1)—=z(8—-=2)?
= y2-Tex+6x* —23) = (1 —2)(2—5z+ 2y
and
(1—2?)? +y* —4(z +1)*
= ¥+ @@+D(A-2)°-4) = ¢ + (@ +1)*@* -2z -3)
= ¥+ (@@+1)*@@+1)(z-3) = (B-2)°—(z+1)°)y
(26 — 30x + 622 — 223)y = 2(13 — 15z + 3z2 — =)y
(1—2)(13 — 2z + %)y .
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Hence, (2) is equivalent to

P>+ a® +rs)(1 — 2?)y® + (pr + qs)(1 — z°)xy
+ (ps+qr)(1 — z)(2 — 5z + 2y
> 2pq(1l —z)(13 — 2z + =?)y. 3)

If x = 1, equality holds in (3). If x # 1, then dividing by (1 — x)y gives

(P* +¢* +rs)(L+x)y + (pr + gs)(1 + z)x
+(ps+qr)(2 —5x +x%) > 2pg(1 —z)(13 — 2z + =2). (4)

Since 0 < z < 1(5 — v/17), we obtain 2 — 5z + 22 > 0. We also have
r =ad+ bc > 2,/pqand s = ab + cd > /pq. Thus,

p’+q*>+rs > 2pq+4pq = 6pgq,

pr+qs > 2(p+q)v/pPqg > 4pq,
and ps+qr > 2(p+q)v/Pqg > 4pq.

Consequently,

P*+¢* +rs)(1 + z)y + (pr + ¢s)(1 + z)x + (ps + qr)(2 — 5z + x?)
> 6pq(1+z)(3 — x) + 4pq(1 + x)z + 4pq(2 — 5z + z?)
= 2pq(9 + 6x — 3z% + 2z + 222 + 4 — 10z + 2z?)
= 2pq(13 — 2z + z?),

establishing (4).
It follows that (3), and hence (2), hold, completing the proof.

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria (part (a)
only).

No solution to part (b)* was received. Thus, it remains open. The proposer showed
that, in fact, the inequality EF > BD is true only ifx = 1 or0 < = < 1(5 — +/17), but
commented that to show AC > BD for0 < x < 1 is difficult even in the case d = 0. Using a
computer, he has verified the truth of the given inequality when % (5 —\/1_7) < x < 1 for many
millions of cases in which a, b, ¢, d are positive. Janous proposed several related problems.

B e W N
3106. [2006 : 45, 48] Proposed by Mihaly Bencze, Brasov, Romania.

Prove the following identities:

h=tis1 228 (2126 2) (2i — 1) (2n;r 1)

o ) oo

=1 i= 2k ) .
k=1:=1 2 <2 2) 1

N
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Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.
(a) For |t| < 1, define

arcsint > 22k
) = TE and gr) = Y gk
Vi-® =0 2k + 1) (%)

It is easy to verify that both f(t¢) and g(¢) satisfy the following initial value
problem: (1 — tz)% —ty = 1 and y(0) = 0. Hence, f(t) = g(t).

. . . . 1 X (27\ .
Using the binomial series —— = > | : |z*?, we get
1 — 4x2 j=0 J

1
— arcsin(2z) = x2t+L
goreino) = [1 2 = 3 55 (F)

and hence,
1 125\ o\ [ o= 1 25\ ...,
L = (%)) (554 (7)o
2 (2) <J;, J ;)2J+1 J
(S EE ) o
k—o\j—0 2J +1\J k—3j
On the other hand,
1 — 24k
59(253) Z a2t (2)

=0 (2k + 1) <2k)

Since 7 f(2x) = ;g(2x), the power series in (1) and (2) must be identical.
Comparing coefficients, we find that
k

S ) (o) - <2k+l>(é")

22k:+1 22k:—1
2k +1\ [2k—1)\ "
k k—1
By telescoping, we obtain
Z Z ( ) <2k _ 2j> zn: 92k+1 22k—1
P 022”“(2‘74-1) k—3 = 2k +1 2k — 1
k k—1
92k+1
= —— 2,

™)

which is equivalent to the given identity.
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. . . 1 _ s 2j j
(b) By the binomial series Vv j;o ( § ) , we get
1—+1—4x . / Z ( ) j
2x Tz o \/1 — 4z _7 +1 ’

Hence,

oo

7\ 2k — 23 k

Z Z 1 k—j )"
o \j—oJ J

1 1 > 1/25\ . > /2k+1

= — | — -1 = — J—1 _— k‘

2ac<\/1—4:): ) Zz(j)w Z_:< k >m
Comparing coefficients gives
k

L)) = &)
(2k + 3) (2kk Lz) (2 + 1) (2:)

22k+1 - 22n—1

By telescoping, we conclude that

2w () (is)

) (2k + 3) <2k"’j12> (2k + 1) <2kk)

= 1;1 92k+1 - 92n—1
2n + 2
(2n + 3) ( n+1 >
- 22n+1 -3,

which is equivalent to the given identity.

Also solved by MICHEL BA/TAILLE, Rouen, France; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; LUIS LOPES, Rio de Janeiro, Brazil; and the proposer.

Y WS W Y o

3107. [2006 : 45, 48] Proposed by Victor Oxman, Western Galilee College,
Israel.

Let A1B,C; and A;B>C> be two triangles with A;C; = A,Cs.
Suppose that the interior angle bisectors A; D; and A, D> are equal.

(a) If the altitudes B; H; and B3 H, are equal, show that the triangles are
congruent.

(b) If the interior angle bisectors B; E; and B, E5 are equal, show that the
triangles are congruent.
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Solution by Roy Barbara, University of Beirut, Beirut, Lebanon.

In AABC, let a, b, c be the lengths of BC, C A, AB, respectively. Let
h be the length of the altitude BH and let £, and £, be the lengths of the
interior angle bisectors AD and BE, respectively. Also, let z and y be the
lengths of the segments C D and BD, respectively, and let 2a be the measure
of /ZBAC. In this solution, “increasing” means “strictly increasing”.

(a) We show that AABC is uniquely determined (up to a congruence)
h

by b, h, and l,. We assume b and h to be constant. Using ¢ = T and
the well-known formula ¢, = bz_l:: cos a, We obtain
C
1 1 . h
la ~ 2bh (2b51na + cosa) )

It is easy to see that 1/¢, is an increasing function of a. Hence, £, is an
injective function of o and therefore, « is uniquely determined by b, h,
and £,. Then AABC is uniquely determined by b, £,, and a.

(b) We show that A ABC is uniquely determined (up to a congruence)

by b, £,, and £;. We assume b and £, to be constant. Clearly, x is an increas-
2be cos o, we see that ¢ = __ bt
b+c ! ~ 2bcosa — £,

. . . C CIT . . .
increasing function of o. From ¥ = £, we see that y = - Is an increasing
xr

b
function of «, and then sois a = = 4+ y. Now,

2 b?
£, = ac (1 - m)

is an increasing function of «, since each factor is. Thus, £, is an injective
function of o and therefore, « is uniquely determined by b, £,, and ¢,. Then
AABC is uniquely determined by b, £,, and a.

Also solved by MICHEL BATAILLE, Rouen, France; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; JOEL SCHLOSBERG, Bayside, NY, USA (part (a) only);
PETER Y. WOO, Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community College,
Winter Haven, FL, USA; and the proposer.

Janous pointed out that the two assertions in this problem, as well as many other similar
ones, with solutions, can be found in [1] and [2].

ing function of . From £, = is an

References
[1] Kurt Herterich, Die Konstruktion von Dreiecken, Ernst Klett Verlag, Stuttgart, 1986.
[2] Christo Chitov, Geometrija na treugulnika, Narodna Prosveta, Sofia, 1990.
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3108. [2006 : 45, 48] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.

Let ABC be a triangle in which angles B and C are both acute. Let
H be the point on side BC such that AH 1 BC. letr, r1, and r be
the incircles of triangles ABC, ABH, and AHC, respectively. Show that
r + ry + ro — AH is positive, negative, or zero according as Z A is obtuse,
acute, or right-angled.
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Solution by Joe Howard, Portales, NM, USA.

A
c b
T2
c—d b—d 7‘1\
B c¢—d b—d c B ¢ H v’ c

Let d be the length of the tangent from A to the incircle. Since tangents
drawn to a circle from an external point have equal length, we must have
a = (c —d) + (b — d); whence,

_b+c—a
d = — -
Similarly, for triangles AH B and AHC, we have
'+ h — ¥+h—0»5
=)
where h = AH, ¢/ = BH, and b’ = CH. Consequently,
h—ry—1ry = WT_G = d.

Note that Z A is obtuse, right, or acute accordingasd < r,d =r, ord > r.
[ Editor’s comment: Readers who find a proof by picture unsatisfying should
concentrate on either of the two right triangles that share their hypotenuse
AT and have legs of length d and r: Fix the circle with radius r to be the
incircle of a variable triangle ABC; as A moves away from the circle, d in-
creases from 0 to infinity. Howard supplies his own alternative argument in
his final paragraph.] Thus,

e /A is obtuse if and only if d < r; thatis, h —ry — 73 < 7,
e /A is aright angle if and only if d = r; thatis, h —ry — ro = 7,
e /A s acute if and only if d > r; thatis, h —ry — 7y > 7.

The result follows immediately. My argument was guided by “Triangles with
the Right Stuff” from Quantum, 8:6 (1998), pp. 32-33. A related problem is
#4322 in School Science and Mathematics, 92:3 (1992), p. 167: Prove that

r+7r1+7r2 < hsinA.

For an alternative to the proof by picture, we use tan % = 5. Then

h—ri—r, = d = rcot%,

which is less than, equal to, or greater than » according as ZA is obtuse,
right, or acute.
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Also solved by MICHEL BATAILLE, Rouen, France; CHARLES R. DIMINNIE, Angelo
State University, San Angelo, TX, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; GEOFFREY A. KANDALL, Hamden, CT, USA; TAICHI MAEKAWA, Takatsuki City,
Osaka, Japan; VEDULA N. MURTY, Dover, PA, USA; JOEL SCHLOSBERG, Bayside, NY, USA;
D.]. SMEENK, Zaltbommel, the Netherlands; PETER Y. WOO, Biola University, La Mirada, CA,
USA; L1 ZHOU, Polk Community College, Winter Haven, FL, USA; TITU ZVONARU, Comanesti,
Romania; and the proposer.
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3109. [2006 : 46, 48] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.

Let ABC be a triangle in which angles B and C are both acute, and let
a, b, c be the lengths of the sides opposite the vertices A, B, C, respectively.

If h, is the altitude from A to BC, prove that % — (bl? + Ciz) is positive,
negative, or zero according as Z A is obtuse, acute, or right-angled.
Solution by Chip Curtis, Missouri Southern State University, Joplin, MO,
USA.
1 1 1 . .
Let S = = — ( + 0—2) Since h, = csin B, we have

h2 b2
s — 1 <1+1>_ 1 sin2C+1
~ ¢2sin?B b2 ¢2)  ¢2sin’B c2sin? B ¢?
1
= — —_ (1—sin?C —sin?B — (cos®C —sin’B
c?sin? B ( ) c?sin? B ( )
1
= m([l + cos(2C)] — [1 — cos(2B)])
1
= m [COS(2B) + COS(2C)]
1
= m COS(B + C) COS(B — C)
1
= —2-72‘BCOSA'COS(B—C).
c? sin

Since B and C are both acute, we have —n/2 < B — C < w/2; whence,
cos(B — C) > 0. Thus, the sign of S is the opposite of the sign of cos A, and
therefore, S is positive, negative, or zero according as ZA is obtuse, acute,
or right.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; ROY BARBARA, University of Beirut, Beirut, Lebanon; MICHEL BATAILLE,
Rouen, France; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; JOE HOWARD, Portales,
NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; VEDULA N. MURTY,
Dover, PA, USA; D.]J. SMEENK, Zaltbommel, the Netherlands; GEORGE TSAPAKIDIS, Agrinio,
Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community
College, Winter Haven, FL, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

B WSS L W
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3110. [2006 : 46, 49] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.

Let my be the length of the median to side b in AABC, and define m,.
similarly. Prove that 4a* + 9b%c®* — 16m?2m? is positive, negative, or zero
according as angle A is acute, obtuse, or right-angled.

Solution by Joel Schlosberg, Bayside, NY, USA.

Using the well-known formulas m, = 3+v2a%—b%+2¢? and

m. = £v/2a% + 2b% — 2, we have

4a* 4+ 9b3%c? — 16m§m§
4a* + 9b2%c® — (2a® — b? + 2¢%)(2a® + 2b% — ?)
4a* + 9b°c? — 4a* — 2a?[(2b* — ?) + (2¢% — b?)]

+ (b% — 2¢%) (20 — c?)

—2a%(b? + c?) + 9b3c? + (2b* + 2¢* — 5b%c?)
—2a?(b? + c?) + 2(b% + ?)?
2(b% + *)(b® 4+ 2 — a?).

Clearly, 2(b? + ¢?) is positive, so that 4a* 4+ 9b%c® — 16m?m? has the same
sign as b% + c2 — a?, which is positive, negative, or zero if ZBAC is acute,
obtuse, or right, respectively.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; ROY BARBARA, University of Beirut, Beirut, Lebanon; MICHEL BATAILLE,
Rouen, France; DIONNE BAILEY, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo
State University, San Angelo, TX, USA; CHIP CURTIS, Missouri Southern State University,
Joplin, MO, USA; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; JOE HOWARD,
Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; GEOFFREY
A. KANDALL, Hamden, CT, USA; TAICHI MAEKAWA, Takatsuki City, Osaka, Japan; VEDULA
N. MURTY, Dover, PA, USA; D.]J. SMEENK, Zaltbommel, the Netherlands; PETER Y. WOO,
Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community College, Winter Haven, FL,
USA; TITU ZVONARU, Comanesti, Romania; and the proposer.
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3111. [2006 : 46, 49] Proposed by Mihaly Bencze, Brasov, Romania.

Let ax, b, and c be the lengths of the sides opposite the vertices A,
By, and Cy, respectively, in triangle A, BiCy, fork = 1,2, ..., n. lf ryis
the inradius of triangle A, B, C), and if R, is its circumradius, prove that

i(fin) < (fe) (B« (fi)
3V3 <ﬁ Rk>i.

k=1

IN
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Solution by Michel Bataille, Rouen, France.
The right inequality may be written equivalently as
n a n n bk: n n Ch n
— — — ] < 3v3. 1
(%) () +(f15) < ®

Using the Law of Sines and then the AM—GM Inequality, we find that the left
side of (1) is equal to

(1_"[ ZSinAk>n+ (ﬁ ZSian>n+ <1"_[ 2sian>n
k=1 k=1

k=1
1 & 1 & 1 &
S 2| — sinAk—i—— Sian—I-— Sil’le.
(s Smm 5

2 n
= — Z(sin Ay + sin B, 4+ sin Cy,) .
n

k=1

Now we use the well-known inequality sin A + sin B + sinC < 3+/3/2,
which is valid for an arbitrary triangle with angles A, B, and C. [Ed.: For the
convenience of any readers who are not familiar with this result, we supply
a proof: since the sine function is concave on the interval [0, 7], we have
sin A +sinB +sinC < 3sin (3(A+ B+ C)) = 3sin(n/3) = 3v/3/2.]
Thus,

n ax n n bk: n n Cr n 2 3\/5
=] + — ] + — < — <n . —) = 3V3.
(kl;ll Rk) (kl;ll Rk) (kl;ll Rk) n 2
Now consider the left inequality. Using the AM—GM Inequality, we get
(H ak> + <H bk> + (H ck> > 3 (H akbkck> . 2)
k=1 k=1 k=1 k=1

We will make use of some more standard results about triangles. Let s be
the semiperimeter. Then the area of the triangle is given by both rs and
V/8(s —a)(s — b)(s — c) (Heron’s Formula). Therefore,

(s —a)(s—b)(s—c)

S

< \/1(<s—a>+<s;b>+<s—c)>3: 1(3)23\/g

(Here we have used the AM-GM Inequality again.) Thus s > 3+/3r. We
also have abc = 4Rrs and R > 2r (Euler’s Inequality). Combining all these
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results, we obtain abc > 4(2r)r(3v/3r) = (2v/37)%, which we use in (2):

<ﬁ ak,)n"‘ <ﬁ bk>n+ <1_"[ Ck>n > 3(1_"[(2\/5%)3)3"

k=1

= 6\/§<ﬁ rk>i.

k=1

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; WALTHER
JANOUS, Ursulinengymnasium, Innsbruck, Austria; PETER Y. WOO, Biola University, La
Mirada, CA, USA; LI ZHOU, Polk Community College, Winter Haven, FL, USA; and the
proposer.

———— || NS

3112%. [2006 : 46, 49] Proposed by Mohammed Aassila, Strasbourg,
France.

Let M ABC be a tetrahedron, and let M’ be any point in the interior
of AABC'. Denote the area of AXY Z by [ XY Z]|. Prove that

(MM')2 = M 2 [BM'C] 4+ MB? [CM'A] 4 MC? [AM'B|
B [ABC] [ABC] [ABC)
( , [BM'C][CM’A] , [CM’ A][AM'B]
- (AB c
[ABC)? [ABC)?
+ CcA? [AM'B] [BM’C])
[ABC)? ’

Comment: This result for a tetrahedron is “similar” to Stewart’s Theorem for
a triangle. If M’ = G, the centroid of AABC, then the relation becomes

MG? = %(MAZ + MB? + MC?) — %(AB2 + BC? + CA?),
which is well known.

Essentially the same solution by Michel Bataille, Rouen, France; and Li Zhou,
Polk Community College, Winter Haven, FL, USA.

Since M’ is in the interior of AABC, we have M’ = oA + 3B + ~C
for some positive real numbers «, 3, v such that « + 8 + v = 1. Actually
(aty B,~) are the areal coordinates of M’ relative to (A, B, C) and are given
by

[BM'C] _ [CM'A] _ [AM'B]

*=age P T aBoy 7T [aBol

[ABC] ' M
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Then MM’ = aMA + BMB + vMC, and we have

_—
(MM"? = MM’ -MM’
= o2?MA? + B2MB? ++2MC?
_— —— —_— — _— —
+2aB8MA-MB+28yMB - MC + 2yvaMC - MA
= o?MA? + 3°MB? +~2MC?
+aB(MA? + MB? — AB?)
+ Bv(MB? + MC? — BC?)
—i—’yoz(MC2 + MAZ% — CAZ)
= (a+p -|-’7)(04MA2 + BMB? + 'yMC’z)
—aBAB? — ByBC? — yaCA?.

Since a + B8 + v = 1, we conclude that
(MM’)? = aMA?+BMB? +yMC? — (aBAB? 4+ ByBC? + yaCA?),

and the proof is complete by (1) above.

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; and JOEL
SCHLOSBERG, Bayside, NY, USA.

——— | NS

3113. [2006 : 47, 49; 171, 174] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.

Let ABC be a triangle and let a be the length of the side opposite the
vertex A. If m, is the length of the median from A to BC, and if R is the
circumradius of AABC, prove that m, — R is positive, negative, or zero,
according as Z A is obtuse, acute, or right-angled.

Combination of similar solutions by Roy Barbara, University of Beirut, Beirut,
Lebanon; and Richard 1. Hess, Rancho Palos Verdes, CA, USA.

We let M be the mid-point of BC and consider the triangle OM A
with sides AM = m, and AO = R. According to Euclid, the relative sizes
of these two sides depends on the size of the opposite angles.

Case 1. A is obtuse.

Vertex A (on the circumcircle) is A
separated from the circumcentre O by the —
chord BC. Since OM L BC, ZOMA g i c

is obtuse; whence, the opposite side R is M,
longer than the adjacent side m,; that is, '
m,—R < 0when A is obtuse, as claimed. Io)

Case 2. A = 90°.
Here BC is a diameter; thus, m, = R, and m, — R = 0.
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Case 3. A is acute.

The proposal is incorrect: m, — R
can be positive, zero, or negative when
A is acute, as follows. Let B’C’ be the
perpendicular bisector of OM. For A on
the long arc of the circumcircle between
B’ and C’, we have Z/MOA > ZOMA,;
whence m, — R > 0. For A at B’ or at
C’, we get m, — R = 0. Finally, when
A lies on either short arc B’B or C'C,
we see that m, — R < 0. Note that the
proposal becomes correct for triangles
ABC in which all angles are acute; then A will necessarily lie on the arc B’C”
which, as we have just seen, forces m, — R > 0, as claimed in the proposal.

Also solved by MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern
State University, Joplin, MO, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; GEOFFREY A. KANDALL, Hamden, CT, USA; *VEDULA N. MURTY, Dover, PA, USA;
*PETER Y. WOO, Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community College,
Winter Haven, FL, USA; TITU ZVONARU, Comanesti, Romania (with two proofs for the obtuse-
angle case); and the *proposer. The asterisk designates solutionf that were correct, but whose
analysis of the acute-angle case was incomplete. In addition VACLAV KONECNY, Big Rapids,

M1, USA provided a counterexample showing that the conclusion to the corrected proposal still
was flawed. There were three incorrect submissions.

BI

——— | NS
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