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1 Day 1

Problem 1. Let a, b, c be positive real numbers satisfying a+b+c = 6 and a2+b2+c2 = 14.
Prove that

(a− b)(b− c)(c− a) ≤ 2.

Solution
WLOG assume c ≥ b ≥ a. The given condition leads to

6 = (a− b)2 + (b− c)2 + (c− a)2.

Now, applying the Cauchy-Schwarz inequality we have (b−a)2 +(c− b)2 ≥ 1

2
(c−a)2; and therefore

6 ≥ 3

2
(c− a)2 =⇒ c− a ≤ 2.

Now, we have

(c− a)[4(b− a)(c− b)] ≤ (c− a) · [b− a + c− b]2 = (c− a)3 ≤ 8;

And therefore (a− b)(b− c)(c− a) ≤ 2.
We are done. Equality holds iff (a, b, c) ∼ (1, 2, 3) and its relevant permutations. �

Problem 2. Let circle (O) have two distinct points A,B on its circumference. Let M
be the midpoint of AB. A chord passes through M such that AC ∩BD = K;KM ∩ (O) =
I,H;AI∩BH = L. Show that K, I,D,L are concyclic provided that I is closer to K than H.

Solution
Consider the quadrilateral AIBH. Its diagonals meet at M and AI ∩BH = L. So it follows that L
lies on the polar of M with respect to (O). Similarly we have, considering ACBD that AB∩CD = M
and AC ∩ BD = K, so again, K must lie on the polar of M with respect to (O). Therefore we
deduce that KL is the polar of M wrt (O).
And so OM ⊥ KL is forced. But we already know that OM ⊥ AB. Using these we see that
AB ‖ KL.
Therefore after a simple angle-chasing we obtain our desired result. �
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Problem 3. Consider a 9 × 11 rectangle which is divided into 99 unit squares. Colour
each square of the rectangle using white or back, such that in an arbitrary 2×3 or 3×2
sub-rectangle, we would have exactly two squares black in colour. Show that there are
exactly 33 black squares.

Solution
Firstly we observe that for a 9 × 2 rectangular division we must have exactly 6 squares coloured
black.
Now we are left with a 9× 9 square, and it is sufficient to show that this must contain exactly 27
black squares.
Now we divide this 9 × 9 square as in the diagram, so we will be done, considering each sub-
rectangles.
After colouring as shown in the figure, we see that the top right corners have been left out. We
have 13 3 × 2 or 2 × 3 covering the rest of the board so that there are exactly 26 black squares
in the rest of the board. Denote the top-right corner squares as a1, a2, a3; b1, b2, b3; and c1, c2, c3
as shown in the diagram. We will show that there will be exactly one black square amongst a1, a2, a3.
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Case I. All of a1, a2, a3 are White.
In this case we note that considering (a1a2a3b1b2b3), two amongst b1, b2, b3 must be black in colour.
Again if we consider (b1b2b3c1c2c3), it is forced that c1, c2, c3 are all white.
Therefore if we consider (a1a2b1b2c1c2) we should have b1, b2 to be black. Similarly b2, b3 are also
black. Then this leads to an obvious contradiction because all three of bi can never be black.

Case II.Excatly two of a1, a2, a3 are black.
In this case, considering (a1a2a3b1b2b3, we infer that b1, b2, b3 are all white. Also if a1 and a2; or a2
and a3 were to be black, then we would have had c1 and c2; or c2 and c3 to be while, which would
have led to a contradiction from (b1b2b3c1c2c3).
Therefore a1 and a3 have to be black and a2 is forced to be white. Therefore considering (a1a2b1b2c1c2)
and (a2a3b2b3c2c3) we see that c1, c3 have to be back, and hence c2 must be white. Then the three-
member column to the left of (a1b1c1) also has to be white. Let the two lowermost squares be
named d1, d2. So we have d1, d2, b1, b2, c3 to be white so that from (d1b1b2d2c1c2) we get only one
black square; a contradiction.

Hence we are done. �

2 Day 2

4. Prove that there do not exist any polynomials P (x) ∈ R[x] with degree 2010 and
which satisfies

P (x)2 − 1 = P
(
x2 + 1

)
∀x ∈ R.

Solution
Replacing x by −x we see that P (x)2 = P (−x)2, so that P can be either odd or even. Since P has
degree 2010, therefore P must be an even polynomial. Therefore we let

P (x) = a1005x
2010 + a1004x

2008 + · · ·+ a0.

Now we let x2 + 1 = z; so that the given relation leads to

P (z) = P
(√

z − 1
)2 − 1 ∀z ≥ 1;
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Or,

a1005z
2010 + a1004z

2008 + · · ·+ a0 =
(
a1005(z − 1)1005 + · · ·+ a0

)2 − 1.

Comparing the coefficient of z2010 in both sides we obtain,

a1005 = a21005
a1005 6=0

=⇒ a1005 = 1.

Again, comparing the coefficient of z2008 in both sides we get,

a1004 = (1005a1005 + a1004)
2

;
a1005=1

=⇒ a21004 + 2009a1004 + 10052 = 0.

Obviously the discriminant of this quadratic is 20092 − 20102, so that this does not have any real
solution. So no such polynomial exists, and we finish our proof here. �

5. Let 4ABC be a scalene triangle with ∠A = 60◦. Let BD and CE be the two in-
ternal angle bisectors from B and C, respectively. The circle with centre B and radius
BD meets AB at F ; and the circle with centre C and radius CE intersects AC at G.
Show that we must have GF ‖ BC.

Solution
We rephrase the problem into the following equivalent form:
Let 4ABC be a scalene triangle with ∠A = 60◦. Let BD and CE be the two internal angle bisec-
tors from B and C, respectively. Let F be a point on AB with BD = BF ; and the line through F ,
parallel to BC intersects AC at G. Then we have CE = CG.
Refer to the diagram. We denote, by a, b, c the sides BC,CA,AB respectively of the triangle ABC.
Then we know that

DC =
ab

c + a
, and BE =

ca

a + b
. Now using the Thale’s theorem we have

AF

FB
=

AG

GC
, leading to

GC =
AG

AF
· FB

FB=BD
=

AG

AF
·BD. Hence it is sufficient to show that

AF

AG
=

BD

CF

4AFG∼4ABC⇐⇒ AB

AC
=

BD

CE
.

Now using the Sine rule in 4BEC, we have
BD

sinC
=

ab

(c + a) sin
B

2

.

Again, using the Sine rule in 4BDC we obtain
CE

sinB
=

ca

(a + b) sin
C

2

.

Dividing these relations one gets

BD

CE
=

sinC

sinB
· ab

(c + a) sin
B

2

·
(a + b) sin

C

2
ca

=
a + b

c + a
·

sin
C

2

sin
B

2

.
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Again, using the sine rule in 4AEC we have, CE =

√
3 · b

2 sin

(
C

2
+ 60◦

) .

Hence it is sufficient to show that

sin

(
C

2
+ 60◦

)
= sin

(
B

2
+ 60◦

)
;

Which is obvious since

(
B

2
+ 60◦

)
+

(
C

2
+ 60◦

)
= 120◦ +

180◦ − 60◦

2
= 180◦.

Therefore we are done. �

6. Prove that there exist three numbers a, b, c ∈ N>1 satisfying b|(a2−1), c|(b2−1), a|(c2−1)
and a + b + c > 2011.

Solution
Let us assume a to be an odd number 2m+ 1 sufficiently large. Let b = 4m, and c = 4m+ 1. Then
we automatically have the following consequences.

• 4m|(2m− 1)2 − 1 = 2m(2m− 2);

• 4m + 1|16m2 − 1 = (4m + 1)(4m− 1);

• 2m + 1|(4m + 1)2 − 1 = 4m(4m + 2).

We can choose m to be sufficiently large such that a + b + c exceeds 2011. Hence we are done. �
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