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Junior problems

J67. Prove that among seven arbitrary perfect squares there are two whose difference
is divisible by 20.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by Salem Malikic, Sarajevo, Bosnia and Herzegovina

It is easy to check that perfect squares can give one of the following residues:
1,2,4,8,16 (mod 20).

By the Pigeonhole principle we conclude that among seven perfect squares we
must have at least two that have the same residue modulo 20. Hence their
difference is divisible by 20 and our proof is complete.

Second solution by Vicente Vicario Garca, Huelva, Spain

Note that for all integer = we have 22 = 1,2,4,8,16 (mod 20) and we have six
distinct possible residues. If we have seven arbitrary perfect squares x%, x%, x%,
wi, x%, x%, :c%, by the pigeonhole principle, there are two squares 1‘12 and mj2 with

the same residue and they satisfy the requirement.

Third solution by Vishal Lama, Southern Utah University, USA

Observe that by the Pigeonhole Principle, there are at least four perfect squares
which all have the same parity. Now, note that for any integer n, we have
n? = —1,0,1 (mod 5). Again by the Pigeonhole Principle, out of these four
perfect squares, we have at least two perfect squares, say a? and b?, such that
a’? =b? (mod 5). This implies that 5 | a®> —b?. Also, 2 | a—b and 2 | a + b since
both a and b have the same parity. Hence, 4 | a® — b2, but gecd(5,4) = 1, thus
we have 20 | a — b?, and we are done.

Also solved by Andrea Munaro, Italy; Arkady Alt, San Jose, California, USA;
Brian Bradie, VA, USA; Daniel Campos Salas, Costa Rica; Daniel Lasaosa,
Universidad Publica de Navarra, Spain; Ganesh Ajjanagadde Acharya Vidya
Kula, Mysore, India; Jose Hernandez Santiago, UTM, Oazxaca, Mexico; Oleh
Faynshteyn, Leipzig, Germany; G.R.A.20 Math Problems Group, Roma, Italy.
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J68. Let ABC be a triangle with circumradius R. Prove that if the length of one
of the medians is equal to R, then the triangle is not acute. Characterize all
triangles for which the lengths of two medians are equal to R.

Proposed by Daniel Lasaosa, Universidad Publica de Navarra, Spain

First solution by Vicente Vicario Garca, Huelva, Spain

Let O be the circumcenter and M be the midpoint of the side BC. Without
loss of generality we have that a > b > ¢, we have

1 1 1
ma = 5\/21)2 +2c¢2 —a?, mp= 5\/2a2 +2c2 - b2, me = 5\/2a2 + 202 — 2,

and we deduce that my < mp < m¢. On the other hand, if the triangle is
acute angled, then its circumcenter lies int the interior of the triangle. Note
that myg > R, because ZAOM is obtuse, and the equality does not occur. Thus
triangle ABC' is not acute angled.

For the second part it is not difficult to see that if two medians in a triangle are
equal, then the triangle is isosceles, because

1 1
mB:mC<:>§\/2a2+2027b2:§ 202 +202 -2 & b=c.

Let the ABC be isosceles triangle with b = ¢. By the Law of Sines and the Law
of Cosines we have
B2+ c2—a? 202 —a?

a A
= cos A = =
2sin A’ 2bc 262

and if mg = m¢g = R, we have

1
m%5 = R? = Z(2a2—|—2b2—b2):R2,:> 20> + b =4R? (1)

and finally

9 a? a? _ a? oAR? 4p*
’ 4% — a?’

T 4sin?A 4(1 — cos? A) A [1 B <2b262)2:|

Finally, using (1) we get

4p*

2 2 _
2=

= 7a*? — 2a* = 0 = a®(Th? — 24%) =0,
yielding b = c = \/g a, and we are done.
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Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Without loss of generality, let us assume that the length of the median from A
equals R. The square of the length of this median is given by
vV +c? a? a?

5 —Z:Z—i—bccosA:RQSin2A+4stinBsinCcosA.

Equating this result to R? and grouping terms in one side of the equality yields
cos A (cos A —4sin BsinC) = 0.

One possible solution is that triangle ABC is right triangle at A, in which case
the midpoint of BC' is also the circumcenter, and the median from A is a radius
of the circumcircle. Otherwise,

4sin BsinC = —cos (B 4 C) = —cos Bcos C + sin Bsin C,

yielding
1
tan Btan C' = —3

Clearly, B and C cannot be simultaneously acute, and ABC is either rectangle
or obtuse.

If the lengths of two medians are equal to R, say m, = my, then

¥+ a*? A+a® b

2 4 2 4

yielding a = b, or ABC' is isosceles at C. Since A = B, C is obtuse, and using
the well known identity tan A + tan B 4+ tanC' = tan Atan Btan C, we find

2tan A — 3ta12nA = —tagA, and tan®’ A = tan’ B = %, tan?C = %. Using that
sin? o = 111;2“&, we find that

3
sin A = sin B = [,

sinC = \f,

or the lengths of two medians in a triangle are equal to R if and only if it is
similar to a triangle with sides \/é, \/ﬁ, V.
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J69. Consider a convex polygon AjAs... A, and a point P in its interior. Find
the least number of triangles A;A;Aj that contain P on their sides or in their
interiors.

Proposed by Samin Riasat, Notre Dame College, Dhaka, Bangladesh

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

We prove that a point P may be found such that it is not contained in the
interior or on the sides of more than n — 2 triangles. The result is true for
n = 3, since P will be in the interior of A1A2As only. If n > 4, denote by @ the
point where diagonals A; A3 and Ay Ay intersect. Clearly, each triangle A;A; Ay
will have non void intersection with the interior of AsA3Q@ if and only if one
of its sides is A2 As, in which case A2 A3() is contained in it. Since there are
exactly n — 2 different triangles A; A3 A that contain P in their interior, and
no other triangle A;A; A, may contain P on its sides or in its interior, the least
number is no larger than n — 2.

The number cannot be less than n — 2, we prove this by induction. The result
is true for the case n = 3. If the result is true for n — 1 > 3, consider triangles
A1 A2A3 and A3A4As in an n-gon, n > 4 (if n =4, then A5 = Al)

If n = 4, P is either on the common boundary A;As of these triangles, or
completely outside one of them. If n > 5, P cannot be simultaneously on the
sides or in the interior of both triangles, since they only have one common
vertex As which cannot be P. Therefore, either (n — 1)-gon A1A3A44...A,,
or (n —1)-gon AjAsA3As5... A,, contains P in their interior. Assume without
loss of generality, and by hypothesis of induction n — 3 triangles A;A;A; may
be found that contain P on their sides or in their interiors, where i,j, k # 2.
Consider now the partition of the n-sided polygon on triangles by drawing all
diagonals As Ag. Clearly, P is on the sides or in the interior of at least one of
the triangles thus generated, and this triangle is different to the n— 3 previously
considered, or the number of triangles that contain P on their sides and in their
interior is no less than n — 2, and so this is the least number.
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J70. Let lg,1p, . be the lengths of the angle bisectors of a triangle. Prove the following
identity
sin O‘T_’G sin @ sin 15

le lq Iy
where «, 3, are the angles of the triangle.

=0,

Proposed by Oleh Faynshteyn, Leipzig, Germany

First solution by Courtis G. Chryssostomos, Larissa, Greece

Using the fact that I, = M we get

OS(a b)
sin <b_77) sin (Lga) sin (a b) sin (b_TA/> sin (72(1)

: —b
n (451) . .
l l l " 2Rsinasinb 2Rsinbsiny 2Rsinasiny
c a b P - —
cos(50) cos(B)  cos(5%)
1

5 sin(a — b) 1 sin(b— ) +sin(y — a)

2Rsinasinb  2Rsinbsiny 2Rsinasin~y
1 [sin(a —b) N sin(b — ) N sin(y — a)]

4R | sinasinb = sinbsin ~  sinvysina
1 D eye(sinacosb—cosasinb)siny
T 4R sina sin bsin vy
1 0

4R’ sin a sin bsin ~y

Second solution by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain

By Mollweide’s formula we have

a—b sna—sing QCosagﬁsm 26 sinO‘T_B
c sin 7y 2sin 3 cos 4 cos 3
and
2ab 0
e = atb P

where a, b, ¢ are the sides of the triangle; hence,

sin O‘Tfﬁ a® —b?

l.  2abc ’

With this and the two similar results, we obtain

sino‘%ﬁ smﬁ - +sin% (@ =)+ (b — )+ (2 —a?) —0

le la Iy 2abc

as desired.
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Also solved by Andrea Munaro, Italy; Arkady Alt, San Jose, California, USA;
Daniel Campos Salas, Costa Rica; Daniel Lasaosa, Universidad Publica de
Navarra, Spain; Mihai Miculita, Oradea, Romania; Nguyen Manh Dung, Hanoi
University of Science, Vietnam; Prithwijit De, ICFAI Business School, Cal-
cutta, India; Vicente Vicario Garca, Huelva, Spain; Son Hong Ta, High School
for Gifted Students, Hanoi University of Education, Hanoi, Vietnam.
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J71. In the Cartesian plane call a line “good” if it contains infinitely many lattice
points. Two lines intersect at a lattice point at an angle of 45° degrees. Prove
that if one of the lines is good, then so is the other.

Proposed by Samin Riasat, Notre Dame College, Dhaka, Bangladesh

First solution by Brian Bradie, Newport University, VA, USA

Let ¢1 and ¢ be lines that intersect at a lattice point at an angle of 45°. Further,
suppose that ¢1 is good. As #; contains two lattice points, its slope must either
be undefined or rational. If the slope of ¢; is undefined, then the slope of {5
is +1; in either situation, /2 contains one lattice point and has rational slope
so must therefore contain infinitely many lattice points and is good. If, on the
other hand, the slope of ¢ is =1, then /5 is either a horizontal line or a vertical
line; again, in either situation, because {5 is known to contain one lattice point
it must therefore contain infinitely many lattice points and is good. Finally,
suppose the slope of £ is rational but neither £1, and let 8 denote the angle of
inclination of ¢;. Then tan @ is rational and

tan 6 4 tan 45° tanf + 1
an( ) 1F tanf tan45° 1— Ftané

is also rational. Once again, {5 contains one lattice point and has rational slope
so must therefore contain infinitely many lattice points and is good.

Second solution by Jose Hernandez Santiago, UTM, Oazaca, Mexico

Let us suppose that [, and I, are two lines that satisfy the conditions stated in
the hypothesis. Without loss of generality we may assume that [, is a “good”
line, and that the coordinates of the lattice point at which those lines meet are
(m,n).

The purported result clearly holds in any one of the following cases:

(a) The slope of line [, is 1.
(b) The slope of line is [ is —1.
) Line [, is vertical.

)

(c

(d) Line [, is horizontal.

If line [, falls into neither of those categories below, we infer that its slope is a
rational number of the form £, where a,b € Z\{0}, a +b # 0, and a — b # 0.
Furthermore, the hypothesis that lines I, and [, intersect at an angle of 45°
imply that one and only one of above relations holds

Qg = 041+45 (1)
Qo = a1—45, (2)
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where a1 and ag are the elevation angles of lines [, and [,, respectively.
Now, assuming that (1) holds (similarly we can do for (2)), we get
tanas = tan(ag + 45)

tan a1 + tan 45

1 —tan g tan4b

7+1

1—¢

a+b

b—a
Hence, line [, is represented by the equation

y—n = tanas(z—m)
- (1) -,

(b—a)y—(a+bz = (b—a)n—(a+b)m. (3)

Since ged(b—a,—(a+0b)) | (b—a)n — (a+ b)m, the diophantine equation in (3)
possesses an infinite number of solutions in integers. Each one of these solutions
corresponds with a lattice point in [,, and we are done.

or equivalently,

Third solution by Vishal Lama, Southern Utah University, USA

Let the two lines, say, I; and [y, intersect at a lattice point P(a,b) at an angle
of 45°. Without loss of generality we may assume that line I; is “good”, i.e. Iy
contains an infinite number of lattice points.

Let Q(c,d) be an arbitrary lattice point on ;. Construct a perpendicular on Iy
passing through @ such that it intersects ly at R(c/,d’). We show that R itself
is a lattice point.

Note that triangle PQR is a right isosceles triangle, with QP = QR and
/ZPQR = 90°. Now, consider the points on this plane as complex numbers.
Recall that a complex number a + ib when multiplied by e? rotates it by
an angle 6 in the counterclockwise direction. We note that Q—}% rotated by
90° in the counterclockwise direction coincides with CW)D Therefore we have
(¢ —c+i(d —d)e™? = a — ¢+ i(b — d), which implies d — d’ + i(c —¢) =
a—c+1i(b—d). Solving for ¢ and d’, we obtain ¢ =b+c—d and d' = c+d—a.
Now, since a,b,c and d are all integers, so are ¢’ and d’, thus proving that
R(c,d’) is a lattice point.

Hence, if an arbitrary point Q(c, d) on line [; is a lattice point, then so is R(¢/, d’)
on line lo. This implies if /1 is “good”, then so is line Is.
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J72. Let a,b, ¢ be real numbers such that |a> < be. Prove that b* + ¢ > & whenever
ab+ 05+ 0 > 4.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Salem Malikic, Sarajevo, Bosnia and Herzegovina

Assume the contrary that b? + ¢* < %. Then note that a® < (bc)?, thus

1
— <al 0%+ 5 < (be)? 4+ 00 + O

27
= (0% + )% + (be)*(1 = 3(b* + 2))
2
<P+ <b2‘2“2> (1-30% + )
= (172202)2(4(192 + ) +1—3(b* + %))
2
_ @+ 202)2(1 10+ ) < (i) (1 + ;)
1
==,

a contradiction. Thus b + ¢ > %, and we are done.

Also solved by Arkady Alt, San Jose, California, USA; Daniel Campos Salas,
Costa Rica; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Oleh Fayn-
shteyn, Leipzig, Germany; Vishal Lama, Southern Utah University, USA
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Senior problems

S67. Let ABC be a triangle. Prove that

cos® A + cos® B + cos® C + 5 cos A cos BeosC < 1.

Proposed by Daniel Campos Salas, Costa Rica

First solution by Son Hong Ta, Hanoi, Vietnam

Using the equality
cos? A+ cos? B + cos? C + 2cos Acos BeosC = 1

the initial inequality becomes equivalent to

ZCOS3A+3HCOSA§ ZCOSQA,

SHCOSA < ZCOSQA(l —cos A)
Now, by the AM-GM inequality, we have

ZCOS2A(1—COSA) > 3{’/HC082A~H(1—COSA)

Thus, it suffices to prove that

HCOSA < H(l —cosA).

When triangle ABC is obtuse, the above inequality is clearly true. So we will
consider the case it is acute. We have

or

HCOSA < H(l —cos A)

= HcosA(l +cosA) < | ] (1 - cos? A4)
A
<=>8HcosA-Hcos25§ sin® A
A .
PN HC?452§A < [[sin A
[Isingcos4 ~ [[cosA
A B C
— COt§COt5C0t5 < tan Atan Btan C

A B C
<:>cot§+cot§+cot§ <tanA-+tan B + tanC
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Indeed, we have

ZtanAzzw ZZtanB;C :Zcotg,

and the equality holds if and only if triangle ABC' is equilateral.

Second solution by Arkady Alt, San Jose, California, USA
Since cos? A 4 cos? B 4 cos? C' + 2 cos A cos B cos C = 1 we will prove that

ZCOS2A(1 —cos A) > 3 cos Acos BcosC.

cyc

By the AM-GM Inequality we have

ZCOS2A(1 —cosA) >33 HCOSQA(l —cos A),

cyc cyc

then it suffices to prove

353 HCOS2A(1 —cos A) > 3 cos Acos BcosC

cyc

= H(l — cos A) > cos A cos B cosC

cyc
A B B
<= cos Acos BcosC < 8sin? 2 sin? ) sin® 5
B2 4 2 — g2 A 2 _ (h_ )2
Using that cos A = % and 2sin? 3= a2(bcc) we get
A B C
cos A cos B cos C < 8sin? 3 sin® 5 sin® 5
b2 + % — a? a2 — (b—c)?
<
— H 2bc - H 2bc
cyc cyc
= H(b2+62—a2) < H(b+c—a)2.
cyc cyc

Without loss of generality we can assume that [] (b2 +c? — a2) > 0.

cyc

Then b? + ¢ > a?, ¢ + a? > b?,a? + b? > ¢? and, therefore,

[[(+c—a?) <[[(b+c—a) < H(b2+02—a2)2§ [T(h+c—a).

cyc cyc cyc cyc
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Because

[T+ —a?)? =T (v~ (- a?)%)

cyc cyc

and
2

H(b+c—a)4:H<b2—(c—a)2> :

cyc cyc

2
it is enough to prove b* — (c? — a2)2 < (b2 —(c— a)2> . We have

and we are done.

Also solved by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
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S68. Let ABC be an isosceles triangle with AB = AC. Let X ad Y be points on sides
BC and CA such that XY || AB. Denote by D the circumcenter of triangle
CXY and by E be the midpoint of BY . Prove that ZAED = 90°.

Proposed by Francisco Javier Garcia Capitan, Spain

First solution by Andrea Munaro, Italy

Let M, N and H be the midpoints of CY, XY and BC, respectively. Then
E, N and M are collinear. Note that /EMD = 90° — /BCA = /DCA.

Since AB || XY, triangles CHA and DMC' are similar and so % = DM or

equivalently % = %. Thus triangles ADC and EDM are similar and
2

LAED = /ZABE+ /BAE+ /YBC+ ZDEM
LABC + Z/BAE + ZDAM
= [ABC+ /ZBAC — ZEAD.

Then ZAED + /EAD = ZABC + Z/BAC and so /ZEDA = ZABC = ZEMA.
Thus AEDM is a cyclic quadrilateral and the result follows.

Second solution by Dinh Cao Phan, Pleiku, Vietnam

Draw BF || AY. Let YX meet BF in F. We have BF || AY and AB || FY,
hence ABFY is a parallelogram. Because F is the midpoint of BY', then F is the
midpoint of AF, and since AABC is isosceles it follows that ZABC = ZACB.
Thus LY XC = LABC, yielding /Y XC = ZYCX and we can conclude that
AY X C is isosceles.
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From point D we draw the circumcircle of the triangle ACXY | and D lies on the
perpendicular bisector of XC. Consequently, Y D is the angle bisector of ZXY C,
hence ZFYD = ZCYD. We have AC = YF, DY = DC, /ZDCA = ZDYF,
therefore AADC = AFDY. Thus DA = DF and AADF is isosceles. Since
DE is a median, it is also a perpendicular bisector of AF. Finally, DE 1| AF,
hence ZAED = 90°, and we are done.

Third solution by Oleh Faynshteyn, Leipzig, Germany

Let the vertices of a triangle ABC' correspond to the complex numbers A(a), B(b), C(c).
Assume that the circumcircle of triangle ABC' is the unit circle, and denote by
M its center, which will also be the origin of the complex plane.

a-a=1, b-b=1, c-e=1.
As AB || XY, the triangles ABC and XY Z are similar, yielding

_Bx _ Ay
- XC YC

In addition, since ABC is isosceles, we have a? = be. Knowing the complex
coordinates of A, B, C we can calculate the corresponding complex coordinates
of points X (z),Y (y), E(e), D(d). We obtain

b+ Ac a+ Ac b+y (a+b)+Ab+c) 0+ Ac Ac
€r = ’e: = s = y = .
1+ A 2 2(1+X) L+ A 1+

T+x 77

Further, we get
A

(14 X)c

(a4c)+Ab+c)
2a%(1+ )

é:

, d=
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For the triangle XY Z, the necessary and sufficient condition for it to be isosceles
is y2 = xc, or using the above identities we can rewrite it as

at )\ _ bt
1+X)  14x

Wince A # 0, we obtain ¢+ b — 2a = 0. Using the above relations we calculate
the slope between the lines AE and DE. We have

k _e—a a*(a—0b) k _e—d _d*(a+b+Ab—0))
AET TG a—c 0 PPTEIUT adct+rb—o

We have that

a?(a+b+Ab—c))
a+c+ Ab—c)
a*(a—b)(a+c+Ab—rc))+a*(a—c)(a+b+ Ab—rc))

- (a—c)(a+c+Ab—rc)) =0

Therefore, AE | DFE, and we are done.

- 2(a—b —d
kAE-i‘kDE:e a:a(a )+e 2=

e—a a—¢c¢ e —

Also solved by Ricardo Barroso Campos, Universidad de Sevilla, Spain; Andrei
Iliasenco, Chisinau, Moldova; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; Daniel Campos Salas, Costa Rica; Miguel Amengual Covas, Mallorca,
Spain; Mihai Miculita, Oradea, Romania; Courtis G. Chryssostomos, Larissa,
Greece; Son Hong Ta, Ha Noi University, Vietnam; Vicente Vicario Garca,
Huelva, Spain; Vishal Lama, Southern Utah University, USA.
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S69. Circles wi and wo intersect at X and Y. Let AB be a common tangent with
A € wy, B € we. Point Y lies inside triangle ABX. Let C' and D be the
intersections of an arbitrary line, parallel to AB, with w; and ws, such that
C € wy, D € wy, C is not inside wy, and D is not inside wy. Denote by Z the
intersection of lines AC and BD. Prove that X Z is the bisector of angle CX D.

Proposed by Son Hong Ta, Ha Noi University, Vietnam

Solution by Andrei Iliasenco, Chisinau, Moldova

Denote a = ZZCD, by B = £ZDC, by v=/£XCZ, and by 6 = LXDZ.

2Rysiny  AX  sin/ABX  sind Ry sin?§

= = = = — = .
2Rysind  BX sin/BAX siny’ T Ry sin’ny

Denote by E and F' the second intersections of line C'D with circles w; and wy
respectively. Note that C'D is parallel to AD, thus Z/CFA = /ZECA = a and
by analogy /DFB = Z/FDB = (3. Let d be the distance between CD and AB.
We have

d CAsina 2Ry sin? « sin® § R’ sin® 8

l=-= = : = - =5 == .
d BDsinf3 2Rysin?p’ sin2y Ry sin?a
Because sin a, sin 3, sin 7, and sin § have positive values, we get that :iﬁg =

Now we will use the Law of Sines for the triangles CXZ and DX Z:

cz Xz bz xz
SnCXZ snxcz M snDXZ  snXDZ'

sina  DZ  sinysinDXZ
sin  CZ sindsinCXZ'

Hencesin C X Z = sin DX Z. It follows that either /CXZ = /DX Z or /CX Z+
/ZDXZ = m. If CD does not pass through X, then /CXZ + /DXZ # 7 and
therefore Z/CXZ = /DX Z. If CD passes through X and X = E = F| then let
T be the point on the line perpendicular to C'D, passing through the point X,
such that X7T = 2d. Let A; and By be the projections of the points A and B
on the line C'D. Because of the similarity of triangles ACAA; and ACTX we
get that the points C, A, and T are collinear. Analogously, points D, B, and T
are collinear. This means that T'= Z and Z/CXZ = /DX Z = 90°.
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S70. Find the least odd positive integer n such that for each prime p, "2; L npt +p8
is divisible by at least four primes.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Andrea Munaro, Italy

Let n = 2k + 1 with k nonnegative integer. For k£ = 0,1,2,3 it is easy to see
that when p = 2 there are less than four prime divisors.

4
_(a 2)2_}
<p+2 4

= <p4+”;1> <p4+”‘2”> = (p' +E)(p" + k+1).

Let k =4, then M = (p* +4)(p" +5) = (0" + 20+ 2)(p° = 2p + 2)(p" + ).
If p =2, then M is divisible by 2,3,5,7. If p is odd we have

(p* +2p+2,p° —2p+2) = (p* +2p+2,4p) = 1,

P> +20+2,p"+5) = (P*+2p+2,p* +5—p* —8p? —4—4p> — 4p)
= (PP+2p+2,49° +8p° +4p+1)
= (PP +2p+2,4p° +8p> +4p+1 — 4p> — 8p® — 4p)
= (PP+2p+2,1)=1,

and
(P> —2p+2,p* +5) = (p> —2p + 2,4p* — 8p* +4dp+1) = (p* = 2p +2,1) = 1.

Thus p? + 2p + 2, p> — 2p + 2 and p* + 5 are pairwise coprime. As p* +5 =2
(mod 4) for all odd p, then 2! is the greatest power of 2 dividing p* + 5. Since
both p? + 2p + 2 and p? — 2p + 2 are odd, there is another prime different from
2 and from all the divisors of p? + 2p + 2 and p? — 2p + 2 which divides p* + 5,
and so n = 9 is the least desired number.

Second solution by Daniel Campos Salas, Costa Rica

Let n =2k + 1, then
7”24_1 +pt 4+ =k(k4+ 1)+ 2k +Dp* +p8 = p* +E)(p* +E+1).
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Note that for £k = 0,1, 2,3 the result does not hold for p = 2. We prove that
k = 4 is the least integer that satisfies the condition. For k = 4 we have

P+ +5) =@+ 20+ 2)(0* - 20+ 2)(p" +5).
Since (p? +2p+2)(p? —2p +2) = (p* +5) — 1 we have that
(p2+2p+2,p4+5):(p2—2p+2,p4+5):1.

This implies that any prime that divides (p? + 2p + 2)(p? — 2p + 2) does not
divide p* + 5 and viceversa. Then, it is enough to prove that two primes divide
(p? + 2p + 2)(p* — 2p + 2) and another two divide p* + 5.

For p = 2 the result holds. Assume that p is an odd prime. Note that 2|p* + 5.
To prove that another prime divides p* + 5 it is enough to prove that 4 1 p*+5.
This results follows from the fact that 4[p* + 3.

In order to prove that two primes divide (p?+2p+2)(p® —2p+2) it is enough to
prove that (p? +2p+2,p* —2p+2) = 1. Let (p? +2p+2,p*> —2p+2) = d. Note
that d is odd and that d|4p. This implies that d|p. If d = p then p|p? + 2p + 2,
which is a contradiction. Therefore, d = 1, as we wanted to prove. This implies
that k = 4 is the least integer value, from where we conclude that n = 9 is the
least odd positive integer that satisfies the condition.

Also solved by Andrei Iliasenco, Chisinau, Moldova; G.R.A.20 Math Problems
Group,Roma, Italy; Salem Malikic, Sarajevo, Bosnia and Herzegovina.
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S71. Let ABC be a triangle and let P be a point inside the triangle. Denote by
o= ABQPC,ﬁ = ACZPA,V = 4AQPB. Prove that if I is the incenter of ABC', then

sin e sin 3 sin 7y R
sin Asin BsinC' — 2(r + PI)’

where R and r are the circumcenter and incenter, respectively.

Proposed by Khoa Lu Nguyen, Massachusetts Institute of Technology, USA

Solution by Khoa Lu Nguyen, Massachusetts Institute of Technology, USA

First of all we prove the following lemma:

Lemma. Given a triangle ABC with sidelengths a,b,c and a fixed point P.
Then for all the point ) in the same plane,

a-PA-QA+b-PB-QB+c-PC-QC > abc.

Moreover, if P lies inside ABC, the equality happens only at the isogonal con-
jugate P* of P with respect to ABC.

Proof. Consider two cases
1%t case: P is inside the triangle ABC.

Without loss of generality, we may assume P is not A. It is easy to easy that

f(Q) > abe for every point @ lying outside the closed disk centered at A with

radius %. Since the disk is compact and f is continuous, we obtain that f

must have a minimum value.

Suppose @ lies inside triangle ABC. Denote by A’, B’,C’ the projections of P
onto BC,CA, AB. Because @ is inside triangle ABC, we must have

CLPAQA:2RSIHAPAQA:2RB,C/QAZZLRSAB/QC/,

where Sapgcr denotes the area of the quadrilateral AB'QC’. Similarly, we
obtain
b-PB-QB > 4R. - Spcign

¢-PC-QC > 4R - Scaop.

Summing up, we obtain
a-PA-QA+1b-PB-QB+c-PC-QC > 4R - Sapc = abe.

The equality holds if and only if (QA, B'C"),(QB,C'A"),(QC, A’B’) are pairs

of perpendicular lines. This means that @ is the isogonal conjugate of P.

MATHEMATICAL REFLECTIONS 1 (2008) 20



Suppose now that there is a point (o lying outside triangle ABC and Q) is
a critical point of f. Since @y is outside ABC, we can set up a Cartesian
coordinate Ogy such that xg, > max{z,zp,xc}. Then we have

FQ) =my/(x—xa)2+ (y —ya)? +n/(x —25)2 + (y — yp)?
+pvV(z —20)2 + (y — yo)?

where Q = (z,y),m =a-PA,n=">b-PB,p=c-PC. Since

rQy, —xa > 0,20, —xB > 0,20, —2Cc > 0,
we must have of
9z (Q0>¥Q0) > 0-
Hence Q)¢ cannot be a critical point of f. Thus f(Q) > abc and the equality
occurs when ) = P*.
2"d case: P is outside the triangle ABC.

By a similar argument, one can show that f(Q) has a minimal value when
Q = Qo and @y cannot be outside ABC. Thus by interchanging the role of Qg
and P and applying the result in case 1, we obtain

f(Q) = f(Qo) = ab,

and the lemma is proved.

Returning to the problem we know that P is inside a triangle ABC. Denote
by A’, B’,C’ the projections of P onto BC,CA, AB, respectively. Clearly, P is
inside the triangle A’B’C’. Now by applying the lemma to triangle A’B’C" and
P, we obtain f(I) > B'C"-C'A’ - A'B’. By replacing

B'C'=PA-sinA, C'A' = PB -sinB, C'A' = PC -sinC
PB - PCsin ZBPC _ PC-PA-sinZCPA

and PA' = " , PB’ 5 ,
por_ PAPB-snZAPB
c
%(IA’ sin 2« + I B'sin23 + IC’ sin 2) > sin Asin Bsin C,
where o = £BPC 3 — ZCPA . _ ZAPB
By triangle inequality, we have max{IA’, IB’, IC"} < r + PI. Hence
T J;;I (sin 2 + sin 23 + sin 2y) > sin Asin Bsin C.

To obtain the inequality in the problem, it is now sufficient to show that sin 2a+
sin 20 + sin 2y = 4sin asin Bsin . This is true because o + 8 + v = .

The equality of the inequality occurs only if P is 1.

MATHEMATICAL REFLECTIONS 1 (2008) 21



Undergraduate problems

U67. Let (an)n>0 be a decreasing sequence of positive real numbers. Prove that if

e [e%e) —1
. . . ao k—1
the series g ay, diverges, then so does the series g ( 4+ ) .
a1 ag
k=1 k=1

Proposed by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
Solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
As (an)n>0 is a decreasing sequence, we have
aop ap-1\ " ag a1\ ak ag
<_|_...+ _> Z(+"'+ _> = > —,
ai ag ak ag Sk_1 S}

where Sy = Zle a;. Further, using Abel-Dini Theorem, if a; > 0 and ) ay
diverges, then Z % also diverges. This can proved writing
k

ay (079 Sn_Sk—l Sk:—l
. W
s, ts =T 5, S

the last quantity that can is close to one as n goes to infinity. This assures the
divergence of the series _ ¢*, and we are done.
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U68. In the plane consider two lines dy and dy and let B,C € dy and A € dy. Denote
by M the midpoint of BC' and by A’ the orthogonal projection of A onto dj.
Let P be a point on ds such that T'= PM N AA’ lies in the halfplane bounded
by di and containing A. Prove that there is a point () on segment AP such
that the angle bisector of the angle BQC' passes through T

Proposed by Nicolae Nica and Cristina Nica, Romania

Solution by Nicolae Nica and Cristina Nica, Romania

Recall the well known fact - the angle bisector always lies between the altitude
and the median with respect to the same vertex. Now let us consider the
function f : [AP] — R, f(z) = d(T,XC) — d(T, X B), where d(U, VW) is the
distance from U to the line VIW. Clearly, this function is continuous and has
Darboux property. We have

F(A) = d(T, AC) — d(T, AB), f(P) = d(T, PC) — d(T, PB)

and using the above observation f(A)- f(P) < 0. From the Darboux property
it follows that there is a point @ such that f(Q) =0, or d(T,QC) = d(T,QB).
Thus point @ lies on the angle bisector of triangle QBC.
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U69. Evaluate

n

k 1
lim Z <1 + arctan > sin .
n—00 pt n n+k

Proposed by Cezar Lupu, University of Bucharest, Romania

First solution by Brian Bradie, VA, USA
Using Taylor series,

o0

1 ; 1
i = (-1 —— .
Sin n+ Lk ]Z(:)( ) (n + k)2]+1

For 5 > 0,

n
. k 1
nangO g (1 + arctan n) W =

k=1
1 1 k 1
= hm Tj Z — (1 -+ arctan > T«H
n—oo N k:1n n (14_5)]
I S | k 1
= o 3 (1wt )
k=1 n
. 1 11 + arctan
= lim —- i
n—oo nJ—1 0 (1 + x>2]+1
= 0.
Thus,
n n k
k 1 1+ arctan® 1
lim Z <1 + arctan ) sin = lim Z 7/%” .
n—o0 n n+k n—00 1+ & n
k=1 k=1 n
/1 1+arctanxd
= ———dx
0 1 +SC
_ ln2+/1 arctanxdaj'
o l+=x
By integration by parts,
1 1
t 1 In(1
/ de = In(l+2) arctanx‘ —/ Mdg:
o l+z o Jo 1+a2
1
In(1
— "o / In(l+a)
4 0 1 +SU2
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Now, making the substitution x = tanf into the above integral on the right-
hand side, we find

1 w/4 w/4 :
t/ (i +a) ::t/ hml+tmuﬂd9:i/ 1n<$n9*‘“ﬁe>(w
0 0 0

1+ a2 cos 6
w/4 _
_ / ln\@cos(ﬁ 7/4) "
0 cos 6

T m/4 /4
= 8ln2+/ lncos(&—w/ll)de—/ Incos6db. (4)
0 0

Finally, with the substitution w = 7/4 — 6, we find

w/4 0 m/4
/ Incos(f — 7 /4) df = —/ In cos w dw = / In cos w dw. (5)
0 /4 0

Combining all the results above we have

n
k 1
nh_)rglo; <1+arctann) Sinn+k :ln2+gln2—%ln2: (l—i—%) In 2.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Note that we may substitute sin .—— by +k without altering the value of the
limit, since

1 (—1)™
Sin == )
n+k g;@m+nun+m%“

or the difference between the proposed limit and the result of the proposed
substitution is, in absolute value,

n o0
k 1
0 < | lim E <1 + arctan > E (—)™ T
Kt n) = (2m + 1)l (n + k)"
o0 n [o¢]
. 1+ arctanl . 2 2
< < =0.
<Jim > D |G g | <1 2w = i 5y =0
= m=

Let us write now the limit obtained after performing the substitution in the
following way:
1+ arctan =1
lim Z - —.

n—oo n

This is clearly the Riemann sum of the function 1FALE evalyating the func-

1+x
tion at all upper extrema of intervals (% E) each interval with length - L for
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k=1,2,..,n,ie, when z goes from 0 to 1. Therefore, the proposed limit is

equal to
1 1
1 t t
/ + arc anxdx _ ln2+/ arc anardx'
0 1"‘(13 0 1+1’

In order to calculate this second integral, we perform first the substitution

x = tan §, yielding arctanx = §, dr = 2(:(‘)1%, and lower and upper integration
2

limits over a equal to 0 and 5. Therefore,

/1 arctanxd 1/75 ada 1/72r ada
ACanL o — - =
o 1+uw 2 Jo 2cos?§+2sin§cos§ 2 )y 1+cosa+sina

1/1 ado 1/0 (%—5)dﬂ _7T/74r do
2 )y l+cosa+sina 2 z 1+sinf+cosB 4 )y 1+cosa+sina’

where we have substituted o = § — 3 in the interval (7, g) first, and we have
then substituted § = a.

This final integral is east to find after performing the standard substitution

a . . 12 . 2y _ 2dy
tan § = y, resulting in cosa = 175 T2 sina = 155, da = 7% ol and lower and

upper integration limits of 0 and tan g:

/1 arctanxd W/tang 2dy F/tang dy
—_—ar = — — -
o 1+ 4 Jo Q4+y2)+ (1 -y +2y 4 Jy 1+y

:Eln(l—l—tanI) :EIDQ,

4 8 8
since tan g = V2 — 1. This last result may be found by setting 2y = 1
(and therefore tan (2y) = 1 in the well-known relation tan (2v) = ﬁif;‘lgw,

and solving for tany = tan g, keeping the positive root since g is in the first

8
quadrant. We thus finally arrive to

. - k\ . 1 s
JLn;o; (1 + arctan n) sin Wi (1 + §> In 2.

Third solution by G.R.A.20 Math Problems Group, Roma, Italy

First we note that

n n
k 1 k 1
L = lim g 1 + arctan — | sin = lim E 1 + arctan —
n—00 £~ n n+k nooo P n)n+k
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because |sinz — x| < 2% and

z": 1—|—3chtanﬁ sin 1 — 1 < Y (1+§)#
n n+k n+k - 47 (n+k)?

k=1

1
< n(1+5) 5 -0

Moreover, the new limit is a limit of Riemann sums

n

k 1
I — lim Zl+arctang _1_/ 1+arctanxdx
n—oo 0

k
— 14 % n 1+2
1
- ln2+/ arctan s ;.
0 14+
1
In(1+ x)
= In2 t log(1 L — ——=d
n2 + [arctan z log(1 + z)]; /0 a2
1
s In(1+ x)
= (1 —)l 2 — ———=dx.
(1+3)m /0 1+a2

Now, letting = = tan(f) we have that

Ln(1 w/4
/n(—{_f)dx - / In(1 + tan 0) do
0 142 0

/4 /4
= / In(cos @ + sinf) df — / In(cos @) do
0 0
w/4 w/4
- / In (\/icos(z - 9)) do — / In(cos 0) 6
0 4 0
T T 1
= / ln\@d@—i—/ lncos(4—9)d9—/ In cos 6 df
0 0

0

s

w/4
— / Inv2do = Zn2.
0 8

Finally,

L:<1+%>1n2—gln2:<1+g)1n2.

Fourth solution by Vishal Lama, Southern Utah University, USA

= k 1
Let L = nh—>nolo ; (1 + arctan 5) sin ——
Now, let E = {1,2,...,n}, and let {f,},n = 1,2,... , be a sequence of func-
tions defined by
1
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We prove that {f,} uniformly converges to 1. Indeed, using the Taylor series
expansion for sinx, for any k € E, we have

m+khm<nik>_4:(n+m<nik_$mikﬁ+”'>_4

1 1
13 (n + k)2 _5!(n+k‘)4+'” ’
1 1

S8t k? S n

Now, for € > 0, we choose the least integer N > 1/e. Note that our choice for
N is independent of k. So, for any € > 0,|f,(k) — 1| < eVn > N, for all k € E.
Hence, {f,} uniformly converges to 1.

Thus
= E\ 1
L = lim Z 1+ arctan — | ——.
n—oo nj/n+ k
k=1
Now, setting = k/n and considering the above summation as a Riemann sum,
we have

11+ tan'z L _1
Yn(1 4 z)

14 22 du

= (1 +tan"t2)In(1 —i—x)|(1) —/
0
— (14 %)1112 .y

To evaluate I, we use the substitution z = tan, to get

/4
I :/ In(1 + tan @) df
0

= /4 In(1 + tan(mw/4 — 0))dO using the identity /a flz)der = /a fla—xz)dx
0 0 0

7r/41 2 do
_/0 n(l—i-tanH)

= "mo—_1.
1

Thus I = gln2, and therefore L = (1 + %)ln2 - %IHQ =(1+ g)an.

Remark. The evaluation of I above was Problem A5 in the Putnam Competition
2005.

Also solved by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
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U70. For all integers k,n > 2 prove that

n 1 n
e — << — - .
1/1+k_nlog<1+k_1>+1

Proposed by Oleg Golberg, Massachusetts Institute of Technology, USA

First solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
Let n/k =z, 0 < z < n/2. Consider the function

f@ﬂ:%h(1+n7;)+l—ﬂ+wfm

and we study it for all n > 2. We have

n? v z
D) lim f(@) =0,  2) fl(x)Zl((nx—l—n—x)(n—x) B E)

z—0 n

Recall Bernoulli’s inequality: (1 + z)* <1+ ax for 0 < a < 1. Hence
Vita<l+-.
n

To prove that the derivative of f is positive for any 0 < x < n and for any fixed
n > 2, it is enough to prove that
2
n S 1+
(nz+n—x)n—x) ~ 1+z’

nd(x+1) > (nx +n—x)(n? — %),

nix +n3 > n3x+ n® — n?z — na® — na? —|—x3,
n’x 4+ nz? 4+ na > 1:3,

which is clearly true. Thus the derivative is positive and therefore f(x) > 0.
The proof is completed.

Second solution by Oleg Golberg, Massachusetts Institute of Technology, USA

We will use the following simple result.

Lemma. For all positive a

1
P <log(a+1)—loga<a.
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Let f(z) = logz. Then f'(z) = 1 and due to the Mean-Value theorem there
exists ¢ € (a,a + 1) such that

1, . logla+1)—1loga
E_f(c)_ (a+1)—a

=log(a + 1) — loga.

Since ¢ € (a,a + 1), it must be that

1 1 1

< < —.
a—+1 c a

Combining these two results yields the desired inequalities.

Returning to the problem, by the AM-GM inequality we have

k+1 k+2 ktn Vk+1 k+2 Y
k k+1 k+n—17" ko k+1 k4+n—-1 k

We also have

k k+1 E+n—1 k k+2 k+n—1

UG S R S
a E k+1 7 k4+4n—-1)°

Due to the result of the lemma, we have

1 1

e 44— < - - -
rtaan Tt r o Slosk —log(k — 1) 4 log(k +1) —logk +

+log(k+n—1) —log(k +n—2)

=log(k+n—1)—log(k —1) = log <1+kil)'

Combining the obtained results, we finally obtain

n 1 /(k+1 k+2 k+n 1 n
n R G (e L s A LI [ gl -
1+k:_n( K kit +k+n—1>_n<n+10g<1+k—1)>

1 n
=1+4+-1 1+ -——
—i—nog( +l<;—1)’

and the inequality is proved.
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UT71. A polynomial p € R[X] is called a “mirror” if |p(z)| = |p(—=z)|. Let f €
R[X] and consider polynomials p,q € R[X] such that p(z) — p'(z) = f(z), and
q(z) + ¢ (x) = f(z). Prove that p + ¢ is a mirror polynomial if and only if f is
a mirror polynomial.

Proposed by Iurie Boreico, Harvard University, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It is well known that a polynomial p € R [X] has nonzero coefficients only for
terms with even degree of x if and only if p(z) = p(—x) for all x; we call
such a polynomial an “even” polynomial (or polynomial with even symmetry).
Similarly, a polynomial p € R [X] has nonzero coefficients only for terms with
odd degree of x if and only if p(z) = —p(—=x) for all z; we call such a polynomial
an “odd”polynomial (or polynomial with odd symmetry).

Lemma. p is a mirror polynomial if and only if it is either odd or even.

Proof. if p is either odd or even, it is clearly a mirror. If p is a mirror, then either
p(z) = p(—z) for an infinitude of values of z, or p(x) = —p(—=x) for an infinite
of values of z. In either case, either finite-degree polynomial p(z) — p(—z) or
finite-degree polynomial p(x) 4+ p(—x) has an infinite number of real roots, and
needs to be thus identically zero, ie, either p(x) — p(—z) = 0 for all x (and p is
even), or p(z) +p(—x) = 0 for all x (and p is odd), or both (and p is identically
Z€ero).

We prove our statement using induction on the degree n of f, which is by
definition equal to the degree of p and g, since the degree of p’ and ¢ is less
than the degree of p and ¢, unless p and ¢, and therefore also f, are constant.
By the previous argument, it is also clearly true that the highest degree of = has
the same coefficient in f,p,q. When n =0, f(z) = p(x) = q(x) = M are
constant, thus even, thus mirrors. When n = 1, write without loss of generality
f(z) = a1z+ap with a; # 0. Then p(x) = ajx+ap+a; and ¢(x) = ajx+ap—ay,
and p(z) + q(x) = 2f(x) = 2a1x + 2a9. Since neither f nor p + ¢ may be even,
and f is odd if and only if ag = 0 or p+ ¢q is odd, then f is a mirror polynomial
if and only if p 4+ ¢ is a mirror polynomial.

Assume now that the proposed result is true for all polynomials of degree less
than n > 2, and write without loss of generality f(z) =>";_, apz®, where a,, #
0. Define now polynomials 7, s, Af, Ap, Aq as follows: Af(z) = f(z) — apz™,
Ap(z) = p(z) — r(z), Aq(z) = g(z) — s(x), where

r(z) = a, zn: (Z) kla

k=0
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Note that

—_

/ _ n o n—(k+1) _ — (n n—l __ _ n
r'(z) = an <k> (n—k)klx —%;(l)“l‘ =r(z) — apz",

k=0

3

n
§'(x) = —an lz; (7;) (=) 112" = a2” — s(z),
where we have performed the substitution £k = [ — 1. With this definitions, it
is clear that the degree of Af, Ap, Aq is less than the degree of f,p, q, while

Ap(x) = Ap'(z) = p(z) — p'(2) = (@) + r'(2) = f(2) — anz” = Af(2),

Aq(z) + Ad'(x) = () + ¢'(2) = s(x) = s'(x) = f(2) — ana” = Af(2),

n

Ap(e) + Ag(x) = p(z) +a(x) —an 3 (’,j) (1 (1)) k.
k=0
From the first two of the last relations, we find that Af, Ap, Aq satisfy the
conditions given in the problem, and from the third that the only terms that
are different in Ap + Aq with respect to p + ¢ are those whose degree has the
same parity as n. Therefore, f is a mirror if and only if f is even or odd, if
and only if Af is even or odd (we obtain Af by making 0 one coefficient in f
which has the same parity of all other nonzero coefficients in f), if and only if
Ap+ Ag is even or odd (by hypothesis of induction), if and only if p+ ¢ is even
or odd (because Ap + Agq is obtained by modifying only coefficients of p + ¢
that have the same parity as n), if and only if p + ¢ is a mirror, and we are
done.

Second solution by Iurie Boreico, Harvard University, USA

The condition |p(x)| = |p(—z)| is equivalent to p?(z) = p?(—=x) ie. (p(x) —
p(—2))(p(x) + p(—x)) = 0. This can happen only when one of the two factors
is identically 0, so either p(z) = p(—=x), or p(x) = —p(—=z). By comparing the
coefficients of the two polynomials, this can happen if and only if all monomials
appearing if f are either of even degree, or of odd degree. Thus f is a mirror
polynomial if and only if f(z) = g(2?) or f(z) = zg(z?) for some polynomial
g.

The next idea is that p and ¢ can be exhibited in a rather explicit form. For
example, p must be unique, because if py — p| = p2 — ph, then (p1 — p2) =
(p1 — p2)" and a polynomial equals its derivative if and only if it is identically
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zero. Then, clearly the sum p = f(z) + f'(z) + f"(z) + ... is finite, as the
higher-order derivatives of a polynomials are all eventually zero. Moreover,
p—p =(+f+..)0—-('+f+...) = f. Thus we have found p, and
analogously g = f — f'+ f” — ... and hence p+ ¢ =2(f + f” +...) (the sum
of all derivatives of even order).

We are left to prove that f is a mirror polynomial if and only if f + f” + ... is
a mirror polynomial.

If f is a mirror polynomial, then all monomials appearing in f have either even
degree, or odd. Since differentiating twice preserves the parity of the degree, all
monomials appearing in f”,... are also all even or odd (according to whether
f is even or odd), and so the sum of all these polynomials has all monomials of
even degree, or odd degree, thus p + ¢ is a mirror polynomial.

For the converse, observe that 2f = (p+¢q) — (p + ¢)"”. If p + ¢ is mirror
polynomial, then (p 4+ ¢)” is a mirror polynomial of the same type, and hence
so is their difference 2f.

Remark. Tt can be proved directly that 2f = (p+¢q) — (p+q)”, by differentiating
the initial relations and manipulating, and by the method exposed above of
computing p and ¢, we can conclude that p +q=2(f + f" +...).
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U72. Let n be an even integer. Evaluate

lim n(z"+1) 1
a——1 (22 = 1)(a” = 1) (x+1)2]"

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

First solution by Daniel Campos Salas, Costa Rica

Since n is even we have that

lim n(z"+1) 1 ]
a——1 [ (22 = 1)(a" —1) (x+1)?

L n(z"™ 4+ 1) 1
—a [(a:? D -1 (- 1>2} |

Note that for x # 1 we have that

n—1
nz"+1)—(r+1) ) 2
n(z" 4+ 1) 1 B i—o
(22 —1)(2n —1) (z—-1)2 n—1
(z—1*z+1)) 2
i=0
n—1
Z$n+1—$l—$n i
_ i=0
(z—1)*z+1)) 2
i=0
n—1
St - 1@E 1)
=0
- n—1
(-1 x+1)) o
i=0
n—1
S - D -
=1
- n—1
(-1 2x+1)) o
i=0
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i=1 \j=0 k=0
- n—1
(z—1)*(x+1)> 2
i=0
n—1 [i—-1 n—i—1
(2 (%)
i=1 \j=0 k=0
- n—1
(x+1) Z !
i=0
It follows that
n—1 f[i—1 n—i—1 ]
> (2 (3 )
) n(x" + 1) 1 ) i=1 \j=0 k=0
lim — = lim
| e ) o
(x+1) Z x*
i=0
n—1 i .
> i (n—1i)
_ =l
N 2n
nn—1) nn—-1)(2n—-1)
T 6
2n
_ n?—1
12

and we are done.

Second solution by G.R.A.20 Math Problems Group, Roma, Italy

Let
n(x™ +1) 1

fn(z) = (22 =1)(am —1) (z+1)%
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Let y = —1 — x then, since n is even,

- )" +1) 1
falz) = ((1 + y)2 — 1)((1 + y)” —-1) y?

n2+y3a Wy 1
Y y+2) i (v v
n(2+y> i (DY) - w+2) 0 (DY
vy +2) (ko (v
2n+ ((n— 1)y = 2)(n+ (5)y + (3)v° + o(y*))
2ny? + o(y?)
2n+n(n—1)y+ (5)(n—1)y* —2n —n(n — 1)y — 2(5)y* + o(y?))
2ny? + o(y?)
(5)(n = 1)y* —2(3)y”* + o(y?))
2ny? + o(y?) '

n((1+y

Therefore

. (B =1y = 2(5)y* + o(y?))
xlin—ﬂf"(x) - é%( : 2ny? +oizy2) )

Bn-1-23) _n2-1

2n 12

Also solved by Arkady Alt, San Jose, California, USA; Paolo Perfetti, Universita
degli studi di Tor Vergata, Italy; Courtis G. Chryssostomos, Larissa, Greece; Daniel
Lasaosa, Universidad Publica de Navarra, Spain; Vicente Vicario Garca, Huelva,
Spain; Brian Bradie, VA, USA.
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Olympiad problems

067. Let a1, as,...,a, be positive real numbers such that a; +as + ...+ a, = 0.

Prove that for a >0, a+a?+ a3+ ...+ a2 > m(la| + |ag] + ... + |as]),
where m = 2\/3, if n is even, and m = 2 ;7”, if n is odd.
n \V n?—1

Proposed by Pham Kim Hung, Stanford University, USA

Solution by Pham Kim Hung, Stanford University, USA

The first step is to dismiss the absolute value sign. We separate the sequence
ai, a9, ...,a, into a sequence of non-negative real numbers x1,xo, ..., xx and
a sequence of negative real numbers y1,¥2,...,Yp—. Denote z; = —y;, j €
{1,2,...,n — k}, we have to prove that

k n—k k n—k
)DEEDSERENS SPEeH S
i=1 Jj=1 i=1 j=1

T =

k 1 n=k
Denote x = — > z; and 2 = —— > z;. Clearly,
i=1 =1

n—kj

k 2
d al>k (xl +”’2;“”k) = ka?,
i=1

n—~k 2
=1

<

After all, we would like to prove that
kz? + (n— k)22 +a > m(kz + (n — k)2).

From the the condition kz = (n — k)z, as a1 + a2 + ... + a, = 0, the above
inequality becomes

n —

ka? <1 +

Using the AM-GM inequality we get

K k) +a > 2mkx.

LHS > 2\/az k<1+ i ) 2kyanz

n—k) " k=R
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2
If n is even, the maximum of k(n — k) is nZ If n is odd, the maximum of

n2—1

k(n —k) is . The conclusion follows.

Also solved by Kee Wai Lau, Hong Kong, China; Paolo Perfetti, Universita
degli studi di Tor Vergata, Italy
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068. Let ABCD be a quadrilateral and let P be a point in its interior. Denote by
K,L, M, N the orthogonal projections of P onto lines AB, BC,CD,DA, and
by H,, Hy, H., Hy the orthocenters of triangles AKN, BKL, CLM, DMN,
respectively. Prove that H,, Hy, H., H; are the vertices of a parallelogram.

Proposed by Mihai Miculita, Oradea, Romania

First solution by Son Hong Ta, Hanoi University of Education, Vietnam

We have PK | AB and NH, L AK,so PK || NH,. We also have PN | AD,
KH, 1 AN, so PN || KH,. Hence, we deduce that the quadrilateral PK H, N
is a parallelogram. Similarly, the quadrilateral PLH K is also a parallelogram.
It implies that NH, is parallel and equal to LH} (both are parallel and equal
to PK). Thus means NH,H,L is a parallelogram. Similarly, NHyH.L is a
parallelogram. Therefore we conclude that H,H; and H.H, are parallel and
equal. Hence, H,, Hy, H., H; are the vertices of a parallelogram, as desired.

Second solution by Daniel Campos Salas, Costa Rica

Note that H,N||KP and H,K||NP, hence H,KPN is a parallelogram. This
implies that H,K = PN and H,K||PN. Analogously, it follows that HyM =
PN and HyM||PN. Thus t H,K = HgM and H,K||H;M.

Similarly, HyK = H.M and HpK||H.M. Therefore, triangles H,H,K and
Hy;H.M are congruent and with all of its correspondent sides parallel. In
particular, H,H; is parallel to HyH.. Analogously, we prove that H,H, is
parallel to HyH,. and this completes the proof.

Third solution by Andrei Iliasenco, Chisinau, Moldova

Let us prove that H,Hp || NL. Denote by O, Oy, O, Og4 the circumcircles of
triangles AKN, BKL,CLM, and DM N, respectively, and by G, Gy, G, Gy
the gravity gravity of these triangles, respectively.

Using following properties:

e (5 is between H and O and OH = 30G
e O, is midpoint of AP and Oy is midpoint of BP
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we get

_— ——  ——

HaHb = HaOa + OaA + AB + BOb + Obe
_ — - — BE—
3G.04 + O A+ AB + BOy + 30,Gy,

A0, + KO, + NO OyB + OpK + OpL
—3 o+ 3a+ a+07>4+E+B—O;+3 b + g + Oy
= A0, + KO, + NO, + O,A + AB + BOy + OB + O, K + O L

—_— —_— s — —_— s —
_AOa+OAa+KP+KA NP+ NA

2 2 + 2
AB+ AB BO,+0Oy,B PK+BK PL+ BL
2 * 2 * 2 Tt
e — — = — — =
KP+PK KA+AB+BK NP+PL NA+AB+ BL
— + + +
2 2 2 2
NL NI —
-2+ Z _NL
2 2

Analogously, H.Hy || NL || HoHy and HoH, || KM || HyHy, hence H,Hy,H.H,
is a parallelogram.

Also solved by Salem Malikic, Sarajevo, Bosnia and Herzegovina; Daniel Lasaosa,
Universidad Publica de Navarra, Spain
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069. Find all integers a, b, ¢ for which there is a positive integer n such that
n
biv'3
(3“) et iV

Proposed by Titu Andreescu, University of Texas at Dallas, USA and
Dorin Andrica, Babes-Bolyai University, Romania

Solution by Titu Andreescu, University of Texas at Dallas, USA and
Dorin Andrica, Babes-Bolyai University, Romania

If n =1, then we get a = 2¢, b = 2, where c is any integer.
If n > 2, then taking the absolute values in both sides we obtain

2 b2 n

which is a Diophantine equation of the form

24+ 3 =y" (1)
For n = 2 the solutions (z,y) are (1,2), (1,—2), (—1,2) and (—1,—2). In this
case we get (a,b,c) = (£1,£1,1), (£1,+1,-1), (£2,0,1), (£2,0,—1).

For n even, n > 4, the equation is not solvable, since no other squares differ by
3. For n odd, n > 3, we may assume that n is a prime p. Indeed, if n = ¢k,
where ¢ is an odd prime, we obtain an equation of the same type:

2% 43 = (y)4.

We will use the uniqueness of prime factorization in the ring R of integers of
. . . a+ Byv—3
Q[v/—3]. It is known that the integers in Q[/—3] are —s

0 are integers of the same parity. Write the equation as

(z+v=3)(z — V=3) =97,

, where o and

a + 332
where 4 = ———.
4
Clearly, x must be even, otherwise 22 + 3 =4 (mod 8), while y” =0 (mod 8).

2

The equation 22 — z + 1 = 33 is equivalent to

(22 —1)% + 3 = 4,
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that is

(2x—1)2+\/—73' (2;16—1)2—\/—73:?/3. @)

Let

20 —14++v/—-3 22 —1—-+/-3
d = ged 5 , 5 .

Then

d (2x—124—¢j3_2x—12—¢j3) _ /73

Hence N(d)|N(v/—3), that is d?|3. It follows that d = 1, i.e. the integers

20 —1++v-3 20 —1—+/-3
SU 2+ and =2 5 are relatively prime in R, the ring of integers
of Q[v—3].

Using the uniqueness of prime factorization in R, we get

2 —1+v=3 . [(a+8/=3\"
s v T ®)
and 5
20 —1—+v-3 Wbk a— PBv—3
2 N 2 ’
-14++-3 o? 4 337
where w = 5 and 1 =
Then ged(z + v—3,2 — v/—3) =1 and
3\ P  a a\P
T +vV=3=uw" (O[—i_g?)) . z—v-3=uw"" ((1523) ,
14 /=
where w = %3 The first relation can be written as
—3\ P
Y :<M+g M) 7 @)

for some integers m and n of the same parity.

Indeed, for each k € {0,1,...,5}, there is a positive integer s such that w* =
w*P. The choice of s depends upon the residue of p modulo 6. If p=1 (mod 6)
we take s = k, while for p =5 (mod 6) we take s =6 — k.

Taking the conjugate in (4) we obtain

r—+v-3= (m_g\/j3>p,
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hence

e () (Y

Factoring the expression in the right-hand side as

AP — BP = (A—B)(AP"' + AP2B 4 ... 4 ABP™2 4 BP71)
we get 2¢/—3 = ny/—3 - u, where u is an integer in Q[v/—3|. It follows that
2=n-u,and so N(2) = N(n-u) = N(n) - N(u), i.e. 4=n?N(u). Hence n|2.

For n = 41, from (1) we obtain
19P — <219)mp—1_3<§>mp—3_|_..._|_(_3)p21, (5)

Looking modulo p, from Fermat’s Little Theorem we get

+2 = (—3)% (mod p),
hence 4 = (—3)P~! =1 (mod p), so p = 3.
The equation becomes z? + 3 = y3. This equation is not solvable for y = 1
(mod 4). Hence y =3 (mod 4) and 22 +4 =3 +1 = (y+1)(y*> —y+1), which
is again impossible, since y? —y + 1 is of the form 4m + 3 and it cannot divide
the sum of squares z2 + 4.

For n = +2, m = 2a and (4) becomes

T+vV=3=(a+V-3),

1= (fl’)ap1—3<§>ap3+9<§>a¥’5—--.+(—3)”51. (6)

Clearly, 31 a, so a®> =1 (mod 3). From (6), we get 1 = pa?~! (mod 3), hence
p=1 (mod 3). Let p = 3%-2q+ 1, where 3 { ¢. Looking at (6) modulo 3#*2
we get

p—1 s

aP

5 (mod 3+72). (7)

1=paP !+
Indeed, 3’“2\9<§> and

3(5) =25 el -2 =P - 1 - = -5t a4

We have

p—1

"t =(a®)% = (1+36)%7=1+3""kq (mod 3#2).
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Multiplying (7) by a? = 1 + 3k and looking mod 3#*2, we obtain

p—1

aP™! = 31q(1 + 3" kq) = 3#q  (mod 3#72).
On the other hand,
-1
a(pa~t — 1) = —p?ap_l (mod 372,

and

a2(paP~t — 1) = (1 + 3k)[p(1 + 3k) "2 — 1] = (1 + 3k)[p(1 + 3k)3"7 — 1]

= (1+3k)p+ (1+3k)p-3*"kq— (1+3k) (mod 3*2)
= (14 3k)(p — 1) + pkq-3"T1  (mod 3#2)
=3"-2¢+ 3" 2kq + (3% - 2¢ + 1)kg3*™  (mod 3#1?)
=3".2¢ + 3" (2kq + kq) (mod 3*T2) =3#.2¢ (mod 3+T2).
Using (8) we obtain
—3tg=3"-2¢ (mod 3#"?),
hence 3#72|3#+1q, i.e. 3|q, a contradiction.

In conclusion, the equation is not solvable for n > 3.
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070. In triangle ABC let M,, My, M. be the midpoints of BC,C A, AB, respec-
tively. The incircle (I) of triangle ABC' touches the sides BC, AC, AB at
points A’, B’,C’. The line 7 is the reflection of line BC in AI, and line ry
is the perpendicular from A’ to IM,. Denote by X, the intersection of r1 and
ro, and define X and X, analogously. Prove that X,, X, X. lie on a line that
is tangent to the incircle of triangle ABC.

Proposed by Jan Vonk, Ghent University, Belgium

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The theorem of Thales ensures that MM, | AB, MM, || BC and M.M, |
CA, or triangles M,M,M. and ABC' are homothetic. Denote by A” B” C”
the respective reflections of A’, B’,C" in AI, BI,CI. By symmetry with respect
to AI, it is clear that A” is the point where 71 touches the incircle. The
lines 71, AB, AC' determine a triangle equal to ABC, where the side on ry
corresponds to BC, the side on AB corresponds to AC' and the side on AC
corresponds to AB. Furthermore, the length of the segment on r; between its
intersection with AC' and A” has the same length as BA’ by the symmetry
with respect to AI. Since r; and AC form an angle equal to ZB also by
symmetry around AI, then the distance from A” to AC is BA’ sin B. Similarly,
we may show that the distance from C” to AC' is BC’ sin B. Using the fact that
BA' = BC' = 4= we conclude that C” A" || CA. Analogously, A"B" || AB
and B"C" || BC, or triangles A”B"C" and ABC' are homothetic. Therefore
triangle A”B”"C" and M,M,M, are also homothetic. Lines M,A”, M,B" and
M.C" meet at a point U; with respect to P, the circumcircle of M, M,M. (i.e.,
the nine-point circle) is the result of scaling the circumcircle of A”B”"C" (i.e.,
the incircle). Since the nine-point circle and the incircle touch at the Feuerbach
point, then U is the Feuerbach point, and it is clearly on the incircle.

Denote by P,, Py, P. the respective midpoints of IM,, I My, IM.. By Thales’
theorem, Py P, || MyM,. || BC, and similarly P.P, || MM, || CA and P,P, ||
MM, || AB. Denote by Qq, Qp, Q. the respective midpoints of IA” IB" 1C".
Again by Thales’ theorem, Q,Qy || A"B” || AB, QyQ. || B"C" || BC, and
Q:Qq || C"A" || CA, or triangles ABC, M,MyM., A”B"C", P,P,P. and
Q.QpQ. are pairwise homothetic. Furthermore, since triangles P, P, P,., Q,Q»Q.
are the result of scaling triangles M,M,M,. and A”B"C" with respect to the
incenter with scale factor %, then the point V, where lines P,Q,, P,Qp and P.Q),
meet, is the midpoint of IU, i.e., the midpoint between the incenter and the
Feuerbach point.

Consider now the inversion of r1 and r9 with respect to the incircle. Since
r1 is tangent to the incircle at A”, the result of performing the inversion is a
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circle through I and touching the incircle at A”, or the inversion of r; yields
the circle with diameter A", ie, the circle with center @, and radius §, r
being the inradius of ABC. Since ZIA'M, = %, A’ is on the circle with
diameter IM,. Thus, ro is the line that contains a chord of this circle, and
by symmetry around IM,, the reflection of A’ in IM, is on ry, on the circle
diameter IM,, and on the incircle. Therefore, the inversion of r9 with respect
to the incircle yields the circle with diameter 1M, or the circle through I with
center P,. Now, the circles through I with centers P, and J,, meet at I,
and at a second point that we will call Y, which is the result of performing the
inversion of X, with respect to the incircle. Note that P,(@), is the perpendicular
bisector of IY,. The circles through I with centers P, and Q) meet at I and
at Yy, and the circles through I with centers P. and (). meet at I and at Y,
where Y;, Y. are the results of inverting X3, X. with respect to the incircle;
furthermore, P,Qp, and P.Q). are the respective perpendicular bisectors of 1Y},
1Y,. Therefore, since the perpendicular bisectors P,Q,, P,Qp and P.Q. of IY,,
1Y, and 1Y, meet at V', then V is the circumcenter of 1Y,Y,Y, or the inverse of
the circumcircle of IY,Y, Yo with respect to the incircle is a line through X,, X,
and X,.. Furthermore, the circumcircle of IY,Y}; Yo has center V' at a distance
5 of I, and radius I'V = 5, where 7 is the inradius of ABC, or the circumcircle
of 1Y,Y, Y touches the incircle at U, and its inverse, the line through X,, X
and X,, touches the incircle at the Feuerbach point U.
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n—1
1 2
O71. Let n be a positive integer. Prove that Z — =-(n*—1).

2 km
=1 COS o

w

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

First solution by John Mangual, New York, USA

From De Moivre’s fomula and calculus one can show:

sin 2n6 23n(n? — 1
bl;nz = (1)t {2710080 - n(r;') cos® O + .. ]
Then we can define a function
22 2 1 24 2 1 2 22
f(x) = (-1)"*'2nx [1 — (n3' )x2 + (n 5)'(n ):U4 - .. ]
In fact, f(x) is a polynomial of degree 2n — 1 with the roots x = cos ’2%’ where

1<k<2n—1.

Consider % f (%) and substitute y = ;%2’ then

22(n? -1 24(n? — 1)(n? — 22
R D) s 2D s

This is a polynomial of degree n — 1 in y whose roots are y = sec? g—z with

1 <k <n-—1. Using Vieté’s theorem we find that the sum of coefficients is

n—1

2, 5 22 -1) 9 kT
g(n —1) = T —;SQC %,
and we are done.
Second solution by Arkady Alt, California, USA

Note that for any polynomial P(z) = agz™ + a12™ ' 4 ... + ap_17 + an, ag # 0
with non-zero roots 1, o, ..., x, we have

"1 P
2= po W

Let P(z) =ag(x —z1) (r — x2) ... (x — x,), then

n n

L o (Se ) = (mP@Y _P@
> -t - (Sne-a) - (w22) - F

i=1 i=1
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and plugging = = 0 the conclusion follows.
T . (x i 1
Let U,(z) = 1 (2) - (n v be the Chebishev Polynomial of the
n+1 sin ¢
Second Kind. Then U, (z) satisfies to recurrence

Up+1(x) = 22Uy (x) — Up—1(z),n € N and Up(x) = 1,U;(x) = 2z.

i k
Because 51.n P _ 0 if and only if ¢ = j,n € Z, we get U,_1(x) = 0 if and
sin @ n

k
onlyifm:cos—ﬂ,k:1,2,...,n—1and
n

Una() =2 (—cos ) (a: ~ cos 2;) . <a: ~ cos ("_nl)”) ,

as the coefficient of 2" in U, (z) is 271

In particular,

2n—1

Ugp1 (x) = 22771 H <£L'—COS>
n-1 nl (2n — k)
_ 22n—1 (gg—cos %) H (gj—COS > H <LB—COS n2 )

km
— 22n 1 _ 2 )
T | | (x cos n)

Let P, (x) := UQnQi;f) then P, (z) = 47! H <x—cos l;:;r)

Note that Us,—1 (x) can be defined by the recurrence
Usnt1 () = 2 (22 — 1) Uz (z) — Uzp—3 (x), with U_; () = 0,U (z) = 2z.
Since Uap—1 () is divisible by 2z, then polynomial P, (z) satisfy the recurrence

Poi1(x)=22x—1) P, (x)—Pp—1(x),n € N with Py (z) =0,P () =1. (2)

Thus applying (1) to the polynomial P, (z) we obtain

£, (0)

Sa ,
2 kr o P (0)
n

cos? —

48
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In particularly, from (2) follows recurrence
Pny1(0)+2P, (0)+ P,—1(0) =0,n € N with P (0) =0,P; (0) =1. (3)

P, (0)
(_1)?’L)
bn+1 —2b,+b,_1=0,n€eN by=0,b = —1.

Let b, :=

then (3) can be rewritten as

Since by4+1 — by, = by, — by—1 we have b, —b,—1 = —1 and > (b — bp_1) = —n.
k=1
Therefore b, — by = —n, implying b,, = —n.

From the other hand,
1 (2) =2 (22 — 1) Py () + 4P, () — Py (2) , with P (z) = 0, P| (z) = 0,

then

P, (0) + 2P (0) 4+ P._, (0) = 4P, (0), with P} (0) =0, P} (0) =0. (4)

P (0)
(_1)n+1

Let a, := , then = —b, =n and (4) can be rewritten as

ant+1 — 2ap + ap—1 = 4n,n € N with ap =a; =0. (5)

. 2n (n* - 1) . .
Since sequence 3 is particular solution of nonhomogeneous recurrence
2n (n? — 1)
, then ¢, = ——= + an , where o = 8 = 0, because ag = a; = 0.
(5), th 3 +an + 3, wh 6=0,b 0
2n (n2 — 1)
Thus a,, = — 3 and
7w (0)
= 1 P! (0) )"
_ _In _ (7) :%:7(,’12_1)
T B(0) T Pa(0)  m
k=1 cos? — =i
(=1)"

MATHEMATICAL REFLECTIONS 1 (2008) 49



Third solution by Brian Bradie, Christopher Newport University, USA

Using the double angle formula

we can rewrite the indicated sum as

n—1
1
2 km

COS on

k=1

o kT 1+ cos ’%T
cos”® — = ,
2n 2
-1 -1
e 2 nz 2(1 — cos k—”)
km T — coc2 kw
1 1+ cos - 1 1 — cos
n—1 n—1
km km
2 cscz——Qchc—cot—
n n n
k=1 k=1

From K.R. Stromberg, Introduction to Classical Real Analysis, 1981 we know

that )
n—
km 1
2 2
cset — = — —1).
> esc? = o(n? - 1)
k=1
Now, if n is even, then
_ 2-1 _
el T km "/ k km T T i, T km
csc— cot — = csc — cot — + c¢sc — cot — + E csc — cot —
n n n n 2 2 n
k=1 k=1 k:n/2+1
n/2—1 n/2—1
k k n—=k n—k
= chclcoti—i—()—k chc( )ﬂ cot( )ﬂ
n n n n
k=1 k=1
2-1 2-1
n/z: ¢ km n/ ¢ km
= csc — cot — — g csc — cot —
n n
k=1 k=1
= 0.
On the other hand, if n is odd, then
_ —1)/2 _
nd T km (n D)/ km km e T km
csc— cot — = csc — cot — + csc — cot —
n n n n n n
k=1 k=1 k=(n+1)/2
—1)/2 —1)/2
e T g Y (n—k)r (n—k)r
= csc — cot — + csc cot
n n n n
k=1 k=1
-1)/2 1)/2
(n—-1)/ . t (nz)/ . ) .
= csc—co —_— = csc—co —
n
k=1
= 0.
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Thus,

n—1

1 2
Z = g — 1),
pt cos? 5% 3

and we are done.

Remark. Kunihiko Chikaya point out that the similar problem was proposed
in the Tokyo Institute of Technology entrance exam in 1990.

Also solved by Jingjun Han, Shanghai, China; Paolo Perfetti, Universita degli
studi di Tor Vergata, Italy; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; Oleh Faynstein, Leipzig, Germany; G.R.A.20 Math Problems Group,
Roma, Italy
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072. For n > 2, let S,, be the set of divisors of all polynomials of degree n with
coefficients in {—1,0,1}. Let C(n) be the greatest coefficient of a polynomial
with integer coefficients that belongs to S,. Prove that there is a positive
integer k such that for all n > k,

n*07 < C(n) < 2™

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Gabriel
Dospinescu, Ecole Normale Superieure, France

Solution by Titu Andreescu, University of Texas at Dallas, USA and
Gabriel Dospinescu, Ecole Normale Superieure, France

For a polynomial f(z) with coefficients in {0, 1} and degree at most n we define
a function ¢(f(z)) = (f(1), f'(1),..., f¥71(1)). Because all the coefficients of
f(z) are 0 or 1, using mathematical induction we can deduce that f)(1) <
(14 n)7TL for all j. Thus the image of ¢(f(x)) has at most

(1+n)1+2+...+N < (1+n)N2

elements. On the other hand, f(z) is defined on a set of 2" elements. There-
fore, if 2"+ > (1 +n)N 2, by the Pigeonhole Principle there exist two polyno-
mials f1(z), fa(z) that have the same image. Clearly, their difference has all
coefficients in {—1,0, 1} and its degree is at most n. Also from the construction

we get fi(z) — fo(x) is divisible by (z — 1)V. Thus C(n) > (%{,V), because the

largest coefficient of (z—1) is (21{]\7 ) It is not difficult to prove that (%{,V ) > 2N

for N > 2. Thus taking N = { ng(Z‘Hl)J, we assure that (14 n)N2 < ontt

and therefore C(n) > 2. Thus for a sufficiently large n we have 2V > n2007,

The right part is much more subtle. For a polynomial f(z) = apz™ + ...+
n
a1z + ap define its Mahler measure by M (f(x)) = |ay| [[ max(1,|z;|), where z;

i=1
are the roots of the polynomial f(x). The following inequality is true and due

to Landau

M(f(x)) < Vlao + a1 + ... + |an]®.

Thus polynomials with all coefficients of absolute value at most 1 have Mahler
measure at most \/n + 1. Take now any divisor g(z) of a polynomial f(z) with
all coefficients in {—1,0,1} and write f(x) = g(z)h(x). Suppose that g(x) has
integer coefficients. It is not difficult to see that

M(f(x)) = M(g(x))M(h(x)) = M(g(x))-
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Therefore M (g(x)) < v/n+ 1. Now, observe that by Viete’s formula, the tri-
angular inequality, and the fact that |z; @i, - - x| < M(f(x)) for all distinct
i1,...,1s and all s, we get that all coefficients of f are bounded in absolute
value by (LEJ)M(f(:E)) Thus C(n) < (LgJ)M(f(l‘)) <vn+1- (ng) < 2m,
for n sufficiently large, and we are done.
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