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0. Basic concepts about functions

Definition. For sets X and Y , a function f from X to Y (also written f : X →
Y ) is a rule that assigns each element x in X a unique element y = f(x) in Y . The
set of elements of Y that are f(x) for some x ∈ X is called the image of f and is
denoted by Im(f).

i) A function f is called injective, or one-to-one, if f(x1) 6= f(x2) for x1 6= x2.
In other words, to two different x correspond two different y.

ii) A function f is called surjective, or onto, if each y ∈ Y can be written as f(x)
for some x ∈ X.

These two properties are of extreme importance, and should be the basic instru-
ments in your toolkit when you tackle functional equations. Let us see some simple
examples of how they apply.

Problem 1. Prove that there is no function f : R → R such that f(f(x)+y) = x,
for all x and y in R.

Solution. If f(x1) = f(x2), then f(f(x1) + y) = f(f(x2) + y), so x1 = x2.
Hence f is injective. On the other hand, f(f(x) + 0) = f(f(x) + 1) = x, but
f(x) + 0 6= f(x) + 1, a contradiction.

Problem 2. Find all functions f : R → R such that f(x + f(y)) = f(x)y, for
all x and y in R.

Solution. If f(x) = 0 for all x, then the conditions are satisfied. Now assume
f(x0) 6= 0. Then f(x0 +f(y)) = f(x0)y. As f(x0)y is surjective, so is f . Thus there
exists b such that f(b) = 0. Then setting y = b we get f(x+f(b)) = 0. But x+f(b)
is surjective, hence f(x) = 0, a contradiction. So f(x) = 0 is the only solution.

Another property of functions that can be exploited is monotonicity. We say
that a function is nondecreasing if f(x) ≥ f(y) for x ≥ y (if f(x) > f(y) for x > y
the function is called increasing). Similarly, a function is called nonincreasing if
f(x) ≤ f(y) for x ≥ y (and if f(x) < f(y) for x > y the function is decreasing). A
function which is either increasing or decreasing is called monotone. Here is a quick
example to illustrate the use of this concept:

Problem 3. Find all functions f : R+ → R+ such that f(2) = 2, f(x2 + y2) =
f(x)2 and f(f(x)) = x, for all x and y in R.

Solution. If a > b, then there exist x, y such that x2 +y2 = a, y2 = b. Applying
the second property of the function, we get that f(a) = f(b) + f(x)2, which means
f(a) > f(b), so the function is increasing. Now if f(x) > x, then as f is increasing,
then f(f(x)) > f(x) > x and if f(x) < x, then f(f(x)) < f(x) < x, so f(f(x)) = x
can hold only for f(x) = x.

With all these preliminaries in mind, we are ready to develop some problem
solving skills.
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1. Problems involving constructions

Some functional equations can have solutions which are easy to write, such as
f(x) = x. But there are other problems that require an answer which is difficult to
express in a closed form, and hard to guess. These problems are called ”construc-
tive”, because the reader is usually required to come up with a complicated function,
or sometimes produce a simple function, but using instead a complex argument.

Many constructive problems involve building a function by induction, if the
function is on N.

Problem 4. Find all functions f : N → N such that

f(n + 1)− f(n) ≡ n(mod 2).

Solution. The function f is determined by f(1), because we can find all the
values of f inductively. So let us set f(1) = k. Then f(2) = k+1, f(3) = k+1, f(4) =
k + 2, f(5) = k + 2. So when computing the actual values of f we see the pattern:
the function increases by 1, then stays constant, then again increases by 1, then
stays constant, and so on. Thus when computing f(n) we would have roughly n

2
jumps. We can now conjecture that f(n) = k + bn

2 c and then prove it by induction.
Indeed, the base case n = 1 is true. Then, if n = 2m + 1, we get

f(n) = f(2m + 1) = f(2m) + 2m(mod 2) = f(2m) = m + k = k + b2m + 1
2

c,

and for n = 2m,

f(n) = f(2m) = f(2m−1)+(2m−1)(mod 2) = m−1+k+1 = m+k = k+b2m

2
c.

Problem 5. Find all functions f : N → R\{0} satisfying

f(1) + f(2) + . . . + f(n) = f(n)f(n + 1)

for all n.
Solution. If we try to set f(x) = cx, we see that c = 1

2 . However, the condition
of the problem provides a recursive relation for f , therefore there are as many
solutions as possible values for f(1). So set f(1) = a. Then setting n = 1 in the
condition, we have a = af(2) and as a 6= 0 we obtain f(2) = 1. Then setting n = 2
we get f(3) = a+1. Setting n = 3 we get f(4)(a+1) = a+1+(a+1) so f(4) = 2 as
a + 1 = f(3) 6= 0. Now we see a pattern: for even numbers k, f(k) = k

2 as desired,
whereas for odd numbers k we have an additional a, and we can suppose that

f(k) = bk
2
c+ (k mod 2)a =

k

2
+ (k mod 2)(a− 1

2
).
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Let us now prove this by induction on k. Clearly, we have to consider two cases,
according to the parity of k.

a) k = 2n. Then

f(1) + f(2) + . . . + f(k) = f(k)f(k + 1),

or
1
2

+
2
2

+ . . . +
2n

2
+ n(a− 1

2
) = nf(2n + 1).

Thus
2n(2n + 1)

4
+ na− n

2
= nf(2n + 1),

which gives us f(2n + 1) = n + a, as desired.
b) k = 2n + 1. This case is completely analogous.
Hence all desired functions are of form f(k) = bk

2c+(k mod )a for some a. They
clearly satisfy the conditions of the problem provided that a is not a negative integer
(in which case f(−2a + 1) = 0).

Problem 6. Find all functions f : Z → Z such that
a) f(0) = 1
b) f(f(n)) = n

c) f(f(n + 2) + 2) = n.
Solution. By applying f to both sides of c) we get f(f(f(n+2)+2)) = n. But

from b), f(f(f(n + 2) + 2)) = f(n + 2) + 2. So f(n + 2) + 2 = f(n). From here we
get f(2k) = f(0)−2k, f(2k +1) = f(1)−2k. But f(0) = 1 and f(1) = f(f(0)) = 0,
so f(2k) = 1− 2k, f(2k + 1) = −2k. We conclude f(x) = 1− x.

The functions in mathematical problems are as diverse as are the whims of the
mathematicians. Try to guess, for example, the answer to the following equation.

Problem 7. Find all functions f : N0 → N0 satisfying f(0) = 1 and

f(n) = f(
⌊n

a

⌋
) + f(

⌊ n

a2

⌋
)

for all n.
Solution. Partition N into sets Sk = {ak, ak + 1, . . . , ak+1 − 1}. We see that

if n ∈ Sk, then bn
a c ∈ Sk−1, andb n

a2 c ∈ Sk−2 (for k ≥ 2). Next we see that if
k ∈ S0, then f(k) = 2 and if k ∈ S1, then f(k) = 3. So we can easily prove by
induction that f is constant on each Sk. If we let g(k) be the value of f on Sk,
then g(k) = g(k − 1) + g(k − 2) for k ≥ 2. It is clear now that g(k) = Fk+2 where
(Fn)n∈N0 is the Fibonacci sequence. So f(n) = Fbloga nc+2 for n ≥ 1.

4



 
 

 
 

 

 
AMY 2007-2008 Functional Equations 5

In creating functional equations, one could take a special function, state a rela-
tion for it, and then let the reader find it. Let us look at this example

Problem 8. Find all functions f : N → R such that f(1) = 1 and∑
d|n

f(d) = n

for all n in N.
Solution. Basic mathematical culture helps us: an example of such a function is

Euler’s totient function φ. So let us try to prove that f = φ. As φ is multiplicative,
let us first show that f is multiplicative, i.e. f(mn) = f(m)f(n) whenever (m,n) =
1. We do this by induction on m + n. Note that when one of m,and n is 1, this is
clearly true. Now assume that m,n > 1, and gcd(m,n) = 1. Then the condition
written for mn gives us

∑
d|mn f(d) = mn. But any d | mn can be written uniquely

as d = d1d2, where d1 | m and d2 | n. If d < mn, then d1 + d2 < m + n and, by the
induction hypothesis, f(d) = f(d1d2) = f(d1)f(d2) for d < mn. Therefore

mn =
∑
d|mn

f(d)

=
∑

d|mn, d<mn

f(d) + f(mn)

=
∑

d1|m, d2|n

f(d1)f(d2)− f(m)f(n) + f(mn)

=

∑
d|m

f(d)

 ∑
d|n

f(d)


= mn− f(m)f(n) + f(mn),

so f(mn) = f(m)f(n), as desired. So it suffices to compute f for powers of primes.
Let p be a prime. Then writing the condition for n = pk we get f(1) + f(2) +
. . . + f(pk) = pk. Subtracting this for the analogous condition for n = pk+1 we
get f(pk+1) = pk+1 − pk = φ(pk+1), and now the relation f = φ follows from the
multiplicativity. It remains to verify that

∑
d|n φ(d) = n. There are many proofs

of this. One of the shortest is evaluating the numbers of subunitary (and unitary)
non-zero fractions with denominator n. On one hand, this number is clearly n.
On the other hand, if we write each fraction as k

l in lowest terms, then l | n and
the number of fractions with denominator l is φ(l) - the number of numbers not
exceeding l which are coprime with l. So this number is also

∑
d|n φ(d).

Let us now look at a different equation. The variety of solutions comes from
constructing the function from different initial values.
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Problem 9. Find all functions f : Z → Z such that

f(m + n) + f(mn− 1) = f(m)f(n)

for all m and n in Z.
Solution. If f = c is constant we have 2c = c2 so c = 0 or c = 2. If f is not

constant, setting m = −1 gives us f(n)(1 − f(0)) = −f(−1), that is possible only
for f(−1) = 0, f(0) = 1. Then set m = −1 to get f(n − 1) + f(−n − 1) = 0, and
set m = 1 to get f(n + 1) + f(n− 1) = f(1)f(n). This is a quadratic recurrence in
f(n) with associated equation x2 − f(1)x + 1 = 0.

If f(1) = 0 we get f(n − 1) + f(n + 1) = 0 which implies f(n + 2) = −f(n) so
f(2k) = (−1)2kf(0) = (−1)k, f(2k +1) = (−1)kf(1) = 0. This function does satisfy
the equation.

Indeed, if m and n are both odd, then mn−1− (m+n) = (m−1)(n−1)−2 ≡ 2
(mod 4). Thus m + n and mn − 1 are even integers which give different residues
modulo 4. Hence f(m + n) + f(mn− 1) = 0, implying f(m)f(n) = 0.

If one of m,n is odd and the other even then m + n and mn− 1 are both odd,
hence f(m + n) + f(mn− 1) = f(m)f(n) = 0.

Finally, if m,n are even, then f(mn−1) = 0. We have f(m+n) = 1 if 4 | m−n
and −1 otherwise, and the same for f(m)f(n).

If f(1) = −1, then we get f(n) = (n− 1)mod 3− 1 for all n by induction on n.
It also satisfies the condition as we can check by looking at m,n modulo 3.

If f(1) = 2, then f(n + 1)− 2f(n) + f(n− 1) = 0 and f(n) = n + 1 by induction
on |n|. It also satisfies the condition as (m + n + 1) + mn = (m + 1)(n + 1).

If f(1) = 1, then f(n + 1) + f(n − 1) = f(n). Hence f(−2) + f(0) = f(−1) so
f(−2) = −1. Then f(−3)+f(−1) = f(−2) so f(−3) = −1. f(−4)+f(−2) = f(−3)
so f(−4) = −2. Also f(0) + f(2) = f(1) so f(2) = 0. But then f(2) + f(−4) 6= 0,
a contradiction.

If f(1) = −2, then f(n+1)+f(n−1)+2f(n) = 0 and f(−2)+2f(−1)+f(0) = 0
so f(−2) = −1 and then f(−3) + 2f(−2) + f(−1) = 0 so f(−3) = 3 and we have
f(−3) + f(1) 6= 0, again a contradiction.

Finally, if f(1) 6= 0, 1,−1, 2,−2, then the equation x2 − f(1)x + 1 = 0 has two

solutions f(1)±
√

f2(1)−4

2 , one of which is greater than 1 in absolute value and one is
smaller. If we solve the recurrence, we find that f(n) = crn + dsn, where c, d 6= 0
and without loss of generality |r| > 1, |s| < 1. In this case we have f(n) ∼ crn for
n →∞. Then f(m+n)+f(mn−1) = f(m)f(n) cannot hold, because the left-hand
side is asymptotically equivalent to crmn−1 for m = n → ∞, while the right-hand
side is asymptotically equivalent to c2rm+n and mn−1 is much greater than m+n.

Now, we have only seen examples of functions on integers. And it seems nat-
ural, because to construct a function one needs some kind of inductive argument.
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However, there are plenty of examples of functions on reals that can also be “con-
structed.”

Problem 10. Find all functions f : R → R satisfying
• f(−x) = −f(x) for all real numbers x;
• f(x + 1) = f(x) + 1 for all real numbers x and

• f
(

1
x

)
= f(x)

x2 for all non-zero real numbers x.
Solution. All the conditions are in one variable: x. In this case, some graph

theory helps us understand the path to the solution. Consider the reals as vertices
of a graph, and connect x with x + 1,−x, 1

x . The conditions link two values of
the function in two vertices joined by an edge. So if we pick x0, we can deduce
from f(x0) the values of f on C, where C is the set of numbers connected to x0 by
some chain of edges. Now we can get a contradiction if and only if there is a cycle
somewhere. So finding a cycle would impose a condition on f(x0) and maybe would
exactly find the value of f(x0).

Let us try to construct such a cycle for any x. After some tries we see that

x → x + 1 → 1
x + 1

→ − 1
x + 1

→ 1− 1
x + 1

=
x

x + 1
→ x + 1

x
= 1 +

1
x
→ 1

x
→ x.

Set f(x) = y. Then

f(x + 1) = y + 1, f(
1

x + 1
) =

y + 1
(x + 1)2

, f(− 1
x + 1

) = − y + 1
(x + 1)2

,

f

(
x

x + 1

)
=

x2 + 2x− y

(x + 1)2
, f

(
x + 1

x

)
=

x2 + 2x− y

x2
, f

(
1
x

)
=

2x− y

x2
,

and f(x) = 2x− y. So y = 2x− y, thus y = x.
Note that we need to have x 6= 0,−1 in order not to divide by zero. This is not

a problem for us, as f(0) + 1 = f(1), and we know that f(1) = 1 so f(0) = 0. Also
f(−1) = −f(1) = 1, hence f(x) = x for all x, and it satisfies the condition.

When we have an inequality in the condition of the problem, we can guess the
solution, then we can prove it is unique by constructing a counter-example to the
inequality. Look at this simple example:

Problem 11. Find all functions f : R → R such that f(2x) = 2f(x) and
|x− f(x)| ≤ 1 for all x in R.

Solution. It is clear that f(x) = x is a solution. Now if we assume f(x0) 6= x0

then |x0 − f(x0)| > 0. It follows that there is some k for which 2k|x0 − f(x0)| > 1.
However, 2k|x0 − f(x0)| = |2kf(x0)− 2kx0| = |f(2kx0)− 2kx0| and so 2kx0 violates
the inequality in the condition.

The following problem is similar, but more tricky.

7



 
 

 
 

 

 
AMY 2007-2008 Functional Equations 8

Problem 12. Find all functions f : [1,∞) → [1,∞) such that

f(x) ≤ 2(1 + x)

and
xf(x + 1) = f2(x)− 1

for all x ≥ 1.

(China)

Solution. We can guess the solution f(x) = x + 1 and now we will prove that
this is the only one. As in many other situations, we assume that f(x0) 6= x0 + 1
and we try to obtain an x such that f(x) < 1 or f(x) > 2(1 + x).

Indeed, we observe that xf(x+1) = f2(x)−1 can be interpreted as a recurrence
on an = f(n + x0) by an+1 = a2

n−1
n+x0

. Consider now bn = an
n+1+x0

. Then

bn+1 =
(n + 1 + x0)2b2

n − 1
(n + x0)(n + 2 + x0)

= b2
n +

b2
n − 1

(n + 2)(n + 2 + x0)
.

If b0 > 1, then we prove by induction that bn > 1, and then bn+1 > b2
n, which implies

bn > 2, for some n. Hence f(n + x0) > 2(1 + n + x0), a contradiction.
If b0 < 1, then we prove by induction that bn < 1 and therefore bn+1 < b2

n. Thus
bn < b2n

0 and 1
bn

> ( 1
b0

)2
n
. However, 1

bn
= n+1+x0

f(n+x0) < n + 1 + x + 0 and as b0 < 1,
( 1

b0
)2

n
> n + 1 + x0, a contradiction.

Thus b0 = 1, hence f(x0) = x0 + 1. As x0 was picked at random, f(x) = x + 1.

Finally, we have a pure construction problem on R.

Problem 13. Find all continuous functions f : R → R that satisfy

f(1 + x2) = f(x)

for all x in R.
Solution. Set g(x) = 1 + x2. As g is even, we see that f(x) = f(g(x)) =

f(−x), so f is even. Thus we need to find f only on [0,∞). Now we know that
f(gk(x)) = f(x). Also g(x) is increasing and g(x) > x as 1 + x2 > x for x ≥ 0.
Set x = 0 to get f(0) = f(1). Next set xk = gk(0), so that x0 = 0, x1 = 1. Then
g maps [xk−1, xk] into [xk, xk+1], so gk maps [0, 1] into [xk, xk+1]. As g(x) > 0
is increasing and g(x) > 1, we cannot establish any condition between f(x) and
f(y) for 0 < x < y < 1, because we cannot link x and y by operating with g. If
gk(x) = gl(y), then as gk(x) ∈ (xk, xk+1); gl(y) ∈ (xl, xl+1), we conclude k = l and
by injectivity x = y. Thus we may construct f as follows: let f be a continuous
function on [0, 1] with f(0) = f(1) and extend f to R+ by setting f(gk(x)) = f(x)
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and f(−x) = −f(x). Indeed, f satisfies f(1+x2) = f(x). Moreover, it is continuous:
the graphs of f on [xk, xk+1] are continuous as they are the composition of the
continuous functions f on [0, 1] and g−1

k on [xk, xk+1]. As f(xk) = f(xk+1), the
continuous graphs of f on intervals [xk, xk+1] unite to form a continuous curve, and
reflecting it with respect to the y axis we get a continuous graph of f .

2. Binary (and other) bases

A popular way of concocting special and interesting functions is to look at bases.
One could take, for example, the decimal expansion of n and let f(n) be the number
read backwards, or one could take the ternary expansion of n and set f(n) be the
sum of the digits of n, and so on. The most used is the binary base, because it has
only two digits and is simpler to state conditions on the functions.

The conditions on such functions usually connect f(x) with f(kx) or f(kx + 1),
etc. Generally, the rule of thumb is this: if you see a condition linking f(x) with
f(kx), look at the expansion of x in base k.

Problem 14. Find all functions f : N0 → N0 such that f(0) = 0 and

f(2n + 1) = f(2n) + 1 = f(n) + 1

for all n ∈ N0.
Solution. The statement suggests that we look at the binary expansion of f .

As f(2n+1) = f(n)+1 and f(2n) = f(n), it is straightforward to observe and check
that f(n) is the number of ones (or the sum of digits) of the binary representation
of n.

The next problem, as the statement suggests, should somehow combine bases 2
and 3.

Problem 15. Find all functions f : N → N such that f(1) = 1, f(2n) < 6f(n)
and

3f(n)f(2n + 1) = f(2n)(3f(n) + 1)

for all n in N.

(China)

Solution. Rewrite the main condition as f(2n+1)−f(2n)
f(2n) = 1

3f(n) .

It follows that f(2n + 1) − f(2n) > 0 and 3f(n)(f(2n + 1) − f(2n)) = f(2n).
As f(2n) < 6f(n), we deduce f(2n + 1) − f(2n) < 2. Thus the only possibility
is f(2n + 1) − f(2n) = 1 and f(2n) = 3f(n). This is clearly a recurrence to
compute f(n) according to its binary expansion, whose solution is: f(n) is the
number obtained by writing n in base 2 and reading the result in base 3.

9
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We conclude this section with a hard problem from IMO Shortlist 2000.

Problem 16. The function f on the non-negative integers takes non-negative
integer values and satisfies f(4n) = f(2n)+f(n), f(4n+2) = f(4n)+1, f(2n+1) =
f(2n) + 1 for all n. Prove that the number of non-negative integers n such that
f(4n) = f(3n) and n < 2m is f(2m+1).

(IMO Shortlist, 2000)

Solution. The condition suggests looking at the binary representation of n.
First, as f(4n) = f(2n) + f(n), we can easily deduce that f(2k) = Fk+1, where
(Fn)n∈N is the Fibonacci sequence. Indeed, setting n = 0 we get f(0) = 0, thus
f(1) = 1, f(2) = 1. Now the conditions f(4n+2) = f(4n)+1 = f(4n)+2, f(2n+1) =
f(2n) + 1 may suggest some sort of additivity for f , at least f(a + b) = f(a) + f(b)
when a does not share digits in base 2. And this is indeed the case if we look at some
small values of f . So we conjecture this assertion, which would mean that f(n) is
actually n transferred from base 2 into ”Fibonacci base”, i.e. f(bk2k + . . . + b0) =
bkFk+1 + . . . + b0. This is easily accomplished by induction on n: if n = 4k, then
f(n) = f(2k) + f(k), if n = 2k + 1, then f(n) = f(2k) + 1, and if n = 4k + 2, then
f(n) = f(4k) + 1, and the verification is direct.

Now, as we found f , let us turn to the initial question. It asks when f(4n) =
f(3n). Actually f should be some sort of increasing function, so we could sup-
pose f(3n) ≤ f(4n). Indeed this holds true if we check some particular cases,
with equality sometimes. Now what connects 4n and 3n? The condition says
that f(4n) = f(2n) + f(n) but we have 3n = 2n + n. So we can suppose that
f(a + b) ≤ f(a) + f(b) and look for equality cases.

We work in binary base. The addition of two binary numbers can be thought
of as adding their corresponding digits pairwise, and then repeating a number of
times the following operation: if we reached a 2 in some position, replace it by a
zero and add a 1 to the next position. (Note that we will never have digits greater
than two if we eliminate the 2 at the highest level at each step). For example
3 + 9 = 112 + 10012 = 10122, then we remove the 2 to get 10202 and again to get
11002 = 10 so 3+7 = 10. We can extend f to sequences of 0’s, 1’s and 2’s by setting
f(bk, . . . , b0) = bkFk+1 + bk−1Fk + . . .+ b0. Then we can see that if S is the sequence
obtained by adding a and b componentwise (as vectors), then f(s) = f(a) + f(b).
And we need to prove that the operation of removing a 2 does not increase f .

Indeed, if we remove a 2 from position k and add a 1 to position k + 1 the f
changes by Fk+2 − 2Fk+1. This value is never positive and is actually zero only for
k = 0. So f is not increased by this operation (which guarantees the claim that
f(a + b) ≤ f(a) + f(b)), and moreover it is not decreased by it only if the operation
consists of removing the 2 at the units position. So f(a + b) = f(a) + f(b) if and
only if by adding them componentwise we either reach no transfer of unity, or have
only one transfer at the lowest level. Hence f(4n) = f(3n) if and only if adding
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2n+n we can reach at most a transfer at the lowest level. This cannot occur as the
last digit of 2n is 0. So f(4n) = f(3n) if and only if by adding 2n and n we have
no transfer i.e. 2n and n do not share a unity digit in the same position. But as
the digits of 2n are just the digits of n shifted one position, this is possible if and
only if n has no two consecutive unities in its binary representation. So we need to
prove that there are exactly f(2m+1) = Fm+2 such numbers less than 2m.

Let g(m) be these numbers. Then g(0) = 1, g(1) = 2. Now note that if n is such
a number and n ≥ 2m−1, then n = 2m−1 + n′, where n′ < 2m−2 (as it cannot have
a unity in position m − 1 that would conflict with the leading unity), so we have
g(m − 2) possibilities for this case. For n < 2m−1 we have g(m − 1) possibilities.
Thus g(m) = g(m− 1) + g(m− 2) and an induction finishes the proof.

3. Iterations and orbits

There is a class of functional equations, most of them on N, which involve re-
peated applications of the unknown function, such as f(f(x)) = g(x). They can be
solved by constructing the ”orbits” of x: O(x) = (x, g(x), g(g(x), . . .)) and investi-
gating the relations determined by f on these orbits. This type of equations will be
exemplified here.

Problem 17. Let k be an even positive integer. Find the number of functions
f : N0 → N0 such that

f(f(n)) = n + k

for each n ∈ N0.
Solution.We can guess a particular solution: f(n) = n + k

2 , but the statement
of the problem itself suggests that there are many solutions, and those are not so
easy to find. We have

f(n + k) = f(f(f(n))) = f(n) + k

and it follows by induction on m that

f(n + km) = f(n) + km,

for all n, m ∈ N0.
Now take an arbitrary integer p, 0 ≤ p ≤ k − 1, and let f(p) = kq + r, where

q ∈ N0 and 0 ≤ r ≤ k − 1. Then

p + k = f(f(p)) = f(kq + r) = f(r) + kq.

Hence either q = 0 or q = 1 and therefore

f(p) = r, f(r) = p + k or f(p) = r + k, f(r) = p.
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In both cases we have p 6= r, which shows that f defines a pairing of the set
A = {0, 1, . . . , k}. Note that different functions define different pairings of A.

Conversely, any pairing of A defines a function f : N0 → N0 with the given
property in the following way. We define f on A by setting f(p) = r, f(r) = p + k
for any pair (p, r) of the given pairing and f(n) = f(q) + ks, for n ≥ k + 1, where
q and s are respectively the quotient and the remainder when n in divided by k.

Thus the number of the functions with the given property is equal to that of all

pairings of the set A. It is not difficult to see that this number is equal to
k!

(k/2)!
.

Remark. The above solution shows that if k is an odd positive integer, then
there are no functions f : N0 → N0 such that

f(f(n)) = n + k

for all n ∈ N0. For k = 1987 this problem was given at the IMO 1987.

Note that in order to find out information about the function f , we looked
at x + mk = f(f(. . . f(x))), based on the idea presented in the beginning of the
paragraph. Let us look at a very similar example.

Problem 18. Find all functions f : N → N for which there is a positive integer
a such that f(f(n)) = an for all n in N.

Solution. If a = 1, then f(f(x)) = x, so f is an involution and it is obtained
by paring all the natural numbers and mapping one element of a pair into another.
Next, suppose a > 1. If f(x) = y, then f(y) = ax, f(ax) = f(f(y)) = ay and we
prove by induction on k the following statement: (∗) f(akx) = aky, f(aky) = ak+1x.
Let S be the set of all numbers not divisible by a. Every positive integer can be
represented uniquely as akb, where b ∈ S. Now let s ∈ S and f(s) = akt, where t ∈ S.
If we set u = f(t), then using (∗) we get f(akt) = aku. But f(akt) = f(f(s)) = as,
therefore aku = as. Thus as s is divisible by u, we get either k = 1, u = s or
k = 0, u = as. In the first case, f(t) = s, f(s) = at and in the second case,
f(s) = t, f(t) = as. In any case, f maps one of s, t into another. Therefore S
separates into pairs (x, y) that satisfy f(x) = y, f(y) = ax, hence by (∗), f(akx) =
aky, f(aky) = ak+1x. It is clear that all such functions satisfy our requirements.

Finally, these two problems can be generalized to the following harder problem.

Problem 19. Let n be an integer greater than 1 and let a, b ∈ Z, a /∈ {0, 1}.
Prove that there exist infinitely many functions f : Z → Z such that fn(x) = ax + b
for all x ∈ Z, where fn is the n-th iterate of f . Prove that for a = 1 there exists b,
such that fn(x) = ax + b has no solutions.

(Romanian TST, 1991)
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Solution. The second part of the problem is already known to us when n = 2,
n is odd, and the procedure is the same. If b = n − 1 and we let ai = fi(0)
(ai+n = ai + b), then for some 0 ≤ i < j ≤ n we have ai ≡ aj(mod n). Thus
ai = aj + hb, hence ai+hn = aj , and therefore ar+hn+i−j = ar for all sufficiently
large r. As hn + i − j 6= 0, this implies ar+n(hn+i−j) = ar, which contradicts the
fact that ar+n(hn+i−j) = ar + b(hn + i− j). Actually, with one more effort, one can
prove that f exists if and only if n | b.

Now let us turn to the first part, which seems more challenging but bears also
some similarity to the simpler case a = 1, n = 2. Let g(x) = ax + b. First consider
the case a 6= −1 (it is special because g(g(x)) = x in this case, whereas in the general
case |gn(x)| tends to infinity for almost all x). We see that gn(x) = an(x− b

a−1)+ b
a−1 .

In particular, this proves our claim that |gn(x)| tends to infinity for almost all x: all
x except, perhaps, x = b

a−1 (if it is an integer).
Let C(x) = {x, g(x), g2(x), . . . , gn(x), . . .} be the chain generated by x and call a

chain maximal if it is not a proper subchain of another chain (that is, if x 6= g(y) for
y ∈ Z). We claim that maximal chains form a partition of N \ {− b

a−1}. Indeed, first
pick a number n 6= − b

a−1 . Then n = gk(m) is equivalent to n = ak(m + b
a−1)− b

a−1 ,
or (a− 1)n + b = ak((a− 1)m + b). So take k to be the greatest power of a dividing
(a− 1)n + b and let s = (a−1)m+b

ak . Then s is not divisible by a and moreover s− b

is divisible by a − 1. Hence if we set m = s−b
a−1 + b, then m is an integer and the

equation g(t) = m has no solutions in N (because otherwise at = m − b = s−b
a−1 , so

s− b is divisible by a). Thus C(m) is the desired maximal chain.
Next, let us prove that two distinct maximal chains do not intersect. If C(x)

and C(y) intersect for x 6= y, then gm(x) = gn(y) for some m 6= n. Without
loss of generality, m ≥ n. Then, as g is invertible on R, we deduce gm−n(x) = y,
hence C(y) ⊂ C(x), contradicting the fact that C(y) is a maximal chain. Now
consider all maximal chains (there are infinitely many of them since every element
x for which the equation g(y) = x has no solutions in N generates such a chain).
We can group then into n-tuples. Now we define f on each of the n-tuples. Let
(C(x1), C(x2), . . . , C(xn)) be such an n-tuple. Then we define f(gk(xi)) = gk(xi+1)
for i = 1, 2, . . . , n − 1 and f(gk(xn)) = gk+1(x1). Define also f(− b

a−1) = − b
a−1 .

Then f satisfies our requirements.
Let us investigate the case a = 1. In this case, N\{ b

2} splits into infinitely many
disjoint pairs (x, y) with x + y = b. Again, we can group the pairs into n-tuples
and define f on each n-tuple (x1, y1), . . . , (xn, yn) as f(xi) = xi+1, f(yi) = yi+1 for
i = 1, 2, . . . , n−1 and f(xn) = y1, f(yn) = x1. Define f( b

2) = b
2 , if necessary. Again,

we see that f satisfies the conditions.
Finally, in both cases, as we can group the chains or the pairs into n-tuples in

infinitely many ways, we have infinitely many such functions. It can be also proved
that all functions with the desired property are of this form.
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4. Approximating with linear functions

There are some weird functional equations on N that seem untouchable. But
we can sometimes prove that they are unique. In this case guessing the function
would be very helpful, and very often, the solutions are linear, thus it is natural
to try f(x) = cx. But sometimes c can be rational or even irrational, and we can
have formulas such as f(x) = bcxc. To overcome this difficulty, we write f(x) ∼ cx,
meaning that |f(x) − cx| is bounded, or f(x)

cx is close to 1, or whatever intuitive
condition we mean, as long as cx is the most important part in expressing f(x).
Now we can guess c from the condition and then look at some initial case to guess
the exact formula. Examples are given below.

Problem 20. Find all increasing functions f : N → N such that the only positive
integers that are not in the image of f are those of form f(n) + f(n + 1), n ∈ N.

Solution. First assume that f(x) ∼ cx. Let find c. If f(n) = m, then there are
exactly m−n positive integers not exceeding m that are not values of f . Therefore
we conclude that they are exactly

f(1) + f(2), . . . , f(m− n) + f(m− n + 1).

Hence f(m−n)+f(m−n+1) < m < f(m−n+1)+f(m−n+2). Now as f(x) ∼ cx,
we conclude that m ∼ cn. Thus 2c(m− n) ∼ m, or 2c(c− 1)n ∼ cn. It follows that
2c− 2 = 1, so c = 3

2 . Hence we make the assumption that f(x) = b3
2x + ac for some

a. Let us search for a.
Clearly, f(1) = 1, f(2) = 2, as 1 and 2 must necessarily belong to Imf . Then

3 does not belong to Imf , hence f(3) ≥ 4, so f(2) + f(3) ≥ 6. Thus 4 belongs to
Imf and f(3) = 4. We continue to f(4) = 5, f(5) = 7, and so on. So b3

2 + ac =
1, b3+ac = 2, which implies a ∈ [−1

2 ; 0). And we see that for any a, b in this interval,
b3

2x + a] = b3
2x + bc. So we can assume a = −1

2 and conjecture that f(n) = b3n−1
2 c.

First we wish to show that b3n−1
2 c satisfies the conditions.

Indeed, b3n−1
2 c+ b3(n+1)

2 c = b3n−1
2 c+ 1 + b3n

2 c = 3n + 1 by Hermite’s Identity,
and we need to prove that the only numbers that are not of form b3n−1

2 c are those
that give residue 1 to division by 3. Indeed, if n = 2k, then b3n−1

2 c = 3k − 1 and if
n = 2k + 1, then b3n−1

2 c = 3k. The conclusion is straightforward.
The fact that f(n) = b3n−1

2 c stems now from the inductive assertion that f is
unique. Indeed, if we determined f(1), f(2), . . . , f(n − 1), then we determined all
f(1)+f(2), f(2)+f(3), . . . , f(n−2)+f(n−1). Then f(n) must be the least number
which is greater than f(n − 1) and not among f(1) + f(2), f(2) + f(3), . . . , f(n −
2)+f(n−1). This is because if m is this number and f(n) 6= m, then f(n) > m and
m does not belong to Im(f) or to the set {f(n) + f(n + 1)|n ∈ N}, a contradiction.
Hence f(n) is determined uniquely from the previous values of f .
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The next problem was the hardest at the IMO 1979, but if you ”guess” the
answer, you have a chance to do the computations and solve the problem.

Problem 21. Find all increasing functions f : N → N with the property that all
positive integers that are not in the image of f are those of form f(f(n))+1, n ∈ N.

(IMO, 1979)

Solution. Again, f is unique. If f(x) ∼ cx, then we conclude that m ∼
c2(m − n), where m = f(n). Thus c = c2(c − 1) or c2 − c − 1 = 0. We get
c = 1+

√
5

2 ∼ 1.618, the positive root of the above quadratic equation. We try to
set f(x) = bcx + dc for some constant d. Now we compute f(1) = 1, f(2) = 3,
f(3) = 4, f(4) = 6, f(5) = 8, and we can try to put d = 0, so f(n) = bcnc. Let us
prove that it satisfies the hypothesis.

If f(n) = m, then m < cn < m + 1, so m
c < n < m+1

c . As 1
c = c − 1, we

get (c − 1)m < n < (c − 1)(m + 1), and so m is in Im(f) if an only if the interval
(cm, cm+c−1) contains an integer which is equivalent to the fact that {cm} > 2−c.
If f(f(n)) + 1 = m, then bcbcncc = m− 1. It follows that

bcnc ∈ ((m− 1)(c− 1),m(c− 1)),

so

n ∈ ((m− 1)(c− 1)2,m(c− 1)2 + (c− 1)) = ((2− c)m + c− 2, (2− c)m + c− 1),

or
n = b(2− c)m + c− 1c = 2m− bc(m− 1)c − 2.

Therefore m = f(f(n)) + 1 if and only if the number n = 2m− bc(m− 1)c − 2
satisfies the condition f(f(n)) + 1 = m. We set u = {c(m− 1)}. Then
n = (2− c)m + c− 2 + u, so

f(n) = bc(2−c)m+cu−2c+c2c = b(c−1)m+cu−c+1c = b(c−1)(m−1)+cuc =

= bc(m− 1)−m + 1 + cuc = c(m− 1)−m + 1 + cu− {u(c + 1)}.

Set s = {u(c+1)}. Then f(f(n)) = bc(c−1)(m−1)+c2u−csc = bm−1+(c+1)u−csc.
So f(f(n)) + 1 = m if and only if 0 < (c + 1)u− cs < 1.

If t = u(c + 1) ∈ (0, 1 + c) this is equivalent to t− c{t} ∈ (0, 1).
When t < 1, this is false, as the requested value is negative.
When 1 < t < 2, we have t− c{t} = t− c(t− 1) = c− (c− 1)t ∈ (0, 1).
When t > 2,

t− c{t} = t− c(t− 2) = 2c− (c− 1)t > 2c− (c− 1)(c + 1) = 2c− c2 + 1 = c > 1.
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Our condition is equivalent to t ∈ (1, 2) or u ∈ ( 1
c+1 , 2

c+1) = (2 − c, 4 − 2c), so
{cm − c} ∈ (2 − c, 4 − 2c) or {cm} ∈ {0, 2 − c}. Hence this condition is equivalent
to {cm} < 2− c.

Thus we see that the condition m = f(n) is equivalent to {cm} > 2− c and the
condition m = f(f(n)) + 1 is equivalent to {cm} < 2− c. The proof is finished.

5. Cauchy’s equation

The Cauchy equation is like a threshold for functional equations: anyone who
studies it will eventually master it, and this is what distinguishes a novice in this
field from an experienced solver. The importance of this equations stems from its
simple and natural statement on one side, and ingenious proof on the other (whose
reasoning is mirrored while solving many other, far more complicated problems).

Problem 22. Find all monotonic (or continuous) functions f : R → R that
satisfy the condition

f(x + y) = f(x) + f(y)

for all x in R.

(Cauchy’s equation)

Solution. If f(1) = c, then f(2) = f(1 + 1) = c + c = 2c. Thus f(3) =
f(2 + 1) = f(2) + f(1) = 2c + c, and by induction f(n) = cn for n ∈ N. Because
f(0+1) = f(0)+ f(1), we get f(0) = 0 and then as 0 = f(n+(−n)) = nc+ f(−n),
we find f(−n) = cn for n ∈ N.

We have computed f on N. To compute other values of f , note that f(mx) =
mf(x) by induction on m ∈ N (this is exactly the same way as we proved that
f(n) = cn). Thus, if x ∈ Q, then x = p

q for p ∈ Z, q ∈ N. Hence pc = f(p) =
f(qx) = qf(x), so f(x) = cp

q = cx for x ∈ Q.
Now, as we have shown f(x) = cx for x ∈ Q, it is natural to assume f(x) = cx

for x ∈ R. This is where we use the fact that f is either continuous or monotonic.
If f is continuous, then as Q is dense in R, we can select xn ∈ Q such that

limn→∞ xn = x and then f(x) = limn→∞ f(xn) = limn→∞ cxn = cx.
If f is monotonic, assume that f(x) 6= cx. If c = 0, then there are u < x < v

such that u, v ∈ Q. Hence f(u) = f(v) = 0 and the monotonicity of f implies that
f(x) = 0, too. If c > 0, then f is increasing. Now if f(x) = cy and y > x, we can take
z ∈ Q such that x < z < y and then f(x) ≤ f(z) = cz < cy = f(x), a contradiction.
If y < x, choose z ∈ Q such that y < z < x and then f(x) ≥ f(z) = cz > cy = f(x),
again a contradiction. If c < 0, then f is decreasing and the reasoning mirrors the
one for c > 0.
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A function f for which f(x + y) = f(x) + f(y) for all x and y is called additive.
The additional assumptions on f , either monotonicity or continuity, are crucial:
additive functions that are not linear can be constructed, but we will not touch this
advanced topic here. There is another equation which resembles Cauchy:

Problem 23. Find all continuous functions f : R → R such that f(xy) =
f(x)f(y) for all x and y in R (such a function is called multiplicative).

Solution. If we let g(x) = ln(x), then g(xy) = g(x) + g(y) and if we set
x = ea, y = eb, we get g(ea+b) = g(ea) + g(eb). Now if we set h(x) = g(ex), we
get g(x + y) = g(x) + g(y). We know how to solve this equation, which gives us
h(x) = cx. It follows that g(ex) = cx, thus g(x) = c lnx and from here f(x) = xc.

All is well until we realize that ln is defined only for positive real numbers.
However this can be fixed. We note that f(x2) = f(x)2 so f is non-negative on R+.
If for some a 6= 0 we have f(a) = 0, then we would have f(x) = f(ax

a ) = f(x) = 0,
so f would be identically zero. Thus aside for the identically zero solution, all other
functions satisfying the condition are positive on R+. Therefore f(x) = xc for some
c. As f is continuous at 0, we must have f(0) = limx→0 xc. This tells us that
c ≥ 0 (otherwise the limit is +∞). If c > 0, we get f(0) = 0, and if c = 0, we get
f(0) = 1. Finally, we are to handle the negative numbers. As f(−1)2 = f(1) = 1,
we get f(−1) = ±1. If f(−1) = 1, then f(−x) = f(x), hence f(−x) = xc for x ≥ 0
thus f(x) = |xc|. This is clearly a solution to the equation. If f(−1) = 1, we get
f(−0) = −f(0), so f(0) = 0, which implies c > 0. Then f(−x) = −f(x) hence
f(x) = sgn(x)xc, which is also a solution to our problem.

Here is another application of Cauchy’s equation.

Problem 24. Find all pairs of continuous functions f, g : R → R that satisfy

f(x) + f(y) = g(x + y)

for all x and y in R.
Solution. We remark that f(x + y) + f(0) = f(x) + f(y) = g(x + y). Thus

f(x)− f(0) + f(y)− f(0) = f(x + y)− f(0), so f(x)− f(0) is an additive function.
Therefore f(x) = ax + c for some c = f(0) and hence g(x) = ax + 2c.

Let us now combine the multiplicative and the additive Cauchy equation into a
”power” Cauchy equation.

Problem 25. Find all functions f : R+ → R+ such that

f(xy) = f(x)f(y)

for all x, y ∈ R+.

(Russia, 1993)
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Solution. We will prove that the functions f(x) = x and f(x) = 1 are the only
solutions to the problem. Suppose that f(a) 6= 1 for some a > 0. Then

f(a)f(xy) = f(axy) = f(ax)f(y) = f(a)f(x)f(y),

that is f(xy) = f(x)f(y). Hence

f(a)f(x+y) = f(ax+y) = f(ax)f(ay) = f(a)f(x)+f(y),

that is f(x + y) = f(x) + f(y). But f is non-decreasing, since for x − y > 0, we
have f(x)−f(y) = f(x−y) = f(

√
x− y2) = f(

√
x− y)2 ≥ 0. Hence f(x) = cx and

cxy = (cx)cy. In particular c = ccy for all y > 0, so c = 1.

This equation may have many variations. Consider the following example:

Problem 26. Find all continuous functions f : R → R such that

{f(x + y)} = {f(x) + f(y)}

for all x and y in R ({a} means the fractional part of a)
Solution. Basically, the problem says that f(x + y)− f(x)− f(y) is an integer.

Now, the difficulty is that it does not say which one. This inconvenience can be
overcome by looking at the function gy(x) = f(x + y)− f(x)− f(y) for a fixed y. It
must be continuous and integer-valued, which of course can happen only when it is
constant. Thus gy(x) = g0(x) = f(y)−f(0)−f(y) = −f(0). Hence f(x+y)−f(x)−
f(y) = −f(0) and then we just have f(x+y)−f(0) = (f(x)−f(0))+(f(y)−f(0)).
Thus f(x) = cx + f(0) = cx + d where d ∈ Z.

Not all applications of Cauchy’s equation are so evident. In fact, the difficulty
often lies in molding the condition such that we are able to use Cauchy’s equation.
We sometimes need to be really patient, as in the following example:

Problem 27. Prove that a continuous function f : R → R satisfying

f(x + y − xy) + f(xy) = f(x) + f(y)

for all x and y in R is linear.

(Hosszu’s functional equation)

Solution. This equation is of the form f(a)+ f(b) = f(c)+ f(d), where a+ b =
c + d. The inconvenience is in that (a, b) and (c, d) are linked to each other, so we
cannot state that f(a) + f(b) = f(c) + f(d) whenever a + b = c + d. We try to
eliminate this inconvenience by adding a new variable and symmetrizing:

f(x)+f(y)+f(z) = f(x+y−xy)+f(xy)+f(z) = f(x+y−xy)+f(xy+z−xyz)+f(xyz).
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By symmetry, it also equals to f(x + z − xz) + f(xz + y − xyz) + f(xyz) and
f(y + z − yz) + f(yz + x − xyz) + f(xyz). Thus we deduce that f(x + y − xy) +
f(xy +z−xyz) = f(x+z−xz)+f(xz +y−xyz) = f(y +z−yz)+f(yz +x−xyz).

This is again an equation of the form f(a)+f(b) = f(c)+f(d), where a+b = c+d,
but this time the constraints are milder. Indeed, if we set g(t) = f(1 − t), we can
rewrite the equation as

g((1− x)(1− y)) + g((1− xy)(1− z)) = g((1− x)(1− z)) + g((1− y)(1− xz))
= g((1− y)(1− z)) + g((1− x)(1− yz)).

Now, let us find for which a, b, c, d with a + b = c + d we can find x, y, z with
(1− x)(1− y) = a, (1− z)(1− xy) = b, (1− x)(1− z) = c. For convenience, we set
u = 1 − x, v = 1 − y, w = 1 − z to get uv = a,w(u + v − uv) = b, uw = c. Hence
w = c

u , v = a
u , and c

u(u + a
u − a) = b or (c− b)u2 − acu + ac = 0.

For this equation to have a non-zero solution, we need to have a nonnegative
discriminant. Thus a2c2 − 4ac(c − b) ≥ 0, or (ac − 2c)2 + 4(abc − c2) ≥ 0. When
abc > c2, this is certainly true. Therefore if abc > c2 we have g(a)+g(b) = g(c)+g(d)
for a + b = c + d. Now consider (a, b) and (c, d) with a + b = c + d. If ab and
cd have the same sign, then we can find an e sufficiently small in absolute value
such that abe > e2 and cde > e2. Setting e1 = a + b − e = c + d − e, we get
g(a) + g(b) = g(e) + g(e1), as abe > e2. Similarly, g(e) + g(e1) = g(c) + g(d), so
g(a) + g(b) = g(c) + g(d). Thus g(a) + g(b) = g(c) + g(d), when a + b = c + d and
abcd > 0.

Now take a, b 6= 0 and a+ b 6= 0. Then for all sufficiently small c such that c has
the same sign as ab(a+ b), we have abc(a+ b− c) > 0. Hence g(a)+f(b) = g(a+ b−
c)+g(c). By taking c → 0 and passing to the limit we get g(a)+g(b) = g(a+b)+g(0)
whenever ab(a + b) 6= 0. The restriction ab(a + b) 6= 0 is not a restriction to us: for
any a, b we can find an tending to a, bn tending to b such that anbn(an + bn) 6= 0.
Then we have g(an) + g(bn) = g(an + bn) + g(0) and by passing to the limit we get
g(a) + g(b) = g(a + b) + g(0). But then g(x) − g(0) satisfies the Cauchy equation.
Hence g(x) is linear, so is f(x) = g(1− x). Conversely, any linear function satisfies
Hosszu’s equation.

Let us look at another subtle use of Cauchy’s equation.

Problem 28. Find all functions f : R → R such that

f(f(x)2 + y) = x2 + f(y).

for all x and y in R.
Solution. If f(x1) = f(x2), then setting x = x1, x2 we get x2

1 = x2
2, or x2 = ±x1.

Now consider the function h : R+ → R+ defined by h(x) = f2(
√

x). We can rewrite
the condition as f(h(x) + y) = x + f(y) for x > 0. Then

f(h(u) + h(v) + y) = u + f(h(v) + y) = u + v + f(y) = f(h(u + v) + y).
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Therefore h(u)+h(v)+ y = ±(h(u+ v)+ y). But h(u)+h(v)+ y = −(h(u+ v)+ y)
cannot hold for all y, so for at least one y we have h(u) + h(v) + y = h(u + v) + y.

Thus h is additive. As h is non-negative by definition, h(x) = cx, where c ≥ 0.
We can deduce that f(x) = ±

√
cx. Hence f(cx2 + y) = x2 + f(y). If f(y) =

−
√

cy, y 6= 0, then f(cx2 + y) = x2 −
√

cy. It follows that

f2(cx2 + y) = (x2 −
√

cy)2 6= (cx2 + y)2

for at least some x, because (x2 −
√

cy)2 = (cx2 + y)2 is equivalent to the not
identically zero polynomial equation (c2 − 1)x4 + 2(c +

√
c)yx2 + (1− c)y2 = 0. So

f(y) =
√

cy. In this case we get analogously (x2 +
√

cy)2 = (cx2 + y)2, which for
x = 0 becomes cy2 = y2, c = 1. Hence f(x) = x for all x. The identity function
satisfies the equation.

6. Substitutions

This method is very common in almost every area of mathematics. But it is
especially useful in functional equations, since after all, every such equation has to
be solved by substituting some values into the equation and then drawing the con-
clusion. In fact, many of the problems in other sections rely heavily on substitutions
and could be easily be placed here. However, we present here the ones which em-
phasize the role of substitutions most. The skills learned in this section will prove
useful in all the other sections.

Let us start with a warm-up example.

Problem 29. Find all functions f : Z → Z that satisfy

f(xy − x− y) = f(xy)− f(x + y)

for all x and y in R.
Solution. Just substitute y = 1 to get f(−1) = f(x)−f(x+1). Hence f(x+1) =

f(x)− f(−1) and from here we immediately conclude that f(x) = −xf(−1) + f(0).
Now if we set x = −1, we get f(−1) = f(−1) + f(0), so f(0) = 0. Thus if we set
f(−1) = −a, we get f(x) = ax and clearly any such function satisfies the condition
in the problem.

Problem 30. Find all functions f : R → R such that

f(x + y)− f(x− y) = f(x)f(y)

for all x and y in R.

20



 
 

 
 

 

 
AMY 2007-2008 Functional Equations 21

Solution. Set x = y = 0 to get f(0)2 = 0, therefore f(0) = 0. If we set y → −y
we get

f(x− y)− f(x + y) = f(x)f(−y) = −f(x)f(y).

In particular, f(y)f(−y) = −f(y)2 and f(−y)2 = −f(y)f(y). Hence

f(y)(f(y) + f(−y)) = f(−y)(f(y) + f(−y)) = 0,

so either f(y)+f(−y) = 0, or f(y) = f(−y) = 0. We conclude that f(y)+f(−y) = 0,
for all y, thus f is odd. Now set y = x to get f(2x) = f(x)2. Then f(−2x) =
f(−x)2 = f(x)2 = f(2x). As f(−2x) = −f(2x, ) we deduce that f(2x) = 0 and so
f is identically zero.

Substitutions are not only about clever choices of variables, but also about effi-
cient selection of functions.

Problem 31. Find all functions f : R → R, continuous at zero, satisfying
f(x + y)− f(x)− f(y) = xy(x + y), for all x and y in R.

Solution. We can guess the solution x3

3 , thus g(x) = f(x) − x3

3 is additive.
Now we claim f(x) = cx for c = f(1). Indeed, assume that d = f(t) 6= ct. If t
is irrational, then we can find m,n ∈ Z with |m + nt| < ε for any ε > 0. Then
f(m + nt) = mc + nd = c(m + nt) + n(d− ct). But now if we take ε small enough
we force n to be as large as we want. Thus |f(m + nt)| > n|d− ct| − cε increases to
infinity, which contradicts the continuity of f in 0. So f(x) = x3

3 + cx.
Remark: We have encountered a stronger version of the continuous Cauchy’s

equation here. If f is additive and continuous at one point, then it is linear.

Problem 32. Find all continuous functions f : R → R satisfying

f(x + y) =
f(x) + f(y)
1− f(x)f(y)

for all x and y in R.
Solution. We know that f(x) = tanx satisfies this equation. Therefore if we

set g(x) = arctan f(x), then g(x + y) = g(x) + g(y)± 2kπ. Setting h(x) = g(x)
2π , we

get {h(x) + h(y)} = {h(x + y)}. Thus h(x) = cx + d, where d ∈ Z (we have met
this problem in the previous section). Then g(x) = ax + 2πk for some k ∈ Z, hence
f(x) = tan(ax + 2πk) = tan(ax). These functions satisfy the equation.

Problem 33. Find all polynomials P (x, y) ∈ R2[x, y] satisfying

P (x + a, y + b) = P (x, y),

where a, b are some reals, not both zero.
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Solution. Suppose b 6= 0. Consider the polynomial R ∈ R2[x, y] defined by
R(x, y) = P (x + a

b y, y). Observe that P (x, y) = R(x− a
b y, y).

Thus P (x + a, y + b) = P (x, y) can be rewritten in terms of R as R((x + a) −
a
b (y + b), y + b) = R(x− a

b y, y) or R(x− a
b y, y + b) = R(x− a

b y, y).
If we set x → (x− a

b y), we get R(x, y) = R(x, y + b). Then by induction on n

R(x, y) = R(x, y + b) = . . . = R(x, y + nb).

Set Qx(y) = R(x, y). Then Qx(y) = Qx(y + b) = . . . = Qx(y + nb) and taking
n > deg Qx we get that Qx is constant so Qx(y) = Qx(0) = R(x, 0).

As R(x, 0) is a polynomial in x, R is a polynomial in x, so R(x, y) = Q(x), for
some polynomial Q ∈ R[x]. Then P (x, y) = R(x− a

b y, y) = Q(x− a
b y) = Q(bx−ay).

Each such polynomial satisfies the condition, as

P (x + a, y + b) = Q(b(x + a)− a(y + b)) = Q(bx− ay) = P (x, y).

If b = 0, then a 6= 0, and we repeat the reasoning by replacing b with a and y with
x to get again P (x, y) = Q(bx− ay).

The next problem is very beautiful, but in some sense quite hard (try to do it
without substitutions).

Problem 34. Give an example of a bijection f : N0 → N0 satisfying the equation
f(3mn + m + n) = 4f(m)f(n) + f(m) + f(n).

(IMO Shortlist, 1996)

Solution. If we denote g(3k + 1) = f(k), then the condition becomes

g((3m + 1)(3n + 1)) = 4g(3m + 1)g(3n + 1) + g(3m + 1) + g(3n + 1).

Next, if we denote 4g(x) + 1 = h(x), the condition above can be rewritten as
h((3m + 1)(3n + 1)) = h(3m + 1)h(3n + 1). Now we understand that we need to
construct a multiplicative bijection of A into B, where A = {3k+1 | k ∈ N}, andB =
{4k + 1 ∈ N}.

We can set h(1) = 1. Let U be the set of all primes of the form 3k − 1, V the
set of all primes of the form 3k + 1, X the set of all primes of the form 4k − 1, and
Y the set of all primes of the form 4k + 1. All these four sets are infinite. So we
can provide a bijection h between U and X and between V and Y . We extend it by
multiplicativity to the whole set A. We prove this is the required bijection.

Indeed, assume that 3k + 1 =
∏

pai
i

∏
qbi
i where pi ∈ U, qi ∈ B. Then pi are −1

mod 3, qi are 1 mod 3, so
∑

ai must be even. Then h(3k +1) =
∏

h(pi)ai
∏

h(qi)bi ,
where h(pi) ∈ X, h(qi) ∈ Y . As h(pi) is −1 mod 4 and h(qi) is 1 mod 4, but

∑
ai is

even, we conclude that h(3k + 1) is 1 mod 4, so h(3k + 1) ∈ B.
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We can analogously prove the converse: assume that 4k+1 =
∏

pai
i

∏
qbi
i , where

pi ∈ X, and qi ∈ Y . As pi are −1 mod 4 and qi are 1 mod 4,
∑

ai must be even.
Then x =

∏
h−1(pi)ai

∏
h−1(qi)bi satisfies h(x) = 4k + 1. Moreover, as h−1(pi) are

−1 mod 3, h−1(qi) are 1 mod 3, and
∑

ai is even, we conclude that x is 1 mod 3, so
x ∈ A. Finally, h is injective, because of the uniqueness of the prime factorization.

Problem 35. Find all functions f : R → R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all x, y ∈ R.

(IMO, 1999)

Solution. Setting x = f(y) in the given equation gives

f(x) =
c + 1− x2

2
, (1)

where c = f(0). On the other hand, if y = 0 we get f(x− c)− f(x) = f(c) + cx− 1.
Hence f(−c)− c = f(c)− 1, which shows that c 6= 0. Thus for any x ∈ R there is
t ∈ R such that x = y1 − y2, where y1 = f(t − c) y2 = f(t). Now using the given
equation we get

f(x) = f(y1 − y2) = f(y2) + y1y2 + f(y1)− 1

=
c + 1− y2

2

2
+ y1y2 +

c + 1− y1
2

2
− 1

= c− (y1 − y2)2

2
= c− x2

2
.

This together with (1) gives c = 1 and f(x) = 1− x2

2
. Conversely, it is easy to check

that this function satisfies the given equation.

7. Fixed points

An important information about a function is given by its fixed points. There are
a lot of important theorems concerning fixed points in more advanced mathematics,
such as Brower’s Theorem. We will illustrate how the idea of looking at fixed points
helps us in solving some interesting problems.

Problem 36. Find all functions f : R+ → R+ such that
(i) f(xf(y)) = yf(x) for all x, y ∈ R+;
(ii) lim

x→+∞
f(x) = 0.

(IMO, 1983)
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Solution. From (i) it follows that f(xf(x)) = xf(x) for all x > 0. By induction
on n we have that if f(a) = a for some a > 0, then f(an) = an for all n ∈ N. Note
also that a ≤ 1, since otherwise

lim
n→∞

f(an) = lim
n→∞

an = +∞,

in contradiction to (ii).
On the other hand, a = f(1 · a) = f(1 · f(a)) = af(1). Hence

1 = f(1) = f(a−1a) = f(a−1f(a)) = af(a−1),

implying f(a−1) = a−1. Thus we have (as above) f(a−n) = a−n for all n ∈ N and
so a−1 ≤ 1.

In conclusion, the only a > 0 such that f(a) = a is a = 1. Hence the identity

f(xf(x)) = xf(x) implies f(x) =
1
x

for all x > 0. It is easy to check that this

function satisfies the conditions (i) and (ii) of the problem.

Problem 37. Let S be the set of all real numbers greater than −1. Find all
functions f : S → S such that

(i) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x, y ∈ S;

(ii)
f(x)

x
is strictly increasing in the intervals (−1, 0) and (0,+∞).

(IMO, 1994)

Solution. If x = y > −1 we have from (i) that

f(x + (1 + x)f(x)) = x + (1 + x)f(x). (1).

On the other hand, (ii) implies that the equation f(x) = x has at most one solution
in each of the intervals (−1, 0) and (0,+∞).

Suppose that f(a) = a for some a ∈ (−1, 0). Then (1) implies f(a2 + 2a) =
a2 + 2a and therefore a2 + 2a = a, because a2 + 2a = (a + 1)2− 1 ∈ (−1, 0). Hence
a = −1 or a = 0, a contradiction. The same arguments show that the equation
f(x) = x has no solutions in the interval (0,+∞).

Then we conclude from (1) that x + (1 + x)f(x) = 0, that is f(x) = − x

1 + x
for

all x > −1. It is easy to check that this function satisfies the conditions (i) and (ii)
of the problem.

Problem 38. Prove that there is no function f : R → R such that

f(f(x)) = x2 − 1996

for all x ∈ R.

(Tournament of the towns, 1996)
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Solution. We will prove the following more general result.

Lemma Let g(x) be a quadratic function such that the equation g(g(x)) = x
has at least three different real roots. Then there is no function f : R → R such that

f(f(x)) = g(x) (1)

for all x ∈ R.
Proof. The fixed points of g(x) are also fixed points of the fourth degree poly-

nomial h(x) = g(g(x)). Hence by the given conditions it follows that g(x) has one
or two real fixed points. Denote them by x1 and x2. Then h(x) has one or two real
fixed points, different from x1 and x2. Denote them by x3 and x4. The identity

f(g(x)) = f(f(f(x))) = g(f(x))

implies that {f(x1), f(x2)} = {x1, x2}. On the other hand,

f(f(g(x))) = f(g(f(x))) and f(f(f(g(x)))) = f(f(g(f(x)))),

that is f(h(x)) = h(f(x)). Hence {f(x3), f(x4)} ∈ {x1, x2, x3, x4}. Suppose that
f(xl) = xk for some k ∈ {1, 2} and l ∈ {3, 4}. Then

xl = h(xl) = f(f(f(f(xl)))) = f(g(xk)) = f(xk) ∈ {x1, x2},

a contradiction. Hence f(x3) = x3, if x3 = x4, and {f(x3), f(x4)} = {x3, x4}, if
x3 6= x4. In both cases we have g(x3) = f(f(x3)) = x3, a contradiction. Thus
the lemma is proved. Turning back to the problem, we note that the equation
g(g(x)) = (x2 − 1996)2 − 1996 = x has four different real roots since

(x2 − 1996)2 − 1996− x = (x2 − 1996− x)(x2 + x− 1995).

Remark. Set g(x) = ax2 + bx + c. Then

g(g(x))− x = (ax2 + (b− 1)x + c)(a2x2 + a(b + 1)x + ac + b + 1).

Therefore the four roots of the equation g(g(x)) = x are equal to:

1− b +
√

D

2a
,

1− b−
√

D

2a
,
−1− b +

√
D − 4

2a
and

−1− b−
√

D − 4
2a

,

where D = (b − 1)2 − 4ac. All these roots are real if and only if D ≥ 4. If D > 4

then all the roots are different whereas for D = 4, one of them is equal to
3− b

2a
and

the other three are equal to −1 + b

2a
.

The lemma proved above says that if D > 4, then there are no functions f : R →
R such that f(f(x)) = g(x) for all x ∈ R. On the other hand, for D = 4 there are
infinitely many continuous functions f : R → R satisfying the above equation.
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8. Polynomials

The most commonly used functions are probably the polynomials, especially the
ones in one variable. We know a lot about them: we know they have roots, and
the number of roots is exactly the degree of the polynomial (in C), and so on. It is
the multitude of information that allows mathematicians to create a lot of diverse
problems involving polynomials, from easy to very difficult. Let us see some of the
most typical examples here.

Problem 39. Find all polynomials P ∈ R[X] such that P (P (x)) = x2P (x + 1)
for all x.

Solution. If p(x) = 0, then the relation clearly holds. Otherwise, if the degree
of the polynomial is n, then P (P (x)) has degree n2, whereas x2P (x + 1) has degree
n + 2. Hence n2 = n + 2, so n = 2, or n = −1. We see that n = −1 clearly does not
work, so P (x) = ax2 + bx + c.

Thus the leading coefficient of P (P (x)) is a3 and the leading coefficient of
x2P (x + 1) is a, so we get a3 = a. It follows that a = ±1, as a 6= 0. Next set
x = 0 to get P (c) = 0. Then x− c | P (x), so P has real roots. As their product is
c
a , we get P (x) = (x − c)(x − 1) or P (x) = −(x − c)(x + 1). We now just have to
check these possibilities.

If P (x) = (x− c)(x− 1), then

P (P (x)) = (P (x)− c)(P (x)− 1)

= (x2 − (c + 1)x)(x2 − (c + 1)x + (c− 1))

= x(x− c− 1)(x2 − (c + 1)x + c− 1).

On the other side, it is equal to x2P (x + 1) = x3(x + c− 1). Thus x3(x + c− 1) =
x(x− c−1)(x2− (c+1)x+ c−1) or x2(x+ c−1) = (x− c−1)(x2− (c+1)x+ c−1).
Then x | x2− (c+1)x+ c− 1, hence c = 1 and the relation becomes x3 = (x− 2)2x,
which is impossible.

If P (x) = −(x− c)(x + 1), then

P (P (x)) = −(P (x)− c)(P (x) + 1)

= −(−x2 + (1− c)x)(−x2 + (1− c)x + c + 1)

= −x(x + c− 1)(x2 + (1− c)x + c + 1).

On the other side, it is equal to

x2P (x + 1) = −x2(x + 1− c)(x + 2).

So (x + c − 1)(x2 + (1 − c) + c + 1) = x(x + 1 − c)(x + 2). Plugging x = 0, we
get c − 1 = 0, or c + 1 = 0. Thus c = 1 or c = −1. If c = 1 the relation becomes
x(x2 +2) = x2(x+2) and if c = −1, (x− 2)(x2 +2x) = x(x+2)2, which again fails.
Therefore we have no polynomials of this kind except P (x) = 0.

26



 
 

 
 

 

 
AMY 2007-2008 Functional Equations 27

This problem exemplifies some important steps in solving functional equations
for polynomials: we try to find the degree of the polynomial, then we seek as many
roots of the polynomial as possible, try to cancel as many factors on both sides,
plug in cleverly chosen values of x, or find the leading coefficient or free coefficient
of the polynomial.

Another ”computational” example is as follows:

Problem 40. Find all polynomials P ∈ C[X] satisfying P (2x) = P ′(x)P ′′(x).
Solution. If deg(P ) = k > 0, then the degree of P ′P ′′ is 2k − 3 (unless k = 1,

when it is zero), so k = 3. Now if the leading coefficient of P is a, then the leading
coefficients of P (2x), P ′(x), P ′′(x) are 8a, 3a, 6a, respectively.

It follows that 8a = 18a2, hence a = 4
9 . Now let P ′(x) = 4

3(x−4a)(x−4b). Then
P ′′(x) = 8

3(x− 2a− 2b) and hence P (2x) = 4
9(x− 4a)(x− 4b)(x− 2a− 2b). Thus

P (x) =
4
9
(x− 2a)(x− 2b)(x− a− b),

and
P ′(x) =

4
9
(3x2 − 6(a + b)x + 2a2 + 2b2 + 8ab).

As P ′(x) = 4
3(x−4a)(x−4b) = 4

9(3x2−12(a+b)x+48ab), we conclude that b = −a
and −4a2 = −48a2. Therefore a = b = 0 and P (x) = 4

9x3.

The idea of looking at the roots is more visible in the following problem:

Problem 41. Find all polynomials P satisfying the equation

P (x2 − y2) = P (x− y)P (x + y).

Solution. Suppose w is a root of P . Then x − y = w implies that x2 − y2 =
w(x + y) = w(2x−w) is also a root of w. Now if w 6= 0, x2− y2 can take any value,
being a non-constant linear function in x, so P is identically zero. Thus P is either
identically zero or has all roots zero.

If P = cxn, then c(x2 − y2)n = c(x − y)nc(x + y)n = c2(x2 − y2)n, so c = 1.
Hence all solutions are P (x) = 0 and P (x) = xn for n ≥ 0.

To solve the following example, one needs to study its roots more carefully:

Problem 42. Find all nonconstant polynomials P satisfying the equation

P (x)P (x + 1) = P (x2 + x + 1).

Solution. If P is non-constant, let w be its root of maximal absolute value.
Denote x = w to conclude that w1 = w2 + w + 1 is a root of P and let x = w − 1
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to conclude that w2 = w2 − w + 1 is a root of P . Then |w1 − w2| = 2|w|. But
|w1 − w2| ≤ |w1| + |w2| = 2|w|. The equality can hold only if w1 + w2 = 0, so
w2 + 1 = 0, hence w = ±i. In this case (w1, w2) = (i,−i). Thus x2 + 1 | P (x).
However Q(x) = x2 +1 satisfies Q(x)Q(x+1) = Q(x2 +x+1), therefore P

Q satisfies
the same condition. We can repeat the same operation until we reach a constant
polynomial, so P (x) = c(x2 + 1)n, which clearly satisfies the condition.

Let us now pass to harder functional equations, that exemplify more subtle
methods.

Problem 43. Find all polynomials P ∈ R[x] such that

P (x)P (2x2 − 1) = P (x2)P (2x− 1)

for all x ∈ R.

(Romania, 2001)

First solution. It is clear that the constant polynomials are solutions. Suppose
now that deg P = n ≥ 1. Then P (2x− 1) = 2nP (x) + R(x), where either R ≡ 0 or
deg R = m < n. Assume that R 6≡ 0. It follows from the given identity that

P (x)(2nP (x2) + R(x2)) = P (x2)(2nP (x) + R(x)),

that is P (x)R(x2) = P (x2)R(x) for all x ∈ R. Hence n+2m = 2n+m, i.e. n = m,
a contradiction. Thus R ≡ 0 and P (2x− 1) = 2nP (x). Set Q(x) = P (x + 1). Then

Q(2x) = 2nQ(x) (1)

for all x ∈ R. Let

Q(x) =
n∑

k=0

akx
n−k.

Then comparing the coefficients of xn − k on both sides of (1) gives ak2n−k = 2nak,
that is ak = 0 for k ≥ 1. Hence Q(x) = a0x

n and therefore P (x) = a0(x− 1)n.

Second solution. Suppose that P 6≡ 0 and set

P (x) =
n∑

k=0

akx
n−k,

where n = deg P and a0 6= 0. Then

n∑
k=0

akx
n−k

n∑
k=0

ak(2x2 − 1)n−k =
n∑

k=0

akx
2(n−k)

n∑
k=0

ak(2x− 1)n−k.
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Comparing the coefficients of x3n−k, k ≥ 1, on both sides gives

aka0 + R1(a0, . . . , ak−1) = a0ak2n−k + R2(a0, . . . , ak−1),

where R1 and R2 are polynomials in k−1 variables. Hence ak is determined uniquely
by a0, . . . , ak−1. This shows that for given a0 and n there is at most one polynomial
satisfying the condition in the problem. On the other hand, it is easy to check that
the polynomials P (x) = a0(x− 1)n are solutions.

Third solution. Suppose that the polynomial P (x) has a complex root α 6= 1.
Of all these roots take that for which the number |α−1| 6= 0 is the least possible. Let
β be a complex number such that α = 2β2−1. Setting x = ±β in the given equation

we see that either P

(
α + 1

2

)
= 0 or P (2β − 1) = P (−2β − 1) = 0. The inequality∣∣∣∣α + 1

2
− 1

∣∣∣∣ < |α−1| shows that P

(
α + 1

2

)
6= 0, that is P (2β−1) = P (−2β−1) = 0.

Then

2|(β − 1)(β + 1)| = |α− 1| ≤ min(|(2β − 1)− 1|, |(−2β − 1)− 1|)

and β 6= ±1 imply that max(|β − 1|, |β + 1|) ≤ 1, i.e. β = 0. Hence α = −1 and
therefore P (x) = (x + 1)kQ(x), where k ≥ 1 and Q(−1) 6= 0. Substituting in the
given equation gives

(x + 1)kxkQ(x)Q(2x2 − 1) = (x2 + 1)Q(x2)Q(2x− 1).

Setting x = 0 in this identity gives Q(0) = 0, since Q(−1) 6= 0. Thus P (0) = 0,
which contradicts the choice of α = −1, since |−1−1| > |0−1|. Hence all the roots
of the polynomial P are equal to 1 and therefore P (x) = a0(x − 1)n for some real
constant a0.

Problem 44. Let {Pn}∞n=1 be the sequence of polynomials defined by:

P1(x) = x, Pn+1(x) = P 2
n(x) + 1, n ≥ 1.

Prove that a polynomial P satisfies the identity

P (x2 + 1) = P 2(x) + 1

for all x ∈ R if and only if P belongs to the above sequence.

Solution. Let P satisfy the given identity. Then P 2(x) = P 2(−x), hence for
all x either P (x) = P (−x) or P (x) = −P (−x). It follows that P (x) ≡ P (−x) or
P (x) ≡ −P (−x). In the second case we get P (0) = 0 and an easy induction shows
that P (n) = n for all n ∈ N. Hence P (x) = x for all x ∈ R and this polynomial
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belongs to the given sequence. In the first case it follows easily that P (x) = Q(x2),
where Q is a polynomial. Then

Q((x2 + 1)2) = P (x2 + 1) = P 2(x) + 1 = Q2(x2) + 1

and setting R(x) = Q(x − 1) we see that R(y2 + 1) = R2(y) + 1 for y = x2 + 1.
Hence R(y2 + 1) = R2(y) + 1 for all y ∈ R. Thus

P (x) = R(x2 + 1) = R2(x) + 1

where deg R =
deg R

2
and the polynomial R satisfies the given condition. Con-

versely, if R is a polynomial satisfying the given identity, then the same is true for
the polynomial P (x) = R(x2 + 1). Now the statement of the problem follows by
induction on the degree of P .

Problem 45. Find all polynomials P with real zeroes only satisfying

P (x)P (−x) = P (x2 − 1).

Solution. If r is a root of P, then by setting x = r we conclude that g(r) = r2−1
is also a root of P . Then g(g(r)) is also a root of P and so on. As we may have only a
finite number of roots, we will encounter a root for a second time, so g(g(. . . (s))) = s
for some s in the sequence.

Now let us find r. We have g(r)−r = (r−u)(r−v), where u = −1−
√

5
2 , v = −1+

√
5

2 ,
and

g(g(r))− r = r(r + 1)(r − u)(r − v).

If r < −1, then set x =
√

1 + r to obtain that ±
√

1 + r is a root of P. But such
a root is not real, so this case is not possible.

If r = −1, then g(r) = 0, g(g(r)) = −1, so x(x + 1) | P .
If r ∈ (−1, u), then g(r) ∈ (u; 0) and g(g(r)) ∈ (−1, u). But

g(g(r))− r = r(r + 1)(r − u)(r − v) < 0,

so g(g(r)) < r. We repeat the reasoning with g(g(r)) and so on to obtain and infinite
decreasing sequence of roots of P in (−1, u), a contradiction.

If r = u, then u− x | P .
If r ∈ (u, 0), then g(r) ∈ (−1, u) and we have shown that no root can occur in

(−1, u).
If r = 0, then g(r) = −1 and x(x + 1) | P .
If 0 < r < v, then ±

√
1 + r is a root of P . As P has no roots less than −1,√

1 + r is a root of P . Also r <
√

1 + r,
√

1 + r < v and we can build an increasing
sequence of roots of P in (0, v).
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If r = v, then v − x | P .
If r > v, then g(r) > v is a root of P , and continuing this operation we get an

infinite increasing set of roots of P greater than v.
Therefore all roots can be −1, 0, u or v. As x(x + 1), u− x and v − x all satisfy

the condition, we can divide P by any of them and repeat the reasoning to get that
P (x) = xm(x + 1)m(u− x)q(v − x)q. If P is a constant, then P = 0 or P = 1.

9. Iterations and Recursive Relations

Problem 46. A function f : N → R satisfies for some positive integer m the
conditions f(m) = f(1995), f(m+1) = 1996, f(m+2) = 1997 and f(n+m) = f(n)−1

f(n)+1 .
Prove that f(n + 4m) = f(n) and find the least m for which this function exists.

(Nordic Contest, 1999)

Solution. If h(x) = x−1
x+1 , then f(n + m) = h(f(n)), so f(n + 4m) = h4(f(n)),

where hk is h iterated k times. We need to check that h4(x) = x.

Indeed h2(x) =
x−1
x+1

−1
x−1
x+1

+1
= −1

x , and therefore h4(x) = h2(h2(x)) = x. We have

solved the first part of the problem. The least possible value of m is 1.
If m = 1, then f(n + 4) = f(n), so f(1997) = f(5) = f(1). But we know

that f(1997) = f(3) = h2(f(1)) = −1
f(1) . Thus f(1) = −1

f(1) , so f(1)2 = −1, a
contradiction.

Similarly, m = 2 gives f(1995) = f(3) = f(2), f(1996) = f(4) = f(3), f(1997) =
f(5) = f(4), thus f(2) = f(3) = f(4) = f(5). Then h(f(2)) = f(2). But the
equation x−1

x+1 = x gives x− 1 = x2 + x and again x2 = −1, a contradiction.
Finally, if m = 3, then for any value of f(1), f(2), f(3) we can compute f in-

ductively. Because 12 | 1992, we get f(1995) = f(3) = f(m) and so m = 3 is the
answer.

Problem 47. Find all functions f : N → N such that

f(f(f(n))) + f(f(n)) + f(n) = 3n

for all n ∈ N.
Solution. Set ak = f(f(. . . f(n))) where f is iterated k times. We get the

recursive relation
ak+3 + ak+2 + ak+1 = 3ak,

with characteristic equation x3 + x2 + x = 3. Its roots are equal to 1 and −1±
√

2.
It follows that

ak = c0 + c1(−1 +
√

2)k + c2(−1−
√

2)k, k ≥ 0.
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Because ak > 0 and | − 1−
√

2| > 1 > | − 1+
√

2|, we conclude as in the solutions of
the previous two problems that c2 = 0. From where we get c1 = 0. Hence a1 = a0,
and f(n) = n for all n ∈ N.

Problem 48. Find all functions f : N → N such that

2n + 2000 ≤ f(f(n)) + f(n) ≤ 2n + 2002

for all n ∈ N.

(Balkan MO, 2002)

Solution. Fix an n and set

a0 = n, ak+1 = f(ak), ck = ak+1 − ak − 667, k ≥ 0.

Then
2ak + 2001 ≤ ak+2 + ak+1 ≤ 2ak + 2002,

0 ≤ ck+1 + 2ck ≤ 1, k ≥ 0.

We will prove that c0 = 0. Assume the contrary. Then we may assume that c0 ≥ 1,
since otherwise c1 ≥ −2c0 ≥ 2 and we consider the sequence c1, c2, . . . We have

c2k+2 ≥ −2c2k+1 ≥ 4c2k − 2 ≥ 2c2k

and it follows by induction that c2k ≥ 2k, k ≥ 0. Hence

a2k+2 = a2k + c2k + c2k+1 + 1334 ≤ a2k + 1335− c2k ≤

≤ a2k + 1335− 2k, k ≥ 0.

Summing up these inequalities we obtain

a2k ≤ a0 + 1335k − 2k, k ≥ 0.

This inequality shows that a2k ≤ 0 for all sufficiently large k, a contradiction. Thus
c0 = 0 and f(n) = n + 667 for all n. It is easy to check that this function satisfies
the given conditions.

Problem 49. Prove that if the function f : R → R is such that |f(x)| ≤ 1 and

f(x) + f

(
x +

13
42

)
= f

(
x +

1
6

)
+ f

(
x +

1
7

)
for all x ∈ R, then f(x) is periodic.

(IMO Shortlist, 1997)
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Solution. We have

f

(
x +

1
6

+
1
7

)
− f

(
x +

1
7

)
= f

(
x +

1
6

)
− f(x),

which implies

f

(
x +

k

6
+

1
7

)
− f

(
x +

k − 1
6

+
1
7

)
= f

(
x +

k

6

)
− f

(
x +

k − 1
6

)
for 1 ≤ k ≤ 6. Summing up these equalities gives

f

(
x + 1 +

1
7

)
− f

(
x +

1
7

)
= f(x + 1)− f(x).

Set g(x) = f(x + 1)− f(x). Then g

(
x +

1
7

)
= g(x), which implies

g(x) = g

(
x +

1
7

)
= g

(
x +

2
7

)
= · · · = g(x + 1).

Hence g(x) = g(x + n) for all n ∈ N. Then

f(x + n)− f(x) = (f(x + n)− f(x + n− 1)) + · · ·+ (f(x + 1)− f(x)) =

= g(x + n− 1) + · · ·+ g(x) = ng(x).

This is
f(x + n)− f(x) = ng(x)

for all x ∈ R and n ∈ N. Hence

n|g(x)| = |f(x + n)− f(x)| ≤ |f(x + n)|+ |f(x)| ≤ 2,

i.e. n|g(x)| ≤ 2 for any x ∈ R and n ∈ N. This shows that g(x) = 0 for all x ∈ R,
that is f(x + 1) = f(x).

Problem 50. Let 0 < a1 < a2 < . . . < ak be integer numbers, b0, b2, b3, . . . , bk

be real numbers such that bk = ±1 and b0 + b1x
a1 + . . . + bkx

ak has all roots of
absolute value 1. Let f be a bounded function such that

b0f(x) + b1f(x + a1) + . . . + bkf(x + ak) = 0.

Prove that f is periodic.
Solution. Observe that this is a generalization of the previous problem:
Set g(x) = f( x

42) to obtain g(x + 13) + g(x) = g(x + 6) + g(x + 7) and the
polynomial x12 − x6 − x7 + 1 = (x6 − 1)(x7 − 1) has all roots of absolute value 1.
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However, the method is hard to generalize, as here we have a very vague and
complex relation. The fact that ai are rational can help us reduce the problem to a
polynomial recurrence. Now we employ two lemmas which will clearly help us.

Lemma 1. If w1, w2, . . . , wk have absolute value 1 and an = wn
1 + wn

2 + . . . + wn
k

is not identically zero, then there is an ε > 0 such that |an| > ε for infinitely many
n.

Proof. Let wi = e2πiai , where ai ∈ R. For each n, consider the k-tuple

({na1}, {na2}, . . . , {nak}).

If we divide [0, 1)k into Nk boxes [ i
n ; i+1

n )× [ j
n ; j+1

n )× . . . , then taking n > Nk

we deduce that for some i, j < n the k-tuples ({ia1}, {ia2}, . . . , {iak}) and
({ja1}, {ja2}, . . . , {jak}) will fall into the same box. This means that
|{iam} − {jam}| < 1

N . Therefore 〈(i− j)am〉 < 1
N , where 〈x〉 = min({x}, 1− {x}).

We thus conclude that |wi
m − wj

m| = |1 − wi−j
m | < |1 − e

2πi
N | = 2 sin π

N < 2π
N .

Hence if we let r = i−j, we get |ai−ai+r| < 2πk
N . Now if we take ai such that ai 6= 0

we can set ε = |ai|
2 .

Taking N1 such that 2πk
N1

< ε
2 we find r1 such that |ai+r1 − ai| < ε

2 . Thus
|ai+r1 | > (1+ 1

2)ε. Analogously we find r2 such that |ai+r1+r2 | > (1+ 1
4)ε. Reasoning

by induction, we find r1, r2, . . . , rl such that |ai+r1+...+rl
| > (1+ 1

2l )ε and this proves
the claim.

Lemma 2. If P ∈ Z[X] is a monic polynomial which has all roots of absolute
value 1, then these roots are roots of unity.

Proof. Let P (X) = (x− w1)(x− w2) . . . (x− wn). Let

Pk(X) = (x− wk
1)(x− wk

2) . . . (w − wk
n).

As Pk is symmetric in w1, w2, . . . , wn, its coefficients express as integer polynomials
in the symmetric sums of w1, w2, . . . , wn. These sums are integers, as P ∈ Z[X],
thus Pk ∈ Z[X]. However,

[xm]Pk(x) = |
∑

1≤i1<i2<...<im≤n

wk
i1w

k
i2 . . . wk

im | ≤
(

n

m

)
,

as |wi| = 1. Thus the coefficients of Pk(X) are bounded, hence for some k < l
we have Pk(X) = Pl(X). This means that (wk

1 , wk
2 , . . . , wk

n) is a permutation of
(wl

1, w
l
2, . . . , w

l
n). Hence wk

i = wl
i1

. Then wk
i1

= wl
i2

, so wk2

i = wl2
i2

. Reasoning
inductively we get wkj

i = wlj
ij

. Eventually, we return to i (ij = i) so we get wkj

i = wlj
i ,

this is wlj−kj

i = 1, so wi is a root of unity.
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Now we return to the problem. If we set cn = f(x + n), then this is a poly-
nomial recurrence with associated polynomial b0 + b1x

a1 + . . . + bkx
ak . Then cn =∑l

i=1 pi(n)wn
i , where wi are the roots of the equation. Now we claim that pi are

constants.
Indeed, assume the contrary. Then cn = (d0(n)nm + d1(n)nm−1 + . . . + dm(n)),

where d0, d1, . . . , dm are simple polynomial recurrences in w1, w2, . . .. Now if k is the
least such that dk is not identically zero, then applying Lemma 1 we get infinitely
many n for which |dk(n)| > ε. Then

cn

rnnk
= dk(n) +

dk+1(n)
n

+ . . . .

Also |di(n)| is bounded, because wi have absolute value 1. Now it is clear that for
sufficiently large n we have | cn

nk − dk()| < ε
2 . Thus for infinitely many n we have

cn

nk > ε
2 , which contradicts the boundedness of f , unless k = 0. Therefore cn = d0(n),

and this guarantees the claim. Now as wi are roots of unity, according to Lemma 2
we have N such that wN

i = 1, hence cn = cn+N . Because N does not depend on x,
we get f(x) = f(x + N), as desired.

10. Symmetrization and additional variables

We sometimes have a condition in x and y, say u(x, y) = v(x, y), such that one
side of it is symmetric in x and y, but the other is not (or we can obtain such a
condition by an appropriate substitution). Then swapping x with y we get a new
condition, which might prove helpful. For example if u(x, y) = u(y, x), then as
u(x, y) = v(x, y) and u(y, x) = v(y, x), we have v(x, y) = v(y, x). In other cases, we
might need to add one additional variable to get one side of the equation symmetric.
See the examples below.

Problem 51. Find all continuous functions f, g, h : R → R satisfying the equa-
tion

f(x + y) + g(xy) = h(x) + h(y).

Solution. Set y = 0 to get f(x) = h(x)+h(0)− g(0). The condition rewrites as
h(x+ y)−h(x)−h(y) = g(xy), where we replace g by g− g(0)−h(0) for simplicity.
Thus

h(x+y+z) = h(x)+h(y+z)+g(xy+xz) = h(x)+h(y)+h(z)+g(yz)+g(xy+xz).

Symmetrizing this we conclude that

g(yz) + g(xy + xz) = g(xz) + g(xy + yz) = g(xy) + g(xz + yz).
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As for a, b, c > 0 we can find x, y, z with yz = a, xz = b, xy = c, we get g(a) + g(b +
c) = g(b) + g(a + c) + g(c) + g(a + b) and taking c → 0+ we get g(a + b) + g(0) =
g(a) + g(b). Next if we take a > 0, b < 0, c < 0, we can also find x, y, z with
yz = a, xz = b, xy = c so g(a) + g(b + c) = g(b) + g(a + c) + g(c) + g(a + b). Taking
c → 0− we get g(a) + g(b) = g(0) + g(a + b).

Finally, if we take a < 0, b < 0, c > 0 and take c → 0+ we get g(a)+g(b) = g(a+b)
in this case, too.

It follows that g(a + b) + g(0) = g(a) + g(b) holds for all non-zero a and b by
continuity and then f(x) = ax + b is linear. So h(x + y)− h(y)− h(z) = axy + b. If
we consider H(x) = h(x)− a

2x2 + b, then we see that H(x) + H(y) = H(x + y), so
H(x) = cx. Therefore we find a representation h(x) = ux2+vx+w, g(x) = 2ux−w,
and we are done.

Problem 52. Find all functions f : R → R satisfying

f((x− y)2) = f(x)2 − 2xf(y) + y2.

Solution. Symmetrize the condition to get

f((x− y)2) = f(x)2 − 2xf(y) + y2 = x2 − 2f(x)y + f(y)2

and the equality of the last two expressions can be written as

(f(x) + y)2 = (f(y) + x)2.

One can guess that only the functions f(x) = x + a, and f(x) = −x satisfy the
condition. Indeed, assume that f(a) 6= −a. Let f(a) = b. Pick another c and let
f(c) = d. We wish to prove that d = c + b− a. Indeed, we have (a + d)2 = (b + c)2,
so either d = c + b − a, or d = −a − b − c. If it is the latter, pick any x. We have
(f(x)+a)2 = (x+b)2, so either f(x) = x+b−a, or f(x) = −x−b−a. We also have
(f(x) + c)2 = (x− a− b− c)2, so either f(x) = x− a− b− 2c or f(x) = a + b− x.

It follows that the sets {x + b − a,−x − a − b} and {x − a − b − 2c, a + b − x}
must intersect. We can pick such an x that satisfies x + b − a 6= a + b − x and
also −x − a − b 6= x + a − b − 2c. Then either x + b − a = x − a − b − 2c, or
−x − a − b = a + b − x. Thus either b + c = 0 or a + b = 0. But a + b 6= 0, as
f(a) 6= a. Hence b + c = 0, and in this case d = −a − b − c = c + b − a. Therefore
d = c + b− a, so f(c) = c + b− a. As c is arbitrary, we get f(x) = x + b− a. This
proves our claim, so f(x) = −x, or f(x) = x + a.

It remains only to check which of them satisfies the condition.
If f(x) = −x, then f(x − y)2 = −(x − y)2, while f2(x) − 2xf(y) + y2 = x2 +

2xy + y2 = (x + y)2, and the condition is not satisfied.
If f(x) = x+a, then f((x−y)2) = x2−2xy+y2 +a, while f2(x)−2xf(y)+y2 =

(x + a)2 − 2x(y + a) + y2 = x2 − 2xy + y2 + a2. This holds if and only if a2 = a.
Thus f(x) = x and f(x) = x + 1 are the solutions to the problem.
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11. Functional equations without solutions

Problem 53. Do there exist functions f : R → R and g : R → R such that
f(g(x)) = x2 and g(f(x)) = x3?

Solution. The intuitive answer is no. Indeed, if there were such functions,
they might well be monotonic on R−. But then f(g(x)) and g(f(x)) would also be
monotonic, and would be either both decreasing or increasing, whereas in our case
one is increasing and the other decreasing. With this idea in mind, we postpone
constructing an example and begin with searching for a prove that such functions
do not exist.

Indeed, assume f(g(x)) = x2 and g(f(x)) = x3. Note that as g(f(x)) is injective,
f(x) should also be injective. Now, let us apply f to the relation g(f(x)) = x3. We
get f(g(f(x))) = f(x3), which can be rewritten as f(x)2 = f(x3). In particular, for
x = x3 we get f(x)2 = f(x), thus f(x) ∈ {0, 1}. But there are three x for which
x = x3, they are 0, 1,−1. Hence f(0), f(1), f(−1) must belong to the set {0, 1}.
Therefore two of them are equal. But this contradicts the injectivity of f .

Problem 54. Prove that there is no function f : R+ → R+ such that

f2(x) ≥ f(x + y)(f(x) + y)

for all x, y ∈ R+.

(Bulgaria, 1998)

Solution. Suppose that there is a function f with this property. Then

f(x)− f(x + y) ≥ f(x)y
f(x) + y

, (1)

which shows that f is an increasing function. Given an x ∈ R+ we choose an n ∈ N
such that nf(x + 1) ≥ 1. Then

f

(
x +

k

n

)
− f

(
x +

k + 1
n

)
≥

f(x + k
n). 1

n

f(x + k
n) + 1

n

>
1
2n

,

for all k ∈ N. Note that nf

(
x +

k

n

)
> nf(x+1) > 1. Summing up these inequal-

ities for k = 0, 1, . . . , n− 1 we get

f(x)− f(x + 1) >
1
2
.

Now take a positive integer m such that m ≥ 2f(x). Then

f(x)− f(x+m) = (f(x)− f(x+1))+ · · ·+(f(x+m− 1)− f(x+m)) >
m

2
≥ f(x).
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Hence f(x + m) < 0, a contradiction.

Problem 55. Prove that there is no function f : R → R such that f(0) > 0 and

f(x + y) ≥ f(x) + yf(f(x)) (1)

for all x, y ∈ R.
Solution. Suppose there is such a function f . If f(f(x)) ≤ 0 for all x ∈ R,

then
f(x + y) ≥ f(x) + yf(f(x)) ≥ f(x)

for all y ≤ 0 and the function f is decreasing. The inequalities f(0) > 0 ≥ f(f(x))
imply f(x) > 0 for all x, which contradicts f(f(x)) ≤ 0. Hence there exists z such
that f(f(z)) > 0. Then the inequality

f(z + x) ≥ f(z) + xf(f(z))

shows that lim
x→+∞

f(x) = +∞ and therefore lim
x→∞

f(f(x)) = +∞.

In particular, there exist x, y > 0 such that

f(x) ≥ f(f(x)) > 1, y ≥ x + 1
f(f(x))− 1

, f(f(x + y + 1)) ≥ 0.

Then
f(x + y) ≥ f(x) + yf(f(x)) ≥ x + y + 1,

and therefore

f(f(x + y)) ≥ f(x + y + 1) + (f(x + y)− (x + y + 1))f(f(x + y + 1)) ≥

≥ f(x+y+1) ≥ f(x+y)+f(f(x+y)) ≥ f(x)+yf(f(x))+f(f(x+y) > f(f(x+y)),

a contradiction.
Remark. Note that the only function f : R → R with f(0) = 0 satisfying in-

equality (1) is the constant 0. Indeed, as in the second part of the solution above
we conclude that f(f(x)) ≤ 0 for all x ∈ R. On the other hand, setting x = 0 in
(1) gives f(y) ≥ 0 for all x. Hence f(x + y) ≥ f(x) for all x, y ∈ R which easily
implies f(x) = 0 for all x.
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Easy Problems

E1. Prove that the functions f : R \ {1} → R such that

f(x) = f

(
x

x− 1

)
for all x 6= 1 are exactly those that can be written as

f(x) = g(x) + g

(
x

x− 1

)
for some function g : R \ {1} → R.

E2. Is there a function f : R \ {0} → R \ {0} such that

f(f(x)) =
1
x

for all x 6= 0?

E3. Find all continuous functions f : R → R such that

f(
√

x2 + y2) = f(x)f(y)

for all x and y in R.

E4. Find a function f : R+ → R+ such that

f2(x) = 1 + xf(x + 1)

for all x ∈ R.

E5. Find all continuous functions f : R → R satisfying

f(x + y)− f(x− y) = 4xy

for all x and y in R.

E6. Find all non-decreasing functions f : Z → Z satisfying

f(k) + f(k + 1) + . . . + f(k + n− 1) = k,

for each k ∈ Z, and a fixed n.
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E7. Find all functions f : R\{0, 1} → R satisfying

f(x) + f

(
1

1− x

)
=

2(1− 2x)
x(1− x)

for all x in the domain of f .

E8. Find all functions f : N → R such that f(1) = 1 and∑
d|n

f(d) = 0

whenever n ≥ 2.

E9. Find all functions f : N → N satisfying f(0) = 0 and

f(n) = 1 + f(bn
k
c)

for all n ∈ N .

E10. Find all functions f : N → R such that f(1) = 1 and

f(2n + 1) = f(2n) + 1 = 3f(n) + 1

for all n ∈ N.

E11. Find all functions f : N → N such that

f(f(f(n))) + f(f(n)) + f(n) = 3n

for all n ∈ N.

E12. Let g : C → C be a given function, a ∈ C, and w the primitive cubic root of
unity. Find all functions f : C → C such that

f(z) + f(wz + a) = g(z)

for all z in C.

E13. Find all functions f : Q → Q such that

f

(
x + y

3

)
=

f(x) + f(y)
2

for all non-zero x, y in Q.

E14. Find all functions f : R → R such that

xf(x)− yf(y) = (x− y)f(x + y)

for all x, y ∈ R.
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E15. Find all functions f : R → R satisfying

f(xf(z) + y) = zf(x) + y

for all x, y, z ∈ R.

E16. Let n be an integer greater than 2. Find all continuous functions f : [0, 1] → R
for which f(x1) + f(x2) + . . . + f(xn) = 1 whenever x1, x2, . . . , xn ∈ [0, 1] and
x1 + x2 + . . . + xn = 1.

E17. Let n ∈ N. Find all polynomials P ∈ R[X] such that

P (P (x)) = P (xn).

E18. Find all functions f : R → R such that

f(f(x) + y) = 2x + f(f(y)− x)

for all x, y ∈ R.

E19. Find all functions f : N2 → N satisfying

a) f(n, n) = n;

b)f(m,n) = f(n, m);

c)f(m,n+m)
f(m,n) = n+m

n .

E20. Let p be a prime number. Find all functions f : Z → Z satisfying

a) if p | m− n, then f(m) = f(n).

b) f(mn) = f(m)f(n) for all integers m and n.
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Medium Problems

M1. Prove that there is a unique function f : R+ → R+ such that

f(f(x)) = 6x− f(x)

for all x in R+

M2. Let f : R → R satisfy the equations

f(x2) = (f(x))2

and f(x + 1) = f(x) + 1. Prove that f(x) = x for all x in R.

M3. Let f : R → R satisfying
f(xy) = f(x + y)

for all x, y ∈ R. Prove that f is constant.

M4. Prove that an additive function f : R → R which is bounded below on an
interval must be of the form f(x) = cx.

M5. Let f : R → R satisfy
|f(x)− f(y)| ≤ |x− y|2

for all x, y ∈ R Prove that f is constant.

M6. Prove that there is no function f : R → R such that

f(x) + f(y)
2

≥ f

(
x + y

2

)
+ |x− y|

for all x, y ∈ R.

M7. Find all polynomials P ∈ R[X] such that

P (x− y) + P (y − z) + P (z − x) = 2P (x + y + z)

whenever xy + yz + zx = 0.

M8. Is there a function f : N → N such that

f(f(n)) = n2

for all n in N?

M9. Find all functions f : Z → Z satisfying

f(f(k + 1) + 3) = k

for all k in Z.
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M10. Find all surjective functions f : N → N such that m | n if and only if f(m) | f(n)
for all m,n ∈ N.

M11. Let f be an increasing function on N such that f(f(n)) = 3n. Find f(2007).

M12. Find all functions f : N → N that satisfy f(1) = 1, f(3) = 3, and

f(2n) = f(n)

f(4n + 1) = 2f(2n + 1)− f(n),

f(4n + 3) = 3f(2n + 1)− 2f(n)

for all n ∈ N.

M13. Find all functions f : Z → N0 for which

6f(k + 3)− 3f(k + 2)− 2f(k + 1)− f(k) = 0

for all k in Z.

M14. Find all functions f : N → N such that

f(f(n)) + f(n + 1) = n + 2

for all n ∈ N.

M15. Find all functions f : R → R for which

1
2
f(xy) +

1
2
f(xz)− f(x)f(yz) ≥ 1

4

for all x, y, z ∈ R.

M16. Find all continuous functions f : R → R such that

f(x + y) =
f(x) + f(y) + 2f(x)f(y)

1− f(x)f(y)

for all x, y, z in R.

M17. Find all functions f : R → R that satisfy

f(f(x) + yz) = x + f(y)f(z)

for all x, y, z in R.

M18. Suppose that f is a rational function in x that satisfies

f(x) = f

(
1
x

)
for all x 6= 0. Prove that f is a rational function in x + 1

x .
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M19. Find all polynomials P and Q with real coefficients such that for infinitely
many x ∈ R

P (x)
Q(x)

− P (x + 1)
Q(x + 1)

=
1

x(x + 2)

M20. Find all differentiable functions f : R → R that satisfy

f(x + y)− f(x− y) = y(f ′(x + y) + f ′(x− y))

for all x and y in R.
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Hard Problems

H1. Let a ∈ R \{0} and let f : R → R satisfy

f(x + a) =
1
2

+
√

f(x)− (f(x))2

for all x in R. Prove that f is periodic. Find all such continuous functions f.

H2. Let f : [0, 1] → R be a continuous function such that for each x ∈ (0, 1) there
exist y, z ∈ (0, 1), y 6= z, for which x = y+z

2 and

f(x) =
f(y) + f(z)

2
.

Prove that f is linear.

H3. Let f : R → R be a continuous and injective function such that f(1) = 1 and

f(2x− f(x)) = x

for all real x in R. Prove that f(x) = x for all x.

H4. For which a, b, c, p, q, r is there a continuous function f : R → R satisfying

f(ax + by + c) = pf(x) + qf(y) + r,

and what is the general form of the solution?

H5. Find all functions f : R → R satisfying

f(xf(x) + f(y)) = f(x)2 + y

for all x, y ∈ R.

H6. Find all functions f : R → R such that

f(x) + f(y))(f(u) + f(v)) = f(xu− yv) + f(xv + yu)

for all x, y, u, v ∈ R.

H7. Is there a function s : Q → {−1, 1} such that if x and y are distinct rational
numbers satisfying xy = 1 or x + y ∈ {0, 1}, then

s(x)s(y) = −1.

H8. Find all functions g : R → R for which there is a strictly monotonic function
f : R → R satisfying the equation

f(x + y) = f(x)g(y) + f(y).
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H9. Let f : N → N be a function satisfying

f(f(n)) = 4n− 3

and
f(2n) = 2n+1 − 1,

for all n in N. Find f(1993). Can you find explicitly the value of f(2007)?
What values can f(1997) take?

H10. Find all functions f : Z → Z satisfying

f(a3 + b3 + c3) = f(a)3 + f(b)3 + f(c)3

whenever a, b, c ∈ Z.

H11. Let f : N → N be a function such that

f(n + 1) > f(f(n))

for all n ∈ N. Prove that f(n) = n for all n ∈ N.

H12. Determine all functions f : N → N satisfying f(1) = 1,f(n + 1) = f(n) + 2 if
f(f(n)− n + 1) = n, and f(n + 1) = f(n) + 1 otherwise.

H13. Find all functions f, g : R → R such that

f(x + g(y)) = xf(y)− yf(x) + g(x)

for all x and y in R.

H14. Find all functions f : R → R such that

f(x2 + y + f(y)) = 2y + f(x)2

for all x, y in R.

H15. Find all continuous functions f : R+ → R satisfying

f(x +
1
x

) + f(y +
1
y
) = f(x +

1
y
) + f(y +

1
x

)

for all x, y ∈ R+.

H16. Suppose P ∈ Z[X] is a polynomial such that for each positive integer n the
equation P (x) = 2n has at least one integer root. Prove that P is linear.

H17. Find all continuous functions f : R → R such that

f(x + y)f(x− y) = f(x)2 − f(y)2

for all x, y ∈ R.
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H18. Find all continuous functions f : R → R satisfying

f(x + y) + f(y + z) + f(z + x) = f(x + y + z) + f(x) + f(y) + f(z).

for all x, y, z in R.

H19. Find all continuous functions f : R → R satisfying

f(x + y)f(x− y) = f(x)2f(y)2,

for all x, y ∈ R.

H20. Find all continuous functions f : R → R, solutions to the equation

f(x + y) + f(xy) = f(x) + f(y) + f(xy + 1).
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