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SECTION 1
49™ NATIONAL MATHEMATICAL OLYMPIAD
THE FINAL ROUND, VASLUI, MARCH 24-30', 1998
A. PROPOSED PROBLEMS
7" Form

7.1. Let n be a positive integer and x,, x,, ..., x, be mteger numbers
such that

xl2 +x22+...+x,zl +n' < (211—1)(xl +x2-(-‘..+x")+n2 .
Show that :
a) X, X,, ..., X, ‘are non-negative integers
b) the number x, + X, + ... + x, + 1 +1 is not a perfect square.
S. Smarandache
7.2. Show that there is no positive integer n such that n + & is a
perfect square for at least n positive integer values of k.
V. Zidaru
7.3. In the exterior of the triangle ABC with m(ZB) > 45°,
m(£C) > 45° one constructs the right isosceles triangles ACM and ABN such
that m(£LCAM) = m(£BAN) = 90° and, in the interior of ABC, the right
1sosceles triangle BCP, with m(£P) = 90°. Show that the triangle MNP is a

right isosceles triangle.
B. Enescu

7.4. Let ABCD be a rectangle and let Ee(BD) such that

1
m(£LDAE) = 15°. Let Fe AB such that EF 1 AB. It is known that EF = EAB
and AD = a. Find the measure of the angle LFAC and the length of the

segment (EC). s Peliorad
. Peligra

8" Form
8.1. Let a be a real number and A= {(x y) e Rx R|x+ y= a},

B= {(x y) e Rx Rlx3 +y3 < a} . Find all values of g such that ANB=C .
R. llie



1997

8.2. Let P(X) = algnglm + 090, X +..4a,X+a, be a polynomial

with real coefficients such that P(0) # P(=1), and let a, b be real numbers.
Lot O(X)= b9 X" +byoy X ™ +..4b, X +b, be the polynomial

with real coefficients obtained by taking b, =aa, +b,V k=0, 1, 2,.., 1998.
Show that if Q(O) = Q(—l) # 0, then the polynomial O has no real roots.

M. Fianu and St. Alexe

8.3.In the right-angled trapezoid ABCD,AB ||CD, m(£A) =90°, AD =

— DC = g and AB = 2a. On the perpendiculars raised in C and D on the plane

containing the trapezoid one considers points E and F (on the same side of
the plane) such that CE = 2a and DF = a.

Find the distance from the point B to the plane (AEF) and the

measure of the angle between the lines AF and BE.
R. Popovici and N. Solomon

: . 8.4. Let ABCD be an arbitrary tetrahedron. The bisectors of the
angles ZBDC, ZCDA and ZADB intersect BC, CA and AB, in the points M,

N, P, respectively.
a) Show that the planes (ADM), (BDN) and (CDP) have a common

line d.
b) Let the points A’e (AD), B’e(BD) and C’e(CD) be such that
(AA") = (BB’) = (CC’) ; show that if G and G’ are the centroids of ABC and

A’B’C’ then the lines GG’ and d are either parallel or identical.
M. Miculita

9" Form
9.1. Find the integer numbers a, b, ¢ such that the function
fR—=>R, f (x) = gx” + bx + ¢ satisfies the equalities :

£(r)=1(r@) = £(r(3)).
C. Mortici and M. Chiritd
9.2. Let ABCD be a cyclic quadrilateral. Prove that
|AC-BD|<|AB-CD|.
When does the equality hold ?
) ‘D. Mihet
9.3. Find the rational roots (if any) of the equation
abx* +(a2 +b2)x+1=0 , (a, be Z).
D. Popescu



9.4. Let A|A,...A, be a regular polygon (n > 4), T be the common
point of AA, and A,_,A, and M be a point in the interior of the triangle A,A,T.
Show that the equality

2' sin®(£AMA,,,)  sin*(2AMA,)

i=1 d(Mr AiAi-)-l) d(M’ AIAM)
holds if and only if M belongs to the circumcircle of the polygon.
D. Branzei
10" Form
10.1. Let n > 2 be an integer and M = {1, 2, ..., n}. For every
1
ke{l,2,...,n—1} we denote by x, =—— Z(minA+maxA) }
i
Show that x,, x,, ..., x,_, are integer numbers, not all divisible by 4.
’ V. Zidaru

10.2. Let @ = 1 be a real number and z be a complex number such

that |z+a|<aand|zZ +a]<a. Showthat|z|< a.
D. Serbdinescu

10.3. Let ABCD be a tetrahedron and A”, B, C’ be arbitrary points on
the edges [DA], [DB], [DC], respectively. One considers the points P.€ [AB],
P,e [BC), P,e [AC] and P/ € [A'B’], P € [B'C’], P, € [A’C’] such that

PA_PA AA’ PB_PBB’ BB PC_PBC _CC

PB PB BB PC PC CC PA PA AA"

Prove that : A

a) the lines AP,, BP,, CP, have a common point P and the lines
A’ P/ ,B’'P;,C P/ have a common point P’ ;

b) Fe _FC ;

PP, P'P/

¢) if A’, B’, C’ are variable points on the edges [DA], [DB], [DC],

then the line PP’ is always parallel to a fixed line.

Mihai Miculita
104.Letn>2and 0 < x, < x, < ... < x, be integer numbers. Let




Show that if s, and s,., are positive integers, then s, is a positive

integer for every k.
D. Mihet

11" Form

11.1. The non-zero matrices Ay, A,,..., A,€M(R), n = 2 have the
following properties : Ag # als, ¥V aeR and AA, =AA, VEk=1 2., n
Show that :

a) det(EAfJ 20;

k=1

b) if de{z Al J,: 0 and A, #aA,, V aeR, then 2 Al =0,.

k=1 k=1
V. Pop
11.2. Let (an)”21 be a sequence of real numbers such that the

n n
sequence X, = Zaf is convergent and the sequence y, = zak is
k=1 k=1

unbounded. Prove that the sequence (b,,)“21 , b, =y, “[}’,.] ([y,] is the integer

part of y,) is divergent.
, B. Enescu

11.3. For the differentiable function f: R — R the inequality
1
)< f’( x +_)
n

holds for every xe R and every ne N”. Prove that f is a continuous function.
M. Piticari

11.4. Let f: R — R be a continuous function such that for every

g, beR, a < b there exists ¢, &€la, b], ;< ¢ with f(cl)z min]f(x),

xe[u.b
f(cz) = m[wlf]f(x) .
Show that the function fis an increasing function.
C. Mortict

12" Form

12.1. Let a, b be positive real numbers such that a + b < 1 and
£: 10, +eo] — [0, +e] be an increasing function, such that for every x 2 0,

6



JO f()di= J: f()de+ J: £(e)dr.

Prove that f (x) =0,Vx=20.

M. Piticari

12.2. a) Let p > 2 be a prime integer number and

6,-fecle -1}
neN

Show that G, is a subgroup of the multiplicative group C".

b) Let H be an infinite subgroup of (C’, - ). Prove that every
subgroup of H (different from H) is finite if and only if there exists a prime
number p such that H =G,

e sk

12.3. A ring A is a called a boolean ring if X = x, for every x€A.

Prove that :
a) One can define a structure of boolean ring on a finite set with
n > 2 elements if and only if n = 2%, with ke N".
b) It is possible to define a structure of boolean ring on the set of the
natural numbers.
M. Andronache, S. Dascdlescu, 1. Savu

12.4. Let k c C be a field (with the standard operations) such that :
a) k has exactly two endomorphisms f and g.

b) f(x)=g(x)=x€Q.

Prove that there exists a square-free positive integer d # 1 such that

k=Q[\/Z].

M. Tena
B. SOLUTIONS
7" Form
7.1. Let n be a positive integer and x;, X,, ..., X, be integer numbers

such that
x24xie x40’ <Qn —1)(x1 +x2+...+x")+n2 :

Show that : a) X, X,, ..., X, aIe non-negative integers

b) the number X, + X, + ... +x, + n+lisnota perfect square.
S. Smarandache

7



Solution. It is easy to see that the given inequality is equivalent to
the following one :
(xl - n)(x] -n+ 1)+ (x2 - n)(x2 —-n+ 1)+. . .+(x“ —n)(x“ -n+ 1) <0.
Since the product of two consecutive integer numbers 1s
nonnegative, we deduce that

(x] ~n)(x] —n+1) = (x2 —n)(xZ —n+1) == (x” —n)(x” -n +l): 0,
SO X, € {n -1 n} , for every k. Thus a) is proven and for b), let us notice that

n(n - l) Sx, +x,+..4x, < n’®, therefore
2 2 2 2
n*<l+n” <l+n+x,+x,+..+x, Sl+n+n-< (n+1) .
It follows that 1+ n+ x, + x,+...+x, cannot be a perfect square.

7.2. Show that there is no positive integer n such that n + & is a

perfect square for at least n positive integer values of k.
V. Zidaru

Solution. Suppose there exists neN" and positive integers

k< k,< ..< k,, such that n+ k? is a perfect square, for every i =1, ..., n.

Let n+k‘.2 =m}, i=1, ..., n. Then m < my < ... < m, and
m +k <m, +k, <...<m, +k,. But n=(m,+k)(m k), i=1 .,nson
has at least n different divisors greater that 1, which is a contradiction (the set
{2, 3, ...,n} has n -1 elements).

7.3. In the exterior of the triangle ABC with m(£B) > 45°,
m(ZC) > 45° one constructs the right isosceles triangles ACM and ABN such
that m(ZLCAM) = m(£LBAN) = 90° and, in the interior of ABC, the right
isosceles triangle BCP, with m(£P) = 90°. Show that the triangle MNP is a

right isosceles triangle.
B. Enescu

Solution. Let Q be the midpoint of BC. Then ABNP ~ ABAQ.

Indeed, % 2P 2 and m(ZNBP) = m(£ABQ) = 45°+m(LABP)

BO
(since from the conditions m(£B) > 45°, m(£LC) > 45° we know that

PeIntABC).
In a similar way we prove that ACMP ~ ACAQ.



It follows that i\’_}: = E = \/5 , SO
AQ  AQ
NP = MP, and

m(£NPB)=m(ZAQB),
m(£MPC) = m(£AQC).

But m(ZAQB)+m(£AQC)=180° and

m(ABPC) = 90°, therefore

m(£ZMPN)=90°,

hence AMPN is a right angled isosceles
triangle.

B o C
7.4. Let ABCD be a rectangle and let Ee(BD) such that
m(£LDAE) = 15°. Let FEAB such that EF 1 AB. It is known that EF = %AB

and AD = a. Find the measure of the angle ZEAC and the length of the
segment (EC).

S. Peligrad

Solution. a) Let GeAB such that AE 1 EG. Clearly,

m(£AGE)=15°. Let B be the midpoint of (AG). We shall prove that B = B,

In the right triangle EAG we have EB’=AB’'=B’'G, so £B’GE = Z/B'EG

1
and m(ZEB’A)=30°. In the right triangle EFB’ we obtain EF =_EB’

1
(since m(ZAB’E)=30°) hence EF = 7 AG.

It follows that AB’ = %AG ,thatis B=B’.

D N C

E \
. A F B=B G
We obtain that AB = BG = EB , hence AAEB is isosceles and




m(ZEAB) = —;—(1 80°~m(LEBA))=175°.

Since m(£CAB)=m(£DBA)=30° it follows that
m(LEAC)=T75°-30°=45°.

b) From AB=ADctg30°= a3 , BE = AB, BF = BE-cos30°= 37“

EF=—= and the trapezoid EFBC we get

2

EC* = BF* +(BC—EF) =(4-3)a’ ,
therefore EC = a\}4—\[3_ .

8" Form
8.1. Let a be a real number and A= {(x y) e Rx Rlx +y= a},

"B= {(x y) eR X Rlx3 +y3 < a} _Find all values of a such that ANB=4.

R. Ilie
Solution. Note that ANB = if and only if for every x, ye R, the

equality x+y=a implies X+ y3 > a, which is equivalent to :
VxeR x* +(a—x)3 >a

and, furthermore, to

2
VxeR, 3a (x—£)+a 4 >0
2 12

It follows that @ = O verifies the condition and a < 0 obviously

a

doesn’t (take x = 2 +1).

. For a> 0 we obtain a* — 4 2 0, hence a 2 2.
In conclusion, a€ {0}U[2, +oo).
8.2. Let P(X)= a0 X" + Qo X" +..+a, X +a, be a polynomial

with real coefficients such that P(0) # P(-1), and let a, b be real numbers.

10



Let Q(X) = byg0g X'™ + gy X' +..+b, X + b, be the polynomial
with real coefficients obtained by taking b, =aa, +b, Yk=0,1,2,.. 1998.
Show that if Q(O) = Q(—l) # 0, then the polynomial Q has no real roots.
| M. Fianu and St. Alexe
Solution. A short computation leads to
0(X)=aP(X)+b(X"* + X" +...+1).

From Q(0) =Q(—1) , we get a(P(O)—P(—l))zO , hence a = 0, so
0(X) = (X" + X" +.. +1), with b 0 (since Q(0)#0).

Now, clearly Q has no positive roots. For x < 1, we have

A x4 1= (x4 1)+ X (x4 D rx(x+ 1)+ 121

and for xe (—1, 0),
X% 4 x4 +1= 1" e x" (x+ DAx (x +1)+x+1>0.
" We conclude that Q has no real roots.

8.3. In the right-angled trapezoid ABCD, AB ||CD, m(£A) = 90°,
AD = DC = a and AB = 2a. On the perpendiculars raised in C and D on the
plane containing the trapezoid one considers points E and F (on the same side
of the plane) such that CE = 2ag and DF = a.
Find the distance from the point B to the plane (AEF) and the
measure of the angle between the lines AF and BE.
R. Popovici and N. Solomon
Solution. Let M be the intersection point of EF and CD. In the

1 1
triangle MEC, FD || EC and FD=5EC hence MD:EMC= DC . Clearly

MA || BC, so the distance from B to (AEF) is equal to the distance from C to
(AEF).

The last distance can be computed expressing in two ways the
volume of the pyramid AMCE :

s[amc]-EC _ S[AME]-x
3 3

11



where x is the distance from C to (AEF). After a short computation, we obtain

2a\/§

3

X =

. EMN
oV

A B

Let N be the reflection of F in CE. Then FN = 2a,
BN =AF = a«/é-, EN = a«/i and BE = a\/g. It follows
mZ(AF, BE)=m«(BN, BE)=30° .

8.4. Let ABCD be an arbitrary tetrahedron. The bisectors of the

angles ZBDC, ZCDA and ZADB intersect BC, CA and AB, in the points M,

N, P, respectively.
- a) Show that the planes (ADM), (BDN) and (CDP) have a common

line d.

b) Let the points A’e (AD), B’e(BD) and C’e(CD) be such that
(AA") = (BB') = (CC’) ; show that if G and G’ are the centroids of ABC and

A’B’C’ then the lines GG’ and d are either parallel or identical.
M. Miculita

Solution. a) Since DM is the blsector of ZBDC we have

BM _ BD CN _CD AP _DA BM CN AP _
— . Similarly : , whence ————-——
CM (D’ AN AD' PB DB’ CM AN BP

and, from Ceva’s theorem, it follows that AM, BN and CP have a common
point Q, therefore
(ADM)(BDN)N(CDP)=DQ .
b) Let R, R’ be the midpoints of BC and B'C’. Consider the reflection
of B’ in R and denote it by S. Then BSCB’ is a parallelogram, the triangle
CC’S is isosceles (CS = CC), C'S || DM

12
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(m(£CC’S)= %(1800—171(40(:5)) = %m(ABDC) =m(£CDM))

and C’'S || RR’, therefore RR’ || DM or RR’ coincides with DM.
~ Since GeAR and GA = 2GR, G'eA’'R’, G’'A’ = 2G’R’ it follows
GG’ || (ADM) (or GG'c(ADM)).

Analogously, GG’ || (BDN) or GG'<(BDN).
The conclusion is now obvious.

9" Form

9.1. Find the integer numbers g, b, ¢ such that the function

f:R - R, f(x)=ax®+bx+c satisfies the equalities :
q

F(F) = £(£(2))=1((3)-
C. Mortici and M. Chiritd
Solution. Note that

FF) -1 (F0) =af* (x) + bf (x) + e —af* (¥) - bf (¥) - =
= (F(x) = rO)af (x) + af (y)+ )

since f(£(2))- #( 7(1))=0 and £(f(3))- £(f(2))=0, we obtain
(3a+b)(5a* +3ab +2ac+b)=0
(5a+b)(13a> +Sab +2ac +b)=0.

13



Now, if 3a+b=5a+b=0, it follows a=b =0 and cc Z.

Suppose 3a+b=0 and 134 +5ab+2ac+b=0. Since b = 3a,
we get 2(c — a) = 3 which is impossible. Analogously, the equalities
Sa+b=0 and Sa® +3ab+2ac+b=0 lead to a contradiction.

From 5a>+3ab+2ac+b=13a" +5ab+2ac+b=0, it follows
84% +2ab =0, that is b = —4a (clearly a = 0 implies b =0 and ceZ) and
2¢=Ta+4 . Obviously a must be even, say a = 2k (ke Z) and we obtain

b=-8k,c =T7k+2.

9.2. Let ABCD be a cyclic quadrilateral. Prove that

|AC-BD|<|AB-CD|.

When does the equality hold ?
D. Mihet

Solution. Let E and F be the midpoints of the diagonals AC and BD.
In every quadrilateral the following relation holds :
AC? + BD® +4EF> = AB> + BC* + CD* + DA”, (Euler).
Since ABCD is a cyclic quadrilateral, we have Ptolemeus identity
AB-CD+AD-BC=AC-BD
hence
2 ) 2 2
(AC—BD)’ +4EF* =(AB-CD) +(AD-BC)".
Let us prove now that 4EF > > (AD - BC)2 , obtaining thus the stated

inequality. Let M be the midpoint of. AB. In the triangle MEF we have

MF = -;—AD , ME-= -;BC and, from the triangle’s inequality,

2

EF > |ME— MF|, hence 2EF >|BC—AD| and 4EF* >(AD - BC)

The equality holds if and only if the points M, E, F are collinear,
which happens if and only if AB || CD that is ABCD is either an isosceles

trapezoid or a rectangle.
9.3. Find the rational roots (if any) of the equation

abx? +(a7' +b2)x+1=0 , (a, bel).
D. Popescu
Solution. Suppose ab # 0. Then the equation has the discriminant

i 2 2 . . - .
A= (a“ +b‘) — 4ab . Obviously, the equation has rational roots if and only

if A is a perfect square.

14



If a=b, A=4a’ (a2 —1), which is a square only for a* = 1. We

obtain thus a = b = 1 or a = b = —1; in both cases the equation has the two
roots equal to —-1. .
If a # b, observe that for ab < 0,
(a2 +b2)_ < A<(a2 +b’ +1)

2

and for ab > 0,
(a*+0* -1) <a<(a®+b7),
so A cannot be a square of an integer number.
Finally, if a = b =0, the equation has no roots, and if a = 0 and b#0

. . . 1
(respectivelly b = 0 and a # 0) the equation has the rational root x =——;

(respectivelly x = ‘"lT ).
4

9.4. Let A|A,...A, be a regular polygon (n > 4), T be the common
point of AA, and A, A, and M be a point in the interior of the triangle A,A,T.
Show that the equality

it sin’ (AA.' MA,,, ) sin’ (ZAI MA, )

i=l d(M’ A'AiH) - d(M’ Al An)

1

holds if and only if M belongs to the circumcircle of the polygon.
D. Brdnzei

Solution. Let us consider the inversion of center M and radius & > 0.
The points A,, As,..., A, are transformed into the points B, B,,..., B,, which
are collinear if and only if M belongs to the circumcircle of the polygon (and
in that case, B,, Bs,..., B, are situated in this order on the segment [B,B,]).
If we denote by a the length of the polygon’s side, we have

sin® (£AMA, ) AA,sin® (ZA,MA,, ) asin(24,M4,,)
amaa,) — 2fama,] 0 MAMAL

&

_ aMB; - MB,,, sin(£A,MA.,,,) _2aS(B,MB,,,)
"~ (MA,-MB))(MA,,,-MB,,,) K
where S[XYZ] denotes the area of the triangle XYZ. Analogously,

B

15



1™n
d(M, AA,) K

Thus, the equality enounced in the problem is equivalent to :

n—=l

ES[MBIB,'+1]: S[MBan]’

i=l

sin*(£AMA,) 2aS[MB,B,]

which holds if and only if the points By, B,,..., B, are collinear (in this order).
The conclusion is now obvious.

10" Form
10.1. Let n > 2 be an integer and M = {1, 2, ..., n}. For every
1
ke (1,2, ...,n—1} we denote by x, =——-1—Z(minA+maxA).

AcM
|Al=k

Show that x,, X,, ..., X,_; are integer numbers, not all divisible by 4.
V. Zidaru

Solution. Let us notice that there are ( ]) subsets of M having k

elements and the smallest element being j. It follows

Z A1 n—1 5 n—2 (n— k1) k-1
KCMmzn =1 +2- k-1 +..+n—-k+1)- 1)
|al=k

. n
Analogously, there are (k J) subsets of M having k& elements, the

greatest one being j, so

ZmaxA=n(::i]+(n—1)(z:12]+...+k-(];:3 .

;f_cM
| A=k

Thus, Y (min A+max A)=(n+ 1){(2:1}(::3}{:1” .

AcM
|Z|=k

16



Writi n—1 n n—1 n—2 n-1 n—2
riing now 117k — PR L P — 1 and
n
s0 on, we obtain x, :[k) eN.

If all x, would be divisible by 4, so would be their sum. But
=2" -2 which is not divisible by 4 if n > 2.

10.2. Let @ 2 1 be a real number and z be a complex number such
that |z+a|<aand|z +a|<a Show that|z|< a.

X, +x, . 4x

n—|

D. Serbdnescu
Solution. Since |z + a| < a, we obtain |z + af < &, or

(z+a)(z+ a) <a’ thatis |z|2 +a(z+7)<0. Analogously,
|z|4 +a(z2 +ZZ>SO .
Let|zl=rand Z+z=¢.Then > =z> +Z* 4+ 2r* and we obtain :

r*+ar<0 and r* +a(12 —2r2)50.

2

. 4
reo. r L
From t<-— it follows #> >——-. Introducing in the.second
a a”

inequality we have.

4
) r ] 1 2
0=2r*+ar® 2ar* 2r*+——=2ar’ :r4(1+——)—2ar" .
a a

This implies OZrz(l—l-l)—Za and

a F-N
. 2a° .
r S——I. Finally, we observe that M
+

2a° ” L. ) *

<a” (this is equivalent to P
a+1 ~
2a° Sa3+a2, that is a*<a°, A O
obvious since a = 1). It follows r < a,
as requested. N

Second solution. In the complex plane let A(—a) and the discs
D, =2(0,a), D=2(Aa).

17



If the point P(z) lies in D — Dy then PeintZMON, whence
2n 4rn ) 4 2
22 = | and argz’ €| —2n |U O——}

argze(s 3) E (3 H 3

*<a4. On the other hand

It follows z>e€DND,, so |z7{=}|z

zeD- D, = |z >aand |z]* > @*, which is impossible because
a>1=a<a.
10.3. Let ABCD be a tetrahedron and A’, B, C’ be arbitrary points on

the edges [DA], [DB], [DC], respectively.
One considers the points P.e[AB], P, e [BCl, P, € [AC] and
P/ e [AB],P e [B'C’], P, € [A’C’] such that
PA PA _AA" PB _ P/B° BB’ PC _ P C’ _CC’
PB PB BB PC PFC CC’'PA P/A" AA"
Prove that :
a) the lines AP,, BP,, CP, have a common point P and the lines
A’ P!, B’ P/, C’ P! bave a common point P’
c PC
b)f‘-=——,—,;
PP, PP,
¢) if A’, B/, C’ are variable points on the edges [DA], [DB], [DC],
then the line PP’ is always parallel to a fixed line.

Mihai Miculita
- Solution. 1) The conclusion easly follows from

PA PB BC_AA" BB CC’

= . =1 and
PB PC PA BB’ CC’ AA’

P/A’ PB P)C’_ AA’ BB CC’ _ 1
P'B’ P/C’ PJA’ BB CC' AA’ B
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11) Using van Aubels relation one gets
PC _PC N PC CC’ N cc’
PP. PA PB BB AA

D

PC’ _ cc’ . cc’
P'P; AA" BB’

iii) Using the parallelograms AA’P/E and BB’P/F we get the
collinear points E, P. and F and, in the triangle
PE PE
PF PF’

line P’P. bisects the angle EP/F and therefore is

parallel to the bisector DD, of angle LADB.
A - /B On the other hand it is a well known fact
< F that (i) implies the existence of the parallel planes
o, B, ysuch that PP ca, PP’ 3 and CC < y; moreover this planes are

and

PEF, This shows that the straight

uniqueiy determined because P/P, and CC' are not parallel.
Since P,P/\DD, it follows that y = (CDDL_) and therefore
PP || (CDD,).
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In the same way PP’ ||(ADD,), so PP’ is parallel to the common

straight line of the planes (ADD,) and (CDD,).
10.4.1etn>2and 0 <x, <x, < ... <x, be integer numbers. Let

1 .
s,= 2, k=12,...n.
Ac{xl,xz,...,.r"} H a
Az acA
Show that if s, and s,., are positive integers, then s, is a positive

integer for every k.
. D. Mihet

Solution. It is easy to check that

* ) X,
1 1 1
and S :(1—’_—_](14————)--(1"'_—‘]—1 = Xn S, ~1= s, — S, -1.
X1 X2 X - X, +1 X, +1

Since s"S(l+—i—)(1+%}..{l+l)=n+l and x, +12n+1 it

n

follows that x, = k for every k= ﬁ , whence

1 1 —
Sy :(l+—](1+——)...(l+L)—1=k forevery k=1n.
X, X, Xy :

11" Form

11.1. The non-zero matrices Ay, A,,..., A,€M(R), n 2 2 have the
following properties : A, # al,, V aeR and AA, = AA,, Vk=1,2,...,n
Show that :

a) det(ZAf) =0;

k=1

b) if det(ZAf):O and A, # dA,, V aeR, then EAAZ =0,.

k=1 k=l
V. Pop
Solution. From the condition A,-A, =A4,-4,, k=12,..,n, we

deduce (via direct computation) the existence of constants ¢, , such that

20



A =a, Ag+B -1, k=12,...n.

Ifall o, =0, then ZAZ = (Z ﬁf]-lz , whence
k=1

der[iAiHiﬁf}

It a:Zafio,then

k=1

2

20.

\

XAZT =(205]A5 +2[2ak B ]Ao +(Zﬂkz le = P(Ao) ,

k=] k=1 k=1 k=1

where -P(X) = (2 o JX2 + Z(Xak B, ]X+(:’2,Bf] is a polynomiaﬂ whose
k=1

k=1 k=1

discriminant

s={Soun | - 3a}(Sn)
k=1 k=l k=1
is less or equal to zero (from Cauchy-Schwarz inequality).
So P(z)=a-(z-z )z -2,) with z,€ C and e R, therefore
P(Ag)= 0 (Ag — 201, )(Ag = Zo12) -

2
>0, thus proving a).

It follows that det P(AO) = oezldet(Ao - 2012)
For b) let us notice that from A.¢ {a-A, | aeR} it follows that a# 0
and A < 0, so z,eC\R. Since at least one of det(Ao - 2.012) and

det(AO —2012) must be zero, so both are (since they are conjugate complex

s a, b . .
numbers). Taking A, :( 0 do) , the condition det(AO -z, ) =0 1is
Co o )

equivalent to
2 —z(a,+dy)+agdy —beco =0, (¥)
whence
P(4y) = oAy — 201, )(Ag ~Zo1, ) = 0 A3 = (2+7,)40 + ol )=

= (@ + dy ) Ao — (aody = boCo )12 = (2+7,)40 + 22,1, ) =0,
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(because z, and 7, are the roots of equation (*)).

11.2. Let (a,,) be a sequence of real numbers such that the

n1

n

n -
2 . .
sequence X, = Zak is convergent and the sequence y, = Xak 1S
k=) k=1

unbounded. Prove that the sequence (bn)m, b, =y, — [y“] ([y.] is the integer

part of y,) is divergent.

B. Enescu
Solution. Let x = lim x, . We have
J—yoa
lim a’ :lim(x - X ~1)=)c—x=0 whence lima, =0.
n—ee " n—yoeo " " n—ye "
Let us assume (b”)”>l is convergent and let b=Ilimb,. Since
- n—yoc

lim(b,, —b,)=b-b=0 and b, =y, - [v.] we deduce
Hn—yo0

tim (3,0 =3, [y )+ 1)) =0
BUt Y,y =Yy = @,y a0 ,ll’_’fi a,,, =0.It follows that

lim([y,..]-[».])=0.

A sequence of integer numbers that is convergent is (excluding some
initial terms) constant, therefore there exists nyeN such that for every

nzng, [y,,+, ] = [y“] . This clearly contradicts the fact that (y,) is unbounded.

In conclusion, (b“) ., must be divergent.

nz

11.3. For the differentiable function f: R — R the inequality
1
f’(x) < f'(x +—)
n

holds for every xe R and every ne N”. Prove that f is a continuous function.
M. Piticari

Solution. For every ne N, let us consider the function f,'R - R,

/. (X)="‘[f(X+%)—f(X)]-

Obviously f, is a differentiable function for every ne N" and
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f£ilx)= n-[f’[ﬂ%)— f’(x)] >0,

for evéry xeR. It follows that f, is an increasing function for every ne N".
Now let x,, x.€R, x;< x,. We have f, (x,) <f, (x.), VneN, that is :

fnoDste) s ey)-16)

B 1

1
n n

Letting n—oo, we obtain f'(x;) < f ’(x,) that is f* is an increasing
function, and since f’ has the intermediate values property (theorem of
Darboux) we deduce that f* is continuous.

114. Let f: R — R be a continuous function such that for every

a, beR, a < b there exists. ¢;, ¢:€lq, bl, ¢, ¢, with f(cl): min]f(x),

,xe[ a,b

f(cz)z max]f(x)‘

x€la,b’
Show that the function fis an increasing function.
C. Mortici
Solution. Let us assume that f is not increasing. Thus we can find
a < b-such that fla) > fib). Then the set A = {xela, b] | flx) = &)} is
non-empty and bounded. Let o = supA ; we deduce that < b and that for

_ , 1 .
every ne N”, we can find u,€A such that & —— <u, <o, hence limu, =0 .
n 1>

Since f is continuous, ,l,l_l;ll. f(u”)z f(oc). But u,eA implies f(u“) = f(a),
hence f (a) =f (a) , and clearly ot < b.

We state that f (x) <f (a), Vx e (a, b]. Indeed, if there exists
ze (o, b] such that f(z)Z f(a), from the continuity of f we deduce the
existence of z’€ [z, b) such that f(z’) = f(a) Jeading thus to 7€ A and > =

= sup A, which is a contradiction.
Therefore f(x) < f(a), Vxe (oc, b], and this contradicts the

property of the function f for the interval [, b].
This shows that the initial supposition is false.
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12" Form

12.1. Let a, b be positive real numbers such that a + b < 1 and
£: [0, +o0] = [0, +<<] be an increasing function, such that for every x 2 0,

JO f (I)a’z — .[0 f([)dt + j: f(t)dz )

Prove that f(x) =0, Vx=>0.

M. Piticari
Solution. We have

J oax f)dt = aj 0 flay)dy and J 0 fodr = b-[ :f<by)dy ’

whence

T

JO [f(t) —af (at)— bf(bt)]a’t =0, for every x.
" Let h : [0,0) = R, h(t)=f(r)-af(at)—bf(bt). Since f is an
increasing function and a, be (0,1), we obtain f(ar) < f(z), f(b2)< f(r) so
| h(r) > f(t)(l —a-— b) , forevery t 2 0.

" Finally, let fye [0,0) and x > t,. We have :

0= IO n(o)ds > JO FO)1-a-b)di=0-a— b)joo F()dr +

+(l—a- b).[':f(t)dt = (1—a—b)(x—to)f(to), whence f(to) S.O .

Since f(t) >0, Vt20 we deduce f=0.

12.2. a) Let p > 2 be a prime integer number and

G, =U{zeC et :1}.

neN
Show that G, is a subgroup of the multiplicative group C.

~ b) Let H be an infinite subgroup of (C", - ). Prove that every
subgroup of H (different from H) is finite if and only if there exists a prime
number p such that H=G,,.

Coskekeske
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Solution. For every meN", let us denote by U, = {ze C | 2" =1}. Itis
known that U, is the unique subgroup of (C’, -) having m elements.

a) Letx,ye G, = UU:»"’ . Then one can find n, re N” such that

.
meN

X € Up,, s yeUP, and, putting m:max(n, r), it follows that x,ye Up,,,,

hence xy™' € U, c G, , thatis G, a subgroup of (C", ).

P’

b) Let p be a prime number and H = G,. We shall prove that every
subgroup X of H, (X # H) is finite. It is clear that for a subgroup X of H there
exists for every neN a number o(n)eN such that X ﬂUp,, = UP,,(,,> , with
a(n)<n (XNU ,» is a finite subgroup of C, therefore X(\U , =U,,, where

m is a divisor of p"). .
If the set A = { a(n)l neN} is unbounded then for every ne N there

exists meN with n < Oc(m), whence Up,, C Up‘,‘,,,, = XﬂUp,,, = X . It follows

that H = UUP,, < X, which is a contradiction. Therefore A is bounded above
neN

and, putting m = max(A), we deduce X =U ..

Conversely, suppose that H is an infinite subgroup of (C”, -) having
only finite subgroups. Firstly we remark that every ge H must have a finite

order (otherwise X :{gl" ln eZ} would be an infinite subgroup of H and

g2 X). For every ge H let P(g) be the set of the prime divisors of ord(g) and

letP= | JP(s).

geH

We will prove that P = {p}, whence H =G » (because H 1s infinite,
H must contain all Up,, ). Indeed, if | | = 2 then there are possible two cases.
Case 1: Pis infinite. In this case let pe P and
X= {g € H'ordg is not divisible by p}.

Then X # H and X is an infinite subgroup of H, which is a
contradiction.



Case 2 - P is finite. In this case there exists pe P such that the set

.{OC € N‘Iy” divides ord(g)for some g € H} is infinite (otherwise H would be

finite). But this would imply G,c H and G, # H which is also a contradiction.
12.3. A ring A is a called a boolean ring if x* = x, for every x€A.

Prove that :
a) One can define a structure of boolean ring on a finite set with

n > 2 elements if and only if n = 2% with ke N
b) It is possible to define a structure of boolean ring on the set of the

natural numbers.
M. Andronache, S. Déascalescu, 1. Savu

" Solution. a) “=" In a boolean ring A, X + X = 0, for every xeA.
We will prove using induction that the number n of the elements of the finite
group (A, +) must be of the form 2%, keN. If n =1 then n = 2°. Let now

Az{xl,xz,...,x”} and H be a subgroup of A such that H # A and

|H = max{|G| | G = subgroup of* A, G # A}. Let XeA\H. Then
H =H U(H +X) is a subgroup of A which includes (strictly) H, therefore

H, = A. Therefore |A| = |H,| =2|H| and, using the induction hypothesis

(|H] = 2% we get |A| = 2,
«e For n = 2 we can take A =Z,X...xZ, (k times) with the ring

structure of direct product of rings.

'b) Let B={X c N | X finite}, C = {X ¢ N | N\ X finite} and
A=BUC. It is easy to check that (4, AN) is a boolean ring (here

XAY =(X\Y)U(X\Y)). Let p, <py << Py < be the positive prime
qumbers and £ : A — N, f(@)=0, f(N)=1, f(x)=2]]r. i

aeX

XeB X#< and f(Y)=2 Hpa _1if YeC, Y # N. Clearly f is injective

aeN\Y
and if the range of f is {no,nl,..., n.k,...} then the function g : A — N,
g(X) =k if f(X) =n, is bijective. The required structure of boolean ring is

now given by the operations

m®n= g(g_l (m)Ag_‘ (n)) , m®n= g(g" (m)ﬂg“' (n)) )
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12.4. Let k c C be a field (with the standard operations) such that :
a) k has exactly two endomorphisms fand g.

b) f(x)=g(x)=x€Q.
Prove that there exists a square-free positive integer d # 1 such that
k=Q[Ja|.
M. Tena

Solutior. It is well known that Q < K and Q has only one

endomorphism, therefore Q # K. Let g = 14 and f be the two endomorphisms
of K. Since f is injective and fof is an endomorphism it follows that

fof=1, (fof =f wouldlead to =1
Let xe K\ Q and a:x+f(x), bzxf(x).Then
f(a)=f(x)+x=a~g(a) and f(b)=xf(x)=b=g(b),
so a, be Q. Thus x and f(x) are the roots of the equation X —ax+b=0,

therefore x:m+n\/_c? for m, neQ and some squarefree integer d, # 1,

whence 4/d, €K .

Taking into account that f : (\/E ) =f ((\/E )2) =f ((l_‘_) =d_ and

f(ﬁ)iﬁ we see that f(\/—cZ):—\/I

. In the same way, for y € K\ Q we can find a squarefree integer d,

such that ye Q(\/Z) and f(‘/Z) = ~\/Ey- . This leads to
)= (AT AT T
which implies \/d— \/;'}_, € Q, therefore d, =d, .
Thus the squarefree integer d, associated to every X € K\ Q is the

same integer d, whence K < Q («[c? ) .

The inclusion Q («[E ) c K is obvious.
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SECTION 2

SELECTION EXAMINATIONS FOR THE 39" 1. M.O.
A. PROPOSED PROBLEMS
Al. First Round, Vasiui, 1998, March 27"

Problem 1. A word of length » is an ordered sequence x; x; ... X,
where x; is a letter of the alphabet {a, b, c}. Denote by A, the set of words of
length n which do not contain any block xx;,, i = 1,2, ..., n =1, of the form
aa or bb and by B, the set of words of length n in which none of the
Subsequences X; Xy, Xus, i =1, 2, ...,n =2, contains all the letters a, b, c.

Prove that | B,.; | =3| A, |

Vasile Pop

Problem 2. The volume of a parallelepiped is 216 cm® and its total

area is 216 cm®. Prove that the parallelepiped is a cube.
Bogdan Enescu

Problem 3. Let m, m = 2, be an integer number. Find the smallest
positive integer n, n > m, such that for any partition with two classes of the
set {m, m+1, ..., n} at least one of these classes contains three numbers a, b,

¢ (not necessarly different) such that a’ =c.
Ciprian Manolescu

Problem 4. Consider in the plane a finite set of segments such that
the sum of their lengths is less than \[2— . Prove that there exists an infinite
unit square grid covering the plane such that the lines defining the grid do not

intersect any of the segments.
Vasile Pop

A2. Second Round, Bucharest, 1998, April 25"

Problem 5. We are given an isosceles triangle ABC such that BC=a
and AB = AC = b. The variable points M and N are given by the conditions:
Me (AC), Ne (AB) and '

a*-AM-AN =b*>-BN-CM .
The straight lines BM and CN intersect in P. Find the locus of the

variable point P.
Dan Branzei
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Problem 6. All the vertices of a convex pentagon have both

. . . 5
coordinates integer numbers.Prove that the area of the pentagon is at least 5

Bogdan Enescu
Problem 7. Find all positive integers x, n such that x" +2"+1 is a

divisor of x"*' +2""" +1.
Laurentiu Panaitopol

A3. Third Round, Bucharest, 1998, May 1*

Problem 8. Let n = 2 be an integer. Show that there exists a subset
Ac{l1,2,...,n}suchthat:

(i) The number of elements of A is at most 2[& ] +1;

(i1) {Ix—yi |x,yeA and x ;ty}:{l,Z,...,n—_l}.
Radu Todor
Problem 9. An infinite arithmetic progression whose terms are
positive integers contains the square of an integer and the cube of an integer.

Show that it contains the sixth power of an integer. :
(Proposed Problem for the 38" I.M.O., 1997)

Problem 10. Show that for any positive integer n the polynomial
n e p
o o o
f(X)z(X2 +X) +1 cannot be decomposed as a product of two integer

non-constant polynomials. .
Marius Cavachi

Ad. Fourth Round, Bucharest, 1998, May 22

Problem 11. Let ABC be an equilateral triangle and n = 2 be an
integer. Denote by A the set of n —1 straight lines which are parallel to BC
and divide the surface [ABC] into n polygons having the same area and
denote by P the set of n —1 straight lines parallel to BC which divide the
surface [ABC] into n polygons having the same perimeter.

Prove that the intersection 4 N P is empty.

Laurentiu Panaitopol
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- Problem 12. Let n = 3 be a prime number and a, < a, <...< g, be

integers. Prove that a,, a,,..., @, 1s an arithmetic progression if and only if

there exists a partition of the set N = {0, 1, 2, ...} with classes A,, A,..., A,

such that a, + A, =a, + A, =...=a, + A, (where g, + A, = {ai +x|x € A,.} ).
Vasile Pop

Problem 13. Let n be a positive integer and P, be the set of the
integer polynomials of the form a, +a,X+.+a, X", where |a| < 2 for

i=0, 1, ..., n. Find, for each positive integer k, the number of elements of the

set A, (0 ={r@lren).

Marian Andronache

AS5. Fifth Round, Bucharest, 1998, May 23"

Problem 14. Find all the functions u : R — R which have the
property : there exists a strictly monotonic function f: R — Rsuch that

f(x +y) = f(x)u(y) +f(y) for every x, ye R.
: Vasile Pop
Problem 15. Find all the positive integers k which fulfil the
following condition : if f is an integer polynomial such that 0 < fla) £ k for
every ac {0, 1, 2,..., k+1} then f(0)= f(1)= £(2)=..= f(k+1).
(Proposed problem for the 38" I.M.O.)
Problem 16. The lateral surface of a cylinder of revolution is
divided by n —1 planes parallel to the base and m parallel generators into mn
cases (n = 1, m = 3). Two cases will be called neighbouring cases if they have
a common side. Prove that there is possible to write a real number in each
case such that each number is equal to the sum of the numbers of the
neighbouring cases and not all the numbers are zero if and only if there exists
integers k, I such that (n+1) does not divide k and

2w km 1
coS——+ COS =—.
m n+l 2

Ciprian Manolescu
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B. SOLUTIONS

Problem 1. A word of length » is an ordered sequence x, x; ... x,,
where x; is a letter of the alphabet {a, b, c}. Denote by A, the set of words of

length » which do not contain any block xx.,, i =1, 2, ..., n -1, of the form
aa or bb and by B, the set of words of length n in which none of the

subsequences Xx; X, X0, i = 1, 2, ..., n =2, contains all the letters a, b, c.
Prove that| B, | =3| A, .
Vasile Pop

and b, = lB” I

satisfy the same linear recurrence relation and b, =3a,, b; =3a, (this easly

Solution. We will prove that the numbers a, =|A”

leads to the conclusion).
In order to do this denote by A, the set of the words from A, which

end byla or b and denolte by A=A, - A].
Clearly [A],,|=|A;|+2|A/ and |4,
Al =2(lA1]+]A7) Haz] =2|4,|+|A

au—H = 2au ta

Al A,’,'lzlAnl therefore

n

= =|All+

-+ , whence

n~1l
for every n = 2.

n-1

Denote now (for n = 2) by B/ the set of the words from B, which
end by two different letters and denote by B! =B, — B, .

We get |BY,,|=|B.|+2|B/| and |B.,|=|B.|+|B;]=]B,]. so
|B...|=2(B;|+|B]) 4B} =2|B,|+|B,.,| and
b, =2b,+b,_, foreverynz=3.

The proof is ended by noticing thata, =3, a, =7, b, =9 and b; =21.
Problem 2. The volume of a parallelepiped is 216 cm® and its total

area is 216 cm’. Prove that the parallelepiped is a cube.
Bogdan Enescu

Dl Cl
. Solution. Let a = AB, b = AA’, A
¢ =AD, S, =S[ABB’A’}, S,=S[ABCD} A’
S, = S[ADD'A’] and V be the volume of
the parallelepiped. We .will prove that
V* < §,5,5, and the equality holds if and C
only if the parallelepiped is rectangular. h N) M BV
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Let A’M L (ABCD) and A’'N L AB.
S

We get V=A'M-S,<A'N-S, =-L1.5,. In the same way
a

ZSE:_ 2
V< 515, V< Sads therefore V* < -SL—LEL Since
b c : abc

V=3_,-A'M < ac-AA" = abc,
it follows V*<abcV®<S2S2S7, so V?<S§,5,S, and the equality is
equivalent to ABLADLAA'LAB.

3
S, +S, .,
On the other hand §,S,S, s(—‘i—3—ts—“] =36" =216 =V’

whence S, =S, = §; and the rectangular parallelepiped is a cube.

Problem 3. Let m, m = 2, be an integer number. Find the smallest
positive integer n, n > m, such that for any partition with two classes of the
set {m, m+1, ..., n} at least one of these classes contains three numbers a, b,

¢ (not necessarly different) such that a® =c.
Ciprian Manolescu

Solution. We will firstly try to establish an upper bound for the
searchen n. Suppose that (4, B) is a partition with two classes of the set

{m, m +1,..., n} such that the equation x’ =z has no solution neither in A no
in B and m € A. Then m,=m" € B (otherwise we have the solution

3 m" m+1 .
(m,m,m"’)eA‘ ), mzz(m”‘) =m""" €A (otherwise we have the

. el 3 1
solution (m'",m’",m"‘ )EB y and m, =m""

belong to A). Consider now the number
mm*? m ' m™* "
M=m = (m ) = (m ) .

If Me B then we have the solution (m™, m"*, M) e B’ and if MeA

m+l

€ B (because m and m"

. e 1 R )
then we have the solution (m .m M ) e A . This proves that if n 2 M then,
for every partition of the set {m, m +1,..., n} with two classes, the equation
x’ =z has at least a solution in one off the classes, so the searchen n must be

at most M.
We will prove now that if n < M —1 then it is possible to find a

partition with two classes (4, B) of the set {m, m +1,..., n} such that the
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equation x” =z has no solution neither in A no in B. In order to do this we
remark that we can study only the case n =M —1.
Consider A = {m m+1,...,m — I}U{mz, my,+1,.., M~ 1} and

B= {ml, my, +1,...,m, —1} .
If x, ye B then x* >m™ =m,, whence x’ ¢ B .

If x2m,and x, y € A then x” >2m," =M therefore x” ¢ A.

my

If x, y<m and x, yeA then x’ >2m" =m, and x" <m™ =m,,
so xX’¢ A.

If x <my;,y2m, and x, ye A then x* 2m™ > M implies X’¢A.

Problem 4. Consider in the plane a finite set of segments such that
the sum of their lengths is less than «/5 . Prove that there exists an infinite
unit square grid covering the plane such that the lines defining the grid do not
intersect any of the segments. :

Vasile Pop
Solution. Take an arbitrary rectangular system of coordinates xOy

and denote by ¢; the angle between the segment S; and Ox.
The orthogonal projections of the segments onto Ox and Oy have

total length p, :ZZ(Si)'cosa,, and p, =21(Si)Isina,.l respectively.
If we rotate xOy through an angle ¢ these length  become

p. ()= ZZ(S, )‘cos(ai + t)l and p),(t) = ZZ(S,. )Lrin(oc,. + t)l . Since

p.(0)=p, (—725] and p-*‘(%) =p,(0), the equation p_(¢)=: p (¢) has at least

a solution ¢, € [05] . Taking into account that

D, (lo ) +p, (to ) = ZZ(Sl. )(’cos(a,. + to) + lsin(ai +1, )!) < \/EZZ(S,) <?2

we get p, (to) = py(to) <l.
Denote now by x'Oy’ the rectangular system of coordinates obtained
from xOy by a rotation through angle f,. The conditions p, (to) <1 and

p, (to) <1 lead to the existence of two points x; € [O; 1), Yo € [0;1) such that



{x’};t x, and {y’};tyo for every point M(x’, y') belonging to any of the

segments S;.

The infinite unit square grid with origin (x(') ,y(',) and lines parallel
to Ox’ and Oy’ clearly satisfies the required conditions.

Problem 5. We are given an isosceles triangle ABC such that BC =a
and AB = AC = b. The variable points M and N are given by the conditions :
Me(AC), Ne (AB) and

a*-AM-AN=b"-BN-CM .

The straight lines BM and CN intersect in P. Find the locus of the
variable point P.

Dan Bréanzei

First solution. Consider D on the half-line (CB such that AD = CD.

5

From the similar triangles ABC and DAC we get CD=-—_. The common
a

point Q of the lines AD and CN satisfies

QA CD NB _

QoD CB NA

2
therefore —ézﬁz—-i\@— Mc and further
oD b° NB MA

ABMC ~ ACQA. This proves that

ZMBC=ZNCA, whence mZ(BPC)=

=180°~m(B) .This shows that P describes

the arcBC of the circle which is tangent in B and C to AB and AC
respectively.
Second solution. Let R be the point of (AB) such that AR = AM.

RA AM AN _ AC? '
It follows ——~——]\L= , therefore AACR ZBCN (Steiner)

RB NB M C NB  BC?
whence ZABM = ZBCN and the solution finishes as above.

Problem 6. All the vertices of a convex pentagon have both

. . . 5
coordinates integer numbers.Prove that the area of the pentagon is at least >

Bogdan Enescu

34



Solution. We will prove that there exists a point with integer
coordinates which lies in the interior of the pentagon. Because there are only
for types of parity of a pair of integers, ar least two of the vertices of the
pentagon must have coordinates of the same
parity, therefore the midpoint of the segment
determined by them has also integer coordinates.
If this segment is a side AB of the pentagon then
we can replace the pentagon by a smaller one by
deleting the triangle shown in the figure. Since
the pentagonal surface contains only a finite
number of points with integer coordinates it
follows that the previous “move” can be repeated
only a finite number of times and at some
moment we will get a midpoint with integer coordinates in the interior of the
pentagon. '

" The conclusion follows now using the fact that the area of a triangle

. . . . 1 . .
whose vertices have integer coordinates is at least by (this area is half the

value of a determinant with integer elements) and the decomposition of the
pentagon into five such triangles.

Problem 7. Find all positive integers x, n such that x* +2" +1 is a

divisor of x"*' +2"" +1.
Laurentiu Panaitopol

Solution. It is obviuos that x = 1 or x = 2 cannot give solutions of the
problem, hence x = 3. From the equality :

M2 4= x(x" +2" +l) +2" - x 2" —x+1
we obtain that x" +2" +1 | x"' +2" +1 if and only if
x"+2" 41| (x—2)2" +x-1.
Therefore, one necessarilly has
(1) X" +2"+1< (x—2)2" +x-1.
The equality (1) can be expressed under the form :

) (g) +1s(x—2)+ﬁ-—1—~——1_,—,



]. n
where %Z% Note %:1+y,y25. Then (l+y) >1+ny, by Bernoulli’s

inequality. Therefore, we obtain from (2) :

1
It follows that :
2
n_<_2+—11‘——<2+L] .
2""’ y 2[!’—

Hence, n < 2. In the case n = 2, it follows x> +5<5x—9 and this is
impossible. In the case n = 1, the condition of the problem is equivalent with:
x*+5 x*-9+14
= =x+3+
x+3 x+3 x+3
We obtain x+3=7 or x+3=14 and then x = 4 or x = 11.

Therefore the solutions are the pairs (x, n) of the form (4, 1) or (11, 1).
" Problem 8. Let n = 2 be an integer. Show that there exists a subset

Ac{1,2,...,n}suchthat:
(1) The number of elements of A is at most 2[\/; ] +1;

(i) {r~>

eN.

x,yeAandxiy}={l,2,...,n—l}.

Radu Todor
Solution. The required subset can be taken for instance

{1,2,...,k—1}U{pk |1<p S{%:l}l_){n}, where k =[JZ].

This set has at most 2k +1 elements, because n< (k+1)2 implies

k* +2k
k

On the other hand, each number of the form gk+r, rel k-1,

<

|3

=k+2, and [—’Z—}:mz holds only if 7= k(k+2).

qeq, [%}—1 can be written in the form (k+l)q—(k—r) , each number of

the form gk, g €1, [%il—l can be written in the form (q +l)k— gk and each
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number of the set {k[%},k[%}#l,k{{—tl-k 2,...,11—1} can be wrilten 1n the

form n — r, rel k—1 because if the last set is not empty then n is not

n—{k—1
__(_.___) =k— 1.
k
Problem 9. An infinite arithmetic progression whose terms are
positive integers contains the square of an integer and the cube of an integer.

Show that it contains the sixth power of an integer.
(Proposed Problem for the 38" IM.O., 1997)

First solution. Let r be the step of the progression.We shall prove

the assertion by induction on r. If r = 1, there is nothing to prove.
Let a be the. first term of the progression and d be the greatest

common divisor of a and 7, i.e. d = gcd(a, r). Write r = dgq.
Case 1. gcd(d, g) = 1.
We have a+ir=x", a+jr=y" . Then P=y's a(modr) . Hence,

divisible by k and 0<n— k[ﬂ <n—k-

we also have x° =y’ Ea(modq). Because ¢ is coprime with a, it ia also
coprime with x and y. Then, there exists a positive integer n such that
ny = x(mod q) . Consequently n®y® = x° (mod q) , which can be rewritten
nfa’=a’ (modq) ;
moreover, because gcd(a, g) =1 we have
‘ (D) n® = a(modq).
From the condition ged(d, ¢) = 1, we can find an integer number k
such that n+kg = O(modd) . Then
(2) (n + kq)6 =0= a(mod d) .
Using the binomial formula and the congruence (1), we also have
3) (rhl—kq)6 = a(modq).
Because d and g are coprime and r = dg, from (2) and (3) we get
(n + kq)6 = a(mod r) .

Clearly, k could have been chosen arbitrarly large. Thus the last
condition shows that the sequence a+hr,h=012... contains the sixth

power of the integer n + kq.
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Case 2. ged(d, q)> 1.

Let p be a common prime divisor of d and ¢. Let o, B be the
exponents of p in the decomposition of a and r respectively. Because d | ¢
and g | r, it follows B> =1. Therefore each term of the progression is
divisible by p” Since x* and y’ are in the progression, « is divisible by 2 and

+hr
3 ;s0 aa=66,621. The progression a (,’ ,h=0,1,2, ... with step
p

2 3
r . . X
— <r has integer terms and contains the numbers (—1] ( {J . By the
p P r

induction hypothesis it contains a term z°. Therefore (pz)® is a term in the

original progression.
Second solution. We start with the same notations like in the first

solution and we also note a = db.
It is obvious the following result : every positive integer [, [ = 7 can
be represented under the form ! =3u+2v withu, v> 0.

From the equalities a+ir = x* and a+ jr=y* we obtain
(4) d(b+ig)=x" and d(b+ jg)=y".
Then, for every u > 0, v > 0 we obtain
d¥(b+ig)" = x* and d® (b+jg)™" = y* .
~ Multiply the last equalities and obtain :

2v 6

2 . au . u v u v 6
af3u+“'(19-i—zq)1 (b+jg)" =x-y* = (x -y ) =n,
where x"y" =n . Taking into account that
b+ iq)“ (b +jq)2v =b""* +¢q,
where c is an integer number we obtain the equality :
(5) d3u+2u(b3u+2v + Cq) — n6 .

Using Fermat’s theorem and the property of b, g to be relatively
prime we have the general forms : '

pOAI = p&ola) = (1419)b = b+ blg

where [ is convenable chosen number.
Because 6k(p(q)+12 7 we can find positive integers u, v such that

6kp(g)+1=3u+2v.
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Then, from (5) we obtain :
d3u+2v (b3u+2v + Cq) — dﬁk‘l’(‘l)ﬂ (b6k¢’(‘l)+1 + Cq) =

= a0 (b + blg+c)=m® - d(b+ Bq).
Using (5) we have :
d(b + Bq) m®=n®= (a + Br)m6 =n°.

e . n
Because m° | r®, it follows m | n. Let p be the quotient — . It follows
m

6

a+Br=p
and this proves the required property.
Third solution. We observe that the statement of the problem is in
fact equivalent to the. following : there exists a positive integer z such that
2>y andy — x* divides 2 — y*. Let

2¢c,

_ .a a b b ¢ : o o B B 3¢ 3c,,
y=pi..pigt...q'n ..., and x=pt.plg gy, X,

T
where p,,..., p, are the primes which have a greater exponent in y* than in x°,
q,,---q, are the primes which have a greater exponent in x* than in y',
n,.. T, are the primes which have the same exponent in y* as in x* and
(X Y)=1.

20 20, _3b 3b, _6¢

It follows that y3 —-x’= P pigt g, R

i —q
Let D=p 7% . pi*7*%Y’ —q

Since p,,...,p, and Y are relatively prime to ¢,,....q, and X it

) (paa,~2al .Hp:a‘—’la,‘ y? 2B,-3b, mq/zﬁ,—ab,Xz) )

28,~3h 2B,-3b yr2
; .. q X

follows that p,,..., p, and Y are invertible (modD), therefore
A= g pieTe LLpraTia (XY"I)2 (modD) .
Let Z be such that Z = XY™ (mod D) . This gives

y? =gt gth pre i pea=°% 7%(mod D)

Y=¢q

whence
3a; 35 3b, _6c 6¢,, .

3_  3g 35 {
y_pl "'pk ql "'ql ’l "‘rm
.qlﬁﬁl—%l“:q;’:ﬂ,-%, pf“““‘...p,f“k_B“‘Zﬁ(niod(y3—xz)) or
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_ 6
y'= (pf",_.pf“qlﬁ’ ”‘...q,ﬁ’ b’Z) (moaf(y3 —x3))

Since Z can be chosen large enough, this ends the proof.

Problem 10. Show that for any positive integer n the polynomial
f(X):(X2 +X)b +1 cannot be decomposed as a product of two nteger
non-constant polynomials.

Marius Cavachi

Solution. In the case n = O the conclusion is obvious, so assume
n 2 1. We will associate to each polynomial

g=a,+a,X+..+a X" €Z[X],
the polynomial
g=a,+a,X+. 44, X" €Z,[X]
with coefficients in the field of the congruence classes (mod2).
Since

<X2 + X+i)2"= [(XZ +X)2 +i]2“-l___ [(X2 —}-){)22 +1‘J - (X3 4 X)Zh-i-]

it follows that f:(X2+X+i)“ .

Suppose now that fis factorable in the form f= gh, with g he Z[X].
It follows that f=g-h and, since X?>+X+1 is irreducible over Z,,

an

h=(x>+x+1) ", 1<p<2"-1. This leads to

14
B

2= ( X+ X+ i)
g=(X"+Xx+1)"+2u(X), h=(X* +X+1)"" +20(X) where u and v are
integer polinomials.
" Let e be one of the roots of X% + X +1.
Replacing X with € in the equality

Py
2

) =(x2+x)" +1= [(Xl +x+1)7 + 2u(X)][(X2 +x+1)7 "+ 2v(X)]

we get 2 = 2u(£) - ZV(E) , therefore u(s) : V(E) = —;—

Taking now into account that uv is an integer polynomial and

e’ =-£-1 we see that u(e)- v(g) is a complex number of the form a + bg,

1
with a, be Z, so the equality u(s) . v(s) = Y 1s impossible.
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Problem 11. Let ABC be an equilateral triangle and n > 2 be an
integer. Denote by # the set of n —1 straight lines which are parallel to BC
and divide the surface [ABC] into n polygons having the same area and
denote by P the set of n —1 straight lines parallel to BC which divide the
surface [ABC] into n polygons having the same perimeter.

Prove that the intersection # M P is empty.

Laurentiu Panaitopol
Solution. Let 4 ={B,C,,B,C,,..., B, ,C,,} where
B,...B,_ €(AB), C,,...,C,_ €(AC),AB, < AB,< .. <AB,_,’
and 2={D\E,, D,E,,..., D, |E,_ } where
D,,...D, €(AB), E,...E, €(AC),AD, <AD,< ...<AD, _, .

AB.
Let x;, =—— and . =ﬂ foriel,n-1.
AB ! AB

a

. area[AB,. C,.] i
The definition of 4 leads to x; = ——————==— therefore

area[AB C ] n

[
X, =4
n

The definition of 2 gives B.C;+2B;B,,, =B,,,C,,, +2B,, B, for
ieOn-2 (where By=C,=AB,=BC,=C), therefore, because
B,C,=AB,, y, +2()’;+l_ _}’;) =Yir2 +2(y,'+2 —}’m)v for ie0,n—2 withy,=0

andy, = 1.
The linear recurrence 3y,,, -4y, +y; =0 for ie0,n—-2 implies

the existence of coefficients ¢, 8 such that y, =oc+—£.— for ie0,n and the

3“ 3)1—1' (31 _ 1)
conditions y, =0, y, =1 lead to o =-f3 :W and y, :?

for

ielQn.

Let us suppose x,=y, for some k, leln-1, that is
" 2 2n-2k [~k 2
(3" -1) =n-3"7(3" 1)
Let d= (n, k) and n=dm, m> 1 (because d < k < n).
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It is known that (3” —1,3* —l) =3? -1 (indeed 3 -1 divides both

3" -1 and 3¥-1 ; if some integer p divides 3"~1 and 3*—1 then
(», 3) = 1 and p divides 3“ —1—(3“ —1):3”"(3“"“’* —1) s0, choosing the

positive integers a, b such that an—bk=d, p divides 3¢ —~1). This implies

N2
3" -1 3" -1 - 2
that n is divisible by [3—‘1——1) , therefore \/;1_ > " >3"4>32 whence

3:1

n > 3" But this is a contradiction, because an easy induction shows that 3" > n
for every positive integer n, so the supposition #(12 # < is false.
Problem 12. Let n = 3 be a prime number and g, < a, <...< g, be

integers. Prove that a,, a,,..., a, is an arithmetic progression if and only if

there exists a partition of the set N = {0, 1, 2, ...} with classes A, A,,..., A,

such that a,+ A =a, +A, =...=a, + A, (where q,+ A, = {a,. +x|x € A,.} ).
Vasile Pop

i

- Solution. If a,,a,,...,a, is an arithmetic progression with step r then

the partition (A, A-rA=2r,...,A— (n — l)r) , with
A:U{knr+(n—1)r+ili € O,r~l}

k=0
fulfils the required condition.

cfor ieQn-1,

For the converse, denote , =a, —a,_; and B, =A _,

so B, =B, +r, fori=1. We will call segment of length k of the set B, every
set {a,a+1...,a+k—1}c B, suchthata—-1¢B,anda+k ¢ B,

We will firstly prove that each B; is an union of segments of the
same length r = r,.

From xe B, = x+r e B, we getxe By = x + r ¢ B,, therefore all the
segments of B, must have lengths less that r + 1. If B, contains segments of
lengths less than r, let S be the first of these. Then § + r € B, and “between” §
and S + r there exists a segment S” of some B;, i # 0. But, in this case the
segment S” —r; would be in B, would have length less that » and would be
“before” §, which contradicts the way S was chosen.

- This proves that all the segments of B, have length r and, from
B. = B, +r,, this is also true for every B,.

n—f
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We will now prove that the first segment of B; is §; = {ir, ir +1,...,

ir + r -1} for every i €0,n—1. Since x€B; fori> 1= x2r 2r it follows
that B, must contain the segment S, = {0, 1,..., r =1} and therefore B,
contains the segment S, = {7, r+1,..., 2r—1}. :

Suppose now that there exists k < n (k = 2) such that S, € B,,
S, € B,,..., S;- and S, ¢ B,. Then S, must be a segment of some B; (since all
the segments have the same length), i must be less than k and B; must be B,
(because the second segment of every B;, i = 1 must come “after” the second
segment of By).

This leads t0 S € Bo» Siar€Bas--o» Sy 1€ B and, repeating the
above judgement if necessary, the first segment of B, must be of the form S,
[ > 2. This leads to r, = Ik, therefore S(m)k =S, +r, € B,. The segment S,

cannot be in B, (it would lead to S(M)k €B,,) or in any of the Bis,

ie0,k-1 (the set {SO, A YT Slk+l} would contain more segments from B,
than segments from B,) therefore S, € By -

In the same way Sy, € Biar - Siair € Bayy and the sequence of
segments from (Bk, B, - By k_‘) will repeat itself a number of times before

the appearence of a segment from a new sct (which might be B, or B»,).
We notice that a judgement as above shows that each time when a
segment from a new set By appears, then he must be followed immediately

by segments from the sets By, Byuas - Boyaar » 50 the number n of B/s
must be a multiple of k, 1 <k <n, a contradiction with the premises.

Thus S, B, for every i € 0,n—1, therefore r; = ir forevery ieln—1
and a,,a,,...,a, is an arithmetic progression.

Remark. If n = pq, p, ¢ = 2 then the converse is false. This can be
seen from the example

B, = {2nk|k € N}U{2nk+plk € N} andr, =i+ p['—;}for iel,n—-1

which corresponds to the periodic sequence of segments of length 1 obtained
by repeating the block

[B,B,... B, By--- B, 8,8, BopaB,--Bap ]

poptlt

B yBrpu--BiBoy B ]

n—t=n=p- -l



Problem 13. Let n be a positive integer and P, be the set of the
integer polynomials of the form a,+a X+..+a, X", where |a] < 2 for
i=0,1, ..., n. Find, for each positive integer k, the number of elements of the
set 4,(0)=1{rWfen}.

Marian Andronache
Solution. For each fixed k consider the fixed number

n(k)=2+2k+2k>+.. +2k"

and the set B, (k) =A, (k)+n(k) = {x + n(k)]x €A, (k)} ; clearly 'B" (k)f = IA” (k)' .
On the other hand B, (k) = {g(k)' ge R”} where R, is the set of the integer
polynomials by + b, X+..+b X" with0<b,, ..., b <4.

If k 2 5 then B,(k) is the set of the integers which can be written in
the base k with the digits 0, 1,2, 3, 4, so [B, (k)| = 5"

If k=1 then minB (1) = 0, maxB,(1) = 4n + 4 and B, (1) = m
because each number x from m,\t =4p+r,0<p<n,0<r<3canbe
written 4+4-1+4-1°+..44-1""' +7-17 , therefore |B, (1) = 4n+5.

If2<k<4then:
ku+l_1
k-1

minB,(k) = 0, maxB,(k) = 4(1+ k+k>+.. +k") = 4-

ntl

and we will prove that B, (k)=0,4- using induction on n.

k-1
k-1
For n = 0, Bo(k):{0,1,2,3,4}:0,4-7<—1. Suppose now that

ku+l -1 kuH—l -1
B"(k)=0,4' for every n < m and take xe€1,4- -1.

I A" " k) < x <Ak K AR 4 ) for

' - m—q+l _
some gel,m, then x— 4(k"‘ + k" et ) <4k™? < 4kﬁle— and,
using the induction statement, x=4(k" +k" 4. 4" )+ g(k) with

geR

m—q-
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" If x<4k" then gk” Sx<(q+1)k'” for some ge{0,1, 2, 3} and

"

x_qkm <km 34

so, as above x=qk’"+g(k) with geR,_,, which

ends the induction.

n+l
-k 11+1 for2 <k <4.

In conclusion, IB”(k)l =4

Problem 14. Find all the functions u# : R — R which have the
property : there exists a strictly monotonic function f: R — R such that

f(x + y) = f(x)u(y) + f(y) for every x, ye R.
Vasile Pop
Solution. The given property says that

Fle+)= f)ulp)+ () and fly+x)= f()ulx) + ().

FEOUO)-1)=rO)u()-1). .
From f(O + y) = f(O)u(y) + f(y) we get f(O)u(y) =0, whence
f0)=0or u=0.Butu= 0 would lead to f(x+y) = f(x) which means that f
would be constant, impossible. Therefore f(0) = 0 and f(x) # 0, so (1) leads to

therefore

u(x)—l u(y)—l . .
= for every x, y # 0. This shows that there exists a real
) s0) , |

number ¢ such that u(x)—l = cf(x) for every x # 0. Relation (1) also shows
that 0= £(1)(x(0)~1) whence u(0) = 1 so u(x)=1+cf(x) for every xeR.

If ¢ =0, then u = 1, which fulfils the condition for f= 1.

If ¢ # 0, the property becomes f (x + y) =f (x)(l +cf (y))+ f (y) or

1+cf(x+ y) = (cf(x)+1)(cf(y)+1) .
Let g : R = R, g(x) =cf (x)+1 ; g is strictly monotonic and

2 X

g(x+y):g(x)g(y) for every x, ye R. Since g(x)z g[—;i-%%): g"(—z—) and

g(x) # 0 for every x (otherwise g = 0) it is legitimate to use the function
h:R—>R h(x)z in g(x) and the monotonic function & fulfils the Cauchy
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condition h(x + y) = h(x)+ h(y) . This shows that there exists a constant & # 0

kx

such that A(x) = kx, therefore g(x) =™, f (x) = and u(x) =¢e™, which

. c
fulfil the required property.
In conclusion the searchen functions are those of the form u(x) =a

X

for some a > 0. _
Problem 15. Find all the positive integers k& which fulfil the

following condition : if fis an integer polynomial such that 0 < fla) < k for
every ae {0, 1,2,..., k+1} then f(0)=f(1)= f(2)=...= f(k+1).
(Proposed problem for the 38" 1.M.O.)

Solution. If fis an integer polynomial which satisfies O < f{a) < k for
every ae€0,k+1 then|flk+1)—f(0) | is divisible by k£ +1 and less than & +1,
therefore f{k +1) = f(0). This shows that

F(X)= £(0)= X(X - k=1)g()

for some integer polynomial g.

We notice that | a(a — k—1) | > k if a is an integer different from 0, 1,

kand k+1 .
Therefore if k > 3 then | fla) — 0) | £ kand | ala — k —1) | > k for

every a €2, k-1, so the integer | g(a) | must be 0, that is
g(X)=(x-2)(X-3)...(Xx~k+1)h(X)
for some integer polynomial 4. In this case -
|£(1)- £(0)| = k(k —2)/n(1) and |£(k)- £(0)]=k(k—2)h(k).
This proves that if k > 4 then, as above, h(1)=h(k)=0
f(X)-F0)=X(X-1)(X-2)...(X-k)(X~k-1)p

for some mtegcr polynomimal P, which means that f ( ) f(O) for every

E

ae(, I_c+1 , so every k 2 4 fulfils the required condition.
If k = 3 we have the counterexamples

f(X)=x(2-X) fork=
f(X)=X(3-X) fork=2
F(X)=X(4-x)(X 2)° fork=3.
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Problem 16. The lateral surface of a cylinder of revolution 1is
divided by n —1 planes parallel to the base and m parallel generators into mn
cases (n > 1, m = 3). Two cases will be called neighbouring cases if they have
a common side. Prove that there is possible to write a real number in each
case such that each number is equal to the sum of the numbers of the
neighbouring cases and not all the numbers are zero if and only if there exists
integers k, [ such that (n+1) does not divide k and

2l km 1
cos——+cos =—.
m n+l 2

: Ciprian Manolescu

Solution. We will number the rings 1, 2,..., n (going downwards)

and the columns 1, 2,..., m (anticlockwise). We will associate to each ring the
polynomial
X"

m

P(X)=a, +a,X+..+a
where g;; is the number written in the ring i and column j. We will also
consider
p(x)=P,(X)=0.
The condition that every number equals the sum of the numbers
placed in the neighbouring cases translates into

P(X)=P_(X)+ P, (X)+(x"" + X)P.(X)(mod X" ~1) for every ieln
&P, (0)=0-x-x"")R(x)- P, (X)mod x™ —1)
(

forevery ieln.

X));Eo — given by

i+

Consider the sequence of polynomials (Q,.

0,(X)=0,0,(X)=1 and
0., (00 =(1-X=x"")0,(0 - 0., (Nmod X" 1)
It is easy to see that R(X) =Q, (X)Pl(X) for every iel,n+1 and

that all the mn numbers are nil if and only if P, = 0. Therefore the existence
of the numbers from the problem is equivalent to the existence of a

polynomial P e R{X] such that
P, #0(modX" -1) and P,Q,., =0 (mod X" -1).
This in turn is equivalent to the fact that the polynomials Q, ., and
X" —1 are not relatively prime in Q[X], that is there exists a complex number

gsuchthate”=1and Q,,,()=0.
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Consider the sequence (xk) x, =0, (€). This sequence fulfils

ke0,n+1’

the condition x, = 0, x;, = 1 and x,,, =x, (1—8—8"‘_l)—xk_, , therefore,

‘m—]

denoting by a=1-£-¢ and by r, r, the roots of the equation

k k
, -7 . .
x?—ox+1=0 we get x, =——= if r; # r, and x, =k if r =1,
n—r
In the case r, = r, the condition Q, (e)=0 becomes
X,y = (n + l)rl" =0 which is impossible because 7,7, = 1.
Inthe case r, # 1, Q,,(6)=0 & x,, =0 =" oJ o=zl

such that @""' =1 and r, =wr, & Jw #1,3reC such that r(l +a)) =

(1+a))2

w

and r*@=1<> 3w #1 such that =o* < Jw #1 such that

2

o+2+w=(1-¢-£) .
This way we came to the conclusion that the cases can be completed
as asked & 3k, le Z such that (n+ 1)1 k and

2
2+2cos 2k =[1—2cos—21—n) .
n+1 m

The last equality is the same as

2
4 cos® 2km = (1 -2 cos%lﬁ)
n+1 m

which reads (replacing k by n +1 — k if necessary)

2km 2l 1
+cos—=—.
n+1 m

cos

48



SECTION 3

THE SELECTION EXAMINATION FOR THE JUNIOR BALKAN
MATHEMATICAL OLYMPIAD
IASI, 27 - 28 May, 1998
A. PROPOSED PROBLEMS

" Problem 1. Let
1 ] 1
— 4 +...+ and
1.2 3.4 1997-1998
1

B= + +...+ .
1000-1998  1001-1997 1998-1000
4
Prove that z is an integer number.

Bogdan Enescu
Problem 2. In the rectangle ABCD one considers the variable points
Me (AB), Ne(B(C), Pc(CD) and Qe (AD). Let p and o be the perimeter and
respectively the area of the quadrilateral MNPQ. Prove that :
Hp=AC+AB;

ii) if p=AC + BD then GS—;—SABCD ;

iii) if p=AC+ BD then MP*> + NQ* > AC*.
Problem 3. Let n be a positive integer. Find all the integers that can
be written in the form

with a,, @,..., a,eN".
Gh. lurea
Problem 4. Determine all the pairs of integers (x, y) such that
(x +1)(x+2)(x+3)+ x(x +2)(x+3)+x(x +1)(x+3)+ x(x +1)(x+2)=y".
A. Zanoschi
Problem 5. Let ABC be fixed triangle. One of the vertices of the
variable quadrilateral DEFG coincides with one of the vertices of the triangle
and the other three vertices are on the segments [AB], [BC] and [CA]
respectively. It is known that DF L EG and that DEFG is circumscribed
about a circle.
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Find the locus of the point M = DF(EG . )
Dan Brénzel
Problem 6. Find the smallest value of n for which one can find
X[, X,, ..., X,, € N such that

x} + x5+ +xh =1998 .

Gh. lurea
B. SOLUTIONS
1 1
Problem 1. Observe that ———— = ———— and, therefore
k(k+1) k k+1
1 1 1
A :1——+l~l+...+~—————

273 4 71997 1998

1 11 1 1 1 1 1
=l+—+—F—+ . F——F——2| —F—+. . F—— | =

27374 771997 "1998  \ 2 4 71998
11 1 1 1 | 1
=l4—t—t—t A —t—— =l ———=
23 4 1997 ' 1998 2 999
1 1 1

= + +...+ .
1000 1001 1998

Then 2A:[ L. )+( L ] )+...+( 1 1 ):
1000 1998 ) (1001 1997 1998 1000

2998 N 2998 . 2998
7 1000-1998  1001-1997 ~~ 1998-1000

=2998B.

Hence %= 1499 e Z .

Problem 2. Reflect ABCD in the side BC. We obtain the rectangle
BA’D’C. Reflect BA’D’C in the side BA” obtaining BA’D”C’ and, finally,

A P c PB
N 7
A M
—~ BII
Q% SN

C/ PI/ D/I I')I// CII

X
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BA’D”C’ in the side A’D” obtaining A’D”C”B (see figure).
The points M, N, P, Q go succesively, into M’, M’ etc.
Now, clearly
MN + NP+ PQ+QOM =PN+NM'+M'Q”+Q"P'>2PP"” =DD” = AC+ BD.
Furthermore, the equality holds iff the points P, N, M’, Q”, P”” are
collinear, which is equivalent to the fact that MNPQ is a parallelogram,
having the sides parallel to the diagonals of the rectangle ABCD.
Thus, if p = AC + BD, we have (see figure) PN || BD || MO, MN ||

| AC || PQ. Let k= i‘A—Ag- . It follows S[AMQ]|=k*S[ABD]= -;—kﬁs[ABCD] :

P

D C
N

0

A M B

We have % =1-k and S[MNB]= %(1 — k)" S[ABCD] . Since

o = S[ABCD]-2S5[MAQ]-2S[MNB]
the inequality to be proven becomes 1—k* — (l— k)2 S—;— or (k —%)h >0,

1
obvious. The equality ¢ = -2—S [ABCD] holds if and only if M, N, P, O are the

midpoints of the rectangle’s sides.
The second inequality follows immediately, being equivalent to

2(MN? + MQ ) > AC?

thatis 2(k* +(1-K)")21.

Problem 3. Clearly, if k =——+ >+ .+~ then
a a4 a,
n(n + 1)

k<142+..4n =,
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. . n(n+1)
We will prove that every integer ke{l,2,..., 2 can be

written in the given form.

n(n+1)
Fork=1takeag,=a,=...=a,= > .Fork=ntakea, =a,=
:a”:n
n(n+l)
For 1 <k<n,takea,_, =1 and g, = > —-k+1 fori = k-1.
nln+1)
D S U L N R
en - a,._ 1 an ,_ B nln+1) T
- ek —k+1
2
n(n+1) )
. Forn<k< , k belongs to one of the intervals

2
(n+(n-—l)+(n——2)+...+(n—i+1),n+(n—1)+..‘+(n—i+1)+(n—i)}iei,_n——l

therefore k can be written as a sum
k=n+p +p,+..+p,,where n—-12p >p,>..>p, 21.
We take then

Ap =0y ==y =1

and g; = j for the rest of the indices.
Problem 4. If x > 1 then y* is the square of an integer. On the

other hand, the numbers x, x +1, x + 2, x +3 are of the form 4k, 4k +1, 4k +2,
4k + 3 (not necessarily in this order) so three of the four terms of the left side
are divisible by 4 and the fourth is of the form 4k +2. Thus, the left part of the
equality cannot be a perfect square, so the equation has no solution in this
case .

If x < —4, then left side is negative, while the right side is positive
(we must impose the condition y 2 0 if x is negative).
. It follows that we must check only xe {-3, -2, —1, 0}, and we
obtain two solutions: x=-2,y=16andx=0,y=6.
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Problem 5. The quadrilateral DEFG is
circumscribed if and only if DE + FG = EF +
+DG. LetMD =x, ME=y, MF = zand MG = 1.
Then :

sz +y° 4z 412 :\/yl PR e

B

analyze the two cases : MG = ME

G 2 o) 2
which leads to (x“ +y? )(z' +1° ) =
= (yz +7° )(x2 +t2) SO (x2 —z:z)(t2 - y2)= 0,
F C that is one of the diagonals of DEFG passes
through the midpoint of the other.
Suppose D = A. One must A

(hence M lies on the bissector of £A)
and DM = MF (hence M lies on the
segment joing the midpoints of the sides
(AB) and (AQ)).
We also notice that M cannot
reach every position on that segments.
If, for instance, AB < BC < CA

then the required locus is the union of
the segments (AA’], (BB’], (CC’], (RB],

C

[A’C’] and (PQ), where P, O, R are the triangle’s sides midpoints and AA’,

BB’, CC’ are the triangle’s side angles bissectors (see figure).

. Problem 6. Observe that if xeN, then x* = 16k or x* =16k+1

(depending on the parity of x).
Since 1998 =16-24+14, it follows that n > 14.

k=1,...,

xp -1
16
14 . Then q,€ {0, 5, 39, 150, 410, ...} and g, +a, +.. +a,, =124 .

It follows a,e{0, 5, 39}, k = 1, 2, ..., 14 and because

If n =14, x;, x,, ..., x4, must be odd numbers. Let g, =

124 =5-24 4+ 4 , be the number of terms a, equal to 39 is 1 or at least 6. In the
first case we must have at least 17 terms equal to 5 and the second case is
impossible because 6-39 =234 >124 .

In conclusion, n = 15. This is indeed the minimal value of n because

1998 =5 +5* +3* +3* +3* + 34 +3* 4+ 3* +3* +3° +3* + 29 + 1% +1* +1°.

53



THE INTERNATIONAL CONTEST
BAIA-MARE, september 1997

A. PROPOSED PROBLEMS

Problem 1. For every positive integer x denote by S(x) the set
S(x) = {a,,l a,=xanda,,, =a,l+ (n+2)! forevery n> O} .

Prove that there exists a sequence (xk )k> , such that

US(xk)z N* and S(xk )ﬂS(xj)z (%)
k=0
for every k # .
. N. Vornicescu
Problem 2. Let ABC be a triangle and D, E and F be the contacts of
the incircle to the sides of the triangle. Prove that

2 .
—}’:—rs DE+EF+DF<p

and that the equalities hold in the same time.
D. Brénzei
Problem 3. Let n be a positive integer. Find all the monotonic
functions f: R — R which fulfil the condition

f(x+ f(y)) = f(x)+ y" for every x, yé R.

V. Pop
Problem 4. Let a, b, ¢ be positive numbers such that abc = 1 and let

a,\‘bx b.l‘cx C.l’a.\'

S(X,y)z ¥ ¥ x x+ ¥ ¥ XX ¥ ¥ x_x
a’+b>+a'b® b¥+c’+b’'ct c+a’+ca

for every x, y > 0.

‘Prove that if x < 2y then S(x, y) <1 andif x > 2y then S(x, y) >1.
V. Pop and D. Popa
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B. SOLUTIONS

Problem 1. Clearly the sequence must be chosen such that, for
mstance x, = 1, x, 1s the first positive integer which does not show up in S(x,),
that is x; = 2, x, is the first positive integer which does not appear in
S(xO)US(x,) and, in general, x4, 1s the smallest positive integer which does

not belong to S(x,)US(x,)U...US(x, ). This easily leads to | JS(x,)=N"".
i20
Suppose now that S(xi)ﬂS(xj);é@ for some i # j. Then there
exists a, eS(x,.) and b, eS(xj) such that a, = b,. Since x;#S(x;) and
xe S(x;) it follows thatm, n 2 1 and a,_ /+ (n+1)/=b,  +(m+1)/, (1.
If n=1 then ;é,./+2:b,
(m > 2 = 3|b

m=1=x,/+2=x,;/+2 = x; =x;). In the same way m 2 2.

'+(m +1)! which is impossible

m—] *
et (m +1)! = x,=l=x-+2<b, I+ (m + 1).’ and
This shows that a, |, =a, ,+n!/>n+1 (with the exception of the
e (n+1)! < b, H(m+1)).

m=1"
we get a, ,!/>b,,! and therefore

m=1"

case n =2 and gy = 1, but then a

n—

In the case a,,>b

n— m-1

, >m+1>n+1. Dividing by (n +2)!

(n+1)/ < (m+1)!, thatis n < m, 5o b,_
relation (1) we get that the integer
bm—l * (m + 1)'/ a

(n + 2).’ " (n + 2)! (n + 2)/

n—l"

1
is equal to ——, false.
n+2

In the same way a,_, <b,,_; leads to a contradiction.

m=1

Finally, in the case a,;=b we get (n+1)/ =(m+1).’, hence

m-1
m = n, sO x; = X;, impossible.
Problem 2. Let De(BC), Ec(CA), Fe(AB). It is easly seen that

AE=AF=p-a,EF=2(p- a)sin% and the similar.

(p=b)lp=c) _p-b p-c
bc b c

it follows

Since 25[1152i =2



a b

+[p—;lz+ pgcj(p—a)—f-(ﬁﬂ- p—c)(p—b):p.

a c

DE+EF + DFS(u+p—_é](p—c)+

For the other inequality we notice that using the incenter / we get
EF? =27 —2¢? cos(AFIE) =2r" (] + cosA) =4r? cos’ g ,
so the inequality is equivalent to
p< R(cosi;— + cos§+ cosgj , that is

B+C A+C + B
sinA+sin B+sinC < sin 2 +sin +‘sinA2 .

This follows immediately from

. . +
sinx ;Sln Y <sin X 5 Y for every x, ye (0, ).

The equalities take place if and only if p~a=p—b= p—c and,

respectively, A = B = C, that is if and only if the triangle is equilateral.
Problem 3. If y,, y, 2 0 and f(yl) = f(yz) then y/' =y, soy,=y,.
Hence f

[0.=) is injective. Take now x, > 0 such that x, +f(0) >0. Since
F(xo+ £(0))= f(x,) it follows that f(0)=0 and the given condition leads
o F(£(7))=y". ¥yeR, (D).

The condition shows also that f(f(x + f(y))) = f(f(x)+ y”) and
this, combined with (1), leads to

(0N =7+ 1) = ()2 = F(FFO))+ 2 = £ () + 2"
Relation (1) shows also that f ( f (l)) =1 and the previous relation

gives for x = 1 and y=f(1) that n = 1. This leads to f{ ()= VyeR,
therefore fis bijective and f=f"".
The condition from the premise becomes f(x+ f (y))z f(x)+y,

¥ x, yeR, thatis f(x+z)-—-f(x)+f"1 (z) V x, ze R hence
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flx+2)=f(x)+ f(z) ¥V x, ze R.
This proves that f is of the form f (x) =cx,and f=f"" implies that

c==*1.
Thus the solutions are : '

¢ (x) =x,VxeRandf, (x) =—x,VxeR  inthe case n =1 ;
¢ no solution, in the case n 2 2.

Problem 4. Denote that

Xty x4y y—2x y=2.x 2y—x 2y—a xty Aty
@ +b=a3b3la?® +b* |+|la? -b* |a® -b* |

: Aty Aty y=2x y=2ux
In the case x < 2y this leads to a’ +b” 2a * b * (a }o+bp ? ]

and therefore

ab?la’? +b°

! S
- 2 y—2x  y-2x y=2x y=2x - yo2ux y=2a =2x
a +1 ) )

In the case x > 2y we get

xty  aty y—2x y-2x
ad+b’<a*b?|a? +b°?

and the previous inequality is reversed.
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THE 49" NATIONAL MATHEMATICAL OLYMPIAD, 1998
The First Round in the City of Bucharest
PROPOSED PROBLEMS'

9" Form
Problem 1. For any ordered pair (a, b) of real numbers consider the
set
A(a,b):{a+bm|meQ}.
Prove that for any ordered pair (a, b), one has

A(a,b)ﬂ{«/g, \/g \/;/_}i .

Valentin Matrosenco

Problem 2. a) Prove that for any real number x, x # k& where ke Z,

the following equality holds :
sinS5x

- =4cos*2x+2cos2x—1.
sinx .
b) Prove that there exist real numbers @, b such that

sin 5x = 16sin(x + a)s[n(x ~ a)Si"(x + b)sz‘n(x - b)

sin x
for any real number x, x # k7. ‘
laroslav Chebici

Problem 3. Let LAOB be a right angle and C, D be points on the
half-lines (OA, (OB respectively.

a) Prove that: OA-OC+ OB-OD < AB-CD.

b) Let us suppose that C, D belong to the segments (OA); (OB) and
let M, N be the midpoints of the segments (AB), (CD) respectively. Prove that
the above inequality is an equality if and only if O, M, N are collinear points.

Greta Marinescu and Marcel Chiritd

Problem 4. Solve in integer numbers the equation

2
{1_1}:x_+_yz__
y x y x

Valentin Matrosenco

! The solutions of the problems from this section are available in Gazeta Matematica,
vol. 103, no. 4, pp. 153-162.
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10" Form

Problem 1. Let x, y be complex numbers, n = 2 be a positive

integer such that lx“_zyl =2 andx" =y" =x+y.Provethat x=y.
: Maria Elena Panaitopol

Problem 2. Consider in space the points A, B, the plane 7 and the
circle € in the plane 7.

a) Find the points M, Me msuch that MA + MB is minimal.

b) Find the points N, Ne 7 such that NA® + NB* is minimal.

¢) Find the points P, Pe Csuch that PA* + PB’ is minimal.

e e
Problem 3. a) Let a be a real number , a >0, a # 1. Prove that the

(l;a)_x+l [ .
1S Imcreasing.

real function f (x) =a
b) Let a, b be positive real numbers. Solve the inequation :
at-ad™ +b* b >at + b’
Valentin Matrosenco
Problem 4. Find all functions f : N — N which satisty the

conditions :
a) f(x+y)=f( )+f( )+2xy Vx, yeN;

b) for all x, xe N, f(x) is a perfect square.
Marcel Chiritd and Marian Andronache

11" Form

Problem 1. Let (b“) _, be a sequence of positive real numbers such

that lzmb = oo, Prove that :

n—= N
1) lim—= Z\/__ =0; 1) ltmz-—————
Virgil Nicula
Problem 2. Find all 2x2 matrices X with real entries such that :
10 20
3 2
T _4X +5X = .
X X X ( 5 10)

laroslav Chebici and Marcel Chiritd
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Problem 3. Let A, B be complex matrices of dimensions 2x2 such
that there exists a positive integer with the property :

AH.BII — BIIAH .
Prove that for all positive integers p, g one has :
(AII.B[J _BIJAM)(Aan _ BnAq) — 0 .

Marian Andronache
Problem 4. Let f: (0,.0)—R be a monotonic function such that

lil?i(f(2x) - f(x)) =0.
Prove that for every positive real number a, lim ( f (ax) - f (x)) =0.
X —eo

Marcel Chiritd and Marian Andronache

12" Form
Preblem 1. Find all primitives of the function f: [~1,1]—R,

f(x) = arcsiny1-x .
stk

Problem 2. Let G be a group. For each positive integer we consider
the set
H,={xeG| x" =1}.
i) Show that H, is a subgroup of G if and only if
xy = yx, for every x,y e H,.

it) If p is a prime number such that H, has at most p elements then
H, is a subgroup of G.

Marcel Tena

Problem 3. Let f: R—R be a differentiable function such that )

is a bounded function. Prove that for any positive integer k, there exists a real
number ¢ such that '

f(C)f'(C) — clk—l .
Marcel Chiritd and Valentin Matrosenco
Problem 4. Let G be a finite group of order n. Prove that the
following conditions are equivalent :
i) every subset A < G which has the property x,ye€ A = x'yleq
is a subgroup of G.
ii) nn 1s not divisible by 3.
Marian Andronache and Ion Savu
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THE 49™ NATIONAL MATHEMATICAL OLYMPIAD, 1998
The Second Round in the City of Bucharest
PROPOSED PROBLEMS®

9" Form

" Problem 1.Let g, be (O, %] . Prove that :

w/xsin?‘ a+ysin®b +\/xcos2 a+ycos’h 2 \/;4-\/;

for every x, y > 0if and only if a+b = —725 .

L. Panaitopol
Problem 2. Let ABC be an isosceles triangle (AB = AC), D be the
midpoint of (BC) and E be the midpoint of (AB).
a) Find the locus of the points M such that
MC? + MB* =2MA®* + BC®.
b) If P the common point of the locus and AD, then EP L AC.
C. Tutu
Problem 3. Let A be a finite set which has at least two elements and
f: A — A be a function with the property : for every set B < A which has at
least two elements, f{B) # B.

Prove that there exists an unique a€ A such that f{a) = a.
M. Andronache and I. Savu

. Problem 4. Let O be a point on the median [AA,] of the triangle
ABC. Prove that : '
a) there exists an unique point Me (BC) which fulfils the condition :
if Ne (AC) such that MN ||BO and Pe (AB) such that NP || CO then PM || AO;
b) if M is the point from above then
BM CN AP
—t—t—=
BC CA AB
V. Matrosenco, M. Chiritd and M. Andronache

1.

2 The solutions of the problems from this section are available in Gazeta Matematica,
vol. 103, no. 5-6, pp. 203.
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10" Form
Problem 1. Prove that

n, n(n-1) . n(n—1)(n-2) . n(n-1)(n-2)..3

+ =

3 41 5! n!
23 ——(112 +7n+14) ;
_ >
2(11 + 1)(11 + 2)  Joreverynz3..

Heofesk
Problem 2. Let a, b, ce(0,0) \ {1} be mutually distinct numbers.
Find the positive integer solutions of the system :
a*=bc, b’ =ac, ¢ =ab
supposing that they exist.
M. Chiritd and V. Matrosenco
Problem 3. Let x, y, z be complex numbers such that |x] = |y| = |z =
= 1. Prove that 3Sl—x+y+z|+|x—y+z!+|x+y—z|s 6.
M. Chiritd and M. Andronache
Problem 4. Let ABCDA’B’C’D’ be a cube.
a) Find the locus of the points M which lie inside the square
A’B’C’D’ and fulfil the condition MA+ MC = MB+ MD .
b) Let Ne (AB), Pe(C’'D’), Qe (A’D’) and Re (BC) be variable points.
Denote by X and Y the midpoints of the segments (NP) and (OR). If the
segment (XY) has a constant length £ > 0, find the locus of its midpoint.
L. Panaitopol

11" Form
c 1 - 1
Problem 1. Let a, b, ¢ be complex numbersand A=|{0 b O
: 1 1 a

Prove that A* = O, if and only if there exists two sequences (x“ )“>|

and (y,.) ., Of complex numbers such that A" =x,I;+y,A foreveryn 2 1.

— 1. Chitescu
Problem 2. Find all the functions f: R — R, which are continuous

in x, = 0 and have the properties: ﬂ?.x)— ﬂx) <3¢’ +x and ﬂ3x) - f()c).>_8x2 +2x

for every xe R.
M. Chiritd and V. Matrosenco
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Problem 3. Let Ae M,(C) be such that det(A+XY)=der(A +YX)

for every X, Ye M,(C). Prove that there exists ae CsuchthatA=al,.
M. Andronache and I. Savu

Problem 4. Let f: [07 00) — [0, o), be a continous, non-identical nil
function such that f(f(x)) = (x2 +x+ 1)f(x),f0r every x € [O, oo) )

a) Prove that fis bijective.

f(x) and limf—(iz.
X Ao X

M. Chiritd and M. Andronache

b) Study the limits l_irr(z)

12" Form

x

Problem 1. a) Compute J 1g*"xdx and prove that
0
1oLl E) =
pudd L SRR VST

Problem 2. Let A be a ring such that for every x€A,
x2 =1 orx? = x . Prove that if A has at least two invertible elements then A is

E 3

isomorphic to Z;.
M. Tena

Problem 3. Let A be a ring such that x* = 0 = x = 0. Denote by M

the set {acA|a*=a}. Prove that :
a) if a, be M then a+b—2ab eM,

b) if M is finite then | M | = 2* for some positive integer k.
M. Andronache and 1. Savu

Problem 4. a) Let f: [0,1] — R be a differentiable tfunction having a
continuous derivative. Prove that if not all the values of f are positive then

1 1
< ’
_[0 fle)dr < jo £t .
b) Let g : [0,1] = R be a differentiable function having a continuous
derivative. Prove that :

J;(g(t) - ‘8'(f)|)dl S g(x) < J;(g(t)_+lg'(t)l>dt , for every xe [0,1].

S. Ridulescu and P. Alexandrescu
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