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Preface to the 2nd Edition

This is the second, revised, and expanded edition of the linear algebra
problem book Linear Algebra: Challenging Problems for Students. The first
edition of the book, containing 200 problems, was published in 1996. In
addition to about 200 new problems in this edition, each chapter starts with
definitions and facts that lay out the foundations and groundwork for the
chapter, followed by carefully selected problems. Some of the new problems
are straightforward; some are pretty hard. The main theorems frequently
needed for solving these problems are listed on page xv.

My goal has remained the same as in the first edition: to provide a book
of interesting and challenging problems on linear algebra and matrix theory
for upper-division undergraduates and graduate students in mathematics,
statistics, engineering, and related fields. Through working and practicing
on the problems in the book, students can learn and master the basic
concepts, skills, and techniques in linear algebra and matrix theory.

During the past ten years or so, I served as a collaborating editor for
American Mathematical Monthly problem section, associate editor for the
International Linear Algebra Society Bulletin IMAGE Problem Corner, and
editor for several other mathematical journals, from which some problems in
the new edition have originated. I have also benefited from the math confer-
ences [ regularly attend; they are the International Linear Algebra Society
(ILAS) Conferences, Workshops on Numerical Ranges and Numerical Radii,
R. C. Thompson (formerly Southern California) Matrix Meetings, and the
International Workshops on Matrix Analysis and Applications. For exam-
ple, I learned Problem 4.21 from M.-D. Choi at the ILAS Shanghai Meeting
in 2007; Problem 4.97 was a recent submission to IMAGE by G. Goodman
and R. Horn; some problems were collected during tea breaks.

I am indebted to many colleagues and friends who helped with the re-
vision; in particular, I thank Jane Day for her numerous comments and
suggestions on this version. I also thank Nova Southeastern University
(NSU) and the Farquhar College of Arts and Sciences (FCAS) of the uni-
versity for their support through various funds, including the President’s
Faculty Research and Development Grants (Awards), FCAS Minigrants,
and FCAS Faculty Development Funds.

Readers are welcome to communicate with me at zhang@nova.edu.
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Preface

This book is written as a supplement for undergraduate and first-year
graduate students majoring in mathematics, statistics, or related areas. I
hope that the book will be helpful for instructors teaching linear algebra
and matrix theory as well.

Working problems is a crucial part of learning mathematics. The pur-
pose of this book is to provide a suitable number of problems of appropriate
difficulty. The readers should find the collection of two hundred problems
in this book diverse, interesting, and challenging.

This book is based on my ten years of teaching and doing research
in linear algebra. Although the problems have not been systematically
arranged, I have tried to follow the order and level of some commonly used
linear algebra textbooks. The theorems that are well known and found in
most books are excluded and are supposed to be used freely. The problems
vary in difficulty; some of them may even baffle professional experts. Only
a few problems need the Jordan canonical forms in their solutions. If you
have a little elementary linear algebra background, or are taking a linear
algebra course, you may just choose a problem from the book and try to
solve it by any method. It is expected that readers will refer to the solutions
as little as possible.

I wish to dedicate the book to the memory of my Ph.D. advisor, R.C.
Thompson, a great mathematician and a founder of the International Lin-
ear Algebra Society (ILAS). I am grateful to C. A. Akemann, R. A. Horn,
G.P.H. Styan, B.-Y. Wang, and X.-R. Yin for guiding me toward the road
of a mathematician. I would also like to thank my colleagues J. Bartolomeo,
M. He, and D. Simon for their encouragement. Finally, I want to thank
Dr. R. M. Harington, of the Johns Hopkins University Press, for his enthu-
siastic cooperation.
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Frequently Used Notation and Terminology

R real number field

C complex number field

F scalar field R or C

R" vectors of n real components

cr vectors of n complex components

M, (F) n X n matrices with entries from F

M, xn(F) m X n matrices with entries from F

dimV dimension of vector space V

I identity matrix

A = (ayj) matrix A with entries a;;

r(A) rank of matrix A

trA trace of matrix A

det A determinant of matrix A

|4]| determinant of matrix A (particularly for block matrices)
A inverse of matrix A

At transpose of matrix A

A conjugate of matrix A

A* conjugate transpose of matrix A, i.e., A* = At

Ker A kernel or null space of A, i.e., KerA={z| Ar =0}
ImA image or range of A, i.e., Im A = {Ax}

A>0 A is positive semidefinite

A>B A — B is positive semidefinite

diag(A1, A2,...,An) diagonal matrix with A;, Ag,..., A, on the main diagonal
AoB Hadamard product of matrices A and B, i.e., Ao B = (a;;b;
(u, v) inner product of vectors u and v

=l norm or length of vector z

An n X n matrix A is said to be

upper-triangular if all entries below the main diagonal are zero
diagonalizable if P~1 AP is diagonal for some invertible matrix P
similar to B if P~1AP = B for some invertible matrix P
unitarily similar to B if U* AU = B for some unitary matrix U

unitary if AA*=A"A=1

positive semidefinite if z* Az > 0 for all vectors z € C*

Hermitian if A= A*

normal if A*A= AA* and

a scalar X\ is an eigenvalue of A if Az = Az for some nonzero vector z

ese
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Frequently Used Theorems

e Dimension identity: Let W; and W, be subspaces of a finite di-
mensional vector space V. Then

dim W; + dim W, = dim(W; + W) + dlm(Wl N Wwe).

e Theorem on the eigenvalues of AB and BA: Let A and B be
m x n and n X m complex matrices, respectively. Then AB and BA
have the same nonzero eigenvalues, counting multiplicity. Thus

tr(AB) = tr(BA).
e Schur triangularization theorem: For any square matrix A,

there exists a unitary matrix U such that U* AU is upper-triangular.

e Jordan decomposition theorem: Let A be an n x n complex
matrix. Then there exists an n x n invertible matrix P such that

A=P! diag(Jl,Jz,. s Ji) P,
where each J;, 2 =1,2,...,k, is a Jordan block.

e Spectral decomposition theorem: Let A be an n X n normal
matrix with eigenvalues Aj, Az,...,An. Then there exists an n x n
unitary matrix U such that

A = U*diag(A1, A2,y ..., An)U.

In particular, if A is positive semidefinite, then all A\; > 0; if A is
Hermitian, then all \; are real; and if A is unitary, then all |A;| = 1.

e Singular value decomposition theorem: Let A be an m x n
complex matrix with rank ». Then there exist an m X m unitary
matrix U and an n X n unitary matrix V such that

A=UDV,

where D is the m x n matrix with (z,)-entries the singular values of
A, i=1,2,...,r, and other entries 0. If m = n, then D is diagonal.

e Cauchy-Schwarz inequality: Let V be an inner product space over
a number field (R or C). Then for all vectors z and y in V

[z, y)I? < {z,2){y, y)-
Equality holds if and only if z and y are linearly dependent.
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Chapter 1

Vector Spaces

Definitions and Facts

Vector Space. A vector space involves four things - two (nonempty) sets
V and F and two algebraic operations called vector addition and scalar
multiplication. The objects in V' are called vectors and the elements in F
are scalars. In this book, F is either the field R of real numbers or the
field C of complex numbers, unless otherwise stated. The vector addition,
denoted by u + v, is an operation between elements u and v of V, while the
scalar multiplication, written as Av, is an operation between elements A of
F and v of V. We say that V is a vector space over F if the following hold:

l.u+veViorallu,veV.

MweVioral \e FandveV.

u+v=v+uforallu,veV.
(v+v)tw=u+(v+w)foralu,v,weV.

There is an element 0 € V such that v+ 0=v forallv € V.

For each v € V there exists an element —v € V such that v+(—v) = 0.
Mu+v)= M+ wforal \eFandu, veV.

A+plv=M+pvforall\, pcFandv e V.

© 0 N o o s W N

(Ap)v=A(pv) forall \, peFandv e V.
lv=vforalveV.

—
i
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Some Important Vector Spaces.

e The zy-plane (also called the Cartesian plane) is a vector space over
R. Here we view the zy-plane as the set of arrows (directed line
segments) in the plane, all with initial point O, the origin. Define the
addition by the parallelogram law, which states that for two vectors
u and v, the sum u + v is the vector defined by the diagonal of the
parallelogram with u and v as adjacent sides. Define Av to be the
vector whose length is |A| times the length of v, pointing in the same
direction as v if A > 0 and otherwise pointing in the opposite direction.
Note that the extreme case where the terminal point of the arrow
coincides with O gives the zero vector for which the length of the
arrow is 0 and any direction may be regarded as its direction. This
vector space can be identified with the space R? defined below.

u in, 1

0 X Au, A<0 0 X

Figure 1.1: Vector addition and scalar multiplication

e The three-dimensional vector space over R consisting of all arrows
starting from the origin in the ordinary three-dimensional space, with
vector addition and scalar multiplication similarly defined (by the
parallelogram rule) as above for the zy-plane. This space can be
identified with the space R? defined below.

The spaces R? and R? will help the reader understand and visualize
many concepts of vector spaces.

e " ig a vector space over a field IF, where n is a positive integer and
I

= . T1,Z2y...,Z0 €EF
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Here addition and scalar multiplication are defined, respectively, by

z % T )| z) AZ)
Z2 Y2 z2 + Y2 z2 Az
) + A = ) y A ) = i
Zn Un Tn+Yn Zn ATy

In particular, R™ and C™ are vector spaces over R and C, respectively.

Note: In the context of vector spaces, it usually makes no difference
whether to write a vector in F™ as a row or a column. So sometimes we
may write the vectors in F™ as rows (z1,22,...,%,) for convenience.
However, when a matrix-vector product Az is involved, it is clear
from the context that z has to be a column vector.

® M,.«n(F) over IF, where m and n are positive integers and M, x,(F)
is the collection of all m x n matrices over a scalar field F. Anm xn
matriz over F is an array of m rows and n columns:

a a2 ... QQin
a cee

A= 21 a2 Q2n
Qny Qm2 ... Qmn

The notation A = (a,),... Or A = (a,;) is sometimes used for sim-
plicity. If m = n, we often write M, (F) for M,,xn(F). Two matrices
are equal if they have the same size and same corresponding entries.

The addition of two m X n matrices is defined by adding the corre-
sponding entries, and the scalar multiplication of a matrix by a scalar
is obtained by multiplying every entry of the matrix by the scalar. In
symbols, if A = (a;j), B = (bij) € Mpmxa(F), and A € F, then

A+ B =(a,; +bij), A= (Aay).

Note: If m =1 or n =1, My, xn(F) can be identified with F* or F™.

Matrices can also be multiplied when they have appropriate sizes.
Let A be a p X n matrix and B be an n X ¢ matrix. The matriz
product AB of A and B is a p x ¢ matrix whose (%, j)-entry is given by
ailblj +ai2b2j+' ’ '+ainbnj’ i=12,...,p,5=12,...,9. So,toadd
two matrices, the matrices must have the same size, while to multiply
two matrices, the number of columns of the first matrix must equal
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the number of rows of the second matrix. Note that even though AB
is well defined, BA may not be; moreover AB # BA in general.

The zero matriz of size m X n, abbreviated to 0 when the size is
clear or not important, is the m x n matrix all whose entries are 0.
The identity matriz of size n x n, shortened to I,, or simply I, is
the n-square matrix whose main diagonal entries are all 1 and off-
diagonal entries are all 0. A square matrix A is said to be znvertible,
or nonsingular, if there exists a matrix B such that AB = BA = I.
Such a matrix is called the inverse of A and denoted by A™!.

Besides the properties on addition and scalar multiplication, as a
vector space, My, xn(F) satisfies the following:

(a) 0A=A0=0.

(b) AI=IA=A.

(c) (AB)C = A(BC).

(d) A(B+C)=AB+ AC.

(e) (A+B)C = AC + BC.

(f) k(AB) = (kA)B = A(kB), where k is a scalar.
For an m x n matrix A = (a;;), we can associate an n x m matrix
to A by converting the rows of A to columns; that is, equivalently,
the (i, j)-entry of the resulting matrix is a;;. Such a matrix is called
the transpose of A and denoted by At. If A is a complex matrix, as
it usually is in this book, we define the conjugate of A by taking the
conjugate of each entry: A = (@;,). We write A* for the conjugaie
transpose of A, namely, A* = (A)t. The following properties hold:

() (A1)t = 4; (4°) = A.

(i) (A+ B)t= A+ B*; (A+ B)* = A* + B~
(iii) (AB)t = B*A*; (AB)* = B*A".
(iv) (kA)* = kA*; (kA)* = kA*, where k is a scalar.

Let A be a matrix. A submatriz of A is a matrix that consists of the
entries of A lying in certain rows and columns of A. For example, let

1 2
2 3 5 6
a={es6), B=(23) c=(535)
(78) 5 6 8 9

O W
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B is a submatrix of A lying in rows 1 and 2 and columns 2 and 3 of A,
and C is a submatrix of A obtained by deleting the first row and the
first column of A. Sometimes it is useful and convenient to partition
a matrix into submatrices. For instance, we may write

=(132)-(3 )
) e (21)

Let A = (ai;) be an n x n complex matrix. The matrix A is said
to be Hermitian if A* = A; symmetric if A® = A; skew-Hermitian if
A* = —A; normalif A*A = AA*; upper-triangular if a;; = 0 whenever
i > j; lower-triangular if a;; = 0 whenever ¢ < j; diagonal if a;; =0
whenever i # j, written as A = diag(a11,a22,--.,0nn); unitary if
A*A = AA* = I; and real orthogonal if A is real and A*A = AA* =1I.

~N B
oo o
(=R~ 7

(7), V=(89).

(S N

e P,[z] over a field F, where n is a positive integer and IP,[z] is the
set of all polynomials of degree less than n with coefficients from F.
A constant polynomial p(z) = ag is said to have degree 0 if ag # 0,
or degree —oo if ag = 0. The addition and scalar multiplication are
defined for p, q € P,[z], and A € F by

(p+g)(z) = p(z)+4q(z)
= (n-1+bn_1)x” 1 + -+ (a1 + b))z + (a0 + bo),

where
p(z) = an_12™ 1 + - + a1z + a0, q() = b1z + -+ iz + bo
and

(Ap)(2) = A((2)) = (Aan-1)z" !+ + (Aar )z + (Aap).

Denote by P[z] the collection of all polynomials of any finite degree
with coefficients from F. Then P[z] is a vector space over F with
respect to the above operations for polynomials.
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e Cla,b] over R, where C[a,b] is the set of all real-valued continuous
functions on the interval [a, b]. Functions are added and multiplied in
the usual way, i.e., if f and g are continuous functions on [a, b], then
(f + 9)(2) = f(z) + g(x) and (Af)(z) = Af(z), where A € R. C(R)
denotes the vector space of real-valued continuous functions on R.

Linear Dependence. Let v;,vs,...,v, be vectors of a vector space V
over a field F and let Aj, A2, ..., Ay be scalars from F. Then the vector

V=AMV + V2 4+ + AUy

is called a linear combination of the vectors vy, vs,...,v,, and the scalars
A1, A2,...,A, are called the coefficients of the linear combination. If all
the coefficients are zero, then v = 0. There may exist a linear combi-

nation of the vectors v;,ve,...,v, that equals zero even though the co-
efficients A;, A2,...,An are not all zero. In this case, we say that the
vectors vy, vs,..., U, are linearly dependent. In other words, the vectors

v1,%2,...,Vy, are linearly dependent if and only if there exist scalars A;, Ag,
..+y An, Dot all zero, such that

AU+ Aava + -+ + AqUp = 0. (1.1)

The vectors vy, vg, - . . , U, are linearly independent if they are not linearly
dependent, i.e., v1,v,...,v, are linearly independent if (1.1) holds only
when all the coefficients Ay, Az, ..., A\, are zero. The zero vector 0 itself is
linearly dependent because A0 = 0 for any nonzero scalar A.

Dimension and Bases. The largest number of linearly independent vec-
tors in a vector space V is called the dimension of V, written as dim V. If
that is a finite number n, we define dimV = n and say V is finite dimen-
sional. If there are arbitrarily large independent sets in V, we say dim V
is infinite and V is infinite dimensional. For the finite dimensional case,
if there exist n vectors in V' that are linearly independent and any n + 1
vectors in V are linearly dependent, then dim V' = n. In this case, any set
of n linearly independent vectors is called a basis for the vector space V.
The vector space of one element, zero, is said to have dimension 0 with
no basis. Note that the dimension of a vector space also depends on the
underlying number field, F, of the vector space. Unless otherwise stated,
we assume throughout the book that vector spaces are finite dimensional.

For the scalar field F, the dimension of the vector space F™ is n, and
the vectors e; = (1,0,0,...,0),e2 = (0,1,0,...,0),...,e, = (0,0,...,0,1)
(sometimes written as column vectors) are a basis for I, refereed to as the
standard basis for F™.
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Let {a1,q2,...,an} be a basis of the vector space V, and let v be any
vector in V. Since v, a1, a3, ...,ay, are linearly dependent (n + 1 vectors),
there are scalars A\, A1, Ag,. .., An, Dot all zero, such that

A‘U+A1(¥1 +/\2a2+---+/\nan = (.
Since aj,az,...,an are linearly dependent, we see A # 0. Thus
v=1x10] + T202 + * 0 + TpQy,

where z; = —A;/A, ¢ = 1,2,...,n. Again due to the linear indepen-
dence of a3, s, ..., an, such an expression of v as a linear combination of
a1,0z2, ..., 0, must be unique. We call the n-tuple (z,,z2,...,Z,) the coor-
dinate of v under the (ordered) basis oy, a2, . .., an; sometimes we also say
that €1, Z2,..., T, are the coordinates of v under the basis {a;, a2,...,a4}.

Subspace. Let V be a vector space over a field F and W be a nonempty
subset of V. If W is also a vector space over F under the same vector
addition and scalar multiplication of V, then W is said to be a subspace of
V. One may check that W is a subspace of V if and only if W is closed
under the operations of V; that is, (i) if u, v € W then u+v € W and (ii)
ifve W and A € F then \v € W. It follows that, to be a subspace, W
must contain the zero vector 0 of V. {0} and V are trivial subspaces of V.
A subspace W of V is called a proper subspace if W # V.
Let W; and W, be subspaces of a vector space V. The intersection

W10W2={‘U|06W1 and ‘UGWQ}

is also a subspace of V' and so is the sum

W1+W2={'w1+w2|'w1EW1 and 'U)2€W2}.

e

Wi

e

/ WnW;

Figure 1.2: Sum of subspaces
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The sum W; + Wy, is called a direct sum, denoted by W; & Wy, if every
element v in W; + W3 can be uniquely written as v = w; + w3, where
w; € Wy, we € Wy that is, if v = v, + vy, where v; € W;, vo € W3, then
w; = v, and we = vs. In particular, if 0 = w; + w;, then w; = wy = 0.

Let S be a nonempty subset of V. The subspace Span(S) is defined to
consist of all possible (finite) linear combinations of the elements of S. In
particular, if S is a finite set, say, S = {v;,va,...,vx}, then

Span(S) = { Miv1 + Agva + -+ - + Avi | A1, A2, ..., A EF

For any nonempty S, Span(S) is a subspace of the vector space V. We
say the subspace Span(S) is spanned by S, or generated by S.

Figure 1.3: Subspace spanned by vectors

Given an m x n matrix A over a scalar field IF, there are three important
spaces associated to A. The space spanned by the rows of A is a subspace
of F*, called row space of A. The space spanned by the columns of A is
a subspace of F™, called the column space of A. The column space of &
matrix A is also known as thc image or range of A, denoted by Im A; this
origins from A being viewed as the mapping from F" to F™ defined by
z — Az. Both terms and notations are in practical use. Thus

ImA={Az|zcF"}.

All solutions to the equation system Ax = ( form a subspace of F™.
This space is called null space or kernel of A and symbolized by Ker A. So

KerA={ze€F"|Az=0}.

Dimension Identity. Let W;, W, be subspaces of a vector space V. Then
dim W + dim W, = dim(W; + Wa) + dim(W; N Wy).
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Chapter 1 Problems

1.1

1.2

1.3

1.4

1.5

Let C, R, and Q be the fields of complex, real, and rational numbers,
respectively. Determine whether cach of the following is a vector
space. Find the dimension and a basis for each that is a vector space.

(a) C over C.

(b) C over R.

(¢) R over C.

(d) R over Q.

(e) Q over R.

(f) Q over Z, where Z is the set of all integers.

() S={a+b/2+¢cV5 |a,b,ceQ} over Q,R,orC.

Consider R? over R. Give an example of a subset of R? that is

(a) closed under addition but not under scalar multiplication;
(b) closed under scalar multiplication but not under addition.

Let V ={(z, y) | z, y € C}. Under the standard addition and scalar
multiplication for ordered pairs of complex numbers, is V a vector
space over C? Over R? Over Q? If so, find the dimension of V.

Why does a vector space V over F (= C, R, or Q) have either one
element or infinitely many elements? Given v € V, is it possible to
have two distinct vectors u, w in V such that u+v = 0 and w+v =07

Let V be the collection of all real ordered pairs in which the second
number is twice the first one; that is, V = {(z, y) | y = 2z, € R}
If the addition and multiplication are defined, respectively, to be

(211, yl) + (321 y2) = (331 +Z2,n +y2)a A (:B, y) = (Aza Ay)s

show that V is a vector space over R with respect to the operations. Is
V also a vector space with respect to the above addition and the scalar
multiplication defined instead by A ® (z, y) = (Az, 0)7 [Note: The
reason for the use of the symbol © instead of - is to avoid confusion
when the two operations are discussed in the same problem.]
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1.6

1.7

1.8

1.9

1.10

1.11
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Let H be the collection of all 2 x 2 complex matrices of the form

(52)

Show that Hl is a vector space (under the usual matrix addition and
scalar multiplication) over R. Is H also a vector space over C?

Let R* be the set of all positive real numbers. Show that R* is a
vector space over R under the addition

zBy=2y, =z yeR'
and the scalar multiplication
aBDz=2% zeR* a€cR.

Find the dimension of the vector space. Is R* also a vector space
over R if the scalar multiplication is instead defined as

a®z=a% zcR* acR?

Let {ay,a2,...,a,} be a basis of an n-dimensional vector space V.
Show that {Aja1, A2ca, ..., A0} is also & basis of V for any nonzero
scalars Aj, Ag, ..., A,. If the coordinate of a vector v under the basis
{on,00,...,0,} I8 ¢ = (21,29,...,%s), what is the coordinate of
v under {\1a1, X202, ..., An0n}? What are the coordinates of w =
ay+az+- - -+a, under {a1,a2,...,0n} and {A1a1, A2as, ..., Anan}?

Let v1,v9,..., v be vectors in a vector space V. State what is meant
for {v1,v2,...,v} to be a basis of V using (i) the words “span” and
“independent”; (ii) instead the phrase “linear combination.”

Consider &k vectors in R™ and answer the three questions in cases of
k <n,k=mn,and k£ > n: (i) Are the vectors linearly independent?
(i) Do they span R™? (iii) Do they form a basis for R"?

Let {a;, aa, az} be a basis for R and let oy = —ay — a3 — as.
Show that every vector v in R3 can be written as v = a0 + agog +
aza3 + asa4, where a, asg,as, ey are unique real numbers such that
a, +az2+az+as = 0. Generalize this to a vector space of dimension n.
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1.12 Show that {1, (z — 1), (x — 1)(z — 2) } is a basis of P3[z] and that
W = {p(z) € P3[z] | p(1) = 0} is a subspace of Ps3[z]. Find dim W.

1.13 Answer true or false:

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h

1

7~~~

[

(1

(m

)
)
)
(k)
)
)

{(z,9) | z2 +y% =0, z, y € R} is a subspace of R2.
{(z,y) |22 +y® < 1, z, y € R} is a subspace of R2.
{(z,y) | z® + 3% =0, z, y € C} is a subspace of C2.
{(z,y) |22 —y® =0, z, y € R} is a subspace of R,
{(z,y) |z —y=0, z, y € R} is a subspace of R2.
{(z,y) |z +y=0, z, y € R} is a subspace of R2.
{(z,y) | zy =0, z, y € R} is a subspace of R2.
{(z,y) | zy > 0, z, y € R} is a subspace of R?.
{(z,y) | = > 0, y > 0} is a subspace of R2.

{(z,y) | =, y are integers } is a subspace of R2.
{(z,y) | z/y =1, =,y € R} is a subspace of R2.
{(z,y) | y = 3z, z, y € R} is a subspace of RZ.
{(z,y) |z -y =1, z, y € R} is a subspace of R2.

1.14 Consider P, [z] and P[z] over R. Answer true or false:

CEORGEG

/ > La ~ — ” Y
—
[ 5 0q [, )
o s’ g S’ e’ e’ S’ e’ g

S

{p(z) | p(z) = az + b, a, b€ R} is a subspace of Ps[z].
{p(z) | p(z) = az?, a € R} is a subspace of P3[z].

{p(z) | p(z) = a + 22, a € R} is a subspace of P3[z].
{p(z) | p(z) € P[z] has degree 3} is a subspace of P[z].
{p(z) | p(0) = 0, p(z) € P[z] } is a subspace of P[z].

{»(z) | p(0) = 1, p(z) € P[z] } is a subspace of P[z].

{p(z) | 2p(0) = p(1), p(z) € P[z] } is a subspace of P[z].
{n(2) | p(z) 2 0, p(z) € P[z] } is a subspace of P[z].

{p(z) | o(—z) = p(z), p(z) € Plz] } is a subspace of P[z].
{p(z) | p(—z) = —p(z), p(z) € P[z] } is a subspace of P[z].
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1.15

1.16

1.17

1.18

1.19

1.20

1.21

CHAPTER 1

Consider the real vector space R*. Let
a =(1,-3,0,2), ae=(-2,1,1,1), a3 =(-1,-2,1,3).
Determine whether a;, a2, and a3 are linearly dependent. Find the
dimension and a basis for the subspace Span{a;, a3, as}.
Let V be the subspace of R? spanned by the 4-tuples
a1 = (1,2,3,4), az = (2,3,4,5), a3 =(3,4,5,6), ag = (4,5,6,7).

Find a basis of V and dim V.

Let a3, a3, a3, and a4 be linearly independent. Answer true or false:

(a) ay+ aa, as + a3, as + a4, ag + @y are linearly independent.
(b) a1 — a9, az — a3, ag — a4, @y — ) are linearly independent.
(c) a1+ az, o + a3, az + a4, 4 — a; are linearly independent.

(d) a1+ ag, as + as, az — aq, a4 — @y are linearly independent.

Let a3, as, a3 be linearly independent. For what value of k are the
vectors a; — a3, kog — ag, ay — a3 linearly independent?

If ), a2, a3 are linearly dependent and as, a3, a4 are linearly inde-
pendent, show that (i) a; is a linear combination of a2 and a3, and
(i) a4 is not a linear combination of a3, ag, and aj3.

Show that oy = (1,1,0), a2 = (1,0,1), and a3 = (0,1, 1) form a basis
for R3. Find the coordinates of the vectors u = (2,0,0), v = (1,0,0),
and w = (1,1,1) under the basis {c, a2, as}.

Let W = { (‘;2) |a, b, ce R } Show that W is a subspace of M2(R)
over R and that the following matrices form a basis for W:

(58) (18) (52):

Find the coordinates of the matrix (_12 '32) under the basis.
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1.22

1.23

1.24

Consider PP, [z] and P[z] over R.

(a) Show that P,[z| is a vector space over R under the ordinary
addition and scalar multiplication for polynomials.

(b) Show that {1,z,22,...,z" 1} is a basis for P,[z], and so is
{1,(z—a),(z —a)?...,(z—a)" '}, a€cR.
(c) Find the coordinate of
f@)=ao+a1T+ - +an-12"" ! € P,z
with respect to the basis
{1,(z-a),(x-a)...,(z—a)"}.

(d) Let a3,az,...,a, € R be distinct. For i = 1,2,...,n, let

filz) = (—a1) - (z — 6i—1)(T — @s1) * - - (T — an).

Show that { fi(x),..., fa(z) } is also a basis for Py[z].

(¢) Show that W = {f(x) € P,[z] | f(1) = 0} is a subspace of
P,[z]. Find its dimension and a basis.

(f) Is P[x] a vector space over R? Is it of finite dimension?
(g) Show that each P,[z] is a proper subspace of Pfz].

Let C(R) be the vector space of all real-valued continuous functions
over R with addition (f + g)(z) = f(z) + g(z) and scalar multiplica-
tion (rf)(z) = rf(z), r € R. Show that sinz and cosz are linearly
independent and that the vector space generated by sinz and cosz

Span{sinz, cosz} = {asinz + bcosz |a, b€ R}
is contained in the solution set to the differential equation
y'+y=0.

Are sin? z and cos? ¢ linearly independent? How about 1, sin® , and

cos?z? Find R N Span{sinz,cosz} and R N Span{sin® z, cos? z}.

Let t € R. Discuss the lincar independence of the vectors over R:

a1=(1,1,0), ax=(1,3,-1), a3=(5,3,?1).
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1.25 Let V be a finite dimensional vector space and S be a subspace of V.
Show that

(a) dimS§ < dimV.

(b) dimS =dimV if and only if S =V.

(c) Every basis for S is contained in some basis for V.
(d) A basis for V' need not contain a basis for S.

1.26 Consider the vector space R™ over R with the usual operations.

(a) Show that

1 0 0
0 1 0
€1 = 0 y €2 = 0 y ey €p = 0
0 0 1
and
1 1 1
0 1 1
€1 = 0 y €2= 0 y ees 3 €Ep = 1
0 0 1

form two bases. Are they also bases for C* over C? over R?
(b) Find a matrix A such that A(e1,€2,...,€6,) = (€1,€2,...,€5).
(c¢) Find a matrix B such that (¢),¢€2,...,¢6,) = B(e1,€2,...,€n).

(d) If v € R™ has the coordinate (1,2,...,n) on the basis {e;,es,
..., en}, what is the coordinate of v under {e¢;,€2,...,€,}?

() Why are any n + 1 vectors in R™ linearly dependent over R?
(f) Find n + 1 vectors in C™ that are linearly independent over R.

1.27 Let {0y, 02,...,0n} be a basis of a vector space V, n > 2. Show that
{a1,a1 +a2y...;07 + a2+ -+ + ap} is also & basis of V. Is the set
{a1+as, a2 +0a3,...,00-1 + Qn, an + a1}

a basis for V too? How about the converse?
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1.28

1.29

1.30

1.31

Show that o = {03, a2, a3} and 8 = {61, B2, B3} are bases for R3:

(i) () - (8)
(). (i) (2)

Find the matrix from basis o to basis 3; that is, a matrix A such that

(ﬂl: Ba, .83) = (ala a2, aa)A.

If a vector u € R? has coordinate (2,0, —1) under the basis o, what
is the coordinate of u under 37?

If 03,a2,...,a, are linearly independent in a vector space V and
Qy, ag,...,0,, 3 are linearly dependent, show that 8 can be uniquely
expressed as a linear combination of a,ag,...,0n.

Show that the vectors a;(# 0),aq,...,a, of a vector space V are
linearly dependent if and only if there exists an integer k, 1 < k < n,
such that oy is a linear combination of ay,aq,...,0k-1.

Let V and W be vector spaces over F. Denote by V x W the collection
of all ordered pairs (v, w), where » € V and w € W, and define

('Ul, wl) + (‘vz, 'wz) = (‘01 + v2, w1 + ‘w2)

and
k(v, w) = (kv, kw), ke€F.
(a) Show that V x W is a vector space over F.
(b) Show that if V and W are finite dimensional, so is V x W.
(c) Find dim(V x W), given that dimV = m and dim W = n.
(d) Explain why R x R? can be identified with R3.
(e) Find a basis for R? x M3(R).
(f) What is the dimension of M2(R) x M2(R)?
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1.32

1.33

1.34

1.35

CHAPTER 1
Answer true or false:

(a) If the zero vector O is one of the vectors oy, aq,...,q,, then
these vectors are linearly dependent.

(b) If oy,ap,...,a, are linearly independent and a1 i8 not a lin-
ear combination of o), as,...,ar, then the vectors oy, a2,...,
Oy, 0r41 are also linearly independent.

(¢) If o is a linear combination of $,8,...,0m, and each §;,
i =12,...,m, is a linear combination of v;,72,...,9n, then
o i8 a linear combination of 11,v92,.--,Tn-

(d) fay,as,...,q, are linearly independent, then no a; is a linear

(f)
(8)
(h)

combination of the other vectors. How about the converse?

If oy, s,...,qa, are linearly dependent, then any one of these
vectors is a linear combination of the other vectors.

If 3 is not a linear combination of a1, a2, ..., oy, then 8, o1, a2,
...,0y are linearly independent.

If any r — 1 vectors of oy, s, .. .,a, are linearly independent,
then a3, ay,...,q, are linearly independent.

If V = Span{o;,as,...,0,} and if every a; is a linear combi-
nation of no more than r vectors in {03, 0, ...,0,} excluding
a;, then dimV < r.

Let U and V' be subspaces of R™ spanned by vectors oy, as,...,0p
and By, B2, ..., 04, respectively. Let W be spanned by o; + §;,i =1,
2,...,0,7=12,...,q. IfdimU = s and dim V' = {, show that

dim W < min{n, s+t}.

Let a,,09,...,a, be linearly independent. If vector u is a linear
combination of ay,as,...,qa,, while vector v is not, show that the
vectors tu + v, a,...,a, arc lincarly independent for any scalar ¢.

Given a square matrix A, show that V = { X | AX = XA}, the set of
the matrices commuting with A, is a vector space. Find all matrices
that commute with A and find the dimension of the space, where

1 00
A=1010
3 1 2
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1.36 Find a basis and the dimension for each of the following vector spaces:

(a) Myu(C) over C.

(b) M, (C) over R.

(¢) M,(R) over R.

(d) H,(C), n x n Hermitian matrices, over R.

(e) Hyp(R), n x n real symmetric matrices, over R.

(f) Sp(C), n x n skew-Hermitian matrices, over R.

(g) Sn(R), n x n real skew-Hermitian matrices, over R.
(h) Un(R), n x n real upper-triangular matrices, over R.
(i) Ln(R), n x n real lower-triangular matrices, over R.
(3) Dn(R), n x n real diagonal matrices, over R.

(k) The space of all real polynomials in A over R, where

1 0 O .
A= 0 w 0 |, w=_l+T\/?—”'.
0 0 w?

For example, A3 — A% + 5A4 + I is one of the polynomials.

Is H,(C) a subspace of M,(C) over C? Is the sct of n x n normal
matrices a subspace of M, (C) over C? Show that every n x n complex
matrix is a sum of a Hermitian matrix and a skew-Hermitian matrix.

1.37 Find the space of matrices commuting with matrix A, where

(a) A=1,.
1 1

o a-(1 1)
a 0

(c) A=(0 b)’ a#b
0100
0 010

@ A=190 01
0000

(e) A is an arbitrary n x n matrix.
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1.38

1.39

1.40

1.41

1.42
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Let A € Mpyxn(C) and S(A) = { X € Mpxp(C) | AX = 0}. Show
that S(A) is a subspace of Mpxp(C) and that if m = n, then

S(A) C S(A%) C --- € S(A*) C S(A**1) for any positive integer k.
Show further that this inclusion chain must terminate; that is,

S(A™) = S(A™?) = §(A™*2) = ... for some positive integer r.

Denote by Im X the column space or image of matrix X. Let A be
m X p, B be m x q. Show that the following statements are equivalent:

(a) ImA CImB.
(b) The columns of A are linear combinations of the columns of B.
(c¢) A= BC for some q x p matrix C.

Denote by Ker X the null space of matrix X. Let A be an m xn
matrix over a field F. Show each of the following statements.

(a) Ker A is a subspace of F* and Ker A = {0} if and only if the
columns of A are linearly independent. If the columns of A
are linearly independent, are the rows of A necessarily linearly
independent?

(b) If m < n, then Ker A # {0}.

(c) KerA C Ker A%

(d) Ker(A*A) = Ker A.

(e) If A= BC, where Bis m xm and C is m X n, and if B is
nonsingular, then Ker A = Ker C.

Let W; and W, be nontrivial subspaces of a vector space V'; that is,
neither {0} nor V. Show that there exists an element a € V such
that ¢ W1 and o ¢ Wa. Show further that there exists a basis of
V such that none of the vectors in the basis is contained in either W3
or Wy. Is this true for more than two nontrivial subspaces?

Let {v1,vs,...,v,} be a basis of a vector space V. Suppose W is a
k-dimensional subspace of V, 1 < k < n. Show that, for any subset
{vi,,Vigy ..., 05, } of {v1,v2,...,Un}, m > n—k, there exists a nonzero
vector w € W, which is a linear combination of v;,,v;,,...,v;,.
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1.43 Let W; and W2 be subspaces of a vector space V and define the sum
Wi+ Wa = {w; + w2 | wy € W1, wa € Wa }.
(a) Show that W; N Wy and W) + W, are subspaces of V, and
WinW, CcW,uW, CW, + W,.

(b) Explain the inclusions in (a) geometrically with two lines pass-
ing through the origin in the zy-plane.

(c) When is W; U W, a subspace of V?

(d) Show that W, + W, is the smallest subspace of V containing
W1 U Wy; that is, if S is a subspace of V' containing W, U W5,
then W) + W5 C S.

1.44 Let

T
W = 2 lect T3=z+22 and z4 = z; — T,

(a) Prove that W is a subspace of C4.
(b) Find a basis for W. What is the dimension of W?
(c) Prove that {k(1,0,1,1)* | k € C} is a subspace of W.

1.45 Let V be a finite dimensional vector space and let ¥V}, and V, be
subspaces of V. If dim(V; + V;) = dim(V4 NV2) + 1, show that V; 4+ V,
is cither V; or V; and Vi NV% is correspondingly Vs or V). Equivalently,
for subspaces V; and V3, if neither contains the other, then

dim(V1 + V2) 2 dim(V1 N Vz) + 2.

1.46 Give an example of three subspaces of a vector space V such that
Wi N (W, + Wi) # (W1 NnWR) + (W) NW3).
Why does this not contradict the following identity for any three sets

AN(BUuC)=(ANB)U(ANCQC)?
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1.47

1.48

1.49

1.50

1.51

CHAPTER 1

Let W; and W, be nontrivial subspaces of a vector space V. The sum
W1 + W, is called a direct sum, denoted as W; & W, if every element
o € W, + W, can be uniquely written as & = w; +w,, where w; € W,
and we € W,. Show that the following statements are equivalent:

(a) Wi + Wa is a direct sum.

(b) If uy +wy; =0 and wy, € W;, wy € Wy, then wy = we =0.

(c) WVinWw, = {0}.

(d) dim(W1 + Wz) = dim W; + dim W5.

How can the direct sum be extended to more than two subspaces?

Show that if W is a subspace of a vector space V, and if there is a
unique subspace W5 such that V = W; & Wy, then W7 = V.

Let W;, Wa, and W3 be subspaces of a vector space V. Show that
the sum W7 + Wy + W3 = {'wl +wet+ws |w; €W, i= 1,2,3} is
also a subspace of V. Show by example that W, + Wy + W3 is not
necessarily a direct sum, i.e., there exist elements w;, wp, ws, not all
zero, such that w; +wz+we = 0and w; € W;, i = 1,2, 3, even though

W1ﬂW2=Wan3=Wan3={0}.

Show that M(R) = W; & W,, where

w1={(_“b Z)la,bek}
W2={(2 _dc)[c,dem}.

If V) is the subspace of M, (R) consisting of all n x n symmetric
matrices, what will be a subspace V; such that V; @ Vo, = M,(R)?

A function f € C(R) is evenif f(—z) = f(z) forall z € R, and f is odd
if f(—z) = —f(x) for all z € R. Let W, and W5 be the collections of

even and odd continuous functions on R, respectively. Show that W;
and W, are subspaces of C(R). Show further that C(R) = W, & W.



Chapter 2

Determinants, Inverses and
Rank of Matrices, and
Systems of Linear Equations

Deflnitions and Facts

Determinant. A determinant is a number assigned to a square matrix in a
certain way. This number contains much information about the matrix. A
very useful piece is that it tells immediately whether the matrix is invertible.
For a square matrix A, we will denote its determinant by |A| or det A; both
notations have been in common practice. Note that the bars are also used
for the modulus of a complex number. However, one can usually tell from
the context which use is intended.

If Aisal x1 matrix; that is, A has one entry, say a1, then its deter-

minant is defined to be |A| = a;;. If A is a 2% 2 matrix, say A = (““ "12),

@31 422
then |A| is given by |A| = a11a22 — @12a21. The determinant for a square
matrix with higher dimension n may be defined inductively as follows. As-
sume the determinant is defined for (7 — 1) x (n — 1) matrices and let A,;
denote the submatrix of an n X n matrix A resulting from the deletion of
the first row and the j-th column of the matrix A. Then

|A| = @11 det Aj; —ajadet Aja +--- + (—1)1+"a1n det A;,,.

The determinant can be defined in different, but equivalent, ways as
follows: Let A = (a,;) be an n x n matrix, n > 2, and let A;; denote the
(n — 1) x (n — 1) submatrix of A by deleting row ¢ and column j from A,

21



22 CHAPTER 2

1 € 4,j £ n. Then the determinant of A can be obtained by so-called
Laplace ezpansion along row i; that is,

n
|A] =) (1) a5 Ayl
i=1

It can be proved that the value |A] is independent of choices of row i.
Likewise, the Laplace expansion along a column may be defined.

The quantities |A;;| and (—1)**7|A;;| are called the minor and cofactor
of the (i, j)-entry a;;, respectively, and the matrix whose (%, j)-entry is the
cofactor of aj; is called the adjoint of the matrix A and denoted by adj(A).
Let I be the n-square identity matrix. It follows that

Aadj(A) = |A|L.

Another definition of determinant in terms of permutations is concise
and sometimes convenient. A permutation p on {1,2,...,n} is said to be
even if p can be restored to natural order by an even number of interchanges.
Otherwise, p is odd. For instance, consider the permutations on {1, 2, 3,4}.
(There are 4! = 24.) The permutation p = (2,1,4,3); that is, p(1) = 2,
?(2) = 1, p(3) = 4, p(4) = 3, is even since it will become (1,2,3,4) after
interchanging 2 and 1 and 4 and 3 (two interchanges), while (1,4,3,2) is
odd, for interchanging 4 and 2 gives (1, 2, 3, 4).

Let Sy, be the set of all permutations of {1,2,...,n}. For p € S,,, define
o(p) = +1 if p is even and o(p) = —1 if p is odd. It can be proved that

n
|A| = Z U(P)Hatp(t)-
PESh t=1

Properties of Determinants. Let A = (a;;) be an n-square matrix.
(d1) A is singular if and only if |A]| = 0.

(dz) The rows (columns) of A are linearly dependent if and only if |A| = 0.
(d3) If A is triangular, i.e., a;j =0, i > j (or i < j), |A| = 611822+ - - Gpn.
(dg) |A| = |AY|, where A® is the transpose of A.

(ds) |kA| = k™|A|, where k is a scalar.

(d¢) |AB| = |A| |B| for any n-square matrix B.

(d7) |S~1AS| = |A| for any nonsingular n-square matrix S.
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Elementary Row (Column) Operations on Matrices.
I. Interchange rows (columns) i and j.
I. Multiply row (column) ¢ by a scalar k # 0.
II. Add % times row (column) ¢ to row (column) j.

Suppose A is a square matrix, and B, C, and D are matrices obtained from
A by the elementary row operations I, II, and Ill, respectively. Then

|B| =—|4|, |C|=k|Al, |D|=]|Al|

Let Ej, Ey, and Eg denote the matrices obtained from the identity matrix
by an application of I, II, and I, respectively, and call them elementary
matrices. Then B = E1A, C = EyA, D = EgA. If an elementary column
operation is applied to A, the resulting matrix is A postmultiplied by the
corresponding elementary matrix.

Inverse. Let A be an n x n matrix. Matrix B is said to be an inverse of
A if AB= BA = 1. If A has an inverse, then its inverse is unique, and we
denote it by A~!. Moreover, since |AA~!| = |A||A~!| = 1, it follows that
1
Al = —.
A square matrix A is invertible if and only if |A| # 0. In addition, if A
is invertible, then so is its transpose A* and (A*)~! = (A1)} if A and B
are invertible matrices of the same size, then AB is invertible and

(AB)™! = B4l

Every invertible matrix is a product of some elementary matrices. This
is seen by applications of a series of elementary row operations to the matrix
to get the identity matrix /. When matrix A is invertible, the inverse can
be found by the adjoint, the formula, however, is costly to calculate:

1

Al=
|4]

adj(A).
For a 2 x 2 matrix, the following formula is convenient:

IfA=(a b)andad—bc#O,thenA_l= 1 (d_b).

c d ad—bc \ —c a
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For a general matrix A with |A| # 0, one may find the inverse of A
by converting the adjoined matrix (A, I) to a matrix in the form (I, B)
through elementary row operations (reduction). Then B is A~1.

Rank. Let A be an m x n matrix over a field IF, where F = R or C. The
image or range of A, Im A = {Az | z € F™}, is the column space of A and
it is a subspace of F™ over F. The rank of the matrix A is defined to be
the dimension of its image (that is also a vector space over F)

r(A) = dim(Im A).

Let A be an m X n matrix and P be an n X n invertible matrix. Then
A and AP have the same column space, since, obviously, Im(AP) C Im A,
and if y = Az € Im A, then y = Az = (AP)(P~'z) € Im(AP). It follows
that applications of elementary column operations do not change the rank
of a matrix. This is also true for row operations, because Im A and Im(Q A)
have the same dimension for any m x m invertible matrix ). To see this, let
7(A) = r and take a basis a1, as,...,q, for Im A, then Qa;, Qas,...,Qa,
form a basis for Im(QA) and vice versa. Thus dim(Im A) = dim(Im(QAP))
for any ™ x m invertible matrix @) and any n x n invertible matrix P.

Let A # 0. Through elementary row and column operations, A can be

brought to a matrix in the form (Ig g) ; that is, there are invertible matrices

R and S such that A= R (’0' g) S. In light of the above argument, we see
that the rank of A is r. The following statements are true:

1. The dimension of the column (row) space of A is r; equivalently, the
largest number of linearly independent columns (rows) of A is r.

2. There exists at least one r X r submatrix of A with nonzero determi-
nant, and all s X s submatrices have zero determinant if s > r.

Other Properties of Rank. For matrices A, B, C of appreciate sizes,
(r1) (A + B) < r(A) +r(B);
(r2) 7(AB) < min{r(4), (B) };
(r3) r(AB) +r(BC) — r(B) < r(ABC).

Systems of Linear Equations. ILet F be a field and A be an m x n
matrix over F. Then Axr = 0 represents a homogeneous linear equation
system of (m) linear equations (in n variables), where z is a column vector
of n unknown components. The system Az = 0 always has a solution z = 0.
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If r(A) = n, then z = 0 is the unique solution. If r(A) < n, then Az =0
has infinitely many solutions. The solutions form a vector space, called the
solution space, null space, or kernel of A, denoted by Ker A.

Let {a,...,as} be a basis for Ker A and extend it to a basis {a,,...,a,,
Bi,---,B} for F*, s +t = n. Obviously, Im A = Span{AB,,...,AB:}. I
ApBi,...,AB, are linearly dependent, then for some l;,...,l;, not all zero,

L (A,Bl)-l- . +lt(Aﬂt) = A(llﬂl-i-' . '+ltﬂt) =0and ; 51+ --+l:5;: € Ker A.
This contradicts that {,...,a,,B1,...,06t} is a basis for F*. Therefore
AbPr,s...,AB, are linearly independent and form a basis for Im A. The
dimension of the null space of A is n — r(A); that is,

r(A) + dim(Ker A) = n.

Let b be a column vector of m components. Then the linear system
Az = b may have one solution, infinitely many solutions, or no solution.
These situations can be determined by the rank of the matrix B = (A4, b),
which is obtained by augmenting b to A:

(s1) If r(B) = r(A) = n, then Az = b has a unique solution.
(s2) If r(B) = r(A) < n, then Az = b has infinitely many solutions.
(s3) If r(B) # r(A), then Az = b has no solution.
Cramer’s Rule. Consider the linear equation system Az = b, where A is

a coefficient matrix of size n x n. If A is invertible; that is, |A| # 0, then
the system has a unique solution and the solution is given by

_ 14l

T = 4]’ =1,2,...,n,

where A; is the matrix obtained from A by replacing the ¢-th column of A
with b. Note that Cramer’s rule cannot be used when A is singular.
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Chapter 2 Problems

2.1 [Evaluate the determinants

1 2 3 14z 2+z 3+« ! 22 28
8 9 4|, |8+z 9+z 4+=z |, |28 2 of
7 6 5 T4z 6+z 5+=z ' 28 2P

2.2 Evaluate the determinant

QO = = = O
— e O O
- OO O

1
-1

0 -

0

0

OO it i

2.3 Explain without computation why the determinant equals zero:

a1 G2 a3 G4 G5
by by b3 by bs
C1 C2 0 0 0
d d 0 0 0
€1 €9 0 0 0

2.4 Ewvaluate the determinants

0 0 a) bl a1 0 0 bl
0 0 asz bz 0 a2 b2 0
as b3 0 0|’ 0 b3 as 0
ag bg 0 O by O O a4

2.5 Evaluate the 6 x 6 determinant

0O 0 0 0 O
0 0 0 0 a
0 0 0 a3
0 0 a4 e

0 as h )
ag | m n

0 .0
N x> oo
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2.6 Let f(z)=(p1 —z)(p2 —z):- (pp — z) and let

71a a a a a
b p» a a a a
b b p3 a a a
A, = b b b pa a a
b b b b - po1 a
b b b b --- b pn

(a) Show that if @ # b, then
An - bf(a') — af(b) .

b—a

(b) Show that if @ = b, then
An=1a)_ fia) + pafnla),
i=1

where f;(a) means f(a) with factor (p; — a) missing.
(c) Use (b) to evaluate

a b b b
b a b b
b b a a
b b b a |

2.7 Show that (the Vandermonde determinant)

1 1 1 1

ai a3 as Gn

a"{ ag ag aﬁ = H (Gj - az)-
. 1<i<j<n

a® ! o371 of7? an-?

In particular, if V is the n x n matrix with (¢, j)-entry j*~1, then

V]|=(n-1)n-2)72...2""2
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2.8

2.9

2.10

2.11

CHAPTER 2

Show that if @ # b, then

a+b ab 0 0 0

1 a+b ab .- 0 0

0 1 a+b --- 0 0 _ gt —pnt!

- a—>b

0 0 0 a+b ab

0 0 o - 1 a+b]|,,,
What if a = b?

Find the characteristic polynomial |A] — A| for the 10 x 10 matrix

0 1 0 0 0
0 0 1 0 0
A=
0 0 0 0 1
10 0 0 0 0
Let ag,a1,...,ap-1 € R. Write @ = (-a;,-ag,...,—@,-1) and lct

A=( 0 I )
—Qg a

M —Al = A"+ 8,1 A" 4+ 4 ap.

Show that

Let each a;(t) be a differentiable function of ¢. Show that

a1 () a1;(t) a1 (?)
4| an(t) as;(t) a2n(t)
al ---
an1(t) an;j(t) ann(t)
an(?) £a15(t) a1, (t)
_ | ax(t) 292;(t) azn(t)
= am(®) L anj(t) Gnn(t)

and evaluate 2|7 + tA| when ¢t = 0.
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2.12

2.13

2.14

2.15

2.16

2.17

2.18

If A is an n X n matrix all of whose entries are either 1 or —1, prove
that |A| is divisible by 21,

Let A = (a, 72, r3, 74) and B = (b, 2, r3, r4) be 4 x4 matrices, where
a, b, 7o, T3, r4 are column vectors in R%. If det A =4 and detB =1,
find det(A + B). What is det C, where C = (r4, 73, T2, a + b)?

Let A be an n x n real matrix.

(a) Show that if A* = —A and n is odd, then |A| = 0.
(b) Show that if A2 + I =0, then n must be even.

(c) Does (b) remain true for complex matrices?

Let A € M,(C). If AA* = I and |A| <0, find |A + I|.

If A, B, C, D are n x n matrices such that ABCD = I. Show that

ABCD = DABC =CDAB =BCDA=1.

If A is such a matrix that A3 = 21, show that B is invertible, where

B=A%-24+2I.

Consider B(A,I) = (BA, B). On one hand, if B is the inverse of A,
then (BA, B) becomes (I, A™!). On the other hand, B is a product
of elementary matrices since it is invertible. This indicates that the
inverse of A can be obtained by applying elementary row operations
to the augmented matrix (A, I) to get (I, A~!). Find the inverses of

A=1 01 0 and B=
e b 1 0 0 01
a b c d
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2.19

2.20

2.21

2.22

2.23

CHAPTER 2
Find the inverses of the matrices
11 1 1
1 1 1 01 1 1
( 011 ) and :
001 0 0 11
00 0 1
Find the inverse of the matrix
111 1
1 2 2 2
1 2 3 3
1 2 3 n
Find the determinant and inverse of the n x n matrix
011 1
1 0 1 1
1 10 1
1 11 0
Let a1, as,...,a, be nonzero numbers. Find the inverse of the matrix
0 al 0 .o 0
0 0 a ... 0
0 0 0 R /P |
a. 0 O 0

Let A,B,C, X,Y, Z € M,(C), and A~! and C~? exist. Find

-1
-1 I XY

('3 g) and o I Z2 .
0 0 I
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2.24 Find the inverse of the 3 x 3 Vandermonde matrix

2.25

2.26

2.27

2.28

2.29

1 1 1
V= a; Gy as
o} o} o

when a;, ag, and a3 are distinct from each other.

Let A and B be, respectively, m x p and m x q maitrices such that
A*B =0, where p+ q = m. If M = (A, B) is invertible, show that

e (A8

Assuming that all matrix inverses involved below exist, show that
(A-B) '=A14+A"YB1- 4114,

In particular
T+A) P =T-(A1+ 1)

and
[T+ AP+ (T + A" =1.
Assuming that all matrix inverses involved below exist, show that

(A+iB) ' =B 1A(A+ AB7'A)"1 —i(B+ AB71A)"L.

Let A, B, C, D € M,(C). If AB and CD are Hermitian, show that
AD-B*C* =1 = DA-BC=1I
Let m and n be positive integers and denote K = (Ig‘ _(}“). Let Sk
be the collection of all (m + n)-square complex matrices X such that
X*KX =K.

(a) If A € Sk, show that A~! exists and A~!, A, A, A* € Sk.
(b) If A, B € Sk, show that AB € Si. How about kA or A + B?

(c) Discuss a similar problem with K = (—(I)m '6").
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2.30 Let A and C be m x m and n X n matrices, respectively, and let B,
D, and E be matrices of appropriate sizes.

(a) Show that

A B A 0
‘ 0 C “l D C l"A”C|'
(b) Evaluate
0 L|’ |I, 0| 0 I,

(¢) Find a formula for
0 A
C E|

2.31 Let S be the backward identity matrix; that is,

00 --- 01
00 --- 10
s=|:: i
01 .- 00
1 0 .-- 00

nxn

Show that §~! = §* = S. Find |S| and SAS for A = (a;;) € M.(C).

2.32 Let A B,C,Dbemxp, mxgq,nXp,n X q matrices, respectively,
where m 4+ n = p + q. Show that

C D B A
In particular, when A, B, C, D are square matrices of the same size,

C D B A
and for a square matrix A, a column vector z, and a row vector ¥,
| Az 1 y |

Y

‘AB D C

y 1 z A

Is it true in general that
| A

B ?
C D )

C
D

A
B
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2.33 Let A, B, C, D € M,,(C). If matrix (g. g) has rank n, show that

|4 1B| | _

=0.
IC| |D|

Moreover, if A is invertible, then D = CA~1B.

2.34 Let A, B, C, D € My(C) and let M = (g g) . Show that

(a

) |M|=|AD* - BC!| if CD* = DC".
(b) |

)

)

M| = |AD' + BC"| if CD* + DC* = 0 and if D! exists.

(b) is invalid if D is singular by example.

(c
|M|? = |ADt + BC*|? for the example constructed in (c).

d

2.35 Let A, B, C, D € My,(C).

(a) Show that if A~ exists, then

A B|_ "
‘c D‘—IAHD—CA B|.

(b) Show that if AC = CA, then

A B
‘C b | =14D-CB.

(c) Can B and C on the right-hand side in (b) be switched?
(d) Does (b) remain true if the condition AC = CA is dropped?

2.36 Consider the matrices in M2(R).

(a) Isit true that |A + B| = |A| + |B| in general?
(b) If A #0, By, Ba, Bs, By € Ma(R), and if

|A+ B;|=|A|+|Bil, i=1,2,3,4,

show that B,, Bs, B3, B, are linearly dependent over R.
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2.37 Let M= (é. g) be an invertible matrix with M~1 = (;,‘ 5), where

A and D are square matrices (possibly of different sizes), B and C
are matrices of appropriate sizes, and X has the same size as A.

(d)

Show that |A| = |V| | M]|.
If A is invertible, show that X = (D — CA~1B)™1.
Consider a unitary matrix W partitioned as W = (: ;1),

where u is a number and U, is a square matrix. Show that
u and det U; have the same modulus; that is, |u] = |det Uy |.

What conclusion can be drawn for real orthogonal matrices?

2.38 Introduce the following correspondences between complex numbers
and real matrices and between complex number pairs and complex

matrices:
z=z+iy~2Z=( ° Y )emm
- Y = —~y z 2 )
v
i=wo=Q=( " ) em)
(a) Show that z ~ Z¢.
(b) Show that ZW = W Z, where w ~ W.
(c) Show that z ~ Z and w ~ W imply zw ~ ZW.
(d) Find Z™ for z = r(cos@ + isinf), r, € R.
() What is the matrix corresponding to z = i?
() Show that 27 = 1oy (277).
(g) Show that Z = P (“5‘” zfiy) P*, where P = - (: _1‘) .
(h) Show that |Q| > 0. Find Q! when |u|? + |v|? = 1.
(1) Replace each entry z of @ with the corresponding 2 x 2 real
matrix Z to get R = (_‘{,, 5) € My(R). Show that |R| > 0.
. e gy e e s . U X
(j) Show that R in (i) is similar to a matrix of the form (-x U)'

Show that R in (i) is singular if and only if Q is singular, and
if and only if u =v = 0.
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2.39 Let A and B be n X n real matrices. Show that
| A B

State the analog for complex matrices.

2.40 Let A and B be n x n complex matrices. Show that
l A B

B A’=m+mm-BL

Let C=A+Band D=A-B. If C and D are invertible, show that

A BY'_1({Cc'+D! ¢1'-D
B A) T2\c'-Dp?' ¢c'+D?

2.41 Let z and y be column vectors of n complex components. Show that
(&) [ —zy*|=1-y*z.
I =z 1 y

O

z I
(c) fé=1-y*z#0, then (I —zy*) "t =T+ 'zyp*.

(d) I z\7'_(I+6'zy -6z
yt 1 - _6—1y# 6—1 .

2.42 Show that a matrix A is of rank 1 if and only if A can be written as
A = zyt for some column vectors = and y.

2.43 Let A € M,(C) and uj,u3,...,u, € C" be linearly independent.
Show that r(A) = n, namely A is nonsingular, if and only if Au;, Aug,
..., Auy, are linearly independent.

2.44 Let A # 0 be an m x n complex matrix with rank r, show that there
exist invertible m x m matrix P and n x n matrix @ such that

I. 0
a=r( %)

Moreover, P and () can be chosen to be real if A is real.
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2.45 For matrices of appropriate sizes, answer true or false:

(a)
(b)
(c)
(d)
(e)
(f)

If A2= B? then A=Bor A= -B.

If r(A) = r(B), then r(A?) = r(B?).

r(A + kB) < r(A) + kr(B), where k is a positive scalar.
r(A — B) < r(A) — r(B).

If r(AB) = 0, then r(BA) = 0.

If r(AB) =0, then »(4) =0 or r(B) =0.

2.46 Consider the 2 x 2 Hermitian matrix A = ( _1‘. ;) Let

(a)
(b)
()

(d)
(e)
(f)
(g)
(h)
(1)

We={Az|zcR?*} and Wc={Az|zeC?}.

Show that the rows of A are linearly dependent over C.
Show that the rows of A are linearly independent over R.

Since the rows of A are linearly independent over the real num-
ber field R, does it follow that the matrix A is invertible?

Show that U*AU is a diagonal matrix, where U = %2 (17)-
What is the rank of A?

Show that Wy C We.

Show that W is a subspace of C2 over R and also over C.
Show that Wy is a subspace of C2 over R but not over C.
Find dim Wg over R and dim W over R and over C.

2.47 Let A be an n-square Hermitian matrix. Write A = B +iC, where B
and C are n-square real matrices.

(a)
(b)
(c)
(d)

(e)

Show that Bt = B and C* = —C.
Show that 2zt Az = zt Bz and ztCz = 0 for all z € R™.
Show that if Az =0, z € R®, then Bx =0 and Cz =0.

Take A = (_1 ; ;) Find a complex column vector ¢ € C? such
that z*Az = 0 but z*Bz # 0.

Take A = (111. I'I*'i). Find a real column vector z € R? such

that Bz = 0 but Az # 0. What are the ranks of A and B?



DETERMINANTS, INVERSES, RANK, AND LINEAR EQUATIONS 37

2.48

2.49

2.50

2.51

2.52

2.53

2.54

2.55

For an m x n real matrix A, let Wg = {Az |z € R*} and W¢ =
{Az | z € C" }. Then obviously Wr and W¢ are not the same. Show
that the dimension of Wy as a subspace of R™ over R is the same as
the dimension of W¢ as a subspace of C™ over C.

If the rank of the following 3 x 4 matrix A is 2, find the value of ¢:

1 2 -1 1
A=} 2 0 t 0].
0 -4 5 2

For what value of ¢ i8 the rank of the following matrix A equal to 37

t 1 1 1
1 ¢t 11
A_lltl
1 1 1 ¢

Let A, B € Mp(C). Show that if AB = 0, then
r(A)+r(B) <n.

If B is a submatrix of a matrix A obtained by deleting s rows and ¢
columns from A, show that

r(A) < s+t +r(B).

Let A, B € M, (C). Show that
r(AB) < min{ r(4), r(B) }

and
r(A+ B) <r(A) +r(B) < r(AB) +n.

Let A be m x n, B be n x p, and C be p x ¢ matrices. Show that
r(ABC) 2 r(AB) + r(BC) - r(B).

Let A, B € M,(C). If AB = BA, show that
r(A + B) < r(A) + r(B) — r(AB).
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2.57

2.58

2.59

2.60
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Let Ay, Ay,...,A; be n x n matrices. If A; Az - A, =0, show that

(A1) +r(A2) +--- +7r(Ag) £ (k- 1)n.

Let X, Y, and Z be matrices of the same number of rows. Show that

r(X,Y)<r(X,2)+r(Z2,Y) —r(2).

Show that for any m x n complex matrix A,
r(A*A) = r(AA*) = r(4) = r(A*) = r(4") = r(A).
Is 7(A*A) or r(AA) equal to r(A) in general?

Which of the following is M* for the partitioned matrix M = ( 4 g)?
M= (45, m=(85), M=(25), Mm=(2%).

Let adj(A) denote the adjoint of A € M, (C); that is, adj(A) is the
n X n matrix whose (i, )-entry is the cofactor (—1)**7|4;;| of a;;,
where Aj; is the submatrix obtained from A by deleting the j-th row
and the i-th column. Show that

(a) r(A) = n if and only if r(adj(A4)) = n.

(b) r(A) =n -1 if and only if (adj(A)) = 1.

(c) r(A) <n -1 if and only if r(adj(A)) = 0.

@) adi(4)] = |41,

(e) adj(adj(4)) = |A|"2A.

(f) adi(AB) = adj(B) adj(A).

(g) adj(XAX~!) = X(adj(A4))X ! for any invertible X € M,(C).
k

—
(b) |adj---adj(A)| =|A| when A is 2 x 2.
(1) If A is Hermitian, so is adj(A).
k
——
Find a formula for adj- - - adj(A) when |A| = 1. What are the eigen-
k

et e
values of adj(A)? What are the eigenvalues of adj - - - adj(A4)?
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2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

Show that A is nonsingular if A = (a;;) € M, (C) satisfies
n

Iaﬂ|> Z Ia‘ijl, i=1’2’-'°7n'
=1, 5#

Let A, B be n x n matrices satisfying A2 = A, B2 = B. Show that
r(A-—B)=r(A—- AB) +r(B - AB).

Let A € M,(C). Show that A? = A if and only if r(A)+r(A~-1I) = n.

Let A be an m x n matrix and B be an n X p matrix. Show that

r( g ;: )=n+r(AB).

Let A be an m X n matrix, m > n. Show that
r(I, — AA*) —r(I, — A*A) =m —n.

Denote the columns of matrix A by a;, as, a3, respectively, where

1+ A 1 1
A= 1 1+A 1 .
1 1 1+ A

Find the value(s) of A such that 8 = (0, A, A2)*

(a) belongs to the column space of A;
(b) does not belong to the column space of A.

The notation A* is used for the adjoint of matrix A in many other
books. Under what conditions on the matrix A is A* in the sense of
this book; that is, A* = (A)!, the conjugate transpose, the same as
adj(A), the adjoint matrix of A?

Determine the values of A so that the following linear equation system
of three unknowns has only the zero solution:

Azy+z2+23 =0
T+ Az +z3 =0
z1+z2+23 = 0.



40

2.69

2.70

2.7

2.72

2.73

2.74
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Determine the value of A so that the following linear equation system
of three unknowns has nonzero solutions:

1 +222— 223 =0
221 — 2+ 2z3 =0
3z1 +x2—x3 = 0.

Find the general solutions of the linear system of five unknowns:

Ty +x2+z5 =0
T1+23—23 =0
T3+ 24+ 25 = 0.

Find the dimension and a basis for the solution space of the system

T1—T2+5x3—24 =0
T1+Z3—2x3+3z4 =0
3y —z2+8x3+z24 =0
T1+4+3z2 — 923+ 724 = 0.

Find all solutions z,, &g, 3, T4, T5 of the linear equation system

Ts+ T2 = Y1
1+ T3 = yx2
To+ T4 = Yx3
T3+ Ts = Yx4
T4+ 1 = YTs,

where y is a parameter.

Discuss the solutions of the equation system in unknowns z,, z2, T3:

az) +bxs +2z3 =1
ary + (26— Dz + 323 = 1
azy + bze + (b+ 3)z3 = 2b—1.

Let A be a real matrix. If the linear equation system Az = 0 has a
nonzero complex solution, show that it has a nonzero real solution.
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2.75 Find a basis for the solution space of the system of n + 1 linear
equations of 2n unknowns:

T1+ T2+ +2p =0
Ta+23+ +Tpy1 =0

Tptr + Tni2+ - -+ T2 = 0.

2.76 Let A € M,(F) and writc A = (a3, ax2,...,0p), where cach o; € F™.
(a) Show that
dim(Span{a;,az,...,an}) = r(A).
(b) Let P be an n x n invertible matrix. Write

PA:(PalaPQZs“'aPan)=(,31,.B2""aﬂn)-

Show that o;,, @, . .., @, are linearly independent if and only
if Bi,, Bizy .- -, Bi,. are linearly independent (over F).

(¢) Find the dimension and a basis of the space spanned by

2 1 0 1
1 2 2 1
n= 3 y Y2 = 0 =] g |0 TAT |
1 1 1 1

2.77 Let W), and W, be the vector spaces over R spanned, respectively, by

1 3 -1
o) = 2 Qo = 1 a3 = 0
1 = _1 ) 2 = 1 ) 3 = 1
-2 1 -1
and
2 -1
5 2
ﬂl - _6 ’ ﬂz - _7
-5 3

Find the dimensions and bases for W, N W, and W, + Ws.
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2.78

2.79

2.80

2.81

2.82

2.83

2.84

CHAPTER 2

Let a;; be integers, 1 < 2, j < n. If for any set of integers b1, b2,...,bs,
the system of linear equations

n
E a;jz; =b;, i=12,...,n,
i=1

has integer solutions z,, zs,...,Z,, show that the determinant of the
coefficient matrix A = (a,;) is either 1 or —1.

Let W, and W5 be the solution spaces of the linear equation systems
21 +$2+"'+$n=0

and

TI=Ty = =2,

respectively, where z; € F, i = 1,2,...,n. Show that F* = W; & Wa.

Let A € M,(C). Show that there exists an n x n nonzero matrix B
such that AB =0 if and only if |A| = 0.

Let A be a p x n matrix and B be a ¢ X n matrix over a field F. If
r(A) +r(B) < n, show that there must exist a nonzero column vector
z of n components such that both Az =0 and Bz = 0.

Let A and B be n-square matrices over a field IF and Ker A and Ker B
be the null spaces of A and B with dimensions ! and m, respectively.
Show that the null space of AB has dimension at least max{l,m}.
When does it happen that every x € F™ is either in Ker A or Ker B?

Let A be a square matrix. If r(A) = r(A?), show that the equation
systems Az = 0 and A%z = 0 have the same solution space.

Let A and B be m x n matrices. Show that Az = 0 and Bz = 0 have
the same solution space if and only if there exists an invertible matrix
C such that A = CB. Use this fact to show that if r(A?) = r(A4),
then there exists an invertible matrix D such that A2 = DA.
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2.85

2.86

2.87

2.88

Suppose b # 0 and Az = b has solutions m,72,...,7,. Show that a
linear combination A1 + A2m2 + ¢ - - + An?y is a solution to Az = b if
and only if A} + A2 +---+ Ap = 1. Show also that Iy +lamp ++-- +
o =0implies lhy +lo+---+ 1, =0.

Let A € My;xn(C). Show that for any b € C™, the linear equation
system A*Ax = A*b is consistent, meaning that it has solutions.

Let A € M,(C) and b be a column vector of n complex complements.
Denote A = ( ) If r(A) = r(A), which of the following is true?

(a) Az = b has infinitely many solutions.
(b) Az = b has a unique solution.
(c) Az = 0 has only solution & = 0.
(d) Az = 0 has nonzero solutions.
Let
a; @12 ... Qin
a1 a2 ... Q2n £0.
Qpnl Qp2 ... GQpn
Show that
r(1,1114!)1 +ajz2z2 + - + AnTp = b1
a2171 + a22T2 + -+ - + GonTn = bo
Qi etiteerraeaenasnoctecennaneranna
An1T1 + @n2T2 + -+ + GunTn = bn
LC1Z1 +CaTa + - + Ty = d
and

4
1171 + 62122 + - + @p1TH = C1
a12Z1 + @22%2 + +** + Qp2Tp = C2

A1nT1 + A2pT2 + *** + AGpnTpn =Cp
kb1:l:1 +bozo+ -+ by, =d

will either both have a unique solution or both have no solution.
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If A is a square matrix such that the linear equation system Az =0
has nonzero solutions, is it possible that A’z = b has a unique solution
for some column vector b?

Let A and B be matrices such that r(AB) = r(A). Show that

XIAB =X2AB = X1A=X2A

Consider the straight lines in the zy-plane. Show that the three lines

Lh: az+by+c=90
lb: bx+cy+a=0
l3: cx+ay+b=0

intersect at a point if and only ifa + b+ ¢ = 0.



Chapter 3

Matrix Similarity,
Eigenvalues, Eigenvectors,
and Linear Transformations

Definitions and Facts

Similarity. Let A and B be n x n matrices over a field F. If there exists
an n X n invertible matrix P over F such that P~*AP = B, we say that
A and B are similar over F. If A and B are complex matrices and if P is
unitary, i.e., P*P = PP* = I, we say that A and B are unitarily similar.
Similar matrices have the same determinant, for if B = P~1 AP, then

|B| = |[P7AP| = [P7Y||A||P| = |P|™"|A||P| = |A|.

We say a matrix is diagonalizable if it is similar to a diagonal matrix and
unitarily diagonalizable if it is unitarily similar to a diagonalizable matrix.

Trace. Let A = (a;,) be an n x n matrix. The trace of A is defined as the
sum of the entries on the main diagonal of A, that is,

trA=ay1 +ax+-+ann-

Eigenvalues and Eigenvectors of a Matrix. Let A be an n X n matrix
over a field F. A scalar A € F is said to be an eigenvalue of A if

Az = Xz

for some nonzero column vector = € F"*. Such a vector z is referred to as
an eigenvector corresponding (or belonging) to the eigenvalue A.

45
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Let A be an n xn complex matrix. The fundamental theorem of algebra
ensures that A has n complex eigenvalues, including the repeated ones. To
see this, observe that Az = Az is equivalent to (Al — A)z = 0, which has a
nonzero solution z if and only if AI — A is singular. This is equivalent to A
being a scalar such that |AI — A| = 0. Thus, to find the eigenvalues of A,
one needs to find the roots of the characteristic polynomial of A

pa(A) = |AI - Al

Since the coefficients of p 4 (z) are complex numbers, there exist complex
numbers Ay, Az, ..., An (not necessarily distinct) such that

PAQ) =AM - Al = (A= M)A = Ag) - (A= An),

so these scalars are the eigenvalues of A.

Expanding the determinant, we see that the constant term of pa(}) is
(—=1)*|A] (this is also seen by putting A = 0), and the coefficient of A is
— tr A. Multiplying out the right-hand side and comparing coefficients,

|A|=,\1,\2...,\ﬂ

and
trA=ajy+axp+ -r+apm=A+A+ -+ .

The eigenvectors = corresponding to the eigenvalue A are the solutions
to the linear equation system (Al — A)z = 0; that is, the null space of
AT — A. We call this space the eigenspace of A corresponding to A.

Similar matrices have the same characteristic polynomial, thus the same
eigenvalues and trace but not necessarily the same corresponding eigenvec-
tors. The eigenvalues of an upper- (or lower-) triangular matrix are the
elements of the matrix on the main diagonal.

Triangularization and Jordan Canonical Form.

e Let A be an nxn complex matrix. Then there exists an nxn invertible
complex matrix P such that P~!AP is upper-triangular with the
eigenvalues of A on the main diagonal. Simply put: Every square
madtrix is similar to an upper-triangular matrix over the complex field.
Let Ay, ..., be the eigenvalues of A. We may write

Al *
P'AP= .
0 An
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e Let A be an n xn complex matrix. Then there exists an n X n unitary
matrix U such that U* AU is upper-triangular with the eigenvalues of
A on the main diagonal. Simply put: Every square matrix is unitarily
similar to an upper-triangular matrix over the complex field.

e Jordan (canonical) form of a matrix. Let A be an n x n complex
matrix. There exists an n x n invertible complex matrix P such that

Ji 0 0 O

0O Jo, 0 0O
P_]'AP = . . . . ]

0 0 0 J,

where each J;, t =1,2,...,s, called a Jordan block, takes the form

A1 0 O
O x 1 0
0 0 0 A

in an appropriate size; X is an eigenvalue of A. In short: Every square
matrix is similar to a matrix in Jordan form over the complex field.

The Jordan form of a matrix carries a great deal of algebraic infor-
mation about the matrix, and it is useful for solving problems both in
theory and computation. For instance, if (3 ;) is a Jordan block of a
matrix, then this matrix cannot be diagonalizable; that is, it cannot
be similar to a diagonal matrix. The determination of the Jordan
form of a matrix needs the theory of A-matrices or generalized eigen-
vectors. One may find those in many advanced linear algebra books.

Singular Values. Let A be a matrix but not necessarily square. Let
A be an eigenvalue of A*A and z be a corresponding eigenvector. Then
(A*A)z = Az implies £*(A*A)x = (Az)*(Az) = A\x*z > 0. Hence, A > 0.

The square roots of the eigenvalues of A*A are called singular values of
A. The number of positive singular values of A equals the rank of A.

Let A be an m x n matrix with rank r, r > 1, and let 0,,03,...,0, be
the positive singular values of A. Then there exist an m X m unitary (or
orthogonal over R) matrix P and an n x n unitary matrix @ such that

A= PDQ,
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where D is an m x n matrix with (%, i)-entry o;, i = 1,2,...,7, and all other
entries 0. This is the well-known stngular value decomposition theorem.

Linear Transformation. Let V and W be vector spaces over a field F.
A mapping A from V to W is said to be a linear transformation if

A(u + v) = A(u) + A(v), u, veEV

and
A(ku) = kA(u), kelF,ueV.

It follows at once that A(0) = 0. We could have written A(0,) = 0y,
where 0, and 0O, stand for the zero vectors of V and W, respectively.
However, from the context one can easily tell which is which. For simplicity,
we use 0 for both. Sometimes we write A(u) as Au for convenience.

The zero transformation from V' to W is defined by 0(v) =0, ve V.

The linear transformations from V to V are also called linear operators.

The Vector Space of Linear Transformations. Let L(V,W) denote

the set of all linear transformations from a vector space V' to a vector space
W. We define addition and scalar multiplication on L(V, W) as follows:

(A + B)(u) = A(w) + B(w), (kA)(x) = k(A(u)).

Then L(V,W) is a vector space with respect to the addition and scalar
multiplication. The zero vector in L(V, W) is the zero transformation, and
for every A € L(V,W), —A is the linear transformation

(—A)(u) = —(A(u)).

When V = W, I(u) = u, v € V, defines the identity transformation
onV, and T(u) = ku, u € V, defines a scalar transformation for a fixed
scalar k. The product of linear transformations (operators) A, B on V can
be defined by the composite mapping

(AB)(u) = A(B(w)), ueV.

The product AB is once again a linear transformation on V.

Kernel and Image. Let A be a linear transformation from a vector space
V to a vector spacc W. The kernel or null space of A is dcfined to be

KerA={uveV|A(u)=0}
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and tmage or range of A is the set
ImA={A(u)|ueV}

The kernel is a subspace of V' and the image is a subspace of W. If
V is finite dimensional, then both Ker.A and Im.A have to be of finite
dimension. If {u;,us,...,u,} is a basis for Ker A and is extended to a
basis for V, {u1,us,..., U, Uss1,--.,Un}, then {A(ust1),...,A(u,)} is a
basis for Im(.A). We arrive at the dimension theorem:

dim V = dim(Ker A) + dim(Im A).

Given an m x n matrix A over a field F, we may define a linear trans-
formation from F™ to F™ by

A(z) = Az, zeF".
The kernel and image of this .4 are the null space and column space of A,
respectively. As is known from Chapter 1, dim(Im.4) = r(A).

Matrix Representation of a Linear Transformation. Let V be a vec-
tor space of dimension m with an ordered basis a = {a1,02,...,an} and W
be a vector space of dimension n with an ordered basis 8 = {81, B2,..-,0n}-
IfueVandu=z0a+: + Tnany for (unique) scalars z;, letting
z = (21,...,Zm)%, we will denote this representation of u as a¢z. Similarly,
ifweWand w=y 81+ + yYnBn, we will abbreviate as w = By.

Let A be a linear transformation from V to W. Then A is determined
by its action on the ordered basis a relative to 3. To be precise, let

A(os) = 0181 + aziBo + -+ + @nifBn, i=1,2,...,m.

For the sake of convenience, we use the following notation:

A(os) = (81,52, - ., Bn)ai = Bai, where a; = (a1, a2, - .-, Gni)"

and

Ala) = (A1), A(az2), . .., Alam)) = (1,062, . . ., Bn)A = BA,
where
A = (ay,062,...,0n) = (agj).

If
u=2z10; + T202 + - - + Ty = (@3, Q2,...,0,)Z = o,
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where = = (z1,Z2,...,Zm )" is the coordinate of u relative to basis a, then
A(v) = Aaz) = (A(a))z = (BA)z = B(Az).

This says Az is the coordinate vector of A(u) € W relative to the basis 3.
Thus the linear transformation A is determined by the matrix A. Such a
matrix A associated to A is called the matriz representation of the linear
transformation A relative to the (ordered) bases a of V and 8 of W.

IfV =W and o = 83, then A(a) = aA; we simply say that A is the
matrix of A under, or relative to, the basis . If V = F™ and W = F",
with the standard bases oo = {e1,...,en} and 8 = {e€1,...,€n}, we have

A(u) = Az.

Matrices of a Linear Operator Are Similar. Consider V, a vector
space of dimension n. Let o and 3 be two bases for V. Then there exists
an n-square invertible matrix P such that 8 = aP. Let A; be the matrix
of A under the basis a; that is, A(a) = aA;. Let Ay be the matrix under
(3. We claim that A; and Aj are similar. This is because

A(B) = A(aP) = (A(a))P = (aA;)P = B(P' A, P).

It follows that Ay = P~1A, P. Therefore, the matrices of a linear operator
under different bases are similar.

Eigenvalues of a Linear Operator. Let A be a linear transformation on
a vector space V over F. A scalar A € F is an eigenvalue of A if A(u) = Au
for some nonzero vector u. Such a vector u is called an eigenvector of A
corresponding to the eigenvalue A.

Let A be the matrix of .A under a basis a of V and z be the coordinate
of the vector u under ; that is, u = az. Then

a(Az) = Maz) = \u = A(u) = A(oz) = (A(a))z = (ed)z = o Az).

Thus A(u) = Au is equivalent to Axr = Az. So the eigenvalues of the
linear transformation A are just the eigenvalues of its matrix A under a.
Note that similar matrices have the same eigenvalues. The eigenvalues of
A through its matrices are independent of the choices of the bases.

Invariant Subspaces. Let A be a linear operator on a vector space V.
If W is a subspace of V such that A(w) € W for all w € W; that is,
A(W) C W, then we say that W is invariant under A. Both Ker A and
Im A are invariant subspaces under any linear operator .A.
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Chapter 3 Problems

3.1 Let A and B be n-square matrices. Answer true or false:

(a) If A2=0, then A=0.

(b) If A2 =0 and ) is an eigenvalue of A, then A = 0.
(c) If A2 =0, then the rank of A is at most 2.

(d) 1f A2=A, then A=0o0r I.

(e) If A*A=0, then A=0.

(f) f AB=0,then A=0or B=0.

(g) If |AB| =0, then |A|=0or |B| =0.

(h) AB = BA.

(i) |AB| = |BA|, where Ais m xn and B is n x m.
() [A+ B|=|A| +|BI.

k) (A+I)2=A2+24+1.

(1) |kA| = k|A| for any scalar k.

3.2 Let A and B be n x n matrices. Show that
(A+ B)? = A2 + 2AB + B?

if and only if A and B commute; that is, AB = BA.

3.3 Let A and B be n x n matrices. Show that

AB=AxB = AB=BA.

8.4 Find the values of a and b such that the following matrices are similar:

-2 0 0 -1 00
A= 2 a 2|, B= 0O 2 0 ].
3 11 0 0 b

3.5 What are the matrices that are similar to themselves only?
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3.6

3.7

3.8

3.9

3.10

CHAPTER 3

A matrix X is said to be equivalent to matrix A if PXQ = A for some
invertible matrices P and Q; congruent to A if P!XP = A for some
invertible P; and similar to A if P~ X P = A for some invertible P.

Let A be the diagonal matrix diag(1,2, —1). Determine if the matrices

1 -1 0 -2 0 0 010
B=| -1 2 0],C= 0 1 0},D=|100
0O 0 3 0 01 0 0 2

are

(a) equivalent to A;
(b) congruent to A; or
(¢) similar to A.

Which of the following matrices are similar to A = diag(1,4,6)?

1 2 3 4 0 0 1 2 0
B=(045),C=(710),D=(345),

0 0 6 8 9 6 0 7 6

4 70 1 20 1 00
E=(010),F=(340),G=(251).

8 9 6 0 5 6 3 1 5

Let a, b, ¢ € R. Find the condition on a, b, and ¢ such that the matrix

2 0 O

a 2 0

b ¢ -1
is similar to a diagonal matrix.

For any scalars a, b, and ¢, show that

b ¢ a c a b
A=| c a b |,B=]a b ¢ |,C=
a b c b ¢ a

are similar. Moreover, if BC' = CB, then A has two zero eigenvalues.

O O 8

b
c
a

L~ v

Let E;; be the n-square matrix with the (z, j)-entry 1 and 0 elsewhere,
t,, 5=12,...,n. For Ac Mn(C), find AE,fj, E,fjA, and E,‘jAEsg.
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3.11

3.12

3.13

3.14

3.15

3.16

Compute A% and A8, where

-1 1 1 -1

Find A%, where

For positive integer k > 2, compute
k k 01 0\" 01 0\"
2 1 Al
9 3 ) U E 0 01 , 0 01 .
0 00 1 00

Let A= (é 1)- Show that A is similar to A for every positive integer
k. This is true more generally for any matrix with all eigenvalues 1.

Let u=(1,2,3) and v = (1, 1, 1). Let A =u'v. Find A", n.> 1.

Let A be an n x n complex matrix. Show that

(a) (Schur Decomposition) There is a unitary matrix U such that

Al *
A2
U*AU =
0 An
is an upper-triangular matrix, where A;’s are the eigenvalues
of A, and * represents unspecified entries.

(b) If A and B € M,(C) are similar, then for any polynomial f(z)
in z, f(A) and f(B) are similar.

(c) If X is an eigenvalue of A, then f(A) is an eigenvalue of f(A).
In particular, A¥ is an eigenvalue of A¥.

(d) If AP = QA for diagonal P and Q, then Af(P) = f(Q)A.
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3.17

3.18

3.19

3.20

3.21

3.22

3.23

CHAPTER 3

Show that an n-square matrix is similar to a diagonal matrix if and
only if the matrix has n linearly independent eigenvectors. Does the
matrix have to have n distinct eigenvalues?

Let A be a square matrix such that |4A| = 0. Show that there exists
a positive number & such that |A + el| # 0, for any € € (0, §).

Show that for any 2 x 2 matrix A and 3 x 3 matrix B,
A% —(trA)A+|A[I=0

and
M — B| = A% — A2tr B + Atr(adj(B)) — | B|.

Let A, B € M,(C) and let
pe(X) =M - B|

be the characteristic polynomial of B. Show that the matrix pg(A)
is invertible if and only if A and B have no common eigenvalues.

Let B € M,,(C), u and v be 1 xn and n x 1 vectors, respectively. Let
B —-Bv
A= ( —-uB uBv ) '
(a) Show that |A| =0.

(b) If | B| =0, then A? divides |AI — A|.
(c) Discuss the converse of (b).

Let A and B be real matrices such that A + B is nonsingular. Show
that there exists a real number ¢ such that A + ¢B is nonsingular.

Let A and B be n-square matrices. Show that the characteristic
polynomial of the following matrix M is an even function; that is,

if \T-M|=0, then |—-AI-M|=0,

M=(g ‘3)

where
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3.24 Let A and B be n-square matrices. Answer true or false:

Gl e B R OO0 A6 T 9
et Vs’ s’ s’ e’ s’ s’ s’ s’ s’ e

~—~
—
~

AAA
o B B
et et e’ N’

If A¥ = 0 for all positive integers k > 2, then A = 0.

If A*¥ = 0 for some positive integer k, then tr A = 0.

If AF = 0 for some positive integer k, then |A4| = 0.

If A¥ = 0 for some positive integer k, then r(A) = 0.

If tr A= 0, then |A] =0.

If the rank of A is r, then A has r nonzero eigenvalues.

If A has r nonzero eigenvalues, then r(A) > r.

If A and B are similar, then they have the same eigenvalues.
If A and B are similar, then they have the same singular values.
If A and B have the same eigenvalues, then they are similar.

If A and B have the same characteristic polynomial, then they
have the same eigenvalues; and vice versa.

If A and B have the same characteristic polynomial, then they
are similar.

If all eigenvalues of A are zero, then A = 0.
If all singular values of A are zero, then A = 0.
If tr A¥ = tr B* for all positive integers k, then A = B.

If the eigenvalues of A are A1, A2,...,An, then A is similar to
the diagonal matrix diag(Ai, Az, - .., An)-

diag(1,2,...,n) is similar to diag(n,...,2,1).
If A has a repeated eigenvalue, then A is not diagonalizable.

If a + bi is an eigenvalue of a real square matrix A, then a — bi
is also an eigenvalue of the matrix A.

If A is a real square matrix, then all eigenvalues of A are real.

3.25 Let A € M,(C). Prove assertions (a) and (b):

(a)

(b)

If the eigenvalues of A are distinct from each other, then A
is diagonalizable; that is, there is an invertible matrix P such
that P~1AP is a diagonal matrix.

If matrix A commutes with a matrix with all distinct eigenval-
ues, then A is diagonalizable.
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3.26

3.27

3.28

3.29

3.30

3.31

3.32
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Let A be an n X n nonsingular matrix having distinct eigenvalues. If
B is a matrix satisfying AB = BA™, show that B? is diagonalizable.

Show that if all the eigenvalues of A € M,(C) are real and if
trA2=trd3=trd'=¢
for some constant c, then for every positive integer k,
trA* = ¢,

and ¢ must be an integer. The same conclusion can be drawn if
A™ = A™*! for some positive integer m.

Let A € M,(C). Show that

At =0 if trA*=0,k=1,2,...,n.

Let A, B € M,(C). If AB = 0, show that for any positive integer k,

tr(A + B)* = tr A* + tr B*,

Let A= (91). Show that for any positive integer k > 2

tr AF = tr A¥"1 4 tr A% 2,
Find the eigenvalues and corresponding eigenvectors of the matrix
1 2 2
A=] 21 2 ].
2 21
And then find an invertible matrix P such that P~! AP is diagonal.

Show that the following matrix is not similar to a diagonal matrix:

2 3 2
A=|1 4 2].
1 -3 1
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3.33

3.34

3.35

3.36

3.37

3.38

If matrix

0 01
A=z 1 y
1 00

has three linearly independent eigenvectors, show that z +y = 0.

If matrices

1 a1 0 0O
A= a 1 b and B=| 0 1 0
1 5 1 0 0 2

are similar, what are the values of a and 4? Find a real orthogonal
matrix T, namely, T*T = TT* = I, such that T-! AT = B.

Let A be an eigenvalue of an n-square matrix 4 = (a;;). Show that
there exists a positive integer k such that

n

A—arel < D laxjl.

=1, 5%k

If the eigenvalues of A = (a;;) € M,(C) are A1, A, ..., An, show that

n n
Y n2< Y lagl?
i=1

i, j=1

and equality holds if and only if A is unitarily diagonalizable.

Let A be an n-square real matrix with eigenvalues Ay, Az,...,An
(which are not necessarily real). Denote Ax = zx + #yx. Show that
(8) n+y+--+ya=0.
(b) ziyn +z2y2 + - +Tnyn = 0.
(c) trA2=(z? +2%3+---+22)- (B +93+ - +92).

Let A\; and \; be two different eigenvalues of a matrix A and let u,
and uy be eigenvectors of A corresponding to A; and Ay, respectively.
Show that u; + uy is not an eigenvector of A.
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3.39

3.40

3.41

3.42

3.43
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Find a 3 x 3 real matrix A such that

Auy =uy, Aus = 2up, Auz = 3us,

()~ (3) ()

If A € M,(R) satisfies A> + I = 0, show that A is similar to (] ')

where

Let A= (23) be a 2 x 2 real matrix. If (”1°) is an eigenvector of A
for some eigenvalue, find the value of zg in terms of a, b, ¢, and d.

Let A=(24) € M3(C) and |4] = 1.

(a) Find A~L.
(b) Write A as a product of matrices of the forms

(01) = (2 1)

(c) If|a+d| > 2, then A is similar to (3 A‘_’,), where A # 0, 1, —1.

(d) If |a+d| < 2, then A is similar to (QAEI),whereumum.

(e) If |a+d| =2 and A has real eigenvalues, what are the possible
real matrices to which A is similar?

(f) If |a +d| # 2, then A is similar to (ﬂF’ _.14) for some z € C.

T

(g) Does (f) remain true if |a + d| = 2?

Show that matrices A and B are similar but not unitarily similar:

=(00) 2-(s0)
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3.44

3.45

3.46

3.47

3.48

3.49

3.60

3.51

Show that if two real square matrices are similar over C, then they
must be similar over R. What if “real” is changed to “rational”? Find
a rational matrix M such that

1 2 2 1
-1 _
(a5 )m=(1 %)
Find the eigenvalues and corresponding eigenvectors of the matrix
210
1 31].
01 2
Show that the eigenvectors of distinct eigenvalues are orthogonal.
Find a singular value decomposition (SVD) for the 3 x 2 matrix

1 0
A= 0 1 }.
1 0

Show that 7! AT is always diagonal for any numbers z and ¥, where

y O v
A= z y ), T=
Yy

2
For any n x n complex matrix A, show that A and A are similar.
Are A and A* necessarily similar? Can A be similar to A + I?

ow 8
D= N"I&N)Iw
|
(X[ N'&NI-‘

Y2
2

If A is a singular square matrix, what are the eigenvalues of adj(A)?

Let A be an n x n complex matrix. Show that A > 0 is an eigenvalue
of AA if and only if Az = v/Az for some nonzero z € C".

Let A, B be m X n, n X m matrices, respectively, m > n. Show that
| Ay, — AB| = A™7"|Al, — BA.

Conclude that AB and B A have the same nonzero eigenvalues, count-
ing multiplicities. Do they have the same singular values?
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Let a;,ag,...,a, € R be such that a; + a3 +--- + a, = 0 and denote

a2+1 aiaz+1 ... a8, +1
A axa, a2+1 ... aza,+1
ana1 +1 apaz+1 ... a2+1

Show that A = BB? for some matrix B. Find the eigenvalues of A.

Let u, v € R™ be nonzero column vectors orthogonal to each other;
that is, v*u = 0. Find all eigenvalues of A = uv® and corresponding
eigenvectors. Find also A2. Is A similar to a diagonal matrix?

Let A and B be square matrices of the same size. Show that matrices
M and P are similar to matrices N and @, respectively, where

(A B _(A+B 0
M_(B A) N‘( 0 A—B)’

(A -B _( A+iB 0
P_(B A ) Q’( 0 A—w)'

Let A, B € M,(C).

(a) Show that tr(AB) = tr(BA).

(b) Show that tr(AB)* = tr(BA)*.

(c) Is it true that tr(AB)* = tr(A*B¥)?

(d) Why is A singular if AB — BA = A?

(e) Show that tr(ABC) = tr(BCA) for every C € M,(C).

(f) Isit true that tr(ABC) = tr(ACB)?

(g) Show that tr[(AB — BA)(AB + BA)] =0.

(h) Show that AB and BA are similar if A or B is nonsingular.
(i) Are AB and BA similar in general?

Let J,, denote the n-square matrix all of whose entries are 1. Find
the eigenvalues and corresponding eigenvectors of J,,. Let

o J
K‘(a o)'

Find the eigenvalues and corresponding eigenvectors of K.
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3.57

3.58

3.59

3.60

3.61

3.62

3.63

Let A be the n X n matrix all of whose main diagonal entries are 0
and elsewhere 1, i.e.,a;; =0,1 <i<nanda;; =1,i # j. Find A~1.

Let A € M,(C) be a matrix with real eigenvalues, and let s be the
number of nonzero eigenvalues of A. Show that
(a) (tr A)2 < str A2. When does equality hold?

(b) (tr A)?2 < r(A)tr A2 when A is Hermitian. Moreover, equality
holds if and only if A% = cA for some scalar c.

(c) If (tr A)%2 > (n — 1) tr A%, then A is nonsingular.
Let A € M,(C). Show that if A3 = A, then r(A) = tr A2.

Let m and j be positive integers with m > j. Let S, ;(X,Y) denote
the sum of all matrix products of the form A, --- A,,, where each A;
is either X or Y, and is Y in exactly j cases. Show that

tr(55,3(X, Y)) = g tl‘(XS4,3 (X, Y))

If A and B are 3 x 2 and 2 x 3 matrices, respectively, such that

8 2 -2
AB = 2 5 4 )
-2 4 35

9 0
sa=(29).

Let A be a 3 x 3 real symmetric matrix. It is known that 1, 2,
and 3 are the eigenvalues of A and that oy = (-1, —1, 1)* and
az = (1, =2, —1)* are eigenvectors of A belonging to the eigenval-
ues 1 and 2, respectively. Find an eigenvector of A corresponding to
the eigenvalue 3 and then find the matrix A.

show that

Construct a 3 x 3 real symmetric matrix A such that the eigenvalues
of Aarel, 1, and -1, and @ = (1,1, 1) and B = (2, 2, 1)! are
eigenvectors corresponding to the eigenvalue 1.
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For A, B € M,(C), AB — BA is called the commutator of A and B,
and it is denoted by [A, B]. Show that

() [A B]=[-A,-B]=-[B,A].

(b) [4,B+C]=[4,B]+[4,C]

(c) [A B]*=[B*, A*].

(d) [PXP-1,Y]=0if and only if [X, P~1Y P] = 0.

(e) tr[A,B]=0.

(f) I —[A, B] is not nilpotent.

(g) [A, B] is never similar to the identity matrix.

(h) If the diagonal entries of A are all equal to zero, then there
exist matrices X and Y such that A = [X,Y].

(i) If [A,B] =0, then [A?, BY] = 0 for all positive integers p, g.
(j) If [A, B] = A, then A is singular.

(k) If A and B are both Hermitian or skew-Hermitian, then [A, B]
is skew-Hermitian.

(1) If one of A and B is Hermitian and the other one is skew-
Hermitian, then [A, B] is Hermitian.

(m) If A is a skew-Hermitian matrix, then A = [B,C] for some
Hermitian matrices B and C.

(n) If A and B are Hermitian, then the real part of every eigenvalue
of [A, B] is zero.

(o) If [A,[A, A*]] =0, then A is normal.

(p) [4,(B,C] +[B, [C,A]] +[C,[A,B]] =0.

(@) If [A, B] commutes with A and B, then [A, B] has no eigenval-
ues other than 0, and further [A, B]¥ = 0 for some k.

When does it happen that [A, B] = [B, A]?
Show that A € M,,(C) is diagonalizable, meaning P~ AP is diagonal
for some invertible P, if and only if for every eigenvalue A of A,

r(A - M) = r[(A - M)2).

Equivalently, A is diagonalizable if and only if (Al — A)z = 0 whenever
(A — A)%z = 0, where z is a column vector of n components.
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3.66 Let A€ M,(C). Show that the following are equivalent:

(a) A2? = BA for some nonsingular matrix B.
(b) (A2) = r(A).
(c) Im ANnKer A= {0}.

(d) There exist nonsingular matrices P and D of orders n X n and
r(A) x r(A), respectively, such that

_ (D 0\,
a=r( 2 0)r

3.67 Let A € M,(C). Of the matrices A, A%, A*, adj(4), 434~, (4*A)3,
which always has the same eigenvalues or singular values as A?
3.68 Let A be a square complex matrix and denote

p = max{|\|| A is an eigenvalue of A},
w = max{|z*Az||z*c =1},
¢ = max{(z*A*Az)Y/? |z*z=1}.

Show that
pLwclo.
3.69 Let A, B, and C be n x n complex matrices. Show that

AB = AC ifand onlyif A*AB = A*AC.

3.70 Let A and B be nn x n complex matrices of the same rank. Show that

A’B=A ifandonlyif B2%A=B.

38.71 Let A=I—(z*z)"'(zz*), where z is a nonzero n-column vector. Find
(a) r(A). (b) Im A. (c) KerA.
3.72 If A € M,(Q), show that there exists a polynomial f(z) of integer

coefficients such that f(A) = 0. Find such a polynomial f(z) of the
lowest degree for which f(A) = 0, where A = diag(}, 3, 3).
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Let A and B be m-square and n-square matrices, respectively. If
A and B have no common eigenvalue over C, show that the matrix
equation AX = X B will have only the zero solution X = 0.

Prove

(a) If X # 0 is an eigenvalue of A, 3|A| is an eigenvalue of adj(A).
(b) If v is an eigenvector of A, v is also an eigenvector of adj(A).

Let A and B be n x n matrices such that AB = BA. Show that

(a) If A has n distinct eigenvalues, then A, B, and AB are all
diagonalizable.

(b) If A and B are diagonalizable, then there exists an invertible
matrix T such that T~1AT and T~!BT are both diagonal.

Which of the following A are linear transformations on C"?
(a) A(u) = v, where v # 0 is a fixed vector in C".
(b) A(u)=0.
(c) A(u) =4.
(d) A(u) = ku, where k is a fixed complex number.
(¢) A(u) = ||u|| u, where ||u| is the length of vector w.
(f) A(u) = u+ v, where v # 0 is a fixed vector in C™.
(g) A(u) = (u1,2us,...,nu,), where u = (u,uz,...,u,).

Let A be a linear transformation on a vector space. Show that
Ker A C Im(Z — A)
and
Im A C Ker(Z — A).
Let A, B, C, D be n x n complex matrices. Define 7 on M,,(C) by
T(X)=AXB+CX + XD, X € M,(C).

Show that 7 is a linear transformation on M,(C) and that when
C =D =0, T has an inverse if and only if A and B are invertible.
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3.79

3.80

3.81

Let A € M,(C) and A # 0. Define a transformation on M, (C) by
T(X)=AX-XA, X e M,(C).
Show that
(a) 7 is linear.
(b) Zero is an eigenvalue of 7.
(c) If A¥ =0, then 72% =0.
(d) T(XY)=XT(Y)+T(X)Y.
(e) If A is diagonalizable, so is a matrix representation of 7.
(f) If A and B commute, so do 7 and £, where L is defined as
L(X)=BX -XB, X e M,(C).

Find all A such that 7 = 0, and discuss the converse of (f).

Let A be a linear transformation from a vector space V to a vector
space W and dimV =n. If

{al’ cooyQgy Qgtlyee. )an}
is a basis for V' such that {a4,...,a,} is a basis for Ker A, show that
(a) {A(@s+1),--.,A(an)} is a basis for Im A.

(b) dim(Ker A) + dim(Im A) = n.
(c) V =Ker A® Span{ass1,...;on}

Is Ker A+Im A necessarily a direct sum when V = W? If {f;,...,0,}
is a basis for V', does it necessarily follow that some 3;’s fall in Ker A?

Let A be a linear transformation on a finite dimensional vector space
V and let V) and V5 be subspaces of V. Answer true or false:

(a) A(ViNV3) =AVi)NAV).
(b) A(VauV3) =A(V1) U A(V2).
(c) A(Vi+V2) = A(V1) + A(V2).
(d) Ay ® V2) = A(VA) ® A(V2).
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Let A be a linear transformation on a finite dimensional vector space
V. Show that the following are equivalent:

(a) A has an inverse.

(b) V and Im A have the same dimension.

(c) A maps a basis to a basis.

(d) The matrix representation of .4 under some basis is invertible.

(e) A is one-to-one; that is, Ker A = {0}.

(f) Ais onto; that is, InA=V.

What if V is infinite dimensional? What if A is a linear transforma-
tion from V to another vector space W?

Let A be a linear transformation on a vector space V, dimV = n.

(a) If for some vector v, the vectors v, A(v), A%(v),..., A" 1 (v) are
linearly independent, show that every eigenvalue of .A has only
one corresponding eigenvector up to a scalar multiplication.

(b) If A has n distinct eigenvalues, show that there is a vector u
such that u, A(u), A%(u),. .., A"~ 1(u) are linearly independent.

Let A be a linear transformation on a vector space V, dimV = n. If
A" Y(z) #0, but A™(z)=0, for some z €V,

show that
z, A(x),..., A" (z)

are linearly independent, and thus form a basis of V. What are the
eigenvalues of A? Find the matrix representation of .\A under the basis.

Let A and B be linear transformations on a finite dimensional vector
space. Show that if AB = Z, then BA = Z. Is this true for infinite
dimensional vector spaces?

If uy,us,...,u; are eigenvectors belonging to distinct eigenvalues
A1, A2, ..., A of a linear transformation, show that u;,us,...,ux are
linearly independent. Simply put, different eigenvectors belonging to
distinct eigenvalues are linearly independent.
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3.87 Let V and W be finite dimensional vector spaces, and let A be a
linear transformation from V' to W. Answer true or false:
(a) KerA = {0}.
(b) If A(v) =0 only when v =0, then dimV = dim W.
(c) If Im.A = {0}, then A=0.
(d) ¥V =W and ImA C Ker A, then 4 =0.
(e) If V=W and ImA C Ker A, then A% = 0.
(f) fdimV =dim W, then A is invertible.
(g) IfdimV = dimIm.A, then Ker A = {0}.
(h) Ker. A2 D Ker A.
(i) dimKer A < dimIm A.
(j) dimKer A < dimV.
(k) .Ais one-to-one if and only if Ker 4 = {0}.
(1) .A is one-to-one if and only if dimV < dim W.
(m) A is onto if and only if In 4 = W.
(n) A is onto if and only if dim V' > dim W.

3.88 Let V and W be finite dimensional vector spaces, and let A be a
linear transformation from V to W. Prove or disprove:

(a) If the vectors ), az,...,ay, in V are linearly independent, then
Aay, Aas, ..., Ao, are linearly independent.

(b) If the vectors Aa,,Aay,...,. Ao, in W are linearly indepen-
dent, then a;,aq,...,a, are linearly independent.

3.89 Let {a;, a2, a3} be a basis for a three-dimensional vector space V.
Let A be a linear transformation on V' such that

Alar) = a1, Alag) =a1 +a2, Alaz) =a1 +as +as.

(a) Show that A is invertible.
(b) Find AL
(c) Find 24 - A~
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Let A be the linear transformation defined on R® by

Az, y, 2) = (0, z, y).
Find the characteristic polynomials of A, 42, A3.

If A is a linear transformation on R3 such that

(2)-(2) +()-()
(7)-(3)

find Im A, a matrix representation of A, and a formula for A(z).

Let {e), €2, €3, €4} be a basis for a vector space V' of dimension 4, and
let A be a linear transformation on V' having matrix representation
under the basis

1 02 1
-1 21 3
A= 1 25 5
2 -2 1 -2

(a) Find Ker A.
(b) Find Im A.

(c) Take a basis for Ker A, extend it to a basis of V, and then find
the matrix representation of A under this basis.

Let A and B be linear transformations on R2. It is known that the
matrix representation of .4 under the basis {a1 = (1,2), a2 = (2,1)}
is (33), and the matrix representation of B under the basis {6 =
(1,1), B2 =(1,2)} is (33). Let u = (3,3) € R2. Find

(a) The matrix of A + B under 8, B,.

(b) The matrix of AB under a3, as.

(c) The coordinate of A(u) under o, az.

(d) The coordinate of B(u) under B, Ba.
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3. 94

3.95

3.96

3.97

3.98

3.99

Let W be a subspace of a finite dimensional vector space V. If A is
a linear transformation from W to V, show that .4 can be extended
to a linear transformation on V7

Let W be an invariant subspace of a linear transformation 4 on a
finite dimensional vector space V; that is, A(w) € W for all w e W.

(a) If A is invertible, show that W is also invariant under .A~1.
(b) ¥V =W @ W', is W’ necessarily invariant under A?

Let A be a linear transformation on R? with the matrix A = (g;

under the basis a; = (1,0), a2 = (0,1). Let W; be the subspace of R?
spanned by ;. Show that W) is invariant under A and that there does
not exist a subspace W, invariant under A such that R? = W, & W;.

Consider the vector space of all 2 x 2 real matrices. Let E;; be the
2 x 2 matrix with (i, j)-entry 1 and other entries 0, ¢, j =1, 2. Let

=4 7)

A(u) = Au, ue€ M,(R).

and define

(a) Show that A is a linear transformation on M,(R).
(b) Find the matrix of A under the basis F;;, i,j = 1,2.
(c) Find Im A, its dimension, and a basis.

(d) Find Ker A, its dimension, and a basis.

A linear transformation £ on a vector space V is said to be a projector
if £2 = L. Let A and B be projectors on the same vector space V.
Show that A and B commute with (A — B)?; show also that

(A-B)? +(I-A-B2=T.

Let {e), €2, €3, €4} be a basis for a vector space V of dimension 4.
Define a linear transformation on V such that

A(G]) = A(ez) = .A(es) = €, .A(€4) = €3.
Find Ker A, Im A, Ker A + Im A, and Ker ANIm A.
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3.100 Define transformations .4 and B on R? = {(z, y) |z, y€ R} by

A(:L‘, y) = (y, )

and
B(z, y) = (z— vy, = —y).
(a) Show that A and B are linear transformations.
(b) Find the nontrivial invariant subspaces of A.
(c) Find Ker B and ImB.

(d) Show that dim(Ker B) + dim(Im B) = 2, but Ker B + Im B is
not a direct sum. Is the sum Ker B 4+ Im B* a direct sum?

3.101 Define mappings A and B on the vector space R™ by

A(z1,22,...,25) = (0,21,Z2, ..., Tn—1)

and
B(mhmz: . '1mﬂ) = (-'Bm-"?l,mz, <. :mn—l)'

(a) Show that A and B are linear transformations.
(b) Find AB, BA, A", and B".

(c) Find matrix representations of A and B.

(d) Find dimensions of Ker A and Ker B.

3.102 Let A be a linear transformation on an n-dimensional vector space
V. If {ey,...,a5,} is a basis for Im A and if {f,,...,6m} issuch a
set of vectors of V' that

A(ﬂt) =q t=1,...,m,
show that
V =Span{f,...,Bmn} ® Ker A.
3.103 Let A be a linear transformation on a finite dimensional vector space
V. Show that dim(Im A?) = dim(Im A) if and only if
V=ImA® Ker A
Specifically, if A% = A, then V = Im.A @ Ker A; is the converse true?
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3.104 If Ais an idempotent linear transformation on an n-dimensional vector
space V; that is, AZ = A, show that
(a) I — A is idempotent.
(b) (Z-A)Z—-tA)=T- A for any scalar t.
() A-I)*=1T.
(d) A+Z is invertible and find (4 +Z)~!.
() Kerd={z—- Az |z eV} =ImZ - A).
(f) V=ImA®KerA
(g) Az = z for every z € Im A.

(h) ¥V = M &L, then there exists a unique linear transformation
B such that B2 = B, InB= M, KerB= L.

(i) Each eigenvalue of A is either 1 or 0.

(j) The matrix representation of .A under some basis is
A = diag(1,...,1,0,...,0).

(k) r(A)+r(A-I)=n.
(1) r(A) = tr A = dim(Im A).
(m) |A+1I| =24,

3.105 Let A and B be linear transformations on an n-dimensional vector
space V over the complex field C satisfying AB = BA. Show that

(a) If X is an eigenvalue of A, then the eigenspace
Va={zeV | Az = Az}

is invariant under B.
(b) Im.A and Ker A are invariant under 5.

(c) A and B have at least one common eigenvector (not necessarily
belonging to the same eigenvalue).

(d) The matrix representations of A and B are both upper-triangular
under some basis.

If C is replaced with R, which of the above remain true?
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3.108 Let D be the differential operator on Py, [z] over R defined as: if
p(z) = ao + @12 + a9x® + - - - + an_13""! € P, [z},

then

D(p(z)) = a1 + 2022 + -+ - + iaiz* ' + -+ + (0 — Dap_ 12" 2

(a) Show that D is a linear transformation on P,[z].

(b) Find the eigenvalues of D and Z + D.

(c) Find the matrix representations of D under the bases
{1, z,22% ...,2"" 1} and {l,x,%z,...,(fl%;—!}.

(d) Is a matrix representation of D diagonalizable?

3.107 Let Coo(R) be the vector space of real-valued functions on R having
derivative of all orders.
(a) Consider the differential operator
Di(y) =y" +ay' +by, y€Cxo(R),

where a and b are real constants. Show that y = e** lies in
Ker D, if and only if A is a root of the quadratic equation

24+at+b=0.

(b) Consider the second differential operator

Da(y) =9", y€Cxo(R).

Show that y = ce** is an eigenvector of D, for any constant
¢ € R and that every positive number is an eigenvalue of Ds.

3.108 Consider P,[z] over R. Define
Alp(z)) = 2p'(z) - p(z), p(z) € Pnfa].

(a) Show that A is a linear transformation on Py, [z].
(b) Find Ker A and Im A.
(c) Show that P,[z] = Ker A ® Im A.
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3.109 Let V be an n-dimensional vector space over C and A be a linear

transformation with matrix representation under a basis {3, u2,...,un}
( A0 O ... OO0 \
1 A0 ... 0O
0 1 A 0 0
A=) . . N
0 00 A0
\0 0 0 Y,

that is,
.A('U.], cae ,u,,) = (Aul, ‘o ,Aﬂm) = (u1, cee ,'u.,,)A.
Show that

(a) V is the only invariant subspace of A containing u;.
(b) Any invariant subspace of A contains uy.
(c) Each subspace

Vi =Span{up—it1, .-+, Un}, 1=1,2,...,7n
is invariant under A, and z € V; if and only if
(A—XI)'z=0.
(d) W, V,,...,V, are the only invariant subspaces.

(e) Span{u,} is the only eigenspace of A.

(f) V cannot be written as a direct sum of two nontrivial invariant
subspaces of A.

Find an invertible matrix S such that SAS~! = A,

3.110 Let A € M,(C). Define a linear transformation £ on M,(C) by
L(X)=AX, X e M,(C).

Show that £ and A have the same set of eigenvalues. How are the
characteristic polynomials of £ and A related?
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For the vector space PP[z] over R, define
Af(z) = f'(z), f(z)€Pla]

and
Bf(z) =zf(z), f(z) € Pl.
Show that
(a) A and B are linear transformations.
(b) Im.A =TP[z] and Ker A # {0}.
(¢) KerB = {0} and B does not have an inverse.
(d) AB-BA=T.
(e) A*B— BAF = kA*~! for every positive integer k.

Let V be a finite dimensional vector space and A be a linear trans-
formation on V. Show that there exists a positive integer k so that

V = Im A* @ Ker A*.
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Special Matrices

Definitions and Facts

Hermitian Matrix. An n-square complex matrix A = (ay,) is said to be
a Hermitian matriz if A* = A; that is, a;; = @,; for all 7 and j. In case of
real matrices, we say that A is real symmetric if A® = A. A square matrix
A is skew-Hermitian if A* = —A, equivalently a;; = —aj;. It is immediate
that the entries on the main diagonal of a Hermitian matrix are necessarily
real. A matrix A is skew-Hermitian if and only if ¢A is Hermitian.

The eigenvalues of a Hermitian matrix are all real. Let A be an eigen-
value of a Hermitian matrix A and Az = Az for some nonzero vector z.
Taking conjugate transpose yields z* A* = Az*. It follows that

Ar*z = z*(M\z) = z* Az = z* A%z = A\z*z.
Since A is Hermitian, z* Az is real; because z*z > 0, A must be real.

Positive Semidefinite Matrices. An n-square complex matrix A is
called a positive semidefinite matriz if 2*Az > 0 for all z € C*. And
A is said to be positive definite if 2* Az > 0 for all nonzero z € C".

A positive semidefinite matrix i8 necessarily Hermitian, all main diago-
nal entries are nonnegative, and so are the eigenvalues. The Hermity may
be seen as follows. Since z* Az is real, (z*Ax)* = z*A*z. It follows that
z*(A* — A)x = 0 for all £ € C*. Therefore all eigenvalues of A* — A are
zero. Notice that A* — A is skew-Hermitian, thus diagonalizable. It is im-
mediate that A* — A =0 and A* = A. Another (direct) way to see this is
to choose various vectors for 2. Let z be the n~-column vector with the p-th
component 1, the g-th component ¢ € C, and 0 elsewhere. Then

T* AT = agp + agqlc|® + apgC + agpC.

75
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Since z* Az 2> 0, setting c = 0 reveals a,, > 0. Now that ap,c+agc € R
for any ¢ € C, putting ¢ = 1, we see that ey, and a4y have the opposite
imaginary parts. Talking ¢ = ¢, we see that they have the same real part.
Thus a,q, = @, namely, A is Hermitian. To see that the eigenvalues are
nonnegative, let A be an eigenvalue of A and Az = Az for some nonzero
vector z. Then z* Az = Az*z > 0. Therefore, A > 0.

We write A > 0 (A > 0) to mean that A is a positive semidefinite
(positive definite) matrix. For two Hermitian matrices A and B of the
same size, we write A> Bor B<AifA-B>0.

Three important facts that we will use frequently:

(p1) If A >0, then X*AX > 0 for all matrices X of appropriate sizes;

(p2) If A >0, then A has a unique positive semidefinite square root;
(ps) If A > 0 and the block matrix ( 2 g) >0, then C— B*A~1B > 0.

Note that it is possible that for some real square matrix A, Az > 0
for all real vectors z, but A is not positive semidefinite in the above sense.

Take A = (_01(1,). It is easy to verify that ztAz = 0 for all = € R2.

Normal Matrices. An n-square complex matrix A is called a normal
matriz if A*A = AA*; that is, A and A* commute. Hermitian, skew-
Hermitian, and positive semidefinite matrices are normal matrices.

Spectral Decomposition. Let A be an n-square complex matrix with
(not necessarily different) complex eigenvalues A;,...,A,. Then A is

1. Normal if and only if A = U*diag(A1,...,Aq)U for some unitary
matrix U, where A;,..., A, are complez numbers.

2. Hermitian if and only if A = U*diag(A;,...,An)U for some unitary
matrix U, where Aq,..., A, are real numbers.

3. Positive semidefinite if and only if A = U* diag(\s, ..., An)U for some
unitary matrix U, where Ay, ..., A, are nonnegative real numbers.

4. Positive definite if and only if A = U*diag()\y,...,A,)U for some
unitary matrix U, where Aq,..., A,, are positive real numbers.

There are many more sorts of special matrices. For instance, the Hadamard
matrix, Toeplitz matrix, stochastic matrix, nonnegative matrix, and M-
matrix, etc. These matrices are useful in various fields. The Hermitian
matrix, positive semidefinite matrix, and normal matrix are basic ones.
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Chapter 4 Problems

4.1 Show that the following statements are equivalent:

(a) A € My,(C) is Hermitian; that is, A* = A.

(b) There is a unitary matrix U such that U* AU is real diagonal.
(¢) z*Az is real for every z € C™.

(d) A?=A"A.

(e) A2 = AA".

(f) tr A% = tr(A*A).

(g) tr A% = tr(AA*).

Referring to (d), does A have to be Hermitian if A*(A2) = A*(A*A)?

4.2 Let A and B be n x n Hermitian matrices. Answer true or false:

(a) A+ B is Hermitian.

(b) cA is Hermitian for every scalar c.

(¢) AB is Hermitian.

(d) ABA is Hermitian.

(e) If AB=0,then A=0o0r B=0.

(f) If AB =0, then BA =0.

(g) If A2 =0, then A=0.

(h) If A2=1, then A= +I.

(i) fA3=1,then A=1.

(G) —A4, A%, A, A7! (if A is invertible) are all Hermitian.
(k) The main diagonal entries of A are all real.
(1) The eigenvalues of A are all real.
(m) The eigenvalues of AB are all real.

(n) The determinant |A| is real.

(o) The trace tr(AB) is real.

(p) The eigenvalues of BAB are all real.
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4.3

4.4

4.5

CHAPTER 4

Let A = (a;j) € M,(C) have eigenvalues Ay, Az, ..., A,. Show that
n n
Z/\? = Z Qi Qjs.
iml i, j=1
In particular, if A is Hermitian, then

n n
D A= eyl
t=1

t, j=1

Let A be an n x n Hermitian matrix. Let Amin(A) and Apax(A) be
the smallest and largest eigenvalues of A, respectively. Denote

izl = Vz*z for z € C".

Show that

/\mm(A) = ||nT|iBl z‘Ax,

Amax(A) = fmax z* Az,

and for every unit vector z € C"
Amin(4) < 2* Az < Anax(A4).
Show that for Hermitian matrices A and B of the same size,

Amax(A) + Amin(B) £ Amax(4 + B) < Amax(4) + Amax(B)-

Let A € M,(C). Show that
(a) z*Azx =0 for every z € R™ if and only if A* = —A.
(b) z*Ay =0 for all z and y in R™ if and only if A =0.
(c) z*Axz =0 for every z € C™ if and only if A =0.

(d) z*Az is a fixed constant for all unit vectors z € C" if and only
if A is a scalar matrix.

Does it follow that A = B if A and B are n X n real matrices satisfying

z*Az =z'Bz, for all z € R*?
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4.6

4’7

4.8

4.9

4.10

4.11

Let A be an n x n Hermitian matrix with eigenvalues A;, A2,..., An.
Show that

(A= M)A = X2)--- (A= A D) =0.

Let A be an n X n Hermitian matrix. If the determinant of A is
negative; that is, |A| < 0, show that z*Az < 0 for some z € C";
equivalently, if A is a positive semidefinite matrix, show that |A| > 0.

Let A and B be n xn Hermitian matrices. Show that A+ B is always
Hermitian and that AB is Hermitian if and only if AB = BA.

Let A and B be Hermitian matrices of the same size. If AB is Her-
mitian, show that every eigenvalue A of AB can be written as A = ab,
where a is an eigenvalue of A and b is an eigenvalue of B.

Let Y be a square matrix. A matrix X is said to be a k-th root of Y if
X% =Y. Let A, B, C, and D be, respectively, the following matrices

1 21 010 01 C 0o
2 4 2], 0 0 0], 00)° 0o C )
1 21 0 0O

Show that

(a) A has a real symmetric cubic root.

(b) B does not have & complex cubic root.

(c) B has a square root.

(d) C does not have a square root.

(e) D has a square root.

(f) Every real symmetric matrix has a real symmetric k-th root.
(g) If X2 =Y, then |AI — X] is a divisor of |\2] — Y.

Find a 2 x 2 matrix X # I, such that X3 = I,.

If A is an n-square invertible Hermitian matrix, show that 4 and A™!
are *-congruent; that is, P*AP = A~} for some invertible matrix P.
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4.12

4.13

4.14

4.15

4.16

4.17

CHAPTER 4

Show that for any nonzero real number z, the matrix

(2 3z
A‘(zz)

satisfies the equation A2 — 44 — 5I; = 0. As a result, the equation
has an infinite number of distinct 2 x 2 matrices as roots.

Let A be a 3 x 3 Hermitian matrix with eigenvalues \; < A2 < Ag. If
a and b are the eigenvalues of some 2 x 2 principal submatrix of A,
where a < b, show that \; <a <A <b< A3

Let A be a Hermitian matrix partitioned as A = ( g. g) . Show that
Amin(A) S /\min(H) S /\max(H) S Amax(A)

In particular, for each main diagonal entry a,; of A

Amin(A) <ay; < Amtl.x(A)

Let A and B be n-square Hermitian matrices. Show that
(a) Neither tr(A2) < (tr A)? nor tr(A%) > (tr A)? holds in general.
(b) tr(AB)* is real for every positive integer k.
(c) tr(AB)? < tr(A?B?). Equality holds if and only if AB = BA.

(d) [tr(AB)]? < (tr A?)(tr B%). Equality holds if and only if one is
a multiple of the other, i.e., A= kB or B = kA for a scalar k.

As the trace of AB is real, are the eigenvalues of AB all real?

Let A be an n x n Hermitian matrix with rank r. Show that all
nonzero T X 7 principal minors of A have the same sign.

Let A be an n x n real symmetric matrix. Denote the sum of all
entries of A by S(A). Show that

S(A)/n < S(A®%)/S(A).
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4.18

4.19

4.20

4.21

4.22

Let A be an n x n Hermitian matrix. Show that the following state-
ments are equivalent:

(a) A is positive semidefinite; that is, z* Az > 0 for all z € C".
(b) All eigenvalues of A are nonnegative.

(¢) U*AU = diag()1, A2, ..., An) for some unitary matrix U, where
A;'s are all nonnegative.

(d) A = B*B for some matrix B.

(e) A=T*T for some r x n matrix T with rank r = r(T') = r(A).
(f) All principal minors of A are nonnegative.

(g) tr(AX) > 0 for all X positive semidefinite.

(h) X*AX >0 for all n x m matrix X.

Let A and B be n X n positive semidefinite matrices. Show that
A’ 4+ AB+ BA + B?
is always positive semidefinite. Construct an example showing that
A’ + AB+ BA, thus AB + BA,

is not necessarily positive semidefinite in general. Prove that if A and
AB + BA are positive definite, then B is positive definite.

Let A and B be any two m x n matrices. Show that

A*A+ BB > +(A*B + B*A).

Let A and B be positive semidefinite matrices of the same size. If the
largest eigenvalues of A and B are less than or equal to 1, show that

AB+BA> -1I.

Find the values of A and u so that the matrices are positive definite:

1 2 -1 1 1 -1
A 4 2 , 1 2 u }.
-1 2 4 -1 p 3
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4.23

4.24

4.25

4.26

4.27

CHAPTER 4

Let A = (ai;) be an n x n Hermitian matrix such that the main
diagonal entries of A are all equal to 1, i.e., all a;; = 1. If A satisfies

n

Z|¢h‘j|$2, i=112a'“’n,
Jj=1

show that

(a) A>0.
(b) 0 < A <2, where ) is any eigenvalue of A.
(¢) 0<detA<L1.

Give an example of a non-Hermitian matrix all of whose principal
minors and eigenvalues are nonnegative, the matrix, however, is not
positive semidefinite.

Is it possible for some non-Hermitian matrix A € M, (C) to satisfy
ztAz > 0 for all z € R*? z*Az > 0 for all z € C"?

Let A = (a;;) be an n X n positive semidefinite matrix. Show that

(a) ai; > 0,i=1,2,...,n, and if a,; = 0, then the i-th row and
i-th column of A consist entirely of 0.

(b) aiiaj; > |aij|? for each pair of i and j. In particular, the largest
entry of A in absolute value is on the main diagonal.

(¢) AmaxI — A 2 0, where Ay, is the largest eigenvalue of A.

(d) |A] = 0 if some principal submatrix of A is singular.

(e) There exists an n % n invertible matrix P such that

_ I O
A_P‘( ¢ O)P.

Is it possible to choose a unitary matrix P?
(f) The transpose A* and the conjugate A are positive semidefinite.

Let A be an m x n matrix and = be an n-column vector. Show that
(A*A)z=0 & Az=0

and
tr(A*A)=0 & A’A=0 & A=0.
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4.28 Let A benxn positive definite. Show that for every n-column vector

z*A™lz = mg.x(z‘y + 3z — y* Ay).

4.29 Let A and B be n x n positive semidefinite matrices. Show that
Im(AB) N Ker(AB) = {0}.
In particular, setting B = I,

Im AN Ker A = {0}.

4.30 Let A > 0; that is, A is positive semidefinite.

(a) Show that there is a unique matrix B > 0 such that B? = A.
The matrix B is called the square root of A, denoted by A?.

(b) Discuss the analog for normal matrices.
(c) Find A% when 4 is

2 0 11 1/ 5 -3
0 0)° 1 1) 2\-3 5 J°
4.31 Let A € M,(C) and C be a matrix commuting with A, i.e., AC = CA.

Show that C' commutes with A% and with A3 when A > 0; that s,

A2C=CA? and A3C=CA3: ifA>0.

4.32 Let A € My(C). Show that

(a) If A is Hermitian, then A% > 0.
(b) If A is skew-Hermitian, then —A2 > 0.

(c) If A is upper- (or lower-) triangular, then the eigenvalues and
the main diagonal entries of A coincide.

Discuss the converse of each of (a), (b), and (c).

4.33 For X € M,(C), define f(X) = X*X. Show that f is a convez func-
tion on M,,(C); that is, for any ¢ € [0, 1], with £ = 1 — ¢,

f(tA+EB) < tf(A) +if(B), A, B € M,(C).
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4.34 Let A and B be nxn positive semidefinite matrices. If the eigenvalues
of A and B are all contained in the interval [a, b], where 0 < ¢ < b,
show that for any ¢ € [0,1], with £ = 1 — £,

0<tA? +iB? - (tA+iB)®
and

tA%2 +{2B? — (tA+tB)? < Y(a — b)’I.

4.35 Let A, B € M,(C). Show that

(a) If A > 0 and B is Hermitian, then there exists an invertible
matrix P such that P*AP = I and P*BP is diagonal.

(b) If A > 0 and B > 0, then there exists an invertible matrix P
such that both P*AP and P*BP are diagonal matrices. Can
the condition B > 0 be weakened so that B is Hermitian?

(¢) f A>0and B >0, then
|A+ B| 2 |A|.

Equality holds if and only if B = 0.
(d) If A>0and B >0, then

|A+ B| > |A| +|B.

Equality holds if and only if |JA+ B|=00or A=0or B=0.
(e) f A>0and B >0, then

|A+ B|» 2 |A|~ +|B|*.
(f) Forte[0,1], t=1-t,
|At|B|f < |tA + B

In particular, for every positive integer k < n,

A+B A+ B
viaisi < 4B A48,

(g) And also

|4]+1B] _ |4 +B|

A||B] <
jAllB] < =2 :
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4.36 Let A and B be positive definite matrices so that A — B is positive
semidefinite. Show that |A4| > |B| and that if [A—AB| = 0 then A > 1.

4.37 Let A, B€ M,(C) and A > B > 0. Show that

(a) C*AC > C*BC for every C € My xn(C).
(b) A+C > B+ D, where C > D.

(c) trA>trB.

(@) Mmax(4) > Arsax(B).

(¢) 141> |BI.

(f) r(4) 2 (B).

(g) B~! > A~! (when the inverses exist).
(h) A% > B}, Does it follow that A2 > B2?

4.38 Let A be positive definite and B be Hermitian, both n x n. Show that

(a) The eigenvalues of AB and A~!B are necessarily real.

(b) A+ B > 0 ifand only if A(A~'B) > —1, where A(A~1B)
denotes any eigenvalue of A~ B.

(c) r(AB), the rank of AB, equals the number of nonzero eigen-
values of AB. Is this true if A > 0 and B is Hermitian?

4.39 Let A and B be n x n Hermitian matrices.

(a) Give an example that the eigenvalues of AB are not real.

(b) If A or B is positive semidefinite, show that all the eigenvalues
of AB are necessarily real.

(c) If A or B i8 positive definite, show that AB is diagonalizable.

(d) Give an example showing that the positive definiteness in (c) is
necessary; that is, if one of A and B is positive semidefinite and
the other is Hermitian, then AB need not be diagonalizable.

4.40 Let Apax(X) and omax(X) denote, respectively, the largest eigenvalue
and singular value of a square matrix X. For A € M,(C), show that

A+ A" A+ A"
2

,\mx( ) < Omax(A) and tr( )2 < tr(A* A).
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4.41 Let A, B € M,(C) be positive semidefinite. Show that

(a)
(b)
(c)
(d)
(e)
(f)
(e)
(h)
(i)
@)

A3BA3 >0.

The eigenvalues of AB and BA are all nonnegative.
AB is not necessarily positive semidefinite.

AB is positive semidefinite if and only if AB = BA.
tr(AB%A) = tr(BA%B).

tr(AB2A)3 = tr(BA2B)3.

tr(AB) < tr Atr B < {[(tr A)? + (tr B)?].

tr(AB) < Amax(A) tr B.

tr(AB) < 3(tr A +tr B)2.

tr(AB) < 3(tr A2 + tr B?).

Does it follow that tr A% = tr B3 if tr A = tr B?

4.42 Let A, B, C, and D be n x n positive semidefinite matrices.

T ®

o
vvvvvefvv

VoY
- ®

B ®

Show that AB + BA is Hermitian.

Is it true that AB+ BA > 0?7

Is it true that A% + B2 > 2AB?

Is it true that tr A% + tr B2 > tr(24B)?

Is it true that A2 + B2 > AB + BA?

Show that tr(AB) < tr(CD) if A< C and B < D.
Show that Agax(AB) < Amax(A4)Amax(B)-

Show that for t € [0,1) and £ = 1 — ¢,

Amax(tA + tB) < tAmax(A4) + tAmax(B).
In particular,
Amax(A + B) < Amax(A) + Amax(B)-

Discuss the analog of (g) for the case of three matrices.
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4.43

4.44

4.45

4.46

4.47

4.48

4.49

Construct examples.

(a) Non-Hermitian matrices A and B have only positive eigenval-
ues, while AB has only negative eigenvalues.

(b) Is it possible that A + B has only negative eigenvalues for
matrices A and B having positive eigenvalues?

(c) Matrices A, B, and C are positive definite (thus their eigenval-
ues are all positive), while ABC has only negative eigenvalues.

(d) Can the matrices in (c) be 3 x 3 or any odd number size?

Let A, B be n x n matrices. If A is positive semidefinite, show that
A’B = BA? if and only if AB = BA.

What if A is just Hermitian?

Let A, B, and C be n X n positive semidefinite matrices. If C com-
mutes with AB and A — B, show that C' commutes with A and B.

Let A be a positive definite matrix. If B is a square matrix such that
A — B*AB is positive definite, show that |A| < 1 for every eigenvalue
A of B. Is it true that o < 1 for every singular value ¢ of B?

Let A, B, and C be complex matrices of appropriate sizes. Show that
( ;, g ) >0 = C-B*A"'B>0.
Let A, B, C, and D be square matrices of the same size. Show that
(;, g ) >0 = A+B+B*'+C2>0.

Let A, B, C, and D be n-square matrices. Prove or disprove that

A B A B*
(B, C)zo = (3 C)zo.
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4.52

4.53

4.54
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Let A and B be n-square Hermitian matrices. Show that

A B
(B A)ZO & A+B2>0

Let A and B be real square matrices of the same size. Show that

. . A -B
A+iB>0 & A-@B>0 & (B A )20.

Let A be an n-square positive definite matrix with eigenvalues A;, Ag,
..., A\n. Find the eigenvalues of the partitioned matrix

A I
u=(4 1)

Let A be an n-square complex matrix and let M = ( ‘f_ 'g) .

(a) Show that det M = (—1)"|det A|2.

(b) Find the eigenvalues of M.

(c) If A#0, why is M never positive semidefinite?
(d) Find the eigenvalues of the matrix N = ( 2 A, )

Recall that the singular values of a matrix X are defined to be the
square roots of the eigenvalues of X*X. Let opax(X) denote the
largest singular value of the matrix X. For A, B € M,,(C), show that

Omax(AB) < Omax(A)Fmax(B),

Omax(A + B) < Omax(A) + Omax(B),
Omax (A% — B?) < 0max(A + B)omax(A4 — B).

Find the singular values of the n X n real symmetric matrix

1 1 ... 1

1 -1 ... 0
A=| . . .

1 0 ... -1

What are the eigenvalues of the matrix A?
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4.56 Let A = (aij) € M,(C) be a positive semidefinite matrix.
(a) Show that (the Hadamard determinantal inequality)
|A] < @11622° - - Gnn.
Equality holds if and only if A is diagonal or some a4 = 0.
(b) Write A = ( c,?* g) > 0, where B and D are square. Show that
|4] < |B||D].

Equality holds if and only if C =0 or |[B| = 0 or |D| = 0.

(c) With A partitioned as above in (b), where B, C, and D are
square matrices of the same size, show that

1B |0|)>
0
(IC‘I D] ) =

|IC*C| < |BI|D|.
Equality holds if and only if B (or D) is singular or

or

D=C*B~!C.
What if B, C, and D are of different sizes?

(d) Show that for any m x n complex matrix E = (e;;)
n m
B B < [T D less .
j=1i=1

(e) Let F be a complex matrix. If G is a submatrix consisting of
some columns of F, and H is the submatrix consisting of the
remaining columns of F', show that

|F*F| < |G*G| |H* H|.
(f) Show that for any square matrices X and Y of the same size,

|det(X + Y)|? < det(l + XX *)det(I + Y*Y).

4.57 Let A€ M,(C). Show that a necessary condition for A% > 0 is that
all the eigenvalues of A are real. Is the converse true?
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Let H be an n x n positive semidefinite matrix and write H = A+iB,
where A and B are n X n real matrices. Show that

(a) A is positive semidefinite and B* = —B.
(b) assai > a2, + b2, for each pair of s, ¢.
(c) |H| £ |A|. When does equality hold?
(d) If A is singular, then H is singular.

Is the converse of (d) true? If the positive semidefiniteness of H is
dropped, i.e., H is just Hermitian, which of the above remain true?

Let A € M,(C). Show that

(a) A*A and AA* are unitarily similar.
(b) A= HP for some H > 0 and P unitary.

(c) If A is an m x n matrix, then A = AA*Q for some matrix Q.

For any complex matrix A, the matrix (4*A)3 is called modulus of
the matrix A, denoted by m(A). Let A be an n x n matrix, show that

(a) det(m(A)) = |det A4].

(b) A=m(A)if A>0.

(¢) If A=UDV is the singular value decomposition of A,

m(A) =V*DV and m(A*) =UDU*.

(d) m(A) and m(A*) are similar.

(¢) m(A) =m(A*) if and only if A is normal.

() ( mgA) m‘&.)) is positive semidefinite.

(8) m(A) may not commute with A.

(h) m(A)H = Hm(A) if AH = HA and H is Hermitian.
Find m(A) and m(A*) for

(00) (1a) (o)
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4.61

4.62

4.63

4.64

4.65

Let A and B be both m x n complex matrices. Show that

A*A A'B |A*A| |A*B|
Determine whether the following are true:

A*A B*A |A*A| |B*A|
(A*B B*B)20 and (|A*B| iB*B| ) =°

Let A be an n x n complex matrix with rank r. Show that

A+ A

5 = AA

ifand only if A=U (’0'8) U* for some unitary matrix U.

Let A € Mpmxn(C) and B € Mpxy(C). If r(B) = p, show that

AA* > AB*(BB*)"'BA".

Let A and B be n x n positive definite matrices. Show that

(a) If |]AA — B| =0, then X > 0.
(b) |AA — B| = 0 has only solution A =1 if and only if A = B.

Let A and B be m x n matrices. Denote the Hadamard (or Schur or
entrywise) product of A and B by A o B; that is, A o B = (a;;b;j).

Let A and B be n x n positive semidefinite matrices.

(a) Find Aol.

(b) Find Ao J, where J is the n x n matrix of all entries 1.

(c) Show that Ao B > 0.

(d) Show that Amax(A4 © B) < Amax(A)Amax(B).

(e) Is it true that Ao B must be singular when A or B is singular?
(f) Show that tr(Ao B) < 1tr(Ac A+ Bo B).
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4.66 Let A, B € M;,xn(C). Let A; and B; denote, respectively, the i-th
and the j-th column vectors of A and B, i,5 = 1,2,...,n. Show that

(AA*) o (BB*) = (Ao B)(A* o B*) + Z(A,- o B;)(A} 0 B})
i#j
and
(Ao B)(A* o B*) < (AA*) o (BB*).

In particular,
(Ao B)? < A%20B?% if A,B>0.

4.67 Let A and B be n x n correlation maltrices, i.e., A and B are positive
semidefinite and all entries on their main diagonals are 1. Prove

AioBi<1.

4.68 Let A€ M,(C).

z* 0| —

The inequality is strict if A is nonsingular and = # 0.
: A
(b) If A> 0, find the inverse of (,- g) :

(a) If A > 0, show that | A "’I < 0 for every column vector z € C".

4.69 Lct A be a positive definitc matrix. Partition A, A~! conformably as

(B C L (U V
4=(5) =(v w)

(a) Show that U and W can be expressed, respectively, as

U=(B-CD'C*)"! = B! + B-ICWC*B,
W = (D -C*B-'C)~' = D! + D-'C*UCD".

U-t o
- > 0.
A ( 0 O ) 20
4.70 Let I be the n xn identity matrix. Find the eigenvalues of the matrix

G=(§ §)

(b) Show that
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Let A > 0. Show that

(a)
(b)

A+ At >2rI
Ao A™1>1.

Let A = (ai;) be an n x n matrix of nonnegative entries. If each row
sum of A is equal to 1, namely, °7_,; a;; = 1 for each 4, show that

(a)
(b)
(c)

For every eigenvalue ) of A4, |A| < 1.
1 is an eigenvalue of A.
If A~! exists, then each row sum of A~! also equals 1.

Let A be a real orthogonal matriz; that is, A is real and A*A =

AAt =

I. Let A = a + ib be an eigenvalue of A and u = = + iy be an

eigenvector of A\, where a, b, z, y are real. If b # 0, show that

z'y=0 and z'z=y'y.

Let U be an n x n unitery matriz, i.e., U*U = UU* = I. Show that

(a)
(b)
(c)
(d)
(e)
()
(8)
(h)
(i)

()
(k)

(1)

Ur=U"L.

Ut and U are unitary.

UV is unitary for every n x n unitary matrix V.

The eigenvalues of U are all equal to 1 in absolute value.
If \ is an eigenvalue of U, then } is an eigenvalue of U*.
lx*Uzx| <1 for every unit vector z € C™.

|Uz|| =1 for every unit vector z € C".

Each row and column sum of U o U = (|u;;|?) equals 1.

If z and y are eigenvectors of U belonging to distinct eigenval-
ues, then z*y = 0.
The columns (rows) of U form an orthonormal basis for C".

For any k rows of U, 1 < k < n, there exist £ columns such
that the submatrix formed by the entries on the intersections
of these rows and columns is nonsingular.

| tr(U A)| < tr A for every n X n matrix A > 0.

Which of the above statements imply that U is unitary?
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For any complex matrix A, show that the following matrix is unitary

( - AjiA)uz (I _:42:)1/2 )

Show that a square complex matrix U is unitary if and only if the
column (row) vectors of U are all of length 1 and |detU| = 1.

If the eigenvalues of A € M, (C) are all equal to 1 in absolute value
and if ||Az|| < 1 for all unit vectors z € C", show that A is unitary.

Show that the n x n Vandermonde matrix U with the (%, j)-entry
71-w(‘“1)(3‘1), where w™ = 1 and w # 1, is symmetric and unitary:

n

1 1 1 cos 1
1 w w2 ... @l
U= i 1 w2 wh cer 2n—2
v I
e

Let A € M,(C) and let U € M,(C) be a unitary matrix. Show that

n 1
0 O (U © A) < % (i’él |a,.j|z) :
If A is an n x n real symmetric matrix, show that
I-iA and I+iA
are nonsingular and that
(I —iA)(I +id)™!
is unitary.

Let A be a nonsingular square complex matrix. Show that A is normal
if and only if A~!A* is unitary.

Find all 2 x 2 real orthogonal matrices.
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4.84

4.85

4.86

4.87

4.88
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Let A = (aij) € M3(R) and a11 # 0. If the transpose A’ of A equals
to the adjoint adj(A) of A, show that A is an orthogonal matrix.

Find an orthogonal matrix T such that T¢ AT is diagonal, where

4 2 2
A=1]1 2 4 2 ].
2 2 4
Show that there do not exist real orthogonal matrices A and B satisfy-
ing A2 — B2 = AB. What if “orthogonal” is replaced by “invertible”?

If A and B are n x n real orthogonal matrices satisfying
|A| + |B ' =0,

show that
|A+ B|=0.

Can this be generalized to unitary matrices?

Let A and B be n x n real matrices. If A > 0 and B = —B?; that is,
A is positive definite and B is real skew-symmetric, show that

|A+ B| > 0.

Let A € M,(C). Show that if A is unitary, then so is the matrix
1 (A -A
Va4 A )
Let A € M,(C). Show that A can be written as A = B+ C, where B

is Hermitian and C is skew-Hermitian, and that A can also be written
as A = F + G, where both F and G are (unique) Hermitian.

Let A be a nonidentity square complex matrix.
(a) Can A be positive definite and unitary?
(b) Can A be Hermitian and unitary?
(c) Can A be upper-triangular (but not diagonal) and unitary?
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4.91 Let A = (aij) € M,(C) and have eigenvalues A1, Ag,...,An. Show
that the following statements are equivalent:

(a)
(b)
(c)

(d)

(e)
(f)
(g)
(b)
(i)
)
(k)
(1)
(m)
(n)
(0)

A is normal; that is, A*A = AA®*.
I — A is normal.

A is unitarily diagonalizable; that is, there exists a unitary
matrix U such that U* AU = diag(A1, A2,...,Ar).

There is a set of the unit eigenvectors of A that form an or-
thonormal basis for C".

Every eigenvector of A is an eigenvector of A*.
A* = AU for some unitary U.

A" = V A for some unitary V.

tr(A*A) = Z: j=1 |a¢,-|2 = Z?:l |'\i|2-

The singular values of A are [\|,|A2|,---,|An]|-
tr(A*A)2 = tr[(A*)2A2).

|Az| = ||A*z|| for every z € C™.

A+ A* and A — A* commute.

A*A — AA" is positive semidefinite.

A commutes with A*A.

A commutes with AA* — A*A.

4.92 Show that if A is a normal matrix, then A can be expressed as

(a)
(b)

A = B +iC, where B and C are Hermitian and commute.
A= HP = PH, where H > 0 and P is unitary.

Discuss the converses of (a) and (b).

493 IfA=

(g g) is normal, what can be said about B, C, and D?

4.94 Let A, B € M,(R). Show that if M = A + ¢B is normal, Hermitian,
orthogonal, or positive semidefinite, then so is the partitioned matrix

V(4 3)
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Let A € M,(C) be a normal matrix. Show that

(a) Ker A* = Ker A.
(b) ImA* =ImA.
(c) C*=ImA@KerA.

If A is a normal matrix and commutes with matrix B, show that the
transpose conjugate A* of A also commutes with B.

Let A be a normal matrix. Show that AA=0 & AA'= A*A=0.

Let A and B be n x n normal matrices. Show that
(a) If AB = BA, then there exists a unitary matrix U such that
U* AU and U*BU are both diagonal.
(b) If AB = BA, then AB is normal. What if AB # BA?
(c) If AB* = B*A, then both AB and BA are normal.
(d) A+ iB is normal if and only if AB* + A*B is Hermitian.
(e) If AB is normal, then BA is normal.

Find two nonnormal matrices whose product is normal.

If Ais a 3 x 3 matrix such that A%2 = I and A # +I, show that the
rank of one of A+ I and A — I is 1 and the rank of the other is 2.

If A is a real matrix such that A3 + A = 0, show that tr A = 0.

Let A be an n x n matrix. If A* = I for some positive integer k, show
that tr(A~1) = tr(A). If such a k is less than n, show that A has
repeated eigenvalues; that is, A cannot have n distinct eigenvalues.

Let A be an n x n real or complex matrix. If A*¥ = I for some positive
integer k, show that T~ AT is diagonal for some complex matrix T.

For B = (17!), show that B* = I, and there does not exist a real

invertible matrix P such that P~1BP is diagonal.
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A square matrix A is nilpotent if A*¥ = 0 for some positive integer k;
idempotent or a projection if A2 = A; involutary if A2 = I. Show that
(a) A is nilpotent if and only if all cigenvalucs of A arc zcro.

(b) A is idempotent if and only if A is similar to a diagonal matrix
of the form diag(1,...,1,0,...,0).

(c) A isinvolutary if and only if A is similar to a diagonal matrix
of the form diag(1,...,1,-1,...,-1).

Let A and B be nilpotent matrices of the same size. If AB = BA,
show that A + B and AB are also nilpotent.

If A is a nilpotent matrix, show that

(a) I — A is invertible. Find (I — A)~1.
(b) I+ A is also invertible.

(c) trA=0.

(d) A is not diagonalizable when A # 0.

Let A and B be idempotent matrices of the same size. Show that
A + B is idempotent if and only if AB = BA =0.

Let A and B be Hermitian. Show that if AB is idempotent, so is BA.

Let A be an n-square matrix of rank r, » > 1. Show that A2 = A if
and only if there exist matrices B, r x n, and C, n x r, both of rank r,
such that A = BC and CB = I,. Show further that if A2 = A then

|2, — A|=2""" and |A+I,|=2".
Let A be an n-square matrix of rank r. If A satisfies A2 = A but is

neither 0 nor I, show that for every positive integer k, 1 < k < n-—r,
there exists a matrix B such that AB = BA =0, and

(A+ B)**! = (A+ B)* # (A+ B)*~1.
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Let A € M,,(C) be a nonzero idempotent matrix; that is, A% = A.

(a) Find |[A+ I]| and |A - I|.
(b) Show that r(A) = tr A.
(c) Show that dim(Im A) = tr A.

Let A, B € M,(C). Show that

(a) If AB+ BA = 0 and if B is not nilpotent, then the matrix
equation AX + XA = B has no solution.

(b) If A> 0, then AX + XA = B has a unique solution X. More-
over, if B is positive semidefinite, then so is X.

Let A, B, C € M,(C). Show that the matrix equation AX+XB =C

has a unique solution if and only if (‘8 _CB) and (é _OB) are similar.

A square complex matrix X is said to be idempotent Hermitian or
called an orthogonal projection if X* = X and X2 = X. Let A and
B be n x n idempotent Hermitian matrices. Show that

B<A ifandonly if @ AB=B.

Let A be an n x n idempotent Hermitian matrix. Show that
z€ImA if and only if z = Ax.
Let B be also an n x n idempotent Hermitian matrix. Show that

ImA=ImB if and only if A=B.

If A € M,(C) is an involution, i.e., A% = I, show that the following
assertions are equivalent:

(a) A is Hermitian.

(b) A is normal.

(c) A is unitary.

(d) Al singular values of A are equal to 1.
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4.116 Let A be an n X n involutary matrix, i.e., A2 = I. Show that
(a8) X =1(I+A)andY = (I - A) arc idempotent, and XY = 0.
(b) r(A+D)+r(A-I)=n.
(c¢) A has only eigenvalues +1.

(d) V = V1 ® V_;, where V; and V_, are the eigenspaces of the
eigenvalues 1 and —1, respectively.

(e) Im(A—1I)C Ker(A+1I).

Which of the above assertions imply 4% = I?

4.117 Let A and B be n x n nonsingular matrices satisfying ABA = B and
BAB = A. Show that M = A? = B? is involutary; that is, M2 = I.

4.118 Let A and B be n-square involutary matrices. Show that

Im(AB — BA) = Im(A — B)NIm(A + B).

4.119 Let A, B € M,(C) be such that A = (B + I). Show that A is
idempotent, i.e., A% = A, if and only if B is an involution, i.e. B2 =1.

4.120 Let A be a square matrix and A be any nonzero scalar. Show that

A A A A71A A )14
A A )’ XNI-A) I-A )’ -AA -A
are normal, idempotent, and nilpotent matrices, respectively.

4.121 A permutation matriz is a matrix that has exactly one 1 in each row
and each column, and all entries elsewhere are 0.
(a) How many n X n permutation matrices are there?

(b) Show that the product of two permutation matrices of the same
size is also a permutation matrix. How about the sum?

(c) Show that any permutation matrix is invertible and its inverse
is equal to its transpose.

(d) For what permutation matrices P, P? = I?
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Let P be the n X n permutation matrix

o010 --- 0

(001 0\

0O 00 --- 0 0 I._;
P=1: z =(1 0 )

0 0O 1

\1 0 0 0/

(a) Show that for any positive integer k < n,
0 In-
k _ n—k
il ( L 0 )
P*l=P, P'=1I,.

(b) Show that P, P2,..., P" are linearly independent.
(c) Show that P* + P7 is a normal matrix, 1 <14, j <n.
(d) When is P* + P’ a symmetric matrix?

(e) Show that P is diagonalizable over C but not over R if n > 3.

(f) Show that for every P*, where 1 < ¢ < n and (i,n) = 1, there
exists a permutation matrix T such that T-1P*T = P.

and

Let A be an invertible matrix with nonnegative integer entries. Show
that if the sum of all entries of A™ is bounded for all n, then A is a
permutation matrix. Equivalently, if the union over all n of the set
of entries of A" is finite, then A is a permutation matrix.

Let A be an n x n matrix so that every row and every column have
one and only one nonzero entry that is either 1 or —1 and all other
entries are 0. Show that A* = I for some positive integer .

Let A be an (n — 1) x n matrix of integers such that the row sums
are all equal to zero. Show that |AA?| = nk? for some integer k.

Let A be an n x n matrix all of whose entries are either 1 or —1
and whose rows are mutually orthogonal. Suppose A has an 8 x ¢
submatrix whose entries are all 1. Show that st < n.
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0 0 1 010
A=(1 0 0 and B=[ 0 0 1 |.
-2 0 1 00

Show that

Let

o

(A+tB)}=A3+3B%, teR.

Show that the matrix equation X4+Y*4 = Z4 has nontrivial solutions:

(5= s)-(34)

where z = 2pq, y = p® — ¢%, and z = p? + ¢%, p and q are integers.



Chapter 5

Inner Product Spaces

Definitions and Facts

Inner Product Space. Let V be a vector space over the field F, where F
is R (or C). An inner product on V is a mapping that assigns every ordered
pair of vectors « and v in V' a unique scalar in F, denoted by (u,v). And
the vector space V' is called an inner product space (or Euclidean space) if
the following are satisfied for all vectors u, v, w € V and scalar \ € F:

Positivity: (u, u) > 0. Equality holds if and only if u = 0;
Homogeneity: (Au, v) = A(u, v);
Linearity: (u, v+ w) = (u, v) + (u, w);
Hermitian Symmetry: (u, v) = (v, u).
It is immediate that for all vectors u, v, and w € V and scalars A and u € F,
(u, 2v) = Au, v)

and
(Au + pv, w) = My, w) + p(v, w).

When F = R, the inner product is also known as dot product, for which
(u, v) = (v, v).

Let W be a subspace of the vector space V. If V is an inner product
space, with the inner product being restricted to the vectors in W, then W
is also an inner product space.

103
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Examples.

e R" is an inner product space with the standard inner product

(u, v) = v'u = u1v) + vy + -+ - + UpVn.

e C" is an inner product space with the standard inner product

(u, v) = v'u = w1 + u2V2 + - + UnUn.

o Let /2 be the vector space (over C) of all infinite complex sequences
u = (u1,up,---) with the property that Y :c, |ui|?> < 00. Then {2 is
an inner product space under the inner product

> o)
(u, v) =) uydy.
i=1

e The vector space C|a,b] of all continuous real-valued functions on the
closed interval [a,b] is an inner product space with the inner product

b
(f, g9) = / f(t)g(t)dt.

® M., «n(C) is an inner product space with the inner product

(A, B) = tr(B* A).

Length or Norm of a Vector. Let u be a vector in an inner product
space V. The nonnegative number +/(u,u) is called the length or norm of
the vector u and is denoted by ||u||. The zero vector has length 0. A unit
vector is a vector of norm 1. The norm has the following properties:

(1) |lu|| = 0 for all 4 € V. Equality holds if and only if u = 0.
(12) lAu]l = |A|||w| for all w € V and A € F.

(13) Triangle inequality: |ju + v|| < ||u|| + ||v|| for all u, v € V. Equality
holds if and only if ¥ = 0 or u = 0 or u = A\v for some scalar A > 0.

The distance between two vectors u and v is d(u,v) = ||u — v|l. One
may show that for any two vectors u and v in an inner product space,

| Nl = llvll | < flw =]l
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and
[+ o)) + flu — v)% = 2[ju||® + 2|jv||.

The Cauchy-Schwarz Inequality. Let u and v be any two vectors in an
inner product space V. Then

I(w, V)| < (u, u) (v, ),

equivalently
|(u, v)| < lull flv]l.
Equality holds if and only if u and v are linearly dependent.

Orthogonal Vectors. Let u and v be vectors in an inner product space
V. If the inner product (u,v) = 0, then we say that v and v arc orthog-
onal and write u | v. Nonzero orthogonal vectors are necessarily linearly
independent. Suppose, say, Au + uv = 0. Then A = 0, thus u = 0, since

(Au + pv,u) = Mu, u) + p(v,u) = Mu,u) = 0.

A subset S of V is called an orthogonal setif u L v forallu,ve€ S. S
is further said to be an orthonormal set if S is an orthogonal set and all
vectors in S are unit vectors. Two subsets S and T of V are said to be
orthogonal if u | vfor allu € S and all v € T..

We denote by u' and S' the collections of all vectors in V that are
orthogonal to the vector u and subset S, respectively; that is,

ut={veV|(uv)=0}

and
St={veV|(uv)=0 foralue S}

These sets are called orthogonal complements of u and S, respectively.
One may check that orthogonal complements are always subspaces of V.
Obviously, SN S+ = {0}, {0}1 = V, and V* = {0}. Moreover, § C (S+)+
and if S is a subspace of finite dimensional space, then (S+)1 = §.

Orthogonal Basis; Orthonormal Basis. Let {a;,as,...,a,} be a basis
for an inner product space V. If a3, @y, .. ., a, are pairwise orthogonal; that
is, (ai, aj) = 0, whenever i # j, then we say that the basis is an orthogonal
basis. If, in addition, every vector in the basis has length 1, we call such a
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-

s L

Figure 5.1: Orthogonality

basis an orthonormal basis. Thus o4, 3,...,ay, form an orthonormal basis
for an n-dimensional inner product space if and only if

0 ifi#j,
(e, @) {1 if i = j.

The standard basis e;, ez, ..., e, are orthonormal basis for R* and C*
under the usual inner product. The column (row) vectors of any n x n
unitary matrix is also an orthonormal basis for C".

If {uy,u,...,ux} is an orthogonal set, then (u;,u;) = 0 for all i # j.
By putting 4 = u; + ua + - - - + uy, and computing |[|lu||, we see that

2 &
=3l

i=1

k

S

=1

llull® =

In particular, for two orthogonal vectors « and v,
llu + o]|? = Jluli® + |lo]|.

Let {a1,032,...,an} be an orthonormal basis for an inner product space
V. Then every vector u can be uniquely expressed as

u= En:(u, o).

=1

The coordinates of  under the basis are (u, ai), (u, az),...,{(y, an). And

n
lal® = 1w, o).
i=1
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Chapter 5 Problems

5.1 Let V be an inner product space over C. Show that for any nonzero
vector u € V, ﬁ“u is a unit vector and that for any v, w € V,

(‘U, (v,w)w) = |(‘U, 11))|2 = (v7 w) (w, ‘U)-

Is it true that
(v, w)v, w) = |{v, w)|*?

5.2 Let V be an inner product space over C. Show that for all vectors
u, v, w € V and scalars A, u € C the following identities hold:

(O + v, w) = A, w) + (o, w)

and
(w, Au + pv) = Mw, u) + i{w, v).

5.3 Let V be an inner product space and u, v, w € V. Is it true that

(@) [{u, )| < llull + |lvll;

(6) I{w,v)] < 3(llull® + lI0)?);

(©) u, )| < |(u, w)| + [{w,v);

(d) ll+oll < llu+wll + |lw+v); or
(€) llu+oll < Jlu+wl| + |lw—v|?

5.4 Let z = (z1,2Z2,...,Z,) € C* and ||z||o0 = max{|z4], |z2],...,|Znl|}-
For z, y € C*, define (z, ¥)oo = ||Z]|coll¥llco. Check whether each of
the following is satisfied:

(a) (z, T)oo = 0. Equality holds if and only if x = 0;
(®) (A, Y)oo = M2, Y)oo;

(©) (&, ¥+ 2)o0 = (T, Yoo + (T 2)oos

@) (% ¥)oo = (¥ Z)oo-



108

5.5

5.6

5.7

5.8

5.9

CHAPTER 5

For each pair of vectors z and y in C3, assign a scalar (z,y) as follows:

1 01
(z,y)=%"]1 0 2 0 ]«
1 0 2

Show that C2 is an inner product space with respect to (-, -). What
if the entry 2 in the (2,2)-position is replaced by —2? That is, is C3
still an inner product space? Moreover, if # and y on the right-hand
side are switched in the definition, is C3 still an inner product space?

Let
V=X_z= ER? |2y =23+ 24, T2 =3 — 4

Show that V is a subspace of R4. Find a basis for V and for V1.

Let a; = (1,0, 0, 0)* and a2 = (0, 3, 3, _\15): Find vectors a3 and
a4 in R4 so that ay, a2, a3, a4 form an orthonormal basis for R*.

Define an inner product on P4[z] over R as follows:

(f, 9) = /0 f(2)9(z)de.

Let W be the subspace of P4[x] consisting of polynomial 0 and all
polynomials with degree 0; that is, W = R. Find a basis for W+,

Let u;, ug,...,u, € C™ be n column vectors of m components. Deter-
mine whether each of the following matrices is positive semidefinite:
( ujuy  uU2 ... UiUg ujur UYL ...  UpYU) \
UL UU2 ... UglUn uju2 UU2 ... UplU2

? )
\ UnUl UnU2 ... Unln \ UlUn  UUn ... Upln )
wiwy wauy ... Urin ( UIU]  U2U] ... UpU] \
UU] UU3 ... UUn, WU UUZ ... UnU2
1

\u,.u{ UnU3 ... Unln \uru; wu, ... u,.u,‘,)
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5.10

5.11

5.12

5.13

5.14

Let V be an inner product space and let uj,u2,...,u, be any n
vectors in V. Show that the matrix, called Gram matriz,

(u1,u1) (ug,u1) ... (Un, 1)
G= (w1,u2) (ug,u2) ... (un,us)
(U1 n) (U2, Un) ee (tim, )

is positive semidefinite. How about the following matrix H?

(u, 1)  (un,u2) ... (up,un)
H = (uz,u1) (ug,uz) ... (u2,un)
1)ty ) o {thmy )

Let u,v € C™ have norms less than 1, i.e., ||u]| < 1, ||v|| < 1. Show that
1 1
( 1—({.&,1&) 1—(114,0) ) > 0.
1—{v,u) 1—(v,v)

Show that a square matrix is positive semidefinite if and only if it is
a Gram matrix. To be precise, A € M,,(C) is positive semidefinite if
and only if there exist n vectors u1,u2,...,un € C™ such that

A= (a,-,-), where ai; = (’Uj, 'u.,)

Show that (-,-) is an inner product for C" if and only if there exists
an n-square positive semidefinite matrix A such that for all z, y € C*

(z, y) = y" Az.

Let V be a vector space over C. A mapping (-, -): VxV — Ciscalled
an indefinite inner product if for all vectors u, v,w € V and scalars
A w€C, (1) My, v) = Mu, v); (ii). (v, v+w) = (u, v) +(u, w); and
(iii). (u, v) = (v, u). (Le, the positivity condition in the definition of
a regular inner product is removed.) Show that for any vectors u, v

Re(u, v) = i((’u-&-v, u+v) — (u—v, u—1v)).
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5.15 Let z = (z1,%2,...,Zn) € C® and ||2||0c0c = max{|z1],|z2|,...,|Ta] }-
If ||z + Ylloo = lZ|loo + ||¥l|co» must x and y be linearly dependent?

5.16 Let A be a linear transformation on an inner product space V. Show
that for any unit vector z € V

(A(z), z) (z, A(z)) < (A(z), A(z)).
In particular, for A € M,(C) and £ € C" with ||z|| =1,
|z*Az|? = (z* A*z) (2" Az) < (2 A”) (Az) = || Az|)?

or

|z* Az| < || Az]l,
with equality if and only if x is a unit eigenvector of A.

5.17 Let A be an n x n positive semidefinite matrix. Show that
(7 = A)(T + A) 2| < |lzll, zeC™
Equality holds if and only if x € Ker A, or equivalently

(I-A)(I+A)z=z.

5.18 Let V be an inner product space over R.
(a) If vy, ve, v3, v4 € V are pairwise product negative; that is,
(vi’”j)<0s isj=la 2) 31417:#.7.:

show that v,, vz, vz are linearly independent.

(b) Is it possible for four vectors in the zy-plane to have pairwise
negative products? How about three vectors?

(c) Are vy, v2, vs, v4 in (8) necessarily linearly (in)dependent?

(d) Suppose that u, v, and w are three unit vectors in the zy-plane.
What are the maximum and minimum values that

(u, v) + (v, w) + (w, u)

can attain? and when?
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5.19

5.20

For P3[z] over R, define the inner product as

(a)
(b)
(c)

(d)

(e)
(f)

(2)

(h)

1
(9= [ reste)s.

Is f(z) =1 a unit vector in P3[z]?
Find an orthonormal basis for the subspace Span{z, z2}.

Complete the basis in (b) to an orthonormal basis for P;{z]
with respect to the inner product.

Show that (f, g) =0 for f € Vi, g € V5, i.e., V] 1 V5, where

Vi =Span{l, 2} and V= Span {z2 - %, z3 - -g-x}

Show that P3[z] = Vi & Va, where V3, V> are defined as above.
Is [+, -] defined by

1
f,d = /0 f@)e(@)dz

also an inner product for Ps[z]?
Find a pair of vectors v and w in P3[z] such that

(v, w)=0 but [v, w]#0.

Is the basis found in (c) an orthonormal basis for P3[z| with
respect to [+, ]?

Let {v1,v2,...,vn} be an orthonormal basis for an inner product
space V over C. Show that for any z € V,

and

T = zn:(z, i)V

=1

k
(z, ) > Z Kz, v:)|?, 1<k<n.

=1

Why are pairwise orthogonal nonzero vectors linearly independent?
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5.21 For M,(C), the vector space of all n X n complex matrices over C,
define the inner product as

(A, B) =tr(B*A), A, Be M,(C).
Show that

(a) M,(C) is an inner product space.

(b) tr(A*A) =0 if and only if A = 0.

(c) |tr(AB)|? < tr(A*A)tr(B*B).

(d) tr(ABB*A*) <tr(A*A)tr(B*B) or |ABJ| < ||A]|l |IB|l-
(e) lA*A - AA%| < V2)Al>

(f) If tr(AX) =0 for every X € M,(C), then A =0.

(8) W={X € My(C)|tr X =0} is a subspace of M,,(C) and
W+ consists of scalar matrices; that is, if tr(AX) = 0 for all
X € M,(C) with tr X = 0, then A = AI for some scalar .
Find the dimensions of W and W+,

(b) If (A, X) >0 for all X >0 in M,(C), then A > 0.

Is M, (C) an inner product space if the inner product is instead defined
as (A, B) = tr(A*B), tr(AB*), or tr(BA)?

5.22 Consider R? with the standard inner product. Are vectors u = (1,0)
and v = (1, —1) unit vectors? Are they mutually orthogonal? Find
(a) ut, vt.
(b) utnot.
(€ {u, v}
(d) (Span{u, v})*.
(e) Spa.n{uJ-, '”-L}'

5.23 Find all 2 x 2 complex matrices that are orthogonal, in the sense of
(A, B) = tr(B*A) = 0, where A, B € M5(C), to the matrices

(o &) = (15)
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5.24 For A € M,(C), denote the field of values or numerical range of A by
F(A)={z"Az|z e C", |z|| =1}.

(a) Show that F(A + cI) = F(A) + c for every c€ C.

(b) Show that F(cA) = cF(A) for every c € C.

(c) Why are the diagonal entries of A contained in F(A)?
(d) Show that the eigenvalues of A are contained in F(A).
(e) Are the singular values of A contained in F(A)?

(f) Describe F(A) when A is Hermitian.

(g) Describe F(A) when A is positive semidefinite.

(h) Determine F'(A) when A is

(22 (23)- (1) (3.20)
(

8.25 Let V be an inner product space.

OO O
S = O
[
+ o0
=,
v

(a) For any z, y € V, show that
Iz + ylI* + llz = ylI* = 2)i=lI? + 2lly|i>.
(b) Show that ||z + y|| = ||z|| + |ly|| if and only if
sz + ty|| = sliz|l + tlly|l, for all s, ¢ > 0.

(¢) If||z|l = llyll, show that z+y and £ —y are orthogonal. Explain
this with a geometric graph.

(d) If z and y are orthogonal, show that
llz + 9l = li<l? + Iyl

(e) Is the converse of (d) true over C? Over R?
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5.26

5.27

5.28

5.29

CHAPTER 5

Let W be a subspace of an inner product space V and let W+ be the
orthogonal complement of W in V; that is,

Wt={zeV|(r,y)=0 forall yc W}

Let w € V. Show that v € W is a projection of u onto W; that is,
u=v+v, forsomer € W,
if and only if

lu—v|| <|lu—-w|, foreverywe W.

Let W be any subspace of an inner product space V. Show that
V=wew'.

Consequently,
dimV = dim W + dimW+.

If W is a subspace of an inner product space V, answer true or false:

(a) There is a unique subspace W’ such that W'+ W = V.
(b) There is a unique subspace W’ such that W e W = V.

(c) There is a unique subspace W’ such that W/ e W =V
and (w,w') =0 for all w € W and w’ € W'.

If S is a subset of an inner product space V, answer true or false:

(a) SnSt={0}.

(b) SC (S~

() (SH)*t=5.

(d) (S*)* = Span(S).

(e) [(SH)t)*+ =5

(f) S+ is always a subspace of V.
(g) S+ ®Span(S)=V.

(h) dim St + dim(St)t =dimV.
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5.30

5.31

5.32

5.33

5.34

5.35

Let W; and W> be subspaces of an inner product space V. Show that

(a) (Wh +Wo)t =WeLnwi.
(b) (WhNWa)* = Wit + Wi,

Let S = {u,u2,...,up} be an orthogonal set of nonzero vectors in
an n-dimensional inner product space V; that is, (u;,u;) = 0if 4 # j.
Let v1,vs,...,v, be vectors in V that are all orthogonal to S, namely,
(vi,uj) = 0 for all ¢ and j. If p+ g > n, show that the vectors
v1,%Va,...,V, are linearly independent.

Let A, B, and C be n-square complex matrices such that

A B*
(B C)ZQ
Show that

|(Bz, y)|? < (Az, z) (Cy, y), for allz, y € C".
In particular, for any A > 0,

Az, p)|? < (Az, z) (Ay, y), forallz, y € C",
and for any A > 0,

(e, »)I* < (Az, z) (A7'y, 3), forallz,yeCm

Let A be the linear transformation on an inner product space V:
(A(u')s v) = —<uv .A(‘U)), u, vEV.
If X is a real eigenvalue of A, show that A = 0.

Find the null space S for the following equation system, then find S*:

Ty —2294+3x3— 424 = 0
1+ 522+ 323+ 324 = 0.

Let V4 and V, be two subspaces of an inner product space V of finite
dimension. If dimV; < dimV;, show that there exists a nonzero
vector in V; that is orthogonal to all vectors in V;.
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5.36

5.37

5.38

5.39

5.40

CHAPTER 5

Let A be a self-adjoint linear operator (transformation) on an inner
product space V of finite dimension over C; that is,

(A(u),v) = (u, A(v)), forallu,veV.

Show that there exists an orthonormal basis for V' in which every
basis vector is an eigenvector of .A. In other words, there exists a set
of eigenvectors of A that form an orthonormal basis for V.

Let A be a sclf-adjoint lincar transformation on an inner product
space V of finite dimension over C, and let W be a k-dimensional
subspace of V. If (A(z), =) > 0 for all nonzero vectors z in W, show
that A has at least k positive eigenvalues (counting multiplicity).

If A and B are linear transformations from an inner product space V'
to an inner product space W such that

(A(v), w) = (B(v), w), forallveVandw e W,
show that A = B.

Let A be a linear operator on an inner product space V and .A* be
the adjoint of A, i.e., A* is a linear transformation on V such that

(A(z), y) = (z, A*()), forallz,yeV.
Show that
(a) Such an A* is unique.
(b) (A*) =A
(c) KerA* = (ImA)*L.
(d) Im.A* = (Ker.A)'L.
() V=KerA*®ImnA=1ImA*®KerA.

(f) If the matrix of A under an orthonormal basis is A, then matrix
of A* under the same basis is A*.

Let A be a linear transformation on a vector space V. Let (-, -) be
an inner product on V. If one defines

[z, 4] = (Alz), A@W)),
What A will make [, ] an inner product for V'?
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5.41

5.42

5.43

5.44

If A is a mapping on an inner product space V satisfying
(A(:B), A(y)) = (z, y), forallz,yeV,

show that A must be a linear transformation. Such an A is called an
orthogonal transformation.

Let A be a linear operator on an inner product space V of dimension
n. Show that the following statements are equivalent:

(a) \Ais orthogonal; that is, (A(u), A(v)) = (u, v).
(b) |l A(u)|| = ||z]| for all vectors u.

(c) If {a,00,...,an} is an orthonormal basis for V, then so is
{A(al), A(az), ceny A(an)}

(d) The matrix representation A of A under a basis is an orthog-
onal matrix; that is, A*A = AA' = 1.

Can the condition (c) be replaced by (c¢’): If {£1,52,-.-,0,} is an
orthogonal basis for V, then so is {A(81), A(B2),.-.,A(Br)}.

Let A be a linear transformation on an inner product space V' of
dimension n and let {4, 09,...,a,} be an orthogonal basis of V. If

(A(a.-), A(a.)) = (C!.', a,-), 1= 1,2, A (B

is A necessarily an orthogonal transformation?

Let V be an inner product space. As is known, a linear mapping .A on
V is an orthogonal (linear) transformation if and only if || A(u)|| = |jul|
for all v € V. Show that the word “linear” in the statement as a pre-
condition is necessary; that is, show by an example that a mapping £
on V satisfying ||L(u)|| = ||u|| for all u € V is not necessarily a linear
transformation. Likewise, recall the distance of two vectors u, v € V

d(u, v) = [ju—o||.
If D is a mapping on V that preserves the distance of any two vectors
d(D(u), D(v)) = |lu—l,

show by example that D is not necessarily a linear transformation.
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5.45

5.46

5.47

5.48

CHAPTER 5

If {a1,a2,...,0,} and {B1,B2,...,0n} are two sets of vectors of an
inner product space V of dimension n. Does there always exist a
linear transformation that maps each «; to §;7 Show that if

(ai’ aj) = (ﬂia ﬂj)’ ,7=12,...,n,
then there exists an orthogonal (linear) transformation .A such that

Alay) =0, i=12,...,n.

If A and B are linear operators on an inner product space such that
(A(u), A(u)) = (B(u), B(u)), u€V,
show that there exists an orthogonal operator C such that
A=CB.
Let V be an inner product vector space over F. A linear functional

on V is a linear transformation from V to F and the dual space of V,
denoted by V*, is the vector space of all linear functionals on V.

(a) For v € V, define a mapping £, from V to F by
Ly(u) = (u,v), forall ueV.

Show that L, is a linear functional for every v.
(b) Let £ be the mapping from V to V* defined by

Lv)=L,, forall veV.

Show that £ is linear.
(c) Show that £ is one-to-one and onto.

(d) Find a basis for the vector space V*.

Let 7 be an orthogonal transformation on an inner product space V.
Show that V = W), & W5, where

Wi={zeV|T(x)=2z} and Wo={z-T(z)|ze€V}.
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5.49 Let u be a unit vector in an n-dimensional inner product space V'
over R. Define

A(z) =z —2(z, u)u, z€V.

Show that

(a)
(b)
()

(d)
(e)

A is an orthogonal transformation.
If A is a matrix representation of A, then |A| = —1.

The matrix representation of A under any orthonormal basis
is of the form I — vvt, where v is some column vector.

If £ = ku+y and (u, y) =0, then A(z) = —ku +y.

If B is an orthogonal transformation with 1 as an eigenvalue,
and if the eigenspace of 1 is of dimension n — 1, then

B(z) =z -2z, wyw, z€V

for some unit vector w € V.

5.50 Let V be an inner product space and W a nontrivial subspace of V.

(a)

(b)

(c)
(d)

(e)
(f)
(2)
(h)

Find a linear transformation P on V, called orthogonal projec-
tion from V onto W, such that

Plw)=w, weW and Pw')=0, v’ e Wt

Show that
P2 ="P.

Show that such a P is uniquely determined by W.

Find a nonidentity linear transformation P’ such that
P(w) =P'(w), weW, but P#P.

Show that for every v € V, (P(v),v) > 0.

Show that for every v € V, ||P(v)| < |lv]|.

Show that Z — P is the orthogonal projection onto W+.
Show that for every v € V

ll? = IP@)I1* + I - P)(w)II*.



120 CHAPTER 5

5.51 Let Py, Po, ..., Pm be idempotent linear transformations on an n-
dimensional vector space V'; that is,

P?:P‘, i=1’2,...,m-

(a) Show that if
Pr+Pe+--+Pm=1,

then
V=Im’Pl @Im’PzGB---GBIm’Pm

and
P¢Pj=0, i, j=12,...,m, Z#]

(b) Define an inner product for V such that each P; is an orthog-
onal projection.

(c) Show that if
Ptpj =0v i) .7 = 1)2)"'1m) 7’#]7
then

V=ImP,dImP @ - ®Im Py, ® N, Ker P;.



Hints and Answers for Chapter 1

1.1

1.2

1.3

1.4

1.5

1.6

(2) Yes. Dimension is 1. {1} is a basis.

(b) Yes. Dimension is 2. {1, 1} is a basis.

(c) No,sinceieCand1€R,buti-1=i¢R.

(d) Yes. Dimension is infinite, since 1, 7, 72,... are linearly inde-
pendent over Q.

(¢) No,since y2€Rand1€Q, but vV2-1=+v2¢Q.

(f) No, since Z is not a field.

(g) Yes only over Q, the dimension is 3, and {1, V2, v/5} is a basis.

(a) All vectors with initial point O and terminal points in the first
quadrant.

(b) Al vectors with initial point O and terminal points in the first
or third quadrants.

Yes over C, R, and Q. The dimensions are 2, 4, 0o, respectively.

Suppose that the vector space V has a nonzero element a. Then

{ra|r € F} is an infinite set, where F = C, R, or Q.

fu+v=0andw+v=0,thenu=u+(w+v)=(u+v)+w=w.

For the first part, the addition and scalar multiplication for V are

defined the same way as for R2. It is sufficient to notice that V is a

line passing through O. If the scalar multiplication for V is defined

to be A® (z,y) = (\z,0), then V is no longer a vector space since it is
not closed under the scalar multiplication: 0 # 2(Az) unless Az = 0.

It is easy to check that H is closed under the usual matrix addition.
As to scalar multiplication, if A is a real number, then

a b Aa b

If ) is a nonreal complex number, then \@ # Aa. So H is not a vector
space over C since it not closed under the scalar multiplication.

121
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1.7

1.8

1.9

1.10

1.11

HINTS AND ANSWERS FOR CHAPTER 1

Check all the conditions for a vector space. For instance, the condition
(Ap)v = A(pw) in the definition of vector space is satisfied, since

(b)) Dz =2=(z")*=a B (bBz), a, beR, z R,

The dimension of the vector space is 1, since for any z € R¥,
z = (logx) (1 10.

Thus {10} is a basis. Any two numbers in R* are linearly dependent.

R* is not a vector space over R with respect to X and H, since the
condition A(u + v) = Au + Av in the definition is not satisfied:

2=2R(181)#(2R1) B (2R1) =4.

It suffices to show that A\, A2ag,. .., Ay, are linearly independent.
Let 4,12,...,l, be scalars. If

0=,L4 (/\1(11) +:--4 ln()\,.a,,) = (11/\1)0!1 “+ -4 (lnAn)an,

then each ;A\; =0, thus l; =0, i =1,2,...,n, since all \; # 0.

For v = 2101 + - - + Zpon = (Z1/A1)(M101) + - - + (Za/Mn) (Anan),
it follows that the coordinate of v under the basis {A\0y,..., Anon}
is (1/A1,..-,Zn/An). The coordinate of w = a; + -+ - + a, under
{eq,...,an}is(1,...,1),under {Aa1,...,Apan}is (1/A1,...,1/Ap).

(i) The vectors vy, g, ..., v form a basis of V if and only if they span
V and they are linearly independent.

(ii) The vectors vy, va,...,Vx form a basis of V if and only if every
vector of V' is a linear combination of these vectors and any vector in
this set is not a linear combination of the remaining vectors.

(i) Yes for k > n; inconclusive for k < n.

(ii) No for k£ < n; inconclusive for k > n.

(iii) No in general.

Let v = z101 + To03 + T3a3. Set 64 = —3(z1 + T2 + z3) and a; =
z;+a4,1=12,3. Then v = a1y + azaz + azas + a404. Suppose
v = byay + baas + bzaz + byay with by + by + bz + by = 0. Since

{al,ag,aa} is abasis, we have b1 —b4 =T, 62—64 = %2, b3—b4 = 23,
implying —4bs = z) + 2 + 3 and by = a4. Hence, b; = a;,i1=1,2,3.
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1.12

1.13

1.14

For the case of n, if {a1,...,2,} is a basis for R® and an41 =
—(0q + -+ + ay), then every vector in R™ can be uniquely written as
a linear combination of the vectors ay,. .., @41 with the sum of the
coefficients equal to zero.

It is sufficient to show that 1, (z — 1), (z — 1)(z — 2) are linearly
independent. Let A1+ A2(z — 1) + A3(z — 1)(z — 2) = 0. Then setting
z =1, z =2, and z = 3, respectively, yields A\; = Ay = A3 =0.

To see that W is a subspace of P3[z], let p, ¢ € W. It follows that
(»+9)(1) = p(1) + ¢(1) = 0. Thus p+ g € W. For any scalar A,
(Ap)(1) = Ap(1) =0. So Ap € W. Thus W is a subspace of P3[z].

dim W = 2, since (z — 1) and (z — 1)(z — 2) form a basis of W.

(a) True.
(b) False.
(c) False.
(d) False.
(e) True.
(f) True.
() Felse.
(h) False.
(i) False.
(j) False.
(k) False.
(1) True.
(m) False.

(a) True.
(b) True.
(c) False.
(d) False.
(e) True.
(f) False.
(g) True.
(h) False.
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1.15

1.16

1.17
1.18
1.19

1.20

1.21

1.22

HINTS AND ANSWERS FOR CHAPTER 1

(i) True.
(j) True.

Since az = a; + a3, the vectors o, a2, a3 are linearly dependent.
However, a; and a2 are not proportional, so they are linearly inde-
pendent and thus form a basis for Span{ai,a2,a3}. The dimension
of the span is 2.

Since a4 — a3 = ag — as = az — a3, we have a3 = 2a9 — a; and
a4 = 3az — 2ay. Obviously, a; and a; are linearly independently,
and thus they form a basis for V and dimV = 2.

(c) is true; others are false.

k# 1.

(i) Since ai, az, and a3 are linearly dependent, there are scalars z;,
T9, T3, not all zero, such that ;a3 + z2a2 + £2a3 = 0. &; cannot be
zero, otherwise a; and a3 would be linearly dependent, which would
contradict the linear independency of a2, ag, and ay. It follows that
a; = (—%)ag + (—i—f)aa, 80 a is a linear combination of ag and aj.
(ii) Suppose a4 is a linear combination of a;, a9, and az. Let aq =
y1a1 + yaaa + y3az. Substitute the a; as a linear combination of a2

and a3 in (i), we see that a4 is a linear combination of a2 and as.
This is a contradiction to the linear independency of ag, a3, and ay.

Let 2109 + 222 + 23003 = 0. Then 2y + 22 =0, £1 + z3 = 0, and
z2 + 23 = 0. Thus z; = 2 = z3 = 0. The coordinates of u, v, and w
under the basis are (1,1,—1), (1,1, -1), and (1,1, 1), respectively.

It is routine to check that W is closed under addition and scalar mul-
tiplication and that the given three matrices are linearly independent.

a b\ _ 10 0 1 00
(3 ¢)=e(oa)ve(T)+<(5 1):
The coordinate is (1, —2, 3).

(a) It’s easy to verify that the conditions for a vector space are met.
(b) To show that {1,z,...,z""'} is a basis, let Ag, A1, ..., An_1 be
scalars such that Ao + M1z + -+ + Ap_12"" ! = 0. Settingz =0
yields Ao = 0. In a similar way by factoring = each time, we see
that \)y = -+ = Ay = 0. Thus {1,z,...,z" !} is a linearly
independent set, thus, it is a basis. The one for = — a is similar.
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1.23

1.24
1.25

1.26

(c) ( f(a), f—'l%‘-’), ey l—((:t;_li-}.‘i'l) , where f(¥) is the i-th derivative.

(d) It is sufficient to show that f;(z), ¢ =1,...,n, are linearly inde-
pendent. Let k; f1(z) + - - - + knfn(z) = 0. Putting = = a; gives
k,=0,i=1,...,n.

(e) If f,g € W,then f(1) =0and g(1) =0. Thus (f+g)(1) = f(1)+
g(1) = 0; that is, f+ g€ W. For A € R, (Af)(1) = Af(1) =0,
so Af € W. It follows that W is a subspace.

(f) Yes, P[z] is a vector space. No, it is of infinite dimension.
(g) Obviously, P,[x] is a proper subset of P[z]. Then use (a).

w

Let asinz + bcosz = 0. Taking z = 0 gives b = 0; putting z = 3
yields a = 0. So sin z and cos z are linearly independent. In the same
way, we see that sin? z and cos? z are linearly independent.

For y = asinz + becos z, it is easy to check that y” = —y.
1, sin z, and cos? z are linearly dependent since sin? z + cos?z = 1.
Span{sinz,cosz} NR = {0} and Span{sin®z,cos?z} NR = R.

The vectors are linearly independent if and only if ¢ # 1.

Linearly independent vectors of S are also linearly independent vec-
tors of V. This gives (a). If dim S = dim V, then a basis of S is also a
basis of V, 80 § = V and (b) holds. To see (¢), if @ = {0, 02, ...,04}
is a basis of S, and if every v € V is a linear combination of the vec-
tors in ¢, then a is a basis for V by definition. Otherwise, there exists
a vector B € V such that oy, aq,...,ak, B are linearly independent.
Inductively, o can be extended to a basis of V. For (d), one may take
V to be the zy-plane and S to be the line y = z.

(a) {ei1,e2,...,en} and {€1,€9,...,€,} are linearly independent sets.
Over C, yes. Over R, no, since the dimension of C" over R is 2n.
(1 -1 0 -+ 0 0
o 1 -1 - 0 O
0 O 1 - 0 O
(b) A=]| . . . ..
o 0 o0 --- 1 -1
\o 0 0 ... 0 1)

(¢) B=(e1,€2,---,€n)-
(d) (-1,...,-1,n).
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(e) Since the dimension of R™ over R is n.
(f) ej,ez,...,en and (3,0,...,0), where i = /-1.

Let hay + la(ay +a2) + -+ + la(a1 + a2 + --- + a,) = 0. Then

h+l+---+lh)a+ L+ +l)oz+ - +lhan =0.

Since o1, a2, . . .,y are linearly independent, the coefficient of o, is
ln, thus I, = 0. The coefficient of an—1 is ln—1 + ln, 80 ln—1 = 0.
Inductively, i =la=---=1l,_3=0.

Let z1(ay + a2) + z2(a2 + a3) + -+ + Tn(an + 1) = 0. Then
(z1 +zn)a1 + (21 + T2)ag + -+ + (Tp—1 + Tp)an =0

and
21 +2,=0,2,4+22=0, ..., Tp_1 +25=0.

The system of these equations has a nonzero solution if and only if

100 --- 01
110 -- 00
011 - 00
. L =1+ (=) =0
000 --- 10
000 --- 11

If n is even, the vectors are linearly dependent. If n is odd, they are
linearly independent and thus form a basis. The converse is also true.

Let z303 +z3a3+z303 = 0. By solving the system of linear equations,
we can get £; = 3 = 23 = 0. So « is a basis for R, Similarly 3 is
also a basis. [Note: The easiest way to see that o or 3 is a basis is to
show that the determinant det(qy, a2, as) # 0. See Chapter 2.]

If A is a matrix such that 8 = oA, then A = o~ !3. This gives

2 3 4
A= 0 -1 0 .
-1 0 -1

If the coordinate of u under a is (2,0, —1) (the first column of A), then
u = (a1, a0, 03)(2,0, 1) = BA1(2,0,-1)* = B(1,0,0)".
That is, the coordinate of u under the basis 8 is (1,0,0).
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1.30

1.31

1.32

Let ey + -+ - + anan — bB = 0, where a1,as9,...,a,,b are not all

zero. We claim b # 0. Otherwise, a; = a3 = :-- = a, = 0, 8ince
0),Qs,...,0, are linearly independent. It follows that
a
8= -51—a1+--~+g;—a,,.

To see the uniqueness, let 8 = c ) + - -+ + cphon. Then

(%—cl)a1+---+(%—cn)an=0

and, since oy, ..., o, are linearly independent, we have
a; a;

—_— — 3 : = — .=1... .
p & 0 or ¢ 5 t=L..m

If oy, a9,...,0n are linearly dependent, let aja; + -+ + anay, = 0,
where not all a’s are zero. Let k be the largest index such that a, # 0
and a; = 0 when 7 > k. Then a; will do. The other way is obvious.

(a) It is obvious that V' x W is closed under the addition and scalar
multiplication. If 0, and 0,, are zero vectors of V' and W, respec-
tively, then (0,,0,,) is the zero vector of V' x W. It is routine to
check that other conditions for a vector space are also satisfied.

(b) If {oq,02,...,@n} is a basis for V and {61,82,...,0:} is a
basis for W, one may show that (a,05;), ¢ = 1,2,...,m, j =
1,2,...,n, form a basis for V x W.

(¢) mn.
(d) Identify (z,(y,z)) € R x R? with (z,y, z) € R3.

(e) Let e; = (1,0), e2 = (0,1). Then e;, e, are a basis for R?. Let
Eij be the 2 x 2 matrix with (%, j)-entry 1 and all other entries
0, ¢, j = 1,2. Then E),, E\2, Es, E3; are a basis for Ma(R).
The eight vectors (e, E;j), s = 1,2, 4,5 = 1,2, form a basis for
R2 X M2(R).

(f) 16.

(a) True.
(b) True.
(¢) True.
(d) True. The converse is also true.
(e) False.
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(f) False.

(g) False.

(h) False. Take r =1, (1,0), (-1,0), (0,1), and (0,-1) in R2,

If s +t > n, we have nothing to prove. Without loss of generality,
let a;,...,a, be a basis for U and B,...,3: be a basis for V. Then

every vector o; + f3;, thus every vector in W, is a linear combination
of a,...,0,01,-..,0:. It follows that dimW < s 4.

Suppose ag(tu + v) + ay0; + - - - + aroy = 0 for scalars ag, a4, .. .,ar.
We first claim ag = 0. Otherwise, dividing both ides by ag, since u

is a linear combination of «j,...,a,, we see that v is a linear com-
bination of ay,...,q,, a contradiction. Now that ag = 0, the linear
independence of a;,...,a, implies a1 =az =---=a, = 0.

IfX,Y €V, then AX = XA and AY = YA. Thus A(X +Y) =
AX+AY = XA+Y A =(X+Y)A, thatis, X+Y € V. For any scalar
k, A(kX) = k(AX) = k(X A) = (kX)A, so kX € V. Therefore, V is
closed under the matrix addition and scalar multiplication. Namely,
V is a vector space. For the given A, dimV = 5 and the matrices
that commute with A take the form

a b 0
c d o1.
—-3a—-c—e —-3b—-d+e e

Let E,; denote the nxn matrix with the (s, t)-entry 1 and 0 elsewhere.

(8) Ea,1<s, t<n, form a basis. Dimension is nZ.

(b) Est, iEg, 1 <8, t <n, form a basis. Dimension is 2n2.

(c) Eg,1<s,t<n,form a basis. Dimension is n?.

(d) E,;+E.,, 8 < t,i(Es—Ets), 8 < t, form a basis. Dimension is n?.
(¢) Eg + Eys, 8 <t, form a basis. Dimension is ﬂ'—‘-z"'—lz

(f) Est—Ets,s < t,i(Est+Ey,), s < t, form a basis. Dimension is n?.

(g) Est — Ets, 8 < t, form a basis. Dimension is 1(9,;—11
(b) Eg, 1 <8<t <mn,form a basis. Dimension is 'i(%"'—ll
(1) Eg, 1<t < s<n,form a basis. Dimension is ﬂ’;—"'ll

(j) Est, 1 <8 =1 < n, form a basis. Dimension is n.
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1.37

1.38

1.39

(k) {I,A,A?} is a basis. Dimension is 3.

H,(C) and the set of normal matrices are not vector spaces over C,
since the former is not closed under the (complex) scalar multiplica-
tion, while the latter is not closed under the matrix addition. To see
that M, (C) = Hy,(C) + Sq(C), write A = 44" 4 A=A,

(a) All n X n matrices.

(b) All matrices of the form ( 8 Z ) .
(c) Al matrices of the form ( 8 g ) .
a b c d
. 0 e b ¢
(d) All matrices of the form 00 a b
0 0 0 a

(e) All n x n scalar matrices cly,.

First, we show that S(A) is closed under the addition and scalar mul-
tiplication. Let X, Y € S(A) and ¢ be a scalar. Then A(X +Y) =
AX + AY = 0 and A(cX) = ¢(AX) = 0. So S(A) is a subspace
of Mpxp(C). When m = n and if X € S(4*), i.c., A*X =0, then
AF*1X — A(AkX) = 0. Thus, X € S(A**!). Hence, S(A¥) C
S(A*+1), Since each S(A*) is a subspace of My, xp(C) and the dimen-
sion of Myxp(C) is finite, there must exist a positive integer r such
that dim S(A") = dim S(A™+!). Hence, S(A™) = S(A™*!). We have

S(A) c S(A%) c---Cc S(AT)=S(A™) =...

(a)=(b): Since Im A C Im B, every column vector of A is contained
in Im B, which is spanned by the columns of B. Thus every column
of A is a linear combination of the columns of B; that is, (b).

(b)=(c): For a matrix X, denote the i-th column of X by X;. Write
A= (A1, As,...,A,), B=(B1,Bs,...,By).

If (b) holds, then A; = ¢1;B) + - - - + ¢44B, for some scalars ¢4, where

s=1,...,q,t=1,...,p. Taking C = (cs) reveals A = BC.

(¢)=(a): That A = BC yields A; = BC; = (By,...,B,)C; for each
i=1,2,...,p; that is, each column A; of A is a linear combination of
the columns of B. Thus any linear combination of A, is also a linear
combination of the column vectors of B. Hence Im A C Im B.
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(a) Easily check that Ker A is a subspace. Write A = (a,, az,...,ax),
where all a; are column vectors in F*. Then Ker A = {0} if
and only if Az = 0 has the unique solution £ = 0; that is,
Z1a1+T202+ - +2pa, = 0ifandonlyifz, =22 =--- =2, = 0.
If the columns are linearly independent, then m > n. In case
m > n, then the rows of A are linearly dependent. In case
m = n, then the rows of A are linearly independent.

(b) If m < n, then r(4) <m < n. SodimKerA=n—1r(4) >0.
(c) If Az =0, then A%z =0.

(d) If Az = 0, then A*Az = 0. So KerA C Ker(A*A). Since
r(A*A) = r(A), we have dim Ker A = dimKer(A*A). It follows
that Ker A = Ker(A*A).

(e) If A= BC and Az = 0, then BCx = 0. If B is invertible, then
Cz = B"'BCz =0 and Ker A = KerC.

We may assume W) # W;. Take a; € Wi, oy ¢ Wo and ap ¢
Wi, as € Wa. Then a = a) + aa € Wi U Wa. To show that V has
a basis that contains no vectors in W, and W,, let W3 = Span{a}.
We claim that there exists a vector 3 that is not contained in any of
Wi, Wa, W3. To see this, pick w3 ¢ W3 and consider 5, = a + ws,
B2 = o+ 2w;, and B3 = a + 3ws. If they all fell in W; U W,, then
at least two would be in W; or W, say, #; and B3 in Wy, It is
immediate that 33; — 85 = 2a € W, and a € W, a contraction. Let
B & W, UW, UWs. Then a and 8 are linearly independent. Now
put Wy = Span{e, 8}. If W, = V, then we are done with the proof.
Otherwise, pick wy ¢ W, and consider 8 + iws, i = 1,...,5. Ina
similar way, there exists a vector ¥ € V' that is not contained in any
of the W’s, and a, B, and v are linearly independent. Inductively,
there exists a basis of V' such that no vector in the basis belongs to
the subspaces W; and Ws.

In general, if W,,...,W,, are nontrivial subspaces of a vector space
V, there is a basis of V' in which no vector falls in any of the subspaces.

Let W, and W> be subspaces of a finite dimensional vector space. If
dim W, + dim W, > dim(W, + W), then, by the dimension identity,
WiNW; # {0}. Note that dim W+dim(Span{v;,, ..., }) = k+m >
n. There must be a nonzero vector in W and in the span of v;,’s.

(a) By definitions. The inclusions are nearly trivial.
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1.45

1.46

1.47

(b) Take W, and W, to be the z-axis and the line y = z, respectively.
Then W) N Wy = {0}, while W; + Wj is the entire zy-plane.

(c) In general, W) U W, is not a subspace; take the z- and y-axes.
W1 UW,, is a subspace if and only if one of W; and W5 is contained
in the other: W3 C W3 or W, C W1, i.e., Wiy UWo, =W, + Wa.

(d) If S is a subspace containing W; and W;, then every vector in
the form wy, + we, wy € Wi, we € W, is contained in S. Thus
W1 + W5 is contained in S.

(a) Let u = (z1,%2,x3,z4), v = (y1,¥2,¥3,¥a)! € W. Then, for any
scalar A, Au + v = (Az + y1, AT2 + Y2, \T3 + y3, A4 + 4 )%, and
Az3 +y3 = AMx1 + 22) + (¥1 + y2) = (Az1 +31) + (Az2 + y2) and
ATa+ya = A1 — 22) + (1 —¥2) = Mz + 1) — (Az2 +92). It
follows that Au +v € W and thus W is a subspace of C%.

(b) (1,0,1,1)* and (0,1,1,—1)* form a basis of W. dim W = 2.

(c) It is sufficient to notice that (1,0,1,1)t € W;

Since VINV; C V) C V1 4+ V3, dim(ViNVa) < dim(W;) < dim(V; +V2).
Thus the assumption dim(V; N V;) 4+ 1 = dim(V; + V;) implies that
either dim(V}) = dim(V1NV;) or dim(V;) = dim(V; +V;). The former
says Vi = VNV,. Thus V; C V; and Vo = V3 + V5. The latter ensures
Vi=WV+V,. Asaresult, Vo CV, and Vo =V N Vs

For a counterexample, take W;, W3, and W3 to be the z-, y-axes, and
the line y = z, respectively. It does not contradict the set identity;
the sum is usually “bigger” than the union. The former is a subspace,
while the latter is not.

(a)¢>(b): If (a) holds, (b) is immediate. Assume (b). Let w € Wy +W,
be written as w = w; 4+ wa = v, + vz, where w,, v; € W; and w,,
v2 € Wa. Then (w; — v1) + (w2 —v3) = 0. By (b), wy —v; = 0,
go wy = v;. Likewise wo = vp. This says the decomposition of w is
unique. (b)<>(c): If (b) holds and w € Wy N Wp, then w+ (—w) = 0.
By (b), w = 0. If (c) bolds and w; + ws = 0, then w; = —w; €
W1 N Wa. By (c), wy = w2 =0. (c)4>(d): By the dimension identity.

For multiple subspaces Wy, Ws,... Wi, k>3, let W =W + W, +
o+ + Wi. We say that W is a direct sum of W;, Wy, ..., Wy if for
each w € W, w can be expressed in exactly one way as a sum of
vectors in Wy, Ws, ..., W;.. The following statements are equivalent:

(i) W is a direct sum of Wy, W5, ..., W;.
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(i) If 0= wy +wa + - -+ + Wi, w; € W, then all w; =0.
(iii) dmW =dimW; + dim W, + - - - + dim W.
(iv) Ww:n 3, W; = {0}.

If W, # V, then dlm(Wl) < dimV. Let {al, cees Oy Q1o ,a,,}
be a basis of V, where ay,...,am € Wi. (This is possible since one
may choose a basis for W) then extend it to a basis of V.) Set W3 =
Span{Qm41,---,0n} and Wa = Span{o1+Qm+1, &m42,---,Qn}. One
may show that V =W, ® W; and V = W; & W3 with Wy # W,

It is sufficient to notice that when w;, v; € W;, i =1, 2, 3,
(w1 +we +ws) + A(v; +v2+v3) = (w1 + Avy) + (we + Avg) + (w3 + Avs)

again belongs to W; + Wo + Wj.

For a counterexample, take the z-, y-axes, and the line y = z.

One may check that W1 N W7 = {0} and
z vy B B,
wo) o\ o

Vo = {A € My,(R) | A* = —A}, the set of skew-symmetric matrices.

ytu
2 )
z—y |°
2

i

Let f and g be even functions. Then for any r € R,

(f +rg)(—2) = f(-=) + rg(-2z) = f(z) + r9(z) = (f +rg)(2);

that is, f+rg € W,. So Wj is a subspace. Similarly, W, is a subspace
too. Now for any f € C(R), we can write f = f. + f,, where

fo= 3@+ f-),  fo=35(f(x) - f(-2).

Hence, C(R) = W1 + Wa. Obviously, W3 N Wa = {0}. Thus C(R) =
W1 & W,. There are many functions that are neither even nor odd.
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2.1
2.2
2.3
2.4
2.5
2.6

2.7

—48, —12(z + 4), —z'%(1 — 2%)(1 - =5).

6.

The zero block submatrix is too “big”; every expanded term is zero.
(a1b2 — agb1)(azbs — a4bs), (a2a3 — babs)(ara4 — byby).
@10G223a4a5G6.

(a) Use induction on n. Subtracting the second column from the first
and expanding the resulting determinant along the first column,

An=(pl—a)An—1 +a(p2_b)"'(pn—b)'

By induction
A,y = bF(ag — aF(b)
-a

where F(z) = (pa — z) - - - (pn — z). Upon simplification,

’

_bf(a) —af(b) .
Ap= -T2 220 ifa#b

(b) Ifa=b, then
A, = (p1-a)An_1+afi(a)

= (p1 —a)|(p2 — a)A,—2 + aF3(a)] + afi(a)
= (p1 — a)(p2 — @)Ap-2 +af2(a) + afi(a)

= (pl - a) ce (p.n...g — a)Az + a.f,,_z(a) +-- 4 afl(a).
Note that
Ao = PuPp_1 — a® = pn(pn_l - a') + (pn - a)a"

The desired result follows immediately.
(¢) [a+ (rn—1)bj(a—b)"1.

Use induction on n. For the special case, take a; = 1.
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2.17

2.18

2.19
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Use induction on n. If a = b, the determinant is equal to (n + 1)a™.
A0 — 1010,

Expand |\ — A| along the first column.

Expand the first determinant, and then differentiate each term,; tr A.
Consider the first column of A. Multiply by —1 the rows with first en-
try —1, and then subtract the first row from other rows. The resulting

matrix has entries only 0 and +2 except the first row.

det(A + B) = 40; det C = 5.

(a) |A| =AY =|—- A| =(-1)*A| = —|A| if n is odd. So |A| = 0.

(b) |A]? =|A%|=|-1I|=(-1)" If nis odd, then |A|> = —1. This
is impossible when A is a real matrix.

(c) No.

0, since |A + I| = |A+ AAY| = |A||I + At = |A||A+ 1|

Note that XY = I implies Y. X = I when X and Y are square.

B = A2-2A+2] = A2-2A+ A% = A(A%+A-2]) = A(A+21)(A-1I).
However, I = A3 -1 = (A-I)(A2+ A+ 1I). So |[A-1I| # 0.
A3 + 81 =101, also (A + 2I)(A% — 4A +41) = 101. So |A + 21| # 0.
It follows that |B| = |A||A + 2I||A — I| # 0 and B is invertible.

-b/a -c/d -dj/a 1l/a

(1) (1)8 1 0 0 0
DA o 1 0o 0
o 0 1 0
(1 -1 0 .. 0 0)
0 1 -1 ...

- Q

0

()
(- .-°
I
o
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2.20

2.21

2.22

2.23

2.24

2.25
2.26

2.27
2.28

2 -1 0 ... 0
-1 2 -1 0
0 -1 2 0
o 0 ... -1 2

Determinant is (—1)*~!(n— 1). The inverse is a matrix with diagonal
entries a = (2 — n)/(n — 1) and off-diagonal entries b= 1/(n - 1).

o o ... o0 L
(;}1- 0 ... 0 06‘\
0 ;}; 0 0

\0 o o/

Gn-1

A1 _a-1BC-1 I -X XZ-Y
( 0 o1 ) 0 I -z .
0 0 I

Use V-1 = |V|~1adj(V) or apply elementary row operations to the
augmented matrix (V,I) to get (I,V~1).

1 ( asaz(as —a;) —(a2—a2) a3z—eay )

V1= —azai(az —a1) a%2-a® —(az—a;)

il 2
Vi aza;(az —a;) —(a3-a?) az-a;
Check directly that M—1M = I. (It would be harder to do MM 1)
Carcfully verify that
(A-B)[A'+AY (B -A"H A ) =1

For the particular identity, substitute A by I and B by —A.
Multiply the right-hand side by A + iB. Then expand.
Since AB and CD are Hermitian, it is easy to verify that
(65)(& %)-(a7)

Cc D* -C* A oI/

It follows that

(2 )& )-(5%)
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and that, by observing the upper-left corner, DA - BC = 1.

(a) If A*KA = K, then A is nonsingular and K = (A"!)*KA~". So
A~! € Sk. By taking conjugate for both sides of A*KA = K,
we see (A)*KA = K. So A € Sk. From (A-l)*KA-! = K,
taking inverses of both sides gives AK~1A* = K~1. Note that
K~! = K. Thus A* € Sk. Consequently, A* = (A)* € Sk.

(b) Since (AB)*K(AB) = B*A*KAB = B*KB = K, AB € Sg.
But kA and A + B are not in Sk in general.

(¢) (a)and (b) hold. In fact they hold for any K satisfying K2 = £1.
(a) By the Laplace expansion theorem.

(b) 1’ (_l)mn, 1.

(c) Notice that

0 A 0o I,\_[(A O
C E I. 0 ) \E C )’
By taking the determinant,

IOA

& 5 |- comana

Direct computation 2yields S2 =1, So S~! = S. It is obvious that
St = 8. |S| = (~=1)" . The (i, j)-entry of SAS i8 @n—i41,n—ji1-

Notice that

0 I, A B o ,\ (D C

I, 0 C D I, 0 )\ B A)’
Taking the determinants of both sides gives the identity. When A, B,
C, D are all square, say, m x m, mn + pg = 2m? is an even number.
So (—1)(mn+pa) = 1, For the case of column and row vectors, m = p

and n = g = 1. Thus mn + pq = 2m is also even. The identity holds.
When B and C are switched, the two determinants may not equal.

It suffices to show |A||D| — |B||C| = 0. If A is invertible, then

I o\(A B (A B
—cA-' 1)\ c D)\ 0o D-cA'B )
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Since A is of rank n when A~! exists,

D-CA™'B=0, or D=CA™'B.

By taking dcterminant, |A||D| — |B||C| =0.

If |A] = 0, it must be shown that |[B] = 0 or |C| = 0. Suppose
otherwise B (or C similarly) is invertible, then

I o0\[(A B)_ A B
-pB* 1 J\ ¢ D)\ Cc-DB'A 0 )

Since B is of rank n,

and

(a)

C-DB!'A=0, or C=DB'A

|C| =|DB~'A| = |D||B"||A| =0.

Note that

A B\{ D' 0\ _( AD-BC* B

C D -Ct 1) \CD*-DC* D )’
Using CD! = DC" and taking determinants, we have

A B
C D

‘ |D*| = |AD* — BCY| |D|.

If D is nonsingular, then the conclusion follows immediately by
dividing both sides by |D|. Now suppose |D| =0. If Ct* = C,

C(D +€l) = (D +€l)CY,
where € > 0. Using D +¢I for D in the above argument, we have

‘ A B

C Dl ‘ = |A(D +€I)t - BCY,

for all € for which D + eI is nonsingular. Notice that both sides
of the above identity are continuous functions of € and there are
a finite number of ¢ for which D + €I is singular. Letting ¢ — 0
yields the desired identity.
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If C is not symmetric, let P and @ be the invertible such that
I. 0
roa= (5 3)
where r is the rank of C. Consider
I 0 A B Q 0
0 P C D 0 (@H!?
_{ AQ B@"!
“\ PCQ PD(@Y)! )"

Note that PCQ is symmetric. Apply the earlier result.
Take determinants of both sides of the matrix identity:

A B Dt o\ _ ( AD*+BC* B

C D ct 1) \CD'+DC* D )}
Take A, B, C, D to be, respectively,

10 0 0 01 00

0o 0/’\0 1) 0 0)° 1 0)/°
12 = (-1)2

If A~! exists, then

I o\/A B\ _ (A B
—ca!' 1)\ ¢c D)\ 0o D-ca'B )

By taking determinant,
A B
C D

Suppose AC = CA. If A™! exists,

|A||D - CA~'B|=|AD - ACA™'B| = |AD - CBI.

‘ = |A| |D-CA™B|.

If A is not invertible, we take a positive number u such that
|A+€el| #0 forevery e, 0< € < .
Since A + I and C commute,

‘ A+el B

o D ‘ = |(A+el)D - CB|.

Note that both sides are continuous functions of . Lettinge — 0
results in the desired result for the case where A is singular.
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(¢) No. Take A, B,C, and D to be, respectively,

1 -1 11 1 -1 1 0
0 0 J°\1 1/)°\0 0 J°\0 0/
Then AC = CA, |AD — CB| =0, but |AD — BC| = -1.
(d) No. Take A, B,C, and D to be, respectively,

(6 0) (A7) (1) (1)

Note that D commutes with other three matrices.

2.36 (a) No.

(b) It must be shown that there exist real numbers k,, k2, k3, k4, not
all zero, such that k; B; + ko Bs + k3 B3 + kgB; = 0. Let

A=(“ b), B,~=(“’" ””"), i=1,2,3,4.
c d Yi %

Then |A + B;| = |A| + | B;| leads to
dw; —cz; —by; +az; =0, i=1,2,3,4.
Consider the linear equation of four unknowns w, z, y, 2:
dw—-cx—by+az=0.

Since A # 0, say, d # 0, there are three free variables, and the
solution space of the equation is of dimension 3. Thus any four
vectors are linearly dependent; in particular, B;, By, B3, B, are
linearly dependent.

2,37 For (a), MM~! =1 implies AY + BV =0 and CY + DV =I. Thus
AB\(I 0\_(A BV (A -AY
C D 0 V) \C DV ) \C I-CY )’

Taking determinant of both sides, we have (a):

A -AY
|M| |V| = C I—CYI
_ A0 I -Y
- Cc I 0 I
A O
= lc1 ""”'
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To show (b), apply row-block operations to (M, I) to get (I, M~1).
The upper-left corner of this M~! is (D — CA~1B)~L.

For (c), note that U~! = U*. And for (d), if M is real orthogonal,
then |A| = |V| or |4] = —|V]|.
It is routine to verify (a), (b), and (c).

(d) z7=r ( cos nf ‘i‘"‘o) , since 2™ = r™(cos nf + isinnh).

- 8in nf cos nf
01
() (-1 0) .
(f) Check ZZ™!=1.
(g) Direct verification.
(b) 1Ql=Iul+ v > 0. @~} = (27") when Q| =1
(i) Write u = uy + tu2 and v = v; + v, to get R. Note that U and
-Vt commute. By computation,
|R| = |[UU* + V*V| = (Ju|? + [v[?)% > 0.

(j) Exchange the last two rows and columns of R.
(k) From (i), |[R|=0<|Q|=0®u=v=0.

Notice that
I il A B I —iI'\ _(A-iB 0
. B 4 0 1 ) \ -B A+Bi)’
Thus
A B A-iB 0 . |
‘"B A|—| -B A+z’B“‘|A+’BllA+zBI20.

If A and B are complex matrices, then it is expected that
I A B

[Note: To prove this, a more advanced result that AA is similar to
R? for some real matrix R is needed.]

Add the second column (matrices) to the first column, and then sub-
tract the first row (matrices) from the second row:

A B| |A+B B| |A+B B _ _
’ B A “’ B+A A l‘i 0 a-p|=l4+BllA-Bl
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To find the inverse matrix, let C = A+ B, D = A — B, and consider
A B XY\ (IO
B A u vy \o1)

Multiply this out:

AX+BU=1, AY+BV =0, BX+AU =0, BY + AV =1.

Adding the first equation to the third revesals (A + B)(X + U) = I.

So X +U = C~1. Subtracting the first equation from the third gives

(A-B)(X -U)=1I. Thus X — U = D!, It follows that
X=3(C+D), U= (C-D)

In a similar way, one can show that Y = U and V = X. Thus

A B\ _1({C'+D?! ¢c'-D!
B A) T2\c'-D! ¢cl'+D! )

2.41 (a) follows by observing

I =z I x _ .

y* 1 _|0 1-y*z =l-y'z

I =z I—-zy* 0] -
‘yt 1 yt 1|""|I zy I

For (b), it is sufficient to notice that

0 1 I =z o1\ _(1 ¥
I 0o/)\y 1 10/ \z I}
For (c) and (d), one may verify directly through multiplications.

2.42 Ifr(A) = 1, then any two rows of A are linearly dependent. Some row
of A is not zero, say, the first row. Then all other rows are multiples
of the first row. The conclusion follows immediately.

2.43 If r(A) = n, then A is invertible. Let z;(Au;) + z2(Aug) + - --
+2,(Au,) = 0. Premultiplying both sides by A~! shows z;u; +
Toug + -+ +Tpty = 0. Thus z; = 29 = --- = z, = 0 since
Uy, U2, ... , Uy, are linearly independent. So Au,, Auy, ..., Au, are lin-
early independent. For the other direction, if Au,, Aus,...,Au, are
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linearly dependent, let y;(Aw;) +y2(Auz) + - - - + yn(Auy) = 0, where
not all y are zero. Then A(yiu; + youz + -+ + Ynts) = 0. Since
U1, Us,. .., Un are linearly independent, y1u; + o2 + -+ + Yntin # 0.
Thus the system Az = 0 has a nonzero solution, and A is singular.

2.44 Use row and column operations on A. Each elementary operation
results in an elementary (real if A is real) matrix that is invertible.

2.45 (a)
(b)
(c)
(d)
(e)
(f)
2.46 (a)
(b)

(c)
(d)
(e)
(f)
(8)
(b)

(i)

2.47 (a)
(b)

False.
False.
True for k > 1. False otherwise.
False.
False.
False.

(1,2) = i(—i,1).
Let z(1,2)+y(—%,1) = 0, where z and y are real. Then z—yi = 0.
Thus £ = y = 0, and (1,%) and (—¢, 1) are linearly independent.

No. In fact, A is not invertible.

U* AU = diag(2, 0).

r(A) = 1.

Since ¢ € R2 C C2, Az € W¢ for all z € R2.

Wc is Im A. It is a subspace of C2? over C, thus also over R.

a(Az) + b(Ay) = A(az + by). When a,b,z,y are real, az + by
is real. Thus Wy is a subspace of C2 over R. When a,b are
complex, az + by may not be real. So Wy is not closed over C.

dim W = 2 over R:
Az, y) = (z + iy, —iz + y)t = z(1, —9)* + y(i, 1)".

Similarly, dim W¢ = 2 over R, because A(z,y)t = (a—d)(1, —2)t+
(b+¢)(3,1)*, where x = a + bi, y = c+ di, a, b, c, d are real, and
dim Wg = 1 over C, for A(z,y)* = ¢(1, %)}, c =z + iy.

A*=DB*-iC*=DB'-iC*=B +iC. So B* = B and C* = —C.

' Az = ' Bz +iztCz. Since A is Hermitian, ' Az is always real
for ¢ € R™, as is zt Bz. Therefore, 2t Az = z* Bz and iz*Cz = 0.
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2.48

2.49
2.50
2.51

2.52

2.53

(¢) Az = Bz+iCz. If Az = 0and z isreal, then 0 = Ax = Bz+iCxz.
Thus Bz = Cz = 0.

(d) Take x = (1,¢)t. Then Az =0, so z* Az = 0; z* Bx = z*z > 0.

(e) Takez=(1,-1)". r(A)=2,r(B) =1

This can be seen by taking A = (’(;‘ 8) (see Problem 2.44).

3.

-3.

Since AB = 0, the column vectors of B are contained in
KerA={z| Az =0}.

Since
r(A) + dimKer A = n,

where n is the number of unknowns, it follows that

T(A) + r(B) < r(A) + dimKer A = n.

Let A, be the submatrix of A by deleting s rows from A. Then
r(A) — s < 7(4A,)-

Similarly,
T(Aa) - t S T(B).

Thus
r(A) < s+t +r(B).

Each column of AB is a linear combination of the columns of A. So
r(AB) < r(A). Considering rows gives r(AB) < r(B). Thus

r(AB) < min{r(A),r(B)}.
The columns of A + B are linear combinations of those of A, B. So
r(A + B) < r(A) + r(B).

We now show a general rank inequality: r(A) + r(B) < r(AB) +n,
where A is p x n and B is n X q. Notice that

(5 2D)E )5 2)-(5 %)
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I, B I, 0
'r( X 0 )=r( 0 _AB)='n.+1'(AB).

The desired rank inequality follows immediately by noting that
I, B
r(A)+r(B)5r(A O)'

We use the rank identity r(XY) > r(X)+7(Y)—n, where X ispxn
and Y is n x q, to show the rank identity for three matrices.

Let 7(B) = r. Then there cxist invertible matrices P and @ such that

B=P(I0' 8)Q=MN, where P = (M, S), Q=(Qf),

where M is n x r and N is r x q. By Problem 2.53, we have
r(ABC) = r(AMNC)>r(AM)+r(NC)—r
> r(AMN)+r(MNC)-r
r(AB) + r(BC) — r(B).

Let W;, Wa, Wi, and Wy be the column spaces of A, B, A + B, and
AB, respectively. Since W3 C W; + W, we have

dim W3 < dim(W; + Ws) = dim W, + dim W, — dim(W; N W3)

r(A + B) < r(A) + r(B) — dim(W; N W>).

We claim that r(AB) = dimW,; < dim(W; N W3). To do so, we
show Wy C W) N Wp. Write B = (by,bs,...,bn). Then AB =
(Aby, Ab,, . .., Ab,). Since each Ab; € W1, we see Wy C W,. Given
that AB = BA, we have similarly Wy C W,. Thus Wy C W1 N Wo.

By the Problem 2.53, we have

0

r(A1Ag- - Ap)
T(Al) + T(Az cee Ak) -n
(A1) + r(A2) + 7(Az--- Ax) — 2n

vV IV IV IV

r(A1) +r(A2) + - +7(Ag) — (k- 1)n
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2.57

2.58

2.59
2.60

Consider the column spaces of (X, Z), (Z,Y), and Z. Denote them
by Wi, W3, and W3, respectively. By dimension identity,
dim(W) + Wa) = dim W + dim Wp — dim(W; N W)
= r(X,2)+r(Z,Y)— dim(W; NW3).
Note that the column space of (X,Y’) is contained in W) + W» and

that W3 C Wiy NWa. So r(X,Y) < dim(W; + Wy) and r(Z) <
dim(W; N W3). The desired inequality follows.

It is sufficient to notice that (A*A)z = 0 and Az = 0 have the same
solution space since Az =0 < z*A* Az = (.
r(A*A) is not equal to r(A4) in general. Take A = (1 _'1) Then
r(AtA) = 0, but r(A) = 1. Similarly, r(A4) # r(4).
Ma,.
There are two important facts regarding adj(A):

Aadj(A) = adj(A)A = |A|T
and when A is invertible,

adj(A4) = |A|A~L

(a) adj(A) is invertible if and only if |A| # 0.

(b) Aadj(A) = 0 implies that the column vectors of adj(A) are the
solutions of Az = 0. If r(4) = n—1, then dimKer A = 1 and the
column vectors of adj(A) are mutually linearly dependent. Thus
r(adj(A)) = 1. The other direction is a part of (c).

(c) Consider (n — 1) x (n — 1) minors of A.

(d) It follows from the two facts given above.

(e) By the first fact mentioned above

adj(4) - adj(adj(4)) = |adj(A)] = |A]*"' 1.

Replace the left-most adj(A4) by |A|A~! when A is invertible. If
A is singular, then both sides vanish.

(f) First consider the case where A and B are nonsingular. For the
singular case, use A + €I and B + €I to substitute A and B,
respectively, then apply an argument of continuity.
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(8) By (f).
(h) Use definition.

(i) A;j = Aj; when A is Hermitian.

k

e e,
adj---adj(A) = A when k is even, A~! when k is odd.

If A is invertible and has eigenvalues A;, A2, ..., An, then the eigen-
values of adj(A) are

1

1 1
_A, _A, e ey _A.
1AL Rl e A

If A is singular, the eigenvalues of adj(A) are

n
0,0,...,0, and »_|Aql.
=1

It suffices to show that Az = 0 has only the trivial solution 0. Suppose
that Az = 0 has a nonzero solution £ = (ki,k2,...,kn). Let

|ks| = max {|k:}.

1<i<n

Then |k,| # 0. However, the s-th equation of Az =0 is

a1kl + as2ka + - + Qgsks + -+ + agnkn = 0.

Thus

n

Qgsks = — Z a,jk;

=1, j#s

and

a contradiction to the given condition.
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2.62

2.63

2.64

2.65

2.66
2.687

Use Problem 2.54 in the first inequality below:

r(A— AB)+r(B—AB) = r(A%2- AB)+r(B%- AB)
r(A(A — B)) + r((B — A)B)
r(A(A - B)) +r((A - B)B)
r(A(A - B)B) + r(A — B)
r(A’B - AB?) + r(A - B)
r(AB — AB) +r(A - B)
r(A— B)

r(A- AB) +r(AB - B)
r(A— AB) + r(B — BA).

IA

Al

I=A+({I-A) =>n=r(A+(I-A) <r(A)+r(I - A) and
A2=A & A(A-I)=0&1Im(A-I) C Ker A = r(A-I) < n—r(A).

It is sufficient to notice that

(5 2)(n) (5% 2)

I
N
|
o N
vy
o
N~

Notice that
I, O I, A Im A\ [ In 0
-A* I, AT I, o I, /] \0 IL,-A*'A )’
So 4
I *
r(A": In)=m+r(In—A A).
Similarly,
I, A\ _ »
T(A* In)_'n+'r(Im AA®).
Thus

r(In — AA”) —r(I, — A*A)=m —n.
(8) A# -3. (b) A=-3.
There are three possibilities for A* = adj(A):

(1) A=0.
(2) A is a unitary matrix and |4| = 1.
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(3) Aisa2x2matrixoftheform(° b).

-ba
A#L
A= 1.
a=(-1,1,0,0,0) and 8 = (-1,0,—1,0,1) form a basis for the solu-

tion space. Thus the general solution is z = Aa + uB, A\, p € F.

The dimension is 2. 7, = (-2, 1,1,0) and 70 = (-1,-2,0,1) form a
basis for the solution space. The general solution is 17 = 171 + T270,
where z; and z2 are scalars.
Adding all equations gives (z, + T2 + =3 + 74 + 75)(y — 2) = 0.
If y=2, 2y = x93 = 3 = T4 = =5 = ¢, where ¢ is any number.
If y # 2, by eliminating x5, x4, and z3 one by one from the given
equations, one has (y? +y — 1)(zz — ;) = 0 and

@ +y—1Dfz2— (y - )z] =0.

Thusify#2and y? +y—1#0,thenz; =33 =23 =24 =25 = 0.
If y # 2 and y2 + y — 1 = 0, the solution is

Ty =8

o=t
r3=yt—s
ze=(y2—1)t—ys
Ty = ys — i,

where s, t are arbitrary, y is a solution to y2 +y —1 = 0.

An alternative approach is to apply elementary row operations to the
coefficient matrix

-y 1 0 0 1
1 -y 1 0 0
o 1 -y 1 0
o 0 1 -y 1
1 0 0 1 -y

Apply elementary row operations to the coefficient matrix to get

a 1 1 1
0 b-1 1 0 .
0 0 b+1 2(b-1)
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2.74

2.75

2.76

2.77

There are six cases:
b = 1: infinite solution.
b =5, a = 0: infinite solution.
b= 5, a # 0: unique solution.
= —1: no solution.
b # %1, 5, a # 0: unique solution.
b+# 1, 5, a = 0: no solution.
Write the complex solution as = z; + iz3. Then Az; = 0 and
Az = 0. Either z; or z; is nonzero since x is nonzero.
Use elementary row operations to the coefficient matrix.
The dimension of the solution space is n — 1 and the following vectors

in R?" form a basis for the solution space:

e =(-1,1,0,...,0,-1,1,0,...,0)
€2 = (—1,0,1,..-,0,—1,0,1,-o-,0)

én1 = (-1,0,...,1,-1,0,...,0,1).

(a) It is sufficient to notice that r(A) is equal to the largest number
of column vectors, which are linearly independent.

(b) Since r(X) = r(PX) for any matrix X when P is invertible, it
follows that r[(as,, 04y, . .., )] = 7[(Bi;, Bigs - - -5 Bi,))-

(c) Apply elementary row operations to (1,72, 73,7s) to get

1 111
0110
(71’72’73’74) — 0 011
0 000

Thus the dimension is 3. {11,792, 3} is a basis. In fact, any three
of 71,72, 73,74 form a basis.

For W37 N W5, consider the equation system
T1a) + T + T303 = Y15 + y2le.

The dimensions of W), W, W) N W5 and W; + W, are 3, 2, 1, 4,
respectively. {0} is a basis for W; N W, and {a;,03,a3,6:} is a
basis for W; + W5, which is spanned by a,, a2, a3 and 5, Be.
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Write the equation system as Az = b. Take b = e;, where ¢; is
the column vector with i-th component 1 and everywhere else 0,
i=1,2,...,n. Then there are column vectors C; with integer com-
ponents such that AC; = e; for each i. Thus AC = I, where
C = (Cy,Cs,...,Cy). Taking determinants, |AC| = |A||C| = 1,
so |A| = £1.

dimW; =n — 1,dimW, = 1, and W) N W, = {0}.

If |A| = 0, then Az = 0 has a nonzero solution zy. Let B = (z0,0) €
M, (C). Then AB = 0. If AB = 0 for some nonzero matrix B, then
Ab = 0 for any column vector b of B. Thus Az = 0 has a nonzero
solution and A is singular; that is, |4| = 0.

It suffices to show Ker AN Ker B # {0}. By the dimension identity,

dim(Ker A N Ker B)
= dimKer A + dim Ker B — dim{(Ker A + Ker B)
= n—r(A)+n—r(B)—dim(Ker A + Ker B)
= (n-r(A) - r(B)) + (n — dim(Ker A + Ker B)
> n—dim(Ker A + Ker B) > 0.

r(A) = n—-1, r(B) = n—m. So r(AB) < min{n — l,n — m}.
Thus dim Ker(AB) =n — r(AB) 2 max{n — (n—{),n— (n —m)} =
max{l,m}. If all z € F* fall in either Ker A or Ker B; that is, F" =
Ker AU Ker B, then Ker A =F" or Ker B=F",s0 A=0o0r B=0.

First notice that Ker A C Ker(A2?). If r(A) = r(A?), thendimKer A =
dim Ker(A4?). This implies Ker A = Ker(A42).

It is sufficient to show that there is an invertible matrix C such that
A = CB when Az = 0 and Bz = 0 have the same solution space.

First notice that A and B must have the same rank, denoted by r.
Let P, and P; be the permutation matrices such that

Al Bl )
P A= d P,B= ,
! ( 14 ) and ~2 ( Q2B

where A; and B are, respectively, r x n submatrices of A and B with
rank r, and @, and Q; are some matrices of size (m — r) x n. The



HINTS AND ANSWERS FOR CHAPTER 2 151

2.85

2.86

2.87
2.88

systems Ar = 0 and Bz = 0 have the same solution space if and only
if Ajz =0 and B;z = 0 have the same solution space. Since

A
r( Bi ) = r(By),
there is an r X r invertible matrix C; such that A; = C1B,;. Thus
(o)
Q14

( Ci 0 ) ( B )
Q:1C1 - Q2 Iy, Q2B
Ca2P,B,

P A

where

o =( Ci 0 )
2 QC —-Q2 In_,

is of full rank. Take C = P 'C2P,. Then A= CB.

If r(A2) = r(A), then A%z = 0 and Az = 0 have the same solution
space. From the above result, A2 = DA for some invertible D.

Suppose that Aym + - - + Anny i8 a solution. Then
A(Am) +---+ A(Anim) = b.

Since A(Min;) = Asb, 1 =1,...,n, we have (A1 +-+ -+ A,)b = b. Thus,
A1 +---+Ap =1for b#0. Conversely, if A\ +-:-+ Ap =1, then

At + -+ Anla) = MAM + -+ An Ay = (A1 + -+ + An)b = b.

r(A*A) < r(A*A, A*b) = r((A*(A,b)) < r(A*). However, r(A*A) =
r(A*). So r(A*A) = r(A*A, A*b). Thus the coefficient matrix A*A
and the augmented matrix (A*A, A*b) have the same rank. It follows
that A* Az = A*b is consistent.

|A] = 0. So (d) is right.

Let A = (ai;), ¢ = (a1,¢2,...,6n), b = (b1,b2,...,b,)t. Then the
augmented matrices of the equation systems are, respectively,

_ A b t At Ct
M_(c d)’ M_(b‘ d)'
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Since A is nonsingular, r(A4) = n, we see 7(M) = n or n+1. The first
equation system has a solution if and only if 7(M) = n. The second
system has a solution if and only if r(M*) = n. However, r(M) =
r(M?*). The two systems will both have solution or no solution. In
case they both have solution, the solution to the first system is z =
A~'b and the solution to the second system is y = (A%) !¢t

No. Let A be an n X n matrix. Since Az = 0 has nonzero solutions,
r(A) < n. Note that r(4) = r(A?). Let B = (A%,b). If r(B) # r(4),
then A*z = b has no solution. If r(B) = r(A*) = r(A) < n, then
there are infinitely many solutions. In either case, A’z = b cannot
have a unique solution.

If B is nonsingular, then it is obvious. Let the rank of B be r and
first consider the case B = (’0' g). Since r(AB) = r(A), the first

r columns of A spans the column space of A. So we may write A
as A = (A;,A,C). X,AB = X,AB implies X14, = X;3A,. Thus
X1A = (X14,,X14A,C) = (Xa4A,,X2A,C) = XpA. For a general B,

let B=P (Io' g) Q, P, Q invertible, and apply the above argument.

Assume that the three lines are different from each other. Let the
lines intersect at (zg, y9). Adding the three equations, we have

(o+yw +1)(a+bd+c)=0.

We show that zo + yg + 1 # 0, concluding that a + b+ ¢ = 0.

Consider lines [; and I3 and view them as equations in a and b: zpa +
yob = —c, a+zob = —cyp. If zo+yo+1 = 0, then the determinant of
the coefficient matrix is 3 + z¢ + 1, which is never zero for any real
Zp. Solve for a and b in terms of ¢, we will see that a = b = c and all
three lines are the same, contradicting one intersection point.

Now suppose a + b+ ¢ = 0. Considering the augmented matrix

a b —c
b ¢ —-a |.
c a b

By row operations (adding first two rows to the last row), we see the
system has a unique solution that gives the intersection point.
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3.1

3.2

3.3

3.4
3.5
3.6
3.7
3.8
3.9

(a) False. Take A= (J3).

(b) True. If Az = Az, then 0 = A%z = A(Az) = A(\z) = A(Azx) =
A2z. Since £ #0, A = 0.

(c) False. Take A = diag(B, B, B), where B = (8(1) .

(d) False. Take A = diag(0,1).

(e) True.

(f) Fulse.

(g8) True.

(k) False.

(i) False in general if m # n. True if m = n.

(j) False.

(k) True.

(1) False.

It is easy to see that if AB = BA then equality holds. Suppose

(A+B)% = A2+2AB+B?. Since (A+B)? = A’+AB+BA+B? for all

square matrices A and B of the same size, we have AB+ BA = 2AB.
It follows that AB = BA.

If AB = A — B, one may check that (A+ I)(I-B)=1. SoI-B
is the inverse of A + I. Thus (A + I)(I — B) = (I — B)(A + I). This
implies AB = BA. If AB= A+ B,onecanshow (A-I}(B-1)=1.

a=0,b=-2.

Scalar matrices kI. Consider P~' AP = A or PA = AP for all P.
(a) B,C,D. (b) B,C,DoverC. C,DoverR. (c) D.
B,C, E,G.

a = 0, b, c are arbitrary.

Use same elementary row and column operations on A to get B, C.
When BC = CB, by computation, a®+b?+c2 —ab—bc—ca = 0, and
by multiplying both sides by a+ b+ c, we have a3 + b3+ ¢3 — 3abc = 0.
It is easy to compute that |\] — A| = A% — (a+ b + c)A2.
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3.10 AE;; is the n x n matrix whose j-th column is the i-th column of
A, and O elsewhere. E;;A is the n X n matrix whose i-th row is the
j-th row of A, and O elsewhere. E;; AFE,, is the n X n matrix with the
(7, t)-entry a;,, and O elsewhere.

3.11 A2 = —4A. A% = 2104
3.12 A= Pdiag(5,—1)P~?, where

100
). So A1°°=P(50 (I))P‘l.

I
N
|
RITCT
Q40—

3.13 Notice that
2 1\ _ (-1 1\/10\(/-1 1\
2 3/ \L 1 2 0 4 1 2 .
It follows that
1 2422k 92k _ )
=§ 92k+1 _9 9Zk+1 41 |-

1\° [ A% kARt
A) o a )

N N
w
SN’

a-

If k =2, then

and 0 otherwise.

010\" 01 0
0 01 =10 0 1], whenk=3m+1,
100 100

- O
OO =

N
-0 O
S O

), when k = 3m + 2,

and I3 otherwise.
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3.14

3.15

3.16

3.17

It is easy to see that

A"=((1) ’f) and PACP~! = A,

where P = (} ). In fact, a more general result can be obtained that
if A is an n x n matrix with all eigenvalues equal to 1, then A* is
similar to A. To see this, it suffices to show the case in which A
itself is a Jordan block. Suppose that the Jordan blocks of A* are
Ji,J2,...,Js, 8 > 2, and P~1AKP = diag(J1, J2,...,Js). It is easy
to see that r(I — A*¥) = n — 1. However,

r(I - P71A*P)<n -2,

a contradiction. Thus s = 1 and A* is similar to A.

1
Ar=3""1] 2 .
3

(a) Use induction on n. If n = 1, there is nothing to show. Suppose
it is true for (n — 1) X (n — 1) matrices. Let A\; be an eigenvalue
of A and Au; = A\ju;, where u; is a nonzero unit vector. Choose
ug,...,Un such that Uy = (u1,uz,...,u,) is & unitary matrix.
Then U7y AU; = (’(‘)1 :1)’ where A; is an (n—1) x (n — 1) matrix.
The conclusion follows from the induction on A;.

(b) If A= P~1BP, then f(A) = f(P"1BP) = P~ f(B)P.

(c) Let U*AU be as in (a). Then A* is an eigenvalue of

(W b= I
= COIROCD—

(U*AU)* = U* A*U,

so A¥ is an eigenvalue of A*. Similarly, f(U*AU) = U*f(A)U
and f(A) is an eigenvalue of f(A).

(d) Let P = diag(p1,p2,..-,pn) and Q = diag(q:,g2,...,qn). Then
AP = QA impli&s ai;D; = Q4i5¢;. Thus (pj - q.-)a.,-j = 0, which
means either a;; = 0 or p; = ¢;. Thus Af(P) = f(Q)A.

Consider the n-square matrix A as a linear transformation on F. If
A has n linearly independent eigenvectors, say, uq,u2,...,uy,, COITe-
sponding to eigenvalues A3, Az, .. ., A,, not necessarily different. Then
these eigenvectors form a basis for F* and (Au,, Aug,...,Au,) =
(Mg, A2uz, ..., Aquy,); that is, AP = diag(A1, Az,...,A,)P, where
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3.18

3.19
3.20

3.21

3.22

3.23
3.24
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P = (uy,us,...,%5). So P71AP = diag(\1,Ag,...,An). Conversely,
if A is diagonalizable, i.e., P~1AP = diag(A1,A2,...,An). Then
AP = diag(A1,A2,...,An)P. It follows that the columns of P are
the eigenvectors of A. The eigenvalues do not have to be the same.

There are finite number of A such that |Af + A| = 0. Thus there exist
a & > 0 such that |A + A| = 0 has no solution in (0, §).

By direct computations.

Let the eigenvalues of A be Ai1,...,A\x. Then the eigenvalues of
pe(A) are pp(A1),...,p8(An). Thus pp(A) is invertible if and only if
pe(Xi) #0,i=1,2,...,n,ie., A and B have no common eigenvalues.

(a) A is singular because (I 0) A= (g 'OB") has a zero row.

vl

(b) It suffices to show that A has two linearly independent eigenvec-
tors for eigenvalue 0. This is seen by verifying that

A(1)-0 w a(3)

where z is a nonzero solution to Bz = 0.
(c) Take P = (,{‘,’). Then PAP-! = (B(Io+vu) ‘5’”) and

IAI — A| = AM = B(I + vu)|-
If A? divides |A\I — A|, then B or I + vu is singular. Note that

|[I + vu| = 1 + uv. Thus A? divides |A\I — A| if and only if B is
singular or uv = —1.

Let f(A\) =|A + A(¢B)|. Since f(1) # 0, f()) is not identical to zero
and f(A) = 0 has finite zeros. Let 8 = —ti, t € R, be such a pure
imaginary number that f(8) # 0. Then A + tB is nonsingular.

|AI — M| = |A\%I — BA| is an even function in .

(a) False.
(b) True.
(c) True.
(d) False.
(e) False.
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t9)
(g)
(h)
(i)
()
(k)
)
(m)
(n)
(o)
(p)
()
(r)
(s)
(t)
3.25 (a)

False.
True.
True.
False.
False.
True.
False.
False.
True.
False.
False. True when A;’s are distinct.
True.
False.
True.
False.

Let uy,us, ..., u, be the eigenvectors of A belonging to the eigen-
values Ay, Az, ..., An, respectively, A; # A; if ¢ # j. We first show
by induction that u, uz,...,u, are linearly independent. Let

aju; +au2+ -+ anuy, =0
and apply A to the above equation to get
a1y + agdauz + - + apAnu, =0.

However,
a1 \nty + @2z + - - + GpAnun = 0.
Subtracting,
a1(A1 = Ap)ur + -+ ap_1(An-1— An)un—1 =0.
By induction, %, ug,...,u,—1 are linearly independent and

al=a,2=---=an_1=0

since A; # A; for i # j, consequently, a, = 0.
Now set P = (uy,u2,.-.,%,)- Then P is an invertible and

AP = Pdiag(A1, Az, .-+ An)-
It follows that P~ AP is a diagonal matrix.
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3.26

3.27

3.28
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(b) It is sufficient to show that if A commutes with a diagonal matrix
whose diagonal entries are distinct, then A must be diagonal.
This can be done by a direct computation.

AB = BA~! implies AB* = B*A for any positive even k. [Note:
AB* = BkA-l if k is odd.] In particular, AB? = B2A. Since the
eigenvalues of A are distinct, B2 is diagonalizable.

Let A;’s be the eigenvalues of A. Then
n
0 = tr(A?) — 2tr(4%) + tr(4%) = ) " AZ(1 - )%
i=1

It follows that \; =0or1,¢=1,...,n. Since

n
tr(A%) = E A=,

=1

we see that c¢ is an integer, and c of the A;’s equal 1, others 0.

If A™ = A™+! for some m, then A™ = A* for all £k > m. It follows
that the eigenvalues of A are all 0’s and 1’s.

It suffices to show that all the eigenvalues of A equal zero.
Let Ay, A2,..., An be the eigenvalues of A. Then

trA¥=0, k=1,2,...,n,
is equivalent to
M+ +2=0, k=1,2,...,n

If all the A;’s are the same, they must be zero. Otherwise, suppose
that A, ..., A, are the distinct nonzero eigenvalues of A. The above
equations can be written as

LAE + LA+ 1)) =0, £=1,2,...,n.
Consider the linear equation system
Mo+ M+ -+ 2,,=0, k=12,...,m.

An application of the Vandermonde determinant yields that the equa-
tion system has only the trivial solution 0. Thus all the eigenvalues
of A are zero.
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3.29

3.30
3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

In the expansion of (A + B)F, there are four kinds of terms: A*, B*,
B™A%¥-™_ and other terms each has a factor AB = 0. Note that

tr(B™AF~™) = tr[(B™1 AF-™=1)(AB)] = 0.

By induction on k.

-1,-1,5; u3 = (-1,1,0)%, uz = (—1,0,1)%, u3 = (1,1,1)%.
P= (ul,ug,u3).

3 is a repeated eigenvalue and its eigenspace has dimension 1. Thus
A does not have three linearly independent eigenvalues.

The eigenvalues of A are 1, 1, —1. To have three linearly independent
eigenvectors, the rank of / — A must be 1, which implies z + y = 0.

1 0 1
V2 V2
a=b=0.T= 0 1 0
-L 0 4
V2 v2
Let Az = Az, where ¢ = (z1,%2,.-.,Z5)" # 0. Then for each i,
Doigi BiTi = (A = ai)z;. Let |zpx| = max{|z1],|z2];...,|zn|} > 0.

Then (A — axx )z = Zj# ax;z;. It follows that

A — ekl £ ) laks(@s/zie)| < ) larsl.
i#k itk
Let U be a unitary matrix such that T' = U* AU is an upper-triangular
matrix. Then consider the trace of A*A.

(b) Compute

n n n n
tr A2 = Z/\z = Zzi - Zyg + 22'szyk.
k=1 k=1 k=1 k=1
Since A is real, tr A? is real, so > p_; zxyx = 0.

(c) See (b).

If u; + up were an eigenvector of A, let A(u; + u2) = p(uy + u2).
However, A(u; + u2) = A1u1 + Auz. Subtracting these equations, we
have 0 = (u— A1)ui+ (4 — Az)uz. This says that u; and u; are linearly
dependent. This is impossible.
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3.39

3.40

3.41

3.42
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From A(ul,uz,ua) = (u1,2uz,3u3), we have A = (u1,2u2,3u3)P‘1,
where P = (u1,u2,us). Computing the inverse and multiplying gives

Consider the matrix A over C. It has two distinct eigenvalues +:, as
does the matrix (‘1) '01). So they are similar over C. Since they are
both real matrices, they must be similar over the real too.

If c=0and a # d, then 29 = —b/(a—d). If c=0 and a = d, then A
is a scalar matrix als. If ¢ # 0, then

zo = [(a—d) £ v/(a—d)* - 4bc]/(20).

() a1 =(472).
(b) If ¢ #0, then

(ca)-GT)GED0T)

If ¢ =0, then a # 0. Consider

()G e)

(c) Let A; and )2 be the eigenvalues of A. Then

AMA2=|A|=1 and A = )\l—l.
Besides, A; # A2, since otherwise [A1| = |A2] = 1, and
22 M+ A =|a+d >2

Thus A is similar to the diagonal matrix
A 0
(3 &) wrom

(d) If |a+d| < 2, then [A; + A2| = |A\1 + A7} < 2, s0 A; is neither
real nor purely imaginary.
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(e) If |a+ d| = 2, the possible real eigenvalues of A are 1 and —1.
The possible real matrices that A is similar to are

1 1\, -1 1 "
I,—I,T(OI)T,T(O _I)T,

where T is a 2 x 2 invertible real matrix.

(f) If |a+d| # 2, then A has two distinct eigenvalues A;, A2. Thus
A is similar to diag(A;, A2). It is easy to check that the matrix

M+A2 A —A
( a2 ,\,izxz )
2 2
has the eigenvalues A1, A2; therefore, it is also similar to diag(A1, A2).
(g) No. Take A= (}]).
3.43 The eigenvalues of A and B are 1 and 0. Thus both A and B are

diagonalizable and they are similar. A direct computation shows that
they are not unitarily similar.

3.44 Let P"'AP = B. Then AP = PB. Write
P=T +1Ts.

Then ATy =T B and AT; = T2 B. Set
T=T +1T3.

Then T is real and invertible for some ¢ > 0, and AT = TB. Hence
A and B are similar over R.

If A and B are two matrices with rational entries and S~1AS = B
for some complex matrix S, then AS = SB. Consider the matrix
equation AX = XB. It has either a nonzero solution in Q or no
nonzero solution in C (as a field is closed under +, —, x, +).

M=(31)-

3.45 The eigenvalues of A are 1,2,4, and corresponding eigenvectors are
(1,-1,1), (1,0, -1), and (1,2, 1), respectively. They are orthogonal.

346 A= 0 1 0 01( )
40 1 0 0 01

V2 V2
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3.47
3.48

3.49

3.50

3.51
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By direct computation: AT = T A.
It may be assumed that A is a Jordan block. Then
SA=A'S or SAS™! =A%

where S is the matrix with (i,n — i + 1)-entry 1, and O elsewhere,
i =1,2,...,n. It can also be proved by observing that A] — A and
Al — A* have the same minors. A* is not similar to A in general
because they may have different eigenvalues. A is never similar to
A + I because the eigenvalues of A + I are those of A’s plus 1.

If »(A) < n —1, then adj(4) = 0. If r(A) = n — 1, then the rank
of adj(A) is 1, the only possible nonzero eigenvalue is tr(adj(4)) =
Ay + Az + -+ + App, where Ay is the minor of ay,1=1,2,...,n.

If Az = vz, then Az = Vz; So (AA)T = A(Az) = A(V)z) = Az;
that is, A is an eigenvalue of AA, thus an eigenvalue of AA since
A > 0. Conversely, assume AAz = A% with z # 0. If A = 0, let
y = AZ. Then Ay = AAz = Az = 0, as desired. Let )\ # 0. If
Az = —/)z, take y = iz. If AT # —v/Az, take y = AT + VAz.

A number of different proofs are given below.

(1) Make use of block matrix techniques: Notice that
I, -A My, A\ _(M,—-AB 0
0 Mn B In - AB Mn

and that

I, 0 My AN _ [ Mna A

-B I, B I, ] 0 M,-BA )
Take determinants to get

A AL, — AB| = A™|A\I, — BA|.

Thus |Al, — AB| = 0 if and only if [AI, — BA| = 0 when ) #
0. It is immediate that AB and BA have the same nonzero
eigenvalues, including multiplicities.

(2) Use elementary operations: Consider the matrix

(5¢)
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(3)

Adding the second row premultiplied by A to the first row:

(% 9)

Do the similar operation for columns to get

0 0O
B BA ]’
Write in symbols
I, A 0 0\ (AB 0
0 I, B 0/ \ B 0
0 0 Im A\_(0 O
B 0 0 I.) \B BA )’

It is immediate that

Im AN'(AB O\ (I, AN _(0 0

0 I, B 0 0 I,/ \B BA )/’
It is readily seen that AB and BA have the same nonzero eigen-
values, counting multiplicities.

Use the argument of continuity: Consider the case where m = n.

If A is nonsingular, then BA = A~}(AB)A. Thus AB and BA
are similar, and they have the same eigenvalues.

If A is singular, let § be such a positive number that ¢ + A is
nonsingular for every ¢, 0 < € < §. Then

(eI + A)B and B(el + A)
are similar and have the same characteristic polynomials. Thus
| M = (eI + A)B| = |M,, — B(el, + A)|, 0 <e<d.
As both sides are continuous functions of ¢, letting ¢ — 0 yields
|AI, — AB| = |AI, — BA|.

It follows that AB and BA have the same eigenvalues.
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3.53

3.54
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For the case where m # n, assume m < n and let

A1=(g), B, =(B,0)

be n X n matrices. Then

AB 0

A131=( c 0

) and BlAl = BA.

It follows that A; B; and B; A;, consequently AB and BA, have
the same nonzero eigenvalues with the same multiplicity.

(4) Treat matrices as operators: We need to show if Al,, — AB is
singular, then so is AI, —BA, and vice versa. Assume that A = 1.
If I,, — AB is invertible, let X = (I, — AB)~1. One may verify

(I, - BA)(I, + BXA) = I,..

Thus I, — BA is invertible.
This approach gives no information on multiplicity. Note that

|\Im + AB| = |I, + BA| = B I,

I,,A‘

Let a = (a1,02,...,8,)  and e = (1,1,...,1)*. Denote B = (a, e) and
C = Bt. Then A = BC.

n
IML — A| = |\ — BC| = A* 2|AI — CB| = A*2 (,\ - Eaf)(,\ —n).

i=1
The eigenvalues of A are 0,...,0, n, 3 a2, all nonnegative.

A? = 0 and 0 is the only (repeated) eigenvalue of A. Thus A cannot
be similar to a diagonal matrix. The eigenvectors corresponding to 0
are the solutions to v’z = 0. The dimension of the space is n — 1.

It is sufficient to notice that
A B\ .1 A+B 0
( B A ) =§ ( 0 A-B )S

A -B\ ... A+iB 0
(B A)_T ( 0 A—z’B)T’



HINTS AND ANSWERS FOR CHAPTER 3 165

where

s=a(r 1) =5 )

3.55 (a) It follows from Problem 3.51.
(b) By (a),
tr(AB)* = tr(AB)(AB).--(AB)
tr A(BA)---(BA)B
tr(BA)(BA)---(BA)
= tr(BA)*.

(c) No, in general. Take

=(13) 5=(19)

(d) If A had an inverse, then AB — BA = A would imply

o o

ABA™'-B=1.
Thus B is similar to B + I. This is impossible.

(e) Write ABC = A(BC), then use (a).
(f) No, in general. Take

a=(33), 2= (3 2). o=

0

0 )
(g) By (a) and (b).
(h) If A or B is nonsingular, say, A, then AB = A(BA)A™!.
(i) No.

0
1

3.56 J, has n eigenvalues 0,...,0, and n. The eigenvectors are the solu-
tions to the system z; + z2 + :-- + z, = 0. K has 2n eigenvalues;
they are 0,...,0, —n and n. For the eigenvalue A = 0, the eigen-
vectors are the solutions to the systems z; + zo + --- + z, = 0 and
Tn41 + Tni2 + -+ z2n, = 0. The following 2n — 2 vectors form a
basis for the solution space:

o =(1,0,...,0,-1,0,...,0), i=1,2,...,n—1,
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3.58

HINTS AND ANSWERS FOR CHAPTER 3

where —1 is in the (i + 1)-position, and

onyi = (0,...,0,1,0,...,0,-1,0,...,0), i=1,2,...,n—1,
where 1 is in the (n + 1)-position and —1 is in the (n+ ¢+ 1)-position.
For A = —n, an eigenvector is (1,...,1,-1,...,-1).
For A = n, an eigenvector is (1,...,1).

A= J — I, where J is the matrix all of whose entries are equal to 1.
(J-I)(5J-I)=I1 Thus A ' =(J-I)1= ﬁJ— I

(a) Let Aj,...,As be the nonzero eigenvalues of A. Then

trA= zs:hi.

i=1
Let ,
~ 1 A 2
= — = ; — > 0.
A=_trd, S=3 W-X)?20

i=1

By computation,

S

Z('\i - X)?
‘=8.1 8 8

= Y2 ALY R
=1 t=1

i=1
- TR

=1

= trA?- %(trA)2.

The desired inequality follows. Equality holds if and only if the
nonzero eigenvalues are all the same.

(b) Note that when A is Hermitian, the rank of A is equal to the
number of nonzero eigenvalues of A.
If A2 = cA for some c, then A2 = c)\;. It is readily seen that the
nonzero eigenvalues are all equal to c.

(c) Let Aj,A2,..., A be the nonzero eigenvalues of A. Then A%, A3,
..«y A2 are nonzero eigenvalues of A%2. By the Cauchy-Schwarz
inequality,

(trA)2 =+ A+ + M2 < k(A2 +--- + 22) = ktr A%
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3.59

3.60

3.61

3.62

3.63

If (tr A)2 > (n — 1) tr A2, then k must equal n. Thus |4| # 0.

Consider the Jordan blocks of A. The possible eigenvalues of A are
0, 1, and —1.

We call a “product” a “word”. We use the fact that tr(AB) = tr(BA)
for any square matrices A and B of the same size. First view S5 3
as a collection of the words of length 5 with 3 Y’s and divide (10 of)
them into two groups:

XY2XY, Y2XY X, YXYXY, XYXY? YXY2X

and
X?%y3, XY3X, Y3X2, Y2X?%Y, YX?Y2

The words in each group all have the same trace. So
% tr(Ss.3) = tr(XY2XY + X2%Y?®) = tr X(Y2XY + XY?3),

where Y2XY, XY3 € S43. There are two more elements in Sy 3:
YXY? and Y3X, which have the same trace as YXY?2, XY3, re-
spectively. (In fact, all the 4 words in S4 3 have the same trace.) The
conclusion follows at once. One may generalize this to the words of
length m with j copies Y and m — j copies of X.

It is easy to see that the rank of AB is 2 and that
(AB)? = 9(AB).

Thus
r(BA) > r[A(BA)B] = r(AB)? =2

and BA is invertible. However,
(BA)® = B(AB)?A = B(9AB)A = 9(BA)2.
Since BA is invertible, it follows that BA = 91,.

(1,0,—1) is an eigenvector of the eigenvalue 3.

13 -2 5
=%(-2 10 2).
5 2 13
0
1
0
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(i)

4)

()

(n)

(p)
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Direct verification by definition.

[A,B+C]=A(B+C)-(B+C)A=AB+ AC - BA
—CA = (AB - BA) + (AC - CA) = [A, B} + [A,C).

[A, B]* = (AB — BA)* = B*A* — A*B* = [B*, A"].
Note that P-![PXP~1,Y|P = [X, P-'Y P).
tr(AB — BA) = tr AB — tr BA=0.
tr(T — [A, B]) = n. If X is nilpotent, then tr X =0.
tr[A,B] =0#tr [ = n.
Take X =diag(1,2,...,n) and Y = (y;;), where
1 .. e .
yj =9 T3 1fz fj
0 ifi=3j.

Then A = [X,Y]. Note that X is Hermitian.

[A,B] = 0 = AB = BA. So A2B = A(AB) = A(BA) =
(AB)A = (AB)A = BAZ?. Inductively for any positive integer p,
APB = BAP. For the same reason, APB? = BIAP,

If A is nonsingular, then AB— BA = A implies ABA™'! - B =1.
Taking trace gives 0 = n. Contradiction.

If A and B are Hermitian, then (A4, B]* = (AB — BA)* = B*A*
—A*B* = BA— AB = —(AB — BA) = —|A,B]. So [A,B] is
skew-Hermitian. The other case is similarly proved.

Similar to (k).
See (h). If A is skew-Hermitian, X, Y there are Hermitian.

Let C = AB— BA. Then C* = (AB)* — (BA)*=—-C. SoC is
skew-Hermitian. Thus ¢C is Hermitian; all eigenvalues of C' are
pure imaginary.

It is easy to get from [A, [A, A*]] = 0 that

AZA* + A"A? = 2AA°A.
Multiplying both sides by A* from left and taking trace,
tr[(A4%)2 A% = tr{(A* 4)?],

which implies the normality of A (see Chapter 4, Problem 4.91).

By a direct verification.
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3.65

3.66

(q) Let C = [A,B]. Show that C™ = 0 for some positive integer
m. For this, prove by induction that AB™ — B™A = mB™~!C.
Let p()\) be the characteristic polynomial of B. Then p(B) = 0.
Using the above fact, show that p/(B)C = 0, p”’(B)C? =0,...,
p™(B)C™ = 0. Since p{™)(B) = n!I, we have C™ = 0. Therefore
the eigenvalues of C are necessarily zero.

[A, B] = [B, A] if and only if matrices A and B commute.

Use the Jordan blocks of A. Or prove as follows. For the fixed A, let
Vi1 and V4 be the solution spaces of (\I — A)z = 0 and (A —A)%z =0,
respectively. We need to show that there exists an invertible matrix
P such that P~1 AP is diagonal if and only if V; = V; for every ) € C.

Suppose that A is diagonalizable. We show that V3 = V;. Let
T-1AT = diag(A;, A2,...,An), where Aj, Ag, ..., A, be the eigenval-
ues of A. Then T—(\ — A)T = diag(A— A1, A— A2,...,A— A,) and
T-Y(AI - A)2T =diag((A-21)%, (A=22)%,....,(A=An)?). A=\ =0
if and only if A— A;)2 = 0. So 7(AI — A) = (A — A)2. Since V; C V&,
we have V] = V5.

Now suppose V; = V5. If A is not diagonalizable, we will draw a
contradiction. Let J be a Jordan block of A corresponding to an
eigenvalue Ag. If the size of J is more than 1, then (Al — J) =
r(MoI — J)? + 1. Using Jordan form of A, we see that r(Aol — A) >
r(hol - A)z. It follows that dim V} < dim V5. A contradiction.

(a)=(b): Obvious.

(b)=>(c): First note that the linear systems Az = 0 and A%z = 0 have
the same solution space when r(A) = r(A?). Let £ € Im A N Ker A.
Then Az = 0, z = Ay for some y, and 0 = Az = A(Ay) = A?y;
therefore, 0 = Ay and z = 0.

(c)=>(d): Choose bases for Im A and Ker A, they form a basis for C".
Regard A as a linear transformation on C", the matrix representation

of A on this basis is of the form (g g) , where D is invertible.

(d)=(a): Notice that

A2=P(D 0 )P-IP(D

o O

-1 _
0 D 0 )P = B4,

where B = P (g g) P~! is nonsingular.
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3.68

3.69

3.70

3.71
3.72

3.73
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Only A® always has the same eigenvalues as A, while At, A, A*, and
(A*A)} all have the same singular values as A.

Let Au = Au, u # 0. We may assume that u is a unit vector. Then
u* Au = Au*u = A. So p < w. By the Cauchy-Schwarz inequality, one
can show that w < 0.

We show that if A*AB = A*AC then AB = AC. Notice that
A*A(B — C) = 0 implies (B* — C*)A*A(B — C) = 0. It follows
that [A(B—-C)]*[A(B—-C)] =0. Thus A(B-C) =0and AB = AC.

Since A2B = A, r(A) = r(A%?B) < min{r(A2%),r(B)} < r(A). So
r(A) = r(A?) = r(B). Thus, the null spaces of A, A%, and B all have
the same dimension. If Bz = 0, then Az = (A2B)z = 0. Hence, the
null spaces of A2 and B are subspaces of the null space A, and they
all have to be the same. For any u € C", (A2B)(A4u) = A(Au). So
A’BAu = A%y; that is, A2(BAu — u) = 0, or BAu — u € Ker A%
Therefore B(BAu —u) =0, i.e., B2Au = Bu for all 4, or B2A= B.

(@ n—1. (b) InA={yeC"|y*z=0}. (c) KerA =Span{z}.
The dimension of M,,(Q) over Q is n2. Thus

2

I, A A%, ..., A"
are linearly dependent over Q. Let

ay ay a ,o Apa ,,2
—I+—A+ —A°+-..+ A" =0,
bo bl bz b,,z

where a’s and b’s are integers and b’s are different from (. Take

—boby-oba(20 S, 2.2, %N
f(z) =boby - - by, (b0+bla:+bz:z:+ +bn2:z: )

For A = diag(3,%,3),
f@)=12(z— ;) (= - g) (2~ 2) — (122 — 6(12z — 8)(12z — 9).

AX = XB = A%2X = A(AX) = A(XB) = (AX)B = XB%. In
general, A*X = X* B for any positive integer k. Let p()) = |AI — A|
be the characteristic polynomial of A. Then p(A) = 0. It follows
that Xp(B) = 0. Write p(A) = (A —a1)(A — a2)--- (A — @), where
a;,as,--.,0, are eigenvalues of A. Since A and B have no common
eigenvalues, we see that p(B) is invertible. Thus X = 0.
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3.74

3.75

3.76
3.77
3.78

(a)

(b)

(b),

Let Av = A\, v # 0. Multiplying both sides by adj(A):
adj(A)Av = Aadj(A)v or |Alv = Aadj(A)v

and adj(A)v = }|Alv.

Let Av = Av, where v # 0. If A # 0, then from the solution of
(a), v is an eigenvector of adj(A).

Suppose A = 0. If r(A) < n — 2, then adj(A) = 0 and adj(A)v =
0. If »(A) = n — 1, then the solution space to Az = 0 has di-
mension 1 and {v} is a basis of the solution space. However,
A(adj(A)v) = 0; that is, adj(A)v is a solution to Ax = 0. Thus
adj(A)v = pv for some u.

Since the eigenvalues of A are all distinct, the eigenvectors of
A corresponding to the distinct eigenvalues are linearly inde-
pendent and they form a basis for C*. Thus A is diagonaliz-
able. Let T7'AT = diag(\;,A2,...,An), where A1, Az,...,An
are the eigenvalues of A. Let C = T-!BT. Since AB = BA,
diag(A1, A2y. .., An)C = Cdiag(A1,A2,...,An). It follows that
AiCi; = Cy;A; for all 4, j. Since A; # A; when i # j, we have
cij = 0 when i # j. Thus C is diagonal; that is, T-!BT is
diagonal. Now T~1(AB)T = T-'ATT BT is also diagonal.
Suppose A and B are diagonalizable. Let T be an invertible
matrix such that T-1AT = diag(uil,p2l,...,uxl), where u,
are distinct eigenvalues of A, k < n, and I’'s are identity ma-
trices of appropriate sizes. Since u’s are different, AB = BA
implies that T-!BT = diag(B,, Ba,...,Bx), where each B; is
a matrix of the same size as p;/. Since B is diagonalizable,
all B; are necessarily diagonalizable. Let R 1 B;R; be diagonal.
Set R = diag{R;,Ra,..., Rx). Then R is invertible and both
R-1T-'ATR and R~T~!BTR are diagonal.

(d), (g).

It is sufficient to notice that z = (Z — A)z + Az.

It is

routine to show that 7(Y + kZ) = T(Y) + k7 (Z); that is, T

is a linear transformation. When C = D = 0, T(X) = AXB. If
both A and B are invertible, then 7.4 = AT = Z, where A is defined
by A(X) = A~'XB~1, which is also a linear transformation. Now
suppose 7T is invertible. Let 7.4 = AT = Z. For the identity matrix
I,I =TA(I) = A(A(I))B. So A and B must be nonsingular.
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3.79 (a) By a direct verification.
(b) T(A)=0.

(c) Compute 72(X), T3(X), T4(X),..., it is readily seen that each
term of 72¥(X) contains a factor A™, m > k. Thus 72 = 0.

(d) By a direct verification.

(e) Let
P—IAP=diag(A1,.-o,An)

and let P; be the i-th column of P. Then

AP, = \P, i=1,2,...,n.

Let B;; be the matrix having P; as its j-th column and 0 as
other columns. Then {B;;} form a basis for M, (C) and 7 has
the matrix representation on the basis

Ml — A 0 0
0 Aol — AY ... 0

0 0 e A - A
It is readily seen that if A is diagonalizable, so is 7.
(f) If T and £ commute, then 7L(X) = LT(X) is equivalent to
ABX + XBA=BAX + XAB
or
(AB - BA)X = X(AB — BA).
When A and B commute, AB — BA =0.
T =0 if and only if A is a scalar matrix.

If T commutes with £, then AB — BA commutes with any matrix in
M, (C). Thus AB — BA is a scalar matrix. For trf(AB — BA) = 0, we
have AB = BA.

3.80 (a) Let
aa.{.lA(aa-}-l) + b + anA(an) = 0.

Then
A(@s410541 + <+ + anayn) =0,
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3.81

3.82

3.83

or
@s+1Qs+1 + -+ + @nan € Ker A
Let
G54+1Qg41 + *** + GnQp =10+ + Qs05.

Then a; = --- = ap, = 0 since {ay,...,0Q5Qs41,...,0n} i8 a

basis. It follows that Aas4y,...,Aq, are linearly independent.
(b) By (a).
(¢) {a1,-.. 08, Qs41,...,0n} i8 & basis.

The sum is not a direct sum in general. Consider A on R? defined by
A(z,y)t = (z — y,x — y)t. It’s possible that no S; falls in Ker A.

(a) False. It is always true that A(Vi NV2) C A(V3) N A(V2). But
equality does not hold in general. Take V; to be the line y = z,
V2 to be the z-axis, and A to be the projection onto z-axis.

(b) True.

(c) True. For every w € V; + V3, let w = v; + v3. Then A(w) =
A(v1)+A(v2) € A(V1)+.A(V2). So A(V1 +V2) € A(V1) +A(V2).
However, if z € A(V])+.A(V2), then z = A(z1) + A(z2) = A(z1 +
z3) € A(V; + V3). So equality holds.

(d) False. Take V; to be the line y = z, V2 to be the line y = —z,
and A be the projection onto the z-axis.

The proofs for the equivalence of (a)—(f) are routine. The result does
not hold in general when V is of infinite dimension or A is a linear
transformation from V to W. For instance, define B on P[z| by

Bf(z) = zf ().
Then Ker B = {0}, but B is not invertible.

(a) Consider A as a linear transformation on C*. The vectors v, A(v),
A%(v),..., A" (v) form a basis for C*. The matrix presenta-
tion of the linear transformation under this basis has a subma-
trix I,_; on the upper-right corner. Thus for any eigenvalue A,
r(A — A) = n—1. So dimKer(AI — A) = 1, and the eigenvectors
belonging to A are multiple of each other.

(b) Let uy,us,...,u, be eigenvectors, respectively, corresponding to

the distinct eigenvalues A, Ag,...,Ap of A. Let u = u; + u2 +
«+-4up. Then A(u) = Ajuy + dAguz +- - -+ Anlin, A%(u) = My, +
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Mug+- - +A2Un,.. ., A" (1) = A ug +AT Tug 4 - -+ A2 Ly,
The coefficient matrix of u,.A(u),...,. A" '(u) under the basis
U1, U2,..., U, i8 8 Vandermonde matrix. This matrix is nonsin-

gular for distinct Ay, A2, ..., n. So u, A(u), A%(u),..., A" 1(u)
are linearly independent.

Let
a1Z + a2 A(Z) + - - - + 2, A} (z) = 0.
Applying A¥, k=n—1,n—2,...,1, to both sides of the equation,

a1=a2=---=an=0.

The eigenvalues of A are all zero. The matrix of A under the basis is
the matrix with all (Z,% + 1)-entries 1 and 0 elsewhere.

Use matrix representations. For matrices A and B, if AB = I, then
BA = 1. It is not true for infinite dimensional spaces.

Consider P[z] with A and B defined as
Af(zx) =a1+ax+ -+ + anz™!

and

Bf(z) = zf(x),
where f(z) = ap + a1z + -+ + apz™.
Let kjuy + kaug + «- - + kpun, = 0. Applying the linear transforma-
tion A to it yields kyAju; + k2A2u2 + -+ + kpAnun = 0. Multiply-
ing kyjuy + koug + ¢+« + kpu, = 0 by A,, then subtracting, we see
k1 (M — An)us + k2(A2 = An)uz + -+ + kn1(An=1 = An)tn—1 = 0. By
induction, uy, ua,...,Un—1 are linearly independent. So all k; must
be0,i=1,2,...,n— 1. It follows that k,, has to be 0 too.
(a) False.
(b) False.
(¢) True.
(d) False.
(e) True.
(f) False.
(g) True.
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(h)
(i)
()
(k)
()
(m)
(n)

3.88 (a)
(b)
3.89 (a)
(b)

(c)

True.
False.
True.
True.
False. One direction is right.
True.
False. One direction is right.

False. Consider A = 0.

True. If the vectors oy, asy,...,a, are linearly dependent, then
there exist ky, ko, ..., kn, not all zero, such that

kray + kzaz + -+ + knan =0,
which leads to
kiAo + ks Aag + -+ + kpAa, = 0,

a contradiction.

1 1
A(al,az,a3) = (al,az,ag)A, where A = ( 01
00

it b

). Since
A is invertible, A is invertible.

1 -1 0
A'=10 1 -1].

O 0 1

So 'A_l(al) =y, A_I(QZ) = a2 — a1, A"1(043) = Q3 — Q3.

The matrix of 24 — A™~! under the basis {a;, az, a3} is

1 3 2
2A-A1'=[ 01 3 ].
0 01

3.90 They are all p(A) = A3,

3.91 For convenience, denote

({3 (3)
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To find Im A, apply row operations to (Au;, Aug, Au3):

2 3 2 1 01
3 O 3 — | 01 0 }.
-1 -2 -1 0 0O

Thus {Au,, Auz} is a basis for Im.A and
Im A = Span{Au,, Auz}.
To find an equation for A, let

T = (T1,T2,T3)" = y1u1 + Yous + yaus.

1 1 =2 " I
0 -1 7 Y2 = o .
1 1 -1 Y3 I3

Denote by B the 3 x 3 matrix on the left-hand side. Then By = z,
where y = (y1,%2,¥s)", and y = B~'z, where

6 1 -5
Bl'=| -7 -1 7 ].
-1 0 1

A(z) = ynAu + yaAuz + y3Aug
(Auy, Aug, Aug)y
= (.Aul,.Auz,.Au;;)B‘lz

-11 -1 13 T
= 15 3 -12 To .
9 1 -10 T3

(a) Consider Az =0 to get a basis for Ker A:

_3
) 2’

Thus

]
o= (-2 1,0)°, az =(-1,-2,0,1)%

Let

3
B =—2¢ — €2 + €3
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3.93

3.94
3.95

3.96

and
B2 = —€1 — 2€3 + €4.

Then
Ker A = Span{3,, 62}.

(b) To find Im A, apply row operations to (Ae;, Aez, Aez, Aeq) to get
Im A = Span{Ae¢,, Aez}.

(¢) {B1,B2,¢€1,¢€2} serves as a basis for V. The matrix representation
of A under this basis is

5 2 00
21 00
1 2 00
2 -2 00

(2) The matrix of A-+ B under By, By is (§3)-

(b) The matrix of AB under a3, as is (173 184).
(c) The coordinate of A(u) under aj, a2 is (3,5).
(d) The coordinate of B(u) under 8, 52 is (9,6).
Take a basis for W, then extend it to a basis for V.
(a) Apply A~! to both sides of A(W) C W to get
W c AY(W).
However,
dim A~1(W) < dim W.
Therefore,
W= A"Y(W).
(b) No, in general.

With matrix A, we see that A(a;) = 2a; and A(a2) = oy +2a2. Let
ka]_ € W]_. Then .A(kal) = k.A(al) = 2kal € W1. So W1 is invariant
under A. If W, is an invariant subspace such that R? = W, & W,
then the dimension of W5 is 1. Let oy = pa; + wa, where w, € Wo,
and let A(wy) = qw,. From A(az) = a; + 2a3, we have a; + 2a; =
2pa; + quws. Subtracting 2a; = 2pa; + 2ws, we have a; = (¢ — 2)w.,
which is in both W, and W,. But W3 N W, = {0}. A contradiction.
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(a) It is routine to show that A is a linear transformation on M2(R).

1 0 -1 O
(b) The matrix of A under the basis is _01 (1) (1) _01
0 -1 0 1

(c) dim(Im.A)=2. (7'9) and (§7') form a basis.
(d) dim(KerA)=2. (;3) and (J1) form a basis.
With A% = A and B? = B, one may show that A(A-B)? = A- ABA.

Similarly, (A — B)24 = A — ABA. So A commutes with (A — B)Z.
For the second part of the problem, it is sufficient to notice that

(I-A-B2=[I-(A+B)?=I-24-2B+ (A+B)>

dimIm A = 2 and ¢, ¢ for a basis. dimKer A =2 and {; =€, — ¢
and {; = ¢; — €3 form a basis. dim(Im.A + Ker.A) = 3 and ¢, €2, €3
form a basis. dim(Im AN Ker.4) =1 and {5 = ¢; — €; is a basis.

(a) It is routine.

(b) The line y = z.

(¢) Ker B and Im B are both the line y = z.

(d) Ker B and Im B have nonzero elements in common.

(a) By definition.

(b) AB($1, I2,... amn) = (09 In,T1,T2,... 7$n—2)°
B.A(.’Bl,.’l:z, e ,a:n) = (zn—ly 0, T1,T2y. .. ,.’Dn_l).
A" =0and B* =1T.

(c) Under the standard basis (column vectors) ej,es,...,én, A =
(ez, €3y...4960-1, 0) and B = (62,63, ey en_l,el).

(d) The dimensions of Ker.A and Ker B are 1 and 0, respectively.

Let {¥1,...,7} be a basis for Ker A. To show that V is the direct
sum of the subspace spanned by f;,.. ., Bn and Ker A, we show that

{B1y.++sBmsV1,.++57r} is & basis for V.
Let v € V. Then A(v) € Im .A. Writing

Alv) =a10q + - + Gy,
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and replacing o; by A(G;), we have
AW) = a1 A(B1) + - - + amA(Bm)

and
Alv-a101 -+ — amPm) =0.
Thus
v—a6,0) — -+ — amPm € Ker A.
Let
v—0161 — - —emPm =bim1 + - + beye
Then
v=0a161 + -+ @mPBm + i1 + - - + b
Therefore

V =Span{fi,...,8m} + Ker A.
Now show that f3,...,8m,7,...,7 are linearly independent. Let
abr+ - +emPmtdimit - +deyr =0
Applying A to both sides of the above identity gives
c1A(B1) + -+ + emA(Bm) + diA(m) + - - + drA(r) =0,

that is,
cay + -+ emog, = 0.

Thus ¢; = -+ = ¢;n = 0 due to the independence of ay,...,a,. So
dim+-- +dey =0,

and d; = --- = d, =0 for the similar reason. The conclusion follows.

3103 If V = ImA @ Ker A, we show that Im.A?2 = Im.A. Obviously,
ImA? C ImA. Let u € ImA. Then u = Av for some v € V. Write
v = wy +ws, where w; € Im A and wo € Ker A. Let wy = Az;. Then
u=Av = A(w) + A(wz) = A(w) = A%(z;) € Im.A%. Therefore,
Im A% = Im A and r(A?) = dim(Im A?) = dim(Im .A) = 7(A).

3.104 (a), (b), (c), (g) are easy to check. (k), (1), (m) follow from (j).

d) (A+Z)'=-14+1T
(e) Note that if x € Ker A, then z = z — Az.
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First note that V' = Im .A 4 Ker A, since
v=Av+ (v — Av).
Now let
z€elmANKerA and z= Ay.
Set Ay = =z — Az for some z € V by (e). Then

z = Ay + Az.
Applying A to both sides results in
Az = A%y + A%z = Ay + Az.

Thus z = Ay = 0 and Im .4 N Ker A = {0}.
Let B be the linear transformation on V such that

Br=z, z€M and By=0, ye€L.

Such a B is uniquely determined by M and L.
If Az = Az,  # 0, then
A’z = Az = N2z
Since A%z = Ax,
(A2 - Nz =0.
Thus A=0o0r A=1.
By (f), take a basis for Im.A and a basis for Ker A to form a basis

for V. Then the matrix representation of .A under the basis is of
the desired form.

If Az = Az, then A(Bz) = B(Az) = A(Bz), thus Bz € V.

If z € Ker A, then Az = 0. Note that A(Bz) = B(Az) = 0, thus
Bz € Ker A, and Ker A is invariant under B. Similarly, Im A is
also invariant under B.

Let By be the restriction of B on V); that is, By(v) = B(v), v €
Vi. By has an eigenvalue in C and an eigenvector in V).

By induction on dimension. Take v to be a common eigenvector
of A and B. Let W be a subspace such that V = Span{v} & W.
Let A, and B; be the restrictions of A and B on W, respectively.
Then .A; and By commute. Now apply induction hypothesis.

When C is replaced by R, (a) and (b) remain true.
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3.106

3.107

3.108

3.109

()
(b)
()

(d)

(b)

(b)

()
(a)

By definition.

0.

The matrices of D under the bases are, respectively,
D, = (0’ e, 2ez,..., (n - l)en—l),

where the e’s are the vectors in the standard basis of R"”.

No, since all eigenvalues are D are 0.

Note that

(eAz)l = /\ekz

and (e*)” = A2e*=.
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D2 = (0,61,62,. ‘e ,en_1),

ce*® is an eigenvector of D, belonging to the eigenvalue A2. For

any positive number A, it is easy to see that

Da(e¥*®) = (VA )2(eV*) = aeVe.,

Hence A is an eigenvalue of D,.

Let p, q € P,[z]. Then
Al(p + kq)(z)) =

A((p(2) + kg(z))

z(p(z) + ka(z)’ — (p(z) + kg(z))
zp'(z) + zkq (z) — p(z) — kg(z)
A(p(z)) + kA(g(z))-

So A is a linear transformation on P, [z].
Ker A= {kz |k eR}.

ImA={ap+az® + - +an-12% ! | ap,az,...,a,-1 ER}.

By (b).

Let W be an invariant subspace of V under A. Then W is

invariant under (A — X\Z)* for i = 1,2,...,n. Observe that

or

U2
u3

Un

u¢=(A—)\I)‘_lu1, 1=1,2,...

(A - AI)ul
(A - /\I)UZ

(A- '\:T)un-l

’n.
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Since W is invariant under
(A-XT)1, i=1,2,...,n,
ifu; € W, thenus,...,up, € Wand W =V.
(b) Let z € W, z#0, and let
T = QiUy + -+ + Gnlin,

where i > 1 and a; # 0. If ¢ = m, it is trivial. Suppose ¢ < n.
Since W is invariant under .A, consequently under (A — AZ)"~,

(A-XD)"*zeW, (A—XD)un=0,
and
A=AD)" 'z = (A= AD)" *(aitti ++** + Gnlin)
= ai(A-X)"luy +0
= aqu, €W

It turns out that u, € W.
(¢) Observethatfork=n—-i+1,...,7n—1,

(A= ADuk =ug41 € V;

and
Aun = Aun € ‘/i.

Thus each V; is invariant under A — AZ. Write
A=(A-)XT)+ AT

It follows that V; is invariant under A.
To show that

(A-XD)z=0 & =zel,
let z be a linear combination of uj,u2,...,up
T=TZ1U1 + ToUz + *** + TplUp.
If (A — A\T)'z = 0, applying (A — AZ)* to both sides results in
0==z1U41 + - + Tn—ilUn.

Thus z; =22 =---=2,-y=0,and z € V.
The other direction is immediate by observing that

(A=XDfur =0, k>n—i+1.
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3.110

(d) Let W be an invariant subspace of A with dimension m. Then
there must exist an £ € W such that

T=a;U+ -+ Ay, a;F0,i<n—m+1.
Applying
(A-AD)" %, k=4i+1,...,i+m—1,
to both sides consecutively, we have
UnyUn—1s+« -y Un—m+1 € V.

Thus W = V,, since they have the same dimension.
(e) Note that an eigenspace is invariant.

(f) fV=Wo®U and W and U are nontrivial, then u, € W and
uy, € U. This is impossible.

For the matrix S such that SAS~! = At, take S to be the matrix
with all (i,n — i + 1)-entries 1, ¢ = 1,2,...,n, and O elsewhere.

If Ag is an eigenvalue of L,
L(Xp) = AoXg, forsome Xg #0,

then
AXg = X Xo.

If 2o is a nonzero column vector of Xy, then Azo = Moo and g is
an eigenvalue of A. Conversely, if ¢ is an eigenvector of A belonging
to Ag, let Xp be the matrix with all column vectors zg. Then

L(Xo) = AXo = M Xo,

and )¢ is an eigenvalue of L.

The characteristic polynomial of £ is the n-th power of the charac-
teristic polynomial of A. To see this, consider the basis of M, (C)

{EII,EQI,- -')Enl’El2’E22a s aEnQa veey Eln,E2n)° . ,Enn}’

where E;; is the n x n matrix with the (¢, j)-entry 1 and 0 elsewhere.
It is easy to compute that

L(Ey) = AE;; = a13Ej + a2iEj + -+ + + @i Epj.
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Thus the matrix representation of £ under the basis is

A 0
A

0 A
The desired result follows immediately.

(a) and (b) can be directly verified.

(c¢) B is one-to-one, but not onto.
(d) For every f(z), (AB — BA)(f) = f.
(e) By induction on k.

Obviously, Ker A C KerA? C --- C KerA* C KerAFt! C .

This inclusion chain stops because the dimensions are finite numbers.
Thus Ker A™ = Ker A™** for some m and for all positive integers
k. We claim that V = Ker A™ & Im A™. All we need to show is
Ker A™ NIm A™ = {0}. Let u € Ker A™ NIm A™. Then A™(u) =0
and ¥ = A™(v) for some v. So A™(u) = A?™(v) = 0, which implies
v € Ker A?™ = Ker A™. Thus A™(v) = 0; that is, u = A™(v) =0,
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4.1

4.2

It is sufficient to show that (c)=>(a) and (g)=>(a).
(c)=(a): It is easy to see that a,; € R, s = 1,2,...,n, by taking
to be the column vector with the s-th component 1, and 0 elsewhere.

Now take = to be the column vector with the s-th component 1, the
t-th component ¢, and 0 elsewhere, where s # t and c is an arbitrary
complex number. Then

Z* AT = a,, + ay|c]® + a1sC + ayc € R.

Putting ¢ = 1 and i gives a,; = G, or A* = A.

(g)=(a): Let A =U*TU, where U i a unitary matrix and T = (¢,.)
is an upper-triangular matrix. Let the eigenvalues of A; that is, the
diagonal entries of T', be A3, Az,..., An. Then

tr A2 = tr(AA*) = tr T2 =tr(TT™),
which is

n n
ztfa = z |tsa|2 + Z Itstlz-
s=1 s=1

8<t

It is immediate that ¢,, = O for every pair of s and ¢, 8 < £, and {,, is
real for each s. Therefore, T is real diagonal and A is Hermitian.

No. A= (3;) is not Hermitian, but A*(A%) = A*(A*A).

(a) Truc.

(b) False in general. True when c is real.
(c) False.

(d) True.

(e) False. Take A=(}1), B=(27).

(f) True. (BA)* = A*B*=AB=0.

(g) True. Consider the diagonal case.
(b) False. Take A= (31).

(i) True. The eigenvalues of A are all 1.

185
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() True.
(k) True.
(1) True.

(m) False. Take A= (5), B=(}2%)-

(n) True.
(o) True. Consider the case where A is real diagonal.
(p) True, for BAB is Hermitian.

If A is an eigenvalue of A, then A? is an eigenvalue of A%. Thus the
eigenvalues of A% are A2, A2,...,)\2. SotrA? = A2 + 22 +-.. + )2,
However, tr A2 is the sum of the entries on the main diagonal of 42.
The desired identity follows. When A is Hermitian, a;; = a;;.

By the spectral decomposition, let A = U* diag(),,..., An)U, where
U is a unitary matrix. Then for £ € C* with ||z|| =1,

z*Az = z*U*diag(\1,..., )0z
= y*diag(A1,-..,An)y
= Ml + -+ dnlynl?

where y = (41,...,¥n)t = Uz is also a unit vector. Thus
min{A;,..., A} £ 2" Az < max{A,..., An}.

If 2o is an eigenvector belonging to Amin and ||zg| = 1, then

:B(';A.’Bo = Amin-
It follows that
Amin = min z"
ll=(|=1
Similarly,
= max z"Az.
izll=1

To see the inequalities for A + B,
Amax(A+ B) = "m"ztxl z*(A + B)x

"m"a_xl(:z:‘Ax + z* Bx)

max (z* Az) + max (z* Bzx)
lzl=1 lzll=1

Amax(A) + Amax(B).

IA



HINTS AND ANSWERS FOR CHAPTER 4 187

4.5

4.6
4.7

4.8

The other inequality is similarly obtained by noting that

()

(b)

(d)

IImIfE:I (z*Az + z*Bzx) > |Imlfa._x1 (z*Az) + "n}ligl(x*B:z).

If z*Az = 0 for every z € R", then the diagonal entries of A
are all zero by taking z to be the column vector with the s-th
component 1, 0 elsewhere, s =1,2,...,n.

Now take z to be the column vector with the s-th and the ¢-th
components 1 and 0 elsewhere. Then

Az =0 = Qs = —Qts, 8 # t,
that is, A®* = —A. Conversely, if A® = —A, then
ztAz = (z*Az)! = z* A'z = —(z* Ax)

and ztAz = 0 for every z € R™.

To show a,; = 0, take = and y to be the vectors whose s-th and
t-th components are 1, respectively, and 0 elsewhere.

It is easy to see that the diagonal entries of A are all equal to
zero. Take z to be the column vector with the s-th component
1 and the ¢-th component ¢, then

z*Az = 0= as€+ agec = 0, for every c € C,

thus Gz = Qg = 0.
Let z* Az = ¢ be a constant. Then

'(A-c)z=0.
It follows from (c) that A = ¢l.

A is not necessarily equal to B even though z*Az = z*Bz for all
z€R" Take A=(°}) and B=0.

Use the decomposition A = U* diag(A), Ae, ..., \)U.

Since A is Hermitian, all eigenvalues of A are real. If | A| < 0, then at
least one eigenvalue is negative. Denote it by \. Then Az = Az for
some nonzero z, where A < 0. Thus z*Az = Az*z < 0.

(A+B)* = A*+ B* = A+ B. So A+ B is Hermitian. If AB =

BA, then (AB)* = B*A*®* = BA = AB; this says AB is Hermitian.
Conversely, if AB is Hermitian, then AB = (AB)* = B*A* = BA.
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Since A and B are Hermitian matrices, AB is Hermitian if and only
if AB = BA. Thus A and B are diagonalizable through the same
unitary matrix; that is, U* AU and U*BU are diagonal for some uni-
tary matrix U. Therefore the eigenvalues of AB are those in the form
A = ab, where a is an eigenvalue of A and b is an eigenvalue of B.

(a) There exists an orthogonal matrix P such that
A = P~ 1diag(6,0,0)P.
Take
X = P~1diag(6%,0,0)P = P* diag(63,0,0)P.

(b) Suppose X3 = B. Then the eigenvalues of X are all 0, this
implies that X3 = 0.

00 1)\
(¢c) B=| 0 0 0 | .
010

(d) As (b).

0
0
0

-0 O
(R

0
(¢) Yes. D= (1)
0 0 0O
(f) Let A= P~ldiag(\,...,An)P, where );'s are real numbers and
P is an orthogonal matrix. Then a k-th root of A is
X = P'disg(\F,... AE)P.
(g) f X2 =Y, then \2] — X2 = )\2] — Y, which yields
(M - X)OM + X) = NI -Y.

Take determinants for both sides.

It is easy to check by computation that (7} 75 )3 = I.

Consider the case where A is real diagonal.

By direct computations.
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4.13

4.14

4.15

Let U be a unitary matrix such that A = U* diag(\1, A2, A3)U. Then
tI — A=U"diag(t — M1, £ — Ag, t — A3)U
and for t # A\, 1 =1,2,3,
adj(tI — A) = |tI — A|(t] — A)7L.

Suppose, without loss of generality, that A, is the 2x 2 submatrix of A
in the upper-left corner with eigenvalues a and b. Upon computation,
the (3, 3)-entry of (tI — A)~!is

|u1a)? + |ugs|? + g3 |®

t—A t—X2 t—)3
and the (3, 3)-entry of adj(t— A) is [t] — A,|. Soift # )¢, 1 =1,2,3,

[t] — A - lus? | |uag)? + us3|?
|tI—A| t—A1 t—=)X t—A3

If a and b are roots of |t — A,|, it follows from the above identity
that a € [Al,Ag] and b € [Ag,Xa].

Suppose that H is an m x m principal submatrix of A. Let z,, € C*
be a vector whose last n — m components are 0. Then

Amex(A) = ||z||ﬂa:ec..z‘Ax
> max zt Ax
T zml=t ™
= max *Hz
lzll=1, zeC™

A similar argument yields the other inequality.

(a) Take A = diag(l,—1); and I,

(b) Assume that A = U*DU, where D is real diagonal and U is
unitary. Then AB = U*DU B is similar to DUBU™* whose trace
is real. In general,

tr(AB)* = tr(AB--- AB) = tr[(AB--- ABA)B]
is real since both AB--- ABA and B are Hermitian.
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(c) Assume, without loss of generality, that A is a real diagonal
matrix with diagonal entries a;, a2,...,a,. Then

tr(A’B%) — tr(AB)* = ) aZbsl® - ) aia;lbyl?
i i

= ) (ai—a;)%bi;1* > 0.
i<j
Equality holds if and only if (a,- - aj)|b.-j| =0 or all ¢ < j, which
is true if and only if a;b;; = a;b;; for all 4, j7; that is, AB = BA.
(d) Assume that A is a real diagonal matrix with diagonal entries
a1,a2,...,0,. It must be shown that

(San) < (2a) (3 o)

3, =1

This is readily seen from the fact that

(o) s (55 (53%)

i=1

Both equalities hold if and only if the vectors (ay,...,a,) and
(b11,-..,bnn) are linearly dependent and all b;; = O when ¢ # j.

The eigenvalues of AB are not real in general (but tr(AB) is). Take

-(23) -3 2)

By the spectral decomposition, write A = UDU*, where U is unitary
and D = diag(A1,...,Ar,0,...,0), \; #0,1=1,...,7. Let A =
diag(),...,A,) and denote the n x r matrix of the first r columns of
U by U,. Then

A=UDU* = U,AU".

Let [A]q be an r X r principal submatrix of A lying in the intersections
of the rows and columns a;,. .., a,. Denote by V,. the submatrix of U,
that consists of the rows of o, ..., a, of U,.. Then [4], = V.AV* and
det[A], = det A|detV,.|2 = A;--- ;| det V,|2. If [A], is nonsingular,
then det[A], has the same sign as Ay - - - A,. It follows that all nonzero
r X r principal minors of A have the same sign.
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4.17 Denote the sum of the entries of row i of A € M,(R) by r;. Then

S(A)=ri+ro+---+ry.

Since a;x = ai; and by interchanging the summands,

S(A?) =

M

a Eod -

1 a1 3

[ - Juub
'Ti.

.

il -

oy &
il
[y

I

[o"

I
\E

ER
I
[ ]

2
) (the Cauchy-Schwarz inequality)
k=1

i

4.18 We only show that (a)=>(e), (f)=(b), (g)=(a), and (h)<>(a).

(a)=>(e): Let A = U* diag(D,0)U be the spectral decomposition of
A, where D is r x r, positive diagonal, nonsingular. Let U; be the first
r rows of U. Then A = Uy DY2. DY2y, = T*T, where T = D'/?U,.

To see (f)=>(b), let A = U* diag(A,,...,A)U, where );’s are (real)
eigenvalues of A and U is unitary, and let

FO) =AM = A] = 2" — A" ! £ A2 — ... 4 (=1) 0.

v
[= J=
N
M =
3 N
ﬂ
x

!
)
S

It can be shown that «; is the sum of all i x ¢« minors of A, i =
1,2,...,n. Thus if all the minors of A are nonnegative, then f(A) has
no negative zeros.

For (g)=>(a): Take X = zz*, where z is any column vector.

For (h)<(a): If z*Axz > O for all vector z, then y*(X*AX)y =
(Xy)*A(Xy) > 0 for all y; this says X*AX > 0. Conversely, if
for some (fixed) positive integer m, X*AX > 0 for all n x m matrices
X, then for any n-column vector, we take X to be the n x m matrix
with first column z and everything else 0. It follows that z* Az > 0.
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(A+ B)? = A2+ AB+ BA+ B% > 0. But A + AB + BA and
AB + BA are not necessarily positive semidefinite. Take

11 2 1
a=(1 )20 5-(2 )20

A2+AB+BA=(§, g)zo, AB+BA=(§ i)zo.

Then

If A and AB 4+ BA are positive definite, we show that B is positive
definite. Let C = AB + BA. Multiply C by A~ 3 from both sides:

0< A 3CA™% =AiBA~% + A"iBA% =D + D",

where D = A2BA—}. It is sufficient to show that D is nonsingular.
Suppose Dz = 0 for some nonzero column vector z. Then z*D* =0
and z*(D+D*)z = £* Dz +z*D*z = 0. This contradicts D+ D* > 0.

Note that (A+ B)*(A+ B) > 0. Expanding this yields the inequality.
Note that 0 < A < I = 0 < A% < A. It follows that, by expanding,

05(A+B-1/2)23AB+BA+%.

-2<A<], -V2-1<u<v2-1.

(a) is immediate from (b). So it is sufficient to show (b). Let Ar =
Az, where £ = (z,,23,...,2,)¢ # 0. Since A is Hermitian, \ is
real. Choose an % so that |z;| = max;|z;|. Then z; # 0. From
> i=10ijTj = Az;, we have (A — 1)z, = 37, . ai;;. By taking
absolute values, we get |A — 1} |z;| < |z;]. It follows that A —1| < 1;
that is, 0 < A < 2. So A is positive semidefinite. (c) follows from an
application of the Hadamard inequality to |A|, which is the product

of all eigenvalues of A. (See Problem 4.56.)

01)-
Yes, when z € R". For instance, A = (_01 [1,) No, when z € C*. In
this case, A must be Hermitian.

(a) Consider each diagonal entry as a minor, or take z to be the
column vector whose i-th component is 1, and 0 elsewhere. Then
ai; = z*Az. The second part follows from (b).
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4.27

4.28

4.29

(b) Consider the 2 x 2 minors.
(c) Write A = U*diag(A1,...,An)U.

(d) Assume that B is the principal submatrix of A in the upper-
left corner. If |B| = 0, then Bv = 0 for some v # 0. Set
z = (v*,0,...,0)t € C". Then z # 0, Az = 0. So A is singular.

(e) A is unitarily diagonalizable. Let A = U*DU, where D =
diag(A1, A2,-..,An). Split each A; # 0 as ﬁl—‘/lf P cannot
be unitary in general unless the eigenvalues of A are 1 or 0.

(f) z*Az > 0 = (z*Az)’ 2 0. So 2*A*z > 0 or y*A’y > 0 for all
y = Z. Thus At > 0. Likewise A > 0.

(Az)*(Az) = (2*A*)(Az) = 0 if and only if Az = 0. If A > 0, then
tr A = 0 if and only if A =0.

Since the identity holds for every z if and only if it holds for Uz with
y replaced by Uy, we may assume that A is a diagonal matrix.

Let A = diag(A;1, A2,...,An). Then for any 2 € C*,

n
T Az = Z/\k|$k|2-
k=1

Notice that

Tk + yeTr — Melyel® = —Ae(ye — A 2e) (e — A z) + Azl
It follows, by taking sum and maximizing both sides, that
n
mg.x(:z:‘y +y'z -y AY) =) Azl =z"A7g,
k=1

and the maximum is attained at y = (y1,¥2,-..,¥n), Where yx =
Al k=1,2,...,n.

It is sufficient to show that Im(AB) N Ker(AB) = {0}. Let y be in
the intersection and write y = (AB)x for some z. Since yKer(AB),
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(AB)y = (AB)%z = 0. We claim (AB)z = 0 as follows:

(AB)’z=0 = (ABAB)z=0
= (2*B)(ABAB)z =0
= (z*BABY?)(B'/2ABz)=0
= (BY2AB)z =0
= BY%(BY2AB)z = (BAB)z =0
= (z*BAY?)(AY?Bz)=0
= (AY2B)z =0
= (AB)z=0.

(a) Let A=U"diag(\,...,An)U, where U is unitary. Take
B = U* diag(Mi,. .., A3)U.
To show the uniqueness, suppose C > 0 and C? = B2 = A. Let
C = Vdiag(Ai,...,\3)V* and T = UV.
Then
T diag(A1,-..,An) = diag(X, ..., )T

A direct computation gives B = C.

(b) Any normal matrix has a square root. It is neither unique nor
positive semidefinite in general.

(¢) The square roots are, respectively,

v2 0 ) 1 (11 1({ 3 -1
(0 0 ’(/_5(1 1)"2'(—1 3)‘
A2C = A(AC) = A(CA) = (AC)A = (CA)A = CA?, For the square
root, let A = U*DU, where U is unitary, D = diag(d,,ds,.-.,d,),
where each d, > 0. Let W = UCU*. Then AC = CA gives DW =
WD. So dyw;; = w;jd,. This implies \/I‘wij = wyj \/d—,-; that is,
DiW = WD3i. This immediately yields A3C = CAj.

(a) If A= A*, then A2 =A*A>0.
(b) If A* = —A, then —A%? = (—A)A=A*A>0.
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4.33

4.34

4.35

(c) Obvious.

None of the converses is true. For (a) and (b), take

01 O 1 2 -1
00 O or 1{ 0 -1 1 .
0 0 -1 0 0 1

The square of the latter matrix is —I3. For (c), take

1 0 -1
2 -1 1 |,
0 0 1

whose diagonal entries are the same as the eigenvalues.
It must be shown that
(tA+tB)*(tA+tB) <tA*A+iB*B
or
t?A*A+ti(B"A+ A*B)+*B*B < tA"A +{B*B,
which is
0<t{(A*A+ B'B—B"A— A*B) = ti{(A" — B")(A - B).
This is always true.

tA2+(1-t)B?2-(tA+(1-t)B)2 =t(1-t)(A—- B)? > 0. This yiclds
the first inequality. Note that (a — b)] < A - B < (b — a)I gives
(A-B)? < (b—a)?I and (1 —¢) < 1. The second inequality follows.

(a) Let T be an invertible matrix such that A = T*T. Since
(T~YY*BT ! >0,

we have a unitary matrix U such that (T-!)*BT-! = UDU”*,
where D is a diagonal matrix with nonnegative entries. Put
P=T"1U. Then P*AP=1, P*BP=D.

(b) Use induction on n. Let S be an invertible matrix such that

0

S*AS = ( g L ), where r = r(A) < n.



196

(d)
(e)

(f)

()

HINTS AND ANSWERS FOR CHAPTER 4

Write
* _ bll. «
S*BS = ( o B )

If by; = 0, then a = 0. The conclusion follows by induction on
B; and A,, which is obtained by deleting the first row and first
column of S*AS. If by; #0, let

_(1 -bija
r=(o %)

T*S*AST = §*AS

Then

and

.qn _f bn 0
ressro (% 5 0 )zo

Notice that B; — a‘bl'lla > 0. By induction, there exists an
invertible (n — 1) x (n — 1) matrix P, such that Py A; P, and
P;(B; — a*bj; @) P, are both diagonal. Now set

1 0
pest(} 2).
The desired conclusion follows immediately.
The B > 0 cannot be changed by a Hermitian B. Take

1 0 01
a=(19) mam=(21).
It is immediate from (a).
By (b).
It follows from (b) and the Hélder inequality (which can be
proved by induction): for nonnegative numbers a’s and b’s,

(a1---an)’% + (bl“'bn)% < [(ay + by) "'(an"l'bn)]%-

Use (b) and the fact that a*bf < ta + &b for a,b > 0 and ¢ € [0, 1].
For the particular case, take ¢t = 1. Note that 2 < 2"

Since vab < 1(a + b) when q, b > 0 and by (d).
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4.36 A = (A - B) + B. By Problem 4.35, |A| > |B|. Since B is positive
definite, there exists a nonsingular matrix P such that P*BP = I.
Let C = P*(A—B)P. Then C > 0. Since A-AB = (A-B)-(\-1)B,
we have |P*||A—AB||P|=|C—(A—=1)I|. Thus A—=1>0and A > 1.

4.37

(a)
(b)
()
(d)

(e)

(£)

(h)

z*(C*AC - C*BC)z = (Cz)*(A—- B)(Cz) > 0.
(A-B)+(C-D)>0.
A-B20=>tr(A-B)>0=>trA>trB.
A-B2>0=2*(A-B)x >0, or z* Az > z*Bz. Thus

Amax(A4) = llmlfa._xl z* Az > IImIIa-xl z* Bx = Apax(B).

Note that |A| = |(A — B) + B| > |B|. An alternative proof:
If | B]| = 0, there is nothing to show. Assume that |B| # 0. Then

A>B = B iAB i>]

and
IBAB~%|>1 = |A|>]B]

Use Problem 4.35.
This can be proved in different ways. A directly proof: If B = I,

A>T = I>Ai[A%,
namely, I > A~!. In general,
A>B = B iAB 1>

Thus I > BA~1B% and B! > A~1.

First note that A7 — B3 is Hermitian. It must be shown that
the eigenvalues of A% — B3 are nonnegative. Let

(A3 — B3)z =Xz, z#0.

Then
Bir= Aiz— pY 2

Notice that (the Cauchy-Schwarz inequality)

lz*y| < (z*z)3 (y*y)3, z,y€C™
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(a)
(b)

()

(d)
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Since A > B, we have (z"Az)? > (z*Bz)? and

(z*Az)? (z* Az)
(z*Az)3 (z* Bz)
|(z* A3)(Biz)|

|z* A% (Adz — o)
|z* Az — /\a:"A%a:L

* Az

1
2
1
2

vV IV

Thus either A = 0 or \z* A%z = 2r* Az > 0,s0A>0.
It is not true that A2 > B? in general. Take

A=(11) 2=(11),

AB = A3iA3B and Ai(AB)BA: have the same eigenvalues,
while the latter one is Hermitian, thus all eigenvalues are real.

A+B>0 & I+A"iBA~i >0 ¢ all the eigenvalues of
A-3iBA~3% are greater than or equal to —1. Now it is sufficient
to notice that A—2 BA~3% and A~!B have the same eigenvalues.

r(AB) = r(B) = r(AY2BA'/?). The latter equals the number of
nonzero eigenvalues of AY/2BA'/2, as it is Hermitian. Note that
AY/2BAY/2 and AB have the same number of nonzero eigenval-

ues. If A > 0, then it is not true. Take A = (30) and B = ({}).
Then r(AB) = 1, while AB has no nonzero eigenvalues.

A= ((1) _?2) ,B= (} __11) . The eigenvalues of AB are 1 (3+V/Ti).
Let A > 0. The AB has the same eigenvalues as the Hermitian
matrix A3 BAi. The eigenvalues of the latter are all real.

Let A > 0. Then AB is similar to A~3(AB)A% = AiBA3,
which is Hermitian, and of course diagonalizable.
A=(}1),B=(}2). The eigenvalues of AB are 0,0. AB
cannot be diagonalizable, since AB # 0.

4.40 Let ¢ = z* Az, where ||z|| = 1. By the Cauchy-Schwarz inequality

< e = |ec|? < (z* A" Az)?.

a:*(A_;A.)a:= c-;—c':
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4.41

Thus

don(F57) = e (55
< quzaicl(m*A"Ax);

Wip

IA

( max m*A*Aa:)

z*z=1

Omax(A)-

For the trace inequality, noting that A — A* is skew-Hermitian, we
have tr(A — A*)? < 0, which implies, by expanding and taking trace,

tr A% + tr(A*)? < 2tr A*A,

equivalently,

(d)

()
()

tr (A + Aw)2 < tr(A*A).

(Ad)* = A3,
AB = A3 (A3 B) has the same eigenvalues as A3 BA3 > 0.
AB is not positive semidefinite in general. Take

1 0 1 1
4=(00) #=(11)
If A and B commute, then AB is Hermitian, since

(AB)* = B*A* = BA = AB.

As AB and A2 BA} have the same eigenvalues, AB > 0 by (a).
Conversely, if AB > 0, then AB is Hermitian and it follows that

AB = (AB)" = B*A" = BA.

Use tr(XY) = tr(Y X).

Let A1 (X), A2(X),-. .., Aq(X) denote the eigenvalues of X. Since
AB?A = (AB)(BA) and BA?B = (BA)(AB) have the same
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eigenvalues,

HABA)} = 3 Ml(AB*A))
=1

= En: M(AB?4)

=1
n

- 3 VXEFE)

i=1

= tr(BA?B)3.

(g) It may be assumed that A = diag(A1,- .., An). Suppose that
bi1,. .. ,bnn are the main diagonal entries of B. Then

tr(AB)

Albl] + e + Anbnn
< (M +-ee+ Aa) (b + - + ban)
tr Atr B.

(h) Assume that A = diag(A1,...,An). Then
tr(AB)

Abi1 + -+ Apbnn
Ama.x(A)(bll +- 4+ bnn)
Amax(A) tr B.

A

(1)
tf(AB) = Mbu+-*+ Anban
= [@bu+ o+ 2Anban)
+(2A1b11 + -+ + 22nbnn)]
FOF +h 4 48
+(2A1b11 + - + 2Anbnn)]
< —l—()u + oot A+ bur + -+ ban)’

IA

= —i—(t.rA + tr B)2.

(i) Note that A2+ B2 — AB— BA= (A — B)? > 0. Take trace.

No. Take A=(3%), B=(30)-
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4.42

4.43

4.44

(a)
(b)
(c)
(d)
(e)
()

(8)

(k)
(1)

(d)

(AB+ BA)* = B*A*+ A*'B* = BA+ AB = AB + BA.
No, in general. Take A = (3(1)) , B=(11).

No.

Yes.

Yes. A2— AB-BA+B?>=(A-B)?>0.

Note that tr(XY) > 0 when X,Y > 0. It follows that

tr(CD) — tr(AB) = tr(CD—CB)+tr(CB - AB)
= tr[C(D - B)] + tr[(C — A)B] > 0.
Since A(XY) = A(Y X),
Amax(BYI—=B>0 = Ai[\pa(B)I - BJA? >0
= Amax(B)A > A3BA:
= Amax(A)Amax(B) 2
Amax(A2 BA%) = Anax(AB).

Use the result that Amax(A) = max)z|=1 Z*Az.
For three positive semidefinite matrices, there is no similar result.

In fact, the eigenvalues of ABC can be imaginary numbers. For
instance, the eigenvalues of ABC are 0 and 8 + ¢, where

(1) s (21 e=(3 1)

Take 4 = (32) snd B= (179).

No, because tr(A+ B) =trA+trB > 0.

Teke A= (32), B=(37), C=(38) Then 4, B, and C

are positive definite, the eigenvalues of ABC are —5,—12.
No. Note that |ABC| > 0.

Since A is positive semidefinite, let A = U*DU, where U is unitary
and D = diag(A1,Az,...,An), Ai > 0. Then A2B = BA? if and only
if U*D?UB = BU*D?U if and only if D>(UBU*) = (UBU*)D?.
Let C = UBU*. Then D2C = CD?. We show that DC = CD.
D*C = CD? = MX¢,; = cijA? for all < and j. If ¢;; # O, then
Ai = Aj. Thus ¢jjAi = ;A for all 4,5 and DC = C'D. It follows that
D(UBU*) = (UBU*)D or AB = BA.

The conclusion is not true in general for Hermitian matrix A. Take

A=

diag(1,—1). Then every 2 x 2 matrix commutes with AZ.
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4.45

4.46

4.47

4.48

4.49

4.50
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We show that C' commutes with A + B first. For this, we show that
C commutes with (A + B)? and then C commutes with A + B, as one
may prove if X commutes with a positive semidefinite matrix Y, then
X commutes with the square root of Y. Since C is Hermitian and
commutes with AB, (AB)C = C(AB) implies C*(AB)* = (AB)*C*;
that is, C(BA) = (BA)C. In other words, C commutes with BA.
Now compute C(A + B)? and (A + B)2C. Since C commutes with
A — B, we have C(A — B)? = (A — B)3C. Along with CAB = ABC
and CBA = BAC, we get C(A+B)? = (A+B)%C. Thus C(A+B) =
(A+ B)C. It follows that C commutes with 24 = (A+ B)+(A— B).

Let Bz = Az,  # 0. Pre-postmultiplying A > B*AB by z* and z,
we have z* Az > |A|*z* Az. Thus |A| < 1.

This does not hold for singular values. Take A = ((1) g) and B = (8 (2) .
Then A — B*AB = I; > 0. But the largest singular value of B is 2.

As A is a principal submatrix of the block matrix, A~ exists. Thus

I 0 A B I —-A"'B
—-B*A7! 1T B* C 0 I

A 0
"( 0 C-B"A"'B ) > 0.

By a simple computation

A B\(1I .
(I,I)(B, C)(I)—A+B +B+C>0.

Take

(42)20 (35)=

It is sufficient to note that

A B A-B 0 1 (I 1
P(B A)P“( 0 A+B)’ P‘—E(—I 1)‘
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4.51

4.52
4.53

4.54

A +iB > 0 if and only if z*(A + iB)z > 0 for all complex column
vectors z. Taking conjugate gives y*(A —iB)y > 0, y = % So
A+iB >0ifand only if A—iB > 0. Since A+iB >0, A= A* and
Bt = —B. So the partitioned matrix M = (’; 2 ) is real symmetric.
Conversely, if M is real symmetric, then A + ¢B is Hermitian. We
show that all the eigenvalues of M are nonnegative if A +iB > 0
(then so A —iB > 0). This is seen through similarity by observing

e A+iB O RN
M=5 ( o 4a-iB )% S=H\ i1 -1 )

Ai +Al‘, i=1,2,...,n, plus n zeros.

(a) By computation,
A AT 2 .
|,\I—M|—|_A N ‘—|,\I—AA|.

Putting A = 0 in the above identity gives
(- M| = (-1)"|A47|
or
|M| = (—1)"| det A%
(b) The eigenvalues of M are
01(A),...,0,(4), —on(A),...,—01(A4),

where o;(A)’s are the singular values of A.
(¢c) If A+#0, then M has negative eigenvalues.
(d) The eigenvalues of N are 1+ o;(A),i=1,2,...,n.
First inequality: 02,,(AB) = Amax(B*A*AB) = Anax(BB*A*A) <
Amax(BB*)Amax(A* A) = 03,0 (A)0 2,0 (B).
To show the inequality for sum, let A = (:. 3) and B = (};’_ 13).
’I~‘hen~fi and B are Hermitian matrices. The largest eigenvalue of
A + B is onmax(A + B), the largest eigenvalue of A is opmax(A4), and

that of B i8 omax(B). Since Amax(A + B) < Amax(A) + Amax(B), the
desired inequality follows.

For the last inequality, it is sufficient to notice that

A B?= _(A+B)(A-B)+ ;(A- B)(A+B).
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4.56
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By computing A*A directly, we see that the singular values of A
are /n,/m,1,...,1. Since A is real symmetric, the singular values
are the absolute values of the eigenvalues of A. Notice that tr A =
—(n—2). Since A is congruent to ((1) L. 0 wheree = (1,...,1)

_1—ete J?
is a row vector of n — 1 components, A has n — 1 negative eigenvalues.

The eigenvalues of A are /n,—/n,—1,...,—-1.

The fact that |A + B| > | A| for A > 0 and B > 0 will play the basic

role in the proofs. Note that equality holds if and only if B = 0.

(a) By inductiononn. Let A = (‘2} :1) .Then A; 2 0. If |A1| =0,
then |[A| = 0. If a3; = 0, then o = 0. There is nothing to show
in both cases. Assume that a;; # 0. Upon computation,

4|

ail 0
0 A -ajlate

anlA; —aplaal

< anl4i|,

since 0 < A; —aj'e*a < A;. The desired inequality follows by
induction on A;. Equality case is readily seen.

(b) If B and D are both singular, there is nothing to prove. Without
loss of generality, assume that B is nonsingular. Then

B C

Cc* D

¢ b-csc]

|A|=\

0 D-C*B-C
|B||D — C*B~1(C|
< |B]||D|.

If equality holds and if D > 0, then
C*B~1C=0, or C=0.
(c) If B~! exists, then
C*B"'C<D = [C*||B7}|IC|<|D| = [C*C|<|BI|D.

If B is singular, using B + €l,e > 0 to substitute B, we have
|C*C| < |B + €l||D|. Letting ¢ — 0, the inequality follows. For
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the equality case, let D — C*B~1C =E > 0. If E # 0, then
|D|=|E+ C*B~'C| > |C*B~IC]|.

When B, C, and D are of different sizes, it is not true. Take

(10 1 et
5-(19), c=aor, o=

(d) Use (a) on E*E.
(e) Use (b) on F*F.
(f) Apply (c) to

I X*\°(I X*\ _(I+Y*Y X*+Y*
Y 1I Y I o X+Y I+XX* )
4.87 If A% > 0, then the eigenvalues of A2 are nonnegative. However, the

eigenvalues of A? are the squares of the eigenvalues of A: If A? > 0,
then X is real. The converse is not true in general.

4.58 (a) H = H* = A* —iB" implies A = A® and B = —B*. Thus A is
real symmetric and B is skew-symmetric. To show that A > 0,
we show that the eigenvalues of A are all nonnegative.

Let U be an orthogonal matrix such that UtAU is the real diag-
onal matrix with the eigenvalues of A on the diagonal. Since

(U*BU)t = U*B'U = -U*BU,

the diagonal entries of UtBU are all zero, and so are the diagonal
entries of 41U/t BU. However,

U'HU = U*AU +iU*BU 20,

thus the diagonal entries of H, which are the eigenvalues of A,
are all nonnegative.

(b) Consider the 2 x 2 minor of H formed by the entries on the s-th
and ¢-th columns and rows.

(c) Following the proof of (a) and using the Hadamard inequality
|H| = |U*HU| = |U*AU +iU'BU| < |U*AU| = |A|.
Equality holds if and only if B = 0 or A has a zero eigenvalue.
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4.60
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(d) It is immediate from (c).
The converse of (d) is not true. Consider

n=(3 ) (5 5)

If H is just Hermitian, then Bt = —B. Other parts are inconclusive.

(a) Let A = UDV be a singular value decomposition of A. Then
A*A = V*DU*UDV = V*D?V, while AA* = UDVV*DU* =
UD?*U* = UV(V*D?*V)V*U* = W(A*A)W*, where W = UV
is a unitary matrix. So A*A and AA* are unitarily similar.

(by A=UDV =({UDU*)(UV)=HP,where H=UDU*,P=UV.

(c) Let A=UDV, where U is m x m, D is m x n with (i, )-entries
3i(A), the singular values of A, ¢ = 1,2,...,min{m,n}, V is
n x n. Then AA* = UDD'U* and A = UDV = AA*Q, where
@ = URV, R is the m x n matrix with (, £)-entries 1/s;(A) when
8;(A) > 0, and 0 otherwise.

(a) [det m(A)]? = det(A*A) = |det A]%.

(b) Since A* = A.

(c) A*A=V"D?V,s0m(A) = V*DV. Similarly m(A*) = UDU*.

(d) It is immediate from (c).

(e) The square root is unique.

(f) Upon computation

m(4) A* (Vo0 D D V 0 >0
A mA) ) \ 0 U D D o U )="

() Take A= (33)-

(h) Since H is Hermitian, we show that H commutes with A*A.
A*AH = A*HA = (HA)*A = (AH)*A = HAA. 1t follows
that H commutes with the square root of A®* A; that is, m(A).

By direct computation, m(A) and m(A*) are, respectively,

n)= (g 7). mar=(g §);

m(A) = m(4*) = I;
w51 1), me- (1)



HiINTS AND ANSWERS FOR CHAPTER 4 207

4.61

4.62

4.63

4.64

Note that (A, B)*(A, B) = 0. For the second part, use Problem 4.56.
A direct proof goes as follows. If r(A) < n, then

|A*A| = |A*B| = |B*A| =0.
Otherwise, observing that Aynax[A(A*A)~1A*] = 1, we have
I, > A(A*A)7 1A%,
which implies
B*B > B*A(A*A)'A'B.
Taking the determinants,

IB*B| > |B*A(A*A)~'A"B
= |B*A||(A*4)""||A*B]
— |B*A||A"AI"YA*B|.

t
A*A B*A : A%A| |B*A A"A| |A*B

If A=U(I,®0)U* for some unitary matrix U, then it is easy to check
that 4£A° — AA*. Now suppose 444~ = AA* and let A = U*DU,
where U is unitary and D is an upper-triangular matrix with main
diagonal entries A, A, ..., M. Then 434 = AA* ig the same as
&%"’—‘ = DD*. The (1,1)-entry of 22&' is 3‘*‘-‘213‘3 Computing the
(1,1)-entry of DD*, we see that A; must be a nonnegative number
and the first row of D contains only 0 other than the (1,1)-entry A;.
Then A\; = A? gives A\; = 0 or 1. Inductively, we see that D is a
diagonal matrix with entries on the main diagonal are either 0 or 1.

It suffices to note that BB* is invertible for #(BB*) = r(B) and that
A . ey _ [ AA* AB*

If MA— B| =0, then 0= |A~%||]NMA— B||A~ 4| = |\ - A~ 3BA"i|.
Since B > 0, A" BA~3 > 0, thus the eigenvalue of A~3 BA~% are all
positive. Hence A > 0. If all the roots of |]AA — B| = 0 are 1, then all
the roots of |\]—A~5BA~%|are 1. Thus A~3BA~% = I. Therefore,
A = B. Conversely, if A = B, then |[AA—B| = |AA—A| = (A-1)"|A4|.
Since |A| #0, A = 1.
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4.65

4.66
4.67

4.68

HINTs AND ANSWERS FOR CHAPTER 4

(a) diag(ai1,...,aqnn)-

(b) A.

(c) One way to prove this is to write A = U*PU = Y. \iuju; and
B =V"QV = }_; pjvjv;, where A; and p; are nonnegative num-
bers, and u; and v; are rows of the unitary matrices P and Q,
respectively. Then directly compute z*(A o B)z, where x € C™.

Another way to prove it is to use tensor product. Since A, B > 0,
suppose that A = C*C = ((¢;,¢;)) and B = D*D = ((d;, d,)),
where ¢,, d; be the i-th columns of C and D, respectively. Let

Ci ®dg = (clidljs s ,clidnja R )C‘nidlj" o 1cnidnj)t-
It is easy to check that
Ao B = ((ci,c;)(di, d;)) = ((c; ®dy, c; ®d;)) = K* K,

where K is the matrix with i-th column ¢; ® d,.
(d) Note that Apnax(A)I — A > 0. Thus

Mmex(A) — A]oB>0 of Amax(4)(I0B) > AoB.

The conclusion then follows since max;{bi;} < Amax(B).
(c) No. Take A= (11), B=(39).
(f) Note that a;;bi < -;-(af,- + b?i).

Compute the corresponding entries on both sides.

Let M = (4%, %"), N= (5% ). Then M, N > 0 and

1/2 , pl/2
MoN = ( Aol A'Y%oB )

Al/20B1/2 Bol]l
1/2 ., p1/2
( I AY20B ) > 0.

Al/2 o B1/2 I

(a) If A>0, then |4] >0and A~ > 0. For z # 0,

Az A 0 . A
zr 0 0 —z*A"1lz = _lA'(:B A lx) <0.
If A is singular, then use A + ¢l, ¢ > 0, for A above. Then
‘ A:',GI :): = —|A+el|(z*A1z) < 0.

Letting ¢ — 0 yields that the determinant is 0 or negative.
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(b) Denote § = z*A~1z. The inverse is

AN (I —-6"1zz*A"!) 67 1Az
5—1:3*.4—1 _5--1 .

4.69 (a) Notice that

I 0
-C*B™! I
B
0

Thus

B-1 0 I o
0 (b-c*B'Cc)! )\ -Cc*'B! 1 )"

It follows by a direct computation that
U=B'+Bc(b-c*B!'C)'C"B™!

and
W=(D-C*B~'C)".

Similarly, with D in the role of B,
W=D'4+DCc*(B-CDc*)"'cD!

and
U=(B- CD‘IC‘)‘I.

(b) By (a)
(P 5)=(% 5)-

(59)(% 2)(5 9=

4.70 2 and 0, n copies of each.

v
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4.72

4.73
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(a) Note that
A2 24+ I=(A-D*=(A-D*(A-1)>0.
Thus A2 4+ I > 2A. Pre- and postmultiplying by A~3, one has
A+ A1 >2l

It can also be proved by writing A as A = U* diag(\1, Mg, ..., Ap)U.
(b) Partition A and A~! as

[ & o 1_( b B
i=(& 5) (s 5)

Then by Problem 4.69

4= (3 8)]ela- (3 )]0
which yields

-1 1 0
AocA Z ( 0 Al o Al_l .
The desired result follows by an induction on A;.

(a) Let z = (x1,...,Z,)" be an eigenvector of A belonging to eigen-
value ), and let

Izil = max{l:vll, ceey |xn|}°

Consider the i-th component of both sides of Ax = Azx.
(b) Ae=e, wheree=(1,...,1)%
() Ae = e results in A~le = ¢ if A~! exists.
Since A is a real orthogonal matrix; that is, A*A = I, we see |\| = 1.
So a? + 8% = 1. A(z+yi) = (a+bi)(z + yi) implies Az = az — by and
Ay = ay + bz. Thus, ztAt = azt — by’ and y*A? = ay! + bzt. Since
AtA = I, we have r'z = (azt —by')(az—by) = a’ztz+b2yty—2absty.
Because a2 + b? = 1, we obtain b®ztz = b®yty — 2abaty, which implies
2azty = —bxtz + byty, as b # 0. With this in mind, compute zty:
'y = (az’ - by*)(ay+ bz)

= a’z'y + abatz — abyly — b2y'z
a’zty + abxtz — abyly — bizty
(a® — b*)z'y — a(-bz'z + by'y)
(a2 — b?)zty — 2a3zty

= -z%.
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4.74

4.75
4.76

4.77

Thus 'y = 0. Therefore 0 = —bztz + by'y and if b # 0, ztz = y'y.

(a), (b), and (c) arc casy.

(d)

(e)
(f)

(b)
(i)

)
(k)

M

Let Uz = Az, z # 0. Then |A] = 1 because
IM2z*z = (Az)*(\z) = (Uz)*(Uz) = z*U*Uz = z*=z.

Uz = Az implies that U*z = %x.

Let U = V* diag()1,...,A)V, where V is a unitary matrix and
the A’s are the eigenvalues of U, each of which equals 1 in absolute
value. Let y = Vz = (y1,...,¥a)". Then y is a unit vector and

|£L"U.’B| = |A1|y1|2 +.ee 4 Aﬂlyﬂlzl
< |A1“'yl|2 +--+ |An”yn|2
lyal2 + -+ lynl? = 1.

\Uz|| = Vz*U*Uz = Vz*z = 1.
Each column or row vector of U is a unit vector.
Let Uz = Mz, Uy = A2y, A1 # A2. Then

(A1a)(z"y) = (M2)* (Aey) = (Uz)*(Uy) = =*y,

which, with A\; # A and |A;| = |A2| = 1, implies z*y = 0.
The column vectors form a basis since U is nonsingular. They
form an orthonormal basis since uju; =1 ifi = j and 0 otherwise.

Note that the k rows are linearly independent. Thus the rank of
the submatrix of these rows is k. So there is a k£ x k submatrix
whose determinant is nonzero.

It may be assumed that A is diagonal. Note that each |u;| < 1.

(a), (b), (c), (g), and (j) imply that U is unitary.

By definition and direct verification.

Let 4y, u3,...,u, be the columns of U. Consider the matrix U*U
whose (3, j)-entry is u}u; and use the Hadamard inequality.

Use induction on n. Suppose that A is upper-triangular. It can
be seen by taking z = (0,...,0,1)* that everything except the last
component in the last column of A is 0.
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4.79

4.80
4.81

4.82

4.83

4.84

4.85
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Verify that U*U = I. Note that for any positive integer k,

It is easy to compute that
n
trl(U 0 A)* (Uo Al = Y fuss Plasl.
i, 5=1
Thus
n }
Omax(U o A) < ( Y |u,-,-|2|ai,-12) .
i, J=1
Now take U to be the unitary matrix in Problem 4.78.
Note that +i cannot be the eigenvalues of A.
If A and A* commute, then their inverses commute. Thus
(A"1A*)"(A714%) = A(A") 1A71A* = A4 1(4") 1A =1

So A~1A* is unitary. Conversely, if A~1A* is unitary, (A71A*)*
= (A"1A4*)". Thus A(A*)~! = (A*)"1A, which yields AA* = A*A.

cosf sinf cosf@ sind 0cR
—sinf@ cosf /' \ sinf@ —cosf /)’ )

Since A’ equals the adjoint adj(A) of A, we have AA* = Aadj(A) =
|A|I3. It follows that |A|2 = |A|°. So |A| = 0 or |A| = 1. However,
a1 # 0 and [A] = a11C11 + 012C12 + ¢13C13 = a3y + aly +af3 > 0,
where C;; are cofactors of a;;. So |A| =1 and A is orthogonal.

First, find the eigenvalues of A and the corresponding eigenvectors,
then find an orthonormal basis for R from the eigenvectors.

1 1 1
V2 V6 3
T=| -% —-% 7 |» T'AT =diag(2,2,8).
2 1
0 % &

Suppose for real orthogonal matrices A and B, 42 = AB + B2. Then
A2 = (A+ B)B and A(A—B) = B2 So A+ B = A?’B~! and
A — B = A71B? are orthogonal, since A~! and B? are orthogonal.
This reveals

I=(A+B)(A+B)=2I+A'B+ B*A
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4.86

4.87

4088
4.89

4.90

and
I=(A-B)}!A—-B)=2I-A'B- B'A.

Adding them gives 2I = 41. A contradiction. If A and B are assumed
to be invertible, then it is possible. Take A = I and B = Al, where

Aisaroot of A2+ X —1=0,say, A = :1%5, for instance.

First note that
|A + B| = |At + BY.

Multiply both sides by |A| and |B|, respectively, to get
|A||A + B| = |A||At + Bt| = |I + AB!|

and
|B||A + B| = |BA + I|* = |I + ABY.
Thus
(l4] - 1B|)lA+ B| =0
and

|A|=1B| if |A+B|#0,

which implies |[A| = 0, as |A| + |B| = 0. Thus A is singular. This
contradicts the orthogonality of A.

It is false for unitary matrices. Take A = I; and B = il;.

Since A > 0, there exists a real invertible matrix P such that PtAP =
I. Since (P*BP)! = —P'BP, P'BP is real skew-symmetric and
thus its eigenvalues are 0 or nonreal complex numbers; the nonreal
eigenvalues appear in conjugate pairs. Let T be a real invertible
matrix such that T-1(P*BP)T = diag(\y, A2, -- ., An), where the );
are either 0 or nonreal complex numbers in conjugate pairs. It follows
that T-'P!(A + B)PT = diag(1 + A\1,1 + Ag,...,1 + );). By taking
determinants, we see that |4 + B| > 0.

By definition and direct verification.
A= B+C = F+iG, where B = F = AtA" jg Hermitian, C = 454"

2
is skew-Hermitian, and G = —i%— is Hermitian.

(a) No.
(b) Yes.
(¢) No.
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It is easy to see that (a)<>(b). We first show that (a), (c), (d), and
(e) are all equivalent. To see (a) implies (c), use induction. If n =1,
there is nothing to prove. Suppose it is true for n — 1. For the case
of n, let u; be a unit eigenvector belonging to the eigenvalue A; of A.
Let U; be a unitary matrix with v, as its first column. Then U} AU,

is of the form
)«1 a
0 A /)

The normality of A yields a = 0. (c) follows by induction.
It is obvious that (c) implies (a).

(c)<(d): Note that U* AU = D, where D = diag(};,...,Ay), if and
only if AU = UD, or AU; = \U;, where U; is the i-th column of U.

(c)e(e): If Av = M, v # 0, assume that v is a unit vector. Let
U = (v,U1) be a unitary matrix. Then, since A is normal,

earr (A0
UAU—(OAI).

It is easy to see by taking conjugate transpose that v is an eigen-
vector of A* corresponding to . To see the other direction, let
A be an upper-triangular matrix with nonzero (1,1)-entry. Take
e1 = (1,0,...,0). Then e; is an eigenvector of A. If e, is an eigen-
vector of A*, then the first column of A* must consist of zeros except
the first component. Use induction hypothesis on n.

(f)¢>(c): If A* = AU, then
A*A = A*(A*)" = (AU)(AU)* = AA*
and A is normal; hence (c) holds. To see the converse, let
A = S*diag(A;,...,n)S,
where S is unitary. Take
U = §*diag(l1,...,n)S,

where [; = é_f if \; # 0, and |; = 1 otherwise, ¢ = 1,...,n.
Similarly (g) is equivalent to (c).

(c)=>(h) is obvious. To see the converse, assume that A is an upper-
triangular matrix and consider the trace of A*A.
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(i)=(c): Let A be upper-triangular. Consider the diagonal of A*A.

(j)=(a): Note that for matrices X and Y of the same size
tr(XY) = tr(Y X).
On one hand, by computation,
tr(A*A — AA")*(A*A - AA") =tr(A*A - AA*)? =
tr(A*A)? — tr[(A*)%A%) — tr[A%(A4*)%] + tr(AA*)2 = 0.
On the other hand,
tr(X*X)=0& X =0,
thus A*A — AA* =0, that is, A is normal.
(k)=>(a): This is because |Az| = ||A*z| implies
z*A* Az = 2 AA*z;

that is
r"(A*A- AA*)z =0

for all z € C*. Thus A*A — AA* =0 and A is normal.
(1)=(a): By a direct verification.
(m)=>(a): Note that tr(A*A — AA*) = 0.
(n)=>(j): If AA*A = A* A%, then by multiplying A* from the left
A*AA*A = (A*)2 A2,
Thus (j) is immediate by taking trace.
(o)=(a): We show that (0)=>(j). Since A commutes with AA*—A*A,
A%A* 4+ A"A? = 2AA*A.
Multiply both sides by A* from the left
A*A%A* + (A*)2A% =24 AA*A.
(j) follows by taking trace for both sides.
(a) Take B = 44A" and C = —i4=A". Then BC = CB.
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(b) Let A = Udiag(M)U* and each A\ = |Ai|e®*. Take H =
D diag(|Ax|)U* and P = U diag(e?®)U*. Then A= HP = PH.

The converses of (a) and (b) are also true.
B and D are normal, C = 0.

Denote the correspondence by M ~ N. It is easy to show that if
M; ~ N; and M; ~ N; then M;M; ~ N;Ny and M* ~ N*. When
M >0, write M = C*C.

(a) We show that Ker A* C Ker A. The other way is similar. Let
z € KerA* or A*z =0,

then AA*r = 0 and A* Az = 0since A is normal. Thus z*A*Az =
(Az)*(Az) = 0 and Az = 0; that is, z € Ker A.
(b) Let
z€ImA* and z=A"y.
Since A is normal, by Problem 4.91, assume A* = AU for some
unitary matrix U, then
r=A'y= AUy € Im A.

Thus Im A* C Im A. The other way around is similar.
(c) Since n = dim(Im A) + dim(Ker A) and Im A* = Im A, we show

Im A* N Ker A = {0}.
Let £ = A*y and Az = 0. Then
0=y*'Az =y "AA*y = (A*y)*(A%y) = z=A*y=0.

First consider the case where A is a diagonal matrix. Let A =
diag()q,...,/\,.). Then AB = BA yields A.’b,‘j = Ajb,‘j; that is,
()\,' - Aj)bij = 0. Thus A_ibij = A_jb,'j, which implits A*B = BA*.
For the general case, let A = U* diag()y,-..,A,)U for some unitary
matrix U, then use the above argument with UBU"” for B.

Necessity =: AA=0= A*AA=0=> AA*"A=0=> AAtA =0. So
(AtA)*(AtA) = A*AA'A =0 and A'A=0.

Similarly, AA=0=>AA=0=> AAA* =0=> AA"A=0=> AA'A =
0. So (AA?)(AA®)* = AA'AA* =0 and AA* = 0.

Sufficiency <=: (AA)*(AA) = A'A*AA = AtAA*A = 0. So AA=0.
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4.98 (a)

(b)

()

(d)
()

Let A; be an eigenvalue of A and let
Vs, ={z| Az =Mz, 2 #0}
be the eigenspace of A,. Since A and B commute, for x € V,,,
A(Bz) = B(Az) = B(A1z) = A (Bz),

Vi, is an invariant subspace of C* under B, regarded as a linear
transformation on C™. As a linear transformation on V,, over
C, B has an eigenvalue u; € C and a unit eigenvector u; € V).
Let U; be a unitary matrix whose first column is u,, then

U;AU1=(’:)1 :1) and U{BU1=(’3 gl).

The normality of A and B implies that a = 8 = 0. Now apply

induction hypothescs to A; and B;.

It is immediate from (a). If the condition AB = BA is dropped,
the conclusion does not necessarily follow. Take

(3 8) 5=(1 1)

If AB* = B*A, then BA* = A*B. It follows that

(AB)(AB)* = A(BB")A"
(AB*)(BA*) (B is normal)

— (B*A)(A*B)

= B*(AA")B
(B*A*)(AB) (A is normal)

(AB)*(AB).

Hence AB is normal. Similarly, BA is normal.
By a direct computation.
Recall (Problem 4.91) that a matrix X is normal if and only if

(X" X) = Y- ()P

i=1

We show that
n
tr(A*B*BA) = ) |M(BA)2.

i=1
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tr(A*B*BA) = tr(B*BAA") (usetr XY =trYX)
= tr(BB*A*A) (A, B are normal)
tr(B*A*AB) (use tr XY =trY X)

= zn:l)\.-(AB)l2 (AB is normal)

=1

= Y nBaL

((1, ‘l,) and (i g) are not normal, but their product is normal.
A is diagonalizable with eigenvalues 1, 1, and -1 or 1, —1, and ~1.

If X is an eigenvalue of A, then A3 + X = 0, which has only zeros 0,
i, and —i. The complex roots of real-coefficient polynomial appear in
conjugate pairs, so do the eigenvalues of a real matrix. Thus tr 4 = 0.

The eigenvalues ) of A are k-th primitive roots of 1, so + = A. Since
z*¥ = 1 has at most k roots in C, some \;’s must be the same when
k<n.

Use Jordan form of A. Let J be a Jordan block of A. Then J* = I.
J has to be 1 x 1. Thus A is diagonalizable. For B, the character-
istic polynomial is A2 + 1, which has no real solution. So B is not
diagonalizable over R. (But B is diagonalizable over C.)

Use Jordan form and consider the case J2 = J for Jordan block J.

Let A™ =0 and B™ = 0. Then AB = BA implies (AB)F = AkB* =
0, where k > max{m,n}. For A + B, expanding (A + B)™+", gince
AB = BA, we see that every term in the expansion contains AP B9,
where p + ¢ =m + n. So either p > m or ¢ > n. Thus APB? =0 and
(A + B)m+n = 0.

(a) Let A =0. ThenI =I-A™ = (I-A)(I+ A+ A%+...4+A™"1),
Thus I — A is invertible and (I— A)™! = I+ A+ A2 4---+ A™7L,

(b) Replace A by —A in (a).

(c) Because all eigenvalues of A are 0.

(d) If A is diagonalizable, then A = 0 as all eigenvalues of A are 0.



HINTS AND ANSWERS FOR CHAPTER 4 219

4.106

4.107

4.108

4.109

4.110

4.111

Since A2 = A and B? = B, we have
(A+B)?=A’+ AB+BA+B>=A+ AB+BA+B.

If (A+ B)? = A+ B, then AB+ BA = 0; that is, AB = —~BA. Also,
AB = A2B = A(AB) = A(-BA) = —(AB)A = BA% = BA.
It follows that BA = —BA and BA =0. So AB =0.
If AB = BA =0, then obviously (A + B)2 = A+ B.
When A and B are Hermitian, (AB)* = B*A* = BA. Thus
(BA)? = [(AB)*]* = [(AB)*|* = (AB)* = B’A* = BA.

If A2 = A, then there exists an invertible matrix T such that
IO I
4—T_1 r T_T—l r T = BC
(0 0) (o) 1-,0) ’

where B = T! (") = (I;,0)T; both have rank r and CB = I,.
The converse is easy to check. If A2 = A, let T—1AT = diag(I,,0)
for some T. So T~(A + I)T = diag(2I,,1,—,) and T-1(2] — A)T =
diag(l, 2I_,). Thus [2I, — A| = 2*" and |A + I,| =

Let T be an invertible matrix such that T-'AT = diag(I,,0n-+),
where 1 <7 < n—1. Take B = T diag(0, J)T ™!, where J is the k x k
Jordan block with main diagonal entries 0. Then one may verify that
AB=BA=0and (A + B)**! = (A+ B)* # (A + B)*~

Let r be the rank of A. Since A%2 = A, the eigenvalues of A are either
1 or 0. Using the Jordan form of A, by A% = A, we see that every
Jordan block of A must be 1 x 1. Thus A is diagonalizable. It follows
that (a) |[A+ I| =27 and |A — I| = 0; (b) r(A) equals the number
of nonzero eigenvalues of A, which are 1’s, and also equals tr(A); (c)
dim(Im A) = r(A4) = tr(A).

(a) Note that for every positive integer &,

AB=-BA = AB%*-!'=_pB%-14
Thus if B= AX + XA, then
% = (AX + XA)B?*~! = A(XB®~') — (XB¥*71)4,

which implies that tr B2* = 0 for all positive integers k; conse-
quently, B? is nilpotent, and so is B, a contradiction.
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(b) Without loss of generality, one may assume that A is the di-
agonal matrix diag(A;,...,An), all A; > 0. The existence and
uniqueness of the equation can be checked directly by taking
Tij = ,\—‘ql_—x—b,-,-. To show that X > 0 when B > 0, we first
note that X is Hermitian by taking the conjugate transpose for
both sides and because the solution is unique. To show that
the eigenvalues of X are all nonnegative, let A be an eigenvalue
of X and let u be a corresponding vector. Then 0 < u*Bu =

u* X Au + u* AXu = 2A(u* Au). Thus A >0, as u*Au > 0.
AX + XB = C has a unique solution if and only if (4 %) and
(‘3 _OB) are similar via (g f{,)
Note that the idempotent Hermitian matrices are the positive semidef-

inite matrices with eigenvalues 1’s and 0’s, and that if A, is a principal
submatrix of a positive semidefinite matrix A, then

)‘min(A) S /\min(Al) S Ama.x(Al) S Amax(A)

Since B< A & AB = B is equivalent to
U*BU<U*AU <« (U*AU)(U*BU)=U*BU,

where U is unitary, we may only consider the case in which B =
(16 8) , where r = r(B) is the rank of B. Partition A conformably as

_( My M;
A_<M5 Ms)'

To show B < A= AB = B, note that A— B > 0 implies M; —I,. > 0
and that the eigenvalues of M, are all equal to 1. It follows that

My =1, Thus M; =0 and A = ({;,\33), where Mz > 0. It is
immediate that AB = B,
For the other way around, AB = B results in M, =0, M; = I,.

If z € ImA, let £ = Ay. Then Az = A%y = Ay = z. Conversely, if
z = Az, then obviously z € Im A.

To show that Im A = Im B implies A = B, we compute, for any v,
(A-B)*v = A’v+B%v— ABv—- BAv = Av+Bv—A(Bv)—-B(Av) = 0,
since A(Bv) = Bv and B(Av) = Av. A — B is Hermitian, so A = B.
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4.116

4.117

4.118

4.119

It is sufficient to show that (d)=>(a). This is immediate since A? = I
and A*A =TI imply A* = A.

(a) By a direct verification.
(b) Write A2—I=0as (A+I)(A—1I)=0. Then
r(A+I)+r(A-I)<n.
However,
n=r(A)=r[A+D+(A-D) <r(A+I)+r(A-1).
(¢) If Az = Az, for some z # 0, then
c=lz=A%t=A(AT) =)z =22z = A =1

(d) Forany veV,

1 1
v=§('v+Av)+§('v—Av)€V1+V_1.

Thus V = V4 + V_1. Note that Vi N V_; = {0}.
(e) Since (A+I)(A—-1I)=0.
(a), (d), and (e) each imply that A% = 1.

ABA = B and BAB = A imply AB = BA™! and AB = B~1A. So
BA-! = B-14 and A? = B®. A= BAB = (ABA)(AB) = B-14%B.
Thus BA = A3B. But BA = A~!B. We have A~!B = A3B, and
A~1 = A3 that is, A? = I. Similarly, B* =I.

Since (A — B)(A + B) = (A + B)(B — A) = AB — BA, we see that
Im(AB — BA) is contained in both Im(A — B) and Im(A + B); that
is, Im(AB — BA) C Im(A — B) NIm(A + B). For the converse, let
u € Im(A — B) NIm(A + B) and write v = (A + B)r = (A — B)y.
Then (A — B)u = (AB — BA)z and (A + B)u = (BA — AB)y. By
adding, 2Au = (AB — BA)(z — y). It follows that

u= A%y = %A(AB _BA)z—-y) = %(AB _ BA)A(y - z),

which is contained in Im(AB — BA).

If A? = A, then 1(B2% + 2B + I) = §(B + I), which implies B* = I.
If B? = I, then A? = }(B? + 2B + I) = }(2] +2B) = }(B+1I) = A.
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Direct verification by definition.

(a) nl

(b) By a direct verification. No.

(c) If P is a permutation matrix, then PP* = I.
(d) Symmetric permutation matrices.

(a) By direct computations. Note that for any matrix A, AP is the
matrix obtained from A by moving the last column of A to the
first column.

(b) Consider

kyP+ koP2% 4 ... 4 k,P™ = 0.

Since the k’s are in different positions of the matrix on the left-
hand side, it follows that all the &’s must be equal to zero.

(¢) It is routine to check by definition. Note Pt = P~1.

(d) i+ j is divisible by n.

(e) Note that the characteristic polynomial of P is A™ — 1.

(f) Take T = (t;;) to be the permutation matrix with txx = 1,
k=1,2,...,n, and 0 otherwise, where k’ is the positive integer
such that

O<k'=(k-1)i+1-mn<n

for some nonnegative integer m. For instance, if n = 5 and i = 3,
ti1 =ty =tz =tsys=1tls3=1
and 0 otherwise. It is easy to check that T~ P3T = P,

Let A be k x k. Since A is invertible, there is at least one summand
in the expansion of the determinant det A that is nonzero. For A is
a matrix of integer entries, we may write A as A = P + B, where
P is a permutation matrix and B is a nonnegative matrix. Notice
that P¥ = I. Thus in the expansion of A" = (P + B)", there are
infinitely many summands P*BP’ that are identical to B. If B had
a nonzero (thus positive) entry, then the sum of the entries of A™
would be unbounded as n — oo. Therefore, B =0and A = P is
a permutation matrix. For the case of union of entries, because the
powers of A collectively have only finitely many entries, we must have
A™ = A™ for some m and n. So AP = I for some p. Then expand
I=AP=(P+ B)?» = P? + PP~1B + --. . The sum of the entries on
the left-hand side is k, and then so is on the right. Thus B = 0.
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4.125

4.126

4.127

4.128

Since every row and every column of A have one and only one nonzero
entry, which is either 1 or —1, and all other entries are 0, it is easy
to see that the powers of A: A2, A3, ..., have the same property;
that is, for all positive integer m, every row and every column of A™
have one and only one nonzero entry, which is either 1 or -1, and all
other entries are 0. Since there are a finite number of matrices that
have the property, we have AP = A? for some positive integers p and
¢, P < q. Since A is nonsingular, we have A?7? = ].

A is an (n — 1) x n matrix. Denote by B the submatrix of A by
deleting the last column of A. Since the row sums of A are all zero,
we may write A = (B, BR), where R = (—1,-1,--- ,—1). Then

|JAA'| = |(B,BR)(B,BR)!| =|BB'+ BRR'B!|
= |B(I + RRY)B!| = |BJ?|I + RR!| = n|BJ*.

Denote the rows of A by ry, ro, ..., Tn. Let S and T be the row and
column indices of the s x ¢t submatrix whose entries are all 1. Set
V=) ;cgTi- Since the rows are mutually orthogonal, we have

lvl|* = Z 7’;-7‘;' = Z'f’fr; = sn.

i€S, jET i€S
However, the j-th coordinate of v is ), 5 asj,
n 2
"’0”2 = Z (Zaij) > Szt.
j=1 \{€eS
It follows that s?t < sn and this shows that st < n.
By direct computation, we have

(A+tB®=(2-2)I;, B3=1;, A%=-2I,.

Upon computation, X4 = (2pg)?%, Y4 = (% — ¢%)?, Z% = (p? + ¢*)2.
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5.1

5.2
5.3

54
5.5

5.6

5.7

5.8
5.9

||“—,l,||ul| = "_,1.""“" = 1. So u is a unit vector. For v, w € V,

{v, (v, wW)w) = (v, w){v,w) = |{v, w>|2'

{{v, w)v, w) = (v, w)? # |{v,w)|? in general over C.
The first identity is easy . For the second one, use {u, \v) = Ay, v).

(a) False. Take u = (2,2).

(b) True. By the Cauchy-Schwarz inequality.
(c) False. Take v =v = (1,1), w = (1,-1).
(d) False. Take u = v, w = —u.

(e) True. By the triangle inequality.

(a) and (d) hold. (b) and (c) do not hold.

For z = (1, %3,Z3)%, (, T) = 2|%2|% + |21 % + £123 + 71 %3 + 2|z3|2.
Since |z |2 + #1273 + 7133 + |x3]2 = 0, we see that (z,z) > 0. Equality
holds if and only if 2 = 0. Other conditions are easy to verify. If the
(2,2)-entry is replaced with —2, then the positivity does not hold,
since ((0,1,0),(0,1,0)) = —2. So it’s no longer an inner product. If
z and y are switched on the right, then it’s not an inner product.

It is routine to show by definition that V is a subspace of R*. To
find a basis for V, note that 3 and x4 are free variables. Setting
z3 = 1, 24 = 0 and z3 = 0, x4 = 1, respectively, we have a basis
for V: (1,1,1,0)* and (1,-1,0,1)*. To find a basis for V*, let y =
(y1, ¥2, ¥3, ¥a)t € VL. Then y is orthogonal to the basis vectors of V.
Soy1+y2+y3 =0 and y; —y2+y4 = 0. This reveals 2y; = —y3—y4 and
2y2 = ya—y3. It is easy to see that (-1,0,1,1)* and (-1, 1,0, 2)* form
s basis for V! and V1 = {a(~1,0,1,1)t +b(-1,1,0,2) | a,b € R}.

Q3 = (0, 7157_715,0)t, Q4 = (O’ —.;_’ _%’ Vlf)t’
fiw) =1-%, f2(z) = $ - %, fa(z) = 5 — & form a basis for W-.

The first three are positive semidefinite. The last one is not. Take
uy = (0.1,0.1,0.1)%, u; = (0.3,0.7,0.3)%, ug = (0.4,0.5,0.7)".

224



HINTS AND ANSWERS FOR CHAPTER 5 225

5.10

5.11

5.12

5.13

5.14
5.16

We need to show that z*Gz > 0, where z = (z1,%2,...,Tn)". Let
Y = T1U) + TauU2 + -+ - + Tnl, and denote gi; = (u;,us). Then

n n
0< (v )= ) T:j{us,u) = Y 3:&505 = 2" Ga.
£,7=1 i,7=1
G is singular if and only if Gz = 0 for some nonzero z. If Gz = 0
for some nonzero z, take £ = z, we see that y = 0 and the vectors

are linearly dependent. The converse is proved similarly. Note that
G > 0 if and only if G* > 0. So H = G* > 0.

Since ||u|| < 1,|v|| < 1, by the Cauchy-Schwarz inequality, we have
|(z,¥)| < 1, where z, y are any choices of u and v. Recall the power
series expansion = =1+r+r2+r3+... when |r| < 1.

1 1
1—{uu) 1-{(u,v) — z (‘U., u>k Z (u"v)k
( e e = e ) ( 2:(‘” u)* E:(Uav)k )
_ (w,0)*  (u,0)F
B Z( (Z,u)" (:,::)" )

k

The positivity follows immediately because the sum of positive semidef-

inite matrices is again positive (with a bit more work on convergence)

and because (‘,—:Z) >0 = (‘,—:: z:) > 0 for any positive integer k.

If there exist n vectors ui,ua,...,u, € C" such that A = (a;;), where
ai; = (u;,u;), then for any vector z, where z = (z;,22,...,z,)¢ € C",

z* Az = Z:z:,:r:,alJ Za:,z,(u,,u, <Zz,u,, Z:z:,u,> >0.

',J

So A > 0. Conversely, if A > 0, we can write A = B*B for some n-
square matrix B. (See Chapter 4.) Then a,; = b}b; = (b;,b;), where
b; is the i-th column of B. So A is a Gram matrix.

If A > 0, then it is easy to check that (z,y) = y* Az is an inner
product. Conversely, let e;,ea,...,e, be an orthonormal basis of C"
and let A = ((ej,e;)). Then A > 0 and (z, y) = ygAzo, where zo and
Yo are the coordinates of x and y relative to the basis, respectively.

Compute (u + v, u + v) — (u — v, u — v) directly.
No. Take z = (1,0) and y = (1,1).
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By the Cauchy-Schwarz inequality, if z is a unit vector,

(z, 4Ny, 7) < (3, 9)-
Replace y by Az,
(Az, 7)(z, Az) < (Az, AT).
When A € M, (C) and x € C* with z*x =1, (Az,z) = z" Az, s0
' Azz* A%z < z* A* Az,

The equality holds if and only if Az and z are linearly dependent.
Since ||z|| = 1, so Az = Az for some ), i.e., T is an eigenvector.

For the inequality, it is sufficient to notice that for all
o (I+A) V(I -AI-AI+A)z<z°z
if and only if
(I+A) Y -A(I-AI+A) <,
which is true if and only if
(I - A? < (I+ A=

This is obviously true.

For the equality case, we first show that z € Ker A if and only if
(I-A)(I+A) 'z =z.1fz € KerA, then Az =0. Thus (/- A)z ==z
and (I + A)z = z. Since I + A is nonsingular, z = (I + A)~'z. Thus
(I-A)(I+A)"1z = (I- A)z = z. Conversely, if (I-A)(I+A)" 'z =z,
then since I — A and (I + A)~! commute (because ] — A and I + A
commute), we have (I + A)~Y(I — A)z =z or (I — A)z = (I + A)z,
which implies Az = 0; that is, £ € Ker A.

We now show that the norm equality holds if and only if (I+ A)~1(I -
A)z = z. f (I+A)~'(I- A)x = z, the norm equality holds obviously.
Conversely, if the norm equality holds, then z is an eigenvector of
M = (I-A)(I+A)~1. Let Mz = \z. Since A is positive semidefinite,
the eigenvalues of M should all have the form (1—u)/(1+u), where u is
an eigenvalue of A. So A # 1. Since I — A and (I + A)~! commute, we
have (I+A)~Y(I-A)z = Azr. It follows that (1—A)Az = (A—1)z and
thus Az = —z. This says —1 is an eigenvalue of A. A contradiction
to A being positive semidefinite.
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5.18

5.19

(a)

()
(d)

Suppose that v;, v, and v3 are linearly dependent. It may be
assumed that v;, v9, and v3 are unit vectors and that

U3 = A\ V1 + Agvs.
Then
(v1,v3) = A1 + da(u1,v2) <0 = Ai{v,v2) + )\2('01,1)2)2 >0

and
(02,03) = /\1('01, 'Uz) + A3 < 0.

By subtracting
A2((v1,v2)2-1)>0 = A <0 = X\ <0.
Now compute
(va,v3) = A1 (v, v1) + A2(vg,v3) > 0.

No, since the dimension of the zy-plane is 2. However, it is pos-
sible for three vectors in the zy-plane to have pairwise negative

products: v; = (1,0), v2 = (-1/2,V3/2), va = (—1/2,-V3/2).
v, U2, U3, VU4 can linearly dependent or independent.

3, —3. The maximum is attained when 4 = v = w, and the
minimum is attained when the angles between any two of them
are equal to 2%

(a) No

(b)

(d)
(e)

(f)
(g)

\/Ea:, \/Ezz.
5 5 .3
[x’ \/_m ) 55~ AT

It suffices to show that the bams vectors are orthogonal. For

instance, by integration (z,z® — 3z) = f ,(z* — 32%)dz = 0.

It is sufficient to show that 1, z, 22 — 1, 23 — 2z are linearly

independent. Then it follows that V; N V2 = {0}.
Yes.

Take v=1and w = z.

No.
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T =MV + A2+ + AnUn.

Taking inner product of both sides with v; results in

A,‘ = (:r,,v,-), 1= l,2,...,n.

By a direct computation,

(a)
(b)
(<)
(d)

(f)
(g)

(b)

No.

(z, z) = M2 + 22+ + [ An

By definition.

Note that tr(A*A) = (4, A).

Use the Cauchy-Schwarz inequality.

Note that tr(ABB*A*) = tr(A*ABB"). Use the fact that

tr(XY) <tr XtrY, X>0,Y >0,

which can be shown by first assuming that X is diagonal.
Since ||A||2 = (A, A) = tr(A*A) and A*A — AA* is Hermitian,

|A*A — AA*| tr(A*A — AA*)?

2tr(A* AA®A) — 2tr(A* AAA®)
2(|4* A||? - 2||4%1?

2/1A* A2

2/ )%

IA A

Take X = A®, then use (b). Or take X = E;;, where E;; is the
matrix with 1 in the position (%, j) and 0 elsewhere.

It is easy to show that W is a subspace. Note that the dimension
of M,(C) is n2. Since trA = aj; + a2+ -+ + ann = 0, we
have dimW = n? — 1. Thus dim W+ = 1. The identity matrix
I is a basis for W+ and W+ only consists of scalar matrices.
Alternatively, one may assume that A is upper-triangular, then
show that A is a scalar matrix.

Take X = zz* where z is a column vector.
Yes. No.

u = (1,0) is a unit vector, while v = (1,—1) is not. They are not
mutually orthogonal, since (u,v) = 1.
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5.23

5.24

5.25

(a)
(b)

ul is the y-axis, v+ is the line y = z.
ul nvl = {0}.

{u, v}*+ = {0}.

(Span{u, v})* = {0}.

Span{ut, vt} = R2.
%) abeC.

z*(A+cz=z"Az +c
z*(cA)z = c(z* Az).

Let e, be the column vector with the :-th component 1 and 0
elsewhere. Then e} Ae; = a,; € F(A).

Let Av = Av, where v is a unit vector. Then
v*Av = v* (W) = A € F(A).

No, in general.
A closed interval on the z-axis.
A closed interval on the nonnegative part of the z-axis.

The fields of values are, respectively, [0, 1]; the closed disc with
center 0 and radius %; the closed elliptical disc with foci at 0
and 1, minor axis 1 and major axis v/2; the closed line segment
joining (1, 0) and (1, 1); and the triangle (including interior)
with the vertices (0, 0), (1, 0), and (1, 1).

By a direct computation.

Suppose ||z + y|| = ||z|| + ||ly|l. On one hand, for s,t > 0,
lsz +ty|| < sl|z|| + tl|yl|.

On the other hand, assuming ¢t > s (s > ¢t is dealt similarly),

lt(z + ) — (¢ — 9)=|
2 |tz +yll - (- s)lz |
slizll + ellyll-

sz + ty||

Thus ||sz + ty|| = s||z|| + t||y]- The other direction is obvious.
This resuit can also be shown by examining the proof of the
triangle inequality for inner product spaces.
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5.26

5.27

5.28
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(c) If z and y are orthogonal, a simple computation gives
=+l = llzli* + [¥l* + (=, y) + (, ) = ll=lI* + [ly]>.

(d) By a direct computation. This is the Pythagorean Theorem.

(e) The converse of (d) is true over R; false over C: z =1, y = 1.

Necessity: Let ve W and u = v+ v/, where v € W+, Thenu—v €
W+. Thus for everyw € W, v—w € W, (u—v, v—w) = 0. Therefore,

lu—wl? = lI(u—v) + (v = W) = lv — v]? + |lo - w|?

and
lu—v| <|u-wl.

Sufficiency: Assume that v; is the projection of 4 onto W and v; # v.
Let u = v; + vz, wherev; € W, v € WL, Then (u —v1) L (v; —v),

lu—v> = |I(w—v)+ (@ —v)|?
lle — w1]|2 + [|vy — o1
> "U - '01“2,

a contradiction.

First, we claim W N W' = {0}. If z is contained in W and W+,
then (z,z) = 0, s0 £ = 0. Thus W + W is a direct sum. So
dim W+dim W+ < dim V. Now we show that the direct sum is indeed
equal to V. If W = {0} or V, we have nothing to show. Suppose
dmW =35,0<s<n=dimV. Let ay,s,...,a, be an orthogonal
basis for W. W+ cannot be {0}; otherwise W = V. Let 0 # §; €
W+. Then oy,0,...,as,0, are pairwise orthogonal and linearly
independent. Let W; = Span{a,as,...,a,,01}. If Wy =V, then
we are done. Otherwise, choose 0 # 3; € Wit. Inductively, we have a
set of nonzero vectors (31, B2, .. ., B¢ such that they all lie in W+ and
are mutually orthogonal, s+t =n. So V = W®Span{, B2,...,0:}.
We show that W+ = Span{8,,3,...,0:}. Since £;,05,...,8: € W+,
we have Span{f,, B2, ..., 5} C W+. However, dimWL <n-s=t,
Span{B:, 0, ...,0:} = W and the desired conclusion follows.

(a) False.
(b) False.
(¢) True.
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5.29

5.30

5.31

5.32

5.33

5.34

5.36

(a) True.

(b) True.

(c) False, unless S is a subspace.

(d) True.

(e) True.

(f) True.

(g) True.

(h) True.

We show (a). (b) is similar. Since W) C W1 +Wa, (W1 +Wo)t C Wit.
Likewise, (W; + Wp)L C W3, So (W1 + Wa)t C Wi NWi. Now

suppose u € Wit N Wit. Then (u,w;) = 0 for all w; € W, and
(u,w2) = 0 for all wy € W;. Thus (u,w) =0 for all w € W, + Ws.

Since p + dim St = dim V = n, dimS* = n — p < ¢q. The vectors v;
are all contained in S*, they must be linearly dependent.

Notice that
z* 0 A B* z 0\ _ [ z*Ar z*B%y >0
o v B C 0 y) \y*Bzx y*Cy )=

Take the determinant. For the particular cases, observe that

A A A I

Let x be an eigenvector of A corresponding to A\. Then (Az,z) =
—(z, Az) implies that (\z,z) = —(z,Az). Thus \(z,z) = —\(z, z).
It follows that A + A = 0 and A =0 if )\ is real.

S = Span{u;,uz}, where u; = (-3,0,1,0), uz = (2,-1,0,1) and
S+ = Span{v,, v}, where v; = (1,0,3,1), va = (0, 1,0, 1).

Let dimV =n,dimV; =5, dimVz = ¢t. ThendimVit =n-s> 1.
Let V3 = Vo N V. Then by the dimension identity, we have

dim V3 = dim V2 +dim Vit —dim(Vo 4+ Vi) > t+(n—s)—n=t—s> 0.

This implies that V3 = V3 N Vi # {0}. Thus for some u € V3, u # 0,
(z,u) =0 for all z € W;.
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5.37

5.38

5.39
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Let A be an eigenvalue of A and V, be the eigenspace of . Write
V = VA ® V. We show that V;" is invariant under A. Let z € Vi,
then (z,y) = 0 for all y € Vi. Thus (A(z),3) = (z, A(y)) = (z,\y) =
Mz, y) = 0; that is, A(z) € VL. Now use induction on the dimension
of the vector space.

Let A1,A2,...,An be the eigenvalues of A, and let vy, vs,...,v, be
the corresponding eigenvectors that form an orthonormal basis for V.
Supposc further that the first m cigenvalues arc positive and the rest
are not. If m < k, then there exists a nonzero vector w such that

w € W N Span{vm41,...,}.

Write
W= Cn41Um+1 + * * + Cp¥n.
Since {v;,v2,...,v,} is an orthonormal set,
n n n
(Aw, w) = < z CiAiv;, Z Ci”i) = Z les]?X < 0.

i=m+1 i=m+1 i=m+1
This is a contradiction. Therefore, m > k.

It is sufficient to show that

A=0& (Av,w) =0, forallv eV and we W.

If Av # 0 for some v, let w = Av. Then (Av, w) # 0, a contradiction.

(a) If (z,By) = (Az,y) = (x, A*y) for all  and y, B = A".
(b) Note that

(Az,9) = (2, Ay) = (A%, z) = (y, (A*)*z) = {(A4°*)*z,y).
(c) If z € Ker A", then A*z = 0. For any y € V,
(z, Ay) = (A’z,y) = 0.

Hence Ker A* C (Im A)*L. The other way is similarly shown.
(d) Similar to (c).
(e) By (c) and (d).
(f) This is because (A, ;) = (04, A*a;) = (A*a;, o).
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5.40
5.41
5.42

5.43

5.44

5.45

It is an inner product if and only if A is invertible.
Compute (A(z + y), Az + y)).

(b) is equivalent to (A(u), A(u)) = (u,u). So (a) implies (b). For
(b)=(c), compute {(A(a; + o), A(x; + a;)) to get {(A(as), A(e;)) =1
if i = j, 0 otherwise. To show that (c)=>(d), let A be the matrix rep-
resentation of A under the basis a3, ..., a,. Let a; be the ¢-th column
of A. Then (a;,a;) = (A(a;), A(e;)) = 1 if i = j, O otherwise. Thus
A is orthogonal. For (d)=(a), write u and v as linear combinations
of a1,0s,...,0y, say, ¢ and y, respectively. Then (u,v) = z'y and
(A(u), A(v)) = (Az)'(Ay) = z*A* Ay = zty. Condition (c) cannot be
replaced by (c’): Take .A(e1) = 2e; and A(ez) = 2e; for R2.

A is not necessarily orthogonal in general. Take R? with e; = (1,0),
ez = (0,1) and define Ae; = e, and Aep = e;; that is, A(e1,e3) =
(e1,e2)A, where A = (55). Then A is a linear transformation sat-
isfying (Ae;, Ae;) = (e1,e1) = 1,4 = 1,2. But A is not orthogonal,
since (e, e2) = 0, but (Ae;, Ae;) = (e1,e1) = 1#0.

Teke V = R? and define L(z,y) = (1/(22 +3?)/2,/(=% + 32)/2)
and D(z,y) = (z + 1,y + 1). Then L preserves length, D preserves
distance, but neither £ nor D is linear.

No, in general. Yes, if a;,...,a, are linearly independent. For the
orthogonal case, the sufficiency is obvious by Problem 5.42. For the
necessity, let, without loss of generality, {o,...,a:} be a basis for
Span{c,...,a}. Then it can be shown that {6;,...,3:} is a basis
for Span{f,,...,0r}. Now let {u),...,un—¢} and {v1,...,vp-¢} be
orthonormal bases, respectively, for

(Span{ai,...,a:})t and (Span{f,...,5})" .
Then

{al"")atvul:"'aun—t} and {ﬂl""’ﬂhvla"'7vn—t}
are two bases for V. Now suppose z € V. If

t n—t
T= Z:z:,-ai + Zyiuia

i=1 i=1

let

n-—t

t
Az = Emiﬂi + Zyivi-
=1 i=1
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Then A is an orthogonal linear transformation.

Show first that (A(z),.A(y)) = (B(z), B(y)) for all  and y by consid-
ering (A(z+y), A(z+y)). Take a basis ay,...,ay, for V. For the sets
{A(a1),...,A(an)} and {B(a1),...,B(axn)}, by Problem 5.45, there
exists an orthogonal transformation C such that C(B(w;)) = A(a,). It
follows that A = CB.

(a) By definition
Lo(ez +by) = (az +by,v)

a(z,v) + by, v)
= aly(z) +bLy(y).
(b) Notice that L(ax + by) = Laz+by, and that
Ca:c-{-by (‘U) = (ua aT + by)
= a(u,z) + b(u,y)
aLlz(u) + bLy(w)
(alz + bLy)(u).
Thus L is linear.
(c) If L(v1) = L(v2), then £, = L,, and
(u,v1) = (u,vz), foreveryueV.

Thus v; = v9 and L is one-to-one.

To show that £ is onto, suppose that {ej,es,...,e,} is an or-
thonormal basis for V. If f € V*, let

v=f(er1)es+--- + f(en)en.
Then £, = f.
(d) For orthonormal basis {e1,es,...,en} of V, define f; € V* by
1 ifi=j,
f'(ef)‘{ 0 ifi# 7.
Then {fi, f2,...,fn} is a basis for V*.

First show W) N W, = {0}. If a € W; N W,. Then o = T(c) and
a = 8 — T(B) for some 8 € V. Compute (a,a) = {a,8 — T(B)) =
(@, B) — (&, T(B)) = (@, 8) — (T (), T(B)) = (@, 8) — (@, 8) = 0. So
a=0.Sincez=T(z)+(x—-T(z)) foralz € V,V =W; & W>.
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5.49

5.50

(a)

(b)

(c)

(d)
(e)

(a)
(b)

(c)
(d)

(f)

Extend u to an orthonormal basis {u,us,...,us}. Then

Au) = —u, Aus) =w%, t=2,...,n.

The matrix of A under the above basis is A = ('01 1,.0_1) . Thus

|A] = —1. A matrix representation of A under a different basis
is similar to A. They have the same determinant.

Suppose the coordinate vectors of  and .A(z) on the orthonormal
basis are yo and zp, respectively. Let the coordinate vector of u
on the basis be v. Then

Z0 = yo — 2(v*yo)v = Iyo — 2(vv*)yo = (I — 2vv*)yo.
Thus the matrix of A is of the form I — 2vvt.
Apply Atoz=ku+y.
Denote by V) the eigenspace of 1 and suppose that

{u1,uz,.. ., un—1}

is a basis for V;. Let a # 0 be an eigenvalue of B having unit
eigenvector u, € Vit. Then u;,us,...,u, form a basis for V.
Considering the matrix representation of B on this basis, one has
a = —1. Thus

Bu,=u; 1=1,2,...,n—1, Bu, = —u,.

Take w = uy, then B(z) = z — 2(z, w)w.

For v € V, write v = w 4+ w', where w € W and w! € W,
Define P(v) = w.

P2(v) = P(w) = w = P(v).

The decomposition v = w + w' is uniquely determined by W.

Since W is a nontrivial subspace, there exists a subspace W' such
that (see Problem 1.48)

V=W®W’ and W’#W'L.

Similarly, define P’ as P.
(P(v),v) = (w,w +w) = (w,w) > 0.
1P = llw| < [lw+wh|| = [|v].
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(h)
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(b)
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(Z - P)(wt) = wt — Pw! = wt.
(P(v),(Z - P)(v)) = 0.

ForveV,
v=Tv=Pv+-+Ppv.

Thus
V=ImP, +:--+ImPy,.

To see it is a direct sum, we show that
dimV = dim(ImP;) + -« - + dim(Im P,,).

Take a basis for V' and suppose that the matrix representation
for P;is P, 1= 1,...,m. By Problem 3.104,

dm(ImP;))=trP,=r(P), i=1,...,m.
It follows that

dimV = n

tr I,

trPy+---+trPn

dim(Im P;) + - - - + dim(Im Py,).

To see P;P; = 0 for distinct i and j, let v € V. Then

’P_.,-v = (jzlpg)'Pj'v = i('P,"Pj)’U.

=1

Note that
'P,-v € Im'P,-, Pipjv € Im P;

and that V is a direct sum of Im P;’s. It follows that
(Pipj)v =0, i#].

Choose a basis for each ImP;, i = 1,...,m, and put all these
vectors together to form an orthonormal basis for V' by defining
the inner product of any two distinct vectors in the basis to be
0, and the inner product of any vector with itself to be 1.
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(c) Obviously
ImP; +---+ImPp + Ny KerP; C V.
Let
T=I-Pr—-—Pn.
Then for z € V,
Tx=z—Piz— - — Pnz.
Thus for each ¢,
Pi(Tz) = Piz—Piz— -+ —Pnz)
= Pz — 7’,72:1: =0.
So
Tz € Nz, KerP;.
However,
z2=Piz+ -+ +Pnr+ Tz,
hence

To show it is a direct sum, let
1+ -+zTm+y=0,

where
zr; € Im P;, Yy € ﬂ{';l Ker P;.

Notice that P;z; = z; and that P;P; = 0. Applying P; to both
sides of the above identity yields z; =0, i =1,2,...,m,y=0.
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Notation

real numbers

positive numbers

complex numbers

rational numbers

a field

column vectors with n real components
column vectors with » complex components
real polynomials with degree less than n
real polynomials with any degree

absolute value of complex number ¢
conjugate of complex number ¢

real part of complex number ¢

real-valued continuous functions on [a, b]
real-valued continuous functions

real-valued functions of derivatives of all orders
If P then Q

P if and only if @

vector spaces

subspaces

the vector space generated by the vectors in S
standard basis for R™ or C"

m X n matrices with entries in F

n X n matrices with entries in [F

n X n Hermitian matrices with entries in F
n X n Skew-Hermitian matrices with entries in IF
derivative of f with respect to ¢

second derivative of y

n x n identity matrix

dimension of vector space V

sum of W, and Wy

direct sum of W; and Ws

matrices

linear transformations

square matrix with the (¢, j)-entry 1 and 0 elsewhere

determinant of matrix A
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adj(A)
diag(A1, ..., An)
Ker A
Im A
F(A)
|IAT — A
Amax(A)
Tmax(A)
Izl
A>0
A>B
A>0
Al
m(A)
[4, B]
AoB

NorAaTION

determinant of matrix A

rank of matrix A

trace of matrix A

transpose of matrix A

conjugate of matrix A

conjugate transpose of matrix A

inverse of matrix A

adjoint matrix of matrix A

diagonal matrix with Aj,...,A, on the main diagonal
kernel or null space of A4, i.e., Ker A = {z | Az =0}
image or range of A, i.e., Im A = {Az}

field of values of A4, i.e., {z*Az | ||z| =1}
characteristic polynomial of A

largest eigenvalue of matrix A

largest singular value of matrix A

norm or length of vector z, i.e., vz*z or \/(z, z)

A is a positive semidefinite matrix

A-B>0

A is a positive definite matrix

square root of positive semidefinite matrix A

the modulus of 4, i.e., m(4) = (A*A):
commutator AB — BA

entrywise product of A and B, i.e., A o B = (a,;b,;)
adjoint of linear transformation A

subspace of the vectors orthogonal to W

dual space

orthogonal projection

determinant of the block matrix ( é g)
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Index

addition
of continuous functions, 6
of polynomials. 5
of vectors. 1

adjoint, 22, 38, 39, 116

basis. 6

Cartesian plane. 2

xy-plane, 2
Cauchy-Schwarz inequality, xv. 105
characteristic polynomial. 46
coefficient, 6
cofactor, 22, 38
column space, 8, 18. 24
commitator, 62
congruent matrices, 52
conjugate, 4
convex function. 83
coordinate, 7
Cramer’s rule. 25

decomposition

Jordan. xv

Schur, xv

singular value, xv

spectral. xv

triangular, xv
determinant. 21
diagonalization. 45
differential operator. 72
dimension. 6

dimension identity. xv, 8
direct sum, 20

direct sum of vector spaces, 8
distance, 104

dot product, 103

dual space, 118

eigenspace. 46

eigenvalue. 45. 50
eigenvector, 45, 50
elementary matrices, 23
elementary operations, 23
equivalent matrices, 52
Euclidean space. 103
even function. 20

even permtation. 22

field of values, 113
Gram matrix, 109

Hadamard product, 91
homogeneous linear system. 24

idempotent. 120

identity transformation, 48
image. 8, 24, 48

indefinite inner product. 109
inner product, 103

inner product space. 103
intersection of subspaces, 7
invariant subspace, 50, 69
inverse. 4, 23

243



214

involution, 100

Jordan block. 47
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