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The 52" National Mathematical Olympiad
2" Round (county level), March, 2001

7" Grade

Problem 1. A natural number is called “good” if can be written both
as a sum of two consecutive natural numbers and as a sum of three
consecutive natural numbers. Show that:

a) 2001 is “good™, but 3001 is not “good”;

b) the product of two “good” numbers is “good”;

c) if the product of two numbers is “good”, then at least one of
them is “good”.

Bogdan Enescu
Problem 2. Let n=1234567891011...99100101.
a) Find the first three digits of the number Vn.
b) Compute the sum of the digits of the number .
c) Show that n is irational.
Valer Pop

Problem 3. Let ABC be a triangle and the points D,E and F such that :
i) B and E are separated by the line AC,
ii) D and C are separated by the line AB,
iif) A and F are not separated by the line BC,
iv) AADB~ ACEA~ ACFB.
Prove that :
a) ABDF~AFEC;
b) the segments AF and DE have the same midpoint.
‘ Dan Branzei
Problem 4. We consider the convex quadrilateral ABCD and the

points Me(AB), Ne(CD) such that AM = DN =k . Show that BC is
BM CN
parallel to AD if and only if MN = LAD + k. BC.
k+1 k+1




8™ Grade

Problem 1. a) Find integer numbers m and n such that
9’ +3n=n"+8.
b) Let @ and b be positive integers. Compare the numbers
x=a""" Ha+b)" and y=a’-+(a+b)""’.
Florin Nicoard and Valer Pop

Problem 2. Let x, y, z non—zero real numbers such that xy, yz, zx are
rational. ‘ ‘ :
a) Show that the number x’+y’+2 is rational. )
b) If the number x*+y’+z° is also rational, show that x, y, z are
rational.
Marius.Ghergu

Problem 3. The points A, B, C, D are taken such that they are not in
the same plane and:
V2

AB=BD=CD=AC=+2 AD= < BC=a.

Show that: .
a) There exists a point on the segment [BC] equally distanced from
the points A,B,C,D.
b) 2m(£(AD,BC))y=3m(£((ABC),(BCD))).
¢) 6[d(A,DC)P=7[d(A(BCD). ;
) Ion Trandafir
Problem 4. In the right parallelepiped ABCDA'B'C'D' we have:
AB=a, BC=b, AA'=¢. We denote by E and F the projections of the
point D on AC and A'C, respectively, and by P and Q the projections
of the point C' on B'D' and BD', respectively.
Show that the planes (DEF) and (C'PQ) are perpendicular if and
only if b*=a’+c’.
Sorin Peligrad

. 9" Grade

Problem 1. We consider the equation :
2+ (atb+cyx + Mab+tbc+ca) =0,
where g, b, ¢ are positive real numbers and A€R is a parameter. Show that:

a)if A< %, the equation has real roots;

b) if @, b, c are the lengths of a triangle’s sides and A > 1, then the
equation does not have real roots.
# Rk

Problem 2. In the system of coordinates xOy we consider the lines
having the equations: di: 2x-3-2=0, dy: x+y—4=0, dy: =2 and
dy: x—4y+3=0.
Find the vertices of the triangles which have the medians dy, d», ds
and in which dj is one of the altitudes.
Lucian Dragomir

Problem 3. Letkand m<m<...<m be odd positive integers. Show that:
- +nl —nl . A0k = 2k -1,

Titu Andreescu
Problem 4. We consider a function f: Z —Z with the property:

S )= (myn,
for every m, neZ. Show that:
a) f0)=0;
b) A1

c) Any=n, for every neZ.

Lucian Dragomir




10" Grade

Problem 1. Show that if (a,),»1 is a sequence of non-zero real
numbers such that :
aC +a,C? +..4a,C" =a,2™", for every neN’,
then (a,),» is an arithmetical progression.
Lucian Dragomir

Problem 2. We say that the pair of complex numbers (z;, 2,)C'xC’
has the property (P) if there exists a real number a<[-2,2] such that

212 ~az,2, + zz2 =0. Show that if (2, z,) has the property (P), then for

every natural number 7, the pair (2,23 ) has this property.
Dorin Andrica

Problem 3. We consider the cyclic pentagon ABCDE. Denote by Hj,
H,, H;, Hy, Hs the orthocenters of the triangles ABC, BCD, CDE,
DEA, EAB and with M;, M,, M;, My, M; the midpoints of the
segments DE, EA, AB, BC and CD, respectively. Show that the lines
H,M,, H,M,, H;M;, HyM, and HsM; are concurrent.

Dinu Serbanescu

Problem 4. Solve the equation:
1

2%8% 1 8= (x—8)"?
Daniel Jinga

11" grade

Problem 1. Let AeM,(R) with detd=d#0, such that
det(4+dA™)=0.
Prove that det(A—dd") =4

Daniel Jinga

Problem 2.Let ne N, n>2. For every matrix 4 € M, (C), we denote
by m(4) the number of all its non—zero minors. Show that:
a) m(I,)=2"-1.
b).if 4 € M, (C) is nonsingular, then m(4)>2" —1.
Marius Ghergu

Problem 3. Let f :R—>R a function which transforms every closed
and bounded interval in a closed and bounded interval and every open
and bounded interval in an open and bounded interval.
Show that f'is continuous.
Mihai Piticari

Problem 4. Show that:
a) the sequence x, = L+ !
n+l n+2

b) there exists a sequence (a,),,; With values 0 or 1 such that

[im(_al*__,,i_'_m_,_._aﬂ_):l

1 . .
+——, n>1, is monotonic;
n+n

nmso\n+l n+2 n+n 2
Radu Gologan




12" grade

Problem 1. For every neN’ we consider H, = {i' ke Z}
n!

a) Prove that A, is a subgroup of the group (Q,+) and that
Q= |JH,.
neN”
b) Prove that if Gy, G,, ..., G, are subgroups of the group (Q,+)
and G, #Q, V 1<i<m, then
GuUG,U.UG, #Q.
Marian Andronache and Ion Savu

Problem 2. Let K be a commutative field with 8 elements. Prove that
there exists a €K such that
ad=a+ 1.
Mircea Becheanu
Problem 3. Let f: [0,1]>R, be a continuous function, with the
property that for every third degree polynomial function
P: [0,1]> [0,1] we have:

1
[repepas=o.
0

Show that f(x)=0, for every xe[0,1].
Mihai Piticari
Problem 4. a) Show that: In(1+x)s x, for every x> 0.
1 n
b) Let a> 0. Prove that: limn I e

ne a4 x”

dx:lna—H.
a

ok

The 52" National Mathematical Olympiad
Final Round, April 7-13, 2001,
Targu Mures

7" Grade

Problem 1. Show that there exist no integer numbers a and b such

that @® +a’b +ab? +b° = 2001.
*ok ok

Problem 2. Let a and b be real, positive and distinct numbers. We
consider the set:
M= {ax+by | x, yeR, x>0, y>0, x+y=1}.
Prove that :
2ab

i) eM,
a+b

i) Vab eM.

Romeo llie

Problem 3. We consider a right trapezoid 4BCD, in which 4B || CD,
AB > CD, AD1A4B and 4D >CD. The diagonals AC and BD intersect
in O. The parallel through O to 4B intersects AD in E and BE
intersects CD in F. Prove that CELAF if and only if
AB-CD=A4D*-CD*.

L 23

Problem 4. We consider the acute angle ABC. On the half-line (BC
we consider the distinct points P and Q whose projections on the line
AB are the points M and N. Knowing that 4P=A4Q and

AM? — AN* = BN® — BM?, find the angle A4BC.
Mircea Fianu




8" Grade

Problem 1. Determine the real numbers @ and b such that a+beZ and
a+b=2,
Romeo Ilie

Problem 2. For every rational number m > 0 we consider the function
JuR-R, £ (x)= Lx+ m . Denote by G,, the graph of the function f,,.
m .

Let p, g and r be rational positive numbers.

a) Show that if p and g are distinct, then G, NG, is nonempty.

b) Show that if G, NG, is a point with integer coordinates,
then p and g are integer numbers.

¢) Show that if p, g, r are consecutive natural numbers, then the
area of the triangle determined by the intersections of G, G, and G, is
equal to 1. ’

Mircea Fianu

Problem 3. We consider the points 4, B, C, D, not in the same plane,
such that 4BLCD and AB* +CD? = AD? + BC? .
a) Prove that AC L BD.
b) Prove that if CD < BC <BD , then the angle between the
planes (4BC) and (4DC) is greater than 60°.
Sorin Peligrad

Problem 4. In the cube ABCDA'B'C'D’, with side a, the plane (4B'D")
intersects the planes (4'BC), (4'CD), (4'DB) after the lines d,, db, and
ds, respectively.

a) Show that the lines dy, ds, ds pairwisely intersect.

b) Determine the area of the triangle formed by the three lines.
*hk

9" Grade

Problem 1. Let 4 be a set of real numbers which verifies:,
a) led,; .
b) xed =>x’e4;
¢) X’—4x+4 €4 = xed.
Show that 2000+ v2001 4.
Lucian Dragomir

Problem 2. Let ABC a right triangle (A=90°) and De(4C) such that
BD is the bisector of B. Prove that BC ~ BD =2A4B if and only if
1 1 1

Dan Brénzei

Problem 3. Let neN" and v, V2,..., ¥, vectors in the plane with
lengths less or equal to 1. Prove t}.lat there exist €, &,,..., g,€{-1,1}
such that
IS]V]"’E;V["...‘F 8,,V,,| < ’\/5 .
Mihai Bdlund

Problem 4. Determine the ordered systems ( x, ¥, z ) of positive

. . . 1 1 1 .
rational numbers for which x+—, y+— and z+— are integers.
: .y z x

Mircea Becheanu




10" Grade

Al : B
Problem 1. Let @ and b be complex non-zero numbers and z,,z, the
roots of the polynomial X* +aX +b. Show that | z, + z,|=| z| +| z,] if
and only if there exists a real number 1> 4 such that a® =Ab .
Valentin Matrosenco

Problem 2. In the tetrahedron O4BC we denote by o, B, y the
measures of the angles ZBOC, ZCOA and £AOB, respectively. Prove
the inequality:
cos? o+ cos? B+ cos” y <1 + 2 cos a.cos B cos 7.
Dinu Serbdnescu

Problem 3. Let m, k be positive integers, k < m and M a set with m
elements. Prove that maximal number of subsets 4,, 4, ... , 4, of M
for which 4;N 4; has at most k elements, for every 1< i <j < p, equals

m m m m
P = + + +ot .
GG
Mihai Manea

Problem 4. Let n > 2 an even integer and q, b real numbers such that
b" =3a+1. Show that the polynomial P(X)=(X*+X +1)' - X" —a is

divisible by O(X)=X*>+X*+ X +b ifandonly if b=1.
Cristinel Mortici

11" Grade
Problem 1. Let £ R—R a continuous function, derivable on R\{ x, },

having finite side derivatives inx,. Show that there exists a derivable
function g: R—R, a linear function #: R—>R and o € {-1,0,1} such that:
Sx) = g(x)+olh(x)|, VxeR.
Aurelzan Gheondea

Problem 2. We consider a matrix 4eM,(C), with rank 7, where n > 2
and 1< 7 <n-1.
a) Show that there exist Be M, (C), Ce M,,(C), with rankB =rankC =r,
such that 4 =BC;
b) Show that the matrix 4 verifies a polynomlal equation of degree
7 +1 with complex coefficients.

Mircea Becheanu and\lon Savu

Problem 3. Let f: R—[0, ) a function with the property:

| Ax) — )| < x-, for every x, yeR.
Show that: ‘
a) if lim f(x+n)= oo, for every xeR, then lim f(x) =0

b)if limf(x+n)=a, ac[0,o), for every xeR, then limf(x)=a.

Mihai Piticari and Sorin Radulescu

Problem 4. The continuous function f: [0,1]—R has the property:
limn[f[x+ l)-—f(x)j =0, forevery xe[0,1).
e n

Show that:
a) for every € > 0 and Ae(0,1), we have:
sup{ xe[0, ) | | fx)-A0) | <ex } =A;
b)¥is a constant function:
Cristinel Mortici

13




12" Grade

Problem 1. a) We consider the polynomial P(X)=X’<cR[X]. Show that
for every aeR’, the polynomial P(X+a)~P(X) has no real roots.
b) Let PER[X] be a polynomial of ‘degree n > 2, with real and distinct
roots. Show that there exists aeQ’ such that the polynomial
P(X+0)-P(X) has only real roots. '

’ Radu Gologan

Problem 2. Let A4 be a finite ring. Show that there exist two natural
numbers m, p, m> p > 1, such that T

a" =a’,Yae A
Ion Savu

Problem 3. Let £:[~1,1]->R be a continuous function. Show that:-
a) if L‘f(sin(x +a))dx =0, for every aeR, then f(x)=0,vxe [—1,1];
b) if L‘f(sinmc)dx =0, forevery neZ, then f(x)=0,vxe [—1,1].

Dorin Andrica and Mihai Piticari

_Problem 4. Let f[0,0)>R a. periodical function, with period 1,
integrable on [0,1]. For a strictly increasing and unbounded sequence
(Xm0, X0=0, with fl_'ﬂ( X, —~%,) =0, we denote r(ny=max{k|x; <n}.”

a) Show that: .
1)
lim = 3 (% = %) (%)= [ f(x)dx.
b) Show that:
& fnk)  a
lim—> f——2 = v
"%,Inn; k Lf(x)dx.

Cristinel Mortici
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Selection examinations for the 42" IMO, 2001
First round, April 12", Targu Mures

Problem 1. Show that if a, b, ¢ are complex numbers such that
(a+b)a+c)=b
(b+eyb+tay=c
(c+a)c+b)=a
then a, b, c are real numbers.
Mihai Cipu

Problem 2. a) Let f, g : Z — Z be one to one maps. Show that the

function % : Z — Z, defined by A(x) = f{x) g(x), for all xeZ, cannot be

a surjective function.

b) Let f: Z — Z be a surjective function. Show that there exist

surjective functions g, & : Z — Z such that f{x) = g(x) a(x), for all xeZ.
Ion Savu

Problem 3. The sides of a triangle have lengths a, b, ¢. Show that:
(—atb+c)(a-b+c) + (a-b+c)(a+ b—c) + (a+ b—c) (—a+b+c) <

< abc(\/a+\/34_-\/_c_).

Mircea Becheanu

Problem 4. Three schools have 200 students each. Every student has
at least one friend in each school (if the student a is a friend of the
student b then 4 is a friend of a).

It is known that there exists a set £ of 300 students (among
the 600) such that for any school § and any two students x, yc E which
are not in the school S, the numbers of friends in S of x and y are
different.

Show that one can find a student in each school such that they
are friend to each other.

Antal Bege

15




Second round, May 19", Bucharest

Problem 5. Find all polynomials with real coefficients P(X) such that
P(x)- Pl2x* —1)=P(x*)- P2x - 1) ,
for every xeR.
Nicolai Nikolov (Bulgaria)

Problem 6. The vertices 4, B, C, and D of a square lie outside a circle
centered in M. Let A4', BB', CC', DD' be tangents to the circle. We
assume that the segments 44, BB', CC’, DD’ are the consecutive sides
of a quadrilateral p in which a circle is inscribed. Prove that p has an
axis of symmetry.

Dan Bréanzei

Prob!em 7 Find the least number » with the property : from any n
half lines in the space sharing a common origin, one can pick two such
that the angle between them is acute.

Mihai Balund

Problem 8. Prove that there are finitely many positive integers that
cannot be written as a sum of distinct squares.

Radu Todor (IMO 200 Shortlist)

Third round, May 25", Bucharest

Problem 9. Let n be a positive integer and f(X):aO +aX+..+a,X",
with m > 2, a polynomial with integer coefficients, such that :

(1) a,,a,,...,a, are divisible by all prime factors of ,

(2) @ and n are relatively prime.

Prove that for any positive integer %, there exists a positive i
" any po A posttive integer c,
such that f{c) is divisible by n*. ¢

Ion Savy

Problem 10. Let p and g be relatively prime positive integers. A
subset S of {0, 1.2....} is called ideal if 0€S and, for each element
nes, the integers n+p and.n+q belong to S. Determine the number of

ideal subsets of {0, 1, 2,...}.
41" IMO, Jury

Fourth round, May 26", Bucharest

Problem 11. Find all pairs (m, n) of positive integers, with m, n > 2,

such that a"—1 is divisible by m for each ac {1, 2, ..., n}.
L Panaitopol

Problem 12. Prove that there is no function (0, ©0)—>(0, ) such that
Fle+)2 1)+ (7(x)),

for every x, ye(0, ). Buleari
ulgaria

Problem 13. The tangents at 4 and B to the circumcircle of the acute
triangle ABC intersect the tangent at C in the points D and E,
respectively. The line AE intersects BC in P and the line BD intersects
AC in R. Let S be the midpoint of the segment 4P. Show that the
angles ZABQ and ZBAS are equal.

United Kingdom (IMO 2000 Shortlist)

Problem 14. Let P be a convex polyhedron, with vertices V1, 3,...,
¥,. The distinct vertices ¥; and V; are called neighbours  if they belong
to the same face of the polyhedron. In each vertex V; an integer
number v,(0) is written and next, the sequences (v{(#)).»0 are defined as
follows: v(n+1) is the arithmetic mean of the numbers v(n), for all
vertices ¥; which are neighbours with 7.

Prove that if all v(n), 1< i< p, neN, are integer numbers, then there

exists MeN and keZ such that v(n)= k, for every n > M and every
i=1,2,...p.
Barbu Berceanu
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Selection Examinations for the 5 JBMO
1% Selection Examination,
April 12", 2001, Targu Mures

Problem 1. Let ABC be an arbitrary triangle. A circle passes through
B and C and intersects the lines 4B and AC in D and E, respectively.
The projections of the points B and E on CD are denoted by B’ and E',
respectively. The projections of the points D and C on BE are denoted
by D'and C’, respectively. Prove that the points B, D', E' and C' lie on
the same circle.

Dan Brdnzei

Problem 2. Find neZ such that the number\/ 4n _52 is rational.
n+

Dan Popescu
Problem 3. In the interior of a circle centered in O a number of 1200
points Ay, A, ..., Ay are considered, such that for every i, j with

1< i< j < 1200, the points O, 4, and Aj are not collinear. Prove that
there exist the points M and N on the circle, with m(£LMON)=30°,
such that in the interior of the angle ZMON lie exactly 100 points.

Bogdan Enescu
Problem 4. Three students write on the blackboard next to each other
three two-digit squares. In the end, they observe that the 6-digit
number thus obtained is also a square. Find this number!

Mircea Becheanu

2" Selection Examination, May 19% 2001, Buziiu

Problem 5. Let ABCD be a rectangle. We consider the points EeC4,
FeAB, GeBC such that DELCA, EF14B and EGLBC. Solve in the
set of rational numbers the equation AC* = EF¥ . EG*.

Dan Brénzei

18 -

Problem 6. Let A'be a non—empty subset of- R with the property that
for every real numbers x, y, if x+ye4, then xyeA. Prove that AiRL
ok Eugen Paltdnea
Problem 7. Let ABCD be a quadrilateral inscribed in the circle O. For
a point E€O, its projections K, L, M, N on th-e lines DA, AB, BC, CD,
respectively, are considered. Prove that if N is the orthocenter of th'e
triangle KLM for some point-E, different from 4, B, C, D, then this

int E of the circle O.
holds for every poin Dan Brénzei

Problem 8. Determine the positive integers a < b < t:}:‘ < d with the
rty that each of them divides the sum of the other three.
property e Dinu Serbdnescu

3™ Selection Examination, May 20" , 2001, Buziu

Problem 9. Let 7 be a non-negative integer. Find the non—negative
integers a, b, ¢, d such that
A +b’+ct +d>=7-4" .
Laurentiu Panaitopol
Problem 10. Let ABCDEF be a hexagon with AB||DE, BC|EF,
CD||FA and in which the diagonals 4D, BE and CF are congruent.

Prove that the hexagon can be inscribed in a circle. o
Dan Brdnzei

Problem 11. Let n > 2 be a positive integer. Find the positive integers

x such that

ber of radicals.
for any number of ra Ion Dobrotd

P‘robl'em 12. Determine a right parallelepiped with minimial a’r.ea, if its
volume is strictly greater than 1000, and the lengths of its sides are

integer numbers. . .
Dinu Serbdnescu
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The 52™ National Mathematical Olymplad
2" Round :
Solutlons

7ﬂl Grade
Problem 1. 4 natural number is called “good” if can be wrztten both
as a sum of two-consecutive natural numbers and as a sum of three
consecutive natural numbers. Show that: .
a) 2001 is “good”, but 3001 is not “good”; i
< .b) the product of two “good” numbers is “good”;

¢) if the product of two.numbers.is “good”, then at least one of
them is “good”.

Solution. a) It is easy to see that a number is “good” if and only if is
odd and divisible by 3. Thus, 2001 is “good” but 3001 is not, since it
is not divisible by 3. -

b) The product a two odd and divisible by 3 numbers is also odd and
divisible by 3, hence the conclusion. -

¢) If the product of two numbers is 6dd and divisible by 3, then both
factors are odd and at least one of them is divisible by 3.

Problem 2. Let n = 1234567891 011...99100101.

a).Find the first three digits of the-number V.

b) Compute the sum of the digits of the number n.

¢) Show that Vn is irational.
Solution. a) We observe that the number 7 has 195 dxglts By applymg
the algorithm of extracting the square. root, we find that the first three
digits of Vn are equal to 1.
b) The requested sum is 903. )
c) Since the digits’ sum is 903, 3 divides n but 9 does not d1v1de n,
hence \/; cannot be a rational number.

Problem 3. Let ABC be a triangle and the points D,E and F such that:
i) B and E are separated by the line AC,
i) D and C are separated by the line AB,

20

iti) A and F are not separated by the line BC,
iv) AADB~ ACEA~ ACFB.
Prove that :
-a) ABDF~AFEC; — o
b) the segments AF and DE have the same midpoin
Solution .a) From the similarity of the triangles ADB and CFB we

obtaln Q—Q henci Q:Q and it results that AABC ~

e ,
AB- BC’ FB BC ‘ )
ADBF. Analogously, AABC ~ AEFC and conclusion is obvious.

BT . DF DB _AE.  hence
b) From the above similarities we obtain E 18- aC’
AE=DF. Analogously, AD=EF, so the quadrilateral AEFD is a

parallelogram and its diagonals have the same midpoint.

Problem 4. We consider the convex quadrilateral ABCD and the

AM DN

points Me(4B), Ne(CD) such that M C—N =k. Show that BC is
1

parallel to 4D if and only if MN = Tl AD + E—]—BC

Solution. If BC || AD the conclusion follows immediately.
Conversely, let Pe(AC) such that MP || BC. It results PN || 4D and
from the hypothesis, MP+PN=MN. It follows that BC'|| AD.

8" Grade
Problem 1. a) Find the mteger numbers m and n such that
9’ +3n=n"+8.
b) Let a and b be positive integers. Compare the numbers
x=a"" +(a+b)" and y=d +(a+b)
Solution. a) We observe that Om*+3n=n"+8 1f and only if
(6m-2n+3)(6m+2n-3)=23. Checking all ways in which 23 can be
written as a product of integer numbers, we obtain the solutions
2:7),(2;-4),(-2;-4) and (-2;7).
(b) \3\’(6 observe that x—y=a"(d’~1)~(a+b) ((a+b) b_j).
From 4 <(a+b)’ and 0sa b_1<(a+b)’~1, it results x<y.
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Problem 2. Let x, y, z non—zero real numbers such that xy, yz, zx are
rational. .

a) Show that the number x’+y*+2 is rt.ztional.

b) If the number x’+y*+7° is also rational, show that x, y, z are
rational.

Solution. a) If xyeQ and yzeQ, it results £ ¢ Q, but xzeQ, hence
z

x"€Q. Similarly, y? and 2* are rational, hence their sum is also rational.
b) We observe that x(x3+y3+z])=(xz)2+(xy)y2+(xz)zzeQ, hence xeQ.
Analogously for y and z,

Problem 3. The points 4, B, C, D are taken such that they are not in
the same plane and:

AB=BD=CD=AC=+2 AD= % BC=a.

Show that: .

a) There exists a point on the segment [BC] equally distanced from
the points A,B,C,D.

b) 2m((AD,BC))=3m(((ABC), (BCD))).

©) 6{d(4,DC)]*=7[d(4,(BCD))]".
_Solution - a) It results that ABDC is right in £ D, and ABAC is right
in £ A. Therefore, if M is the midpoint of [BC], then
MA=MB=MC=MD. ‘ ‘
b) We can see that m(Z(AD,BC))=90" and m(Z£(ABC),(BCD))=60".
¢) Construct AQLMD, QeMD, and it results that AQL(ABC), hence

a6
d(A,(BCD))=AQ=T. Construct QP.LDC, PeDC. It results that

a7
T

APLDC hence d(A,DC)=AP=

Problem 4. In the right parallelepiped ABCDA'B'C'D' we have:
AB=a, BC=b, AA'=c. We denote by E and F the projections of the

2

point D on AC and A'C, respectively, and by P and Q the projections
of the point C' on B'D’ and BD', respectively.

Show that the planes (DEF) and (C'PQ) are perpendicular if and
only if bP=d’+c*.
Solution. We observe that A'CL(DEF) and BD'L(C'PQ). It results
that (DEF) 1(C'PQ) if and only if A'C1. BD' and then A'CL BD'if
and only if b?=a’+c?.

9% Grade

Problem1. We consider the equation :x’+(a+b+c)x+Alab+bc+ca)=0,
where a, b, c are positive real numbers and A €R is a parameter. Show
that:

a)ifAs % the equation has real roots;

b) ifa, b, ¢ are the lengths of a triangle’s sides and A > 1, then the
equation does not have real roots.
Solution.a) We observe that A=(a+b+cy’—4ab+bc+ca).
Using the inequality (a+b+c)*> 3(ab+bc+ca), we obtain

A2 (3-4A)( ab+bctca) 2 0.
b) Since a, b, ¢ are the lengths of a triangle’s sides, we have |a—b|< ¢
hence (a-by’<c?. Analogously we obtain (b—c)*< &” and (c—a)* < b
and, by adding, we find (a+b+c)* < 4(ab+bc+ca), hence
A <4(1-A) ab+bc+ca)< 0.

This means the equation has no real roots.

Problem 2. In the system of coordinates xOy we consider the lines
having the equations: d;: 2x—-2=0, dy: x+y—4=0, d;’ y=2 and
dy: x—~4y+3=0.
Find the vertices of the triangles which have the medians d,, d,, d;
and in which d, is one of the altitudes.
Solution. Let Aed), Bed,, Ced,. It results that there exists a, b, ceR
such that the points have coordinates A(a, 2a-2), B(b, 4-b), C(c, 2).
By computing the coordinates of the midpoints of the sides of the
triangle ABC, we obtain 5=2a-2, ¢c=8-3a, hence we have A(g,2a-2),
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B(2a-2, 6-24a), C(8-3a, 2), with aeR. From the condition d; 1L BC and
A€ d,, we obtain a=1, hence A(1, 0), B(0, 4), C(5, 2).

Problem 3. Let k and n;< n,<...< m, be odd positive integers. Show
that: )
2 2,2 2 2 2
n) n2+n3 n4+...+nk22k L

Solution. We prove the statement by induction on & 2 1. The case k=1
is obvious. We suppose that

2 .2,.2 2 2 2
ni’ —ny +ng —n4+...+nk22k —1.

and we prove
B -1 A1 =1} b A0 = i, 2 2(k+2) —1=2k" ~1+8k+8.
Thus, is sufficient to prove that

n,—ni, 28k +8,
or that (nk+2 -, Xn,(_r2 + nh,)z 2(4k +4). This"is obvious since
M., — M,y 22, and from the hypothesis it results that n, >2k—1 ,

hence n,,, +n,, 24k +4.

Problem 4. We consider a function f: Z —Z with the property:
Jom*+ftw)=f*(m)+n,

for every m, neZ. Show that:

a) fio)=0;

b) f)=1I;

¢) fin)=n, for every neZ.
Solution. For m=0 we obtain f{f(n))=f %0y+n (1). From this, it results
that if f{x)=A(y) then x=y. Also, we deduce that there exists k such that
Ak)=0 (namely A=f—f %(0y)). Let A0)=I. For m=k and n=0, it results
AK+D=0=Ak), hence K>+I=k. For n=k in the relation (1) we obtain
JRK)=AO)=I=P+k. It results k=I=0, hence f0)=0. Form =1 and n =0
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in the initial relation one gets: A1)= f %(1), hence f1)=1. Also, we
obtain f2)= A1+ A1))=1+ A1)=2. By induction it results An)=n, for
every neN, and then fn)=n, for every neZ (one obtains

S=m)y=—fim)).
10" Grade

Problem 1. Show that if (aynx is a sequence of non-zero real
numbers such that :

aCl +a,C? +...+a,Cl =a,2"", for every nen’,
then (ay),z is an arithmetical progression.
Solution. It is easy to see that &;=2a; and a;=3a;. We prove by
induction that a,=na, for every neN Suppose a=k ay, for k < n—1,we
have

am -1)=afi-Cl+2-C2 +...+(n—1)~c;’-')=a,(\";kcf —nC,',']=
k=1

=q (i nCey - n) =a (nZ"“' - n)

k=1 .
hence a,=na;. Obviously, the sequence (a1 is an arithmetical
progression.

Problem 2. We say that the pair of complex numbers (z,, z3) eC'xC’
has the property (P) if there exists a real number ae[~2,2] such that

zl2 —azz, + z% =0. Show that if (z;, z2) has the property (P), then for

every natural number n, the pair (z\',z5) has this property.

Solution. Let 2L _ 4. We obtain ~ar+1=0. Since ac [-2,2], there
2z
exists o€ [0,n] such that =2cosa and it results that # =cosa. i sinat.
It follows that
n
E'n— =¢" =cosna + isinna , for every neN.
Z
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n_n

Hence z" — 2cosnazizh + 22" =0, i.e( z{',z3 ) has the property (P).

Problem 3. We consider the cyclic pentagon ABCDE. Denote by Hy,
H, H;, H, H; the orthocenters of the triangles ABC, BCD, CDE,
DEA, EAB and with M;, My, M;, M, M; the midpoints of the segments
DE, EA, AB, BC and CD, respectively. Show that the lines H;M,,
H,M,, H;M;, H,M; and H;M; are concurrent.

Solution. We use complex numbers. If the points A, B, C, D and E
corespond to the complex numbers a, b, ¢, d, e, respectively, it is
known that H; coresponds to hj=a+b+c, etc. , and M, coresponds to
m;=(d-+e)/2. A point P coresponding to p is on the line H;M; "if and
only if there exists t such that p=(1-t)(a+b+c)+t(d+e)/2. It is easy to
check that the point P coresponding to (at+b+c+d+e)/3 belongs to all
lines H;M,.

Problem 4. Solve the equation:
1

287 8= (x—8)2
Solution. Clearly, x>8. Let 2" +8=y; it results 2% = y—8and

1
(x—'8)1?z =y, s0 we get:

lgx + logz(x—8)=lgy+ logz(y-S) .
We deduce x=y, hence 2'® +8=1x.If we denote 2 =¢, it results
2'+8=10', with the unique solution 7=1. Tt follows that x=10.

11" grade

Problem 1. Let AeM,(R) with detd=d =0, such that
det(A+dA") = 0. Prove that det(4—dA")=4.
Solution.
m n . q -n
Letd= , A4 = ,d =mq—-np,mn,p,qeR. By
(P ‘I) (_ p m j 1
direct computation, we have:
26

m+qd n(l-d)
p(1-d) q+md

and the condition from the enounce becomes d =1 and m + g = 0.
Then '

det(A+dA" )= =dld-1)* +(m+q,?]

m-q 2n|

det(A—dA*)=det(AAA')=‘

2p gq-m
=—~(m+q)* +4(mg—np)=4d =4.

Problem 2. Let neN, nz2. For every matrix Ae M, (C), we
denote by m(A) the number of all its non—zero minors. Show that:

a) m(1,)=2"-1.

b) ifd e M, (C) is nonsingular, then m(A4)=22" —1.
Solution.a) We consider the columns i, <...<j, € {1,2,.,.,n} of the
matrix 7,. We observe that only non—zero minor of order k is formed
by the rows i) <...< i, hence for any k columns we have only one
non—zero minor. It results that the number of the non—zero minors of
order kis C¥ and that their sum is 2" 1.
b) Let's fix ke{l..,n} and consider the columns
i <..<i, €{l..,n}. If all minors of order ¥ which contain these
columns are zero, then every minor of order £ + 1 which contains
these columns is equal to zero. Analogously, every minor of order
k + 2 which contains these columns is zero and finally, detA = 0,
which is a contradiction. Hence there exists one minor of order k with
elements from these columns which is non—zero. It results that we

k A .
have at least C, minors of order k which are non—zero (we can

choose C¥ systems of k columns from #) and then the total number is
at least 2" — 1.
Problem 3. Let f :R—>R a function which transforms every closed

and bounded interval in a closed and bounded interval and every open
and bounded interval in an open and bounded interval.
Show that f is continuous.
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Solution. Let a < b, and suppose that f{(a,b)) = (c,d). Since Alab]) is
a closed and bounded interval and f{[a, b])=(c,d)w {fa)fb)}, it follows
that fla)y=c and f{b)=d or fla)=d and fb)=c. Anyway, f (a);ﬁ f (b) thus
fis an injective function .

Next, if we take w between fa) and Ab), since
K(a.b))=(la) /(b)) or A(a,b))=(Ab)fa)). it results that there exists X
in (a,b) with f{x,)=w. Hence f has the intermediate values property.

In conclusion, f is continuous, being injective and with the
intermediate values property.

Problem 4. Show that:
1 1
a) the sequence x, =——+-——+.. .+
n+l n+2 n+n

b) there exists a sequence (a,),s, withvalues 0 or I such that

, a a, a, 1
lim{ ——+ —2—+ + =
o\ n+l n+2 n+n) 2
1 11 1

, n2l, is monotonic;

Solution.a) x,,, — x, = + = - >0,
2n+l 2m+2 n+l 2n+1 2n+2

b) Obviously , x,>1/2 and we inductively choose a; € {0,1} such that

l<—’—+ R <I+L

27 n+l n+2 “nen 2 2n°
for every ne N’

For n = 2 we choose a,=a,=1.1f a,...,a, are already chosen, we
proceed in the following way to choose a,,.;:

—if

1 >l we choose a,.; = 0 and the relation )
n+2 2n+1 2

remains true for n+1.

. a, 1 . .
—if +...+—"—<—, we choose a,.; = 1 and it remains to show
n+2 2n+1 2

that b, =—S—4 4 LI
n+2 2n+1 2n+2 2
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Indeed, using the induction hypothesis, we have:
1 1 1 1
b = al T T n 7777777
n+l n+2 2n 2n+
1 1 1
T B ;_L)_,”_(;,_] 1
T o 22" (bl ne2 2n 2 me2

r 1,1t 1 "1 >0.

= +
2n+1 n+1 2n+2 2 2n+l 2n+2 2

12" grade

. . k|
Problem 1. For every neN we consider H, = {»—'l ke Z}.

a) Prove that H, is a subgroup of the group (Q,+) and that
o= H,
neN’
b) Prove that if G;, G, ..., Gy, are subgroups of the group (Q,+) and
G, #Q, V 1<i<m, then

GuG,u..uG, =Q.

k J k+
Solution. a) Let x,ye H, , x=;7,y:;, hence x+y=

so it follows that H, is closed under addition.
Let xe A, ,x—%a—x:—’feHu, hence H,<Q.If xeQ, x:§,
" o

then x e H,, hence = UH

“nenN*

b) We consider A={L|neN'}. If we suppose that

Q=G,uU... UG,, since 4 is infinite, it results that there exists i such

ms

that G,nA4 is also infinite. We observe that H,c H,, and if
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1 .
- € G,, itresults that H, — G.. Let n < r such that 17 €G, N A. Then
n! 7!

H,cG =H,cG,. Hence |JH, cG, or Qe G,, contradiction,

neN

Problem 2. Let K be a commutative field with 8 elements. Prove that
there exists aek such that
d=a+1.

Solution. The group (X",-) has 7 elements, hence for every xek’, we
have x’=1. It follows that the polynomial £ =x® — x has as roots all the
elements of K. Since K is a commutative field, f has 8 factors of
degree one. We consider g=x—x-1;itis easy to see that
feg( + X5+ P+ x), since —1=1 in K. Then g contains 3 linear
fe;ctors of £, hence has roots in K. If aeK is a root of g, then we have
a=a+].

Problem 3. Let f : [0,1]5R, be a continuous Junction, with the
property that for every third degree  polynomial ~finction
P: [0,1]— [0,1] we have:

1
[7¢Pexppax =0
0

Show that f(x)=0, for everyxe[0,1].

Solution. We suppose that £ is not the zero function. Let xo€(0,1) with
J%9)#0, and suppose f{x,)>0.

Since fis continuous in Xy, there exists an interval [x0— &xy+£]c[0,1]
such that f{x)>0, for every X €[Xg— &xp+£].

We consider the polynomial function P:[0,11{0,1], P(x)=ax’+b,
with P(0)=x,— g P(1)= xy+& We have:

t
0= [f(P(x))dx=f(P(c))>0,

with ¢ €[0,1] from the mean value theorem, contradiction.
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Problem 4. o) Show that: In(1+x)< x, for every x> (.
1

n )

. X a+1

b) Let a > 0. Prove that: limn I —dx=In—.
n—o pa + X a

Solution. a) Take f{x)=In(1+x)—x with /’(x)< 0, hence Ax)<A0)=0.
b) We have:

[ 1 e 1 o )
n o= X [xnga+ 3" ) dv=lnfa+1) - [Infa+ b,
ja+x" o a+x" H ) 0

and

I 1 vl 1 vl
Ina< fln(a+x")dx = _[[lna+ln(l + x—Ddx <lna+ J'x;dx —lna.
0 0 a 0

The 52" National Mathematical Olympiad
Final Round
Solutions

7" Grade
Problem 1. Show that there exist no integer numbers a and b such
that @ +a’b+ab® +b* =2001.
Solution. We observe that the equality can be written as
(a2 +b2Xa+b)= 1-3:23-29. 1t results that the numbers & + b and
a+b are odd, hence a, b have different parities and o® + b? is a number
with the form 4k+ 1, keN. Thus, @* + 4 can be only 1, 29, 3-23 = 69
or 2001. We obtain )
o F+b=1>abe{0,-1,1} =a+b=x2001;
o I+b=29 =a,be{-55-2,2) a+b=69;
e '+ b*=69, impossible; .
o F+b= 2001, impossible.

Problem 2. Let a and b be real, positive and distinct numbers. We
consider the set:
M= {ax+by | x, yeR, x>0, y>0, x+y=1}.
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Prove that :
y - 2ab M i) Vab eM

Solution.

1)@—ax+by —za—b—ax+(1—x)b:>x — e(O 1) and y = €(0,1)
a+b a+b b

ii)vab =ax+by = vab =ax+(1-x)b =
vab—-b Vb va :
= = 0,1 d y=—==¢€/(0]1
a-b = \/;+\/;€( ) andy \/Z+\/_b—e( )

Problem 3. We consider a right trapezoid ABCD, in which AB || CD,
AB > CD, ADAB and AD >CD. The diagonals AC and BD intersect
in O. The parallel through’ O to AB intersects AD in E and BE
intersects CD in F. Prove that CELIAF if and only if
AB-CD=AD* -CD’.
Solution. Denote CE N AB ={G}.Let 4H ||CG,H € DC .

DF DE CO DC

Since OE||DC||AB=> “=="—=""=""=DF=DC
_ AB E4 04 4B

Since OF | DC || 4B = 2C - PE _CO _DC _ 4_ 4p
: "7 AG EA 04 4B

Because AHCG is a parallelogram = CH = 4B .
CELAF < AF1AH< AD* =DF-DH &
AD*=DC* + AB-DC < AB:DC=AD*-DC".

Problem 4. We consider the acute angle ABC. On the half-line (BC
we consider the distinct points P and Q whose projections on the line
AB are the points M and N. Knowing that AP=AQ and

AM?* — AN* = BN*— BM?, find the angle ABC.
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Solution. The points M and N are different, ordered 4, N, M B. The
relation AM? — AN* = BN* — BM?
is equivalent to

(AN +MN )} AN2 —~(BM+MN)*+BM* =0, _
hence 2MN (AN — BM) = 0, so, it follows that AN=BM (analogously
for the ordering 4,M,N, B).
Let T be the midpoint of the segment PQ. Since 40 = AP it results
ATLPQ. If TS1AB then TS is the midline in the trapezoid ONMP
hence SN = SM. Therefore AS=SB, hence the triangle ATB is a right
isosceles triangle It follows that m( £ ABC )= 45°.

. 8"Grade
Problem 1. Determine the real numbers a and b such that a+b EZ and
4b=2.
Solution.(a+b)* <2(a* +b*) = (a+b) s4=|a+b <2
=a+be{-2-1,0],2}. Denote a+b=k =24 —2ak+¥-2=0.
For the determined values of £ we obtain :

(ab)e{(l Dy m[ﬁ i}[l_@u_é}[l_@ ,-1_@]}

2 2 2 2 2

{[ lzf —1+\/_}(“)( 1_1)}

Problem 2. For every rational number m > 0 we consider the function
fiR-R, f(x)= Lx+ m . Denote by G,, the graph of the function f,.
m

Let p, q and r be rational positive numbers.

a) Show that if p and q are distinct, then G, NG, is nonempty.

b) Show that if G, NG, is a point with integer coordinates,
then p and q are integer numbers.

c) Show that if p, g, r are consecutive natural numbers, then the
area of the triongle determined by the intersections of G,, G, and G, is
equal to 1.
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Solution. If (a,B)eG,NG,, then ~1—0c +p=0 and la +g=p.
p q

Solving the system, we obtain o = pgand B= p+ ¢, hence

GonG~{(pg, p+a)}-

b)Let p =% ,q= 3 , fractions in the lowest terms. We have

ad + bc

prq= €N and pq:%eN,so itresults b |dand d | b. We

deduce that b=d=1, hence p,gcZ.
c) Let r=g+1=p+2. We have 10)=p, f(0)=p+l, f(0)=p+2,
GNG={(pg, p+@}={d}, GNG={(pr, p+r)}={B}, G.nG={(rq,
r+q)}={C}, and {P}=G,nOy, {Q}=G,NOy, {R}=G,NOy. We have:
area(4BC)y=area(COR)-area(ABRQ)=
=area(C QR)~(area(BPR)farea(A oP)) =

_ qr-RQ_(pr-PR_ pq-PQ)= (p+2p+)_plp+2)-2 plp+1)_,

2 2 2 2 2 2 ’

Problem 3. We consider the points A, B, C, D, not in the same plane,
such that ABLCD and AB* +CD* = AD* + BC? .

a) Prove that AC L BD.

b) Prove that if CD < BC <BD , then the angle between the
planes (ABC) and (ADC) is greater than 60°
Solution. a) From AB* + CD* = AD? +BC* = AD 1 BC. Let A0 L
(DBC). 1t results that O is the ortocenter of the triangle BCD, hence
AC L BD.
b) Let DN 1 AC, hence BN L AC. From BN < BC, DN < DC it results
that BD is the longest side of the triangle BDN, hence the conclusion.

Problem 4. In the cube ABCDA'B'C'D’, with side a, the plane (AB'D’)
intersects the planes (A'BC), (A'CD), (A'DB) after the lines d,, d5, and
ds, respectively.

a).Show that the lines d,, d,, ds pairwisely intersect.

b) Determine the aria of the triangle formed by the three lines.
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Solution.

a) Let E and G be the centers of the squares ABB’A’ and ADD’A’,
respectively, and F the centroid of the triangle AB’D’. Then d, = EF,
dy=FG, d;= EG. ‘

V6 aV2

b) We have EF = FG = aT ,GE= —2— , hence the required area

aZ

equals

9" Gradé

Problem 1. Let A be a set of real numbers which verifies:

a) led;

b) xed =>x’ed;

c) x2—4xfr4 ed = xed.
Show that 2000++/2001 €A.
Solution. Let x € 4; from b) we have Pe A, hence [(x +2) — 2]2 €A,
and from c) it results that x+2 € 4 (*). From le 4 and (*) it follows
inductively that 4 contains all odd positive integers. Thus, 2001=
=[(¥2001+2)-2]* e 4, hence ¥2001+ 2 e A. Using again the
remark (*), we obtain the conclusion.

Problem 2. Let ABC a right triangle (A=909 and D e(AC) such that
BD is the bisector of B. Prove that BC — BD=2AB if and only if
1 1 1
BD BC 24B’
Solution. Let u = m(<ABD). Then
Bp=—5— pc=—F
cosu cos2u

hence the relations from the enounce become

1

cos2u  cosu

+2 and cosu =cosZu+%
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If we denote cos u = x we obtain the equations 4x° + 2x> -3x-1=0
and 4x*—2x—1=0. Since 4%’ £2x* —3x—1= (x+1)(4x —2x-1) and
x #—1, the two equations are equivalent.

Problem 3. Let neN" and vy, v,,... » Vu vectors in the plane with lengths
less or equal to 1. Prove that there exist &l Eyenny & E{ 1,1} such that
levit eyt + gv,| <
Solution. If = 1, the statement is obvious, and for n =2 we have
IV|+Vzl2+|V|—Vz'2=2(|V1[2+|Vz‘2)54:>lv1+\’1[ S‘\/E or
| vi— v;l < s/i .

Now, let »n > 3. We use induction on 7. Suppose the property
true for #» — 1 and consider a system of n non—zero vectors vy, v,, ...,
va. Two of the vectors +vy, +v,, + vy, for instance v and v,, determine
an angle of at most 60°. Then | v; - v, | < 1; applying the induction
hypothesis for vi — vy and vs, v, ..., v, it results that there exists '€, €,
vt s €n1 € {~1, 1} such that

[ eV - gy + €3+ ..+ Sn—lvn’l S\E i ’

Problem 4. Determine the ordered systems (X, y, z ) of positive

. , 1 1 1
rational numbers for which x+—, y+— and z+— are integers.
y z o ox

Solution. Letx+l=a,y+l=b,z+l=c. Then
y z x

1 1 - )
,z= =A, hence

a-x b—y ab-1-bx

a—x

1
m+;=c®(bc— 1)x2+(a‘—b+c—abc)x+ab— 1=0.%)
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If bc=1thenb=1,c=1, hence a= 1, and it follows that the numbers
x, y; z cannot be all positive (likewise we exclude the cases ac = 1, ab
=1). If bc > 1, the discriminant of the equation is
A=(a—b+c—abcy—4(bc - 1)ab—1)=(abc - a—b - c)’— 4.
Since x must be rational, it is necessary that A is a square, which is
only possible ifabc —a—b—c=+2.
Since abc—a-b—-c=albc—1)-b—c2bc-1-b—<c=(b-1)c-1)22-2,
the relation abc — @ — b — ¢'= — 2 cannot hold unless all previous
inequalities become equalities, which leads toab=1orac=1orbc=1,
impossible.
The same inequalities show that the equality ab¢ —a — b —c =2
cannot hold if g, b, ¢ 2 3, hence at least one of numbers is 1 or 2.
Ifa=1then (b—1)c—1)=4, hence b=c=3 or {b, c} = {2, 5).
Therefore

e a=1,b=2,c=5=(x,y,2)=(1/3,32,2),

e a=1,b=3,c=3=>(xy2)=(1/2,2,1);

e a=1,b=5c=2>(x,y,2)=(2/3,3, 1/2).
If a =2 then (2b — 1)(2c — 1) =9, hence b=c =2 or{b, ¢} = {1, 5}.
Fora=b=c=2 we obtain (x, y, z) = (1, 1, 1) and the other cases are
obtained by performing circular permutations.

10" Grade

Problem 1. Let a and b be complex non—zero numbers and z,,z, the
roots of the polynomial X* +aX +b. Show that |z, + z,|=| z,| +| z,| if
and only if there exists a real number A >4 such that a* =\b .
Solution. We observe that the roots of the equation are non—zero, and
the condition ’zl + 2z, | = le [ +] zzl is equivalent to the following:
there exists the real number »> 0 such that z;=rz,.
If this is true, we have

a2 (zl +2,)? (r + 1)2
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Conversely, if = Ab,"A = 4, then the discriminant of the equation is
A=d* - 4b==d"(. - 4)/A, and

a r—4
=21~ =
25 2( . )

o _rrh-4 (hsdn-4y

A YomreC NN ENRTT) Lrso.

Problem 2. In the tetrahedron OABC we denote by a, B, y the
measures of the angles £BOC, £COA and £AOB, respectively. Prove
the inequality:
cos’ o+ cos® B+ cos’ y<I + 2 cos acos feos ¥
Solution. The relation is equivalent to
cos” 0.~ 2cos & cos B cosy + cos’ B cos’y <
<1 —cos’B — cos’y + cos’ B cos’y <>
& (cos o — cos B cosy)’ < sin’ B sin*y <>
< —sinf3 siny <coso—cosPcosy < sinfsiny <>

cos(B+y)<cosa<cos| Byl .
Since «, B, y € (0, 7), the last inequality is equivalent to

IB-yl <a<min{B+y,2n-p -y},
which results from Euler’s inequalities for the plane angles of a
trihedral angle.

Problem 3. Letm, k be positive integers, k < m and M a set with m
elements. Prove that maximal number of subsets A;, A, ... , A, of M
Jfor which A; N A; has at most k elements, for every 1<i <j <p, equals

pm=['gj+['g+[';}+...+[k'jlj.

Solution. If we consider 4;, 4,, ... , 4, be the subsets of M which
have at most k+l elements, we obtain a family with

m m m m
+ + +...+ sets which verifies the relation from
0 1 2 k+1

the enounce.
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Let now 4y, 4, ... , 4, be a family of sets which verifies the relation
from the enounce. For each 4; with |A,»| >k + 1 we consider a set B,C
A; such that | B,-[ =k +1. Then the function 4; — B;, defined for the
sets of the family which have at least k + 1 element and with values in
set of subsets of M which have & +1 elements is injective. It results

. m N
that the family contains at most ( ) sets which have more than

k+1

. C(m m m
k + 1 elemente and, obviously, at most (0)+[ ]+...+( ) sets

which have no more than k£ + 1 elements.

Problem 4. Let n > 2 an even integer and a, b real numbers such that
b" =3a+1. Show that the polynomial P(X)=(X* +X+1)'-X"—a is
divisible by Q(X)=X’+X*+ X +b ifand only if b= 1.
Solution. If 5=1thena=0and QX)=(X+1)X*+1)| PX).
Conversely, observe that b # 0 (otherwise P(g) = 0, where € is a
cubic root of the unity, hence | al =] &"| =1, contradiction with the
hypothesis), hence the roots z, z,, z3 of Q are non—zero. From
2 __b_
i+ +l=——=12,2;
1
and similar equalities we obtain
0=P(z,)+P(z,)+P(z,)=D 7'z - > 7 —3a=
=(1-2' )(1-z, )(1-2, )-1-3a+z/z,z} =
=(1-2)(1-2)(1-2})~1-3a+b" = (1- 2 )(1- 2 (12 ).
It results that, for instance, z{' =1.
Casel.If z;=1then b =-3 and P(1) =3"—-a— 1 =0, which
contradicts the hypothesis.
Case2.1fz7=—1thenb=1and a=0.
Case 3.1f z; € C\R then | 2 | = 1, hence z;=2z= 1/z) and z;=-b. It
results that O(—b) = 0, hence b =1 or b =0. As we saw, b =0 leads
to a contradiction hence we obtain 5= 1 and a = 0. )
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Second solution. It is easy to see that if 5=1 then Q| P. Conversely,

suppose Q| P. In this case b 0 hence Q| P if and only if Q| X"P. We
have

X"P:(X3 + X2 +X)’ — X _ax” =(Q—b)" X —ax".
Hence, O | X*"+aX"-b". Let %, %,,%; be the roots of 0. Then x/',xJ,x!

are the roots of the quadratic equation #2+af—5"=0. Since its
discriminant equals o’+45" > 0, the quadratic equation has distinct
roots, say #, . It follows that we have either x =x! =1,x" =t, or

x' =x; =x} =t,. The conclusion is now easy to obtain using the
equalities 1)+ ,=—q, f;1,=—b", X, X,%, =—b and by analizing the cases:
() x'x;x) =17t, and (i) x/x;x! =¢*.

11* Grade

Problem 1. Let £ R—R a continuous fimction, derivable on R\{x,},
having finite side derivatives in X,. Show that there exists a derivable
Junction g: R—R, a linear function h: R—R and a &€{—1,0,1} such that:

. S =g +adh(x)l, YxeR.
Solution. Let f* (x,), f',(x,) the side derivatives of fin xo. We
determine m such that g(x)= f(x )—m]x—xof is derivabile on R. It
is sufficient to impose the derivability in xo. Since f1is continuous, we
deduce: g, (%)= 1", (%,)+m, ', (%) = £y (x,) —m, hence
Lulm)=f' ()

2

m=

Problem 2. We consider a matrix A eM,(C), with rank v, where n > 2
and 1<v <n—I.

@) Show that there exist Be M, (C), Ce M,.(C), with rankB=
=rankC =r, such that A =BC;

b) Show that the matrix A verifies a polynomial equation of
degree r +1, with complex coefficients.
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Solution. a) Let A=(a,..;a,), Where a,,...,a,€M, (C) are the
columns of 4. If rank A = r, we choose r of these columns which
contain a determinant of order r different from zero (linear
independent columns). Let these columns be a,,...,a, and we define
B=(a,,..a,), Be M, (C). We consider the systems Bx = a,
1<k <n and xeM,, (C). These systems are compatibile and we
choose x; a solution of the system Bx =ay, 1<k<n.
We define C =(x,,...,x, )€ M,,(C). Then

BC = B(x,,...,x,)=(Bx,....Bx,)=(a,...a,) =4
and since rank 4 = r, it results » =rank(BC)<rankC <r, hence
rankC = r and similarly, we obtain rank B =r.
a) Let M =CBe M C) . Using Hamilton-Cayley’s theorem, M
verifies an equation of degree r, o, M" +...+a,M +a,/, =0. Then

we have
o, BM'C +...+ 0, BMC +0,,BC = 0.

But
BM*C = BCB...CBC = (BC )*"' = 4*", so that

a4+ +od +a,d=0.
Problem 3. Let f: R—[0, o) a function with the property:
| /%) =f)} < x|, for every x, yeR.
Show that: -
a) if lim f(x+n)=o, for every xeR, then {tﬂf(x)zoo;

b) if lim f(x+n)=a, ae[0,), for every x€R, then {%f(x):a.
Solutit:n. a) We suppose that f does not have the limitco. Then there
exists (x,),,x, > such that f(x,)—/e[000). We have:
\f(x,)= £, D)<k, - [%,]]<1, hence lim|f(x, )~ f([x, )| <1, that
is o<1 o o )

b) We suppose that £ does not have the limit a at infinity. We cons1d.er
tha case when  there  exists (x,), X, = © with
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f(x,)>be[0,0),b#a Let (x, )S(x,) such that lim{x, }=c.
We have

\f(x,,)=£3, T +c) <, - 1%, 1-d|=|rx, -d,
and then limlf(x, )~ f([x, ]+c)| sml{xh -delp-d<o,

hence b = a, contradiction.

Problem 4. The continuous function J: [0,1] =R has the property:
. 1
,l,'_ﬁ"(f(x+;J_f(x)] =0, foreveryxe[0,1).

Show that:

‘a) for every &> 0 and A&(0,1), we have: ,

sup{ xe{0, A) | | fx)A0) | <ex } =4 ;

b) fis a constant function.

Solution. Let s = sup 4, 0<s<A. We suppose by way of
contradiction that s <A. It results that f f(s)-f(0 )] <es. Let nyeN

such that s+ L <A and
nO

/{s+~) o)< /{s+nij—f(s)+lf(s)—f(0)ls

—Q{LJ
Hy My

1 ..
hence s +— € 4, contradiction. It follows that s =A.
nD

b) We proved that A=supd, hence ff(?»)—f(())'gsksz. We
obtained that lf(k)—f(O)' <&, Ve>0,1€(0]), hence fis constant.

f(s+—] f(s) <t Then we have:

0 0
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12" Grade

Problem 1. q) We consider the polynomial P(X)=X’ eR[X]. Show that
Jor every aeR’, the polynomial P(X+a)—P(X) has no real roots.

b) Let P eR[X] be a polynomial of degree n 22, with real. and
distinct roots. Show that there exists aeQ such that the polynomial
P(X+a)-P(X) has only real roots.

5 .
x+oc) =1. Tt results that

Solution.  a) (x+(x)5=x5,x¢0<:>[

X+

€C\R and thenxe:C\R.

b) Let x, <...<x, be the roots of P and y, €(x,,%,,,) the roots of its
derivative. Let

B=min{y, —x,, %, -y, |0<k<n-1}
On each interval [x,,x,,,] and for every O<a<f, we define
8(x)=P(x+a)-P(x). Since y is the only extremal point for P on
the interval[x,,x,, ], if we suppose, for instance, that it is point
where P reaches its maximal value, we have:
g(%)=P(x, +a)-P(x,)>0, g(y,)=P(y,+a)-P(y,)<0,
hence there exists z, (. x,,,x,“, ) with g(z,)=0. Any ae(0,8)nQ
will do.

Problem 2. Let A be a finite ring. Show that there exist two natural
numbers m, p, m > p 2 1, such that

a”" =a’,Vae A
Solution, Let 4={a,a,,...,a,} and aeA. Since {a,d*,..a"}c 4,
there exists i <j such that a' =a™/. It follows that a* =a"*/ Vk>i
and / eN. We apply this for every element of the ring 4:
3i, j, such that a* =g, ‘v’k>z IeN
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3i,,j, such that a* =a, ™, ¥k =1,/ eN.

n?

* We now choose p2max{i,...i,} and g=cmmmc{j,,..,j,} and it

results that a” =a”,Vae A

Problem 3. Let f:[—1,1]—=R be a continuous function. Show that:
@)if [ f(sin(x+a))dx =0, for every aeR, then f(x)=0,vxe[-1]];

b)if j:f(sinnx)dx =0, for everyneZ, then f(x)=0,Vxe [~1,1].

1 a+l
Solution. We have [f(sin(x+a)dx= [f(sinx)dv=F(o+1)-F(w),
0 o
where F is a primitive of the function f o sin. There exists k R such
that F(x)=I(x )+2Lx and [ is a function having the pefiod27r.
T

Since F has the period 1; it is bounded and it results k = 0. Thus, F is
continuous .and has the periods 1 and 2m, hence F is constant. In
conclusion , fis identically zero.

b) We have F(n)=F(0) and F has period2n. Let x,eR and

( )éo —-€,x,+€) a nighbourhood of x,. Let m,neZ such that
m+2nne (x,~-¢gx,+€). We have F(m+2nn)=F(m)=F(0),
hence there exists (x,), —»x, with F(x,)=F(0). Since F is
continuous, it results that it is constant and thus fis identically zero.

Problem 4. Let ﬁ[O,w)—)R a periodical function, with period: 1,

integrable on [0,1]. For a strictly increasing and unbounded sequence
(Xnz0. X0=0, with lim(x,,, —x,)=0, we denote r(n)=max{k|x, <n}.

a )Show that: limlrrzn“)(x,k X ) f(x,)= Llf(x)dx.

b) Show that: Ilm——-z f(ln k) L f(x)dx.

o Inp o
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" ) 1&
Solution. a) We have a, = 12( (X — % ) f(%, )) = ;Zsp.
Pl

R p=1\ p-l<xsp
Using Cesaro-Stolz” theorem, we have: lim a, = lim s,. Now,

Sy = Z(lel _xk)f(x}) = Z(ylm =) f ()

n-l<xgsn 0<x—(n-1)s1
with y, =x, —(n-1), represents the Riemann sum associated to the

function f and division (¥, ), s, ©of the interval [0,1], whose
1
norm goes to zero, for.n — . Therefore, lims, = f f(x)dx.
. - 0

b) For x, = inn, it results that

=~Zlnﬂfﬂnk)—>1 I= jf(x)dx

k=t
We also have ltms[,,,,,]—l, hence
1 kel k+1 | o] k+1
k I:b— In— k)—>
Tnn] IZ, ——flnk)— E fnk)—>
Then

k+1 1] i 2 k4l
,nnZIn—f(l k)—— T In=fnk)+ lnnk ={'ZL fink)
k+1

and we show that lim i}kln—f(l nk,)=0.

k=[e”""1 1

If we denote M = sup| S (x)l, we have:
k+1

k=[¢”Z"1}u anﬂn k)

for n — .

' 1
+.+——Inf+)
k+1 k+l
— ) <M—S - —I— |=M——1
Im Z( ey 4 lmgk 3 j 0

hence the conclusmn.

k+1

<M. 3 In——=M]I -0,

Finally,
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Selection examinations for the 42™ IM
Solutions - '

Problem 1. Show that if a, b, ¢ are'complex numbers such that
(@a+bjla+c)=b
b+e)b+a =c
. c+ajc+b)=a
then a, b, ¢ are real numbers.

Solution. Let P(x)=x%~sx+qx—p the polynomial with the roots

a, b,. < We have s=a+b+c, g=ab+bc+ca, p=abc. The given
equalities are equivalent to:

sa+bc=b

sb+ca=c ()]

sc+ab=a
s0, by adding them, we obtain g=s—s’. Multiplying the equalities in (1)
w1t§1 a 2b, ¢, respectively, and by ‘adding them we obtain
s(a*+b +e )+3p=q or, after a short computation, 3p=-35>+s"+s (2).
If we write the given equations under the form

(s—c)(s—b):b, (s—a)(s—c)=c, (s —b)(S*a)= a,
we obtain by multiplying - ((s ~a)s- b)(s ~c)f =abc, and, by
performing standard computations and using (2), we finally get
s(4s —-3fs+ 1¥ =o.

If 5=0, then P(x)=x’, so a=b=c=0. If s=—1, then P(xy=+x2-2%-1,

. 2
which has the roots 2005%,2005‘%,260:% (this is not obvious, but

we can see tha.t P changes its sign on the intervals (-2, -1), (-1,0), (1,
2), hence its roots are real). Finally, if s=3/4, then
Plx)=x"- 3x2 + ix L , which have the roots a=b=c=1/4

4 167 64 ’

S;,cond solution. Substract the second equation from the first. We
.obtain
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(a+b)(a-b)y=b—c. Analogously, (b+c)(b—c)y=c—a and (c+a)(c-a)=a-b.
We can see that if two of the numbers are equal, then all three are
equal and the conclusion is obvious. Suppose the numbers are distinct.
Then, after multiplying the equalitiess above, we obtain
(a+b)(b+c)(c+a)=1, and next:
b(b+c)= c(ct+a)y=a(a+b)=1.

Now, if one of the numbers is real, it follows immediately that all
three are real. Suppose all numbers are not real. The arga, argh,
argee(0, 2m). Two of the numbers arga, argh, argc are contained in
either (0, 7) or €=, 2m). Suppose these are arga, argb and that arga <
argh. Then arga <arg(a+b) < argb and arga < arga(a+b) <arg(a+b) <
argb. This is a contradiction, since a(a+b)=1.

Problem 2. o) Let f, g : Z — Z be one to one maps.Show that the
Sfunction h : Z — Z, defined by h(x) = f{x) g(x), for all x€Z, cannot be
a surjective function.

b) Let f: Z — Z be a surjective function. Show that there. exist
surjective functions g, h : Z — Z such that f{x) = g(x) h(x), for all xZ.

Solution. a) Suppose /4 is a surjective function and let a, b€Z such
that A(a)=1 and A(b) = —1. Obviously, a # b. Since Aa)g(a) = 1 and
Ab)g(b) = -1 it follows that fa).g(a), Ab).g(b)e{-1,1}. If fla)=Ab)
and g(a) = g(b) then fa) Ab) = g(a) g(b) = -1, but then fa) Ab) g(a)
g(b)y=1, which is false. Therefore fla) = Ab) or gla) = g(b),
contradicting the injectivity of fand g.

b) Let ay be an integer such that flag) = 0. We define g(ao) = A(ao) = 0.
For every positive integer n, let a,, b, be the integer numbers such that
Ray)=n* and fb,) =-n*. We define g(a,) = n, Ha,) = n, g(b,) = -n,
h(b,) = n. Thus, all integers are in the range of g and all non—negative
integers are in the range of 4. For any positive integer #, let ¢, be the

- integer such that fc,) = n(n+1). Since a,,# ¢, and b,, # ¢, for every m,

we can define g(c,) = ~(n+1) and k(c,) = —n. Thus, the range of
covers all Z. In the case that the set 4=Z— U{a,,,b,,,c,,} is nonempty,

neN

we define  g(k) = Ak) and A(k)=1 for all ke4.
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Problem 3. The sides of a triangle have lengths a, b, c. Show that:
(—a+b+¢) (a~b+c¢) + (a-b+ ¢)(a+b—c) + (a+b—<) (~at+b+c) <

5 abc(\/;ﬁ/;hfg).

Solution. It is easy to see that there exists a triangle MNP whose
sides are m= \/;,n =b, D= Je. For instance, the inequality
Va+ JZ >Vcis equivalent to @ +b+2+vab >c¢, which is obvious.
Now, if we denote l?y s, r and R the semiperimeter, inradius and
circumradius of the triangle MNP, we have the well-known formulae:
m+n+p=2s
mn+np+ pm=s>+r’ +4Rr
mnp =4Rrs

) By standard transformations, the original inequality is
equivalent to:

(‘— m +n? +p2sz -n’ -(~pz)+(m2 -n’ +pZXm2 +n’ ~p2)+
+(mZ +n? —pZX—mz +n’ +p’)s mnp(m+n+ p) =
=3 2(m2nz +n’p? +p2m2)—(m4 +n' +p4)S mnp(m +n+ p)
o 4(m2n2 +n’p? +pzm2)—(mz +n’ +172)z <mnp(m+n+ p)e
<:>4(m+n+p)z(mn<l~np+pm)—9(m+n+p)mnp—(m+n+p)2 0
<::>(m+n+p)3 +9mnp24(mn+n?+pm)(m+n+p)<:>
<> 85’ +36Rrs 285(.92 +r+ 4Rr)<:> 4Rrs > 8sr* & R>2r.

) .Th_us, the required inequality is equivalent to Euler’s
inequality in the triangle MNP.

Sec'opd solution. We can improve the required inequality: for any
positive real numbers a, b, c,

Z(—a+b+c)(a—b+q)s Vabc(\/5+\[1;+\/2) ,
and th.e ef:[uality holds if a=b=c or if two of the numbers are equal and
the third is zero. The left hand side of the inequality can be written as:
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(e b + Vo -a Vb + Ve )a —VE +Vela s 5 —e).

If we denote \/; = x,JE = y,\/z =2z, the inequality is

equivalent to
(—x+y+z)(x—y+sz+y—z)Sxyz. R

If x, y, z are the lengths of a triangle’s sides, the inequality is
equivalent to Euler’s inequality. If not, it is easy to see that the left
hand side is negative, and the result follows. For a complete
discussion see problem 2, 41st IMO (M.Becheanu & B.Enescu: 41 st
IMO in “Gazeta Matematica”, vol. CV, No. 10, 2000, presupunem.
386-395).
Third solution. The numbers a, b, c, are supposed arbitrary positive
numbers. After standard computations, the required inequality
becomes:

2ab +bc+ca)<a* +b* +c*+a be +bvca +cab .

Set a=x*,b=*,c =z*. We obtain:

¥yt v X yz ez a2 2 2(xzyz +y* 2+ zzxz).
By the AM—GM inequality we have:

25y <Py +x°,
hence it suffices to prove that:
Syt ey ntze 2 Xy + Yz e rayt +y2 v ax
This can be written under the form:
#x-yx—z)+y (y—z\y-x)+ 2 (z—x)z- )2 0.

Assume WLOG, x>y2z. Then x(x—y¥x-z)2)y*(y—z)x-y)
and zz(z —x)z-y)=0, which proves the claim.

Problem 4. Three schools have 200 students, each. Every student has
at least one friend in each school (if the student a is a friend of the
student b then b is a friend of a).
It is known that there exists a set E of 300 students (among the
600) such that for any school S and any two students x, y €E which are
not in the school S, the numbers of friends in S of x and y are
different.
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. Show that one can find a student in each school such that they
are friend to each other:

Solution. Let 4, B, C be the sets of students of the given schools and
let 4 =4ANE,B =BNEC =CnE. Since [4|+]B[+|C =300,
we may assume that |4)[<100, thus |Bj|+|C}|>200. For a student
x€ B NC,, denote by a(x) the number of friends of x in 4. When x
runs over B, NC,, the numbers a(x) are pairwisely distinct, hence
there exists xe B NC such that a(x)2200. Let beB, such that
a(b)=200. It suffices to take ceC which is a friend of b and aed

which is a friend of c. Since all xe4 are friends of b it follows that
{a, b, c} is a required set of three students. :

Problem 5. Find all polynomials with real coefficients P(X) such that
P(x)- Px* ~1)=P(x*) P2x -1) ,
for every xeR.

Solution. Let degP=n. It is clear that
P(2x-1)= 2" P(x)+ R(x) where either R(x)=0, or degR<n. It follows

that

PE)2" () + R(x)) = P2 Yo Plx )+ R(x).
Then P(x)Rﬁxﬁ:P(xz)R(x). If we assume that R#0 and we denote
degR=m, it follows that n+2m=m+2n, hence m=n, which is a
contradiction. Therefore, P(2x—1)= 2"P(x) or, equivalently,

P(2x+1)=2"P(x+1). Thus, the polynomial O(X)=P(x+1) verifies the
condition O(2x)=2"Q(x). After writing O(x) in the form Q(x) = i ax',
i=l

we obtain 2'a, =2"q,, hence ;=0 for 0< i < n—1. The conclusion is:

P(x)=c or P(x)=c(xf—1)", where ceR and n>1. Conversely, it is clear
tshat these polynomials satisfy the condition of the problem.

econd solution. Let D(x)= gcd(P(x), P(2x~1)). Then P(x)=D(x)F(x)
and P(Z.x—l)=D(x)G(x), where F and G are relatively prime
polynomials. One also has P(x2)=D(xz)F (%) and P(2x2—1)=D(x2)G(x2)
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From the given condition we obtain D(x) F(x) D(i:2 ) G(x) = D(x) G(x)
D(x?) F(x*), therefore it follows that F(x)G(x*y=G(x) F(x*). Since F(x)
and G(x) are relatively prime polynomials, ‘the same are F(x*) and
G(?), thus F(x?) divides F(xy and G(x?) divides G(x). It follows that F
and G are constant, whence P(2x—1)=2"P(x). The solution ends as
the previous one. ' :

Problem 6. The vertices A, B, C, and D of a square lie. outside a circle
centered in M. Let AA', BB', CC', DD' be tangents to the circle. We
assume that the segments A4', BB', CC', DD’ are the consecutive sides
of a quadrilateral p in which a circle is inscribed. Prove.that p has an
axis of symmelry.

Solution. Let O be the centre of the square ABCD, a the length of its
side and r the radius of the circle centered in M. We have:
B AA*+CC™? = AM® + CM* =27

Using the median theorem in the triangle MAC we obtain:

AA*+CC* =2MO* +a* - 2r.
In the same way:

BB*+DD"=2MQ" +a* —2r*.
Since p is circumscribed to a circle, we Thave
AA'+CC'= BB'+DD' (Pithot’s theorem). Since
AA?+CC" = BB?+DD", we obtain A44-CC'=BB-DD’' . By a
quadratic equation argument we obtain either 44'=BB' and CC'=DD,
or AA'=DD' and CC'=BB'. In both cases, the quadrilateral has a line of
reflection, which is the perpendicular bisector of one of the diagonal
segments.

Problem 7. Find the least number n with the property : from any n
half lines in the space sharing a common origin, one can pick two
such that the angle between them is acute.

Solution. We will prove that the required number is # = 7. It is clear
that the angles of the six rays of an orthogonal frame are 90° or 180°,
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hence n > 7. Assume by contradiction that we are given 7 rays
emanating from a point and such that the angle between any two of
them is at least 90°. We may replace the 7 rays.by unit vectors vy,
Va..., v7 and let w=vays,: 1 < i< 6, where .a;=v;- v; is the scalar
product. All vectors w; are orthogonal to-v; , since

WiV, =(vi TaV;)V; =V =gy v, =a,—a, =0.
Therefore, w; are all in the plane orthogonal to v;. Moreover,

W, w, = (vi —a,.v7)- VT av )=V, v, —aa; —aa +aa, <v, v <0,

forall 1 <i<j <6 and at most one w; is zero. therefore, there exist
five non—zero vectors in the plane such that their reciprocal angles are

equal or greater than 90°. This is a contradiction.

Problem 8. Prove that there are finitely many positive integers that

cannot be written as a sum of distinct squares. !

Solution. (Author’s solution)

Suppose we have a positive integer N with the following properties:
N=al+a;+..+d} and 2N =b> + b + ...+ b},

where a,,a,,...,a,,b,...,b, are positive integers such that none of the

fractions a, /ay,a, /by,b,/ay,b, /b;, isa power pf 2 (including 2°=1)

for all a =B and y#3. We will prove that every positive integer

4N-2

P>y (2kN+l)-2 can be represented as a sum of distinct perfect

k=0 .
squares. Write P in the form :
p=4Ng+r, 0<r<4N-1,

r=1 .
Since 7 = (2kN +1} (mod 4N) and the latter sum is less than P, we
k=0 .

-1 . . : .
may write P =Y (2kN.+1)’ + 4Nt for some positive integer £ if ¥ > 1.
k=0 : ‘

If r=0, we just take P=4Nt, where t=é. Let
r=Yy 2" 4y 2
i J
be the binary expansion of ¢. Then '
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i

P=

-0

afglos =0
i Jx

- e . -

This formula shows that P can be represented as a sum of dlS]t\l[nCt

perfect squares. It remains only to show that a positive integer N as
bove exists, and 29 is such a number:

oo 29=0%+5%, 58=3%+T".

Sy +1F + T e, f + X078 fifr 21
£ T Jx

Problerﬁ ‘ 9. Let n Vbe a  positive - integer  and
f(X)=a,+a X+ .. +a,X", with m 2 2, a polynomial with integer
— %o 1 b m

coefficients, such that : : _

) a,.a,,...,a,are divisible by all prime factors of n,

2) a; and n are relatively prime. . o

;:5v; that for any positive integer k, there exists a positive integer ¢,
N &

such that f(c) is divisible by .

Solution. . We first prove the statement in the case that n=p is alprime
number . For k=1, we choose x; such that ﬂxgs(; (mod p) ie. a1
.. o mod p).
x1+a050§2‘c:vd Isglngése I:VIe)O;()SllltI)llg )sc:,n::cil Thgt( Va difides i) and p"*:
does not. We’ have f1 (xk + tp"): FOx)+ mp*" +tap* . Since fxe=lp
for some 1 with (I, p)=1, it is sufficient to find 7 such that Frra=0
(mod p) and this is possible since a0 (mod p). o
Finally, let n = p} ... p7 be the prime factorization of n. F,rf)m
the arguments above it follows that forevery i, 1 <i S S5 thgre exists
x; such that (p,”y divides f{x,). It is known that if a divides f(b) then a
divides f{b+)\a) for every integer A. So, we search for A such that
X, +,7»(p,")k =..=X, +7»(p:‘)‘ .
The existence of such A follows from the chinese remainder theor.em]; .
Second solution. We can see that for a, b€Z, f ()= £(b) (mod ")
if and only if a=b(mod #*). Indeed, f(a)= f(b) is equivalent to .




(e —b)[al +a(a+b)+...+ a,,,(a’""l ot b""*’)]z 0 (mod Y.
Since no prime factor of » divides the second paranthesis, it follows
that a = b (mod n*). Now, if x, ye{1, 2, ..., "} and x = y it
follows that Ax) = fy) (mod %) therefore there exists
% €{1;2,..., i} such that #* divides f{x;).

Problem 10. Let p and q be relatively prime positive integers. A
subset S of {0, 1, 2,... 4 is called ideal if 0S and, for each element

n &S, the integers n+p and n+q belong to S. Determine the number of
ideal subsets of {0, 1, 2, ... y3

-Solution. (The solution is from 41st IMO Shortlist)

Every integer z has a unique representation z=px+qy with integer x, y
such that 0 < x < g —1. The last inequality defines a vertical strip in R?;
every lattice point (x, y) in this strip corresponds bijectively to an
integer z via the equation px+qy = z. Fill the strip with gridline
pattern. In the unit square [x, x+1]x[y, y+1], write the corresponding
integer px--qy.

Let S be an ideal set. All the elements of S have been written
in some squares (in the strip in question). Put markers in those
squares. Every integer in a square above the fine y=0 corresponds to a
nonnegative combination px+qy and hence belongs to S. Thus there is
no freedom in marking the squares except for those contained entirely

- in the right triangle A limited by the lines y=0, x=q and px+gy=0.

If a number z= px-+qy appears in A, in a square Q not adjacent
to the horizontal (resp. vertical) leg of A, then the number z+q (resp.
z+p) appears in the square immediately above O (resp. right to Q). So
the condition defining an ideal set translates into the following:
together with any marked square O in A, the whole portion of A
upwards and rightwards of Q has to be marked. In other words, the
marked the marked portion of A should be a union of grid rectangles,
each of them having a vertex at (,0).

The polygonal line bordering the marked part of A from the-
unmarked part is then a grid-line path from (0,0) to (g, -p) situated
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above the line px+qy=0. We call such a path an ideal path. All that-

ins is to count the ideal paths.
o Let T denote the set of all paths of length p+¢ from (0,0) to

p+q
(g, -p)- Then the cardinal of T equals [ » ] . Let E and S denote the

unit moves, eas‘t and south, respectively. Then each path yel' gives

rise to a sequence DiD;...D,., where Dic{E, S}, such tlixatt ;1 ofc’) Itll::
Dy’s are E and p are S. For a path FP!D%--Dpw , let P; Oeo e ﬁd le;
called a vertex of y, reached after tracmg'D]Dz. ..D; from (_,1 ), ai p

I; be the line parallel to px-+gy=0, passing th}'ough P[,, z—l,...;r}; 51
Since p and g are coprime, we see that the lines hy by bpig

isti t * . . . .
distine El"x?vo paths are said to be equivalent if one is obtained from the

. other by a circular shift of the coding sequence DiD,...Dp.q. For €T,

the” equivalence class containing. y has ptg elinlulqer;tss. II;'
y=D\D;...Dj.,, let m be such that J, is the lowest am;ngD e b . "
view of (*), such a m is unique. Then the .path.D,,,.'.. g e]to a"Ha s
above the line px+gy=0. Every other cycl.lc shift glve_sorlsTh 5 gaCh
with at least one vertex below the line px+qy=0. Thu

equivalence class contains exactly one ideal path, so the number of

1 (p+g
ideal paths equals il p .

(The reader should also consult problem .81 ”in «“ Chall;snglirzﬁ
mathematical problems with elementary solutions”, by Y.M. laglo
and .M. Yaglom, Dover, 1987) .

Problem 11. Find all pairs (m, n) of positive integers, with m, n 2 2,
such that d'-1 is divisible by m for each a€{l, 2, ..., n}.

Solution. We show that the required pairs are (p, p-1), wherehp > 3;;
a prime number. It is clear by Fermat’s theorem that sucl 'c?r l:m '
(p, p-1) is a solution of the problem. Let (m, n) be a so!utlon 512111 nd
p a prime divisor of m. Since pjm and m | a'—1 we obtain p | s
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every a=1,2,...,n. We cannot have n > i £ i

=12,..., > p since —1 gives

contradiction. Therefore, p > n+1. i ¢ ’
We consider the integer polynomial

fx )zli:II(X ‘i)—(X ! —l) and let g(X) be its reduced polynomial

modulo p. We have deg(g) < n-1 and , by the hypothesis, g has the
roots 1,2, ..., n (mod p). All these residue classes are distinct. Then,
by Lag-range’s theorem g is the identical zero polynomial. The leading’
coefficient of g is n(n+1)/2, therefore pln(n+1). Since p=ntl, it
follows that p=n+1. We proved that n=p—1 > 2 and m=p* |

We show that &=1. If k > 2, we have P’ | &1, for all
a=1,2,..., p~1. Then p? | (p—1)""'~1 from which it follows that p? | p(p—
1) and we get a contradiction. -

Problem 12. Prove that there is no Junction f:(0, 00)—(0, o) such that
Fle+ )2 1)+ (f(x),
Jor every x, y (0, o).

Solui.tif)n. Suppose that there is a function which satisfies the
condition of the problem. Put x=1 and obtain L1+) 2 A HAAD). It
follows that il_zt’ f (y)= . Since fx+1) > fix)+AAx)) one also obtains

Jot1) = fx) = fifix)) and it follows that  Zim(7 (x+1)— f(x))=co.

Then there exists xeR such that Soti) - fix+i-1) > 2, for all i > 1.
Therefore f{x+n) — fix) > 2n, and we obtain that Sfx+n)>x+n+l1, ifn>
x+1. Then: | -
SAfx+n)) = fix+n+ DHAxAm)~(x+n+ DI Ax+n+1)) >
> ftn+1) 2 foetnyffx+n)) > ffix+n)),;

which is a contradiction.
Problem 13. The tangents at A and B to the circumcircle of the acute

triangle. ABC intersect the tangent at C in the points D and E,
respectively. The line AE intersects BC in P and the line BD intersecta:
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AC in R. Let S be the midpoint of the segment AP. Show that the
angles £ABQ and £BAS are equal.

Solution. First, we remark that a=ZS4B can be computed in terms of
A=/BAC and r=AB/AR. By the sine law, one has:
SB AB SR, AR

sina sinASB’ sin(A-a) sinASR’
Since SB=SR and ZASB=180°-£ASR, it follows that

AB  sinld -
£ 0L)=sinAcotoc—00sA.
AR sind
Therefore,
r+cosA
coto=—"—"—

sin A

Néxt, AR can be computed in terms of sides of triangle ABC:

AR _ared(ABD) _ AB-AD-sin(BAD) _ ABsin{180°~C) csinC _ c*
RC  aredCBD)  BC-CD-si{BCD) BCsin{l80°— A) asind &'

>

2 b 2
therefore _AR___ %’ whence AR =— c .
AR+RC a +c & +c
It follows that
1 2, 2 2, 2 2
50’(SAB)=—1—[£+COSAJ=——, g +‘b_+c_i =
sin A\ AR sind\  be 2be
_ R+ +3%)
abc ’

where R is the circumradius of the triangle. Since the value of
cot(QBA) is obtained from the last formula by interchanging a and b
we get co( QBA)= cot(SAB), therefore LS4B=~<0BA.

Problem 14. Let P be a convex polyhedron, with vertices Vi, V..., Vp.
The distinct vertices V; and V; are called neighbours if they belong to
the same face of the polyhedron. In each vertex V; an integer number
vi(0) is written and next, the sequences (vi(n))nx are defined as
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follo.ws: vi(n+1) is the arithmetic mean of the numbers vi(n), for all
vertices V; which are neighbours with V.

Prf)ve that if all vi(n), 1<i<p, neN, are integer numbers, then there
exl}vts MeN and keZ such that vi(n)= k, for every n 2 M and every
i=1,2,..p.

Solution. Let a,=min {v] (n),...,vp(n)} and b,~max {v,(n),l..,vp (n)}
When a,=b,, one may take N=n and a,=k. We shall prove that when
a, < by, there exists j > 0 such that:

. @y < Qpi; < by <b,.

Frorz this, we obtain that a,,=b,, for some m > n+j, and we may take
an=k.

In order to prove the statement above, observe that the set
sequence 4,,; = i [v(n+ )= a}is decreasing for j 2 1. If 4,.,~O,
then A.,,ﬂ-ﬂ=®; if V,e Apj+1, since v{n+j~1)=a,, all linked vertices to
V; verify the con(.imon wW(n+j-1)=a,, Let V; be a linked vertex to Vi in
the same face with ¥; and V; there exists a third vertex ¥, such that
vs(n+j-1)=a, and since ¥, was arbitrarely chosen, v{n+j)=a,. Thus, we
haye pr9ved A,:v»ﬂc Ay.j In the case 4,0, the above inclusion is
strlct.l'Slnge P is a convex polyhedron, it follows that all vertices are
contained in 4,,.;, which contradicts a, < b,,.

Tl.w Fonclusion is that there exists j, j >0, such that
A,,T,=®;thls gives a, < a,;. In the same way, one can prove that there
exists j, j 20, such that b, < b,,.

Remark. For a tetrahedron with vertices a, b, ¢, d, one has
alm—1)+ b{m~1)+ c{m ~1)=3d(m)= 3k, and
alm 1)+ b{m ~1)+ d(m~1)=3c(m) = 3% .
Hence c(m-1)= d(m~1) and also dm~1)=Hm~1)=c{m—1)=dm-1)=k. The
conclusion is: only constant sequences work in this case.
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Selection Examinations for the 5™ JBMO
Solutions

Problem 1. Let ABC be an arbitrary triangle. A circle passes through
B and C and intersects the lines AB and AC in D and E, respectively.
The projections of the points B and E on CD are denoted by B' and E',
respectively. The projections of the points D and C on BE are denoted
by D' and C', respectively. Prove that the points B', D', E' and C" lie
on the same circle.
Solution. Let I be the intersection
point of the lines BE and CD. The
quadrilaterals BD'B'D and CE'C'E
are cyclic, hence ZBDB'=/B'DT
and ZCEC'=ZIE'C". Since BDEC is
also .cyclic, ZBDB'=/CEC'. 1t
follows that ZB'DI=/IE'C’, so
B'D'E'C'is a cyclic quadrilateral.
Second solution. Using the power of
a point theorem, one has:

IB'ID=ID"IB

IC'IE=IE"IC

IEIB=ID-IC
From these one easily obtains
IB'JE'=ID"IC', which proves that the quadrilateral B'D'E'C" is cyclic,
using the reciprocal of the the power of a point theorem.

4n-2

is rational.

Problem 2. Find neZ such that the number

2
Solution. Suppose in 52 =Z—2, where a and b are coprime integers.

2b* +5a° 22b° .
g = St g Sinee ged(¥’, 46°-d)=1,
it follows that 4b>~a” divides 22.

Observe that 46°-a’=0 or 4b°—’=3 (mod 4), hence we have
either 4b>—a’=—1, or 4b’~a’=11. The first case leads to =0, which is
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One obtains n=




impossible. In the second case, we obtain 2b—a=1 and 2b+a=11,
hence a=5, 5=3 and n=13. .

Problem 3. In the interior of a circle centered in O a number of 1200
points Ay, Ay, .., A0 are considered, such that for every i, j with 1<
i<] <1200, the points O, 4; and A; are not collinear. Prove that there
exist the points M and N on the circle, with m(<MON)=30° such that
in the interior of the angle <MON lie exactly 100 points.
Solution. Divide the interior of the circle into 12 congruent sectors
such that each marked point lies in the interior of some sector. If one
of them contains exactly 100 marked points, we are done. If not, we
can find a sector 4 containing less than.100 points and a sector B
containing more than 100 points (remark that it is not possible that all
sectors contain less than 100 points or more than 100 points).

Rotate sector 4 towards sector B. At each moment at most one
marked point gets in or out sector 4. It follows that there exists a
moment in which the rotating sector contains exactly 100 marked
points. .
Problem 4. Three students write on the blackboard next to each other
three two—digit squares . In the end, they observe that the 6-digit

number thus obtained is also a square. Find this number!

Solution. Suppose that the number obtained is »? =abcdef , where
ab,cd.ef €{16, 25, 36, 49, 64, 81}. Since 161616 < < 818181, it
follows that 402 < #* < 904. Thus, n=100x+10y+z and x > 4, z > 1. By
the squaring algorithm we obtain x*=ab . Also:
(100x+10y + 2 =10*ab+10°c +10°d +10e + £,
hence .
2:10°xy +2-10°x2+10° y* +2-10yz + 2> =10°c +10°d +10e + £ .

So we get the following possibilities:
a) x=4,ye{0,1};

When y=1, E=16,c_d:81 , by using the above equality we
get a contradiction.
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When y=0, ab=16 and 8z-10%+z=10%cd +¢f By the unicity
of the representation of a number we get ¢d =8z and since ef is a two
digit number, it follows that 8z {16,64}. Therefore, 2 z=8 :?nd n=4f08.
b) x> 4 and y=0. We obtain (200x + z)z =10"cd +¢f . Using again the
unicity of the representation of a number we obtain cd =2xz,
;} =z%,z> 4 and it follows that x=8, z=4, hence n=80421. ,

In conclusion, the students can obtain the numbers 408~ or 804"

ider the points E€CA4,
Problem 5. Let ABCD be a rectangle. We consi .
FeAB, GeBC such that DELCA, EF LAB and EG.LBC. Solve in the

o x x x
set'of rational numbers the equation AC™ = EF” +EG™.

y 2_ 2 _ > C
Solution. Denote AD=a, AB=b. We have AC>=d"+V’, CEalb 14C,

"AE= GAC and EFla=AE/AC=a'/AC. It follows that EF = o o

b ion i ivalent to
analogously, EG = ~A—C—2— . Thus, the equation is equivale!

(a2 +bz)3’ = (a}’ +b* )Z .
The solution x=2/3 is easy to see. If a=b it is clearly the only solution.
Ifa> b, denote bla=ke(0,1); we obtain (1 +k%)" =(1+K) - fx <273,
then: k™ >k*=>1+E7>1+k >1:(1+k3’)z >+ k) >(1+k2)” .

If x < 2/3, we use a similar argument. Thus, the only solution is x=2/3.

Problem 6. Let A be a non-empty subset of R with the property that
for every real numbers x, y, if x+y €4, then xy €A. Prove that A=R.

i =0-acA. For any real
Solution. Let acd. Then a+0ed, hence 0 . ¢
number b, b+(~b)=0€4, hence —b*cA. Thus, A contains all negative

numbers. Let ¢ > 0; we have -JZ—\/Z<0, 50 —\/Z—\/ZEA. It
follows that ¢ = (e - V¢ )< 4, hence 4=R.
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Problem 7. Let ABCD be a quadrilateral inscribed in the circle O.
For a point E<QO, its projections K, L, M, N on the lines DA, AB, BC,
CD, respectively, are considered. Prove that if N is the orthocenter of
the triangle KLM for some point E, different from A, B, C, D, then this
holds for every point E of the circle O.

Solution. Let F and G be the projections of E on the diagonals BD and
AC. From Simson’s theorem, it follows that the triplets of points (X, L,
F), M, N, F), (K, G, N) and (M, L, G) are collinear. The point N is the
orthocenter of the triangle KLM if and only if KL1MN and MLL1KN.
Let F' and G’ the points in which EF and EG intersect the second time
the circle. We have KFJ|4F" and MG||CF". Thus KLLMN is equivalent
to AF'LCF' and then to OcAC. Similarly, MLLKN is equivalent to
OeBD. Thus, ABCD is a rectangle. It is easy to see that in this case, N
is the orthocenter of the triangle KLM for any position of the point E.

Problem 8. Determine positive integers a<b<c<d with the property
that each of them divides the sum of the other three.

Solution. Since a+b+c < 3d and d | a+b+c, it follows that a+b+c=d
or a+b+c=2d. Suppose first that g+b+c=d. Since a | b+c+d=2d-a, it
follows that a[2d and, similarly, b[2d, c|2d. Let 2d=ax=by=cz, where

x>y>z>2. We obtain 1 + L + L

Xy oz 2
If226,thenl+l+l<l+l+l=l,sotherearenosolutions.
x 6 6 6 2

If z=5, then 1 + 1 = % , and we obtain y=3, again not possible.
x ¥y
If z=4, then -1—+-1—=i, and we obtain the solutions (k, 4k, 5k, 10k)
Xy
and (k, 2k, 3k, 6k), with keN.
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If z=3, then L+ = %, and we obtain the solutions (k, 6k, 14k, 21K)
xy

(k, 3k, 8k, 12k), (k, 2k, 6k, 9K) and (2K, 3k, 10k, 15k), with keN.
Now, suppose that a+b+c=2d. Analogously, we obtain that 4,5,c | 3d,

1.1 1 2
hence 3d=ax=by=cz with' x>y>z>3 and —+—+—=="_ Then z24,
x y z 3
11 1 1 1 1 37 2
—t+—+4—<—+4+—+—="—<=, s0 there are no
y=5, x26, thus x+y+z p 5+4 0 3

solutions in this case.

Problem 9. Let n be a non—negative integer. Find the non-negative
integers a, b, ¢, d such that
A +b’+c+dP=7-4".

Solution. For #n=0, we have 22+12+12+12=7, hence (a,b,c,dy=(2,1,1,1)

and all permutations. If #» > 1, then a®>+b*+c*+d” =0(mod 4),

hence the numbers have the same parity. We analyse two cases.

a) The numbers a, b, c, d are odd. We write a=2a'+1, etc. We obtain :
4al(a+ 1)+ 4b (b +1)+ dcl(c+1)+ 4d(d+1)=4(7-4"1).

The left hand side of the equality is divisible by 8, hence 7-4"_1 must

be even. This happens only for n=1. We obtain a* +5* +c* +d* =28,

with the solutions (3,3, 3, 1)and ( 1, 1, 1, 5).

b) The numbers a, b, ¢, d are even. Write a=2a’, etc. We obtain

a*+b +c?+d”=7-4"",

so we proceed recursively.

Finally, we obtain the solutions (2", 2", 2", 2, (3-2", 3-2", 3-2", 2"),

(2",2",2",5-2"), neN, and the respective permutations.

Problem 10. Let ABCDEF be a hexagon with AB||\DE, BC||EF,

CD||FA and in which the diagonals AD, BE and CF are congruent.
Prove that the hexagon can be inscribed in a circle.
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Solution. We first notice that 4BDE is an isosceles trapezoid. The
segments 4B and DE have the same perpendicular bisector. Let O and
R the center and radius of the circumcircle of the triangle 4BC. One
can see that the perpendicular bisectors of DE and CF also pass
through O, hence O is the center of the circle circumscribed around
DCF, with radius R'. Finally, since ACDF is an isosceles trapezoid, it
follows that R=R'.

Problem 11. Let n>2 be a positive integer. Find the positive integers x

such that
x+vVx+..+4x <n,

Jfor any number of radicals.

]
Solution. Clearly x < 1%, so let x=r"—p, with p > 0. If the number of
radicals is 2, we obtain that x < n’—n. It is easy to check using

induction that all x < n"—n verify the inequality regardless the number
of radicals.

Problem 12. Determine a right parallelepiped with minimal area, if
its volume is strictly greater than 1000, and the lengths of its sides are
integer numbers.

Solution. Let a < b < ¢ the lengths of the parallelepiped’s sides. We
have abc > 1001 and ¢ > 11. By analysing the cases ce{11,...,21} one
finds that a=8, b=9 and c¢=14 is the solution.
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