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If z andy arethe sidesof two squareswith combined
areal, thenz? + y2 = 1. Supposavithoutlossof gen-
eralitythatz > y. Thentheshortersideof arectangle
containingoothsquaresvithoutoverlapmustbeatleast
z, andthelongersidemustbeatleastz + y. Hencethe
desiredvalueof A is themaximumof z(z + y).

To find thismaximum,welet z = cos 6,y = sin § with
0 € [0, 7/4]. Thenwe areto maximize
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with equalityfor & = =/8. Hencethis valueis the de-
siredvalueof A.

Let O; and O, be the centersof C; and Cs, respec-
tively. (We areassumingC; hasradius1 andC, has
radius3.) Thenthedesiredocusis anannuluscentered
atthe midpointof O, O, with innerradius1 andouter
radius2.

For afixedpoint@ onC,, thelocusof themidpointsof
thesgmentsP(Q for P lying on C; is theimageof C

undera homothetycenteredat ) of radius1/2, which
is acircle of radius1/2. As @ varies,the centerof this
smallercircletracesoutacircle Cs of radius3/2 (again
by homothety).By consideringhe two positionsof @

ontheline of centersof thecircles,oneseeghatCs is
centeredcatthe midpointof O; 05, andthelocusis now
clearlythespecifiedannulus.

Theclaimis false. Thereare (§) = 20 waysto choose
3 of the 6 courseshave eachstudenichoosea different
setof 3 coursesTheneachpair of coursess choserby

4 studentgcorrespondingo the four waysto complete
this pair to a setof 3 courseslandis not chosenby 4

studentgcorrespondingdo the 3-elemensubset®f the

remaining4 courses).

Note: Assumingthatno two studentchoosethe same
coursestheabove countergampleis unique(upto per
mutingstudents)This maybeseerasfollows: Givena
groupof studentssupposehatfor any pair of courses
(amongthesix) thereareatmost4 studentgakingboth,
and at most 4 taking neither Thenthereare at most
120 = (4 + 4)(5) pairs(s, p), wheres is astudentand

p is asetof two coursef which s is takingeitherboth

or none. On the otherhand,if a students is taking k&

coursesthenhe/sheoccursin f(k) = (%) + (°5*) such
pairs(s,p). As f(k) is minimizedfor k = 3, it follows

thatevery studenbccursin atleast6 = (3) + (3) such
pairs(s, p). Hencetherecanbeatmost120/6 = 20 stu-
dentswith equalityonly if eachstudentakes3 courses,
andfor eachsetof two coursesthereareexactly 4 stu-
dentswho take both and exactly 4 who take neither

Sincethereare only 4 waysto completea given pair

of coursedo a setof 3, andonly 4 waysto choose3

courseqot containingthe given pair, the only way for

thereto be 20 studentgunderour hypothesesis if all

setsof 3 coursesarein facttaken. This is the desired
conclusion.

However, Robin Chapmarhaspointedout thatthe so-
lution is not uniquein the problemasstated because

given selectionof courseanay be madeby morethan
onestudent.Onealternatesolutionis to identify the 6

courseswith pairsof antipodalverticesof anicosahe-
dron, and have eachstudentpick a differentfaceand
choosehethreeverticestouchingthatface.n this ex-

ample,eachof 10 selectionds madeby a pair of stu-
dents.

A-4 In fact,we will shav thatsucha functiong existswith

the propertythat (a,b,¢) € S if andonly if g(d) <
g(e) < g(f) for somecyclic permutation(d, e, f) of
(a, b, c). We proceedby inductionon the numberof el-
ementsin A. If A = {a,b,c} and(a,b,c) € S, then
choosey with g(a) < g(b) < g(c), otherwisechoosey
with g(a) > g(b) > g(c).

Now let z be an elementof A andB = A — {z}.

Letay,...,a, betheelementof B labeledsuchthat
g(a1) < g(a2) < --- < g(ay). We claimthatthereex-
istsauniquei € {1,...,n} suchthat(a;, z,a;+1) € S,

wherehereaftem,,+, = ax.

We show existencefirst. Supposeano suchi exists;then
forall i,k € {1,...,n}, we have (ajyk,2,a:;) ¢ S.
This holdsby propertyl for £ = 1 andby inductionon
k in generalpotingthat

(@it ki1, 2,0ixk), (Qigk, 2,05) €S
= (@it ks Citky1,2); (2,05, ai1%) € S
= (Gitkt1,2,0;) € S.

Applying thiswhenk = n, we get(a;_1, 2,a;) € S,



contradictinghefactthat(a;, z,a;_1) € S. Henceex-
istencefollows.

Now we shav uniqueness. Suppose(a;, z,a;+1) €
S; thenfor ary j # ¢ — 1,i,4 + 1, we have
(@i, a541,0a5), (aj,a54+1,a;) € S by theassumptioron
G. Therefore

(aiazaai+1)7(ai+1aaj7ai) €S = (ajaaiaz) €S

(ai, 2,a5), (aj,a41,a:;) €S = (2,a5,a;41),
so(aj, 2,a;41) ¢ S. Thecasej =i+ 1isruledoutby
(as, 2,@i41), (@341, Qit2,a5) € S = (2,a541,0i42) €S

andthecasej = ¢ — 1 is similar.

Finally, we put g(z) in (g(as),+o0) if ¢ = n, and
(9(ai), g9(ai+1)) otherwise;an analysissimilar to that
above shavsthatg hasthe desiredproperty

A-5 (dueto Lenry Ng) For 1 < n < p — 1, p divides (?)

and

1<p>_1p—1p—2 p—n+1

p\n n 1 2 n—1
-1 n—1
E% (mod p),

wherethecongruence = y (mod p) meanshatz — y
is arationalnumbemwhosenumeratorin reducedorm,
is divisible by p. Henceit sufficesto shaw that

k n—1
Z % =0 (mod p).

We distinguishtwo casesbasedon p (mod 6). First
suppose = 6r + 1, sothatk = 4r. Then

4r (_l)n_l
n=1 n
4r 27
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sincep = 6r + 1.

Now suppose = 6r + 5, sothatk = 4r + 3. A similar

argumentgives

4r+3 n—
> B
n=1 n
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A-6 We first considerthe casec < 1/4; we shall shav in

this casef mustbeconstantTherelation

f@) = f@@® +¢) = f((=2)* +¢) = f(~2)

provesthat f is anevenfunction. Let r; < 73 bethe
rootsof z2 + ¢ — z, bothof which arereal. If z > r,,
definezy = z andz, 1 = \/z, — c for eachpositive
integerz. By inductiononn, r2 < z,4+1 < x,, for all
n, sothe sequencqz, } tendsto a limit L whichis a
rootof 22 +c¢ = z notlessthanr,. Of coursethismeans
L = ry. Sincef(z) = f(z,) forall n andz,, — 7o,
we concludef (z) = f(r2), SO f isconstanbnz > r.

If 1 < z < ry andzx, is definedasbefore, thenby in-

duction,z,, < z,4+1 < r2. Notethatthesequencean
bedefinedbecause; > c; thelatterfollows by noting
thatthe polynomialz? — z + c is positve atz = ¢ and
hasits minimumat1/2 > ¢, sobothrootsaregreater
thanc. In ary casewe deducehat f () is alsoconstant
onr; <z <rs.

Finally, supposer < r;. Now definexy = =, xp11 =

x2 + c¢. Giventhatz, < r1, wehaver, 1 > z,. Thus
if wehadz,, < r; for all n, by thesameargumentasin

thefirst casewe deducer,, — r; andso f(z) = f(r1).

Actually, thisdoesnt happengventuallywe have z,, >

r1, in whichcasef(z) = f(z,) = f(r1) by whatwe

have alreadyshovn. We concludethat f is a constant
function. (Thanksto MarshallBuck for catchinganin-

accurag in a previousversionof this solution.)

Now suppose: > 1/4. Thenthe sequence:,, defined
by zo = 0 andz, 11 = x2 + c is strictly increasing
andhasno limit point. Thusif we definef on [z, 2]

as ary continuousfunction with equalvalueson the
endpointsandextendthe definitionfrom [z, 2,,+1] tO

[n11,Tny2] Dy therelation f(z) = f(2? + ¢), and
extendthe definition furtherto z < 0 by the relation
f(z) = f(—=z), theresultingfunction hasthe desired
property Moreover, ary function with that property
clearlyhasthis form.

B-1 Let [n] denotetheset{1,2,... ,n}, andlet f, denote

the numberof minimal selfishsubset®f [n]. Thenthe
numberof minimal selfishsubset®f [n] not containing



n is equalto f,, 1. On the otherhand,for any mini-

mal selfishsubsebf [n] containingn, by subtractingl

from eachelement,andthentaking away the element
n — 1 from the set,we obtaina minimal selfishsubset
of [n — 2] (sincel andn cannotbothoccurin aselfish
set). Corversely ary minimal selfishsubsebf [n — 2]

givesrise to a minimal selfishsubse®f [n] containing
n by theinverseprocedure Hencethe numberof min-

imal selfishsubsetof [n] containingn is f,_2. Thus
weobtainf, = f,_1 + fan_2. Sincef; = fo =1, we

have f, = F,, whereF,, denoteghe nth term of the
Fibonaccisequence.

B-2 By estimatingheareaunderthegraphof In 2 usingup-

perandlower rectangle®f width 2, we get

2n—1
/ Inzdr <2(In(3) +---+In(2n — 1))
1
2n+1
< / lnx dx.
3

SincefInzdz = zlnz — 2 + C, we have, uponexpo-
nentiatingandtakingsquareroots,

2n—1

2n—1 2 e
( “ ) <(@n—1)"7 ¢ ¥l
e

<1-3---(2n-1)

2n+1 €

2n41
<2n + 1) 2
< )
e

usingthefactthatl < e < 3.

n+1

B-3 View zy,...,z, as an arrangemenbf the numbers

1,2,...,n onacircle. We prove thatthe optimal ar
rangemenis

ceey,n—4n—-2nn—-1n-3,...

To show this, notethatif a, b is a pair of adjacennum-
bersand ¢, d is anotherpair (readin the sameorder
aroundthe circle) with a < d andb > ¢, thentheseg-
mentfrom b to ¢ canbe reversed,increasingthe sum

by
ac+bd—ab—cd=(d—a)(b—c) > 0.

Now relabelthenumberssothey appeaiin orderasfol-
lows:

c+30n—4,0n—2,0np =T, 0n—1,0n-3,. .-

wherewithout loss of generalitywe assumea,, ; >
an_2. By considering the pairs a, »2,a, and
an—1,0n,—3 andusingthe trivial facta,, > a,_1, we
deducea,_, > a,_3. We then comparethe pairs
Qn—_4,0n—2 anda,_1,a,_3, andusingthata,_; >

a,_o, we deducea,, 3 > a, 4. Continuingin this
fashion,we prove thata, > a,—1 > --- > a; and
soar = kfork =1,2,...,n,i.e.thattheoptimalar
rangemenis asclaimed. In particular the maximum
valueof thesumis

1-24(n—-1)-n+1-3+2-4+---+(n—2)-n
=240 —n+ (-1 +---+[(n—-1)72-1]

:nz—n+2—(n—1)+(n_l)n@n_l)

(=]

203+ 3n® —11n+18
- 5 )

Alternatesolution:We prove by inductionthatthevalue
given above is an upperbound; it is clearly a lower
boundbecauseof the arrangemengiven above. As-
sumethisis thecasdor n—1. Theoptimalarrangement
for n is obtainedfrom somearrangementor n. — 1 by
insertingn betweensomepair z,y of adjacentterms.
This operationincreaseshe sumby nx + ny — zy =
n? — (n—z)(n —y), whichis anincreasindunctionof
bothz andy. In particular this differenceis maximal
whenz andy equaln — 1 andn — 2. Fortunatelythis
yields preciselythe differencebetweerthe claimedup-
perboundfor n andtheassumedipperboundfor n—1,
completingtheinduction.

B-4 Supposesucha matrix A exists. If the eigervaluesof

A (over the complex numbers)are distinct, thenthere
exists a complex matrix C' suchthat B = CAC—! is
diagonal. Consequentlysin B is diagonal. But then
sin A = C~!(sin B)C mustbe diagonalizablea con-
tradiction. Hencethe eigervaluesof A arethe same,
and A hasaconjugateB = CAC~! overthe comple
numbersf theform

Ty

0z )"

A directcomputatiorshovs that

. sinz y-cosx
sin B = y . .
0 sinx

Sincesin A andsin B are conjugatetheir eigervalues
mustbethesameandsowe musthavesin z = 1. This
impliescosz = 0, sothatsin B is theidentity matrix,
asmustbesin 4, acontradiction.Thus A cannotexist.

Alternate solution (due to Craig Helfgott and Alex

Popa):Definebothsin A andcos A by theusualpower
series.Since A commuteswith itself, the power series
identity

sin A+cos?A=1

holds.Butif sin A isthegivenmatrix,thenby theabove

0 _2'1996> whichis

identity, cos2 A mustequal( 0 0



a nilpotentmatrix. Thuscos A is alsonilpotent. How-
ever, the squareof any 2 x 2 nilpotentmatrix mustbe
zero(e.g.,by the Cayley-Hamiltontheorem).Thisis a
contradiction.

B-5 Consideral x n checlerboard,in which we write an

n-letter string, one letter per square. If the string is

balancedwe can cover eachpair of adjacentsquares
containingthe sameletter with a1 x 2 domino, and

thesewill not overlap (becauseno threein a row can

bethe same).Moreover, ary dominois separatedrom

thenext by anevennumberof squaressincethey must
cover oppositeletters,andthe sequencenustalternate
in between.

Corversely ary arrangemenbf dominoeswhere ad-
jacentdominoesare separatedy an even numberof
squaregorrespondso a uniquebalancedstring, once
we choosewhetherthe string startswith X or O. In
otherwords, the numberof balancedstringsis twice
thenumberof acceptablelominoarrangements.

We countthesearrangementsy numberinghesquares
0,1,...,n—1anddistinguishingvhethethedominoes
startonevenor oddnumbersOncethisis decidedpne
simply choosesvhetheror notto puta dominoin each
eligible position. Thuswe have 21/2] arrangementi
thefirst caseand2l("=1)/2] in the secondput notethat
thecaseof nodominoedhasbeencountedwice. Hence
thenumberof balancedstringsis

ol(nt2)/2] | ol(nt1)/2] _ g

B-6 We will provetheclaim assumingnly thatthe cornvex

hull of the points (a;, b;) containsthe origin in its in-
terior. (Thanksto MarshallBuck for pointing out that
the lastthreewordsare necessaryn the previous sen-
tence!) Letu = logz,v = logy sothattheleft-hand
sideof thegivenequationis

(a1,b1) exp(aru+b1v) + (az, b2) exp(agu +b2v) +
-+« + (an, by) exp(anu + byv). (1)

Now notethat(1) is the gradientof thefunction

f(u,v) = exp(aru + biv) + exp(azu + bov) +
-« + exp(anu + byo),

andsoit sufiicesto shawv f hasa critical point. We will
in factshav f hasaglobalminimum.

Clearlywe have
flu,v) > exp (max(aiu + biv)) .

Note thatthis maximumis positive for (u,v) # (0,0):
if we hada;u + bjv < 0 for all i, thenthe subset
ur + vs < 0 of the rs-planewould be a half-plane
containingall of the points(a;, b;), whosecorvex hull
would thennot containthe origin, acontradiction.

Thefunctionmax;(a;u + b;v) is clearlycontinuouson
theunitcircleu? + v? = 1, whichis compact Henceit
hasaglobalminimumM > 0, andsofor all u,v,

max(a;u + bjv) > M/ u2 + 02,
2

In particular f > n + 1 on the disk of radius
V(n+1)/M. Sincef(0,0) = n, theinfimum of f
is the sameover the entire uv-planeasover this disk,
which againis compact. Hence f attainsits infimal
value at somepoint in the disk, which is the desired
globalminimum.

NoamElkieshassuggeste@nalternatesolutionasfol-
lows: for r > 0, draw the loop tracedby (1) as (u,v)
travelscounterclockwisaroundhecircleu?+v? = r2,
For r = 0, this of coursehaswinding number0 about
ary point, but for r large, one canshaw this loop has
winding numberl aboutthe origin, so someavherein
betweerthe loop mustpassthroughthe origin. (Prov-
ing this latterfactis alittle tricky.)



