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Al We proceed by induction, with base case= 2°3°.
Suppose all integers less thar- 1 can be represented.
If n is even, then we can take a representation (f

and multiply each term by 2 to obtain a representation

of n. If nis odd, putm = [logzn|, so thatd™ < n <

3m+l |f 3™ = pn, we are done. Otherwise, choose a

representatiofn—3")/2 = s;+- - -+s;, in the desired
form. Then

n=23"+2s; + -+ 28z,
and clearly none of th@s; divide each other oB™.

Moreover, sinces, < n — 3™ < 3™+l — 3™ we
haves; < 3™, so3™ cannot divide2s; either. Thus

n has a representation of the desired form in all cases,

completing the induction.
Remarks: This problem is originally due to Paul Efdl.

Note that the representations need not be unique: for

instance,

11=24+9=3+8.

A2
forn = 1.

First solution: We show that the set of rook tours from
(1,1) to (n, 1) is in bijection with the set of subsets of
{1,2,...,n} that includern and contain an even number

of elements in total. Since the latter set evidently con-

tains2"—2 elements, so does the former.

We now construct the bijection. Given a rook taBr
from (1,1) to (n,1), let S = S(P) denote the set of
alli € {1,2,...,n} for which there is either a directed
edge from(i, 1) to (i,2) or from (i,3) to (¢,2). Itis
clear that this sefS includesn and must contain an

even number of elements. Conversely, given a subset

S = {ay,as,...,a2, = n} C {1,2,...,n} of this
type witha; < as < -+ - < as,, We notice that there is
a unique pathP containing(a;, 2 + (—1)%), (a1, 2) for
1=1,2,...,2r. This establishes the desired bijection.

Second solution: Let A,, denote the set of rook tours
beginning a1, 1) and ending atn, 1), and letB,, de-
note the set of rook tours beginning(at 1) and ending
at(n,3).

Forn > 2, we construct a bijection betweet,, and
A,_1UB,_1. Any pathP in A,, contains either the line
segmentP; between(n — 1,1) and(n, 1), or the line
segmentP, between(n,2) and(n,1). In the former
case,P must also contain the subpaf?] which joins
(n—1,3), (n,3), (n,2), and(n — 1,2) consecutively;
then deletingP; and P| from P and adding the line

We will assumen > 2 hereafter, since the answer is 0

A3

segment joiningn — 1, 3) to (n — 1, 2) results in a path

in A,_1. (This construction is reversible, lengthening
any path in4,,_; to a path in4,,.) In the latter caseP
contains the subpatR, which joins(n — 1, 3), (n, 3),
(n,2), (n, 1) consecutively; deleting?; results in a path

in B,,_1, and this construction is also reversible. The
desired bijection follows.

Similarly, there is a bijection betweeB,, andA,, 1 U
B,,_1 forn > 2. It follows by induction that fomn > 2,
|A,| = |Bn| = 2" 2(]A1| + | B1]). But|A;| = 0 and
|B1| = 1, and hence the desired answeids | = 2" 2.

Remarks: Other bijective arguments are possible: for
instance, Noam Elkies points out that each element
of A, U B, contains a different one of the possi-
ble sets of segments of the forta 2), (: + 1,2) for

1 =1,...,n — 1. Richard Stanley provides the refer-
ence: K.L. Collins and L.B. Krompart, The number of
Hamiltonian paths in a rectangular grldiscrete Math.
169 (1997), 29-38. This problem is Theorem 1 of that
paper; the cases of x n and5 x n grids are also
treated. The paper can also be found online at the URL
kcollins.web.wesleyan.edu/vita.htm

Note that it is implicit in the problem thatis noncon-
stant, one may take any branch of the square root, and
thatz = 0 should be ignored.

First solution: Write p(z) = ¢[]j_, (» — r;), so that

9'(z) _iizﬂy
g(z) 2z z—r;

J=1

Now if z # r; for all j,then

2+ (z4r)E-T) _ |2? =1+ 2Im(Er))
z—ry pemlE |z —r;[? ’
and so
/
Ro 29 (2)

2P -1 1
g(z) 2 z]: |2 —rjl?

Since the quantity in parentheses is positi¥€;)/g(z)
can be) only if |z| = 1. If on the other hand = r; for
somey, then|z| = 1 anyway.

Second solution:Write p(z) = ¢ H;;l (z—r;), sothat




We first check thay’(z) # 0 whenever: is real and
z > 1. In this case, for; = ¢¥%, we havez — r; =

(z — cos(0;)) + sin(6;)i, so the real part og_l—” - %
is
z — cos(6,) 1
22 —2zcos(0;) +1 2z
22 -1

22(2%2 — 2z cos(0;) + 1) > 0.

Henceg’(z)/g(z) has positive real part, sg(z)/g(z)
and hence(z) are nonzero.

Applying the same argument after replacip@:) by
p(e??z), we deduce thag’ cannot have any roots out-
side the unit circle. Applying the same argument after
replacingp(z) by z"p(1/z), we also deduce thgt can-

not have any roots inside the unit circle. Hence all roots
of ¢’ have absolute value 1, as desired.

Third solution: Write p(z) = ¢[;_,(z — ;) and put

r; = €%%. Note thatg(e??) is equal to a nonzero
constant times

62(0+0] ) — eii(6+6j)

ho) =11 2

= ﬁ sin(9 + 9])

Sinceh has at leas2n roots (counting multiplicity) in
the interval[0, 27), k' does also by repeated applica-
tion of Rolle’s theorem. Since’(e2?) = 2ie?1/(9),
g'(2?) has at leas®n roots on the unit circle. Since
g'(2?) is equal toz~"~! times a polynomial of degree

2n, ¢'(2?) has all roots on the unit circle, as then does A5

9'(2).

Remarks: The second solution imitates the proof of
the Gauss-Lucas theorem: the roots of the derivative of
a complex polynomial lie in the convex hull of the roots
of the original polynomial. The second solution is close
to problem B3 from the 2000 Putnam. A hybrid be-
tween the first and third solutions is to check that on the
unit circle, Re(zg'(2)/g(z)) = 0 while between any
two roots ofp, Im(z¢’'(z)/g(z)) runs from+oo to —oco

and so must have a zero crossing. (This only works
whenp has distinct roots, but the general case follows
by the continuity of the roots of a polynomial as func-
tions of the coefficients.) One can also construct a solu-
tion using Rouch’s theorem.

A4 First solution: Choose a set af rowsrq,...,r, CON-
taining ana x b submatrix whose entries are all 1. Then
fori,j € {1,...,a},we haver; - r; =nif i =jand 0

otherwise. Hence

a
E ry-T; =an.

ij=1

On the other hand, the term on the left is the dot product
of ry +---+r, withitself, i.e., its squared length. Since
this vector has: in each of its firstb coordinates, the
dot product is at least?b. Hencean > a?b, whence

n > ab as desired.

Second solution: (by Richard Stanley) Suppose with-
out loss of generality that the x b submatrix occupies
the firsta rows and the firsb columns. LetM be the
submatrix occupying the firgi rows and the last — b
columns. Then the hypothesis implies that the matrix
MMT hasn — b's on the main diagonal andb’s else-
where. Hence the column vectoof lengtha consist-
ing of all 1's satisfies\/ M v = (n—ab)v, son —abis

an eigenvalue oM/ M7T. But M M7 is semidefinite, so
its eigenvalues are all nonnegative real numbers. Hence
n —ab > 0.

Remarks: A matrix as in the problem is called

a Hadamard matrix because it meets the equality
condition of Hadamard’s inequality: amy x n matrix

with +1 entries has absolute determinant at most,

with equality if and only if the rows are mutually
orthogonal (from the interpretation of the determinant
as the volume of a paralellepiped whose edges are
parallel to the row vectors). Note that this implies
that the columns are also mutually orthogonal. A
generalization of this problem, with a similar proof,
is known asLindsey’s lemmathe sum of the entries

in any a x b submatrix of a Hadamard matrix is at
most vabn. Stanley notes that Ryser (1981) asked
for the smallest size of a Hadamard matrix containing
anr x s submatrix of all 1's, and refers to the URL
wwwa3.interscience.wiley.com/cgi-bin/
abstract/110550861/ABSTRACT for
information.

more

First solution: We make the substitutiom = tan8,
rewriting the desired integral as

w/4
/ log(tan(6) + 1) df.
0
Write

log(tan(6) 4+ 1)
= log(sin(6) 4 cos(6)) — log(cos(H))

and then note thain(6) + cos(d) = v/2 cos(r/4 — ).
We may thus rewrite the integrand as

% log(2) + log(cos(n/4 — 6)) — log(cos(6)).

But over the interval [0,7/4], the integrals of
log(cos(6)) andlog(cos(w/4 — 0)) are equal, so their
contributions cancel out. The desired integral is then
just the integral of} log(2) over the interval0, r/4],
which ismlog(2)/8.

Second solution: (by Roger Nelsen) Lef denote the
desired integral. We make the substitution= (1 —



f'(@)

ft) =

u)/(1 + u) to obtain

= /0 1

_ /1 log(2)
0

= log(2) /01

yielding

= 518 | 1

Third solution: (attributed to Steven Sivek) Define the

function
1
o= [

so thatf(0) = 0 and the desired integral j§1). Then
by differentiation under the integral,

(1 +u)?log(2/(1 + u))
2(1 4+ u?)
—log(1 + u)
1+ u?
du
1+u2

2du
(14 u)?

du

)

du
14+ u?

mlog(2)
5

log(zt 4+ 1)

d
2 +1 v

ro=[ G

By partial fractions, we obtain

2t arctan(x) — 2log(tx + 1) + log(z? +
2(t2+1)

_ mt+2log(2) — 4log(t + 1)

N 4(12 4+ 1) ’

whence

log(2) arctan(t)
2

mlog(t? + 1)
8

1
/
But the integral on the right is again the desired integral
f(1), so we may move it to the left to obtain

log(t+1)
241

dt

_/Ot

log(t+1)
t2+1

and hence

mlog(2)

===

dt.

mlog(2)
4

and hencef (1) = wlog(2)/8 as desired.
Fourth solution: (by David Rusin) We have

[ [ (z ) @

We next justify moving the sum through the integral
sign. Note that

>[5

2f(1) =

nln

log(x + 1) x

241 (z? +

rL lxn dz

:z:2+1

A6

3

is an alternating series whose terms strictly decrease to
zero, so it converges. Moreover, its partial sums alter-

nately bound the previous integral above and below, so
the sum of the series coincides with the integral.

Put
1
T, = /
0

then.J, = arctan(l) =

" dx
2 +1’

Z andJ; = 3log(2). More-

over,
! 1
I "dx = .
+Jnt2 /0 v n+1
Write
m (_1)1—1
A, =
i:zl 2t —1
m (_1)1—1
Bm = s
; 21
then

Jon = (=1)"(Jo — An)
(=" (1 = By).

Now the2 N-th partial sum of our series equals

J2n+1 -

i JQn—l N J2n
2n—1 2n
n=1
N
(-1 (—1)"
= —Bn_ - _A’IL
n; -1 1 =5, (o )
= AN(Jl — BNfl) + BN(J() — AN) + AnyBy.

As N — oo, Ay — Jgand By — Ji, so the sum
tends toJyJ; = wlog(2)/8.

Remarks: The first two solutions are related by the fact
thatifz = tan(#), thenl —z /(14 z) = tan(w/4—0).
The strategy of the third solution (introducing a parame-
ter then differentiating it) was a favorite of physics No-
belist (and Putnam Fellow) Richard Feynman. Noam
Elkies notes that this integral is number 2.491#8 in
Gradshteyn and RyzhiK,able of integrals, series, and
products The Mathematicacomputer algebra system
(version 5.2) successfully computes this integral, but we
do not know how.

First solution: The angle at a verteR is acute if and
only if all of the other points lie on an open semicir-
cle. We first deduce from this that if there are any
two acute angles at all, they must occur consecutively.
Suppose the contrary; label the vertie@s ..., Q, in
counterclockwise order (starting anywhere), and sup-
pose that the angles &1; and@; are acute for some

1 with 3 < ¢ < n— 1. Then the open semicircle starting



at Q2 and proceeding counterclockwise must contain
all of Qs,...,Q,, while the open semicircle starting
at Q; and proceeding counterclockwise must contain
Qiv1y---Qn,Q1,...,Q;—1. Thus two open semicir-
cles cover the entire circle, contradiction.

It follows that if the polygon has at least one acute an-
gle, then it has either one acute angle or two acute an-
gles occurring consecutively. In particular, there is a
unique pair of consecutive verticé€y,, Q> in counter-
clockwise order for whicl¥ (s is acute and’Q; is not
acute. Then the remaining points all lie in the arc from
the antipode of); to 1, but @, cannot lie in the arc,
and the remaining points cannot all lie in the arc from
the antipode of); to the antipode of),. Given the
choice ofQ1, 2, let z be the measure of the counter-
clockwise arc from); to @)2; then the probability that
the other points fall into position i87"*+2 — z"—2 if

x < 1/2 and 0 otherwise.

Hence the probability that the polygon has at least one
acute angle with givenchoice of which two points will
act as); andQ@s is

1/2 _
/ (272 — ") do = n-=e 22‘"“.
0 n—1
Since there are(n — 1) choices for which two points
act as@); and(Q,, the probability of at least one acute
angle isn(n — 2)2= "
Second solution: (by Calvin Lin) As in the first solu-
tion, we may compute the probability that for a particu-
lar one of the point§), the angle af); is not acute but
the following angle is, and then multiply by. Imagine
picking the points by first choosing@,, then picking
n — 1 pairs of antipodal points and then picking one
member of each pair. Le®,,..., R, be the points of
the pairs which lie in the semicircle, taken in order away
from @1, and letSs,, ..., S, be the antipodes of these.
Then to get the desired situation, we must choose from
the pairs to end up with all but one of ti&, and we
cannot takeR,, and the otherS; or elseZQ; will be
acute. That gives us: — 2) good choices out df”~!;
since we could have choséh to be any of the: points,
the probability is agaim(n — 2)277+1,

Bl Take P(z,y) = (y — 2x)(y — 2z — 1). To see that

this works, first note that ifn = |a], then2m is an
integer less than or equal &, so2m < |2a|. On
the other handy + 1 is an integer strictly greater than
a, S02m + 2 is an integer strictly greater th&w, so
[2a] <2m + 1.

B2 By the arithmetic-harmonic mean inequality or the

Cauchy-Schwarz inequality,

1 1
4+ =) >n2
(it dn) <k1 " +kn> ="

We must thus havén — 4 > n2, son < 4. Without
loss of generality, we may suppose that< - -- < k,,.

4

If n =1, we must havé; = 1, which works. Note that
hereafter we cannot havg = 1.

If n =2, we have(ky, k2) € {(2,4), (3,3)}, neither of
which work.

If n = 3, we havek; + ks + k3 = 11,
so 2 < ki < 3. Hence (ki,k2,k3) €
{(2,2,7),(2,3,6),(2,4,5),(3,3,5), (3,4,4)}, and
only (2, 3,6) works.

If n = 4, we must have equality in the AM-HM inequal-
ity, which only happens wheky, = ky = k3 = k4 = 4.
Hence the solutions are = 1 andk; = 1, n = 3 and

(k1, k2, ks) is a permutation of2, 3,6), andn = 4 and

(k1, ko, ks, kq) = (4,4,4,4).

Remark: In the cases = 2,3, Greg Kuperberg sug-
gests the alternate approach of enumerating the solu-
tionsofl/k1+---+1/k, = 1withky <--- < k,. This

is easily done by proceeding in lexicographic order: one
obtains(2, 2) for n = 2, and(2, 3, 6), (2,4,4), (3,3, 3)

for n = 3, and only(2, 3, 6) contributes to the final an-
swer.

B3 First solution: The functions are precisef(z) = cx?

for ¢,d > 0 arbitrary except that we must take= 1

in cased = 1. To see that these work, note that
f'(a/x) = dc(a/x)? ! andz/f(x) = 1/(cx?™1), so
the given equation holds if and only i2a?~! = 1.

If d # 1, we may solve form no matter what is; if

d = 1, we must have = 1. (Thanks to Brad Rodgers
for pointing out thed = 1 restriction.)

To check that these are all solutions, put log(a) and
y = log(a/z); rewrite the given equation as

F(E) /() = v,
Put

9(y) = log f(e?);
then the given equation rewrites as

g(b—y) +logg'(y) +g(y) —y=0b—y,

or

logg'(y) =b—g(y) —g(b—y).

By the symmetry of the right side, we hay&b — y) =

¢'(y). Hence the functiory(y) + g(b — y) has zero
derivative and so is constant, as theryigy). From
this we deduce thaf(z) = cx? for somec,d, both
necessarily positive sincg(x) > 0 for all .

Second solution:(suggested by several people) Substi-
tutea/x for x in the given equation:

f@) =

zf(a/z)
Differentiate:

neoy _ a’f'(a/x)
f(z) = + :c3f(a/x)2'

~22f(a/)



Now substitute to eliminate evaluationsagtz:

o

f(a) =~
Clear denominators:

e f(@)f" (@) + fx)f'(2) = 2 f'(x)*.
Divide through byf(x)? and rearrange:
fl@)  zf"(@) zf(@)?
f)  f(=) f(x)?

The right side is the derivative off’(x)/ f(z), so that
quantity is constant. That is, for sordg

fx) _d

0=

fl@) 2
Integrating yieldsf (z) = cz?, as desired.

B4 First solution: Define f(m,n, k) as the number of-
tuples(zy, za, . . ., z,) of integers such that |+ - -+
|z,| < m and exactlyk of 21, ...,z, are nonzero. To
choose such a tuple, we may chooseftim®nzero posi-
tions, the signs of thosenumbers, and then an ordered
k-tuple of positive integers with surd m. There are
(%) options for the first choice, argf for the second.
As for the third, we have}') options by a “stars and
bars” argument: depict the-tuple by drawing a num-

ber of stars for each term, separated by bars, and adding

stars at the end to get a totalof stars. Then each tu-
ple corresponds to placing bars, each in a different
position behind one of the: fixed stars.

We conclude that

f(m.n. k) =24 (T,’j) (’;) = f(n.m. k);

summing overk gives f(m,n) = f(n,m). (One may
also extract easily a bijective interpretation of the equal-
ity.)

Second solution: (by Greg Kuperberg) It will be con-
venient to extend the definition ¢gim,n) tom,n > 0,

in which case we havg(0,m) = f(n,0) = 1.

Let S, be the set of-tuples(zy,...,z,) of inte-
gers such thafzq| + - - - + |z,| < m. Then elements
of S,, » can be classified into three types. Tuples with
|z1] + -+ + |z| < m also belong ta5,,_1,,. Tuples
with |z1| + -+ + |z,| = m andz, > 0 correspond
to elements ofS,, ,_1 by droppingz,,. Tuples with
|z1| + -+ + |zn| = m andz, < 0 correspond to ele-
ments ofS,,,_1 ,—1 by droppingz,,. It follows that

f(m,n)
=fm—-1n)+ f(mn—1)+ f(m—1,n—-1),

so f satisfies a symmetric recurrence with symmetric
boundary conditiong'(0,m) = f(n,0) = 1. Hencef
is symmetric.

5

Third solution: (by Greg Martin) As in the second so-
lution, it is convenient to allowf (m,0) = f(0,n) = 1.
Define the generating function

G(z,y) = Z Zf(m, n)xmy".

m=0n=0

As equalities of formal power series (or convergent se-
ries on, say, the regio|, |y| < %), we have

Glay) =) > a™y" > 1

m>0n>0 ki,...,kn€Z

[k1]+-+]kn|<m
— n
= v
ki,...,kn€Z m>\ky|++|kn|

>
n>0
|+ -+ ke
., | [
=D —

ki,..., kn€Z

n>0
1 n
n |k|
()
n>0 keZ
1 L 1+z\"
o (i)
n>0
1 1
l—z 1-y(l+2)/(1—2)
1
l—z—y—ay

1—2x

SinceG(z,y) = G(y,x), it follows that f(m,n) =
f(n,m) forallm,n > 0.

B5 First solution: PutQ = z% 4+ --- 4+ 22. SinceQ is
homogeneous? is divisible by if and only if each of
the homogeneous componentddis divisible by@. It
is thus sufficient to solve the problem in caRétself is
homogeneous, say of degrée

Suppose that we have a factorizatibh= Q™R for
somem > 0, whereR is homogeneous of degrdeand
not divisible by@; note that the homogeneity implies
that

ix-aR =dR.

1
ox;
i=1 v

. 2 2
Write V2 as shorthand fo% +. 4 %%; then

0=V?P
1 OR

=2mnQ™ 'R+ Q™V?R + 2 Z 2mz; Q™ ErS

i=1
=Q™V2R + (2mn + 4md)Q™ ' R.
Sincem > 0, this forcesR to be divisible by@, con-
tradiction.

Second solution:(by Noam Elkies) Retain notation as
in the first solution. LetP; be the set of homogeneous



polynomials of degred, and letH, be the subset of
P, of polynomials killed byVv?2, which has dimension
> dim(P;) — dim(P,_»); the given problem amounts
to showing that this inequality is actually an equality.

Consider the operatapV? (i.e., applyV? then multi-
ply by Q) on Py; its zero eigenspace is precisdii;.
By the calculation from the first solution, R € P,
then

V2(QR) — QV?R = (2n + 4d)R.

Consequently)’ H,_,; is contained in the eigenspace
of QV?2 on P, of eigenvalue

Cn+4(d—2j))+ -+ (2n+4(d — 2)).

In particular, theQ’ H¢=2J lie in distinct eigenspaces,
so are linearly independent withiR;. But by dimen-
sion counting, their total dimension is at least thaPgpf
Hence they exhaust;, and the zero eigenspace cannot
have dimension greater thaim(P;) — dim(Py_2), as
desired.

Third solution: (by Richard Stanley) Writer =
(z1,...,2,) andV = (z2-,...,52-). Suppose that
P(x) =Q(x)(x2 +---+22). Then

P(V)P(z) = Q(V)(V*)P(x) = 0.

On the other hand, iP(z) = ) coz® (Wherea =
(a1,...,a,) andz® = z7* - - - %), then the constant
term of P(V)P(z) is seento b&"_ 2. Hencec, =0
for all a.

Remarks: The first two solutions apply directly over
any field of characteristic zero. (The result fails in char-
acteristicp > 0 because we may takB = (2§ +
o4 a2)? = 22 4 ... 4+ 22P)) The third solution
can be extended to complex coefficients by replacing
P(V) by its complex conjugate, and again the result
may be deduced for any field of characteristic zero.
Stanley also suggests Section 5 of the arXiv e-print
math.C0O/0502363 for some algebraic background
for this problem.

B6 First solution: Let I be the identity matrix, and let

J, be the matrix withe’s on the diagonal and 1's else-
where. Note thatl, — (x —1)I, being the all 1's matrix,
has rank 1 and trace, so has: — 1 eigenvalues equal
to 0 and one equal te. HenceJ, hasn — 1 eigenvalues
equal toxr — 1 and one equal te + n — 1, implying

detJ, = (v +n—1)(z—1)"""

On the other hand, we may expand the determinant as a
sum indexed by permutations, in which case we get

det J, = Z sgn(m)z” (™),
TESH
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Integrating both sides from 0 to 1 (and substituting
1 — x) yields

m) [ e et
ﬂ;snu(w)Jrl_/o( -1 -1)"d
= [ty

:71n+17
(e

as desired.

Second solution: We start by recalling a form of the
principle of inclusion-exclusion: iff is a function on

the power set of1, ..., n}, then
F(8) =Y (=)= p ().
725 UoT

In this case we takg¢(S) to be the sum of () over all
permutationsr whose fixed points are exacth; Then

> uor f(U)=1if |T| > n—1and 0 otherwise (since

a permutation group on 2 or more symbols has as many
even and odd permutations), so

£(8) = ()" ¥l —n+|9]).

The desired sum can thus be written, by grouping over
fixed point sets, as

()

=0

S () S ()

i 1=0
- .n n+1
=0- B L e——
;( ) n+1(i+1)
=(=1 71,+1L.
(=1) n+1

Third solution: (by Richard Stanley) Theycle indica-
tor of the symmetric group,, is defined by

. o Cl(ﬂ') cp (T
vln)*E:% "'%(),
TES,

Zn(xla s

wherec; () is the number of cycles of of length:.
Put

Fo= > o(mz"™ = Zy(x,~1,1,-1,1,...)
TES,

and



A standard argument in enumerative combinatorics (the
Exponential Formula) gives

oo tn 0 tk

Z Zn (21, .. Jn)g = eXpZ.’L’k?,

n=0 k=1
yielding

;_:Of(n)n!:/o exp(mt—2+3—---) dx
1

_ 6(acfl)tJrlog(lth) dx

1
(1+t)e® Dt ag

Il
S— S—

—

=—(1—e (1 +1).

~

Expanding the right side as a Taylor series and compar-
ing coefficients yields the desired result.

Fourth solution (sketch): (by David Savitt) We prove
the identity of rational functions

o)  (=)"Mal(z+n—1)
Z z(z4+ 1) (z+n)

by induction onn, which foraz = 1 implies the desired
result. (This can also be deduced as in the other solu-
tions, but in this argument it is necessary to formulate
the strong induction hypothesis.)

Let R(n,x) be the right hand side of the above equa-
tion. It is easy to verify that

(-1

R(z,n)=R(x+1,n—1)+ (n—1)! .

since the sum telescopes. To prove the desired equality,
it suffices to show that the left hand side satisfies the
same recurrence. This follows because we can classify
eachr € S, as either fixing:, being am-cycle, or hav-

ing n in ani-cycle for one of = 2,...,n — 1; writing

the sum over these classes gives the desired recurrence.



