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The possible values comprise the interféalA?).
To see that the values must lie in this interval, note that
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s0Y 1" a5 < A? — 2xoz;. Lettingm — oo, we have

oo 2 2 2
ijoxj <A —2xpx1 < A=

To show that all values 0, A%) can be obtained, we
use geometric progressions wiih /zy = xo/x1 =
-+ = d for variabled. Then} 72 z; = xo/(1 — d)

and
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As d increases from 0 to 41 — d)/(1 + d) decreases
from 1 to 0. Thus if we take geometric progressions
with 3520 2; = A, 372 a7 ranges from 0 taA®.
Thus the possible values are indeed those in the interval
(0, A%), as claimed.

First solution: Let be an even integer such thet+ 1

is not prime. (For example, choose= 2 (mod 5), so
thata? + 1 is divisible by 5.) Then we can writ€® + 1

as a difference of squared — b2, by factoringa® + 1

asrs with r > s > 1, and settingr = (r + s)/2,

b = (r — s)/2. Finally, putn = z? — 1, so that
n=a2+0¥,n+1=22n+2=22+1.

Second solution: 1t is well-known that the equation
22 — 2y? = 1 has infinitely many solutions (the so-
called “Pell” equation). Thus setting = 2y (so that
n=y?+1y% n+1=224+0%n+2=2%+12)yields
infinitely manyn with the desired property.

Third solution: As in the first solution, it suffices to ex-
hibit 2 such that:? — 1 is the sum of two squares. We
will take z = 32", and show that? — 1 is the sum of
two squares by induction om: if 32" — 1 = a2 + b2,
then
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—1) =3 -1)(3* +1)
=32 a+b)2+ (a—3" b2
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The maximum area i3v/5.

We deduce from the area df; P; Ps P, that the ra-
dius of the circle is\/5/2. An easy calculation using
the Pythagorean Theorem then shows that the rectangle
P, P, Ps Ps has sides/2 and2+v/2. For notational ease,
denote the area of a polygon by putting brackets around
the name of the polygon.

By symmetry, the area of the octagon can be expressed
as

[Py Py PsPs] + 2| Py Py Py] + 2P, Ps Py).

Note that[P, P;P;] is v/2 times the distance fron®s

to P, P, which is maximized whe®s; lies on the mid-
point of arc P, Py; similarly, [Py PsPg) is v/2/2 times
the distance fromPs; to P,Ps, which is maximized
when P5 lies on the midpoint of ar®; Ps. Thus the
area of the octagon is maximized whex is the mid-
point of arcP, P, andPs is the midpoint of ar@®, Ps. In
this case, it is easy to calculate th&s Ps Py = v/5— 1
and[P,PsPs] = v/5/2 — 1, and so the area of the oc-
tagon is3+/5.

A—-4 We use integration by parts:

sin 2% (22 dx)
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Now % cos z2 tends to 0 a3 — oo, and the integral

of % cos 22 converges absolutely by comparison with
1/22. Thus it suffices to note that
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and that the final integral converges absolutely by com-
parison tol /z3.



An alternate approach is to first rewrde x sin 22 as

3 (cos(a? — x) — cos(z® + x). Then

2w +1 |P

sin(z? + ) |,
_/B 2sin(z? + x) d
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B
/ cos(z? + x) dr = —
0

converges absolutely, arj[f cos(z%—x) can be treated
similarly.

Leta, b, c be the distances between the points. Then the
area of the triangle with the three points as vertices is
abe/4r. On the other hand, the area of a triangle whose
vertices have integer coordinates is at least 1/2 (for ex-
ample, by Pick's Theorem). Thugc/4r > 1/2, and

so

max{a, b, c} > (abe)t/? > (2r)1/3 > r1/3,

Recall that iff () is a polynomial with integer coeffi-
cients, thenn —n divides f(m) — f(n) for any integers
m andn. In particular, if we pub,, = a,,4+1 — a,, then
by, dividesb,; for all n. On the other hand, we are
given thatug = a,, = 0, which implies thati; = a1
and sobg = b,,. If by = 0, thenag = a; = ---
and we are done. Otherwiség| = |b1]| = |bo| = - - -,
sob,, = +by for all n.

Now by + -+ + b1 = am — ag = 0, so half of the
integersy, . . ., b,,—1 are positive and half are negative.
In particular, there exists an integeér< k& < m such
thatb,_; = —by, which is to saya,_1 = ax41. From
this it follows thata,, = a,42 foralln > k& — 1; in
particular, form = n, we have

:am

ap = Gm = Am42 = f(f(ao)) = as.

B—1 Consider the seven triplés, b, ¢) with a,b,c € {0,1}

not all zero. Notice thatif;, s;,¢; are not all even, then
four of the sumsur; + bs; + ct; with a,b,c € {0, 1}
are even and four are odd. Of course the sum with

a =0b=c=0is even, so at least four of the seven B—4 Fort real and not a multiple of, write g(t)

triples with a, b, ¢ not all zero yield an odd sum. In
other words, at leastN of the tuples(a, b, ¢, j) yield
odd sums. By the pigeonhole principle, there is a triple
(a, b, ) for which at leastt N/7 of the sums are odd.

B-2 Sinceged(m,n) is an integer linear combination of

andn, it follows that

gcd(z% n) (:)

is an integer linear combination of the integers

)= (o) e ()= ()

and hence is itself an integer.

B-3 Putfy(t) = 4

o+ Recall Rolle’s theorem: if (¢) is dif-
ferentiable, then between any two zeroes ¢f) there
exists a zero of'(t). This also applies when the zeroes
are not all distinct: iff has a zero of multiplicityn at
t = z, thenf’ has a zero of multiplicity at least — 1
there.

Therefore, if0 < a9 < a1 < --- < a, < 1 are the
roots of fi in [0,1), then f;; has a root in each of
the intervals(ag, a1), (a1, a2), ..., (ar—1,a,), SO long
as we adopt the convention that the empty intefwal)
actually contains the pointitself. There is also a rootin
the “wraparound” intervala,., ag). ThusNy1 > Ny.

Next, note that if we set = ¢2™; then

N

fan(t) = 5 37 a7 — +79)

Jj=1

is equal toz~" times a polynomial of degregN.
Hence as a function of, it has at mos2N roots;
thereforef,(t) has at mosgN roots in[0, 1]. That s,
N, < 2N forall N.

To establish thafv, — 2N, we make precise the ob-
servation that

N
fe(t) = Zj‘lkaj sin(2mjt)
j=1

is dominated by the term with = N. At the points
t=(2+1)/(2N)fori =0,1,...,N — 1, we have
N*qysin(2rNt) = £N*ay. If k is chosen large
enough so that

‘CLN‘]VAUC > |a1|14k + -+ ‘CEN_1|(N — 1)4167

then f,((2¢ + 1)/2N) has the same sign as
ay sin(2rNat), which is to say, the sequence
fx(1/2N), fr(3/2N), ... alternates in sign. Thus be-
tween these points (again including the “wraparound”
interval) we find2N sign changes off,. Therefore
limk*)oo Nk =2N.

_ f(cost)

~  sint
Theng(t + m) = g(¢); furthermore, the given equation
implies that

f(2cos?t —1)

9(2) = sin(2t) -

2(cost) f(cost)
sin(2t)

= g(t).
In particular, for any integer andk, we have
g(1+nm/2%) = g(2" + nm) = g(2%) = g(1).

Since f is continuousg is continuous where it is de-
fined; but the sefl + nr/2%|n, k € Z} is dense in the
reals, and s@ must be constant on its domain. Since
g(—t) = —g(t) for all ¢, we must have/(t) = 0 whent

is not a multiple ofr. Hencef(z) = 0 forz € (—1,1).
Finally, settingr = 0 andx = 1 in the given equation
yields f(—1) = f(1) = 0.



B-5 We claim that all integer®/ of the form2*, with k& a max{Sy}, then
positive integer andV > max{Sy}, satisfy the desired

conditions. Z (142N Z I

JESH j€So
It follows from the definition ofS,,, and induction om,
that andSy = SoU{N +a:a € Sy}, as desired.
_ _ B—6 For each poinP in B, let Sp be the set of points with
Z vl =(1+ ) Z ! all coordinates equal teér1 which differ from P in ex-
JESn JE€Sn—1 actly one coordinate. Since there are more tian' /n
_ ) j points in B, and eacttp hasn elements, the cardinal-
=1+ Z ' (mod 2). ities of the setsSp add up to more thaa™+!, which
jeso is to say, more than twice the total number of points.
By the pigeonhole principle, there must be a point in
From the identity(x + )2 = 1; + 2 (mod 2) and in- three of the sets, sayp, Sg, Sr. But then any two of
duction onn, we have(z+%)?" = 22"+ (mod 2). P, Q, R differ in exactly two coordinates, SBQ R is an
Hence if we chooséV to be a power of 2 greater than equilateral triangle, as desired.



