Stanford Math PhD Qualifying Exam, Part I Spring, 2004

General Directions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

- 1. Classify the finite groups of order $333 = 3^2 \cdot 37$.
- **2.** (a) If \mathbb{F}_q is the finite field with q elements, show that $X^{q^r} X \in \mathbb{F}_q[X]$ is exactly the product of all irreducible polynomials $f(X) \in \mathbb{F}_q[X]$ whose degree divides r.
- (b) Prove that the number of irreducible polynomials of degree r in $\mathbb{F}_q[X]$ is

$$\frac{1}{r} \sum_{d|r} \mu\left(\frac{r}{d}\right) q^d,$$

where μ is the Moebius function:

$$\mu(d) = \begin{cases} (-1)^k & \text{if } d \text{ is a product of } k \text{ distinct primes;} \\ 0 & \text{otherwise.} \end{cases}$$

- **3.** Let A be an integral domain with field of fractions F. Assume that for every prime ideal $\mathfrak{p} \subset A$ the localization $A_{\mathfrak{p}}$ is integrally closed (in F). Prove that A is integrally closed (in F).
- **4.** Let A and B be nilpotent complex $n \times n$ matrices. Suppose that $\operatorname{rank}(A^k) = \operatorname{rank}(B^k)$ for all k. Prove that $A = MBM^{-1}$ for some $M \in \operatorname{GL}(n,\mathbb{C})$.
- **5.** Here is a partial character table of A_5 .

	1	(123)	(12)(34)	(12345)	(13524)
χ_1	1	1	1	1	1
χ_2	4	1	0	-1	-1
χ_3	5	-1	1	0	0
χ_4	3				
χ_5	3				

Complete this character table by constructing χ_4 and χ_5 .

Stanford Math PhD Qualifying Exam, Part II Spring, 2004

General Directions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

- 1. An abelian group G (written additively) is called *divisible* if the homomorphism $x \longmapsto nx = x + \ldots + x$ (n terms) is surjective for all $n \geqslant 1$. The abelian group G is called *injective* if whenever A and B are abelian groups with $A \subset B$, a homomorphism $\varphi : A \longrightarrow G$ can be extended to a homomorphism $\Phi : B \longrightarrow G$. Assume that G is divisible. Prove that G is injective. [**Hint:** Use Zorn's Lemma.]
- **2**. Show that if G is a finite abelian group, then there exists a finite extension F of \mathbb{Q} such that $Gal(F/\mathbb{Q}) \cong G$. [**Hint:** Think about roots of unity.]
- **3.** Suppose that A is a commutative Noetherian ring.
- (a) Prove that every ideal $I \subset A$ contains a finite product of prime ideals.
- (b) Prove that A has only finitely many minimal prime ideals. [**Hint:** Think about the zero ideal.]
- (c) Prove that if A has no nilpotent elements then the set of zero divisors in A is exactly the union of the minimal prime ideals of A.
- **4.** Let (π, V) be a nontrivial irreducible complex representation of the finite group G with character χ . Suppose that $1 \neq g \in G$ is such that $|\chi(g)| = \chi(1)$. Show that $\pi(g)$ is a scalar endomorphism of V and deduce that G is not a nonabelian simple group.
- **5.** Determine the number of conjugacy classes of elements of orders 3, 5 and 11 in $GL(2, \mathbb{F}_{11})$.