Algebra Ph.D. Qualifying Exam Fall, 1999 Part I

General Directions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

Notation:

 \mathbb{Z} : the ring of ordinary integers

Q: the field of rational numbers

 \mathbb{R} : the field of real numbers

 \mathbb{C} : the field of complex numbers

 \mathbb{F}_q : the finite field with q elements

 $M_n(R)$: the ring of $n \times n$ matrices with entries in the ring R

 $\operatorname{GL}_n(R)$: the group of invertible $n \times n$ matrices in $M_n(R)$

R[t]: the ring of polynomials with coefficients in the ring R

 \mathbb{Z}/n : the ring of integers mod n. (Can also be thought of as the cyclic group of order n.)

- 1. If G is a simple group of order 60, determine, with proof, the number of elements of order 3 in G. (You may not assume there is only one such group.)
- **2.** Let G be the group given by generators and relations $G = \{x, y \mid x^5 = xyx^{-1}y^{-2} = 1\}.$
 - (a) Prove G is finite.
 - (b) What is |G|?
 - (c) How many 5-Sylow subgroups are there in G?
- **3.** Let G be the finite group of order 21 defined by generators and relations:

$$\langle x, y \mid x^3 = y^7 = 1, xyx^{-1} = y^2 \rangle.$$

Determine the conjugacy classes of G and construct its character table.

4. Let \mathbb{K} be an arbitrary field and suppose that $T \in M_n(\mathbb{K})$. Prove that there exists a vector $v \in \mathbb{K}^n$ so that the vectors

$$\{v, Tv, T^2v, \dots, T^{n-1}v\}$$

form a basis for \mathbb{K}^n if and only if the only matrices in $M_n(\mathbb{K})$ which commute with T are expressible as polynomials in T (i.e., A commutes with T if and only if $A = a_0I + a_1T + \cdots + a_{n-1}T^{n-1}$ where $I \in M_n(\mathbb{K})$ is the identity matrix).

5.

- (a) Determine the Galois group of $x^3 x + 3$ over \mathbb{Q} .
- (b) Determine the Galois group of $x^3 x + 3$ over \mathbb{F}_5 .
- (c) Determine the Galois group of $x^4 + t$ over $\mathbb{R}[t]$.

Algebra Ph.D. Qualifying Exam Fall, 1999 Part II

General Directions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

Notation:

 \mathbb{Z} : the ring of ordinary integers

Q: the field of rational numbers

 \mathbb{R} : the field of real numbers

 \mathbb{C} : the field of complex numbers

 \mathbb{F}_q : the finite field with q elements

 $M_n(R)$: the ring of $n \times n$ matrices with entries in the ring R

 $\operatorname{GL}_n(R)$: the group of invertible $n \times n$ matrices in $M_n(R)$

R[t]: the ring of polynomials with coefficients in the ring R

 \mathbb{Z}/n : the ring of integers mod n. (Can also be thought of as the cyclic group of order n.)

- 1. Suppose that \mathbb{K} is a non-Galois extension of \mathbb{Q} of degree 5. Let \mathbb{L} be the Galois closure of \mathbb{K} (the smallest Galois extension of \mathbb{Q} containing \mathbb{K}), and suppose \mathbb{L} does not contain any quadratic extensions of \mathbb{Q} . Prove $Gal(\mathbb{L}/\mathbb{Q}) = \mathcal{A}_5$, the alternating group on 5 letters.
- **2.** Determine all prime ideals of the ring $\mathbb{Z}[t]/(t^2)$.
- **3.** Suppose that A, B are elements of $M_2(\mathbb{C})$ such that $A^2 = B^3 = I$, $ABA = B^{-1}$ with $A \neq I$, $B \neq I$. If $D \in M_2(\mathbb{C})$ commutes with A and B, show that D is a scalar matrix, i.e., a scalar multiple of I.
- **4.** Let V be a valuation ring, i.e. a commutative ring (with unit) such that for all $a, b \in V$ either a|b or b|a. (Here, a|b means that b=ac for some $c \in V$.)
 - (i) Prove that if I and J are two ideals in V then $I \subset J$ or $J \subset I$.
 - (ii) Prove that any finitely generated ideal of V is principal, that is, generated by a single element.
 - (iii) Prove that if V is a Noetherian valuation ring, then there exists an element $t \in V$ such that any proper nonzero ideal of V is (t^n) for some whole number $n \geq 1$.
- **5.** Let G be a finite simple group, and let $\rho: G \to GL_n(\mathbb{C})$ be an irreducible representation, where n > 1. Let χ be its character. If $|\chi(g)| = n$, prove that g is the identity element of G.