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Problem 1. Let a; < az < --- < aqs < aqsq be positive integers not exceeding 125. Prove
that among the 43 differences d; = a;4+1 — a; (1 = 1,2,...,43) some value must occur at
least 10 times.

Solution. The sum of the 43 differences d; is aqq — a3 < 124. If no value among the d;’s
occurred more than 9 times, this sum would be at least 9-1+9-2+9-3+9-4+7-5 =125,
contradicting the above upper bound. Hence some value must occur at least 10 times.

Problem 2. Suppose f is a real positive continuous function on R with ffooo f(z)dz = 1.

Let 0 < a < 1, and suppose [a, b] is an interval of minimal length with fab f(z)dz = a.
Show that f(a) = f(b).

Solution. Let 0 < a < 1, and suppose [a,b] is an interval of minimal length with
fab f(z)dz = a. Show that f(a) = f(b). Let F(y) = fyy+b_a f(z)dz. By hypothesis,
F(a) = a, and by the fundamental theorem of calculus we have F'(a) = f(b) — f(a). Thus,
it suffices to show that F'(a) = 0. Since f is continuous, nonnegative and integrable over
(—o0, ), F(y) is continuous, nonnegative and tends to zero as * — +oo. The function
F(y) therefore attains a finite maximum value M at some point. If we can show that
the maximum M is attained at the point y = a it follows that F'(a) = 0 as desired.
To prove this, suppose that F(a) is not the maximum value of F'. Then there exists a
number yp such that F(yo) > F(a). Setting G(y fy z)dz, we have G(yp) = 0 and
G(yo + b —a) = F(yo) > F(a). Since f is contmuous so is G and the intermediate value
theorem implies that, for some y1 € (yo,y0 + b — a), G(yl) = F(a) = «. Since the interval
[Yo,y1] has length < (b — a) this contradicts the assumption that [a,b] is an interval of

minimal length with fab f(z)dz = . Hence the claim is proved.

Problem 3. Evaluate the infinite product [[—, cos(z27*). (Hint: sin2a = 2sin a cosa.)

Solution. The infinite product is, by definition, the limit of the partial products P, =
IT;—, cos(z27%), as n — oo. If z = 0 this limit is 1. If 2 # 0, then the given identity yields

2sin(22~ - on sin(z27")

ﬁ sin(z2~ k'H) sin

(provided n is large enough so that 27" is not a multiple of 7). Since, by ’'Hopital’s rule,
lim, ,.(siny)/y = 1, we have lim, o, 2" sin(227") = z. Hence the value of the given
product is lim, o, P, = (sinz)/z if  # 0.

Problem 4. Let S = {0000000,0000001,...,1111111} be the set of all binary sequences
of length 7. The distance of two elements s1,s; € S is the number of places in which
s1 and sy differ. For example, 0001011 and 1001010 have distance 2, since they differ in
positions 1 and 7. Show that if 7" is a subset of S having more than 16 elements then T
contains two elements whose distance is at most 2.



Solution. With each element ¢ € T we can associate a set Sy C S consisting of the
element ¢ itself and the 7 elements of S that are obtained by switching exactly one of the
digits of ¢. If the distance between any two elements of 7" were at least three, then the
sets Sy would be disjoint, and we would have (|A| denoting the cardinality of a set A)
S| > 32,cr|Si| = 8|T|, and therefore |T| < [S|/8 = 27/8 = 16. Thus, if |T| > 16, there

must be two elements in 7' whose distance is at most 2.
Problem 5. Let a,b,c be real numbers > 1, and let
S =log, bc 4 log,, ca + log,. ab,
where log, © denotes the base b logarithm of ». Find, with proof, the smallest possible

value of S.

¢, we have A, B,C > 0 (since a,b,c > 1)

Solution. Setting A =loga, B =logb, C g
+ 5+ g g. By the arithmetic-geometric mean

and the sum S becomes S = % + % + %

inequality, this sum is
1/6
\/B-C-C-A-A-B
> 6 = 6.
A-A-B-B-C-C

Hence S > 6. The example A = B = C' = 1 shows that this bound is attained, so 6 is the
smallest possible value of S.

Problem 6. Suppose 0 < s <1, «,8 >0, and |a| > |#]|. Let ¢)(a,;s) be the least
positive integer n such that [na + s| # |nf + s|. Find an explicit formula for ¢ (a, §;s)
using the floor and ceiling functions. (The floor function || denotes greatest integer < z
and the ceiling function [z] denotes the least integer > z.)

Solution. Let ¢ = |a|,b = 3], d =a —a,y = —>b. Then a > b and |[na + s| =
na+ [nd +s|, [nB+ s] =nb+ |ny+ s|, and thus

lna+s| — [nB+s] =n(a—>0)+ [nd +s| — [ny + s].
Since a > b and [ny + s] < |[n + s| < n, the right-hand side is > 0 for every positive
integer n, and > 0 if and only if either (i) a > b+ 2 or (ii) @ = b+ 1 and (at least) one
of the conditions nd + s > 1 and ny + s < n holds. In the first case we have obviously
U(a, f;s) = 1. In the second case,

P(a,fB;8) =min{n >1:nd+s>1lorny+s<n}

min([5°]: |55 +)
-uin (|35 | =) +)
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SOLUTIONS

Problem 1. Let abc represent a three digit number in base 10, with a > ¢ + 2. Let
abc — cba = efg. Evaluate efg + g fe, for all a, b, ¢, as above.

Solution. Let n; denote the number abc, ny the number efg = abc — cba, and nj3
the number efg + ¢gfe. Then ny = 100a + 10b + ¢ and ny = 100(a — ¢) — (@ — ¢) =
100(a —¢—1)4+10-9+ (10 —a+¢),sothat e=a—c—1, f =9,and ¢ = 10 —a + c.
(The given conditions on a, b, ¢ ensure that e, f, g fall in the interval [0,9].) It follows
that ng = 101le + 20f 4+ 101g = 101 -9 + 20 -9 = 1089.

Problem 2. Each point in the plane is colored either orange or blue. Prove that one of
these colors contains, for each positive value of d, a pair of points at distance d.

Solution. Suppose not. Then there exist positive numbers a and b such that no pair of
orange points has distance a¢ and no pair of blue points has distance 5. Without loss of
generality we may assume a < b. Now consider a blue point P; such a point has to exist,
by our assumption that there are no two orange points at distance a from each other.
Since no two blue points have distance b from each other, every point on the circle of
radius b around P must be colored orange. Since a < b, there exist two points on this
circle having distance a from each other. These two points are orange points at distance a,
which contradicts our assumption. Thus, one of the colors must contain, for every positive
distance d, a pair of points at distance d.

Problem 3. Mr. Wisenheimer evaluates on his calculator the expression 7 — 7,

a, b, ¢, d are positive integers, each less than 1000. The calculator which is known to be
accurate to within 10™!! for each arithmetic operation, gives the result 0.42857142857. Is
Mr. Wisenheimer justified in reporting the answer as exactly 3/7? Explain.

where

Solution. Let x = 0.42857142857 be the decimal number displayed by the calculator, and
let £ = § — 7 denote the number to be calculated, written as a reduced fraction. It is easy
to check that the 11 digits of = after the decimal period represent the first 11 digits in the
decimal representation of 3/7, so that = differs from 3/7 by at most 107!!. On the other
hand, since the calculator has an error of at most 1071! for each arithmetic operation and
the computation of (r/s) = (a/b) — (¢/d) involves three arithmetic operations, we know
that = also differs from 3/7 by at most 3 - 107!!. Hence (*) [(3/7) — (r/s)] < 4-10711.
Since b and d are positive integers, each less than 10, the denominator s in r/s is at most
10%. Hence (3/7) —(r/s) = (3s —7r)/(7s) has denominator at most 7-10% and therefore is
either 0 or at least 1/(7-10°). However, by (*) the second case is impossible, so r/s must
be exactly equal to 3/7. Thus, Mr. Wisenheimer is correct in claiming that the result of
his calculation is exactly 3/7.



Problem 4. Let 1 = 23 =1, and z,41 = 19962, + 1997x,,_; for n > 2. Find (with
proof) the remainder of z1997 upon division by 3.

Solution. First, an easy calculation (which is most conveniently done using congruences
modulo 3, though one can do the problem without the use of congruences) shows that
T1,...,Te have remainders 1,1,0,2, 2,0, respectively, when divided by 3. Next, iterating
the recurrence relation x,, = 1996z, _1 +1997x,,_, four times, one sees that for any n > 6,
the remainder of x,, upon division by 3 is the same as that of z,,_g. (With congruences, this
calculation amounts to =, = 1 + 22,_2 = 3xp_2 + 20p_3 = 20,3 = 4Ty_6 = Tn—sg-)
By induction, it follows that the remainder of x, upon division by 3 is equal to that of
x,, where r is the remainder of n upon division by 6. Since 1997 has remainder 5 when
divided by 6, and x5 has remainder 2, x1997 has remainder 2 when divided by 3.

Problem 5. Let f be a convex function with two continuous derivatives on [0, 27]. Show

that the integral fOZW f(z) cos zdx is positive.

Solution. Since f is convex, f"(z) is positive on [0, 27]|. Integrating by parts twice, we
obtain

27 2T
— / f'(x)sin zdz
0 0

[ Hwreosa = s a)ste)

2 2m
—(cosa)f ()|, = [ (o) cond

= f'(27) — f'(0) —/‘; Trf"(;z;) cos vdzr = /‘; Trf”(;z;)(l — cos x)dx.

The last integral is positive since the integrand f"(z)(1 — cosz) is strictly positive for
0 <z <2m.

Problem 6. Let z9g =0, z;1 = 1, and z,41 = % for n > 1. Show that the
sequence {z,} converges and find its limit.

Solution. Setting d, = x,41 — =, the recurrence relation for z, translates into d,, =
(13

_n——i—ld"—l for n > 1. Iterating this identity gives

n n—1

Hence

n—1 n—1 (_1)k
n = d = ,
Tn=wot Y di= 3 g
k=0 k=0
since 9 = 0 and dy = 7 — 9 = 1. As an alternating series with decreasing terms, the
series Y,
o(=1)*/(k + 1) is convergent with sum In(1 + 1) = In2, by the Taylor series
expansion for In(1 + z). Hence the sequence {z,} converges with limit In 2.



1998 UIUC Undergraduate Math Contest

Solutions
Problem 1.
A sequence ag,ay,as ... of real numbers is defined recursively by
1 T (n=0,1,2,..))
ag = Unt1 = n=0,1,2,...).
0 ’ +1 1+ nay,

Find a general formula for a,,.
Solution.

Set b, = 1/a,. The given recurrence then takes the form
b():]_, bn+1:bn—|—n (’I’LZO,]_,Q,)

Iterating this recurrence we obtain, for n = 1,2, ...,

n—1

1 1 1
bn:bn_l+(n—1):---:bo+;k:1+§n(n—1): gt gn L

Hence .

1 1 1 B

Cln:a:<§n2—§n—|—1> (n=1,2,...).

Problem 2.
Evaluate >, _, k2¥=1forn=1,2,...
Solution.

Set f(z) = Y.p_o2*. Then f'(z) = Y.;_, k=¥, so the given sum is equal to f'(2).
On the other hand, summing the geometric series in the definition of f(z) gives f(z) =
(z"*t! —1)/(z — 1), and differentiating this function we obtain

(r—1)(n+1)a™ — (:E”'":l — 1)‘

f(:L'): (m—l)z

Hence

Yk = @) =(n+1)2" 2" +1=(n—1)2" +1.
k=1

Problem 3.

Given a nonempty finite set A of real numbers, let m(A) denote the maximal element of
A. Forn=1,2,...,let f(n) be the sum of m(A), where A runs over the 2" — 1 non-empty
subsets of the set {1,2,...,n}. Give an explicit formula for f(n).



Solution.

We have f(n) = Y.,_; kN(k), where N(k) denotes the number of non-empty subsets of
{1,2,...,n} whose maximal element is k. Clearly, N(1) = 1, since the set {1} is the only
set of positive integers with maximal element 1. For k > 2, the sets counted by N(k)
are exactly those of the form A = A; U {k}, where A; is a (possibly empty) subset of
{1,2,...,k — 1}. Since there are exactly 2¥~! such sets A;, it follows that N(k) = 2*~1
for each k. Hence

n) =Y k2¢'=(n-1)2" +1,
k=1

by the result of the previous problem.

Problem 4.

Let f(z) be a polynomial of degree n such that f(k) =k/(k+1) for k =0,1,...,n. Find
fn +1).

Solution.

Set g(z) = (¢ +1)f(z) — x. Then ¢(z) is a polynomial of degree n 4+ 1 which has roots at
each of the n + 1 numbers 0,1,...,n. Hence g(z) must be of the form

7

(+) H;r:—k

for some constant c. Setting * = —1 in the definition of ¢(z) we obtain g(—1) = 1. By (%)
it follows that

1= H —1—k) =¢(=1)"(n + 1)

Hence ¢ = (—1)"+1/(n + 1)!. Substituting this value into (%) and setting = = n + 1, we
obtain
(_1)n+1

m(” + 1) = (—1)"*,

gln+1) Hn—l—l—k
k=0

which implies

gn+1)+n+1 n+14(-1)"H!

]_ — =
f(n + ) n -+ 2 n -+ 2

Problem 5.

Let z1,x5,...,x, be n real numbers satisfying
Zxk:0, Z|ij|:1.
k=1 k=1

Prove that

. 11
Sl L
k 2 2n
k=1




Solution.

The given conditions on xj imply that, for any real number A,

Taking A = 1/2 + 1/2n, the maximum value of |1/k — (1/2 + 1/2n)| is attained at k =1
and k£ = n and equal to 1/2 — 1/2n. The desired inequality then follows.

Problem 6.

Suppose n = ajay...ajees is the decimal representation of an integer n consisting of
exactly 1998 non-zero digits a; € {1,2,...,9}. Show that n is either divisible by 1998, or
can be changed to an integer that is divisible by 1998 by replacing some, but not all, of
the digits a; by 0.

Solution.

Let ng = 0 and for £ = 1,2,...,1998 let nj; denote the number obtained by replacing all
but the first £ digits of n by the digit 0, i.e., nx = ajas...a;00...0. By the pigeon hole
principle, two of the 1999 numbers ng,n1,...,n1098, say ng, and ng, with ky > k; must be
congruent modulo 1998. It follows that the difference nj, — n, is divisible by 1998. Now
Nk, — Nk, is the number obtained from n by replacing the first k4 and the last (1998 — k)
digits by 0. Since k2 > ki, we have k1 + (1998 — k) < 1998, so not all of the 1998 digits
are replaced by zero. Thus, the number n;, — ni, has the required properties.
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Solutions

Problem 1.

Let a,, denote the integer closest to y/n. (For example, a; = a3 = 1 and a3 = a4 = 2 since
V1=1,V/2=141..,v/3=173.., and V4 = 2.) Evaluate the sum

Solution. For any positive integer k, a, is equal to k, if and only if \/n lies between
k—1/2 and k +1/2, i.e., if and and only if n lies between k?> — k + 1/4 and k% + k + 1/4.
Since there are exactly 2k integer values in this range, and since 1980 = 44 - 45 = 442 4 44,
it follows that S = 3" rr, (1/k) - 2k = 88.

Problem 2.

Let ABC be a triangle, and let BD and C'E denote the angle-bisectors at B and C'. Show
that if BD and C'E have the same length, then the triangle is isosceles (that is, the sides
AB and AC have the same length).

Solution. Let a = BC, b = AC, ¢ = AB denote the three sides of the triangle,
and ~ the angles of the triangle at B and C, and d = BD = CFE the (common) length
of the angle-bisectors at these points. The area A of the triangle ABC' is, on the one
hand, A = (1/2)acsinf8. On the other hand, splitting ABC into the triangles BC'D
and BD A, which have areas (1/2)ad sin(3/2) and (1/2)dcsin(/3/2), respectively, we obtain
A = (1/2)d(a + c) sin(8/2). Setting the two expressions for A equal and using the double
angle formula sin 8 = 2sin(5/2) cos(8/2), it follows that (1) 2cos(£/2) = d(1/a + 1/c).
Similarly, interchanging the roles of B and C, we obtain (2) 2cos(v/2) = d(1/a + 1/b).
If we now assume that b and ¢ are not equal, say (without loss of generality) b < ¢, then
B < « and so cos(£/2) > cos(vy/2). However, by (1) and (2) this would imply 1/¢ > 1/b,
contradicting the assumption b < c. Hence b and ¢ must be equal as claimed.

Problem 3.

Let a sequence {z,} be given by #; = 1 and z,11 = 22 + x, for n = 1,2,3,.... Let
Yn = 1/(1 4+ z,) and let S, = Y7, yx and P, = [[,_, yx denote, respectively, the
sum and the product of the first n terms of the sequence {yx}. Evaluate P, + S, for
n=1,2,3,...

Solution. From the given recurrence we obtain z,+1 = %, /yn, so that y, = z,/Tn11
for all n. Hence P, = [[r_,(2k/Zk+1) = 1/%nt1 = 1/Tp4q for all n. Moreover, from the

identity
1 1 1 1 1

Yn = 1+~77n —E_ (1+$n)$n —a_ajn—i—l,

1



we see that S, =Y 1, (1/2x—1/2k41) = 1/21—1/2p41 = 1—1/2p4q. Hence P,+S, =1
for all n.

Problem 4.

Define a sequence {z,} by z; = V2 and T+l = V2 “ for n > 1. Prove that the sequence
{z,} converges and find its limit.

Solution. Since z; = V2 < 2 and if z,, < 2 then T, = V2 " < V2 ? — 9. it follows by
induction that (1) z,, < 2 for all n. Thus, the sequence {z,} is bounded from above. Next
let f(z) = v2 " — 2. Then f'(z) = V2 logv2—1<2logyv/2—1 < 0 for z < 2, so f(z) is
decreasing for x < 2, and since f(2) = 0, this implies f(x) > 0, or equivalently V2© >z,
for z < 2. In view of (1), it follows that z,; = V2 s x, for all n. Hence the sequence
{zn} is monotone increasing and bounded from above and therefore must be convergent.
Let L denote the limit of this sequence. By (1) we have (2) L = lim,, 00 2, < 2, and
letting n — oo on both sides of the recurrence z,.1 = v2 ", we obtain L = \/§L or (3)
f(L) =0. Since f(2) =0, L =2 is a solution to (3). Moreover, L = 2 is the only solution

satisfying (2), since f(z) is decreasing for z < 2. Hence the limit of the sequence {z,} is
2.

Problem 5.

Prove that the series )

1
172

converges and evaluate its sum.

2+1+1 2+1+
3 4 5 6 T 7

Solution. Let S,, denote the sum of the first n terms of this sequence. Then

nop A, "o
Sn=d 52 mmT 2 %
k=1 k=1

k=[n/3]+1

Let T,, denote the latter sum. Comparing this sum with an integral we see that

3 " 1 " 1 3
log3 —log(1+ —) :/ —dx < T, S/ —dz =log3 — log(1 — —)
n n/3+1 L n/3—1 T n

Since log(1 +3/n) — 0 as n — oo, we conclude that T,, and therefore S,,, converges, and
has limit log 3. Hence the given infinite series converges with sum log 3.

Problem 6.

Given positive integers n and m with n > 2m, let f(n,m) be the number of binary
sequences of length n (i.e., strings ajasz . ..a, with each a; either 0 or 1) that contain the
block 01 exactly m times. Find a simple formula for f(n,m).



Solution. Every sequence of the required form can be written as

B,C101B5C501...01B,,+1C+1, where each B; is a block of 1’s and each C; a block of
0’s, with empty blocks being allowed, and the sum of the lengths of the blocks B; and
C; is n — 2m. Moreover, the sequence is uniquely determined by the (2m + 2)-tuple (1)
(b1,c1,b2,¢2, ..y bmt1, Cm+1) Where b; and ¢; denote the number of elements in the blocks
B; and Cj, respectively. Conversely, any tuple of the form (1) with nonnegative integers
b; and c; satisfying Z::;l(bz +¢;) = (n— 2m) determines a sequence of the required type.
Hence the number of such sequences is equal to the number of ways one can write 2n—m as
a sum of 2m+2) nonnegative integers, with order taken into account. The latter problem is
equivalent to counting the number of ways of choosing 2n —m donuts from 2m+2 varieties,
a well-known combinatorial problem whose answer is given by the binomial coefficient (Z)
witha=(n—-2m)+ 2m+2)—1=n+1land b= (2m+2) — 1 = 2m + 1. Hence

f(n,m) = (277:1-4:1)'
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SOLUTIONS

Problem 1

Suppose that ai, as, ..., a, are n given integers. Prove that there exist integers » and s
with 0 <r < s < n such that a, 1 + ar42 + ... + a5 is divisible by n.

Solution. Let So =0and form =1,2,...,n,let S, =a1+az+---a,. By the pigeonhole
principle, two of these n + 1 integers, say S, and Ss (with 0 < r < s < n), must leave the
same remainder upon division by n. Hence Sy — S, = a,41 + a2 + - - - a, is a multiple of
n.

Problem 2

Let p be a point inside a triangle having sides of lengths a, b, c. Let h, be the distance from
p to the side of length a, and let hy and h. be defined analogously. Let h := min(hg, hp, he)
and s := (a+ b+ c)/2. Prove that

h<+/(s—a)(s—b)(s—c)/s.

Solution. We study the area of the triangle. Draw lines from p to the three vertices.
The areas of the resulting three new triangles are (1/2)ah,, (1/2)bhy, (1/2)ch.. Thus the
area of the original triangle is at least

1
i(a + b+ ¢) min(hg, hy, he) = sh.

On the other hand, by Heron’s formula, the area of the original triangle is

V(s —a)(s —b)(s — c).

Thus, sh < v/s(s — a)(s — b)(s — c), which is equivalent to the asserted inequality.

Problem 3

Let f and g be twice continuously differentiable functions on [0, 1] with f(0) = ¢(0) =
0 = f(1) = g(1). Suppose that 0 < f(z) < g(z) for 0 < z < 1 and that f”(z) < 0 for

0 < z < 1. Show that
/ fl(z)*dr < / g (z)? da.



Solution. Integrating by parts and using the assumptions f(1) = g(1) = f(0) = g(0) = 0,
f" < 0and f < g, we have

[ s@ra=ior@] - [ 1@< [ e
=@+ [ d@re@e= [ g

Also, by Cauchy’s inequality,

([ v@rwa) < ([ dwra) ([ rwr),
([ f’(x)2d$>2 < ([ dwra) ([ sara).

and dividing by fol f'(z)%dx gives the result.

2

Thus,

Problem 4

Prove that if a, b, and c are odd positive integers, then the polynomial axz? + bz + ¢ has
no rational roots.

Solution. Suppose that z = r/s is a rational solution in lowest terms of the polynomial
equation az?+ bz + ¢ = 0. Then (x) ar?+brs+cs® = 0. Since the fraction r/s is in lowest
terms, at most one of r and s can be even. If exactly one of r and s is even and the other
is odd, then two of the three terms on the left of (x) are even and the third term is odd, so
their sum cannot equal 0. If both r and s are odd, then all three terms on the left of (*)
are odd, and their sum again cannot be equal to 0. Thus, the equation az? + bz +c =0
does not have a rational root.

Problem 5

Evaluate the infinite series

1 1 1 1
21—2_1+22—2_2+24—2_4+28—2_8

Solution. Let f(z) =Y o0 (#72" — x?")71, so that the given series is f(1/2). Writing
2n+1)_

each term in this series as a product z2" (1 — z 1 and expanding the second factor

into a geometric series, we get

o0 o0 o0 o0
n n+1 n n+1 n
f(Jf) — § :$2 E :372 k — E : $2 +2 k — § : 332 (2k+1).
n=0 k=0 n,k=0 n,k=0

2



In the last series, the exponents 2™ (2k + 1) are positive integers, and each positive integer
occurs exactly once as such an exponent. Hence the last series is equal to Zomozl ™ =
z/(1 —x), and so f(x) = z/(1 — z). The value of the given sum is therefore f(1/2) = 1.

[An alternative solution (found by David Dueber, Kaushik Roy, and Ken Scheiwe) consists
in showing, by induction, that the sum of the first n terms of the given series is 1 — (22n —
1)~!. Since this expression tends to 1 as n — oo, the sum of the series is equal to 1.]

Problem 6

Let f(n) denote the number of 1’s in the binary expansion of n. Evaluate the sum
oo
z:: n(n —|— 1)

Solution. Let S denote the sum of the given series (which converges since f(n) <
1 + log, n). Using the relations f(2n) = f(n) and f(2n+1) = f(2n)+1 = f(n)+ 1 and
splitting the series into odd and even parts, we obtain

o

= f(2n+1)
S=2 . Gryan 1) 2n 2n—|—1 +z_:(2n+1)(2n—|—2)

1

3
|

(n) o~ f()+
(2n)(2n + 1) Z ‘(2 (2n + 2)

n +

1 o0

oy ((2n+1) 2n+2> g
1)" fn) 1

_—Z ;m—bg2+55.

Hence, S =log2 + S/2, and so S = 2log2 = log 4.

p"qg

1

3
Il

1)(
f(n)
< 2n+1 +(2n+1)(2n+2))

p”qg
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SOLUTIONS

Problem 1

Given a positive integer n, let nq be the sum of digits (in decimal) of n, ny the sum of digits
of nq, ng the sum of digits of na, etc. The sequence {n;} eventually becomes constant, and
equal to a single digit number. Call this number f(n). For example, f(1999) = 1 since for
n =1999, n; = 28, ny = 10, ng = ng4 = --- = 1. How many positive integers n < 2001 are
there for which f(n) = 9?

Solution. Since an integer is divisible by 9 if and only if its sum of digits is divisible by
9, the numbers n with f(n) = 9 are exactly the multiples of 9. Since 2001 = 9 - 222 + 3,
there are 222 such numbers below 2001.

Problem 2

Let x, y, and z be nonzero real numbers satisfying

1 1 1 1
-+ -4+ -—=—————.
r Yy 2 xT+y+z

Show that ™ 4+ y™ 4+ 2™ = (z + y + 2)" for any odd integer n.

Solution. From the given relation one obtains, after clearing denominators and simpli-
fying, (x +y)(x + z)(y + z) = 0. Hence x = —y, x = —z, or y = —z. In the first case,
2™ 4+y™ =0 for odd n, and so 2™ +y™ + 2" = (x +y+ z)". The other cases are analogous.

Problem 3

Suppose that an equilateral triangle is given in the plane, with none of its sides vertical.
Let mq, ma, ms denote the slopes of the three sides. Show that

mimse + mo1nsg + msmy, = -3.

Solution. Let A, B, and C be the vertices of the triangle, labelled so that the path
ABCA is counter-clockwise, and let my, mo, m3 denote the slopes of the three sides AB,
BC, and AC, respectively. Without loss of generality, we may assume that the vertex A
is located at the origin. Then my = tanf, my = tan(f + 27/3), and ms = tan(6 + 7/3),
where 6 is the angle between the positive = axis and AB. (Note that § > 0 if the triangle
lies entirely in the first quadrant; < 0 if the triangle extends into the fourth quadrant.)
Using the identity tan(z + y) = (tanz + tany)/(1 — tanz tany), we get, with 7' = tan¥,

@ Vh) (0B (TR T4V
T T R T AV S e I Ay

0




Adding these three terms and simplifying gives mims+moms+msm; = —3, independently
of the value of T' (and ).
Problem 4

Let 1 > 29 > .-+ > x,, > 0 be real numbers. Prove that

T1 T2 Tn—1 Tn T2 T3 Tn T1
e R St + =
T2 T3 Tn T T1 T2 Tn-1 Tn

Solution. Set ¢; = z;/x;+1. Then z1/x, = H?:_ll ¢;, so the inequality to be proved can
be written as

n—1
ZQZ+H_<Z +qu7
=1
or equivalently
n—1 1 n—1 n—1 1
(*) Z<Qi—f)—HQi+ fSO.
i=1 i i=1 =1 4

Let f(q1,--.,qn—1) denote the function on the left of (x). The hypothesis that the z; are
non-increasing implies that ¢; > 1 for all 4. Since f(1,...,1) =0, to prove (x) it therefore
suffices to show that the partial derivatives of f are < 0 when ¢; > 1 for all . This is
indeed the case: we have

of _ 1
0q; q gq] a2 g
<1+ ) Hq] <0,
Jj#t

since [ il = 1 (When n = 2, this last product is empty, but in that case the sums and
products on the left of (x) reduce to a single term (corresponding to i = 1), and a direct
computation shows that the derivative of f with respect to ¢; is equal to zero, so the last
inequality remains valid for this case.)

Problem 5
Suppose that ¢(z) is a polynomial satisfying the differential equation

7%{xq(m)} =3q(z) +4q9(x +1), —o0o<z<o0.

Show that g(x) is necessarily a constant.



Solution. The left-hand side of the given equation is 7zq'(x) 4+ 7q(x), so the equation
simplifies to

x+1
(%) Txq () = —4q(z) + 4q(x + 1) = 4/ q (t)dt.

x

The left-hand side of (k) is zero at x = 0, so by the mean value theorem for integrals
(which can be applied here since g(x) is a polynomial and hence has continuous derivatives
of all orders) there exists a number x; € (0,1) with ¢’(z1) = 0. Setting x = x1 in (x), we
obtain a number z3 € (x1,z1 + 1) with ¢’(z2) = 0. Repeating this process, we obtain an
infinite sequence x7 < z9 < --- of values z at which ¢’(z) = 0. Since ¢’ is a polynomial, ¢/
must be identically zero. Hence ¢ is constant.

Alternative solution: The above solution was the one we had in mind when posing the
problem. However, all students who correctly solved the problem, did so via the following
approach (or a variant of it): Write ¢(z) = apz™ + ap_12"" ! + -+ + ag, where a,, # 0.
Then the left side of the differential equation is a polynomial of degree n with leading term
Ta,(n+ 1)z™, while the right-hand side has leading term 7a,2". Equating the coefficients
of those terms, we obtain 7a,(n + 1) = Ta,; since a,, # 0, this can only hold when n = 0,
i.e., when ¢(x) is constant.

Problem 6
Evaluate the sum 37" (F)2=*.

Solution. Let S(n) denote the given sum. We claim that S(n) = 1 for all n. Since
S(1) = 1, it suffices to show that S(n + 1) = S(n) for all n. Writing k = n + 1+ h and
using the identity ("Jth) = (”Jr;fh) = (”Zh) + (7:111) for h > 1, we have

n+1
n+1 n+1 n+1
+1+h n+h n+h
gn+1 1) = " 9=h — 9—h 9—h
srn =3 (" T =y (M) S (07
h=0 h=0 h=1
n n+1
2 1 1 2 2
:Z(n—}ll—h)z_h+<n+1)2_n_1+z(n+h+h)2_h_1_(n-l-l)z_n_g
h=0 n+ h=0 n+
2n+1 1/2n+2 1
=27 2 1 - = 27",
S(n) +2"S(n + >+((n+1) 2(n+1))

Since (%’;f) = (27?:11) + (2”7;“1) = 2(27?:11), the last term is zero, so we have 2" 1 S(n+1) =

2"S(n) +2"S(n+ 1), and hence S(n+ 1) = S(n), as claimed.



UIUC UNDERGRADUATE MATH CONTEST
APRIL 13, 2002, 10 am — 1 pm

SOLUTIONS

Problem 1

Without any numerical calculations, determine which of the two numbers €™ and 7°¢ is
larger.

Solution. Let a = €™ and b = 7. We will show that a > b. Since Ina = wlne = 7 and
Inb = elnm, and since taking logarithms preserves inequalities, we see that a > b holds
if and only if (x) (Ine)/e > (In7)/m. Now consider the function f(x) = (lnz)/z. We
have f'(z) = (1 —Inz)/z?, so f is decreasing for & > e, and since 7 > e, it follows that
f(m) < f(e) which is equivalent to (x).

Problem 2

Let 0ABC be a tetrahedron with three right angles at the point O. Let S4 be the area
of the face opposite to the point A, i.e., the area of the triangle OBC, and define Sg, S¢,
and So analogously. Prove that S2 = S% + S% + S2.

Solution. Place the tetrahedron so that its vertices are located at O = (0,0,0), A =
(a,0,0), B =(0,b0,0), and C' = (0,0,c). Clearly Sy = bc/2, Sp = ac/2, and Sc = ab/2.
Moreover, the area Sp of the triangle ABC is 1/2 times the area of the parallelogram
determined by the vectors AB = (—a,b,0) and AC = (—a,0, ¢), which in turn is given by
the magnitude of the cross product of these two vectors. Computing this cross product
gives (bc, ac, ab), so

S6 = (1/2)?||(be, ac, ab)|* = 7 ((be)* + (ac)* + (ab)?) = S5 + SE + SE.

o | =

Problem 3

Let 0,, = arctann. Prove that, forn =1,2,...,

1

0pr1 — 0, < ——.
+ n24+n

Solution. Using the fact that arctanz has derivative 1/(1 + 22), we obtain

n+1 dr
011 — 0, = arctan(n + 1) — arctann = /n 2
</’”+1 dr 1 11
w22 n n+1l nn+1)



Problem 4

Determine, with proof, whether the (double) series
n )
(%)

taken over all pairs (m,n) of positive integers satisfying

(%) n=23..., m=12,....n—1

converges.

Solution. Split the range (x) into the subranges (I) n = 2,3,...,m < n/2 and (II)
n=23,...,n/2<m <n—1. It suffices to show that the series taken over each of these

two ranges converge.

In the range (I), we have (m/n)™" < (1/2)™". Summing this upper bound first over
n (from n = 2m to infinity) gives a geometric series with sum (1/2)™(™) /(1 — (1/2)™)
which is at most (1/2)™ (with a lot to spare). Since > (1/2)™ converges, so does the
series (x) over the subrange (I). To deal with the second subrange, we set h = n — m, so
that 1 < h < n/2 in the range (II). Using the bounds (m/n) = (1 — h/n) < e /™ and
mn > n?/2, we obtain (m/n)™" < exp{—% - gn?} = exp{—%}. Summing the last term
over n, from n = 2h to infinity, gives again a geometric series, with sum e~"** /(1 — e h/2)
which is at most e (1 — e~'/2)~1. Summing the latter bound, from h = 1 to infinity,
we again obtain a convergent geometric series. Hence the series over the subrange (II)
converges as well.

Problem 5

Let a1 = 2, ag = 4, ag = 8, and for n > 4 define a,, to be last digit of the sum of the
preceding three terms in the sequence. Thus the first few terms of this sequence of digits
are (in concatenated form) 248468828 . ... Determine, with proof, whether or not the string
2002 occurs somewhere in this sequence.

Solution. First note that the sequence can be continued backwards in a unique manner
by setting a,_1 = an42 — ap+1 — a, mod 10. Doing so, one finds that the first four
terms prior to the given terms are 2, 0, 0, and 2. Thus, the string 2002 occurs in the
extended sequence. To show that it also occurs in the original sequence (i.e., to the right
of 2484 ...), note that the sequence is uniquely determined, backwards and forwards, by
any three consecutive digits in the sequence. Since there are finitely many possibilities for
such triples of consecutive digits, one such triple must occur again in the sequence, and the
sequence is therefore is periodic (in both directions). In particular, any string that occurs
somewhere in the extended sequence, occurs infinitely often and arbitrarily far out along
the given sequence. Hence 2002 does occur in this sequence.



Problem 6

Call a set of integers A double-free if it does not contain two elements a and a’ with a’ = 2a.
Determine, with proof, the size of the largest double-free subset of the set {1,2,...,256}.

Solution.  We will show that the maximal cardinality sought is 171. To prove that
the cardinality cannot exceed 171, suppose A C {1,2,...,256} is double-free. Given any
element a € A, let ag denote the odd part of a, so that a = a¢2’ with ag odd and i a
nonnegative integer. For each odd integer m, let A,,, denote the set of a € A with ag = m.
The sets A,,, m =1,3,...,255 partition the set A, so |A| = |A1| + |As| + -+ |A2s5]. To
obtain an upper bound for |A| we consider |A,,| for different ranges of m.

If (1) 128 < m < 256, then there can be at most one a € A with ay = m, namely
a = m. Thus, the sum over |4,,| for m in the range (1) is at most equal to the number of
odd m in this range, i.e., 64.

If (2) 64 < m < 128, then any a < 256 with ap = m must be of the form a = m or
a = 2m, but because of the double-free condition at most one of these can belong to a.
Hence |A,,| <1 for m in the range (2), and the sum of |A,,| over such m is at most 32.

If (3) 32 < m < 64, then ag = m implies that a = m2" with i = 0, 1, or 2, but
the double-free condition again implies that at most two of these can belong to A. Hence
| Ay, | < 2 in the range (3), and the sum of |A,,| over m in this range is at most 16-2 = 32.

Similarly, considering the ranges (4) 16 < m < 32, (5) 8 <m < 16, (6) 4 < m < 8,
(7) 2 <m <4 (i.e., m = 3), and (8) m = 1, we see that |A,,| is at most 2 in the range (4),
3 in the ranges (5) and (6), 4 in the range (7), and 5 in the range 8, and the corresponding
sums over |A,,| are bounded by 8-2=16,4-3=12,2-3=6,1-4=4,and 1-5 =5,
respectively. Adding up these bounds, we obtain

A <64+32+32+16+12+6+4+5=171.
To show that this bound can be achieved, take A to be the set of integers n < 256 that

are of the form a¢2® with ag odd and i = 0,2, .... In this case, it is easy to check that the
inequalities for |A,,| in the above argument become equalities, and so we have |A| = 171.



UIUC UNDERGRADUATE MATH CONTEST
April 12, 2003
Solutions

1. Let
99

—
N=9+994+999+---499...9.
Determine the sum of digits of N.

Solution. The answer is 99. To see this, evaluate N explicitly as
follows:

N=(10-1)+(100—1)+---+(10...0-1)
99 97
—— —
=11...10-99=11...1011.

2. Evaluate
1 + L + 1 +
1-2-3 3-4-5 5-6-7

Solution. Let S be the sum of the given series (which is easily seen
to be convergent, e.g., by comparing it with the series >~ ; n=2). We
will show that S =1n2 — 1/2. Denoting by Sy the N-th partial sum
of this series, we have

al 1 1 L1 1
S — — — _
N Z27»L(2n—1)(2n+1 22:: n<2n—1 2n—|—1>

1 1 1 1
== ) Nl
2;<2n—1 2n+2n—|—1>

Letting Uy = 27]:[:1 1/(2n) and Vy = 25:1 1/(2n — 1) denote the
partial sums over the even resp. odd terms in the harmonic series, we
can write the last expression as

2" 22N +1)°

1
SN—§<VN_2UN+VN_1+2N+1

1 1
> =Vn—-Un—=+



But

2N

-1 n+1

-ty =3 E
n=1

which converges to In2 as N — oo. Hence S = limy_,oo Sy =In2 —
1/2, as claimed.

. Prove that the limit

n

. 1 o1
S L0 +7) "
1=

exists and find its value.

Solution. We will show that the limit is equal to 2e~2T™/2. Let
P, = n 2]}, (n? +%)"/™. Factoring out (n 2)1/” from each term in
the product, we see that P, =[]}, (1 + (i/n)?)"/™, and hence

1 & i\’
1 == - )
og P, nZlog <1+<n> )
=1
The term on the right is a Riemann sum for the integral I = fol log(1+
2?)dx, and therefore converges to this integral as n — oo, i.e., we have

lim,, o0 log P, = I. Hence the limit lim,, .., P, exists, and is equal to
el. It remains to evaluate the integral I. This is a routine exercise in

integration by parts:
1 1
2
B / x( x)z dx
0 0 1 +x

1 2
=log?2 — 2-—= 4
2= [ (270 )

I = zlog(1+ 2?)

1
=log2 -2+ 2arctanz| =log2—2+ g
0
. Let a1, a9, ... be a sequence of positive real numbers, and let b,, be the
arithmetic mean of ai,as, ..., a,. Prove that if Y >° | 1/a, converges,

then so does > > 1/by,.
Solution. Let S; = Z2i§n<2i+1 a,. Then, for each 7 > 0 and

9i+1 <n< 22+2’ i
1 Si
n = n Z ag 2 9i+2°
k=1
and so

<1 " 2i+2 1 92
Shpeatl T fepeiry

n=1 1=0 2i+1<n<2itl



Now, S;/2 is the arithmetic mean of the 2¢ numbers a,,, 28 < n < 2¢+1
By the arithmetic-harmonic mean inequality, this is at least equal to

. -1
the harmonic mean of these numbers, namely 2° (Z2i<n <1 1/ an) .

22 1
E S Z )

. .a
2i<n<2itl

Hence,

and it follows that

=1 1 =1
I T Drw

Thus, the convergence of > >, 1/a, implies that of Y>>, 1/by,.

. Is it possible to arrange the numbers 1,2,...,2003 in a row so that
each number, with the exception of the two numbers at the left and
right end, is either the sum or the absolute value of the difference of
the two numbers surrounding it?

Solution. The answer is no, as can be seen by considering the parity
of the numbers. The given condition implies that, except for the two
integers at the left and right ends of the row, an integer n in the row
must be surrounded by two odd integers or two even integers in case
n is even, and by an odd and an even integer, in case n is odd. Thus,
after reducing the numbers in the row modulo 2, the only blocks of
three that can occur are 000, 011, 101, and 110. It follows that the
entire row is determined (modulo 2) by its first two elements: If the
row starts with 00, all elements in the row must be 0; if it starts with
01, the row is of the form 011011011...; if it starts with 10, it is of
the form 101101101 .. .; and if it starts with 11, it must be of the form
110110110.... In the first case, all numbers would have to be even,
and in the other cases at least 2[2003/3] = 1334 of the numbers would
have to be odd. Since exactly 1002 of the given numbers are odd, we
obtain a contradiction in all of these cases.

. Find the smallest integer n > 11 for which there is a polynomial of
degree n with the following properties:

(a)
(b)
(¢) P(—1) = 2003.

P(k) =k for k=1,2,...,n;
P(0) is an integer;

Solution. The answer is n = 166. To see this, suppose first that P(z)
is a polynomial of degree n satisfying the three conditions (a), (b),
and (c). Consider the polynomial Q(z) = P(x) — z!'. Then Q(z) has
degree at most n, and condition (a) implies that Q(x) has a root at



each of the numbers k = 1,2,...,n. It follows that Q(x) is of the form
Q(z) =C(z—1)(z—2)...(x —n) for some constant C'. To determine
C', we use condition (c), which implies

2003 = P(—1) = Q(—~1) + ()" = C(-1)"(n + 1)! - 1.
Hence C' = 2004(—1)"/(n + 1)!. Now,

w2004
P(0) = Q(0) = C(-1)"nl = 2=,

so condition (b) holds if and only if n + 1 is a divisor of 2004. Thus,
any polynomial P(z) of degree n satisfying all three conditions (a)—(c)
is of the form P(z) = C(z — 1)(z — 2)...(x — n) + 2! with C as
above and n + 1 a divisor of 2004. Conversely, it is easy to see that
any polynomial of this form satisfies (a)—(c). Therefore the number n
sought in the problm is the smallest number n > 11 such that n + 1
divides 2004, i.e., n is 1 less than the smallest divisor of 2004 that
exceeds 13. Factoring 2004, we get 2004 = 22 .3 -167. Hence, the
smallest divisor of 2004 exceeding 13 is 167, and so n = 166.



UIUC UNDERGRADUATE MATH CONTEST
April 17, 2004
Solutions

1. Suppose a, b and ¢ are integers such that the equation az®+bx+c =0
has a rational solution. Prove that at least one of the integers a, b and

¢ must be even.

Solution. We argue by contradiction. Suppose a, b, and ¢ are all odd

and that = p/q, with (p, ¢) = 1, is a rational solution of az?+br+c =
0. Clearing denominators, we obtain (x) ap? + bpg + cq®> = 0. Since we

assumed p and ¢ are relatively prime, they cannot be both even. If p
and ¢ are both odd, then, in view of our initial assumption that a, b
and c are odd, each term on the left of () is odd, so the left-hand side
is odd and we have a contradiction. If exactly one of p and ¢ is odd,
then exactly two of the three terms on the left of () are even, and so
the left-hand side is odd and we again arrive at a contradiction. Thus,
a contradiction arises in either case, and a, b, and ¢ therefore cannot

all be odd.

2. Let F;, denote the Fibonacci sequence, defined by F; =1, F» = 1, and

Foi1 = F,+ F,—1 for n > 2. Evaluate

Solution. First note that, by induction, we have F;, < 2" for all n, so

the given series is majorized by the geometric series Y oo (2/3)F, a

hence is (absolutely) convergent. Let S denote the sum of this series.

Using the Fibonacci recurrence for terms with & > 3, we obtain
F F
g F Z k 1 Z k 2
Fk
+3 Z Z T
k

1 1
§<S—§>+§S.

oo|>—l oa\»—*
colr—* @\H



Solving for S we get

. Define a sequence {a,} by ap =0, a; =1, az = 2, and
ap = ap—1+ ap—2 — -3+ 1

for n > 3. Find, with proof, asgo4.

Solution. Let b, = a, — a,—1. From the given recurrence for a,, we

obtain
b, =bp_o+1 (7123)

with initial conditions b; = 1, b = 1. This implies, by induction,
boy, = boy—1 = n for all n > 1. Hence

agn = ag+ Y _(ask — agr—2) = ¥ _(bog + bap—1)
k=1 k=1
n(n+1)

=> (2k) = 2=—— =n(n+1)
k=1

Hence a2004 — 1002 - 1003 = 1005006.

. Let f(x) = aysinx + agsin2x + - - - 4+ a, sin nz, where the ay, are real
numbers. Suppose that f(x) satisfies |f(z)| < |sinz| for all real z.
Show that |a; + 2ag + - -+ + nay| < 1.

Solution. We have f'(z) = Y ,_; kay cos kx, and so f'(0) = > j_; kag.
Thus, the claim is equivalent to |f(0)] < 1. Now, by the defini-
tion of the derivative, we have f’(0) = lim,_¢ f(z)/x, and since
|f(z)| < |sinz| < |z] for all z, the inequality |f/(0)| <1 follows.

. Let

3

n
OEDME
k=1
where [z] denotes the greatest integer < z, and let g(n) = (—1)f(™.
Find, with proof, g(2004).

Solution. Note that g(n) = 1 or g(n) = —1 depending on whether
f(n) is even or odd. Since, for each k, [n/k] counts the number of
positive integers m for which km < n, the function f(n) is equal to
the number of pairs (k,m) of positive integers that satisfy km < n.
Among these pairs, the number of those with k # m is even since we



can pair up (k,m) with (m, k). Hence, modulo 2, f(n) is congruent
to the number of remaining pairs in the above count, i.e., those of the
form (k, k) with k& < n. Clearly, there are [\/n] such k, so we have
f(n) = [v/n] modulo 2, and therefore g(n) = (—=1)7" = (—1)v7l,
Since 442 = 1936 and 452 = 2025, we have [v/2004] = 44, so g(2004) =
(-1 =1.

. Find, with proof, all functions f(x) that are defined for real numbers
x with |z| < 1, continuous at x = 0, and which satisfy

f(=)
1+

f0)=1, f@*) = (] < 1).

Solution. First note that the function f(x) = 1/(1 — x) satisfies the
given conditions. We will show that this is the only solution. Suppose
f(z) is a solution, and let g(z) = (1 — z)f(x). Note first that since,
by assumption, f(z) is continuous at x = 0, g(z) is also continuous at
x = 0. From the given relation for f(z) we obtain g(0) = f(0) = 1,
and for |z| < 1,

(1—22)f(2)

9(372) =(1- 332)f(952) = T 1rax = g(x).

Iterating this identity, we get

g(z) = g(z*")

for any positive integer n. Since, for |z| < 1, 22" tends to 0 as n — oo
and g is continuous at 0, it follows that

g() = lim g(a”") = g(0) = 1

n—oo

for all z with |z| < 1. Hence f(x) = g(z)/(1 —x) =1/(1 — x), so the
function 1/(1 — z) is indeed the only solution.



UIUC UNDERGRADUATE MATH CONTEST
April 16, 2005
Solutions

1. For which positive integers n does the equation
aias + asaz + -+ an_1a, + ana; =0

have a solution in integers a; = £17 Explain!

Solution. If n is divisible by 4, then letting ai,ao,...,a, be the
pattern (1,1, —1, —1) repeated n/4 times, the terms a;a;+1 in the above
sum are alternately 1 and —1, and their sum is equal to 0. Thus, for
all n divisible by 4, the given equation has a solution.

We now show that if n is not divisible by 4, there is no solution in
integers 1. This is obvious in the case n is odd, since then the left-
hand side of the equation consists of a sum of an odd number of terms,
each £+1, and thus cannot be equal to 0.

It remains to consider the case when n = 2m, where m is odd. Suppose
there exist integers a; = +1, i = 1,2,...,n, for which the above
equation holds. Set a,41 = a1, so that the equation can be written as
Yoy aiaip1 = 0. Since n = 2m and each of the terms a;a;41 is £1,
exactly m of these terms be equal to 1, and m must be equal to —1.
Hence the product of all 2m terms must be equal to (1)™(—1)" = —
since m was assumed to be odd. On the other hand, a direct calculation

shows that the product is equal to

n

n

2
Haiai-i-l = Hai =1,
i=1

i=1

so we have reached a contradiction. Thus, no solution exists when
n = 2m with m odd.

2. Evaluate the integral I = [ In(sin z)dx.
Solution. We will show that [ = —271n 2.



Using the identity sin x = 2sin(z/2) cos(z/2) we can write I as
™ ™ ™
I= / In 2dx —1—/ Insin(z/2)dz —I—/ In cos(x/2)dx
0 0 0

/2 w/2
:7rln2+2/ lnsinydy—i—Q/ In cos ydy
0 0

=nln2+ 20 + 215,

say. Setting y = m/2 — u and using the relation cos(7/2 — u) = sin u,
we see that I} = I, and since sinz = sin(m — x), we have also

/2 T
25 = / (Insinz + Insin(7m — z))dx = / Insinzdr = I.
0 0

Hence the above relation implies I = 7ln2 + 417 = wln2 + 21, and
solving for I gives I = —wIn2, as claimed.

3. Suppose 3 players, P;, P, P3, seated at a round table, take
turns rolling a die. Player P; rolls first, followed by P», etc.
Once a player has rolled a 6, the game is stopped and that
player is declared the winner. If no 6 has been obtained after
each of P, P», P; have rolled the die once, player P, gets to
roll again, followed by P», etc. Find the probability that the
first player, P;, wins this game.

Solution. Let N denote the number of “rounds” in the game, i.e.,
the number of rolls needed until a six shows up (including the roll at
which the six shows up). Then the first player wins if and only if N is
equal to one of the values 1,4, 7, ..., i.e., if N is of the form N = 3k+1,
k=0,1,.... Now, N = n for a given value n if and only no 6 is rolled
in the first n — 1 rolls and a 6 appears in the n-th roll; the probability
for this event is p, = (5/6)"1(1/6). Hence the probability that player
P, wins is

Zp3k+1 Z (5/6)***171(1/6)

1 & 1 36
_Ekzo (6/6))" = g =576 = o1

4. Prove that, for any real numbers x and y in the interval (0,1),

x+yx+y
< x¥yY.
(3=




Solution. Let f(x) =logz® = xlogz. Taking logarithms and divid-
ing both sides by 2, the given inequality is equivalent to

(3 0) < 500+ 10 0

Now note that f'(z) = logz + 1, and f”(x) = 1/x > 0 for positive
x, so the function f(z) is convex (i.e., concave up) for z > 0. Since
any convex function satisfies (1), the result follows. (The fact that (1)
holds for any convex function f is easily seen by sketching the graph
of a convex function and comparing the value of the function at the
midpoint of an interval [z,y], with the average of the values of the
function at the two end points = and y.)

. Determine, with proof, whether the series

[e.e]

1
Z n1.8+sinn

n=1
converges or diverges.

Solution. We show that the series diverges. Note that sinz < —/3/2
whenever z falls into one of the intervals

In = [(2k + 4/3), (2k + 5/3)7], k=0,+1,42, ...

Each of these intervals has length 7/3 > 1 and the gap between two
successive intervals has length < (5/3)m < 6. Hence, among any 7
consecutive integers n at least one must fall into one of the intervals
I; for this value of n we have 1.8 +sinn < 1.8 — /3/2 < 1, so the
corresponding term in the above series is greater than 1/n. Therefore
the above series is bounded from below by

00 Tm+T7

1 =1 =1
> 2 WEZMHZ > =0

m=0n=Tm+1 m=0 m=1

| =

and hence diverges.

. Let ay,...,a, be a set of positive integers such that the prod-
uct [[;_, a; has fewer than n distinct prime divisors. Prove
that there exists a nonempty subset I C {1,...,n} such that
[Lic; @i is a perfect square.

Solution. Let pi,...,py, denote the prime divisors of [[;"; a;. Then
each a; can be written as a; = [[j2, p?” , with nonnegative integers
@;j, and for any subset I C {1,2,...,n}, the product [[,.;a; has
prime factorization HTZI p*i, with ay; = 7,7 o;;. Such a product

2



is a perfect square if and only if the exponents az;, 7 =1,...,m, are
all even, i.e., if and only if the system of congruences

d ai;j=0mod2, j=1,...,m (1)
el

holds. Setting ¢; = 1if ¢ € I, and ¢; = 0 otherwise, (1) can be written
as

n
> aijei=0mod2, j=1,...,m (2)
i=1
Thus, we need to show that, if m < n, then the latter system has a
solution ¢; € {0,1}, with ¢; # 0.

To this end we consider first the system

n
Zaijxizoa J=1...,m, (3)
i=1

in the variables x1,...,2,. This is a system of m linear equations
with integer coefficients in n variables. Since, by assumption, m < n,
by elementary linear algebra this system has a solution in integers
r1,...,T, that are not all zero. Dividing through by the greatest
common divisor, we may further assume that the z;’s do not have a
common prime divisor and, in particular, are not all even. Hence,
defining ¢; = 1 if z; is even, and ¢; = 0 otherwise, and reducing both
sides of (3) modulo 2, we obtain a nontrivial solution (ey,...,€,) to

(2).



UIUC UNDERGRADUATE MATH CONTEST
April 8, 2006
Solutions

1. Determine, without numerical calculations, which of the two numbers

/2005 2008 nd v2006 2005 4o larger.

\/200
Solution. We will show that the first of the two numbers, /2005
is the larger one. Taking the (1/2005 - 1/2006)-th root of the two glven
numbers, this amounts to showing that +/ 20051/ 2005 5 larger than

vV 20061/ \/W' This will follow provided we can show that the func-
tion f(x) = x'/* is decreasing in an interval that includes /2005
and 1/2006. To do this, we compute the derivative of f(z): Writing
f(z) = exp{(Inz)/x}, we have, by the chain rule,

fl(x) = exp{h%”} (1:(1/96) ;Q(Ina:) - 1) _ el ln:n'

2

Thus we see that f’(x) is negative, and hence f(z) is decreasing, for
x > e. Since /2005 > e, this is what we need, with plenty of room to
spare.

2. Let f(z) = ¢* sinz. Find, with proof, f2006)(0), the 2006th derivative
of f at 0.

Solution. We use the connection between derivatives at 0 and
coefficients of Taylor series: if f(z) = >..° ,a,z" is the Taylor ex-
pansion of f at 0, then a, = f(0)/n!. Now, the Taylor series of
flx) =¢€" *® ginx is the product of the Taylor series for e®” and sinz,
which are > °° (22" /n! and > o0 ,(—1)"z?" "1 /(2n + 1)!, respectively.
Since the first of these series involves only even powers of z, and the
second involves only odd powers of x, their product contains only odd
powers of x. Hence, all even-indexed coefficients in the Taylor series
for f(z) are 0 and so, in particular, f(2096)(0) = a006(2006)! = 0.

3. FEvaluate the series

[e.e]

1 1 1

1
T;) 20062" —2006-2" 2006 — 20061 +20062 — 20062 +20064 — 20064 +

and express it as a rational number.



Solution. We claim that the given series is equal to 1/2005.
More generally, let

x X
S(OC)ZZWy SN(ﬁ)ZZW‘
n=0 n=0

Note that setting x = 1/2006 in S(x) gives the series of the problem.
We will show that, for any = with 0 < z < 1,
x
S(x) =
() = 12, (+
and so, in particular, S(1/2006) = (1/2006)(1 — 1/2006) = 1/2005, as
claimed.

We give two proofs for (x).
First proof of (x). We use a “telescoping” argument, based on the
elementary identity
"1 1
1_$2n+1 - 1_:E2n - 1_$2n+1'

Substituting this into the partial sums Sy (z) (we work with partial
sums rather than the infinite series S(x) in order to avoid possible
convergence problems), we get

1 1 1 1
Sn(z) = (1—x_1—x2>+<1—m2_1—x4>

1 1
Tt 1—g2¥ 1 — g2

1 1
T 12 11— g2V

As N — oo here, the last term tends to 1, and we obtain

S(z) = lim Sy(z) = —— —1= %

N—oo 1—=x 1—=x

proving ().

Second proof of (x). A completely different proof of (x) goes as
follows: First expand each term in S(z) into a geometric series:

S(z) = ixw ixr“k _ i ixzn(u%).
k=0

n=0 k=0n=0

Note that all terms in this double series are positive, so we can rear-
range the terms in this series. Since each positive integer has a unique
decomposition as a power of 2 times an odd positive integer, the expo-
nents 2" (1 + 2k) in the latter double series correspond in a one-to-one
manner to the positive integers, and the latter double sum, and hence
S(z), is therefore exactly Y > 2™ = x/(1 — ). This again gives (x).



4. For any positive integer n, define a sequence {n;}3°, as follows: Set
nog = n, and for each k > 1, let ny be the sum of the (decimal)
digits of ng_1. For example, for n = 1729 we get the sequence
1729,19,10,1,1,1,.... In general, for any given starting value n, the
resulting sequence {ny} eventually stabilizes at a single digit value.
Let f(n) denote this value; for example, f(1729) = 1. Determine
(22006,

Solution. The key to this problem is the fact (which underlies the
well-known disibility test by 9) that the sum of the decimal digits of a
number has the same remainder modulo 9 as the number itself. Thus,
each of the numbers nj in the given sequence has the same remainder
modulo 9. In particular, f(n) has the same remainder modulo 9 as
n, and since f(n) must be among {1,2,...,9}, the remainder of n
modulo 9 determines f(n) uniquely. Thus, it remains to determine the
remainder of 22°% upon division by 9. This is easy using congruence
calculus: We have 26 = 64 = 1 mod 9, and so

92006 _ 4. 92004 _ 4 (96Y33 — 4. 1330 — 4 110d 9,
Hence f(22090) = 4.

5. Let D = {dy,ds,...,dio} be a set of 10 distinct positive integers. Show
that any sequence of 2006 integers from D contains a block of one
or more consecutive terms whose product is the square of a positive
integer.

Solution. Let a set D and a sequence {a;}?%% with a; € D be given
as in the problem. For n = 1,2,...,2006 let P,, = [[""_; a; denote the
product of the first n terms and set Py =1,

Note that any block of consecutive terms from the sequence {a;} is
of the form [[, ., a; = P,/Py for some integers m and n with
0 <m < n <2006. Thus, the problem amounts to showing that, for a
suitable choice of (m,n) with 0 < m < n < 2006, P,/P,, is a perfect
square. Since each a; is among the numbers di, do, ..., d1g, each P, is
of the form P, = H}Ql df‘i", where the exponents «a;, are nonnegative
integers. (With a;o =0 for i = 1,2,...,10 this also holds for Fy.)

Note that, by the definition of P, as the product of the first n terms of
the sequence {a;}, the exponents «;, are non-decreasing in n, for each
i. Thus, for 0 < m < n <2006, P,/Prp = [[iL,,00 ai = [ 12, di
where the exponents «;, — @, are nonnegative integers. Hence P, /Py,
will certainly be a perfect square if the numbers ag, — agm, k£ =

1,...,10, are all even.

The latter condition holds if and only if the vectors o, = (in, - .., @10n)
and o, = (Q1m, - - -, @10m) have the same parity in each component.
Now, since each a,, n = 0,1,2,...,2006, is a vector with 10 com-
ponents, there are 2'0 = 1024 possible parity combinations for these



components. Since we have 2007 > 1024 such vectors, by the pigeon-
hole principle two of these must have the same parity combination.
Denoting the indices of these two vectors by m and n (ordered so that
0 <m < n <2006), we then have that P,/P,, is a perfect square, as
claimed.

. Given a real number o with 0 < « < 1, define an a-step a move of unit
length in the xy-plane in the direction 2o (measured counterclockwise
with respect to the horizontal). For example, if you are located at the
origin, a (1/2)-step (corresponding to an angle of 7, or 180 degrees)
will put you at position (—1,0), a (1/3)-step (120 degrees) will place
you at the point (—1/2,+/3/2), a (1/4)-step you will place you at (0, 1),
and after performing all three of these steps, you will be located at
(=1+(=1/2) + 0,0+ v3/2+ 1) = (-3/2,1 + V3/2).

Suppose you start at the origin and perform a sequence of (p/q)-steps,
where p and q range over all pairs of integers (p,q) with 1 < p < q <
2006, giving a total of 2005 - 2006/2 = 2011015 steps of unit length.
Where will you be located at the end of these 2011015 steps?

Solution. At first glance, this problem looks impossibly difficult,
but it becomes doable when approached the right way.

If we think of the xy-plane as the complex plane with a point (z,y)
corresponding to the complex number z = x+1y, then moving by an a-
step corresponds to adding e?™ to the complex number corresponding
to your current location. Thus, the location after performing the given
sequence of moves is the determined by the sum

55

so it remains to evaluate this double sum. To this end note that
each of the inner sums here is a finite geometric series which is easily
evaluated:

I MQ
Q"@

§ (egm/q)p _ e2mi(a/a) _ p2mi/q _
e2mifq ’
p=1

Hence, for each value of ¢, the corresponding inner sum contributes
an amount —1 to S, and since there are 2005 values of ¢, we get
S = —2005. This corresponds to the location (—2005,0) in the xy-
plane.



U OF I UNDERGRADUATE MATH CONTEST
April 14, 2007
Solutions

1. Let
fn) = (2 + DU+ (22 4+ 120+ + (n® + )nl.

Find a simple general formula for f(n).

Solution. We will show by induction that
(%) f(n)=n(n+1)!

forn =1,2,.... For n = 1, (%) holds trivially. Let now n > 1, and assume that (x)
holds for this value of n. Then

fn+1)=f(n)+ ((n+1)*>+1)(n+1)!
=n(n+ D!+ (0 +2n+2)(n+1)!
= (n?+3n+2)(n+1)!
=n+1)n+2)(n+1)!=(n+1)(n+2),

which proves (x) with n + 1 in place of n, completing the induction.

2. Prove that for every odd integer n the sum 1" + 2" + --- +n" is divisible by n?.

Solution. For n = 1, the assertion is trivially true. Suppose therefore that n is
greater than 1 and odd. Then

(n=1)/2
"4 2% o nt = Y (K (n—k)") +n"
k=1
(n—1)/2
= <k” ol (7;) "=k 4+ (n " 1>nl(—/<:)”1 + (—k)"> +n",
k=1

Since n is odd, the terms k™ and (—k)™ cancel each other out. Of the remaining
terms, all divisible by n?, so the assertion follows.

3. For any positive integer k let fi(k) denote the sum of the squares of the digits of

k (when written in decimal), and for n > 2 define f,(k) iteratively by f,(k) =
J1(fa—1(k)). Find f2007(2006).
Solution. Starting from k£ = 2006 and iterating the map “sum of squares of
the digits” we obtain the chain 2006 — 40 — 16 — 37 — 58 — 89 — 145 —
42 — 20 — 4 — 16, after which the sequence repeats itself, with period 8. Thus,
f1(2006) = 40, f2(2006) = 16, etc., and f,+8(2006) = f,,(2006) for all integers n > 1.
Since 2007 = 8 - 250 4 7, it follows that follows that f2007(2006) = f7(2006) = 42.



4. Determine, with proof, whether the series
oo 1 n
Z e—(1+—
n=1 n
converges.

Solution. We claim that the series diverges. To show this, we first derive a bound for
In(1+z), using the Taylor expansion In(1+z) = >.°°  (—z)"*!/n. For 0 < < 1 the

n=1
latter series is an alternating series with decreasing terms, so the successive partial
sums of this series alternately undershoot and overshoot the limit, In(1 4+ z). In

particular, we have, for 0 < z < 1,

2 23 2 22 z?

<p— 4+ <4l
In(l+z) <z 2+3_m 2+3 x 5

It follows that, for n > 2,
1\" 1
1+—| =expinln|1+—|)}
n n
1 1-1/(6n)
< S '
< exp {n (n 6n2>} e

Hence, if a,, denotes the n-th term of the given series, we have the lower bound
n
anp =e— <1 + 1) >e—el 700 — ¢ (1 - efl/(fm))
n
By another application of the alternating series properties, we see that, for 0 < x <1,
0 k
—r __ (_ZB)
e = Z k!
k=0
Combining this with the above inequality for a,, gives

) 3 e
an_e<1 e ) >ell 1 - Ton’

for n > 2. Since the harmonic series 2, 1/n diverges, it follows that the series over
an diverges as well.

2

T x

<1-— — <1-—=.
< x+2_ 5

Alternate solution (due to Ben Kaduk). By the binomial theorem, we have for

n > 2
1\" & /n\ 1
(1+3) —;}(,{)nk

k! nk
k=1
1 1 "1
1+1'+2!<1—> i
k=3
o0
1 1 1
< L —e— —
_kz—ok' 2n 2n



Hence a, > 1/(2n) for n > 2, and comparison with the harmonic series yields the
divergence of 0 | ay.

. Suppose P, ..., Py are points on the unit circle x> +y?> = 1, and let

S=8(P,....P)= Y |BP

1<i<j<12

where | P;P;| denotes the distance between P; and Pj. In other words, S is the sum
of the squares of the pairwise distances between the points P, ..., Pio. Determine,
with proof, the largest possible value of S among all choices of the points Pi, ..., Pia
on the unit circle.

Solution. We represent the points P; by complex numbers z;. Points on the unit
circle correspond to complex numbers of absolute value 1, and the distance between
two such points is the absolute value of the difference between the corresponding
complex numbers. We thus can write

S:S(Zl,...,zlg): Z ‘Zi—Zj‘Q

1<i<j<12

and the problem reduces to that of maximizing this function subject to the condition
that |z;| = 1 for all 4.

Since |z; — z;| = 0 and |2 — zj| = |2; — 2z, if we extend the above sum over 1 < i <
j <12 to all pairs of indices (i, j), with 1 <i,j < 12, we count each summand twice.
Thus, S is exactly equal to half this extended sum, i.e.,

IERLARE
2
S0 3
i=1 j=1
Using the assumption that |z;| = 1, we can expand the summands into

|2 — 2i|* = (2 — ) (% — %)

= |ail® + |25* — 2% — Zizy = 2 — 2% — Tz

Substituting this into the above identity for S, we get

1 12 12 o
52522(2—22‘%‘—21‘2]‘)

i=1 j=1

1 12 |2

=3 2.122 -2 Z;z
1=

Thus, S < 122 = 144 for any choice of the numbers z; (subject to |z;| = 1), and
S = 144 whenever



The latter condition can be achieved, for example, by choosing the first 6 points,
z1,...,26, arbitrarily on the unit circle, and letting the remaining 6 points be the
points located diametrically opposite the 6 chosen points, i.e., zy = —z1,..., 212 =
—zg. Hence 144 is the maximal value of S.

. Let a,, (n=0,1,...) be a bounded sequence of positive integers that satisfies
an (a7 + a5_o+ -+ ap_ogp7) = a_ya1+a5_sas+ - +a; 00702007 (1 > 2007).

Show that the sequence eventually becomes periodic.

Solution. Let a,, denote the 2007-tuple (ay, . .., an—2006). The given recurrence can
be rewritten as

(1> o — a%_lal + a2_2a2 + -+ (Ii_200702007
n = 2 2 2 :
a1t a, ot +a, o007
Thus the value of a,,_1, along with that of the (constant) tuple asgo7 = (a2007, - - -,a1),

completely determines that of a,, hence, by induction, the values of a,x and a,
for all £ > 0.

Since the numbers a, are bounded positive integers, there are only finitely many
possible values for the tuple a,. By the pigeonhole principle, it therefore follows that
there exist positive integers n < m with a,, = a,,. In view of the above remark, this
implies ap4r = apoi for all integers £ > 0. Thus, a, is eventually periodic with
period m — n.

Note. In the original version of this problem, the assumption that the a, be positive
was missing. This assumption ensures that the denominator in (1) is positive, so the
given recurrence can be written in the above form. Ben Kaduk constructed a example
showing that, i if the a,, are allowed to be 0, the conclusion need not not hold.



U OF I UNDERGRADUATE MATH CONTEST
March 8, 2008
Solutions

1. Does there exist a multiple of 2008 whose decimal representation involves only a single
digit (such as 11111 or 22222222)7?

Solution. The answer is yes; specifically, we will show that there exists a multiple
of 2008 of the form 888...8.

Given a digit d € {1,2,...,9}, let Ngj be the number whose decimal representation
consists of k digits d. Note that

10’f—1
Ndk_dZH)Z ).

Thus, a given positive integer m has a multiple of this form if and only if the con-

gruence (1) d(10¥ — 1) = 0 mod 9m has a solution k. We apply this with d = 8

and m = 2008. Then (1) is equivalent to (2) 10¥ — 1 = 0 mod 9(2008/8) = 9 - 251.

Since 10 = 1¥ = 1 mod 9 for any positive integer k, (2) is equivalent to (3) 10* =

1 mod 251. Now, 251 is prime, so by Fermat’s Theorem, we have 102°!~1 = 1 mod 251.

Thus, (3) holds for £ = 250, and so the number Ng 250 = 88...8 is divisible by 2008.
7 250

2. What is the maximal value of the integral fol f(2)2x?°%8dx among all nonnegative
continuous functions f on the interval [0, 1] satisfying fol f(x)?dr =17

Solution. Let [ = fol f(2)2?%%8dx be the integral whose maximum we seek. Apply-
ing the integral version of Cauchy-Schwarz with the functions f(x) and 22°%®, we get,
for any f with fo r)’dr =1,

1 1

1
12 < Qd/ 4016 7, _ ‘
_/0 f(@)de 0 v * T 1017

Thus, I < 1/4/4017. Moreover, this upper bound is achieved by taking f(x) = cz?0%8
with ¢ = /4017 (so that f satisfies fo x)%dz = 1). Thus, 1/4/4017 is the maximal
value for 1.

3. Find, with proof, all functions f : R — R satisfying
[fl@+y) = fla—y) —yl <y’

for all x,y € R.



Solution. Any function of the form f.(z) = /2 + ¢, where ¢ is a constant, satisfies
felx+y) — fe(x —y) —y = 0 for all x and y, and hence trivially satisfies the above
inequality. We will show that these are the only such functions.

Suppose f(z) is solution to the given inequality. Set g(z) = f(z) — 2/2. Then

9z +y) —glz—y)l=flz+y) —(@+y)/2—flx—y)+ (2 —y)/2 -y
=[flz+y) - flz—y) —yl <y’

for all x,y € R. Dividing by y and letting y — 0, we conclude

i 9 +Y) —g(z—y) _ lim y = 0,
y—0 Yy y—0

for all z € R. Thus g is a differentiable function, with derivative equal to 0 everywhere.
It follows that g must be a constant function, say, g(x) = ¢ for all . Therefore
flz)=x/2+ g(x) = /2 + ¢, as claimed.

. Let ay =1, as = 2, a3 = 4, and for n > 4 define a, to be the last digit of the sum of
the preceding three terms in the sequence. Thus the first few terms of this sequence
of digits are (in concatenated form) 124734419447 . . .. Determine, with proof, whether
or not the string 1001 occurs in this sequence. (Hint: Do not attempt this by brute
force!)

Solution. First note that the sequence can be continued backwards in a unique
manner by setting a,—1 = api2 — ant1 — an,, mod 10. Doing so, one finds that the
first four terms prior to the given terms are 1, 0, 0, and 1. Thus, the string 1001 occurs
in the extended sequence. To show that it also occurs in the original sequence (i.e.,
to the right of 1247...), note that the sequence is uniquely determined, backwards
and forwards, by any three consecutive digits in the sequence. Since there are finitely
many possibilities for such triples of consecutive digits, one such triple must occur
again in the sequence, and the sequence is therefore is periodic (in both directions).
In particular, any string that occurs somewhere in the extended sequence, occurs
infinitely often and arbitrarily far out along the given sequence. Hence 1001 does
occur infinitely often in this sequence. (While this term occurs immediately to the
left of the given initial string 1247 ..., its first occurrence to the right is at the 120-th
term. This would be hard to discover by a hand calculation!)

. Let n be a positive integer, and denote by S,, the set of all permutations of {1,2,...,n}.
Given a permutation o € S, define its perturbation index P (o) as

Plo)=#{ke{l,...,n}:0(k) #k};

i.e., P(o) denotes the number of elements in {1,...,n} that are “perturbed” by o,
in the sense of being mapped to a different element. Find the average perturbation
index of a permutation in S, i.e.,

#ilgn Z P(o).

O'ESn



Solution. We have

k=1
= (! —#{o €S, :0(k) =k})
k=1
=Y = —1)
k=1
= (n — 1)TL',

since, for any k, there are exactly (n — 1)! permutations in S, that fix k. Since
#S, = nl, it follows that the average perturbation index is n — 1.

. Let A be a collection of 100 distinct, nonempty subsets of the set {0,1,...,9}. Show
that there exist two (distinct) sets A, A" € A whose symmetric difference has at
most two elements. (The symmetric difference of two sets A and A’ is defined as
the set of elements that are in one of the two sets, but not in both, i.e., the set
(AUA)\ (AN A").)

Solution. Let AAB denote the symmetric difference of two sets A and B, and let
d(A, B) = |AAB| denote the number of elements in AAB. It is easy to see that the
function d satisfies the triangle inequality:

(1) d(A,C) < d(A, B) + d(B,C).

Now, let A be a collection of subsets of {0,1,...,9} with |A] = 100. In the above
terminology, we need to show that if .A has at least 100 elements then it contains two
elements, A and A’ such that d(A, A") < 2.

Given A € A, define a “neighborhood” of A by
UA) ={B c{0,1,...,9}: B#0,d(B,A) < 1};

i.e., U(A) consists all nonempty subsets of {0,1,...,9} whose symmetric difference
with A has at most 1 element. We are going to estimate the sum of the cardinalities
of these “neighborhoods”,

S=) " UA).

AeA



To this end, note that U (A) consists of the following sets: (i) the set A itself, (ii) any
proper nonempty subset of A obtained by removing exactly one element from A, and
(iii) any set obtained by adding to A exactly one element from {0,1,...,9}.

If A has k elements with k > 2, then there are exactly k sets of type type (ii), and
(10 — k) sets of type (iii), so U(A) has exactly 1 + k + (10 — k) = 11 elements. If A
has 1 element, then there is no set of type (ii) (since removing the single element of
A would leave an empty set), so in that case U(.A) has 10 elements. Setting

A1 :={Ac A Al =1}, A=A\ A
we therefore have

2) S = 10| 4| + 11]As]
= 11| A[ — [A4]
> 11-100 — 10 = 1090

by our assumption |A| = 100 and the trivial bound |.A;| < 10, since there are 10 one
element subsets of {0,1,...,9}.

On the other hand, if the sets U(A), A € A, were pairwise disjoint, we would have

(3) S=|Juw

AeA
<H{Bc{0,1,...,9}: B # 0}
=210 _ 1 =1023,

contradicting the lower bound (2). Thus, two of these sets, say U(A) and U(A'),
must have a nonempty intersection. By the definition of the neighborhoods U this
means that there exists a nonempty subset B C {0,1,...,9} such that d(B,A) <1
and d(B, A’) < 1. By the triangle inequality (1), this implies

d(A,A) < d(A,B)+d(B,A)<1+1<2.

which is what we wanted to show.
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