

A Note on the Feuerbach Point

Lev Emelyanov and Tatiana Emelyanova

Abstract. The circle through the feet of the internal bisectors of a triangle passes through the Feuerbach point, the point of tangency of the incircle and the ninepoint circle.

The famous Feuerbach theorem states that the nine-point circle of a triangle is tangent internally to the incircle and externally to each of the excircles. Given triangle ABC, the Feuerbach point F is the point of tangency with the incircle. There exists a family of cevian circumcircles passing through the Feuerbach point. Most remarkable are the cevian circumcircles of the incenter and the Nagel point. In this note we give a geometric proof in the incenter case.

Theorem. The circle passing through the feet of the internal bisectors of a triangle contains the Feuerbach point of the triangle.

The proof of the theorem is based on two facts: the triangle whose vertices are the feet of the internal bisectors and the Feuerbach triangle are (a) similar and (b) perspective.

Lemma 1. In Figure 1, circle O(R) is tangent externally to each of circles $O_1(r_1)$ and $O_2(r_2)$, at A and B respectively. If A_1B_1 is a segment of an external common tangent to the circles (O_1) and (O_2) , then

$$AB = \frac{R}{\sqrt{(R+r_1)(R+r_2)}} \cdot A_1 B_1.$$
 (1)

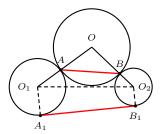


Figure 1

Proof. In the isosceles triangle AOB, $\cos AOB = \frac{2R^2 - AB^2}{2R^2} = 1 - \frac{AB^2}{2R^2}$. Applying the law of cosines to triangle O_1OO_2 , we have

Publication Date: September 4, 2001. Communicating Editor: Paul Yiu.

¹The cevian feet of the Nagel point are the points of tangency of the excircles with the corresponding sides.

$$O_1 O_2^2 = (R+r_1)^2 + (R+r_2)^2 - 2(R+r_1)(R+r_2) \left(1 - \frac{AB^2}{2R^2}\right)$$
$$= (r_1 - r_2)^2 + (R+r_1)(R+r_2) \left(\frac{AB}{R}\right)^2.$$

From trapezoid $A_1O_1O_2B_1$, $O_1O_2^2 = (r_1 - r_2)^2 + A_1B_1^2$. Comparison now gives A_1B_1 as in (1).

Consider triangle ABC with side lengths BC = a, CA = b, AB = c, and circumcircle O(R). Let $I_3(r_3)$ be the excircle on the side AB.

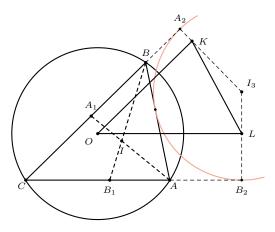


Figure 2

Lemma 2. If A_1 and B_1 are the feet of the internal bisectors of angles A and B, then

$$A_1 B_1 = \frac{abc\sqrt{R(R+2r_3)}}{(c+a)(b+c)R}.$$
 (2)

Proof. In Figure 2, let K and L be points on I_3A_2 and I_3B_2 such that OK//CB, and OL//CA. Since $CA_2 = CB_2 = \frac{a+b+c}{2}$,

$$OL = \frac{a+b+c}{2} - \frac{b}{2} = \frac{c+a}{2}, \qquad OK = \frac{a+b+c}{2} - \frac{a}{2} = \frac{b+c}{2}.$$

Also,

$$CB_1 = \frac{ba}{c+a}, \qquad CA_1 = \frac{ab}{b+c},$$

and

$$\frac{CB_1}{CA_1} = \frac{b+c}{c+a} = \frac{OK}{OL}.$$

Thus, triangle CA_1B_1 is similar to triangle OLK, and

$$\frac{A_1 B_1}{LK} = \frac{CB_1}{OK} = \frac{2ab}{(c+a)(b+c)}. (3)$$

Since OI_3 is a diameter of the circle through O, L, K, by the law of sines,

$$LK = OI_3 \cdot \sin LOK = OI_3 \cdot \sin C = OI_3 \cdot \frac{c}{2R}.$$
 (4)

Combining (3), (4) and Euler's formula $OI_3^2 = R(R + 2r_3)$, we obtain (2).

Now, we prove the main theorem.

(a) Consider the nine-point circle $N(\frac{R}{2})$ tangent to the A- and B-excircles. See Figure 3. The length of the external common tangent of these two excircles is

$$XY = AY + BX - AB = \frac{a+b+c}{2} + \frac{a+b+c}{2} - c = a+b.$$

By Lemma 1,

$$F_1 F_2 = \frac{(a+b) \cdot \frac{R}{2}}{\sqrt{(\frac{R}{2} + r_1)(\frac{R}{2} + r_2)}} = \frac{(a+b)R}{\sqrt{(R+2r_1)(R+2r_2)}}.$$

Comparison with (2) gives

$$\frac{A_1B_1}{F_1F_2} = \frac{abc\sqrt{R(R+2r_1)(R+2r_2)(R+2r_3)}}{(a+b)(b+c)(c+a)R^2}.$$

The symmetry of this ratio in a, b, c and the exradii shows that

$$\frac{A_1B_1}{F_1F_2} = \frac{B_1C_1}{F_2F_3} = \frac{C_1A_1}{F_3F_1}.$$

It follows that the triangles $A_1B_1C_1$ and $F_1F_2F_3$ are similar.

(b) We prove that the points F, B_1 and F_2 are collinear. By the Feuerbach theorem, F is the homothetic center of the incircle and the nine-point circle, and F_2 is the internal homothetic center of the nine-point circle and the B- excircle. Note that B_1 is the internal homothetic center of the incircle and the B-excircle. These three homothetic centers divide the side lines of triangle LNI in the ratios

$$\frac{NF}{FI} = -\frac{R}{2r}, \qquad \frac{IB_1}{B_1I_2} = \frac{r}{r_2}, \qquad \frac{I_2F_2}{F_2N} = \frac{2r_2}{R}.$$

Since

$$\frac{NF}{FI} \cdot \frac{IB_1}{B_1I_2} \cdot \frac{I_2F_2}{F_2N} = -1,$$

by the Menelaus theorem, F, B_1 , and F_2 are collinear. Similarly F, C_1 , F_3 are collinear, as are F, A_1 , F_1 . This shows that triangles $A_1B_1C_1$ and $F_1F_2F_3$ are perspective at F.

From (a) and (b) it follows that

$$\angle C_1 F A_1 + \angle C_1 B_1 A_1 = \angle F_3 F F_1 + \angle F_3 F_2 F_1 = 180^\circ$$

i.e., the circle $A_1B_1C_1$ contains the Feuerbach point F.

This completes the proof of the theorem.

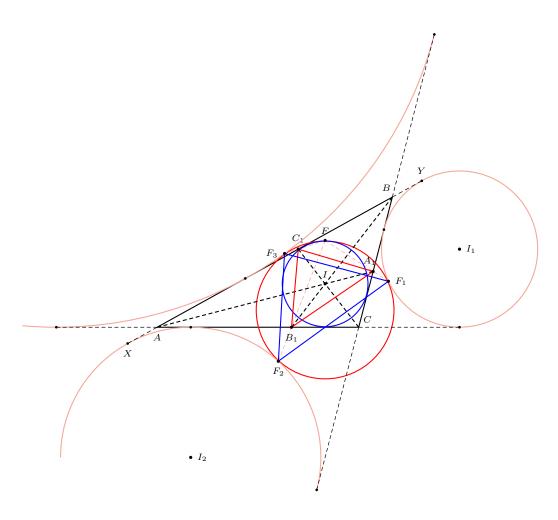


Figure 3

Lev Emelyanov: 18-31 Proyezjaia Street, Kaluga, Russia 248009

E-mail address: emelyanov@kaluga.ru

Tatiana Emelyanova: 18-31 Proyezjaia Street, Kaluga, Russia 248009

E-mail address: emelyanov@kaluga.ru