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Contributor Profiles:
John G. Heuver

John G. Heuver was born in 1934 in Olst, the
Netherlands where he became a teacher. He taught
for three years at elementary school and then for six
years at a vocational school for agriculture students
between the ages of 12 and 16. In the meantime he
acquired certificates in Mathematics and English as
a requirement for teaching at the secondary school
level.

In 1967 he immigrated to Canada and came to
Calgary, where he obtained a B.Ed. degree at the
University of Calgary with a major in Mathematics.
His choice at that time was to settle down some-
where beyond Calgary or Edmonton, so he ended
up in Grande Prairie in 1970 but only planned to stay for at most one year.
But the wide-open spaces of Alberta had their own attraction. Except for
the first six weeks at a junior high school, he taught mathematics from then
on at the Grande Prairie Composite High School until 1997 when he retired.
Over that period of time the city’s population increased from 10 000 to over
50000.

During his many years teaching high-school mathematics he witnessed
quite a few curriculum changes, from teaching about probabilities with throw-
ing dice and drawing cards from a deck (which was rather straightforward to
explain to the students), to explaining statistics using the normal curve (a
more difficult concept to convey, and often utilizing contrived data).

John is critical of the argument for teaching a topic merely because it
represents a so-called practical application, and of the treacherous pitfalls of
removing real-world constraints from real-world problems, such as modeling
exponential growth rates for bacteria that are not allowed to expire.

John says he owes his involvement with problem solving in mathemat-
ical journals to Murray Klamkin, who once in the seventies gave a session
at a teacher’s convention in Grande Prairie. He had obtained a subscription
to the American Mathematical Monthly and afterwards found a problem of
Murray’s regarding an inequality involving the edges of a tetrahedron, which
he was able to solve. This caught his fancy, and the rest is history. A subse-
quent reference in the Monthly led him to Crux.

After retiring he has found more time to work on mathematical prob-
lems. In 1999, with the help of a carpenter, he built a new cabin on Sturgeon
Lake, where he visits frequently and even in the winter time since it has heat
and water.

SN —
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SKOLIAD no. 125

Lily Yen and Mogens Hansen

Please send your solutions to problems in this Skoliad by 1 Oct, 2010. A copy
of CRUX with Mayhem will be sent to one pre-university reader who sends
in solutions before the deadline. The decision of the editors is final.

The deadline for Skoliad 124 solutions in the previous issue (CRUX with
MAYHEM Vol. 36, No. 3) is 1 Sept, 2010 NOT 1 July, 2010; our apologies.

—_— N r———

Our contest for this month is the Baden-Wiirttemberg Mathematics
Contest, 2009. Our thanks go to the Landeswettbewerb Mathematik Baden
Wiirttemberg for providing this contest and for permission to publish it.

La rédaction souhaite remercier Rolland Gaudet, de Collége universi-
taire de Saint-Boniface, Winnipeg, MB, d’avoir traduit ce concours.

Concours mathématique
Baden-Wiirttemberg 2009

1. Déterminer tous les entiers naturels n tels que la somme de n et de ses
chiffres décimaux est 2010.

2. Un polygone régulier a 18 cotés est découpé en pentagones congrus, tel
qu’illustré. Déterminer les angles internes d’un tel pentagone.

3. Dans la figure a droite, AABE est
isocele avec base AB, /ZBAC = 30°, et
/ACB = /ZAFC = 90°. Déterminer
le ratio entre la surface du AESC et la
surface du AABC.
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N . . 2 N~ Zn—

4 A partir de deux nombres non nuls z; et z,, soit z, égal 3 == pour
Zn—2

n > 2. Alors zy, 22, 23, ... forment une suite. Démontrer que si on multiplie

n’importe quels 2009 termes consécutifs de cette suite, le produit fait lui-
méme partie de la suite.

5. Soit AABC un triangle isocéle tel que ZACB = 90°. Un cercle avec
centre C coupe AC en D et BC en E. Tracer laligne AE. La perpendiculaire
a AE passant par C coupe la ligne AB en F, tandis que la perpendiculaire
A AE passant par D coupe la ligne AB en G. Démontrer que la longueur de
BF égale la longueur de GF.

6. Une machine choisit un des diviseurs de 20092°1° de facon aléatoire et
vous misez sur le chiffre en position unitaire de ce diviseur. Sur quel chiffre
misez-vous ?

Baden-Wiirttemberg
Mathematics Contest 2009

1. Find all natural numbers n such that the sum of n and the digit sum of n
is 2010.

2. A regular 18-gon can be cut into congruent pentagons as in the figure
below. Determine the interior angles of such a pentagon.

3. In the figure on the right, AABE is
isosceles with base AB, /ZBAC = 30°,
and ZACB = ZAFC = 90°. Find the
ratio of the area of AESC to the area
of AABC.
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4. Given two nonzero numbers z; and z», let z,, be i"_l for n > 2. Then
n—2
z1, Z2, 23, -.. form a sequence. Prove that if you multiply any 2009 con-

secutive terms of the sequence, then the product is itself a member of the
sequence.

5. Let AABC be an isosceles triangle such that ZAC B = 90°. A circle with
centre C cuts AC at D and BC at E. Draw the line AE. The perpendic-
ular to AFE through C cuts the line AB at F, and the perpendicular to AE
through D cuts the line AB at G. Show that the length of BF equals the
length of GF.

0. A gaming machine randomly selects a divisor of 20092010 and displays its
ones digit. Which digit should you gamble on?

_—_—m NS —e————

Next we give the solutions to the World Youth Mathematics Inter-
city Competition, Individual Contest, Part I, 2005, given in Skoliad 119 at
[2009 : 354-356].

1. The sum of a four-digit number and its four digits is 2005. What is this
four-digit number?

Solution by Ian Chen, student, Centennial Secondary School, Coquitlam, BC.

Let n denote the desired number. Surely n < 2005. Since the sum
of three digits is at most 27, the digit sum of n is at most 29. Therefore
n > 1976.

Let d represent a digit, and let S be the sum of n and its digits.

If n = 2000+ d, then S = 2000 + 2 4 2d which is even and thus cannot
equal 2005.

If n = 1990 + d, then S = 2009 + 2d which is too large.

If n = 1980 + d, then S = 1998 + 2d which is even and thus cannot
equal 2005.

If n = 1970 4 d, then § = 1987 + 2d. Solving S = 1987 + 2d = 2005
yields that d = 9.

Hence, n = 1979.

Also solved by MICHAEL CHEUNG, student, Port Moody Secondary School, Port
Moody, BC; LENA CHOI, student, Ecole Banting Middle School, Coquitlam, BC; TIMOTHY
CHU, student, R.C. Palmer Secondary School, Richmond, BC; VINCENT CHUNG, student,
Burnaby North Secondary School, Burnaby, BC; WEN-TING FAN, student, Burnaby North
Secondary School, Burnaby, BC; KRISTIAN HANSEN, student, Burnaby North Secondary

School, Burnaby, BC; and LISA WANG, student, Port Moody Secondary School, Port Moody,
BC.

2. In triangle ABC, AB = 10 and AC = 18. M is the midpoint of BC,
and the line through M parallel to the bisector of ZCAB cuts AC at D. Find
the length of AD.
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Solution by Kristian Hansen, student, Burnaby North Secondary School,
Burnaby, BC.

B L M c
Let L denote the point on BC such that AL is the bisector of /CAB.
. . . BL 10
The Sine Law in AABL yields that o BAL — sn’ALB' and therefore

BL — 10 (sinéBAL)

sin /ALB /'
Likewise, using the Sine Law in AALC yields S
sin ZCAL

cr 18
in/CAL =~ sin/ZALC’
). But it is also true that ZCAL = ZBAL and

_ o _ . sin LBAL)
/ALC = 180° — /ALB, so CL = 18 (T =)
sin/BA

Let z denote the fraction ;. Then BL = 10z and CL = 18z.

L
Therefore, BC = 28z and CM = 14z As ANACL is similar to ADCM, it

DC CM DC 14z
follows that AC = oL %% 18 = 185’ 5° DC = 14. Hence, AD = 4.

3. Let x, y, z be positive numbers such that c+y+xzy = 8, y+2+yz = 15,
and z + = + zx = 35. Find the value of x + y + z + zy.

Solution by Vincent Chung, student, Burnaby North Secondary School,
Burnaby, BC.

Since x +y + xy = 8, it follows that (1 +y) = 8 —y, so = = 2:—2
Likewise, since y + z + yz = 15, it follows that 2(1 + y) = 15 — y, so
z = 15+ 1y Substituting these into the third given equation yields that

15 — - - -
(] n 8—y " (15 y) (8 y) _ 35,
y+1 y+1 y+1 y+1

SO
23 — 2y 120 — 23y + y?

+
y+1 (y +1)2
and (23 — 2y)(y + 1) + 120 — 23y + y? = 35(y + 1)2. Therefore,

= 35

23y 4+ 23 — 2y? — 2y + 120 — 23y + ¢y = 35y% 4+ 70y + 35,

500 = 36y2+ 72y —108 = 36(y2+2y—3) = 36(y—1)(y+3). Thus,y =1
or y = —3. Since y is given to be positive, y = 1, and, thus, x = 8 __1_11 g
15—y

and z = :7.Hencesc—l—y—l—z—i—my:g+1—|—7—|—;-1:15.

y+1
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Also solved by MICHAEL CHEUNG, student, Port Moody Secondary School, Port
Moody, BC.

While our solver’s brute force solution shows admirable stamina, a more elegant solution
is also possible: If ¢ +y + ®y = 8, then® + y + ®y + 1 = 9, and now the left-hand side
can be factored: (& + 1)(y + 1) = 9. Similarly the other two given equations yield that
(y+ 1)(z 4+ 1) = 16 and that (z + 1)(x + 1) = 36. Multiplying the last two of these
equations and dividing by the first yields that

(W+1(+1)*(=x+1) _ 16-36
(z+1)(y+1) 9

so(z+1)2 =64,s0z+1 = 18,50z = 7 or z = —9. Again, z is positive, so z = 7. It
now follows from the first of the given equations thatx +y + z + xy =8 + 7 = 15.

’

4. The number of mushrooms gathered by 11 boys and n girls is n2 +9n — 2,
with each person gathering exactly the same number. Determine the positive
integer n.

Solution by Wen-Ting Fan, student, Burnaby North Secondary School,
Burnaby, BC.

2 —
Each of the n + 11 children must gather n" 9 -2
n+11

n? 4+9n — 2 = (n + 11)(n — 2) + 20, so the number of mushrooms is

n—2+
. n + 11
1S nonnegative, n = 9.

Also solved by MICHAEL CHEUNG, student, Port Moody Secondary School, Port
Moody, BC; TIMOTHY CHU, student, R.C. Palmer Secondary School, Richmond, BC; VINCENT
CHUNG, student, Burnaby North Secondary School, Burnaby, BC; and LISA WANG, student,
Port Moody Secondary School, Port Moody, BC.

One can use polynomial division to find that n? + 9n — 2 = (n+ 11)(n — 2) + 20, or
you can use guess and check: If n? + 9n — 2 = (n+ 11) P + R, then P must contain an n to
get n? on the other side. Thus n? +9n —2 = (n+ 11)(n+7?) + R. The question mark must
be —2 to get 9n on the other side, so R = 20 follows.

mushrooms. Now

. This must be an integer, so n + 11 must divide 20. Since n

5. The positive integer x is such that both = and = + 99 are squares of
integers. Find the sum of all such integers x.

Solution by Ellen Chen, student, Burnaby North Secondary School, Burnaby,
BC.

Sayxz = n? and £4+99 = m2. Then 99 = m? —n? = (m+n)(m —n),
so 99 is written as the product of two integers. This is only possible in three
ways:

m4+n|m—-n|m n|xz=n?
99 1 50 49 2401
33 3 18 15 225
11 9 10 1 1

Sum: 2627

Also solved by TIMOTHY CHU, student, R.C. Palmer Secondary School, Richmond, BC;
WEN-TING FAN, student, Burnaby North Secondary School, Burnaby, BC; KRISTIAN HANSEN,
student, Burnaby North Secondary School, Burnaby, BC; and LISA WANG, student, Port Moody
Secondary School, Port Moody, BC.
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6. The side lengths of a right triangle are all positive integers, and the length
of one of the legs is at most 20. The ratio of the circumradius to the inradius
of this triangle is 5 : 2. Determine the maximum value of the perimeter of
this triangle.

Solution by the editors.

Firstlet us review a few facts from geometry.
The angle between a tangent to a circle and the
radius to the point of tangency is 90°. Therefore T
you can use the Pythagorean Theorem in each of
the two triangles in the figure: The square of the
length of the dotted line equals both 22 + 2 and y
y? + r2. Therefore * = y, that is, intersecting
tangents are equal.

A Consider the right-angled triangle AABC.
Let M be the midpoint of AC, and let N be
the midpoint of AB. Then MN is parallel
N to BC, so AANM is also right-angled. Us-
ing the Pythagorean Theorem in AANM and in
ABN M it follows that AM = BM . Thus M is
B C the centre of the circle through A, B, and C.

Now we can attack the problem. You
have just seen that since the triangle is
right-angled, its hypotenuse is a diameter
for the circumscribed circle, whose radius
is therefore ¢/2. Let r be the radius of the
inscribed circle. Note that two of the radii
in the figure together with parts of the left c
and bottom sides of the triangle form a
square. Therefore, the length of the re-

N

maining part of the left side is a—» and the
length of the remaining part of the bottom
side is b — . Since intersecting tangents
are equal, this means thate¢ = a—r+b—r.
Thusr = (a+b —¢)/2.

Since the ratio of the circumradius to the inradius is 5 : 2,

c/2 5

(a+b—c)/2 2

c 5 5
Therefore, axb_c= 2’ S0 2¢ = 5a + 5b — 5¢, so ¢ = ?(a + b). By the
Pythagorean Theorem, a? + b% = ¢? = %(a +b)? = %(a2 + 2ab + b?).

Hence, 49a2 + 49b% = 25a2? + 50ab + 25b%, so 24a® — 50ab + 24b> = 0, so
2(4a — 3b)(3a —4b) = 0. Thusa:b=3:40ra:b=4:3. Either way the
given triangle is a 3-4-5 triangle.
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The shortest side is given to be at most 20. The largest multiple of 3
less than or equal to 20 is 18. Thus, the sides are 18, 24, and 30, and the
maximum value of the perimeter is 72.

7. Let a be the larger root of (2004x)? — 2003 - 2005z — 1 = 0 and 3 be the
smaller root of &2 + 2003z — 2004 = 0. Determine the value of a — 3.

Solution by Timothy Chu, student, R.C. Palmer Secondary School, Rich-
mond, BC.

The constant term of a quadratic polynomial is the product of its roots.
Both polynomials have negative constant terms, so both must have one pos-
itive and one negative root. Since 2003 - 2005 = (2004 — 1)(2004 + 1) =
20042 — 1 and 20042 — (20042 — 1) — 1 = 0, one of the roots of the first
polynomial is 1. Since the other root is negative, « = 1. The second polyno-
mial is easily factored as (z — 1)(x + 2004), whence 3 = —2004. Therefore
a — 3 = 2005.

Also solved by WEN-TING FAN, student, Burnaby North Secondary School, Burnaby,
BC.

To see that the constant term of a quadratic polynomial is indeed the product of its roots,
consider that (x — a) (xz —b) = x? — (a+ b)x + ab. A similar property holds for higher degree
polynomials.

Once you realise that 2003 - 2005 = 20042 — 1, the first polynomial is also easy to
factor as (20042 + 1) (x — 1).

8. Letabea positive number such that a2 + % = 5. Determine the value
of a® + %.
Solution by the editors.
2
Since (a + %) =a?42+4 %, it follows from the given equation that

2
(a + %) =7,and so a + % = +/7 since a is positive. Similarly,

(0+2) = (a+3) (e+3) = (@r2+ ) (a+])

= a®+2a 4+ 4at 4
a

a

= a3—|—3(a+%)+i.

SHEN)

a3

3
Therefore, a® + LB = (a + l) -3 (a + 1) = (V7)% — 37 = 4/7.
a a a

9. In the figure, ABCD is a rectangle D C
with AB = 5 such that the semicircle with
diameter AB cuts CD at two points. If
the distance from one of them to A is 4,
find the area of ABCD. A B
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Solution by Lena Choi, student, Ecole Banting Middle School, Coquitlam,
BC.

Since AB is a diameter and P is on
the circle, ZAPB = 90°. Since AP = 4

and AB = 5, it follows that BP = 3. D P C
Hence the area of AABP is % = 6.

If you instead use AB as the base of the 1 3
triangle, then the height equals the length

of BC. Therefore, the area of the rectan- A B

gle is twice the area of the triangle, so the
area of the rectangle is 12.

Also solved by KRISTIAN HANSEN, student, Burnaby North Secondary School, Burnaby,
BC.

Our solver used the fact that if P is on the circle with diameter AB,
then ZAPB = 90°. To prove this fact, rotate the triangle around the ‘
centre of the circle to obtain the dotted part in the figure on the right. By

construction, the four sided polygon is a parallelogram. Since both diagonals
are diameters and therefore equal, the parallelogram must be a rectangle,
whence ZAPB = 90°.

10. tetabe9 (n (%)n —1- % — (%)2 — e — (%)n_1> where n is

a positive integer. If a is an integer, determine the maximum value of a.

Solution by Kristian Hansen, student, Burnaby North Secondary School,
Burnaby, BC.

The sum of the geometric series is
10

LR () s (07 = S < (- ()

o) oo (8)

R

— 9(n-9) (%O)nJr 81.

For this to be an integer, eithern =1 orn = 9. (If n > 1, then the denom-
inator contains too many copies of 9 except when n = 9 and the numerator
is zero by a lucky miracle.) If n = 1, thena = 1; if n = 9, then a = 81. The
larger of these is 81, which is the maximum value of a.

Therefore,

11. Ina two-digit number, the tens digit is greater than the ones digit. The
product of these two digits is divisible by their sum. What is this two-digit
number?
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Solution by Michael Cheung, student, Port Moody Secondary School, Port
Moody, BC.

Any (two-digit) multiple of ten satisfies the condition. Otherwise, if the
number contains the digit 1 and the digit d, the condition is that d is divisible
by d + 1 which is impossible. This leaves just 28 numbers to consider: 32,
42, 43, 52, 53, 54, 62, 63, 64, 65, 72, 73, 74, 75, 76, 82, 83, 84, 85, 86, 87,
92, 93, 94, 95, 96, 97, and 98. These are easily checked one by one; only 63
works out. Thus the solutions are 10, 20, 30, 40, 50, 60, 63, 70, 80, and 90.

Also solved by TIMOTHY CHU, student, R.C. Palmer Secondary School, Richmond, BC.

P B S

12. In the figure, PQRS is a rectangle
of area 10. A is a point on RS and B is A
a point on PS such that the area of tri-
angle QAB is 4. Determine the smallest
possible value of PB + AR.

Q R

Solution by Vincent Chung, student, Burnaby North Secondary School, Burn-
aby, BC.

Label the lengths as in the figure. Since

y B x—
the area of AQAB is 4, the areas of P Y o
the remaining three triangles must add up 10_,
to 6. That is, 10 5'3
= A
10
10 _ - 10 z
(p —2)(—vy) vt e
2 2z 2 Q T R

Multiplying by 2 and expanding yields

10 — 10¥
xr

—mz+yz+m7y+:1:z:12,
SO yz = 2.

The smallest possible value of PB + AR = y + z subject to the con-
straint that yz = 2 is obtained when y = 2. Theny = z = +/2 and
PB + AR = 2V/2.

Also solved by KRISTIAN HANSEN, student, Burnaby North Secondary School, Burnaby,
BC.

—_—_—— N r——— S ———

This issue’s prize of one copy of CRUX with MAYHEM for the best
solutions goes to Timothy Chu, student, R.C. Palmer Secondary School,
Richmond, BC.

We congratulate our solvers on their success with a rather difficult con-
test and hope that they and other readers will continue to submit solutions
to our problems.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Ian VanderBurgh (University of Waterloo). The
other staff members are Monika Khbeis (Our Lady of Mt. Carmel Secondary
School, Mississauga, ON) and Eric Robert (Leo Hayes High School, Freder-
icton, NB).

—_— N r———

Mayhem Problems

Veuillez nous transmettre vos solutions aux problémes du présent numéro
avant le 15 septembre 2010. Les solutions recues aprés cette date ne seront prises
en compte que s’il nous reste du temps avant la publication des solutions.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I'anglais.

La rédaction souhaite remercier Jean-Marc Terrier, de 1’Université de
Montréal, d’avoir traduit les problémes.

%
M438. Proposé par I'Equipe de Mayhem.

Trouver toutes les paires de nombres réels (z, y) telles que
o+ (P —y—2) =0

M439. Proposé par Eric Schmutz, Université Drexel, Philadelphia,
PA, E-U.

1 11
log, x loggx 100"

Trouver I'entier positif = pour lequel on a

M440. Proposé par I'Equipe de Mayhem.

On donne un trapeze ABC D avec AB paralléle 3 DC et AD perpen-
diculaire A AB. Si AB = 20, BC = 5z, CD = x2+3x et DA = 3z, trouver
la valeur de .

M44l. Proposé par Katherine Tsuji et Edward T.H. Wang, Université
Wilfrid Laurier, Waterloo, ON.

Quel est le nombre maximal de rois non menacants qu’on peut placer
sur un échiquier n x n? (Un «roi» est une piéce d’'échecs qu'on peut déplacer
d’une seule case horizontalement, verticalement ou diagonalement.)
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M442. Proposed by Carl Libis, Université Cumberland, Lebanon, TN,

E-U.
Dans le tableau carré suivant
1 2 .. n—1 n
n+1 n-+ 2 cee 2n—1 2n
m—)n+1 (n—1)n+2 .- n?2-1 n?

construit en écrivant sur n lignes consécutives la liste des nombres de 1 a n?,
déterminer la somme des nombres sur chaque diagonale. Comparer cette
somme 3 la «constante magique» obtenue en réarrangeant les n? éléments
pour former un carré magique.

M4a43. Proposé par Neculai Stanciu, Ecole secondaire George Emil Palade,
Buzau, Roumanie.

On note | x| le plus grand entier n’excédant pas x. Ainsi, [3.1] = 3 et
|—1.4] = —2. On désigne par {x} la partie fractionnaire du nombre réel =
(c'est-a-dire {z} = = — |=]). Par exemple, {3.1} = 0.1 et {—1.4} = 0.6.
Trouver tous les nombres réels positifs z tels que

{2334—3} {23:—|—1J . 14
x4+ 2 x+1 o

o
MA4hly proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Soit a et b deux nombres réels. Montrer que

Va2 +b%2+6a —2b+10 + /a? + b2 —6a+2b+10 > 2V10.

M438. Proposed by the Mayhem Staff.
Find all pairs of real numbers (z, y) such that
2?4+ (y* -~y —2)* = 0.
MA439. Proposed by Eric Schmutz, Drexel University, Philadelphia, PA,
USA.

Determine the positive integer = for which ! = 1

log, x logy x - 100°

M440. Proposed by the Mayhem Staff.

In trapezoid ABCD, AB is parallel to DC and AD is perpendicular
to AB. If AB = 20, BC = 5z, CD = z? + 3z, and DA = 3z, determine
the value of x.
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M44l. Proposed by Katherine Tsuji and Edward T. H. Wang, Wilfrid Lau-
rier University, Waterloo, ON.

What is the maximum number of non-attacking kings that can be placed
onann X n chesshoard? (A “king” is a chess piece that can move horizontally,
vertically, or diagonally from one square to an adjacent square.)

MA442. proposed by Carl Libis, Cumberland University, Lebanon, TN,
USA.

Consider the square array

[ 1 2 - m—1 n ]
n+1 n+2 cee 2n—1 2n
n—-1n+1 n—1)n+2 --- n?2—-1 n?

formed by listing the numbers 1 to n? in order in consecutive rows. Deter-
mine the sum of the numbers on each diagonal. How does this sum compare
to the “magic constant” that would be obtained if the n? entries were re-
arranged to form a magic square?

M443. Proposed by Neculai Stanciu, George Emil Palade Secondary School,
Buzau, Romania.

Let || denote the greatest integer not exceeding . For example,
[8.1] = 3 and |—1.4] = —2. Let {x} denote the fractional part of the
real number x (that is, {} = = — |z]). For example, {3.1} = 0.1 and
{—1.4} = 0.6. Find all positive real numbers x such that

{2m+3} L2m+1J . 14
x+ 2 x+1 9

MA44ly  proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Let a and b be real numbers. Prove that

Va2 + b2+ 6a—2b+10 + /a2 + b2 —6a +2b+10 > 2V10.
—_—_—— N r——— S ———

Mayhem Solutions

M381. correction. Proposed by Mihaly Bencze, Brasov, Romania.
Determine all of the solutions to the equation

1 2 6 7 o
+ + —+ = x°“—4x — 4.
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Solution by Sonthaya Senamontree, Thesaban 2 Mukkhamontree School,
Udonthani, Thailand.

From the given equation

+ + = x?—4x —4;

() G+ G+ () = = -
sr:—1+ + m—2+ + ac—6+ + a:—7+ - T

+ + + = z?—4x.

Since x is a common factor of both sides, then = 0 is a solution. We can
continue by assuming that  # 0 and dividing by x to obtain

AN S SRS S
r—1 r — 2 r—6 x—T7 '
( 1 n 1 >+< 1 n 1 ) w4
r—1 x—7 r — 2 x—6 '
2x — 8 2r — 8
@—D@-7  @-2@—6 _ 7Y
2r — 8 2x — 8
= —4.

2 —8x 4+ 7 T r2 — 8 + 12

Since x = 4 makes both sides 0, then x = 4 is a solution. We can continue
by assuming that =z # 4 and dividing by  — 4 to obtain:

2 n 2
2 —8x + 7 2 — 8x + 12

’

and then make the substitution a = 2 — 8z to obtain

2 2

a+7 + a-+ 12

2(a+12) +2(a+7) (a+7)(a+12);
2a+24+2a+14 = a?+19a+ 84;
0 a? 4+ 15a + 46 .

= 1;

_ 2 __ — V4
The quadratic formula yields a = 15+ v 152 41)(6) _ 15? 41
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Since a = 2 — 8z, then

2 —8r = M;
2
x> —8r+16 = L;/ﬁ;
(@ 1) — 17:|:\/ﬁ;
2
r = 4+ 717:|:\/H.
2

Therefore, x = 0orx = 4orx = 4%/ % ‘41, with all four combinations
of signs being possible.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; G.C. GRE[!BEL,
Newport News, VA, USA; KONSTANTINOS AL. NAKOS, Agrinio, Greece; RICARD PEIRO, IES
“Abastos”, Valencia, Spain; and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo,
ON.

M401. Proposed by the Mayhem Staff.

Graham and Vazz were marking out a new lawn at CRUX Headquarters.
Graham said: “If you make the lawn 9 metres longer and 8 metres narrower,
the area will be the same”. Vazz said: “If you make it 12 metres shorter and
16 metres wider, the area will still be the same”. What are the dimensions
of the lawn?

Solution by Jaclyn Chang, student, Western Canada High School, Calgary,
AB.

Let = be the length of the lawn and y be the width of the lawn. Thus,
the area of the lawn is zy. We can translate Graham'’s and Vazz's statements
into equations.

According to Graham, zy = (z + 9)(y — 8) = zy — 8z + 9y — 72, and
SO0 8x — 9y = —T2.

According to Vazz, zy = (x — 12)(y + 16) = zy + 16z — 12y — 192,
and so 16x — 12y = 192 or 8¢ — 6y = 96.

Subtracting the first linear equation from the second one, we obtain
3y = 168, or y = 56. We can substitute y = 56 into either equation to
obtain x = 54.

Therefore, the lawn is 54 m long and 56 m wide.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; WINDA KIRANA,
student, SMPN 8, Yogyakarta, Indonesia; DAVID E. MANES, SUNY at Oneonta, Oneonta, NY,
USA; MRIDUL SINGH, student, Kendriya Vidyalaya School, Shillong, India; MRINAL SINGH,
student, Kendriya Vidyalaya School, Shillong, India; JIXUAN WANG, student, Don Mills

Collegiate Institute, Toronto, ON; and GUSNADI WIYOGA, student, SMPN 8, Yogyakarta,
Indonesia. There were two incorrect solutions submitted.
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M402. Proposed by Neculai Stanciu, George Emil Palade Secondary
School, Buzau, Romania.

Determine all ordered pairs (a, b) of positive integers such that

a’b® + a® +b* = 89.

Solution by Winda Kirana, student, SMPN 8, Yogyakarta, Indonesia and Gus-
nadi Wiyoga, student, SMPN 8, Yogyakarta, Indonesia, independently.

Since a®b® 4 a® 4+ b* = 89, then we have that a®b® + a® + b% + 1 = 90,
or (a® 4+ 1)(b* + 1) = 90.

Since a and b are positive integers, then a? 4+ 1 and b* + 1 are both
positive integer divisors of 90 and each of these divisors is larger than 1.

We make a table of the possible values of a® and b°:

a®+1)2 3 5 6 9 10 15 18 30 45
b*+1]45 30 18 15 10 9 6 5 3 2 |

a®| 1 2 4 5 8 9 14 17 29 44
b*|l44 29 17 14 9 8 5 4 2 1

If a®> = 2, thena = 2 and b = 1, which does not give b = 29.
If a® = 4, then (a,b) = (4,1) or (a,b) = (2,2), neither of which gives
b® = 17. If a® = 5, then a = 5 and b = 1, which does not give b* = 14.
Similar reasoning shows that a® cannot be 14, 17, or 29.

If b = 44, then b = 44 and a = 1, which does give a® = 1. Thus,
(a,b) = (1,44) is a solution. Similarly, (a,b) = (44,1) is a solution from
the last row.

If a® = 8, then (a,b) = (8,1) or (a,b) = (2,3). The second of these
gives b = 9, so (a,b) = (2, 3) is a solution, as is (a,b) = (3,2) from the
following row.

Therefore, the solutions are (a, b) = (1,44), (44,1), (2,3), (3,2).

Also solved by CAO MINH QUANG, Nguyen Binh Khiem High School, Vinh Long, Viet-
nam; RICARD PEIRO, IES “Abastos”, Valencia, Spain; and JIXUAN WANG, student, Don Mills

Collegiate Institute, Toronto, ON. There were six incorrect solutions submitted.
All of the incorrect solutions missed the cases (a,b) = (44, 1) and (a,b) = (1,44).

M403. Proposed by Matthew Babbitt, home-schooled student, Fort
Edward, NY, USA.

Jason wrote a computer program that tests if an integer greater than 1
is prime. His devious sister Alice has edited the code so that if the input is
odd, the probability that the program gives the correct output is 52% and if
the input is even, the probability that the program gives the correct output is
98%. Jason tests the program by inputting two random integers each greater
than 1. What is the probability that both outputs are correct?
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Solution by Jixuan Wang, student, Don Mills Collegiate Institute, Toronto,
ON.

The probability that the first random input is even is 0.5, in which case
there is a 98% chance that the output is correct. The probability that the
first random input is odd is 0.5, in which case there is a 52% chance that
the output is correct. Thus, the probability that the first output is correct is
(0.5)(0.98) + (0.5)(0.52) = 0.75.

The probability that the second output is correct is also 0.75. Therefore,
the probability that both outputs are correct is (0.75)% = 0.5625 = 9/16.

Also solved by JACLYN CHANG, student, Western Canada High School, Calgary, AB;

CARL LIBIS, Cumberland University, Lebanon, TN, USA; and RICARD PEIRO, IES “Abastos”,
Valencia, Spain.

M404. Pproposed by Bill Sands, University of Calgary, Calgary, AB.

A store sells copies of a certain item at $x each, or at a items for $y, or
at bitems for $z, where a and b are positive integers satisfying 1 < a < band
x, y, and z are positive real numbers. To make “a items for $y” a sensible
bargain, $y should be less than buying a separate items; in other words we
should have y < ax. To make “b items for $z” also a sensible bargain, we
could insist on one of two conditions:

@) % < %; that is, the average price of an item under the “b items for $z”
deal is less than under the “a items for $y” deal.

(b) Whenever we can write b = ga + r for nonnegative integers q and r,
then 2z < qy + rx holds; that is, it should always cost more to buy b
items by buying a combination of a items plus individual items, than
by choosing the “b items for $z” deal.

Show that if condition (a) is true, then condition (b) is also true. Give an
example to show that condition (b) could be true while condition (a) is false.

Solution by the proposer.

First, we prove by contradiction that if condition (a) is true, then con-
dition (b) is true.
Suppose that % < %; that is, assume that az < by. Assume that (b) is

not true; that is, that there exist nonnegative integers g and » withb = qa+r
but with z > qy + rz.

Then az > aqy + arz, so aqy + are < az < by = y(ga +r) =
aqy + ry. Therefore, arxz < ry. Since » > 0 and the inequality is not true
if r = 0, then » > 0, so ax < y, which contradicts the given information.

Therefore, if condition (a) is true, then condition (b) is true.

Ifa=30b=5 =2 y=3 and z = 6,thenl < a < b and

y < az, but Z > %, so (a) is not true. But condition (b) is true, since the

b
only ways to write b = 5 in the form b = ga 4+ r are 5 = 0(3) + 5 and

5 = 1(3) + 2, which gives qy + rz = 0(3) + 5(2) = 10 > 6 = z and
qy +rx =1(3) + 2(2) = 7 > 6 = z, so condition (b) is true.
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M405. Proposed by George Apostolopoulos, Messolonghi, Greece.

Determine a closed form expression for the sum
17 4+ 187 + 1887 + 18887 + --- + 188...87,
where the last term contains exactly n 8's.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.

We note first that 17(1) = 17 and 17(11) = 187 and 17(111) = 1887.
Then 18887 = 17000 + 1887 = 17(1000 + 111) = 17(1111). We can
continue this argument inductively to show that the integer 188...87 (con-
taining n copies of 8) is equal to 17(11...1) (containing n copies of 1 inside
the parentheses).

Therefore,

(17 + 187 4 1887 + 18887 + - - - + (188...87))
= 17(14+11+ 111+ 1111 + -+ + (11...1))
(where the last integer consists of n 4+ 1 digits all equal to 1)

= 17(9+99 4999 +9999 + -+ (99...9))
= %7((10—1)"‘(102_1)+(103—1)+...+(10n+1_1))

= 1?7(10(1+10+102+---+10")—(n—l—l))

= (10 (%) - (n+1)>

= g(lo"+2 —10 —9n —9)

= 110" —9n —19).

Also solved by LUIS ]J. BLANCO (student) and ANGEL PLAZA, University of Las Palmas
de Gran Canaria, Spain; JOAQU IN G OMEZ REY, IES Luis Bufiuel, Alcorcén, Madrid, Spain;
DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA; PEDRO HENRIQUE O. PANTOJA,
UFRN, Brazil; RICARD PEIRO, IES “Abastos”, Valencia, Spain; and KONSTANTINE ZELATOR,
University of Pittsburgh, Pittsburgh, PA, USA. There were three incorrect solutions submitted.

M406. Proposed by Constantino Ligouras, student, E. Majorana Scien-
tific High School, Putignano, Italy.

Square ABCD is inscribed in one-eighth of a circle of radius 1 and
centre O so that there is one vertex on each radius and two vertices B and
C on the arc. Square EFGH is inscribed in ADOA so that E and H lie
on the radii, and F and G lie on AD. In problem M295 [2007 : 200, 202;

solution 2008 : 203-204], we saw that the area of square ABCD is 2 _3\/5.
Determine the area of square EFGH.




211

Solution by Ricard Peir6é, I1ES “Abastos”, Valencia, Spain, modified by the
editor.
2 -2

In problem M295, we saw that AD? = 3

Since tan 45° = 1, then

2 tan 22.5°
1 = tan45° = W .
— tan .
C
Setting v = tan 22.5°, we have that
1—u? = 2u, oru?4+2u—1 = 0. Using D
the quadratic formula, we obtain
H
—244/22 —4(1)(-1) B
u =
2
—2+ V8
_ —2%vB o 2 A
2
= —1++2.

Since u = tan 22.5° > 0, then tan 22.5° = v/2 — 1.

Let « be the side length of square EFGH. Then EF = FG = x.

By symmetry, AF = DG, so AF = AD ; FG _ AD2— T Since

ADOA is isosceles, then ZDAO = 7 (180° — 45°) = 67.5°. Since AEFA
is right-angled, then ZFEA = 90° — 67.5° = 22.5°. Therefore,

AF
tan22.5° = —;
EF
AD —
vz-1 = /%,
2x
(2vV2—-2)x = AD —«z;
2v2 -1z = AD;
AD
r = —.
2v2 -1
Therefore 2, the area of square EFGH, is equal to
AD? . 2-vV2 1
(2v2—-1)2 3 9 — 42
_ (2-V2)(9+4Vv2)
- 3[92 — 42(2)]
_10-v2
N 147

Also solved by GEORGE APOSTOLOPOULOQS, Messolonghi, Greece; and GEOFFREY
A. KANDALL, Hamden, CT, USA.
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Problem of the Month

Ian VanderBurgh

A popular type of geometry problem involves folding paper. A fold-
ing problem usually involves a sheet of paper of specific dimensions and the
method of folding. We are then asked to determine one or more lengths in
the resulting configuration.

Problem (UK Intermediate Challenge
1999) A rectangular sheet of paper
with sides 1 and +/2 has been folded 1
once as shown, so that one corner just
meets the opposite long edge. What is d
the value of the length d?

Feel free to actually try this out! If you're in the UK, you'll have a much
easier time finding a sheet of paper with dimensions in the ratio v/2 : 1.

How should we start? One of the very first problem solving strategies
that we learn is “draw a diagram”. This strategy should almost always be
extended very slightly by adding the clause “...and label it carefully”. As it
turns out, this is the key to solving this problem.

Solution We redraw the given diagram by adding the “phantom” edges of the

paper (the dotted lines) and labelling the relevant points on the diagram.
We then label as many lengths as

we possibly can. 1 suggest that you

follow along by labelling each new A B

length that we determine. Make sure

that you understand why each length

is what it is before moving on to the

next step. Since the paper has length

v2, then AB = DC = /2. B 1
Can you see another length that
equals v/2? In fact, A’B = /2 since d
this is the folded image of AB.
Can you determine the length of D ] C
AE in terms of d? Since AD = 1 and A

ED =d, then AE =1 —d.

Can you find another line segment of length 1 — d? Since AE becomes
A’E after folding, then A’E =1 — d.

Can you see any triangles where we know two of the three side lengths?
In AA’CB, we have A’B = +/2 and BC = 1.

How can we determine the third side length of A A’CB? This triangle
is right-angled at C, so we can use the Pythagorean Theorem to conclude
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that A’C? = A’B? — BC? = (v/2)%2 — 12 = 1; since A’C > 0, then
A'C=+1=1.

Can we use this to determine another length? Yes! Since DC = /2
and A’C =1, then A’D = v/2 — 1. Now AEDA’ is right-angled at D. We
know one of the three side lengths, namely, A’D = +/2 — 1, and we know
the other two side lengths in terms of d, namely, ED = dand FA’ =1 —d.

What should we do to try to solve for d? Let's apply the Pythagorean
Theorem again. (Spoiler alert: There is a better way! If you are uncomfort-
able squaring expressions like 1 — d or have never even done this before, skip
down to just after the end of the solution for a simpler approach.) We obtain

A’E?* = ED?+ A’'D?;
(1-d)? = d®+ (V2-1)%;
1—2d+d? = d?2+2—-2vV2+1;
—2d = 2-—2V2;
d = V2-1.
Therefore, d = v/2 — 1. m

My apologies for the spoiler alert above. We were on such a roll that |
didn’t want to interrupt our Pythagorean flow.

Do you see a different approach that we could have taken? You may
note that A’D = ED = +/2 — 1. Can you see a reason why this should be
the case? Let’s go back and do some angle-chasing.

Triangle A’C B has sides of lengths 1, 1, and v/2. What are its angles?
Since it is isosceles and right-angled, then /BA’'C = ZA’BC = 45°. Thus,

/DA'E =180° — /EA’'B — /BA'C = 180° — 90° — 45° = 45° .

What does that say about AA’DE? This tells us that this is also isosceles
and right-angled! (If you're not convinced, calculate /DEA’.) Therefore,
ED = A’D and we know that A’D = +/2 — 1. This allows us to conclude
that d = ED = +/2 — 1, as required.

This gives us two different ways of handling this problem. Knowing two
different approaches is really useful, because it means that if we don't see
one of the approaches in a problem that we're working on, we might just see
the other.

For those of you wanting more of a challenge, here’s a follow-up prob-
lem to work on:

A rectangular sheet of paper ABCD has AB = 8 and BC = 6.
The paper is folded so that corner A coincides with the midpoint,
M, of DC. What is the length of the fold?

%
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THE OLYMPIAD CORNER
No. 286

R.E. Woodrow

We start this number with translations of a number of Olympiads from
South America. My thanks go to Bill Sands, Canadian Team Leader to the
IMO in Vietnam, for collecting them for our use and to Leda Sanchez,
Executive Assistant to the Vice Provost (International), for helping with the
translation. The first set are the problems of the XV Olimpiada Matematica
Rioplatense 2006, Nivel 2.

XV OLIMPIADA MATEMATICA RIOPLATENSE
San Isidra, 9-10 December 2006
Nivel 2

1. Let ABC be a right triangle with right angle at A. Consider all the
isosceles triangles XY Z with right angle at X, where X lies on the segment
BC, Y lies on AB, and Z is on the segment AC. Determine the locus of
the medians of the hypotenuses Y Z of such triangles XY Z.

2. Carlitos listed all the subsets of {1, 2, ..., 2006} in which the difference
between the number of even numbers and the number of odd numbers is a
multiple of 3. How many subsets did Carlitos list?

3. A finite number of (possibly overlapping) intervals on a line are given.
If the rightmost 1/3 of each interval is deleted, an interval of length 31 re-
mains. If the leftmost 1/3 of each interval is deleted, an interval of length
23 remains. Let M and m be the maximum and minimum of the lengths of
an interval in the collection, respectively. How small can M — m be?

4 Letay, as,...,a,be positive numbers. The sum of all the products a;a;
with i < j is equal to 1. Show that there is a number among them such that
the sum of the remaining numbers is less than v/2.

5. Acircle T is tangent to the sides AB and AC of triangle ABC at E and
F, respectively. Let BF and EC intersect at X, let T intersect AX at H,
and let EH and FH intersect BC at Z and T, respectively. The lines ET
and FZ intersect at Q. Show that Q lies on the line AX.

6. For each permutation (z1, x2,...,xg9) of {1, 2, ..., 99}, let
L = |©y — x2V3| + |22 — 23V3| + -+ - + |@og — oo V3| + |T99 — z1V3].

Determine the maximum value of L. How many permutations give rise to
this value of L?
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Next from the same package are the problems of the XV Olimpiada
Matematica Rioplatense 2006, Nivel 3. Again, thanks go to Bill Sands and to
Leda Sanchez.

XV OLIMPIADA MATEMATICA RIOPLATENSE 2006
San Isidra, 9-10 December 2006
Nivel 3

1. (a) For each k > 3, find a positive integer n that can be represented as
the sum of exactly k mutually distinct positive divisors of n.

(b) Suppose that n can be expressed as the sum of exactly £ mutually
distinct positive divisors of n for some k& > 3. Let p be the smallest prime
divisor of n.

Show that

1+ ! - + ! > 1
p p+1 p+k—1 —

2. Let ABCD be a convex quadrilateral with AB = AD and CB = CD.
The bisector of ZBDC intersects BC at L, and AL intersects BD at M, and
it is known that BL = BM . Determine the value of 2/BAD 4 3/BCD.

3. The numbers 1, 2, ..., 2006 are written around the circumference of a
circle. One allowed operation is to exchange two adjacent numbers. After a
sequence of such exchanges each number ends up 13 positions to the right of
its initial position.

If the 2006 numbers 1, 2, ..., 2006 are partitioned into 1003 distinct
pairs, then show that in at least one of the operations two numbers of one
of the pairs are exchanged.

4 The acute triangle ABC with AB # AC has circumcircle T', circumcentre
O and orthocentre H. The midpoint of BC is M and the extension of the
median AM intersects I" at N. The circle of diameter AM intersects I" again
at A and P.

Show that the lines AP, BC, and OH are concurrent if and only if
AH =HN.

5. Consider a finite number of lines in the plane no two of which are parallel
and no three of which are concurrent. These lines divide the plane into finite
and infinite regions. In each finite region we write 1 or —1. In one operation,
we can choose any triangle made of three of the lines (which may be cut by
other lines in the collection) and multiply by —1 each of the numbers in the
triangle. Determine if it is always possible to obtain 1 in all the regions by
successively applying this operation, regardless of the initial distribution of
the numbers 1 and —1.
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6. Consider an infinite sequences {xn}52 , of positive integers that satisfies
the recurrence
Tnt2 = ng(wn-i-l, wn) + 2006

for each positive integer n, where ged(u, v) is the greatest common divisor
of the integers u and v.

Does there exist a sequence of this type which contains exactly 102006
distinct numbers?

—_—_— N S ————

Continuing with this theme we have the problems of the 215 Olimpiada
Iberoamericana de Matematica. Premer Dia, 2006. Thanks again go to Bill
Sands and Leda Sanchez for making them available to the Corner.

21 OLIMPIADA IBEROAMERICANA DE
MATEMATICA
Guayaquil, 26-27 September 2006

1. In the scalene triangle ABC with ZBAC = 90°, the tangent line to the
circumcircle at at A intersects the line BC at M. Let S and R be the points
where the incircle of ABC touches AC and AB, respectively. The line RS
intersects the line BC at IN. The lines AM and SR meet at U. Show that
triangle UM N is isosceles.

2. Let ai, as, ..., ay, be real numbers. Let d be the difference between the
smallest and the largest of them, and let s = }_, . |a; — a;|. Show that
n?d

and determine the conditions under which equality holds in each inequality.

3. The numbers 1,2, ..., n? are placed in the cells of an n x n board, one
number per cell. A coin is initially placed in the cell containing the number
n?. The coin can move to any of the cells which share a side with the cell it
currently occupies.

First, the coin travels from the cell containing the number 1 to the cell
containing the number n?, using the smallest possible number of moves.
Then the coin travels from the cell containing the number 1 to the cell con-
taining the number 2 using the smallest possible number of moves, and then
from the cell containing the number 3, and continuing until the coin returns
to the initial cell, taking a shortest route each time it travels. The complete
trip takes IV steps. Determine the smallest and largest possible values of V.

4 Determine all pairs (a, b) of positive integers such that 2a + 1 and 2b — 1
are relatively prime and a + b divides 4ab + 1.
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5. The circle I is inscribed in quadrilateral ABC D with AD and C D tangent
to T at P and Q, respectively. If BD intersects I at X and Y and M is the
midpoint XY, prove that LZAMP = /CMQ.

6. Let n be an odd positive integer, and let Py and P; be two consecutive
vertices of a regular n-gon. For each k > 2 define P, to be the vertex of the
n-gon that lies on the perpendicular bisector of P,_1P,_». Determine all n
for which the sequence Py, Py, Ps, ... covers all the vertices of the n-gon.

—_—_—— S ———

As the last problem set for this Corner we give the XVIII Olimpiada de
Matematica de Paises del Cono Sur. Again, many thanks to Bill Sands and
Leda Sanchez.

XVIII OLIMPIADA DE MATEMATICA DE PAISES
DEL CONO SUR
Atlantida, June 14-15, 2007

1. Find all pairs (x, y) of nonnegative integers that satisfy

By+x+y = xzy+ 2zy?.

2. Given are 100 positive integers whose sum equals their product. Deter-
mine the minimum number of 1’s that may occur among the 100 numbers.

3. Let ABC be an acute triangle with altitudes AD, BE, CF where D, E,
F lie on BC, AC, AB, respectively. Let M be the midpoint of BC. The
circumcircle of triangle AEF cuts the line AM at A and X. The line AM
cuts the line CF at Y. Let Z be the point of intersection of AD and BX.
Show that the lines Y Z and BC are parallel.

4 Some cells of a 2007 x 2007 table are coloured. The table is “charrua” if
none of the rows and none of the columns are completely coloured.

(a) What is the maximum number k of coloured cells that a charrua table
can have?

(b) For such k, calculate the number of distinct charrua tables that exist.

5. Let ABCDE be a convex pentagon that satisfies the following:
(i) There is a circle T tangent to each of the sides.
(ii) The lengths of the sides are all positive integers.

(iii) At least one of the sides of the pentagon has length 1.

(iv) The side AB has length 2.



218

Let P be the point of tangency of I" with AB.
(a) Determine the lengths of the segments AP and BP.

(b) Give an example of a pentagon satisfying the given conditions.

6. Show that for each positive integer n, there is a positive integer k such
that the decimal representation of each of the numbers k, 2k, ..., nk con-
tains all of the digits 0, 1, 2, ..., 9.

—_—— N r——— S ——— —

Next we look at the solutions to problems of the 55" Czech and Slovak
Mathematical Olympiad 2006 given at [2009 : 81-82].

1. (P. Novotny) A sequence {a, }32_, of positive integers is defined forn > 1
by an4+1 = an + b, where b,, is obtained from a,, by reversing its digits (the
number b,, may start with zeroes). For instance if a; = 170, then a, = 241,
a3 = 383, ag = 766, .... Decide whether a7 can be a prime number.

Solution by Titu Zvonaru, Comanesti, Romania, modified by the editor.

The answer is that a7 cannot be a prime number.
We use the following lemmas:

Lemma 1. If a,, has an even number of digits, then 11 divides a,, + b,,.

Proof: Let a,, = dyds...dag, b, = dag ...dad; be the decimal representa-
tions of a,, and b,,. Modulo 11 we have

a, + b,
= (dllozk—l + oo+ dop_110 + dzk:) + (d2k102k—1 4ot dy10 4 d1)
= di[(11 - 1) 1]+ do[(11 - )P4 (11— )] + -+
+ dar—1[(11 — 1) + (11 — 1)2*72] + doie[1 + (11 — 1)%F71]
= di(-1+1) +da(1—1)+ -+ +dai(1-1)
= 0 (mod 11) . .

Lemma 2. If a,, is divisible by 11, then b,, is divisible by 11.

Proof: If a,, has an even number of digits this follows from Lemma 1. If a,,
has an odd number of digits, then as in the proof of Lemma 1 we deduce that
an — b, =0 (mod 11), and the result follows. |

Clearly, if a,, has k digits, then a,,+1 has at most k + 1 digits.

Suppose for the sake of contradiction that 11 does not divide ar. Then
it follows from Lemma 1 and Lemma 2 that a; has an odd number of digits
and that as, ags, . .., ag €ach have the same number of digits as a; (otherwise
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the first a; after a; with more digits than a; has an even number of digits,
implying that 11 divides a7).

Let f and £ be the first and last digits of a;. Then, in order not to have
an increase in the number of digits, the first digits of a4, a2, a3, a4, ag are
L F+6,2(f+42),4(f + ¢, 8(f + £); and then ag has one more digit than
a; (since f + £ > 1), a contradiction.

Therefore, ar is divisible by 11, and since it is easy to see that ay > 11,
this means that ar is not prime.

2. (). Sim3a) Let m and n be positive integers such that
(x+m)(x+n) = z+m+n
has at least one integer solution. Prove that % < % < 2.

Solved by Michel Bataille, Rouen, France; and Oliver Geupel, Briihl, NRW,
Germany. We give Bataille’s version.

Let p(x) = 22 + (m +n — 1)z + (mn — m — n). Since

(m+n—1)2—4(mn —m —n)

= (m+n+1)2—4mn > 2vVmn+1)2 —4mn > 0,

the equation p(x) = 0 has two distinct solutions, one of which is an integer
(from the hypothesis). As the sum of the solutions is the integer 1 — m — n,
the other solution is an integer as well. We denote these solutions by a, a’
with a’ < a. Also, we note that p(—m) = —n < 0, p(—n) = —m < 0 s0
that —m and —n are between a and o’ and in particular,

m,n > 1—a. €]

Lastly, we observe that @ < 0, since p(z) # 0 for x > 1 (if ¢ > 1, then
x? > z, x(m 4+ n) > m + n and so p(z) > mn > 0). Now, we rewrite
p(a) =0 as

(m—(l—a))(n—(l—a)) =1l—a.

From 1 — @ > 1 and the inequalities (1), we see that m — (1 — a) and
n — (1 —a) are divisors d, d’ of 1 —a with d, d’ > 1 and dd’ = 1 — a. Thus,
m =dd + d, n = dd’ + d’ and so

2m—n = dd'+2d—d = d(d—1)+2d > 2d > 0
with 2n — m > 0 deduced similarly. The desired inequalities follow.

3. (T. Jurik) Triangle ABC is not equilateral, and the angle bisectors at A
and B intersect the sides BC and AC at K and L, respectively. Let S be the
incentre, O be the circumcentre, and V' be the orthocentre of triangle ABC.
Prove that the following statements are equivalent:
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(a) The line KL is tangent to the circumcircles of triangles ALS, BV S,

and BKS.

(b) The points A, B, K, L, and O are concyclic.

Solution by Titu Zvonaru, Comanesti, Romania.

We denote by I'( XY Z) the circum-

circle of AXY Z, and let « = ZBAC,

3= /CBA, and v = ZACB. A
Suppose first that (a) is true.
Since KL is tangent to I'(ALS) and
AK is the hisector of /BAC, we have (
/KLS = /LAS = /SAB S o)
< /KLB = /KAB,
B K

hence,

points A, B, K, L are concyclic. (1)

We also deduce that

/LBK = /KAL < a = 8.

@)

Suppose that KL is tangent to I'(BV S) at T'. Taking the power of point L
with respect to T'(BV S) and T'(BK S) we obtain LT? = LS - LB = LK?,
hence KL is tangent to I'(BV S) at K, that is, the quadrilateral VBKS is
cyclic and

/VBK + /VSK = 180°.

By (2) we know that the points V, S, and C are collinear, so that

o
LVBK = /KSC <= 90° — v = 5-1—% < a+3y = 180°.

Sincea = 3, a+ 8+ v = 180° and o + 3+ = 180°, hence
a =8 ="72°, ~ = 36°.
Using (3), we deduce that

180° — ZBOC 180° — 2
/OBK = 2 = 2 = 18°

LKAO = /KAC - Z0AC =
e 360 —_ 180 = 180 y

2

hence,
quadrilateral AOK B is cyclic.

a 180° — LAOC

®3)

@
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By (1) and (4) it follows that the statement (b) is true.

Conversely, suppose that the statement (b) is true, so that the points
A, B, K, L and O are concyclic.

Since ABK L is cyclic, ZLAK = ZLBK is equivalent to « = 3, which
is equivalent to LK ||AB; it follows that ZSLK = ZSBA = ZSAL and
/SKL = /SAB = /SBK, and hence

KL istangent to I'(ALS) and to I'(BKS) . (5)

Since ABKO is cyclic, we have that Z/OBK = /K AO is equivalent to
90° —a = %—(900—[3); but « = 3, hence 90° — o = %—90°+ais
equivalent to « = 3 = 72° and v = 36°.

Since o« = 3, we deduce that

/SKL = /SAB = 2

, = 36° = /SBK (6)

o

and /ZVBK = 90° — v =54°; /KSC = 3 + % = 54°, hence
the quadrilateral SV BK is cyclic. 7
By (6) and (7)
LK is tangent to I'(BV S) at point K . (8)
By (5) and (8) it follows that the statement (a) is true.

4 (). Svreek) A segment AB is given in the plane. Find the locus of the cen-
troids of all acute triangles ABC for which the following holds: the vertices
A and B, the orthocentre V, and the centre S of the incircle of the triangle
ABC are concyclic.

Solved by Oliver Geupel, Briih, NRW, Germany; Konstantine Zelator, Uni-
versity of Pittsburgh, Pittsburgh, PA, USA; and Titu Zvonaru, Comanesti,
Romania. We give Geupel’s solution.

Let A’ and B’ be points on AB such that 3AA’ = 3BB’ = AB. leto
denote the region which is the open strip between the two perpendiculars to
AB through A’ and B’. Let T'; and I'; denote the two circular arcs joining
A’ and B’ with peripheral angles of 60°. We will prove that the locus of the
centroids G are the two sub-arcs of I';y and I'; which lie inside o (see the
figure on the next page).

Let C be any point such that AABC is acute. Let AA* and BB* be
the altitudes of A ABC passing through A and B. Since the points C, B*,
V, and A* are concyclic, we have

LAVB = LA*VB* = 180° — ZACB.
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On the other hand,

/ASB = 180° — %(ABAC + ZABC)
— 90° + %4ACB .
The points A, B, V, and S are concyclic if

and onlyif /AV B = ZASB, equivalently
180° — ZACB = 90° + 1 ZACB, that is,

C
/ACB = 60°. f /
A( | |

Therefore, the locus of C is the union
of the two circular arcs joining A and B
that have peripheral angles of 60°, re-
stricted to the region which is the open
strip between the perpendiculars to AB
through A and B. Finally, if M is the mid-
point of AB, then MC = 3MG, that is,
the locus of G is homothetic to the locus of
C with M as the centre of the homothety —

and ratio 1 .
3

5. (M. Paniak) Find all triples (p, g, r) of distinct prime numbers such that

pllg+7), ql(r+2p), r|(p+3q).

Solved by David E. Manes, SUNY at Oneonta, Oneonta, NY, USA; and Titu
Zvonaru, Comanesti, Romania. We give Manes’ solution.

The triples (p, g, r) of distinct primes satisfying the above divisibility
conditions are (5, 3,2), (2,11,7), and (2, 3,11).

Note that g is an odd prime since ¢ = 2 and q | (r + 2p) implies r + 2p
is even, and so r = 2, a contradiction since p, g, and r are distinct. Assume
that p and r are also odd. Then g + » = pa, r + 2p = gb, and p + 3q = rc
for some integers a, b, ¢ where b is odd. Therefore, b = 2d + 1 for some
integer d. Then r = pa — q and r + 2p = gb implies p(a + 2) = q(b + 1).
Therefore, p | (b +1) = 2(d + 1), so that p | (d + 1). Multiplying the
equation r + 2p = ¢(2d 4+ 1) by ¢ and substituting rc¢ = p + 3q yields
p(1+2c) = 2q(d — 1), whence p | (d—1). Thus, p| (d+1)andp | (d—1)
implies p = 2, a contradiction. Therefore, either p or » must equal 2.

Assume r» = 2 with p and q odd primes. Then p | (¢ + 2) implies either
p=q+2orp<q+2 lfp<q+2 thenq| (r+ 2p) = 2(p+ 1), so that
g | (p+1). Since p and g are both odd, it follows thatg < p+ 1 < g + 3.
Therefore, either p +1 = g+ 1o0orp +1 = q + 2, both of which are
contradictions since p and g are distinct odd primes. Hence, p = ¢q + 2.
Thengq | (r+2p) =2(p+1),andsogq | (p+1) = g+ 3, whence ¢ = 3 and
p = 5. This yields the first triple (5, 3, 2).
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Finally, assume p = 2 with ¢ and r odd primes. The divisibility condi-
tions for this case are

q+r = 2a, ¢9)
r+4 = gqb, (2)
3g+2 = rc, (3)

for some positive integers a, b, ¢ with b and ¢ odd. Assume » < q. Then
q | (r + 4) implies ¢ < r + 4. Therefore, r < ¢ < r 4+ 4. Since q, r are
odd primes, it follows that the only possible values for q are ¢ = » + 2 and
gq=r+4. Ifg=r+2,thenq| (r+2p) =r+4implies(r+2) | (r+4), a
contradiction since » > 0. Therefore, ¢ = r+4 sothatin (3), 3(r+4)+2 = rc
implies 7(c — 3) = 14. Hence, r | 14 sothatr = 7and ¢ = r + 4 = 11.
Thus, the second triple is (2,11, 7).

On the other hand if » > g, let r = q + 2k for some integer k. Note
that k > 1sincer =qg+2andgq | (r4+4) =1+ 6 imply g =3 and r = 5.
However, these values do not satisfy » | (3¢ +2). In(3), 3¢+ 2 = (g + 2k)c
implies ¢(3 — ¢) = 2(kc — 1) > 0. Therefore, 2 | (3 — ¢) > 0 and c is odd
yield ¢ = 1. Hence, q | 6, so that ¢ = 3 and » = 3¢ + 2 = 11. This yields
the last triple (2, 3,11).

_—_—m N~ S —————

Now we turn to the files for the April 2009 number of the Corner and
solutions from our readers to problems of the Scientific and Technical Re-
search Institute of Turkey, Team Selection Examination for the International
Mathematical Olympiad given at [2009 : 144].

2. Let n be a positive integer. In how many different ways can a 2 x n
rectangle be partitioned into rectangles with sides of integer length?

Solution by Oliver Geupel, Briihl, NRW, Germany.

Consider the rectangle with vertices (0, 0), (0, 2), (n,0), and (n,2) in
the Cartesian plane. A partition can be characterized by the set E of line seg-
ments ((j, k), ( +1,k)) and ((4, k), (4, k + 1)) which constitute the borders
of the small rectangles. We call a partition type A if {((n — 1,1),(n,1)) € E;
we call it type Bif {((n — 1,1),(n,1)) ¢ E. For each partition E, the set

E' =E — {{(k,n —1),(k,n)), ((n,7),(n,d +1))[0 <k <2,0<5<1}
U {<(n - 1’0)7 (TL - 17 1))7 ((n - 17 1)7 (n - 1’ 2)>}

constitutes a partition of the 2 x (n — 1) rectangle with vertices (0, 0), (0, 2),
(n —1,0), and (n — 1, 2).

If E’ is of type A, that means ((n — 2,1), (n — 1,1)) € E’, then there
are five corresponding sets E possible, four of type A and one of type B; see
Figure 1. Otherwise, if E’ is of type B, then there are three corresponding
sets E possible, one of type A and two of type B; see Figure 2.
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Figure 1 type A: =J— =—|— =— type B: =—

Figure 2 type A: — type B:

Let A,, and B,, denote the number of type A and type B partitions,
respectively, and let C,, = A,, + B,,. We obtain A,, = 4A,,_; + B,,_1 and
B, = A,_1+2B,,_, forn > 2. For n > 3 we derive

C, = A,+B, = 54,_1+3B,_1
= 23A, 2+ 11B,_2 = 6Cp_1 — TCp_2.
The initial values C; = 2 and C, = 8 are easy to check. We have obtained a

linear recursion for C,,_; which can be solved with repertoire methods, thus
yielding the desired number of partitions

2+2
2

n—1 2—\/5
(3+v2)" + —;

C, = (3_\/5)71

3. Letz, y, z be positive real numbers with zy + yz + zz = 1. Prove that

Ta+@+2)+n) > (Voty+yto+vVzaiz)? > 6V3.

Solved by Arkady Alt, San Jose, CA, USA; Michel Bataille, Rouen, France;
and Titu Zvonaru, Comanesti, Romania. We give Bataille’s write-up.

From the constraint, we have

(x+y)y+2) = y>+1,
+2)(z+z) = 2°+1,
(z+az)(z+y) = 2*+1,

so that the right inequality can be rewritten as
c+y+z+ /2 +14+/y2+14+/22+1 > 3V3. 1)
Now, (z+y+2)2 =22 +y?+22+2> 2y +yz+ zx + 2 =3, hence
zt+y+z > V3. (2)

Also, the function f(¢) = +/t2 + 1 is a convex function (its second derivative
satisfies f”(t) = (t* + 1)=3/2 > 0). Thus,

2
/1132—|-1—|- y2+1+ /22+123\/(M) +1

3
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and using (2) we obtain

V2 +14+/y2 +14+/224+1 > 2V3. (3)
Adding (2) and (3) yields (1). As for the left inequality, it is equivalent to
1 1 1 3V3
+ + < :
VeZ+1l  JyP+1l o VERT 1 2
B

The constraint allows us to write z = tan %, y = tan 5 2= tan% where
a, (3, v are the angles of a triangle. Then, (4) can be rewritten as

(4)

o B 0 3v3
cos — +cos— +cos— < ——,
2 + 2 + 2 - 2

which holds because from the concavity of cos on (0, g) we have

3v3
cos%+cos§+cos% < SCOS(LW) = T\/_

6

5. Given a circle with diameter AB and a point Q on the circle different
from A and B, let H be the foot of the perpendicular dropped from Q to
AB. Prove that if the circle with centre @ and radius QH intersects the
circle with diameter AB at C and D, then CD bhisects QH.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Michel
Bataille, Rouen, France; and Geoffrey A. Kandall, Hamden, CT, USA. We
give the version of Amengual Covas.

Let O be the centre of the circle on
AB as diameter, and let Q’ be the point
on this circle diametrically opposite to Q.

Let the common chord CD of the
two given circles intersects QH and QO
at points M and N, respectively.

Since this common chord is perpen-

——~UD
dicular to the line of centres QO, we see V
that, in right triangle DQQ’, DN is the
altitude to the hypotenuse. ‘

o)

By a standard mean proportion we c
A

then have
QD? = QQ'-QN,
that is,

QH? = 2Q0-QN . Q’
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Since AQN M is similar to AQHO, we also have g—% = g—g, and
hence QM - QH = QO - QN.
Therefore, QM - QH = %QHZ; whence QM = %QH, as required.

—_—_— N r——— ———
Next we will look at solutions for the Scientific and Technical Research
Institute of Turkey XIII, National Mathematical Olympiad, Second Round,
given at [2009 : 145].

1. Let a, b, ¢, and d be real numbers. Prove that

Var+ct 4+ Jat +d4+ /b + A+ /b +d* > 2v2(ab+ be) .

Solved by Arkady Alt, San Jose, CA, USA; and Edward T.H. Wang, Wilfrid
Laurier University, Waterloo, ON. We give Wang’s contribution.

The stated inequality is incorrect. A simple counterexample is given by
a=>b=c=1and d = 0. We prove the following correct version:

Vat +ct 4+ \Jar +di+ /bt +ct + /bt +d*t > 2vV2(ab+cd). (1)

By the AM—-GM Inequality and the Cauchy-Schwarz Inequality, we have

Va* + ¢t + /b* + d* 2/ (at + ¢t)(b* + d?)

>
> 2./a2b? + c2d?. )
Since 2(a?b? + c2d?) — (ab + cd)? = (ab — cd)? > 0 we have
\/2(a?b? 4 c2d?) > ab+ cd;
2\/a?b% + c2d? > V/2(ab+ cd). (3)

From (2) and (3) we obtain

Vat +ct 4+ /b +dt > V2(ab+ cd). (4)

Similarly, we have

Va* +dt 4 /b +ct > V2(ab+dc). (5)
Adding (4) and (5), inequality (1) follows.

2. Inatriangle ABC with |AB| < |AC| < |BC]|, the perpendicular bisector
of AC intersects BC at K and the perpendicular bisector of BC intersects
AC at L. Let O, Oq, and O, be the circumcentres of the triangles ABC,
CKL, and OAB, respectively. Prove that OCO; 0O is a parallelogram.
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Solution by Titu Zvonaru, Comanesti, Romania.

As usual write /BAC = o, /CBA = 3, Z/ACB = ~ and a = BC,
b=CA,c= AB.

Since ¢ < b < a, it follows that v < B < «, and it is easy to see that
B < 90° and a 4+ v > 90°. Let M and N be the midpoints of the sides BC
and AC, respectively.

A
L 0,
N
O,
B C
M/ K
o
In ACML and ACNK we have
a b
CL = ; CK = .
2 cosy 2 cosy
Since 2 = % and /BCA = /LCK, it follows that ACLK and AABC
are similar, hence LK = ¢
2 cosy

By the Law of Sines in AC KL, we obtain

CO. — LK c . c (1)
v 2siny  4sinycosy  2sin2y’

By the Law of Sines in AOAB, we have

AB c
005 = - = - . (2)
2sin ZAOB 2 sin 2+

By (1) and (2) we have that CO; = OO;.
If a > 90°, then ZCKL > 90° and

180° — ZLO\C _ (3600 —2/LKC
2 - B 2

Z0.CL =

) = o —90°.

If a < 90°, then we obtain

180° — /LO;C 2/LKC
/0,CL = 5 =O°—T=90°—a.
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In any case, it is easy to see that ZO.CB = a + v — 90° = 90° — 3,
hence CO; L AB. This implies that CO;||00-, because O belongs to the
perpendicular bisector of AB. It follows that OCO; 0O, is a parallelogram.

4. Find all triples (m,n, k) of nonnegative integers such that 5™ 47" = k3.

Solved by Oliver Geupel, Briihl, NRW, Germany; and by Konstantine Zelator,
University of Pittsburgh, Pittsburgh, PA, USA. We give Geupel’s solution.
The unique solution is (m,n, k) = (0,1, 2).
For nonnegative integers %, we have

52 =1 (mod 8) , 5%*! = _3 (mod 8) ,
7 =1 (mod 8) , 7**!'=_1 (mod 8), i*# 42,4 (mod 8) .

Therefore, if m, n, and k are nonnegative integers with 5™ 4+ 7% = k3,
then there are nonnegative integers s, ¢, and v such that m = 2s, n = 2t +1
and k = 2u; hence

25° 4 7.49° = 8u®. (1)

We claim that 3 | s.

If t = 0, then 25° = 2 — u® (mod 9). For nonnegative integers 3,
it holds that 25%*+! = 7 (mod 9) and 253+2 = 4 (mod 9). On the other
hand, however, 2 — u3 =1, 2, 3 (mod 9), hence 3 | s.

Otherwise, if ¢ > 0, then 25° = 8u® (mod 49); hence ged(u,7) = 1.
By Euler’s Totient Theorem, 25'%% = (2u)*? = (2u)?“® =1 (mod 49). It
is tedious but straightforward to check that 5° = 1 (mod 49) if and only if
42 | ¢. Thus, 3 | s, which completes the proof of our claim.

Substituting s = 3v, we obtain from (1) that

749" = (2u)® —25% = (2u— 25°) ((2u)? + 2u- 25" + 25%°). (2)
Therefore, there exists a nonnegative integer w such that
(2u)? + 2u - 25V 4 25%v = 7tl-w (3)
and 2u — 25Y = 7¥; thus
(2u)? — 4u - 25" +25% = 7. (4)
From (3) and (4) it follows that 6w - 25¥ = 72t+1-w _ 7w f o > 1
then 7 | w, and 7 would be a divisor of 2u — 7* = 25¥, which is impossible.

Consequently, w = 0. It follows that 2u = 25% + 1; hence by (2):

253 4 7.49° = (25 +1)° = 253 43.25%Y +3.25Y 41,
7-49" = 3.25%Y +3.25" +1,

and thus 25Y | (7 - 49t — 1).
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Now, if v > 1, then 5 | (7 - 49 — 1). However, the residues of 7 - 49*
modulo 5 are &2, which is a contradiction. We conclude that v = 0 and
therefore v = 1 and (m,n, k) = (0,1, 2).

5. Leta, b, and ¢ be the side lengths of a triangle whose incircle has radius r.
Prove that

1 " 1 n 1 <

a? b2 2 T 4r2’
Solved by Arkady Alt, San Jose, CA, USA; Michel Bataille, Rouen, France;

and Titu Zvonaru, Comanesti, Romania. We give the comment and reference
from Bataille.

This problem appears as Problem F.3019 in C2K — Century 2 of Kémal
“1994-1997”, Roland Eo6tvos Physical Society, Budapest, 1999. A solution
can be found on page 125.

—_—_— N~ S O ————

Next we turn to solutions to problems of the 2005 Australian Mathe-
matical Olympiad given at [2009 : 146-147].

1. Let ABC bea right-angled triangle with the right angle at C. Let BCDE
and ACFG be squares external to the triangle. Furthermore, let AE inter-
sect BC at H, and let BG intersect AC at K. Find the size of /DK H.

Solved by Oliver Geupel, Briihl, NRW,
Germany; Geoffrey A. Kandall, Hamden, ¢ A
CT, USA; and Titu Zvonaru, Comanesti,
Romania. We give Kandall’s solution.

Let BC = a and AC = b. Trian- K
gle KCB is similar to triangle GFB and B
triangle HC A is similar to triangle EDA. F C H
Therefore,

KC a HC b
- = and — = .
b a-+b a a+b

Consequently, KC = HC = D E
hence /DK H = 45°.

3. Letnbea positive integer, and let a4, a2, .. ., a,, be positive real numbers
such that a; + a2 + - -+ + a,, = n. Prove that

a; n as n n an < 1 n 1 n n 1
a?+1 dai2+1 a2+1 ~ a1+1 ax+1 a, +1°
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Solved by George Apostolopoulos, Messolonghi, Greece; Arkady Alt, San
Jose, CA, USA; Michel Bataille, Rouen, France; and Henry Ricardo, Tappan,
NY, USA. We give Ricardo’s write-up.

We need two easily established facts: (a)  + % > 2 for positive x, and

(b) f(t) = : j_ T is a convex function for nonnegative t. Then for each k£ we
have
ag . 1 . 1 1
af+1  (ai+1) (ak+i) -2’
ag Qg
and so

n ax ’I’L_ B n ar n _ n 1
I;ai_'_lﬁg—nf(l)—"f(’;;) Skzz:lf(ak)—zak_i_l-

k=1

It is easy to see that equality holds if and only if a;, = 1 for each k.

4. prove that for each positive integer n there exists a positive integer

such that v/z + 20047 + vz = (V2005 + 1)

Solved by Arkady Alt, San Jose, CA, USA; and Michel Bataille, Rouen, France.
We give Bataille’s version.

First we solve for x the given equation. Squaring yields

2\/z(z +2004m) = (V2005 + 1)2" —2004™ — 2z .

and squaring again yields

((\/2005 + 1)2" - 2004“)2
4 (v/2005 + 1)2” '

Observing that 2004 = (\/ 2005 + 1) (\/ 2005 — 1), we finally see that

r = i ((v2005 +1)" — (V2005 — 1)")2

is the unique real solution to the given equation. To complete the proof,
it is sufficient to show that for any positive integers n and a the number
A= ((va+1)" - (Va-— 1)")2 is an integer multiple of 4.

From the Binomial Theorem, we have

2

A = (i (:)<\/E>"-k<1+(—1)’“+1>>2 - (2% (})var

k=0 k=0
k odd
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Now, if » is odd, then n — k is even for each odd k and > (})(va)" ¥ is
k odd
an integer so that A is an integer multiple of 4.

If n is even, then 2 3~ (})(v/a)"~* = 2(y/a) - B for some integer B
k odd

and A = 4aB? is an integer multiple of 4 as well.

6. Let ABC be a triangle. Let D, E, and F be points on the line segments
BC, CA, and AB, respectively, such that line segments AD, BE, and CF
meet in a single point. Suppose that ACDF and BCEF are cyclic quadri-
laterals. Prove that AD is perpendicular to BC, BE is perpendicular to AC,
and CF is perpendicular to AB.

Solution by Geoffrey A. Kandall,
Hamden, CT, USA.

Let P be the point at which
AD, BE, and CF meet. E
Since ACDF is cyclic,
/ACF = ZADF; since BCEF
is cyclic, /ZECF = /EBF.
Therefore, PDBF is cyclic.
Analogously, PEAF is cyclic.
Now, /EFA = /EPA = A F B
/DPB = /DFB. Also,
/PFE = /PAE = /PFD (the
latter equality holds since ACDF is cyclic). Thus, Z/CFA = ZCFB = 90°.
It follows that /BE A and ZADB are each 90°.

7. Let ag, ai, az, ... and bg, by, ba, ... be two sequences of integers such
that ag = by = 1 and for each nonnegative integer k

(@) ak+1 =bo + b1 + b2+ -+ bi, and
(b) brgr = (02+0+1)ao+ (12+1+1)as + -+ + (k2 + k +1)ay.
For each positive integer n show that

biby--- b,

a, = .
ai1az - an

Solved by Arkady Alt, San Jose, CA, USA; and Michel Bataille, Rouen, France.
We use Alt’s solution.

The recursions (a) and (b) can be rewritten as follows:

Ani41 — an+bny (1)
bny1 = (n2+n+1)an+bn; n>1.



232

By making the substitutions b,, = @,,+1 —an, and bp41 = @ny2 — ant1
inb,41 = (n2 +n+4+ 1) a,, + b, we ohtain successively

Ant2 — Apt1 = (nz +n+ 1) An + Gpy1 — Qn,
Ant2 = 2apy1+n(n+1)an,
nt2 = 2ap41t+n(n+1l)a,; n>1, ()

where ag =1 and a; = bg = 1.
Using (2) we get az = 2, ag = 6, ag = 24, and a5 = 120, suggesting
that a,, = n!, and we confirm this by using Mathematical Induction.
Indeed, supposing that a,, = n! and a,,—1 = (n — 1)! and using (2) we
obtain, for any n > 1,

An+1 = 2a, + (n—1)nap—1 = 2n!+ (n —1)n(n —1)!
= 2n!4+ (n — 1)n! = (n—14+2)n! = (n+1)!.

Since a,, = n!, thenb,, = any1 —an, = (Nn+1)! —n! =n-n! = na,,
and therefore

blbg"'bn n!alaz---an
= = n! = Qp -
a1a2 LY a," a1a2 LR an

_—_—m NS —————

Next we look at solutions from our readers to problems of the 56"
Belarusian Mathematical Olympiad 2006, Category C, Final Round, given at
[2009 : 147-148].

1. (E. Barabanov) Is it possible to partition the set of all integers into three
nonempty pairwise disjoint subsets so that for any two numbers a and b from
different subsets

(a) there is a number c in the third subset such that a + b = 2¢?

(b) there are numbers c; and ¢ in the third subset such that a+b = ¢;+¢3?

Solution by Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON.

(a) Thisisimpossible. Suppose Z = AUBUC is a partition of Z satisfying
the given condition. Without loss of generosity, assume 1 € A. If B contains
any even integer b, then 1 + b is odd. Since 2c is even for all ¢ € C, we have
a contradiction. Hence, B contains no even integers. Then2 € Aor 2 € C.
In either case, 2 + b is odd for any b € B, again a contradiction.

(b) This is possible. Let Z be partitioned as Z = U U V U W where
U={3k|keZ}, V={3k+1|kecZ}and W = {3k +2| k € Z}. Let
a and b be two numbers from different subsets in the partition. There are
three cases to consider:

If a € U, b € V, then write a = 3k, and b = 3k, + 1, and take
c¢1 = 3k1 4+ 2 and ¢z = 3(k2 — 1) + 2 as the required elements in W.
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Ifa € U, b € W, then write a = 3k, and b = 3ks + 2, and take
c1 = 3ky + 1 and ¢ = 3k, + 1 as the required elements in V.

Ifa € V,be W, then write a = 3k; + 1 and b = 3k, + 2, and take
c1 = 3ky and ¢z = 3(k2 + 1) as the required elements in U.

Therefore, U, V, and W satisfy the prescribed condition.

3. (V. Karamzin) Let a, b, and c be positive real numbers such that abc = 1.
Prove that 2(a® + b2 + c2) + a + b+ c > ab+ bc + ca + 6.

Solved by Arkady Alt, San Jose, CA, USA; George Apostolopoulos, Messo-
longhi, Greece; Michel Bataille, Rouen, France; and Edward T.H. Wang, Wil-
frid Laurier University, Waterloo, ON. We give Alt’s version.

Since a 4+ b+ ¢ > 3vabc = 3 and ab + be + ca > 3V a2b%c?2 = 3 by
the AM-GM Inequality, then we have

2(a2—|—b2+02)—+—a+b+c—(ab—+—bc—|—ca)—6
= 2(a2+b2+cz—ab—bc—ca)+a+b+c—|—ab+bc+ca—6

= (a—b)’+(b-0)’+(c—a)’
+ (a+b+c—3)+(ab+bc+ca—3) > 0.

5. (I. Voronovich) Let AA;, BB;, and CC; be the altitudes of an acute
triangle ABC. Prove that the feet of the perpendiculars from C; to the
segments AC, BC, BB;, and AA; are collinear.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Michel
Bataille, Rouen, France; Geoffrey A. Kandall, Hamden, CT, USA; and Titu
Zvonaru, Comanesti, Romania. We give Kandall’s version.

Let P, Q, R, S be the feet c
of the perpendiculars from C; to
AC, BC, BB,, AA,, respec- B, Az
tively, and let the orthocentre of
ABC bhe H. Draw PS and SR. Q

The quadrilaterals APSC; R
and SHRC; are cyclic, and so S,
/PSA = /PCiA = 90° — P
/CAB and /ZHSR = /HCR =
90° — /ZRC1B = ZRBA = 90° —
/CAB. Thus, /PSA = /HSR, 4 C:
that is, the points P, S, and R are
collinear. The proof that S, R, and Q are collinear is analogous. Therefore,
P, S, R, and Q are collinear.

B
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7. (I. Zhuk) Let x, y, and =z be real numbers greater than 1 such that

wyz—y2+4my+4m—4y = 4004,
mzz—z2+6scz+9m—6z = 1009.

Determine all possible values of zyz + 3zy + 2xz — yz + 6z — 3y — 2=z.

Solved by Arkady Alt, San Jose, CA, USA; Konstantine Zelator, University
of Pittsburgh, Pittsburgh, PA, USA; and Titu Zvonaru, Comanesti, Romania.
We give Zelator’s solution.

The first equation is equivalent to x(y? + 4y + 4) = 4004 + y2? + 4y,
or z(y + 2)? = 4000 + (y + 2)?, and we obtain
4000

By similar manipulations of the second equation we obtain

1000

"= Grae “

Note that both (3) and (4) are consistent with the hypothesis that > 1,
y>1,and z > 1.
By (3) and (4) we have

4000 1000 <y+2)2 B
(y+2)2  (2+3)2 =+3/
. y+2 y+2 _ _
and since po >Owehavem =2and y = 2z + 4.
Next, we write
Q(z,y,z) = zyz+ 3zy + 2zx — yz + 6 — 3y — 22
= (xyz + 3zy + 2xz + 62) + (—yz — 3y — 22)
= Ql(xa Y, z) + QZ(:E, Y, z) . (5)

We have Q1 (=, vy, 2) = z(yz + 3y + 2z + 6). Substituting y = 2z + 4
yields Qi (z, y, 2) = 2z(z + 3)?, and then by (4) we obtain

Qi(z,y,2z) = 2000+ 2(z + 3)2. (6)
Next we substitute y = 2z + 4 into Q2(x,y,z) = —yz — 3y — 2z to obtain
Q2(z,y,2) = 6—2(z+3)>. @)

By virtue of (5), (6), and (7) we have Q(z, y, z) = 2006.
Thus, the expression Q(z, y, 2) has a fixed value, namely 2006, so the
set of all possible values of Q(x, y, z) is the singleton set {2006} .
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To finish the file of readers’ solutions for the April 2009 number of the
Corner we look at solutions to problems of the 56" Belarusian Mathematical
Olympiad 2006, Category B, Final Round, given at [2009 : 148-149].

1. (I.Voronovich) Given a convex quadrilateral ABCD with DC = a,
BC = b, /DAB = 90°, /DCB = ¢, and AB = AD, find the length
of the diagonal AC.

Solved by Geoffrey A. Kandall, Hamden, CT, USA; and Konstantine Zelator,
University of Pittsburgh, Pittsburgh, PA, USA. We give Kandall’s solution.

Let AB = AD =t and ZBDC = 6.
Then DB = tv/2 and ZADB = 45°.
By the Law of Cosines,

AC? = a? 4+ t? — 2at cos(0 + 45°)
= a® +t* — V2at(cos 0 — sin 9) .

In ABC D we have the relations

0 a? + 2t% — b2
cos = -
2at\/2
0 bsin ¢
Sin = E—
V2

Now we substitute these and simplify:

AC — <a2 + b2 + 2absin<,o>1/2 ‘
2

3 (1. Biznets) Let a, b, and c be positive real numbers. Prove that

a® —2a + 2 b® — 2b+ 2 c®—2c+2 5 3

b+e¢ t c+a T a+b - 27

Solved by Mohammed Aassila, Strasbourg, France; Arkady Alt, San Jose,
CA, USA; Michel Bataille, Rouen, France; and by Titu Zvonaru, Comanesti,
Romania. We use Zvonaru’s presentation.

Since a® —2a+2 =a®—-3a+2+a = (a—1)%(a+ 2) + a, the given
inequality is the same as
<(a—1)2(a+2) n (b—1)*(b+2) n (6—1)2(0-1-2))
b+c c+a a-+b

+ (= + by S ) > 2
b+c c+a a+b/ — 2
But this inequality is true, as the first sum is obviously nonnegative and
the second sum is greater than g by Neshitt's inequality.
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6. (1. Voronovich) A sequence {(an,bn)}>2, of pairs of real numbers is such
that (an+1, bn+1) = (ai — 2bn, bi — 2an) for all n 2 1. Find 25120,10 — blO
if 40,1 - 2b1 =17.

Solution by Michel Bataille, Rouen, France.

Let p(xz) = 3 — a1x% + byx — 1 and let «, B, v be the complex roots
of this polynomial. Then, p(z) = (x — a)(x — B)(z — ) and

a; = a+pB+7,
bp = aB+pBy+a,
1 = aby.

Now, easy calculations yield
—p(x)p(—z) = (2* — a®)(z? — B%)(z® —~?)
as well as —p(z)p(—=x) = q(x2), where
qg(x) = 3 — (af — 2b1)sr:2 + (bf —2a1)xr —1
= 22 —asx? +byxr—1.
Thus, the roots of 3 — ayx? + by — 1 are o2, B2, v2 and so
a; = o®+p°+77,
b2 = (aB)’+ (B7)* + (va)®.
Continuing this way, an easy induction argument yields
an = o 487 442,
b = (aB)? 4+ BN+ (v,

for all positive integers n.
Since p(2) = 7 — (4a;1 — 2b;) = 0, we have that 2 is a root of p(x).

Taking @ = 2, then 8~ = % and the above formulas give

9 9 9
ao = 2% +4° 447,
]. 9 9 9
bio = 220 + 22 (ﬁz +'72 ) .
It follows that
9 9 9 1 1
25120,10 — blO = 22 ajo — b10 == 22 ° 22 - 229 = 1024 2512 !

—_— e r————

That completes this number of the Corner. Send me your nice solutions,
generalizations, and comments.
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BOOK REVIEWS

Amar Sodhi

Origami Tessellations: Awe-Inspiring Geometric Designs
By Eric Gjerde, published by A K Peters Ltd., 2009
ISBN 978-1-56881-451-3, softcover, 121+vi pages, US$24.95

Ornamental Origami: Exploring 3D Geometric Designs
By Meenakshi Mukerji, published by A K Peters Ltd., 2009
ISBN 978-1-56881-445-2, softcover, 145+x pages, US$24.95

Combined review by Georg Gunther, Sir Wilfred Grenfell College (MUN),
Corner Brook, NL

One of the never-ending appeals of mathematics is the way that sim-
ple initial ideas very quickly can lead to unexpected emergent concepts of
astonishing complexity. Examples are myriad. Think of the natural num-
bers, marching on endlessly by increments of one, and giving rise to deep
and profound questions that lie at the heart of number theory. Consider the
evolution of cellular automata, whose complexities arise out of the simplest
kinds of rules describing the birth, death, or survival of the individual cells.

Origami, the traditional Japanese art of paper folding, carries with it
the same appeal. The starting components are very simple: a square piece
of paper, and a number of simple folding rules. The end results are surpris-
ing, beautiful, and unexpected, and appeal to both the mathematician, who
senses the underlying geometric regularities, and the non-mathematician,
who responds to the artistic and aesthetic dimensions of the finished prod-
uct. Origami is almost a paradox: rich in form and structure, austere in the
purity with which it expresses underlying geometric law. In this, origami re-
minds one of two other forms of traditional Japanese artistic and intellectual
expression: the poetic form of Haiku, and the game of Go.

The two books reviewed here demonstrate again that there is no clear
dividing line between mathematics and the visual arts. The study of tessel-
lations is at home as much in the mathematician’s den as it is in the artist’s
studio. Correspondence between the Dutch graphic artist M.C. Escher and
the Canadian geometer H.S.M. Coxeter makes it clear that both found inspi-
ration from the other.

The book Origami Tessellations is a wonderful example of how the
simple rules of origami can be applied to the mathematics of tessellations
to create patterns beautiful enough to grace any wall. In an introductory
chapter, the author, the paper-folding artist Eric Gjerde, provides clear and
explicit instructions on how to perform the various creases that need to be
mastered. The instructions are accompanied by a sequence of diagrams,
showing each step and so even the most novice paper folder can learn to
master techniques such as the rabbit-ear triangle sink, the rhombus twist,
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and the open-back hexagon twist. The rest of the book describes twenty-
five origami tessellation projects. These are presented in three groupings.
The first ten are beginner projects; this is followed by nine intermediate and
six advanced projects. The designs are all beautiful and show a great deal of
variation. For example, No. 11, called Chateau-Chinon, is an octagon-based
design, while No. 25, called Arms of Shiva, shows a tessellation of stretched
pentagons surrounding a central hexagon.

The second book, Ornamental Origami, is authored by Meenakshi
Mukerji, who was awarded the 2005 Florence Temko Award by OrigamiUSA
for her contributions to origami. This book develops and presents techniques
for constructing 3-dimensional origami designs in which a number of origami
modules are assembled in order to construct a complex 3-dimensional shape.
Often the shapes created by modular origami are polyhedral, and so it comes
as no surprise that many of the shapes presented in this book are based on
either the Platonic or the Archimedean solids.

The book is beautifully organized. There is a brief introduction which
provides useful folding tips and summarizes some of the basic facts about
the underlying geometric solids. Following this, each chapter gives careful
instructions for the construction of a number of models based upon a par-
ticular basic design feature. Thus, in Chapter 2, the models have a windmill
base, while Chapter 3 builds models out of a Blintz base. This is followed
by constructions based upon the icosahedron (Chapter 4), sonobe-type units
(Chapter 5), floral balls (Chapter 6), finally concluding with a detailed chapter
on planar models.

All constructions are clearly described, with detailed sequences of dia-
grams illustrating each step. Many of the models are stunning in their fin-
ished form, regardless of whether this is one of the floral models such as the
lush 30-unit assembly of a zinnia, or the more austere star shapes arising out
of the planar models.

Both books are lavishly illustrated and even though the two authors
are non-mathematicians, these volumes will appeal to mathematicians for
providing, in stunning visual form, so many models arising out of strict geo-
metric laws. As for the many who have at one time or another folded paper
to construct a boat, an airplane, or a delicate crane, the allure of these books
will be hard to resist. They will feel a twitching in their fingers as they reach
for a square piece of paper and start to fold, converting geometric regularities
into aesthetically pleasing patterns.

%

Addendum to the November 2009 review of Crocheting Adventures
with Hyperbolic Planes by Daina Taimina.

This book has won the coveted Diagram Prize for the Oddest Book Title.
Details of the award can be found at http://www.thebookseller.com/blogs
//114968-non-euclidian-needlework.html

—_—_—— N r——— S ——
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PROBLEMS

Toutes solutions aux problémes dans ce numéro doivent nous parvenir au plus
tard le 1er novembre 2010. Une étoile (x) aprés le numéro indique que le probléme
a été soumis sans solution.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais. Dans la section des
solutions, le probléme sera publié dans la langue de la principale solution présentée.

La rédaction souhaite remercier Jean-Marc Terrier, de I’Université de
Montréal, d’avoir traduit les problémes.

—_—— S ———

A number of corrigenda have been pointed out by diligent readers.
In problem 3500 at [2009 : 517, 519] the expression
B=—f)+3f(3) - 35 (-3)"
should be replaced by
B=—f()+3f(3) —3f (-3)"
The due date for solutions to the corrected version is 1* November, 2010.
In problem 3528 at [2009 : 171] the word “circles” should be replaced
by “triangles”. The French version of this problem is correct, and the due
date for solutions to this problem remains the same.
In problem 3532 at [2009 : 172, 174] the “r” on the left of the displayed

equation should be replaced by “y/r”. The due date for solutions to the
corrected version of this problem remains the same.

—_—_— N~ S ————

3539. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne et Pantelimon George Popescu, Bucarest, Rou-
manie.

Soit A et B deux matrices réelles carrées 2x 2. Montrer que les équations
det(xA £+ B) = 0 ont toutes leurs racines réelles si et seulement si

[trace(AB) — trace(A)trace(B)]? > 4det(A)det(B).

3540. Proposé par D.]. Smeenk, Zaltbommel, Pays-Bas.

Dans un triangle ABC de demi-périmétre s et de surface F, on inscrit
un carré PQRS de c6té x, avec P et Q sur BC, R sur AC et S sur AB. De
maniére analogue, soit y et z les c6tés des carrés dont deux sommets sont
respectivement sur AC et AB. Montrer que

-1 < 5(2‘*‘\/5)-

—1 —1
T4y " +=z oF
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3541. Proposé par D.]. Smeenk, Zaltbommel, Pays-Bas.

Dans un triangle ABC, soit O le centre du cercle circonscrit, de rayon
R, H son orthocentre, a, b et c les longueurs des cotés, les hauteurs AD, BE
et CF, ot les points D, E et F sont respectivement sur les cotés BC, AC
et AB. La droite d'Euler du triangle ABC coupe BC en Pet HC en Q etle
quadrilatére ABPQ posséde un cercle inscrit. Montrer que a? 4+ b* = 6 R?
et exprimer la longueur de PQ en fonction de a, b et c.

3542* Proposé par Cosmin Pohoata, Collége National Tudor Vianu, Bu-
carest, Roumanie.

Les cercles inscrits mixtilineaires d’'un triangle ABC sont les trois cercles
chacun étant tangent a deux cotés et intérieurement au cercle inscrit. Soit '
le cercle tangent intérieurement a ces trois cercles. Montrer que T est or-
thogonal au cercle passant par le centre du cercle inscrit et par les points
isodynamiques du triangle ABC.

[Ed. : Soit T 4 le cercle passant par A et par les points d’intersection
des bissectrices interne et externe en A avec la droite BC'. Les points isody-
namiques sont les deux points communs aux cerclesT 4, T'g et T'c.]

3543. Proposé par Mehmet Sahin, Ankara, Turquie.

Dans un triangle ABC, soit r le rayon du cercle inscrit, R celui du cercle
circonscrit, et [AD], [BE] et [C'F] les bissectrices joignant les sommets aux
points D, E et F sur les cotés BC, AC et AB respectivement. Soit R’ le
rayon du cercle circonscrit au triangle DEF. Montrer que

R4
< .
R < 1673

3544 Proposé par Mehmet Sahin, Ankara, Turquie.

Soit I,,, I, et I, les excentres (les centres des cercles exinscrits) d’un tri-
angle ABC et H,, Hy et H_ les orthocentres respectifs des triangles I, BC,
I,CA et I.AB. Montrer que

Aire(H,CH,AH_.B) = 2Aire(ABC).

3545. Proposé par Michel Bataille, Rouen, France.

On donne une droite £ et les points A et Bavec A ¢ £et B € £. Dans le
plan qu'’ils déterminent, trouver le lieu des points P tels que PA+QB = PQ
pour un unique point @ sur £.

3546. Proposé par Michel Bataille, Rouen, France.

Soit n un entier positif. Montrer que

o R () =k

k=0
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3547. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

On donne un triangle ABC de périmétre 1 et soit r le rayon de son
cercle inscrit, R celui de son cercle circonscrit et a, b et ¢ les longueurs de ses
cotés. Montrer que

a n b n c > 2
Vi—a V1-b +1—c¢c = \1+4r(r+4R)

3548. Proposé par Pham Van Thuan, Université de Science de Hanoi,
Hanoi, Vietnam.

Soit x, y et z trois nombres réels non négatifs. Montrer que

Z Va? —xzy+y2 < x+y+z+\/m2—|—y2+z2—my—yz—zm.

cyclique

3549. Proposé par Pham Kim Hung, étudiant, Université de Stanford, Palo
Alto, CA, E-U.

Soit x, y et z trois nombres réels non négatifs tels que a + b + ¢ = 3.
Montrer que (1 + azb) (1+ bzc) (1+ cza) < 5 + 3abc.
3550. Proposé par Ovidiu Furdui, Campia Turzii, Cluj, Romania.
Trouver la somme
oo oo n+m 1
—1)"*t™ (In2 — .
£ Lo (m- % )

3539. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain and Pantelimon George Popescu, Bucharest, Ro-
mania.

Let A and B be 2 x 2 square matrices with real entries. Prove that the
equations det(xA + B) = 0 have all of their roots real if and only if

[trace(AB) — trace(A)trace(B)]?> > 4det(A) det(B).

3540. Proposed by D.]. Smeenk, Zaltbommel, the Netherlands.

Triangle ABC has semiperimeter s and area F. A square PQRS with
side length z is inscribed in ABC with P and Q on BC, Ron AC, and S on
AB. Similarly y and z are the sides of squares two vertices of which lie on
AC and AB, respectively. Prove that

—1 < 5(2‘*‘\/5)-

—1 —1
T4y " +=z oF
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3541. Proposed by D.]. Smeenk, Zaltbommel, the Netherlands.

Triangle ABC has circumcentre O, circumradius R, orthocentre H,
side lengths a, b, ¢, and altitudes AD, BE, CF, where points D, E, F lie on
the sides BC, AC, AB, respectively. The Euler line of triangle ABC inter-
sects BC in P and HC in Q, and the quadrilateral ABPQ has an inscribed
circle.

Show that a? + b? = 6R?, and express the length of PQ in terms
of a, b, c.

3542*. Proposed by Cosmin Pohoata, Tudor Vianu National College,
Bucharest, Romania.

The mixtilinear incircles of a triangle ABC are the three circles each
tangent to two sides and to the circumcircle internally. Let T" be the circle
tangent to each of these three circles internally. Prove that I is orthogonal
to the circle passing through the incentre and the isodynamic points of the
triangle ABC.

[Ed.: LetT 4 be the circle passing through A and the intersection points
of the internal and external angle bisectors at A with the line BC. The
isodynamic points are the two points thatT 4, I'g, and T'c have in common. ]

3543. Proposed by Mehmet Mehmet Sahin, Ankara, Turkey.

Triangle ABC has inradius r, circumradius R, and angle bisectors [AD],
[BE], [CF], where points D, E, F lie on the sides BC, AC, AB, respec-
tively. Let R’ be the circumradius of triangle DEF'. Prove that

R4
’
LI 1673 °

3544 Proposed by Mehmet Sahin, Ankara, Turkey.

Triangle ABC has excentres I, I, I. and H,, Hy, H, are the ortho-
centres of triangles I, BC, I,C A, I.AB, respectively. Prove that

Area(H,CH,AH.B) = 2Area(ABC).

3545. Proposed by Michel Bataille, Rouen, France.

Given a line £ and points A and B with A ¢ £ and B € ¢, find the locus
of points P in their plane such that PA + QB = PQ for a unique point Q
of £.

3546. Proposed by Michel Bataille, Rouen, France.

Let n be a positive integer. Prove that

(3) k m
(-1 (2) i
O<k:0n+k:(k>§n”'
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3547. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Triangle ABC has perimeter equal to 1, inradius r, circumradius R,
and side lengths a, b, ¢. Prove that

a n b n c > 2
Vi—-a +1-=b +1—-c =~ \1+4r(r+4R)

3548. Proposed by Pham Van Thuan, Hanoi University of Science, Hanoi,
Vietnam.

Let x, y, and z be nonnegative real numbers. Prove that

Y Va—wy+y? < ety tzt a2ty —ay —yz— 2z

cyclic

3549. Proposed by Hung Pham Kim, student, Stanford University, Palo
Alto, CA, USA.

Let a, b, and ¢ be nonnegative real numbers such thata + b + ¢ = 3.
Prove that (1 + a2b) (1+ bzc) (1+ c2a) < 5 + 3abc.

3550. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Find the sum

oo oo n+m 1
_1\ntm _ -

—_—_—— N r——— S ———

A brief word here on the current situation regarding articles in CRUX
with MAYHEM.

For various reasons, no articles have appeared in the first four issues
of this year, and there has been a backlog of articles for a while now.

One reason is that there is not much space for articles in CRUX with
MAYHEM to begin with. For instance, only nine articles appeared in all of
2008, for a total of 46 out of 512 pages, which is less than 9% of the total
page count. Another reason is the quantum nature of the page count, which
is either 64 or 96 pages per issue, and producing a 96 page issue (which is
naturally richer in articles) requires a larger “energy packet” to achieve.

We will be aiming to clear the backlog in the last four issues of 2010
and early in 2011, and thank our contributors for their patience and their
continued interest and enthusiasm for articles in CRUX with MAYHEM.

Vaclav (Vazz) Linek
w
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SOLUTIONS

Aucun probléme n’est immuable. L’éditeur est toujours heureux d’en-
visager la publication de nouvelles solutions ou de nouvelles perspectives
portant sur des problémes antérieurs.

—_— N r———

3440. [2009 : 233, 236] Proposed by Hidetoshi Fukagawa, Kani, Gifu,
Japan.
There are IN coins on a table all of the same size. These N coins can

be arranged in a square and they can also be arranged into an equilateral
triangle. Find V.

Solution by John Hawkins and David R. Stone, Georgia Southern University,
Statesboro, GA, USA.

We are told that the number of coins satisfies N = s? for some s > 1,
t(t + 1)
2

while at the same time it is a triangular number so that N = for

some t > 1. After some algebra we find these conditions to be equivalent to
the existence of positive integers x = 2t + 1 and y = 2s for which

2 —2y% = 1.

We recognize this to be a Pell equation; since the time of Brahmagupta in the
seventh century, it has been known that if such an equation has any solution,
then it has infinitely many solutions. [Ed.: The solution to this Pell equation
was obtained 1100 years before Brahmagupta by the Pythagoreans in Greece
and independently around that time in India.] According to the theory, the
pairs (x,y) that satisfy the equation can be calculated recursively, based
upon the initial solution (x1,¥y1) = (3,2) and the two recursive equations
Tr+1 = 3Tk +4Yk, Ye+1 = 2z, + 3yx for k > 1. Therefore, for our problem,
the pairs (s, t) can also be calculated recursively:

Sp+1 = 2t +3sp+1,
tk,_|_1 = 3tk+48k+1.

We list the first few solutions of the Pell equation, also giving s, ¢, and IN.

T Y s=2 t:m_l N:Szzit(t—i_l)
2 2 2
3 2 1 1 1
17 12 6 8 36
99 70 35 49 1225
577 408 204 288 41616
3363 2378 1189 1681 1413721
19601 | 13860 | 6930 9800 48024900
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Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; ROY BARBARA,
Lebanese University, Fanar, Lebanon; MICHEL BATAILLE, Rouen, France; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; OLIVER GEUPEL, Briihl, NRW,
Germany; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA;, HUNEDOARA PROBLEM
SOLVING GROUP, Hunedoara, Romania; PETER HURTHIG, Columbia College, Vancouver, BC;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; VACLAV KONECNY, Big Rapids,
MI, USA; KATHLEEN E. LEWIS, SUNY Oswego, Oswego, NY, USA; GEORGES MELKI, Fanar,
Lebanon; MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Springfield, MO, USA;
CRISTINEL MORTICI, Valahia University of Targoviste, Romania; DANIEL REISZ, Auxerre,
France; JOEL SCHLOSBERG, Bayside, NY, USA; ALBERT STADLER, Herrliberg, Switzerland;
EDMUND SWYLAN, Riga, Latvia; PANOS E. TSAOUSSOGLOU, Athens, Greece; PETER Y. WOO,
Biola University, La Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

The proposer found the problem in a small manuscript with the title Fukyu Sanpou, or
Masterpiece of Mathematics, written by Ajima Naonobu (1732-1798) and edited by one of his
students in 1799. At that same time in Europe (and independently, because Japan was then
in the midst of its long period of isolation) Euler answered this question and more in a 1778
paper. There is now a vast literature on these square triangular numbers; the two web pages
listed below contain further formulas and references. For example, the formula for the nth
square triangle number is

N = ((1+ﬁ)2" —(1—«5)2")2
n — 4\/5

Almost all submissions assumed the theory of Pell equations to be well known. Bataille,
however, used the recursive formula for N, that is established in [3]:

Noa = (6y/M - /Nos )

Also, Hurthig’s solution displayed noteworthy ingenuity; obtaining the solution by manipulat-
ing diagrams.

Schlosberg addressed the question of what quantity of coins could, in fact, be arranged
to fit on a table. The smallest North American coin has a diameter of about 1.8 cm (the US
dime measures 1.791 cm across while the Canadian dime measures 1.803 cm). An equilateral
triangle consisting of 1225 dimes, 49 along a side, would fit on a table 88 cm X 76 cm, which
is a reasonable size for a table, but who could afford that many dimes? If Scrooge McDuck, the
world’s richest duck, wanted to arrange a square of 41616 dimes (with 204 per side), he would
need a table whose width is about 3.7 m. This computation suggests that the practical answer
to the question is that N would have to be 1, 36, or 1225. Konecny went a step further and
sent us a picture of a Christmas tree whose trunk consists of a square of 36 pennies, topped by
an equilateral triangle of 36 pennies; we decided that it would be rushing the Christmas season
a bit to reproduce his picture in our May issue.

References
[1] http://mathworld.wolfram.com/SquareTriangularNumber.html
[2] http://en.wikipedia.org/wiki/Square_triangular_number
[3] D. Keedwell, Square-triangular numbers. Math. Gazette 84 (July 2000), 292-294.
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3441 % . [2009 : 233, 236] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

Let ABCD be a convex quadrilateral and let P be a point in the interior

of ABCD such that PA = %, pPB=2¢ pc=CP snapp=D24

V2’ V2’ V2
Prove or disprove that ABCD is a square.
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Solution by Missouri State University Problem Solving Group, Springfield,
MO, USA and Jan Verster, Kwantlen University College, BC.

We shall show that ABC D need not be a square. For a counterexample
define P to be the midpoint of a segment AC of length 2, and let B be any
point of the circle with centre A and radius v/2 that is not on the line AC.
The median from B in triangle ABC satisfies

4PB? = 2AB? +2BC? — AC? = 4+ 2BC? -4 = 2BC?.

AB BC .. .
Thus, we already have both PA = == and PB = —=. Similarly, if D
Y V2 V2 Y
is a point on the circle with centre C and radius v/2, we have PC = %

DA . .

and PD = ok To satisfy the condition that ABC D be convex, we must
restrict D to that portion of its circle in the interior of ZABC and in the
exterior of AABC'. For a specific example, choose D to lie on the line BP;
then, since P is the midpoint of both AC and BD, ABCD is a parallelogram
and, therefore, convex. It will not be a square for any B that avoids the
perpendicular bisector of AC.

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; OLIVER
GEUPEL, Briihl, NRW, Germany; RICHARD I. HESS, Rancho Pa]ps Verdes, QA, ’USA;
HUNEDOARA PROBLEM SOLVING GROUP, Hunedoara, Romania; VACLAV KONECNY, Big

Rapids, MI, USA; ALBERT STADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga,
Latvia; and PETER Y. WOO, Biola University, La Mirada, CA, USA.

NN —

3442 [2009: 234, 236] Proposed by Iyoung Michelle Jung, student, Hany-
oung Foreign Language High School, Seoul, South Korea and Sung Soo Kim,
Hanyang University, Seoul, South Korea.

Let C be a right circular cone and let D be a disk of fixed radius lying
within the base of the cone C. Prove that if A is the area of that part of
the cone lying directly above D, then A is independent of the position of the
disk D.

Solution by Albert Stadler, Herrliberg, Switzerland.

Without loss of generality we can assume that the base of the cone is
the unit circle and that the equation of the cone is

z = f(u,v) = a(l—\/u2+v2).

Then
f _ —au
RN E
—av
.f'u =

VuZ o2’
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and the area of that part of the cone lying above a region D in plane and
within the unit circle is

A = [[ V14 G+ 17 dudy

_ \/1+ a2u2 N a2v2 dud

- /A u? + v2 u? + v2 uadv

= // VvV1+a? dudv = Area(D)/a?+1,
D

which yields the desired conclusion.

Also solved by OLIVER GEUPEL, Briihl, NRW, Germany; RICHARD I. HESS, Rancho
Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Springfield, MO, USA; and the
proposers.

B WSS D W

3443, [2009 : 234, 236] Proposed by Cao Minh Quang, Nguyen Binh Khiem
High School, Vinh Long, Vietnam.

Let a, b, and ¢ be positive real numbers such that a + b+ ¢ = 3. Prove
that )
Z a*(b+1) > 2
< a+ b+ ab
cyclic

Solution by Arkady Alt, San Jose, CA, USA.

We have
2(b+1 2(b+1
ZL*') _ Z<w_a+1>
cyclica+b+ab cyclic a+b+ab
. Z a-+b > a+b
- . 3 = 2
cyclica+b+ab cycic a + b + @
4 4 1
cyclic4+a+b 18 cyclic cyclic4+a+b
4
> —.9 = 2,
- 18

where we used the fact that (z + y + z)(% + % + %) > 9 for positive real
numbers z, y, z and that > (4 + a + b) = 18.

cyclic

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; SEFKET
ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; OLIVER
GEUPEL, Briih, NRW, Germany; JOHN G. HEUVER, Grande Prairie, AB; JOE
HOWARD, Portales, NM, USA; HUNEDOARA PROBLEM SOLVING GROUP, Hunedoara,
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Romania; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; KEE-WAI LAU,
Hong Kong, China; THANOS MAGKOS, 3rd High School of Kozani, Kozani, Greece; SALEM
MALIKIC, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina; DUNG NGUYEN
MANH, Student, Hanoi University of Technology, Hanoi, Vietnam; DRAGOLJUB
MILOSEVIC, Gémji Milanovac, Serbia; ALBERT STADLER, Herrliberg, Switzerland; PANOS
E. TSAOUSSOGLOU, Athens, Greece; STAN WAGON, Macalester College, St. Paul, MN, USA;
TITU ZVONARU, Comanesti, Romania; and the proposer.

Michel Bataille, Rouen, France, pointed out that this problem appeared as Problem
No. 322 in Math. Excalibur, Vol. 14, No. 1, by the same proposer, with a solution appearing in
Vol. 14, No. 2. The solution presented here is different from that one.

3444 [2009:234,236] Proposed by Cao Minh Quang, Nguyen Binh Khiem
High School, Vinh Long, Vietnam.

Let a, b, and c be positive real numbers such thata +b+c = 1. Prove

that
1

ab
E — < —.
< 3a®126+3 — 12
cyclic

Solution by Oliver Geupel, Briihl, NRW, Germany.

The function f(z) = % is concave for 0 < xz < 1, because its

second derivative, f"(x) = — 20

Gz +2)2 is negative in this range. Hence, by

Jensen's inequality,

Fla)+ 1)+ 7)< 3(5) = =

9
We have
b b
2 33 +a2b+3 = 32 (3a — 1)2 +i;a+ (6b + 8)
cyclic cyclic
ab
< 3 N e———
- Cy%c 6a + (6b + 8)
— Z ab
2 5 (3a+2)+ (3b+2)
3 1 ab ab
< o> - ( + )
2cyclic4 3a + 2 3b+ 2
3 Z a(b+c)
cychc 3a + 2
Z f( < 3 2 1
pd — a < —e= = —.
cycllc 8 9 12

The proof is complete.
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Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,
Messolonghi, Greece; SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina;, MICHEL BATAILLE, Rouen, France; JOE HOWARD, Portales, NM, USA;
HUNEDOARA PROBLEM SOLVING GROUP, Hunedoara, Romania; PETER HURTHIG,
Columbia College, Vancouver, BC; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; KEE-WAI LAU, Hong Kong, China; THANOS MAGKOS, 3rd High School of Kozani,
Kozani, Greece;, DUNG NGUYEN MANH, Student, Hanoi University of Technology, Hanoi,
Vietnam; ALBERT STADLER, Herrliberg, Switzerland; TITU ZVONARU, Comanesti, Romania;
and the proposer.

Stan Wagon, Macalester College, St. Paul, MN, USA, used Mathematica to determine
that the inequality is true and that equality holds fora = b= c = 1/3.

——— | NS

3445 [2009 : 234, 236] Proposed by Sefket Arslanagié, University of
Sarajevo, Sarajevo, Bosnia and Herzegovina, in memory of Murray S. Klamkin.

Let a, b, and ¢ be nonnegative real numbers such that ab+bc+ac = 1.
Prove that

a 3\/§ a? \/§
<a)21+bcz el (b)21+a2¢5+1'

cyclic cyclic

Solution by Peter Hurthig, Columbia College, Vancouver, BC.
(a) By the AM-GM Inequality,
ab + bc + ca + bc > 4v a2b3c3

and
2a +b+c > 4va2be .

Using these inequalities, we have

a abe abe
= a — = a —
1+ be 1+ be ab + bc + ca + be
abc va2be
> a-—— =a—- ——
- 4va?b3c3 4
2a +b+c¢ 7 1 1
a———— = —a— —b——¢
- 16 8 16 16
Similarly,
b 7 1 1
e -b— —c— —a
14+ca — 8 16 16
and
c 7 1 1
a— —b.

_— _c —_——
1+ab — 8 16 16
Using the well-known and easy to prove inequality

(a—i—b+c)2 > 3(ab+ bc + ca)
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and the condition ab + bc + ca = 1, we obtain a + b + ¢ > +/3, and then

3 3v3
S > 3agbrg > 2B,
“ 1+ be 4 4
cyclic
as claimed.
(b) By the AM-HM Inequality,
1 9
> > :
cyclica—i—l at+b+c+3
so that
a? ( 1
Sita = X le-1ri)
cyclic ta cyclic l1+a
1
= b -3
cyclic
> b -3+ —.
= atbte +a—|—b—|—c—3

We have shown in part (a) that a + b+ ¢ > +/3; also, it is easy to check that
the function f(z) = =z — 3 + 9 3 is increasing on the interval [v/3, 00).

€T
Hence,
3 @ +b+c—3+ 9
> a c— _
cyclic1+a a+b+c—3
9
> V3—-34+4 -
> -|-\/§+3
_ V3
V341

which completes the proof.

Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,
Messolonghi, Greece; MICHEL BATAILLE, Rouen, France; CAO MINH QUANG, Nguyen Binh
Khiem High School, Vinh Long, Vietnam; CHIP CURTIS, Missouri Southern State University,
Joplin, MO, USA; OLIVER GEUPEL, Briih, NRW, Germany; JOE HOWARD, Portales, NM,
USA; HUNEDOARA PROBLEM SOLVING GROUP, Hunedoara, Romania; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; KEE-WAI LAU, Hong Kong, China; THANOS
MAGKOS, 3™ High School of Kozani, Kozani, Greece (part (a) only); DUNG NGUYEN
MANH, Student, Hanoi University of Technology, Hanoi, Vietnam; DRAGOLJUB MILOSEVIC,
Gornji Milanovac, Serbia; CRISTINEL MORTICI, Valahia University of Targoviste, Romania;
ALBERT STADLER, Herrliberg, Switzerland; PANOS E. TSAOUSSOGLOU, Athens, Greece; STAN
WAGON, Macalester College, St. Paul, MN, USA (part (b) only); PETER Y. WOO, Biola Univer-
sity, La Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

B e SN D W
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3446. [2009 : 234, 237] Proposed by Mihaly Bencze, Brasov, Romania.

For any positive integer n prove that

[VRP=n+1 + Vn?+n+1| + |Vn?2+n + /n?+3n+2]

= |Van2+3| + [Van2+8n+3 ],
where || denotes the greatest integer not exceeding .

Solution by Michel Bataille, Rouen, France.

We will show the following two chains of inequalities:
2n < /4n2+3 < n?—n+1+n?+n+1 < 2n+1 (1)
2n+1< /n?+n+yn?+3n+2 < /4n2+8n+3 < 2n+2 (2)
Then from (1),

{\/4n2+3J = L\/n2—n+1+\/n2+n+1J = 2n,
and from (2),
{\/n2+n+\/n2+3n+2J = L\/4n2+8n+3J = 2n+1,

so that both sides of the required equality equal 4n + 1.
To prove (1) we first observe that

2n = V4an? < \/4n2 +3
and

\/n2—n+1+\/n2—|—n—|—1 < Vn24+\y/n?2+2n+1 = 2n+1.

By squaring, the middle inequality of (1) becomes equivalent to

2n?2+1 < 2\/n2—n—|—1\/n2+n+1,
which holds since, squaring again, it becomes equivalent to
an* +4n? +1 < an*+4an® + 4.

Now to prove (2), we first observe that

2n+1 = vn24+vn24+2n+1 < \/n2+n+\/n2+3n+2

and

Van? +8n+3 < /4n2 +8n+4 = 2n+2.
By squaring, the middle inequality of (2) becomes equivalent to

2\/n2+n\/n2—|—3n+2 < 2n?+4n+1,
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which holds since, squaring again, it becomes equivalent to

an* + 16n% + 20n% +8n < 4n* 4+ 16n2 +20n% +8n+ 1.

Also solved by ARKADY ALT, San Jose, CA, USA; SEFKET ARSLANAGIC, University
of Sarajevo, Sarajevo, Bosnia and Herzegovina; GEORGE APOSTOLOPQULOS, Messolonghi,
Greece; ROY BARBARA, Lebanese University, Fanar, Lebanon; CHIP CURTIS, Missouri
Southern State University, Joplin, MO, USA; OLIVER GEUPEL, Briihl, NRW, Germany;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; SALEM MALIKIC, student,
Sarajevo College, Sarajevo, Bosnia and Herzegovina; CRISTINEL MORTICI, Valahia University
of Targoviste, Romania; JOEL SCHLOSBERG, Bayside, NY, USA; ALBERT STADLER, Herrliberg,
Switzerland; and the proposer. There was one incomplete solution submitted.

B WS D W

3447 . [2009 : 234, 237] Proposed by Mihaly Bencze, Brasov, Romania.

Let n be a positive integer. Prove that

2 n ,“/k+1 1
ni(n +2)! H<+ ko 1><<n+1><n!>2‘

Solution by Hunedoara Problem Solving Group, Hunedoara, Romania.

Let H, = *%Y % — 1. By the AM-GM Inequality, we have

(k—|—1 ) 1
H, = stk +1 g g < Nk 0 4 - _ =
V"% k+ 1 k(k + 1)

1 1 1
Hence, H Hj, < H L k(k+1)  nlnt1)!  (ntD)@he

On the other hand, we have, by the GM-HM Inequality,

H, = HT/%-I’“ > (i—i__il_k)—l

k+1
(k+1)? - 1
k2 + 2k  k(kE+2)
1 2

Hence, H Hi > H L k(k+2)  nl(n+2)!

This completes the proof.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; ARKADY ALT, San
Jose, CA, USA; ROY BARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE,
Rouen, France; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVER
GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; KEE-WAI LAU, Hong Kong, China; CRISTINEL MORTICI, Valahia University of
Targoviste, Romania; JOEL SCHLOSBERG, Bayside, NY, USA; ALBERT STADLER, Herrliberg,
Switzerland; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.
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3448. [2009 : 235, 237] Proposed by José Luis Diaz-Barrero and Miquel
Grau-Sanchez, Universitat Politécnica de Catalunya, Barcelona, Spain.

Let F,, be the nt" Fibonacci number, that is, Fy = 0, F; = 1, and
F, =F,_, + F,,_5 forn > 2. Prove that

n42 1/2
a®’F, + b*Fp 1 + *Fyyp > 4S8 ( > F? - F3+1>
k=1

holds for any triangle ABC, where a, b, ¢, and S are the side lengths and
area of the triangle, respectively.

Similar solutions by Thanos Magkos, 3" High School of Kozani, Kozani,
Greece and Dung Nguyen Manh, Student, Hanoi University of Technology,
Hanoi, Vietnam.

We make use of an inequality of Oppenheim. Namely, if z, y, z are
positive real numbers and ABC is a triangle with side lengths a, b, ¢ and

area S, then
xa? + yb2 + zc? > 48\ /xy +yz + zx .
If wesetx = F,, y = F41, 2 = F, 12, then we obtain

a’F,, +b°Fyyq1 + Fhyy > 4S\/FnFn+1 + Fop1Fngo+ FryoFy .

We complete the proof by showing that

n+2
FoFpa+Fop Froga+ FrpoF, = ( Z F;?) - F3+1 .
k=1

We have

FpFri1+ Fry1Fogo+ FoyoF + Fo )

= Fpt1(Fn+ Fog1+ Fog2) + FoFpi2
2F, 1 Fpyo+ FoFpyis = Frio(Fn+2F, 1)
Frot1(Fn + Fng1 + Froy1) = Foj2(Fagz2 + Fagr)
= Fj+2 + Fpy1Fnya.

n+1
Now, it remains to prove that )’ F,f = Fh41F,12, which is easily
k=1
verified by induction.

Also solved by MICHEL BATAILLE, Rouen, France; OLIVER GEUPEL, Briihl, NRW,
Germany; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; JOEL SCHLOSBERG,
Bayside, NY, USA; ALBERT STADLER, Herrliberg, Switzerland; and the proposer.

Janous located this particular inequality and more in an online paper by the proposer at
http://rgmia.org/papers/vin2/Triangle.pdf.

Y e S o S o
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3449 [2009 : 235, 237] Proposed by an anonymous proposer.

Let ABCD be a unit square, M the midpoint of AB, and IN the mid-
point of CD. Is there a point P on M N such that the lengths of AP and
PC are both rational numbers?

Solution by the proposer.

The answer is negative. We first establish a lemma in which @ denotes
the set of rational numbers.

Lemma Let o, B € Q be such that 2 — 2aa+ 3 = 0 and 8 # 2. Then
a? — 28 = ~2 for some v € Q — {0}.

B B

Proof: Lety:l—E.Thenfy;éO. Froma:1+5we obtain
2 2
a2—2,6':(1+§) —2ﬁ:(1—§> = ~2. m

Now suppose P is a point on M N such thata = AP and b = PC are
positive rational numbers. Let x = M P. Thenx € [0,1],and NP =1 — z.

Ifa=0bthenz =1—zorz = %,whichimpliesthata =b= g, a

contradiction. Hence, a # b. Note that

1
2 2
_ b 1
a @+ ¢9)
1 5

L (1—m)2+Z:w2—2m+Z. (2)

From (1) and (2) we obtain a? — b2 + 1 = 2.

Hence, 4a? = (2z)? + 1 = (a? — b% 4+ 1)2 + 1, which is equivalent
to the equation 2 — 2(a? + b?) + (a®? — b?)2 = 0. Let a? + b? = «a and
(a®> —b%)2 = 3. Thena, B8 € Qand 2 — 2a+ B = 0. If B = 2, then we
have a? — b? = ++/2, a contradiction, and thus 8 # 2. Using the Lemma,
we obtain a? — 232? = ~2 for some v € Q — {0}.

That is, (a? + b2)2 — 2(a? — b?)2 = ~2, or 6a?b? — a* — b* = +2.

By straightforward computations we find that

(a2 + b4 — 4% = (a2 + b2 — (6a2b? — a* — b?)2
= aB® 4 4a%b? + 6a*b* + 4a?b% + b®
— 36a*b* — a® — b® + 12a°b* + 12a%b°® — 2a*b*
= 16a°b® — 32a*b* + 16a%b°
16a%b?(a* — 2a%b? + b*) = [4ab(a2 — b2)}2 .
Thatis, a®+b?, ~, and 4ab(a®—b?) are nonzero rational numbers which

satisfy the Diophantine equation X4 — Y% = ZZ2. It then follows easily that
this equation has nonzero integer solutions.
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This contradicts the known results of Fermat, and our proof is complete.

It is well known that the equation X4 + Y% = Z2 has no nonzero integer solutions.
The proof of this result by Fermat is based on his method of infinite descent. Using exactly the
same argument, it can be shown that the equation X* — Y% = Z2 has no nonzero integer
solutions. For example, see Theorem 13.3 on pages 520-522 and Exercise No. 4 on p. 525 of the
book Elementary Number Theory and its Applications, 5t edition, by Kenneth Rosen.

B W N D W

3450. [2009 : 235, 237] Proposed by Dragoljub MiloSevi¢, Gornji Mi-
lanovac, Serbia.

Let AABC have inradius r, exradii r,, 7y, 7, and altitudes hq, hy, he.
Prove that

hg + 27, h 2 he + 27, 27
+2r 4 + 27 n +2r > 27
r4+7re r4+ry r4+re 4
Solution by Arkady Alt, San Jose, CA, USA; Dung Nguyen Manh, Student,
Hanoi University of Technology, Hanoi, Vietnam; Thanos Magkos, 3" High

School of Kozani, Kozani, Greece; and Panos E. Tsaoussoglou, Athens, Greece,
independently.

Let a, b, c be the sides, A the area, and s the semiperimeter of the
triangle ABC. We have

he + 27, _
Z — Z a S a
cyclic T+ Ta cyclic (% + 5 fa)
_ 252 _ (a+b+c)?
B Z a(2s —a) Z 2a(b+c)

cyclic cyclic

Using the well-known and easy to prove inequality
(a-l—b—i—c)2 > 3(ab+ bc + ca)

and the Cauchy-Schwarz inequality, we obtain

(a+b+c)? 3(ab + bc + ca)
Z 2a(b + ¢) . Z 2a(b+ c)

cyclic
1

3
= E(ab+bc+ca)zm

cyclic

1

Za(b—l—c) 7a(b+c)

cyclic cyclic

2
a14+141)?2 = 17,

v
[ NY U NS G

as claimed.



256

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; SEFKET
ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; MICHEL BATAILLE,
Rouen, France; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVER
GEUPEL, Briihl, NRW, Germany; JOE HOWARD, Portales, NM, USA; HUNEDOARA PROB-
LEM SOLVING GROUP, Hunedoara, Romania; WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; WEI-DONG, Weihai Vocational College, Weihai, Shandong Province, China;
KEE-WAI LAU, Hong Kong, China; SALEM MALIKIC, student, Sarajevo College, Sarajevo,
Bosnia and Herzegovina;, CRISTINEL MORTICI, Valahia University of Targoviste, Romania;
PETER Y. WOO, Biola University, La Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania;
and the proposer.
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