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Yes. Suppose otherwise. Then there would beNan
such thatS(N) < 80% andS(N + 1) > 80%; that is,
O’Keal’s free throw percentage is und&d% at some
point, and after one subsequent free throw (necessarily
made), her percentage is 0\88%. If she makesn of

her first N free throws, therm/N < 4/5 and (m +
1)/(N +1) > 4/5. This means thabm < 4n <

5m + 1, which is impossible since them is an integer
between the consecutive integérs and5m + 1.

Remark: This same argument works for any fraction
of the form(n — 1)/n for some integer. > 1, but not
for any other real number betweérand1.

First solution: (partly due to Ravi Vakil) Yes, it does
follow. Fori = 1,2, let P;, Q;, R; be the vertices of;
opposide the sides of lengih, b;, ¢;, respectively.

We first check the case whetig = ay (or by = by Or

is acute), we havein /P; < sin ZP,. By the Law of
Sines,

1 1
A = §b161 sin ZP; < §b202 sin ZP, = A,.

Remark: Many other solutions are possible; for in-
stance, one uses Heron’s formula for the area of a tri-
angle in terms of its side lengths.

Define a sequenas, by v, = (n—1)(n—3)--- (4)(2)

if nis odd andv,, = (n —1)(n —3)---(3)(1) if nis
even; it suffices to prove that, = v, for all n > 2.
Now v, +3v, = (n + 2)(n)(n — 1)! andv, 420,41 =

(n + 1)}, and sov,,+3v,, — V420,41 = nl. Since we
can check that,, = v, forn = 2, 3,4, andu,, andv,,
satisfy the same recurrence, it follows by induction that
u, = v, foralln > 2, as desired.

¢1 = ¢y, by the same argument after relabeling). Imag- A4 It suffices to verify that

ine Ty as being drawn with the bagg, R> horizontal
and the pointP, above the lineQs:R;. We may then
positionT} so thatQ, = Q2, Ry = R», and P lies
above the ling)1 R1 = Q2 R>. ThenP; also lies inside
the region bounded by the circles through centered
at@, andR,. SinceZQ, and /Ry are acute, the part
of this region above the lin€§); R, lies within T5. In
particular, the distance froif; to the lineQ- R; is less
than or equal to the distance froR to the lineQs Ro;
henced; < A,.

To deduce the general case, put
r = max{aj/ag, by /ba,c1/ca}.

Let T3 be the triangle with sidesas, rbs, rca, Which
has area?A,. Applying the special case 6, andTs,
we deduce thatl; < r2A,; sincer < 1 by hypothesis,
we haved; < A, as desired.

Remark: Another geometric argumentin the case=

as is that since anglegs@, andZ R are acute, the per-
pendicular toQs R, through P, separate§)s from R.

If Ay > As, thenP; lies above the parallel tQsR-
throughP,; if then it lies on or to the left of the vertical
line throughP,, we haver; > c¢o because the inequality
holds for both horizontal and vertical components (pos-
sibly with equality for one, but not both). Similarly, if
P, lies to the right of the vertical, thely > bs.

Second solution: (attribution unknown) Retain nota-
tion as in the first paragraph of the first solution. Since
the angle measures in any triangle add uprisome
angle of 77 must have measure less than or equal to its
counterpart inl,. Without loss of generality assume
thatZP; < ZP,. Since the latter is acute (becauke
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To check this, first note that the right side vanishes iden-
tically for z; = 0, because each term cancels the corre-
sponding term witte; flipped. Hence the right side, as
a polynomial, is divisible byt,; similarly it is divisible

by s, ..., z,. Thus the right side is equal tg - - - x,,
times a scalar. (Another way to see this: the right side is
clearly odd as a polynomial in each individual variable,
but the only degree monomial inz4, ..., z,, with that
property isz; - - - z,,.) Since each summand contributes
%xl .-z, to the sum, the scalar factor is 1 and we are
done.

Remark: Several variants on the above construction are
possible; for instance,
.. xn
1

= S (=yrTeT T ey + o )"

" e;e{0,1}
by the same argument as above.

Remark: These construction work over any field of
characteristic greater than(at least fom > 1). On the
other hand, no construction is possible over a field of
characteristipp < n, since the coefficient of; - - - z,,

in the expansion ofe; 1 +- - - + e, 2, )™ is zero for any

€;.

Remark: Richard Stanley asks whether one can use
fewer than2™ terms, and what the smallest possible
number is.



A5 First solution: First recall that any graph with ver-

tices ande edges has at least — ¢ connected com-
ponents (add each edge one at a time, and note that
it reduces the number of components by at most 1).
Now imagine the squares of the checkerboard as a
graph, whose vertices are connected if the correspond-
ing squares share a side and are the same colorA Let
be the number of edges in the graph, andBdbe the
number of 4-cycles (formed by monochromaicc 2
squares). If we remove the bottom edge of each 4-cycle,
the resulting graph has the same number of connected
components as the original one; hence this number is at
least

mn — A+ B.

By the linearity of expectation, the expected number of
connected components is at least

mn — E(A) + E(B).
Moreover, we may computé& (A) by summing over
the individual pairs of adjacent squares, and we may

computeE(B) by summing over the individua x 2
squares. Thus

B(A) = 5 (m(n — 1)+ (m — )n),

B(B) = (m~1)(n—1)

and so the expected number of components is at least A6

mn — %(m(n— 1)+ (m—1)n)+ é(m— (n-1)

mn+3m+3n+1 mn
- 8 ~ 8

Remark: A “dual” approach is to consider the graph
whose vertices are the corners of the squares of the
checkerboard, with two vertices joined if they are ad-
jacent and the edge between then does not separate two
squares of the same color. In this approach, the 4-cycles
become isolated vertices, and the bound on components
is replaced by a call to Euler's formula relating the ver-
tices, edges and faces of a planar figure. (One must be
careful, however, to correctly handle faces which are
not simply connected.)

Second solution: (by Noam Elkies) Number the
squares of the checkerboatd. .., mn by numbering
the first row from left to right, then the second row,
and so on. We prove by induction arthat if we just
consider the figure formed by the firstsquares, its
expected number of monochromatic components is at
leasti/8. Fori = 1, this is clear.

Suppose the-th square does not abut the left edge or
the top row of the board. Then we may divide into three
cases.
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— With probability1/4, thei-th square is opposite in
color from the adjacent squares directly above and
to the left of it. In this case adding thieh square
adds one component.

— With probability 1/8, the i-th square is the same
in color as the adjacent squares directly above and
to the left of it, but opposite in color from its diag-
onal neighbor above and to the left. In this case,
adding the-th square either removes a component
or leaves the number unchanged.

— In all other cases, the number of components re-
mains unchanged upon adding tha square.

Hence adding the-th square increases the expected
number of components biy/4 — 1/8 = 1/8.

If the i-th square does abut the left edge of the board,
the situation is even simpler: if theth square differs in
color from the square above it, one component is added,
otherwise the number does not change. Hence adding
thei-th square increases the expected number of com-
ponents byl /2; likewise if thei-th square abuts the top
edge of the board. Thus the expected number of com-
ponents is at leasy8 by induction, as desired.

Remark: Some solvers attempted to consider adding

one row at a time, rather than one square; this must be
handled with great care, as it is possible that the num-
ber of components can drop rather precipitously upon

adding an entire row.

By approximating each integral with a Riemann sum,
we may reduce to proving the discrete analogue: for
Tij € Rfori,j =1,...,n,
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The difference between the right side and the left side
is

n

1 2

1 Z (Tij + To — T — n5)°,
i,5,k,l=1

which is evidently nonnegative. If you prefer not to dis-
cretize, you may rewrite the original inequality as

11 1 g1
/ / / / F(z,y,z,w)? dxdydzdw > 0
Jo Jo Jo Jo

for

F(x,y,z,w) :f(CC,y)+f(Z7’lU)—f((b,’w)—f(,&y).



Remark: (by Po-Ning Chen) The discrete inequality
can be arrived at more systematically by repeatedly ap-
plying the following identity: for any read,, . .., a,,

Z (z; — x5)? :n;x?— (ZI:EZ) .

1<i<j<n

Remark: (by David Savitt) The discrete inequality can
also be interpreted as follows. Fau € {1,...,n—1}
and¢,, = e*™/™, put

_ ci+dj
Zed = E G Ty
%)

Then the given inequality is equivalent to

n—1
> Jzeal? 2 0.

c,d=1

Bl Letk be anintegef) < k < n—1. SinceP(r)/r* =0,

we have

Cnrn—k+cn_1rn—k+l+

= —(ch 4+ cpar H 4 eerh).

e

Write r = p/q wherep andq are relatively prime. Then
the left hand side of the above equation can be written as
a fraction with denominatay™~*, while the right hand
side is a fraction with denominat@. Sincep andgq

are relatively prime, both sides of the equation must be
an integer, and the result follows.

Remark: If we write r = a/b in lowest terms, then
P(z) factors as(bxz — a)Q(x), where the polynomial

Q has integer coefficients because you can either do the
long division from the left and get denominators divis-
ible only by primes dividingy, or do it from the right
and get denominators divisible only by primes dividing
a. The numbers given in the problem are none other
thana times the coefficients of). More generally, if
P(z) is divisible, as a polynomial over the rationals, by
a polynomialR(z) with integer coefficients, theR/R
also has integer coefficients; this is known as “Gauss’s
lemma” and holds in any unique factorization domain.

B2 First solution: We have

(m + n)m+n > (m + ’I’L) mmn"
m

because the binomial expansion @f + n)™*" in-
cludes the term on the right as well as some others. Re-
arranging this inequality yields the claim.

Remark: One can also interpret this argument com-
binatorially. Suppose that we choose + n times
(with replacement) uniformly randomly from a set of
m + n balls, of whichm are red anch are blue. Then
the probability of picking each ball exactly once is

3

(m + n)!/(m + n)™*t™. On the other hand, if is the
probability of picking exactlym red balls, therp < 1
and the probability of picking each ball exactly once is
p(m™ /ml) (n" /n1).

Second solution:(by David Savitt) Define

Sy={i/k:i=1,...,k}

and rewrite the desired inequality as

HmHy> H z.

r€Sm  YESH 2ESm4n

To prove this, it suffices to check that if we sort the
multiplicands on both sides into increasing order,ithe
th term on the left side is greater than or equal toittte
term on the right side. (The equality is strict already for
1 =1, so you do get a strict inequality above.)

Another way to say this is that for arythe number of
factors on the left side which are less thdm + n) is
less than. But sincej/m < i/(m + n) is equivalent
toj < im/(m + n), that number is

m mn
] ] -
m-+mn m-+n

m n

<

—1=7-1

m-+n m-4+n

Third solution: Putf(x) = x(log(x+1)—logz); then
forz > 0,

F@) = log(1 +1/z) — ——

z+1
" 1

Hencef” (x) < 0 for all z; sincef’(z) — 0 asx — oo,
we havef’(x) > 0forz > 0, sof is strictly increasing.

Put g(m) = mlogm — log(m!); theng(m + 1) —
g(m) = f(m), sog(m + 1) — g(m) increases with
m. By induction,g(m + n) — g(m) increases witn
for any positive integen, so in particular

g(m+n) —g(m) > g(n) — g(1) + f(m)
> g(n)

sinceg(1l) = 0. Exponentiating yields the desired in-
equality.

B3 The answer ia|a > 2}. If a > 2, then the func-

tion f(xz) = 2a/(a — 2) has the desired property; both
perimeter and area a® in this case ar€a?/(a — 2).
Now suppose that < 2, and letf(z) be a nonnegative
continuous function o0, a]. Let P = (z0,yo) be a
point on the graph of (z) with maximaly-coordinate;
then the area oR is at mostayy since it lies below the
line y = yo. On the other hand, the points, 0), (a, 0),
andP divide the boundary oR into three sections. The



length of the section betweéf, 0) andP is at least the
distance betwee(0, 0) and P, which is at leasy,; the
length of the section betwedh and(a, 0) is similarly
at leasty,; and the length of the section betwe@n0)
and(a,0) is a. Sincea < 2, we have2yy + a > ayo

and hence the perimeter #&fis strictly greater than the

area ofR.

B4 First solution: Identify thexy-plane with the complex
planeC, so thatP; is the real numbek. If z is sent to
z' by a counterclockwise rotation by about P, then
2 — k = " (2 — k); hence the rotatio®;, sends: to
Cz + k(1 = ¢), where¢ = e/ It follows that R,
followed by Ry sends: to (((z+ (1 —¢))+2(1—¢) =

%z + (1 — ¢)(¢ + 2), and so forth; an easy induction

shows thai? sends: to
(1= + 20" +

Expanding the produgtl — ¢)(¢" ' +2¢" % + -+ +
(n—1)¢ +n)yields—¢* — ¢ 1 —... —(C+n =

<+ (n—1)¢+n).

n. ThusR sendsz to z + n; in cartesian coordinates,

R(z,y) = (+n,y).
Second solution:(by Andy Lutomirski, via Ravi Vakil)

Imagine a regulan-gon of side length 1 placed with its
top edge on the-axis and the left endpoint of that edge
at the origin. Then the rotations correspond to rolling

this n-gon along thez-axis; after then rotations, it
clearly ends up in its original rotation and translated

units to the right. Hence the whole plane must do so as

well.

Third solution: (attribution unknown) Viewing each

Ry, as a function of a complex numberas in the first

solution, the functiomR,, o R,,_1 o --- o Ry(2) is linear

in z with slope¢™ = 1. It thus equals + T for some

T € C. Sincefi(1) =1, we can writel + T = R,, o
-- o Rs(1). However, we also have

Ryo--+0oRy(1)=R,_10R(0)+1
by the symmetry in how th&; are defined. Hence
R,(1+T)=R,oRi(0)+ R,(1) =T + R, (1);
thatis,R,(T) = T. HenceTl = n, as desired.

B5 First solution:
that the desired limit isexp(L), where L =
lim, - Yoo o™ (In(1+ 2" ) — In(1 4 2™)).

Now
N
Z z" (In(1 + 2™t — In(1 + z™))
n=0
,1/m2x”+11n1+1"+1 Zx In(1 4 2™)
n=0
N
=2V In(1+ 2V — 2+ (1/z - 1) Z 2" In(1 4 2™);
n=1

By taking logarithms, we see

4

sincelimy oo (2 In(1 + 2V 1)) = 0for0 < z < 1,
we conclude that = —In 2 + lim,_,;- f(z), where

flz)y=01Q/z-1) Z 2" In(1+z")

n=1

=(1/z—1) j{:

This final double sum converges absolutely wiler
x < 1, since

i ix"“’m/m— ix" —In(1 —2z™))
n=1

n=1m=1
Z —In(1 — x)),

m+1 n+mn/m

which converges. (Note thatIn(1 — z) and—In(1 —
x™) are positive.) Hence we may interchange the sum-
mations inf(x) to obtain

oo o0 (_1)m+lx(m+l)n

) =01 3 3 -
oo rrL+1 mil _ ¢
=(1/z-1) Z (1_(Im+1))'

This last sum converges absolutely uniformlyzinso
it is legitimate to take limits term by term. Since
lim z_l-g _ ﬁ for fixed m, we have

r—1" T _pm+1

m+1

Mg

lim f(x

r—1—

z <>
:2<§:<—1>m“>_1

=2In2 -1,

and hencd = In2 — 1 and the desired limitig/e.

Remark: Note that the last series is not absolutely con-
vergent, so the recombination must be done without re-
arranging terms.

Second solution: (by Greg Price, via Tony Zhang and
Anders Kaseorg) Put,(z) = In(1 + z™); we can then
write 2™ = exp(t,(z)) — 1, and

L= lim Z @) — tne1 () (1 — exp(tn(2))).

r—1—

n=0

The expression on the right is a Riemann sum approxi-
mating the integrafé“Q(l —et) dt, over the subdivision
of [0,1n(2)) given by thet, (x). Asz — 1~, the max-
imum difference between consecutiygx) tends to O,
so the Riemann sum tends to the value of the integral.

HenceL = [,"%(1 - ¢!)dt = In2 — 1, as desired.



a = aObO +- an—lbn—l + mbn

B6 First solution: (based on a solution of Dan Bernstein)

Note that for anyb, the condition thab ¢ B already
forceslim sup N (x)/x to be at most 1/2: pair ofmb+

n with (2m + 1)b +n forn = 1,...,b, and note that

at most one member of each pair may belongltdrhe
idea of the proof is to do something similar with pairs
replaced by larger clumps, using long runs of excluded
elements of5.

Suppose we have positive integégs = 1,b1,...,b,
with the following properties:

(@) Fori=1,...,n,¢; = b;/(2b;—1) is an integer.
(b) FOI’BT; € {—1,07 1}, |61b1 + -4 enb”| ¢ B.

Each nonnegative integerhas a unique “base expan-
sion”

(0 < a; < 2¢);

if two integers have expansions with the same value
of m, and values ofa; differing by at most 1 for

i =0,...,n — 1, then their difference is not iB, so

at most one of them lies il. In particular, for any

d; € {0,...,¢; — 1}, anymg € {0,2¢o — 1} and any
m,, the set

{mObo +(2dy +e1)bg + - -
+ (anfl + enfl)bnfl + (2mn + en)bn}7

where eacle; runs over{0, 1}, contains at most one
element of4; consequentlylim sup N(x)/z < 1/2™.

We now produce suchy recursively, starting witlhy =

1 (and both (a) and (b) holding vacuously). Given
bo, . .., by, satisfying (a) and (b), note thay + --- +
b,—1 < b, by induction onn. By the hypotheses
of the problem, we can find a sét, of 6b, consec-
utive integers, none of which belongs B Let b,

be the second-smallest multiple 86, in S,; then
bpt1 +x € 5, for =2b,, < x < 0 clearly, and also
for 0 < z < 2b,, because there are masgt, — 1 ele-
ments ofS,, preceding,, 1. In particular, the analogue

5

of (b) with n replaced by + 1 holds fore,, 1 # 0; of
course it holds foe,,.; = 0 because (b) was already
known. Since the analogue of (a) holds by construction,
we have completed this step of the construction and the
recursion may continue.

Since we can construég, . . . , b, satisfying (a) and (b)
for anyn, we havelim sup N(z)/x < 1/2™ for anyn,
yieldinglim N (z)/z = 0 as desired.

Second solution: (by Paul Pollack) LetS be the set
of possible values dfim sup N (z)/x; sinceS C [0, 1]

is bounded, it has a least upper bouhd Suppose by
way of contradiction thal. > 0; we can then choose
A, B satisfying the conditions of the problem such that
limsup N(x)/x > 3L/4.

To begin with, we can certainly find some positive inte-
germ ¢ B, so thatd is disjoint fromA+m = {a+m :

a € A}, PutA’ = AU(A+m) and letN’(z) be the size

of A'n{1,...,z}; thenlimsup N'(z)/z = 3L/2 > L,

so A’ cannot obey the conditions of the problem state-
ment. That s, if we lef3’ be the set of positive integers
that occur as differences between elementglgfthen
there exists an integersuch that among any consec-
utive integers, at least one lies/f. But

B C{b+em:beB,ec{-1,0,1}},

S0 among any. + 2m consecutive integers, at least one
lies in B. This contradicts the condition of the problem
statement.

We conclude that it is impossible to have > 0, so
L = 0andlim N(z)/z = 0 as desired.

Remark: A hybrid between these two arguments is
to note that if we can produce,,...,c, such that
lc; —c;| ¢ Bfori,j =1,...,n, then the translated +

1, ..., A+ ¢y, are disjoint and stim sup N(z)/z <
1/n. Givene; < --- < ¢, as above, we can then choose
cn+1 t0 be the largest element of a run®f + 1 con-
secutive integers, none of which lie



