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1. Solution from Andy Niedermier: Every integer in [n] can be

uniquely written in the form x2 · q, where q either 1 or square free,

that is, a product of distinct primes. Let 〈q〉 denote the set {12 · q, 22 ·
q, 32 · q, . . .} ⊆ [n].

Note that for f to satisfy the square-free property, it must permute

〈q〉 for every q = 1, 2, 3, . . . . To see this, notice that given an arbitrary

square-free q, in order for q·f(q) to be a square, f(q) needs to contribute

one of every prime factor in q, after which it can take only even powers

of primes. Thus, f(q) is equal to the product of q and some perfect

square.

The number of f that permute the 〈q〉 is equal to

∏
q≤n

q is square-free

⌊√
n

q

⌋
!

For 2010 = 2 · 3 · 5 · 67 to divide P (n), we simply need 67! to appear in

this product, which will first happen in 〈1〉 so long as
√

n/q ≥ 67 for

some n and q. The smallest such n is 672 = 4489.

This problem was proposed by Andy Niedermier.

2. Solution from Răzvan Gelca: There is a unique sequence 2, 4, 6, . . . , 2n−
2 satisfying the conditions of the problem.

Note that (b) implies xi < 2n for all i. We will examine the possible

values of x1.

If x1 = 1, then (c) implies that all numbers less than 2n should be

terms of the sequence, which is impossible since the sequence has only

n− 1 terms.



If x1 = 2, then by (c) the numbers 2, 4, 6, . . . , 2n − 2 are terms of the

sequence, and because the sequence has exactly n − 1 terms we get

xi = 2i, i = 1, 2, . . . , n − 1. This sequence satisfies conditions (a) and

(b) as well, so it is a solution to the problem.

For x1 ≥ 3, we will show that there is no sequences satisfying the

conditions of the problem. Assume on the contrary that for some n

there is such a sequence with x1 ≥ 3. If n = 2, the only possibility is

x1 = 3, which violates (b). If n = 3, then by (a) we have the possibilities

(x1, x2) = (3, 4), or (3, 5), or (4, 5), all three of which violate (b). Now

we assume that n > 3. By (c), the numbers

x1, 2x1, . . . ,

⌊
2n

xi

⌋
· x (1)

are terms of the sequence, and no other multiples of x1 are. Because

x1 ≥ 3, the above accounts for at most 2n
3

terms of the sequence. For

n > 3, we have 2n
3

< n− 1, and so there must be another term besides

the terms in (1). Let xj be the smallest term of the sequence that does

not appear in (1). Then the first j terms of the sequence are

x1, x2 = 2x1, . . . , xj−1 = (j − 1)x1, xj, (2)

and we have xj < jx1. Condition (b) implies that the last j terms of

the sequence must be

xn−j = 2n− xj, xn−j+1 = 2n− (j − 1)x1, . . . ,

xn−2 = 2n− 2x1, xn−1 = 2n− x1.

But then x1 + xn−j < x1 + xn−1 = 2n, hence by condition (c) there

exists k such that x1 + xn−j = xk. On the one hand, we have

xk = x1 + xn−j = x1 + 2n− xj = 2n− (xj − x1)

> 2n− (jx1 − x1) = 2n− (j − 1)x1 = xn−j+1.



One the other hand, we have

xk = x1 + xn−j < x1 + xn−j+1 = xn−j+2.

This means that xk is between two consecutive terms xn−j+1 and xn−j+2,

which is impossible by (a). (In the case j = 2, xk > xn−j+1 = xn−1,

which is also impossible.) We conclude that there is no such sequence

with x1 ≥ 3.

Remark. This problem comes from the study of Weierstrass gaps in

the theory of Riemann surfaces.

Alternate Solution from Richard Stong: Assume that x1, x2, . . . , xn−1

is a sequence satisfying the conditions of the problem. By condition

(a), the following terms

x1, 2x1, x1 + x2, x1 + x3, x1 + x4, . . . , x1 + xn−2

form an increasing sequence. By condition (c), this new sequence is

a subsequence of the original sequence. Because both sequences have

exactly n−1 terms, these two sequences are identical; that is, 2x1 = x2

and x1 + xj = xj+1 for 2 ≤ j ≤ n − 2. It follows that xj = jx1 for

1 ≤ j ≤ n− 1. By condition (b), we conclude that (x1, x2, . . . , xn−1) =

(2, 4, . . . , 2n− 2).

Remark. The core of the second solution is a result due to Freiman:

Let A be a set of positive integers. Then the set A+A = {a1+

a2 | a1, a2 ∈ A} has at least 2|A| − 1 elements and equality

holds if and only if A is a set of an arithmetic progression.

Freiman’s theorem and its generalization below are very helpful in

proofs of many contest problems, such as, USAMO 2009 problem 2,

IMO 2000 problem 1, and IMO 2009 problem 5.



Let A and B be finite nonempty subsets of integers. Then

the set A+B = {a+b | a ∈ A, b ∈ B} has at least |A|+|B|−1

elements. Equality holds if and only if either A and B are

arithmetic progressions with equal difference or |A| or |B| is

equal to 1.

This problem was suggested by Răzvan Gelca.

3. Solution by Titu Andreescu: Let T be the foot of the perpendicular

from Y to line AB. We note the P, Q, T are the feet of the perpen-

diculars from Y to the sides of triangle ABX. Because Y lies on the

circumcircle of triangle ABX, points P,Q, T are collinear, by Simson’s

theorem. Likewise, points S,R, T are collinear.

We need to show that ∠XOZ = 2∠PTS or

∠PTS =
∠XOZ

2
=

_

XZ

2
=

_

XY

2
+

_

Y Z

2
= ∠XAY + ∠ZBY = ∠PAY + ∠SBY.



Because ∠PTS = ∠PTY + ∠STY , it suffices to prove that

∠PTY = ∠PAY and ∠STY = ∠SBY ;

that is, to show that quadrilaterals APY T and BSY T are cyclic, which

is evident, because ∠APY = ∠ATY = 90◦ and ∠BTY = ∠BSY =

90◦.

Alternate Solution from Lenny Ng and Richard Stong: Since

Y Q, Y R are perpendicular to BX, AZ respectively, ∠RY Q is equal to

the acute angle between lines BX and AZ, which is 1
2
(
︷ ︷
AX +

︷ ︷
BZ) =

1
2
(180◦ −

︷ ︷
XZ) since X,Z lie on the circle with diameter AB. Also,

∠AXB = ∠AZB = 90◦ and so PXQY and SZRY are rectangles,

whence ∠PQY = 90◦ − ∠Y XB = 90◦ −
︷ ︷
Y B /2 and ∠Y RS = 90◦ −

∠AZY = 90◦ −
︷︷
AY /2. Finally, the angle between PQ and RS is

∠PQY + ∠Y RS − ∠RY Q = (90◦ −
︷ ︷
Y B /2) + (90◦ −

︷︷
AY /2)− (90◦ −

︷ ︷
XZ /2)

=
︷ ︷
XZ /2

= (∠XOZ)/2,

as desired.

This problem was proposed by Titu Andreescu.

4. Solution from Zuming Feng:

Let A = (a, a2), B = (b, b2), and C = (c, c2), with a < b < c. We have−→
AB = [b − a, b2 − a2] and

−→
AC = [c − a, c2 − a2]. Hence the area of

triangle ABC is equal to

[ABC] = (2nm)2 =
|(b− a)(c2 − a2)− (c− a)(b2 − a2)|

2

=
(b− a)(c− a)(c− b)

2
.



Setting b − a = x and c − b = y (where both x and y are positive

integers), the above equation becomes

(2nm)2 =
xy(x + y)

2
. (3)

If n = 0, then (m,x, y) = (1, 1, 1) is clearly a solution to (3). If n ≥ 1,

it is easy to check that,

(m,x, y) =
(
(24n−2 − 1, 22n+1, (22n−1 − 1)2)

)

satisfies (3).

Alternate Solution from Jacek Fabrykowski:

The beginning is the same up to (2nm)2 = xy(x+y)
2

. If n = 0, we take

m = x = y = 1. If n = 1, we take m = 3, x = 1, y = 8. Assume

that n ≥ 2. Let a, b, c be a primitive Pythagorean triple with b even.

Let b = 2rd where d is odd and r ≥ 2. Let x = 22k, y = 22kb and

z = 22kc where k ≥ 0. We let m = adc and r = 2 if n = 3k + 2, r = 3

if n = 3k + 3 and r = 4 if n = 3k + 4.

Assuming that x = a · 2s, y = b · 22, other triples are possible:

(a) If n = 3k, then let m = 1 and x = y = 22k.

(b) If n = 3k + 1, then take m = 3, x = 22k, y = 22k+3.

(c) If n = 3k + 2, then take m = 63, x = 49 · 22k, and y = 22k+5.

This problem was suggested by Zuming Feng.

5. Solution from Gregory Galperin:

Let us create the following 1006 permutations X1, ..., X1006, the first

1006 positions of which are all possible cyclic rotations of the sequence



1, 2, 3, 4, ..., 1005, 1006, and the remaining 1004 positions are filled ar-

bitrarily with the remaining numbers 1006, 1007, ..., 2009, 2010:

X1 = 1, 2, 3, 4, ... , 1005, 1006, ∗, ∗, ... , ∗ ;

X2 = 2, 3, 4, ... , 1005, 1006, 1, ∗, ∗, ... , ∗ ;

X3 = 3, 4, ... , 1005, 1006, 1, 2, ∗, ∗, ... , ∗ ;

· · · · · ·
X1006 = 1006, 1, 2, 3, 4, ... , 1005, ∗, ∗, ... , ∗ .

We claim that at least one of these 1006 sequences has the same integer

at the same position as the initial (unknown) permutation X.

Suppose not. Then the set of the first (leftmost) integers in the permu-

tation X contains no integers from 1 to 1006. Hence it consists of the

1004 integers in the range from 1007 to 2010 only. By the pigeon-hole

principle, some two of the integers from the permutation X must be

equal, which is a contradiction: there are not two identical integers in

the permutation X.

Consequently, the permutation X has at last one common element with

some sequence Xi, i = 1, . . . 1006 and we are done.

This problem was proposed by Gregory Galperin.

6. Solution from Zuming Feng: The answer is no, it is not possible

for segments AB, BC, BI, ID, CI, IE to all have integer lengths.

Assume on the contrary that these segments do have integer side lengths.

We set α = ∠ABD = ∠DBC and β = ∠ACE = ∠ECB. Note that

I is the incenter of triangle ABC, and so ∠BAI = ∠CAI = 45◦.

Applying the Law of Sines to triangle ABI yields

AB

BI
=

sin(45◦ + α)

sin 45◦
= sin α + cos α,



by the addition formula (for the sine function). In particular, we con-

clude that s = sin α + cos α is rational. It is clear that α + β = 45◦.

By the subtraction formulas, we have

s = sin(45◦ − β) + cos(45◦ − β) =
√

2 cos β,

from which it follows that cos β is not rational. On the other hand,

from right triangle ACE, we have cos β = AC/EC, which is rational by

assumption. Because cos β cannot not be both rational and irrational,

our assumption was wrong and not all the segments AB, BC, BI, ID,

CI, IE can have integer lengths.

Alternate Solution from Jacek Fabrykowski: Using notations as

introduced in the problem, let BD = m, AD = x, DC = y, AB = c,

BC = a and AC = b. The angle bisector theorem implies

x

b− x
=

c

a

and the Pythagorean Theorem yields m2 = x2 + c2. Both equations

imply that

2ac =
(bc)2

m2 − c2
− a2 − c2

and since a2 = b2+c2 is rational, a is rational too (observe that to reach

this conclusion, we only need to assume that b, c, and m are integers).

Therefore, x = bc
a+c

is also rational, and so is y. Let now (similarly to the

notations above from the solution by Zuming Feng) ∠ABD = α and

∠ACE = β where α + β = π/4. It is obvious that cos α and cos βare

both rational and the above shows that also sin α = x/m is rational.

On the other hand, cos β = cos(π/4−α) = (
√

2/2)(sin α+sin β), which

is a contradiction. The solution shows that a stronger statement holds

true: There is no right triangle with both legs and bisectors of acute

angles all having integer lengths.



Alternate Solution from Zuming Feng: Prove an even stronger

result: there is no such right triangle with AB, AC, IB, IC having ra-

tional side lengths. Assume on the contrary, that AB, AC, IB, IC have

rational side lengths. Then BC2 = AB2+AC2 is rational. On the other

hand, in triangle BIC, ∠BIC = 135◦. Applying the law of cosines to

triangle BIC yields

BC2 = BI2 + CI2 −
√

2BI · CI

which is irrational. Because BC2 cannot be both rational and irra-

tional, we conclude that our assumption was wrong and that not all of

the segments AB, AC, IB, IC can have rational lengths.

This problem was proposed by Zuming Feng.
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